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Abstract

End-to-end trained Convolutional Neural Networks have led to a breakthrough in optical flow estim-
ation. The most recent advances focus on improving the optical flow estimation by improving the
architecture and setting a new benchmark on the publicly available MPI-Sintel dataset. Instead, in this
article, we investigate how deep neural networks estimate optical flow. By obtaining an understanding
of how these networks function, more can be said about the behavior of these networks in unexpected
scenarios and how the architecture and training data can be improved to obtain a better performance.
For our investigation, we use a filter identification method that has played a major role in uncovering
the motion filters present in animal brains in neuropsychological research. The method shows that the
filters in deep neural networks are sensitive to a variety of motion patterns. Not only do we find transla-
tion filters, as demonstrated in animal brains, but thanks to the easier measurements in artificial neural
networks, we even unveil dilation, rotation and occlusion filters. Furthermore, we find similarities in
the refinement part of the network and the perceptual filling-in process which occurs in the mammal
primary visual cortex.

Besides the research on the workings of Convolutional Neural Networks for optical flow estimation,
this thesis also includes a literature-review of the main concepts related to this work. Furthermore, an
extensive preliminary evaluation of Convolutional Neural Networks for different image sequences with
optical ground truth can be found.
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Introduction

In the field of optical flow generally two types of motion fields are discerned. The apparent motion and
the motion field. The former refers to the apparent motion of brightness patterns in the image and the
latter to the 2D projection of the 3D motion of surfaces in the world. The apparent motion field is used
for frame interpolation to enable video compression. Whereas the motion field has applications such
as object tracking, navigation and visual odometry (the estimation of ego-motion of the observer using
sequential images) for robotics including Micro Air Vehicles (MAVs). Variational approaches (Chapter
3) have dominated optical flow estimation ever since the pioneering work of B. K. Horn and Schunck,
1981. Many improvements have been introduced since (Brox, Bruhn, Papenberg & Weickert, 2004;
Zimmer, Bruhn & Weickert, 2011).

Several machine learning techniques have been applied to optical flow estimation. The method of
Sun, Roth, Lewis and Black, 2008 was among the first to end-to-end trained optical flow estimation
methods. Due to the lack of training data, it did not fully show the full promise of learning-based
optical flow approaches. With the notable exception of Wulff and Black, 2015, machine learning optical
flow estimation methods have not been able to achieve the same level of performance as variational
methods.

The availability of more processing power, a new deep learning architecture called Convolutional Neural
Networks (CNNs), and synthetically generated datasets have inspired Dosovitskiy et al., 2015 to propose
two new end-to-end trained encoder-decoder architectures for optical flow estimation. End-to-end means
a single feed-forward architecture is used which takes images as input and produces a flow map as
output. Note that the availability of large amounts of training data has caused CNNs to become the
state-of-the-art method on a variety of computer vision tasks such as stereo, segmentation and object
detection. Obtaining sufficient ground-truth data for optical flow has proven to be difficult. Because
there are currently no sensors for directly capturing optical flow ground-truth and manual labeling is
difficult and time-consuming. Synthetically generated datasets have overcome this problem and allowed
deep CNNs to be end-to-end trained. Inspired by the CNN architecture of other pixel-level prediction
tasks, such as biomedical image segmentation (Ronneberger, Fischer & Brox, 2015), Dosovitskiy et
al., 2015 propose two hourglass-like CNN architectures. One is a correlation-based architecture which
first extracts low-level features and then computes a patchwise similarity measure. The other is a
spatiotemporal filter-based architecture which takes two stacked images as input.

Dosovitskiy et al., 2015 have provided a brief explanation of the workings of correlation-based architec-
tures and Ilg, Ozgun et al., 2018 have shown that by slightly modifying the correlation-based architec-
ture, the CNN produces high uncertainty in cases where optical flow estimation is difficult. Ilg et al.,
2017 showed that the correlation-based architecture is superior in terms of performance. Therefore,
recent advances have primarily focused on extending and improving the accuracy of correlation-based
architectures and setting a benchmark on public test sets such as MPI-Sintel Butler, Wulff, Stanley and



2 Introduction

Black, 2012. Concerning spatiotemporal filter-based architectures, other than a visualization of filters
in the first layer by Ranjan and Black, 2017, there has not been any research on how this architecture
performs optical flow estimation.

1.1 Motivation and research question

Knowing what cues these CNNs exploit for optical flow estimation is useful. Firstly, it advances our
current understanding when the network will behave reliably, and what to expect when it deals with
scenarios not seen before in a training set. Secondly, the networks can be trained more efficiently by
rendering different synthetic datasets or modifying the data augmentation. Thirdly, knowing what
the limitations of the architecture are, provides insight for practical applications. This leads to the
corresponding main research question:

How do spatiotemporal filter-based convolutional neural networks estimate optical flow?

This main question can be split up into multiple sub-questions which collectively answer the main
research question. The structure of the sub-questions is as follows:

1. Until what scale is the network able to solve the aperture problem?
How does the network estimate motion?

What motion patterns are the filters in the network sensitive to?

L S

How is the network able to overcome the fundamental limit of the uncertainty rela-
tion?

1.2 Structure of this work

This Master of Science thesis constitutes of four parts.The main contributions of this thesis are presented
in the scientific paper in Part I. The scientific paper can be read as a stand-alone document. The paper
features an introduction to the main concepts relevant to our research and continues into a related work
section which discusses relevant literature. After this, the model used in our experiments is specified
and the experiment and their results are presented. Lastly, we discuss the findings of our work and draw
relevant conclusions. The remaining parts of this thesis provide background information and supporting
materials for the scientific paper.

Part II features a review of relevant literature on optical flow modeling and optical flow estimation
methods. Chapter 2 deals with the modeling of optical flow, the photometric factors which influ-
ence time-varying image intensity and the capturing of optical flow ground-truth. Chapter 3 discusses
intensity-based differential methods which consist of global and local methods. Chapter 4 continues with
correlation-based methods which define displacement as the shift that gives the best fit between image
regions at different times. Chapter 5 discusses image velocity in the frequency domain and frequency-
based estimation methods. Chapter 6 contains learning-based methods. Both machine-learning and
CNN-based methods are discussed in this Chapter. In Chapter 7 the research gap, based on the findings
in literature, is identified.

In Part III a preliminary evaluation of spatiotemporal filter-based CNNs is presented. In this part a
performance evaluation of the CNNs is performed and the filters of the first layer of these networks is
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visualized. Chapter 8 provides an outline of the methodology used in the experiments and discusses the
specifications of the analyzed models. Next, Chapter 9 present the preliminary results and Chapter 10
contains a discussion of these results.

Lastly, in Part IV individual appendices can be found with supplementary material for the preliminary
evaluation in Part III. Details about the analyzed models can be found in Appendix A and the flow
field color coding used to visualize flow maps can be found in Appendix B.
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How do deep neural networks perform optical flow
estimation? A neuropsychology-inspired study
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Abstract—End-to-end trained Convolutional Neural Networks
have led to a breakthrough in optical flow estimation. The most
recent advances focus on improving the optical flow estimation
by improving the architecture and setting a new benchmark on
the publicly available MPI-Sintel dataset. Instead, in this article,
we investigate how deep neural networks estimate optical flow. A
better understanding of how these networks function is important
for (i) assessing their generalization capabilities to unseen inputs,
and (ii) suggesting changes to improve their performance. For
our investigation, we use a filter identification method that has
played a major role in uncovering the motion filters present
in animal brains in neuropsychological research. The method
shows that the filters in the deepest layer of the encoder-decoder
neural network are sensitive to a variety of motion patterns. Not
only do we find translation filters, as demonstrated in animal
brains, but thanks to the easier measurements in artificial neural
networks, we even unveil dilation, rotation, and occlusion filters.
Furthermore, we find similarities in the refinement part of the
network and the perceptual filling-in process which occurs in the
mammal primary visual cortex.

Index Terms—Optical flow, convolutional neural networks,
Gabor filters, neuropsychology

I. INTRODUCTION

Optical flow is a visual cue defined as the appearance of
spatiotemporally varying brightness patterns [1], which can be
perceived by both biological vision systems and cameras. This
cue is important for the behavior of animals of varying size [2],
ranging from small flying insects [3] to humans [4], as it allows
these animals to estimate their ego-motion. Optical flow is also
important in computer vision and robotics applications, e.g.
Micro Air Vehicles (MAVs), for tasks such as object tracking
[5], navigation [6], [7], and image interpolation [8].

Many algorithms have been introduced to determine optical
flow, including, correlation-based matching methods [9], [10],
frequency-based methods [11], [12], and differential meth-
ods [13], [14]. Correlation-based matching methods try to
maximize the similarity between different intensity regions
across multiple frames. Finding the best match then corres-
ponds to finding the shift which maximizes the similarity
score. Frequency-based methods exploit either the amplitude
or phase component of the complex valued response of a
Gabor quadrature filter pair [15] convolved with an image
sequence. Differential methods compute optical flow based on
a Taylor expansion of the brightness constancy assumption.

*MSc student, Tsupervisor

Correlation-based, frequency-based, and differential-based
methods all compute flow based on the assumption that the
brightness of a moving pixel remains constant over time and
when applied locally are subject to the aperture problem [16];
the true motion of a one-dimensional structure (such as a
bar or an edge) cannot be estimated unambiguously. Instead,
only the motion component that is normal to this structure
can be perceived. In functional form, this corresponds to one
equation with two unkowns (the horizontal and vertical flow
component) and thus additional constraints are needed to solve
for this equation.

For example, for differential methods a global smoothness
constraint has been added [13], which assumes that neighbor-
ing pixels undergo a similar motion. Then, the global differ-
ential method can be formulated as a global energy function
consisting of a data term based on the brightness constancy
assumption and a global smoothness term. The global energy
term can be minimized using the Euler-Lagrange equations
[17], which belong to the mathematical field calculus of
variations. Methods based on the minimization of a global
energy term using this numerical scheme are called variational
methods and have played a dominant role for many years due
to their performance. However, variational methods have two
significant drawbacks. First, the iterative minimization of the
energy function leads to long computation times. Second, the
brightness constancy assumption is a coarse approximation
to reality and this limits the performance. Deviations like
illumination changes and occlusion violate this assumption
[18], [19]. Research has focused on incorporating extra energy
terms to deal with deviations from the brightness constancy
assumption and improving the robustness of global smoothness
constraints, leading to slow but steady progress.

As in many other computer vision areas, currently, the best-
performing algorithms are trained deep neural networks. A ma-
jor challenge that had to be overcome to be able to train such
networks was obtaining ground-truth training data. Obtaining
this data for the task of optical flow is difficult due to the
lack of ground-truth sensing and the excessive human effort
required for manual optical flow labeling. Dosovitskiy et al.
[20] were the first to successfully train deep neural networks to
estimate optical flow by using a synthetically generated dataset
with optical flow ground truth. Their networks, FlowNetS and
FlowNetC, initially performed slightly worse than the state-of-
the-art variational methods [21]. However, trained deep neural
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Figure 1: Schematic representation of the FlowNetS architecture. The network consists of a contracting and expanding part.
The contracting part compresses spatial information through the use of strided convolutions, and the expanding part uses
upconvolutions to refine the flow maps. The predict-flow (pf) layers transform the activations in the feature maps to a
horizontal and vertical flow component. The final flow map £2 is bilinearly upsampled to achieve the same resolution as the
input. The feature map corresponding to the output of the c6 layer will be studied in Section IV & V. The flow refinement

process will be discussed in Section VI.

networks became the new state-of-the-art method for optical
flow estimation by subsequent researchers who focused on
improving the architecture and training data [22]-[24].

Until now, the functioning of these networks is poorly
understood. In this article we investigate how deep neural
networks perform optical flow estimation. There are two
main reasons why this is important. First, it is difficult to
guarantee correct behavior outside of the publicly available
testsets without knowing what the network does. Second, a
better understanding of what the architecture does may lead to
valuable recommendations for improving the performance, for
instance, by changing properties of the architecture or training
data. To the best of our knowledge this is the first work which
provides extensive insight into the workings of deep neural
networks for optical flow estimation.

In our analysis of deep optical flow networks, we make use
of a method that has helped unveiling the workings of motion-
sensitive brain areas in neuropsychology [25]. Specifically,
we measure the response of neurons in the deepest layer of
the contracting part of FlowNetS [20] to stimuli with varying
spatio-temporal frequencies, and construct a spectral response
profile. The input stimuli used are translating plane waves, as
this input type proved to be more selective in the frequency
domain than moving bars [26]. Based on the earlier findings of

Gabor filters [15] in biological vision systems [27], [28] and
other learning-based methods, such as independent component
analysis [29] and learned basis functions for sparse image
representation [30], we expect to find these filters in FlowNetS
as well. Therefore, we fit a Gabor function to the spectral
response profile and study the residual error patterns. We find
that the Gabor translational motion filter model is suitable for
the majority of the filters. Additionally, we find filters sensitive
to motion patterns such as dilation, rotation, and occlusion.
Interestingly, neurons sensitive to these motion patterns have
not been mentioned in neuropsychology literature. Further-
more, our analysis strongly suggests that the resolution in
the temporal frequency domain can be significantly improved
if more than two frames would be used as input to the
neural network. Lastly, we find that the optical flow refinement
process in the decoder part of the network behaves similarly
in function to flow refinement in biological vision systems.

The structure of this paper is as follows. Section II provides
an account of the related work regarding neural response iden-
tification methods used in neurosychology and deep-learning.
In Section III an explanation of the architecture of our version
of FlowNetS [20], which can be seen in Figure 1, is given.
Also, the motivation behind the minor changes in training and
architecture is discussed here. In Section IV, translating plane



waves are used as input to FlowNetS and the fit of the Gabor
filter model [15] to the response of filters in the c6 layer is
analysed. Next, the limitations of the methodology of Section
IV is discussed in Section V. Furthermore, Section V discusses
the response of filters in the c6 layer of FlowNetS to dilating
and rotating waves. Section VI outlines until what scale the
neural network is able to resolve the aperture problem and
highlights the filling-in effect which occurs in the expanding
part of the network. A discussion based on the findings takes
place in Section VII and outlines potential future work. Lastly,
the conclusion drawn from the experiments can be found in
Section VIII.

II. RELATED WORK

A. End-to-end trained neural networks for optical flow estim-
ation

Every since the pioneering work of Horn et al. [13],
variational optical flow methods [31] have played a dominant
role in optical flow estimation due to their performance. Most
modern variational optical flow estimation pipelines consist of
four stages: matching, filtering, interpolation, and variational
refinement. Various improvements have been proposed over
time to deal with issues such as long-range matching [32] and
occlusion [33]. Furthermore, improvements such as dense cor-
respondence matching based on convolution response maps of
the reference image with the target image [34], and supervised
data-driven interpolation of a sparse optical flow map [35]
were also proposed. These last two improvements introduced
elements of deep learning into the variational optical flow
estimation pipeline.

Dosovitskiy et al. [20], however, were the first to introduce a
supervised end-to-end trained Convolutional Neural Network
(CNN). CNNs have three major advantages when it comes
to estimating optical flow. First, as shown by subsequent
researchers [22]-[24], CNNs outperform variational optical
flow estimation methods in terms of accuracy, thus establishing
a new state-of-the-art in this problem. Second, the runtime
of CNN-based optical flow algorithms is significantly lower
than variational methods [22]. Third, CNN-based methods can
learn from data and can exploit statistical patterns not realized
by a human designer. This is an advantage over variational
methods which require explicit assumptions on the input
which are coarse approximations to reality. However, CNN-
based methods also have three disadvantages. First, the results
obtained depend on the quality and size of the training data
used. Second, CNN-based methods face the risk of overfitting,
which is especially the case for optical flow estimation because
it is difficult to obtain ground truth [21]. Third, there is no
guarantee that the trained models will generalize to scenarios
which are not encountered in the training dataset. Due to the
black-box nature of these methods there is also no insight into
the limitations of the networks and the workings of the learned
solution. There are also two difficulties which arise when
using CNN-based methods. First, due to the large amount of
parameters, the memory footprint of these models is typically
large. Second, the learning process is significantly affected by

the setting of hyperparameters [23] and the loss function used
[36].

Dosovitskiy et al. [20] introduced two architectures, i.e.
FlowNetS and FlowNetC, based on the U-net architecture [37],
which consists of a contracting and an expanding part. In the
contracting part information is spatially compressed and in
the expanding part information is refined. While FlowNetS is
a rather generic network consisting of simple convolutions,
FlowNetC creates two separate processing streams and com-
bines these streams in a correlation-layer. This layer performs
a multiplicative patch comparison between feature maps. Due
to the explicit use of a correlation-layer, it is more straight-
forward to understand the workings of FlowNetC. Subsequent
researchers have focused on improving the correlation-based
architecture by using an image pyramid with warping in
between pyramid levels [23], and a flow regularization method
based on variational energy minimization principles [24].
However, not much is known about the workings of FlowNetS.
Ranjan et al. [38] introduced SpyNet, a spatial image pyramid
with simple convolutional layers at each pyramid level and a
warping operation between pyramid levels. They visualized the
weights of the first layer of their network and claim that these
filters resemble Gabor filters [15]. This provided a glimpse
into the working principle of SpyNet. Finally, Teney et al.
[39] built a shallow CNN-architecture by integrating domain
knowledge, such as invariance to brightness and in-plane
rotations, and using signal processing principles. On small
motion, their architecture performs well, but their shallow
CNN performs poorly on large motion near occlusions. They
conclude good occlusion performance requires reasoning over
a larger spatiotemporal extent, which their shallow architecture
is not able to do.

lig et al. [40] tried to quantify the uncertainty of CNN-
based methods to handle the black-box nature of deep neural
networks. They used a modified FlowNetC which produces
multiple hypotheses per forward pass, which are then merged
to a single distributional flow output. They showed that their
network produces flow estimations with high uncertainty in
cases where optical flow estimation is difficult (shadows,
transparant motion, etc.). Lastly, Ranjan et al. [41] highlighted
another downside of deep neural networks, which is the ability
of adversarial examples to fool neural networks and produce
erroneous results. They showed that especially networks using
an encoder-decoder architecture are affected, while networks
using a spatial pyramid framework are less vulnerable. None
of the works above, however, provide an explanation of how
their architecture performs optical flow estimation.

B. Receptive field mapping

In order to understand what neural networks have learned,
two threads of research in neural network interprability can
be discerned: attribution and feature visualization. Attribution
methods [42], [43] are used to attribute filter outputs, like
optical flow, to parts of the input by visualizing the gradient.
However, it is hard to see where an optical flow estimate comes
from. On the other hand, feature visualization is concerned



with understanding what neurons, filters, or layers in a neural
network are sensitive to by optimizing the input [44]. When
optimizing the input, the result is usually an image with noisy
and visually difficult to interpret high-frequency patterns [45].
Three methods of regularization can be applied to cope with
this phenomenon. First, frequency penalization discourages the
forming of these patterns. The downside is that this approach
also discourages the forming of legitimate high-frequency pat-
terns which are of interest for optical flow estimation. Second,
small transformations like scaling, rotation, or translation can
be applied in between optimization steps [46]. This approach
is also not viable because transformation affects the ground
truth of optical flow. Third, priors can be used which can keep
the optimized input interpretable. Such approaches typically
involve learning a generative model [47] or enforcing priors
based on statistics from the training data [48]. Also, this
approach is often very complex and it may be unclear what
can be attributed to the prior and what can be attributed to
what the network has learned.

Due to these reasons, we look at the field of neuropsy-
chology and specifically study what methods researchers have
used to determine what stimuli activate neurons in mammalian
vision systems and what functions best describe the responses.
It was shown that Gabor functions [15] best modeled the spa-
tial response of simple cells in the mammal visual cortex [27],
[49], [50]. It can be shown that Gabor filters are optimal for
simultaneously localizing a signal in the spatial and frequency
domain [51], making them ideal for motion estimation. Later,
DeAngelis et al. [52] examined the spatiotemporal response of
cells and their space-time separability. If a cell is space-time
separable, it can be described as the multiplication of a func-
tion of space and a function of time. If the response of a cell is
not space-time separable, a spatial description of the receptive
field profile does not suffice. In functional form, space-time
separable Gabor filters are frequency-tuned with a stationary
Gaussian envelope and space-time inseperable Gabor filters
are velocity-tuned with a moving Gaussian envelope [53]. In
this work we only considered fitting frequency-tuned Gabor
filters, due to their simplicity and the low number of frames
used by FlowNetS and FlowNetC.

Two approaches to receptive field mapping in neuropsy-
chology can be discerned: the reverse-correlation based ap-
proach and the spectral response profile approach. The reverse-
correlation-based approach presents a rapid random sequence
of flashing bars at various imaging locations to the mammal.
The spike train emitted by the neuron in the subject is
correlated to the sequence in which the stimuli were presented.
This approach allows for a rapid measurement of the receptive
field profile in the spatiotemporal domain [28]. On the other
hand, the spectral response profile approach presents translat-
ing plane waves to the mammal at varying orientations and
spatiotemporal frequencies [54], [S55]. Jones et al. used both
the reverse-correlation approach to construct a spatial receptive
field profile [56] and measured the response to plane waves
to construct a spectral response profile [25]. Subsequently, the
spatial and spectral responses obtained were compared to the

Gabor filter model in the spatial and frequency domain and
the filter parameters obtained from both methods proved to be
highly correlated [27]. Deangelis et al. [52] used the reverse-
correlation approach to measure the spatiotemporal receptive
field profiles in visual cortex of cats. In a follow-up work, they
examine the linearity in the spatial and temporal responses
[55]. Therefore, they compared the Fourier-transformed re-
sponses obtained using the reverse-correlation procedure to
the spectral responses obtained using translating plane waves.

In this work we extend the approach of Jones et al. [27]
to the spatiotemporal domain and measure spectral responses
of the network to translating plane waves to which frequency-
tuned spatiotemporal Gabor filters will be fitted. A benefit of
measuring the spatiotemporal spectral responses for optical
flow is that translation is more easily described in the fre-
quency domain [53]. Although there has been research into
non-Fourier motion, such as theta motion [57], translucency
[58], and occlusion [59], an analytical description of dilation
and rotation in the frequency domain is, to the best of our
knowledge, missing. Therefore we simulate the response of
dilation and rotation filters to translating plane waves, which
can be found in Section V.

C. Aperture problem

Optical flow estimations methods are only able to resolve
motion components normal to the orientation of an edge in
the intensity pattern. If motion takes place tangent to an edge,
then we are not able to resolve it locally. This is known as
the aperture problem [16]. In CNNs the size of the aperture
of a neuron is referred to as the receptive field. The receptive
field is defined as the region in the input which affects the
activation of the neuron. For a neuron in a given layer, it
can be calculated what the receptive field size is using simple
arithmetic [60]. In this work we show that the receptive field
size is related to the aperture problem by training different
versions of FlowNetS with varying receptive field sizes.

In neuropsychology, Komatsu [61] has shown the existence
of a perceptual filling-in mechanism in the mammalian visual
cortex for cues such as colour, brightness, texture, or motion.
While the precise neural workings are still under discussion,
edge structure [62] and the interaction between neighboring
neurons play an important role in this process [63].

In neural networks attempts have been made to implement
such a mechanism as well. To allow for the interaction between
neurons, a recurrent model can be used [64]. Zweig et al. [35],
however, used an unfolded feed-forward version of a recurrent
network and a multi-layer loss to allow for interaction between
neurons. Their CNN-based motion interpolation architecture
takes a sparse flow map and edge structure as input. They
showed their motion interpolation method refines motion es-
timates similarly to the human visual cortex by demonstrating
the filling-in effect of the network on a Kanizsa illusion [65].
FlowNetS also features a multi-layer loss, and in Section VI
the ability of the expanding part of FlowNetS to interpolate
and refine flow maps is highlighted.



Figure 2: The receptive field size corresponding to the activa-
tion of a filter in the c6 layer of our FlowNetS projected onto
two 1024x768 input frames. The cross marks the center pixel
and corresponds to the origin of the coordinate system. Image
is drawn to scale in the zy-plane.

III. MODEL DETAILS

In this section we specify the model which was used
during the experiments. In Figure 1 a schematic representation
of the architecture of FlowNetS can be seen, which takes
two consecutive images as input. The network consists of a
contrating part which uses strided convolutions to compress
spatial information, and an expanding part that uses upcon-
volutions and a multi-layer loss function. The flow map £2
is bilinearly upsampled to achieve an output flowmap of the
same resolution as the input.

We slightly modify the original FlowNetS in order to
improve the interpretability of the motion filter analysis.
First, we use a ReLU activation function as opposed to a
leakyReLLU! activation function to simplify the spectral Gabor
fitting process discussed in Section IV. Furthermore, in the
predict-flow (pf) layers the bias terms are removed because
the flow is assumed to be zero-centered. Also, the kernel size
in the pf layers is reduced from 3x3 to 1x1, meaning that the
activations in the c6 layer are converted to motion in u and
v image coordinates> by means of a simple multiplication,
resulting in the coarsest flow map £2. This brings the total
receptive field size in the c6 layer to 383 pixels as opposed
to the original size of 511 pixels. The size of the receptive

'Dosovitskiy et al. [20] mention the use of the ReLU activation function
in their work. The release of their pre-trained models, however, uses a
leakyReLU activation function.

2y and v correspond to motion in x and y direction respectively.

field is depicted in Figure 2. The full details of our version of
FlowNetS can be found in Table I in Appendix A.

Regarding training, as in [20] we use the same data aug-
mentation on both frames, but we do not use incremental flow
and color augmentation between frames since the authors do
not specify the parameters of the latter data augmentation
scheme. Furthermore, the network is trained for fewer iter-
ations (300K iterations versus 600K iterations) due to limited
availability of computational resources. Evaluation on the
MPI-Sintel dataset and FlyingChairs dataset shows comparable
performance between our FlowNetS and the original version,
as can be seen in Table II in Appendix A.

The synthetic dataset FlyingChairs, which was used to train
the original and our slightly modified FlowNetS, consists of
approximately 22k image pairs. The image pairs are composed
of a varying numbers of chairs and background images from
natural scenes. Between image pairs, a composition of trans-
lation, rotation, and scaling motion is applied. The size of the
chairs is sampled from a Gaussian with a mean and standard
deviation of 200 pixels, clamped between 50 and 640 pixels.
Note that the synthetic scenes also contain occlusion. Details
about the composition of affine motion can be found in [20].

IV. GABOR SPECTRAL RESPONSE PROFILE FITTING FOR
TRANSLATION

In this section we investigate what motion patterns the filters
in the c6 layer of our FlowNetS are sensitive to. Instead of
analyzing the selectivity of all FlowNetS filters, we focus our
study on the filters of the c6 layer. As shown in Figure 1, the
activations of the feature maps of these layers are directly
transformed by two multiplicative values (i.e. pf£6) into a
horizontal and vertical motion estimate (i.e. £6). Subsequently,
this initial flow estimate is also used for refinement. For these
reasons, we believe that the most compressed representation
of what optical flow is and how to estimate it, is encoded in
this layer.

In this section, first the theory behind Gabor filters and the
Gabor spectral response fitting method is discussed. Second,
the result obtained are presented. Third, we discuss the resol-
ution in the temporal frequency domain of the fitted filters.

A. Methodology

As in [11], [15], [53], the spatiotemporal frequency-tuned
Gabor filter g in Cartesian coordinates centered in the origin
(0,0,0) can be written as the product of a spherical Gaussian
w and a translating plane wave s:

g(@,y,t) = s(z,y,t)w(z,y,t) (D

where the spherical Gaussian w is defined by:

2 2 2
T X t

w(,y,t) = exp (—w (; + &y 2)) @)
oy 0y 0j

where 0, 0y, and o; control the spread of the spatiotemporal

Gaussian window. The spherical Gaussian w can be centered at

any spatial location using an offset. To decrease the number
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Figure 3: Gabor filters g1, g2, g3, and g4 in the xt-domain and the power spectrum of the corresponding Fourier-transformations
G1, Go, G3, and G4. g1 and g9 are sensitive to the same velocity vg. g3 is tuned to the same spatial frequency f, as g; but
to a lower temporal frequency f; and is thus sensitive to a lower velocity vg. g4 is tuned to the same frequencies as g; but at

phase g of 90 degrees.

of parameters in the fitting process, it is assumed that the
center of the Gaussian coincides with the center pixel of the
receptive field. Furthermore, the subscript r denotes a rotation
operation which allows the spherical Gaussian to be aligned
along orientation 6y and is defined as:

2y = xcos(fy) + ysin(fy) 3)
yr = —xsin(by) + y cos(fo)

where a positive value of 6 corresponds to a clockwise rotation
with respect to the positive x-axis. Note the use of a clockwise
convention due to the use of the pixel-coordinate system which
uses a downward positive y-axis as can be seen in Figure 2.
The subscript 0 indicates the parameter value corresponding
to the peak response of the filter. The center of the coordinate
system corresponds to the center of the receptive field as
indicated by the cross in Figure 2.

Furthermore, a translating plane wave s in the Cartesian
coordinate system can be written as:

S($, Y, t) = COos (27T (Fol’r - ftot) + @O) 4

where the spatial frequency magnitude Fj in cycles per pixel
is related to the spatial frequency in x and y direction via
Fy= 30 + nyO, and the preferred direction of motion 6 to
the spatial frequencies via 6y = tan™' (fy,/fz,). A higher
spatial frequency Fpy allows tracking of motion of thinner
image structures. Note that velocity vy is defined as pixels

per frame and is related to spatial frequency Fp and temporal
frequency f;, via vg = fi,/Fo [11]. When a signal is sampled
in time or space, frequency components which are larger
than or equal to 0.5 cycle per frame (the Nyquist frequency)
become undersampled and aliasing occurs. Thus, if we limit
ourselves to signals which do not suffer from aliasing, the
maximum velocity a signal can have is limited by its spatial
frequency Fp.

Now consider two Gabor filters in the xt-domain, g; and
g2, as depicted in Figure 3. The spatial frequency F{, and
temporal frequency f;, of go are twice as large as for g; and
thus both filters are sensitive to the same velocity vg. In fact, it
can be seen that all spatiotemporal frequency components with
velocity vg lie on a straight line passing through the origin,
and the slope corresponds to the velocity magnitude |vg|. In
Figure 4a the 3D frequency space with the half-magnitude
profile of a Gabor filter g is visualized and the slope of the
velocity magnitude |vg| can be seen. Furthermore, g3 in Figure
3 depicts a filter tuned to the same spatial frequency f, as ¢1
and a lower temporal frequency f; , resulting in a filter tuned
to a different velocity vg.

Lastly, ¢y denotes the phase, and the filter is even when
wo = 0 and odd when ¢y = £7. An example of this can be
seen in g4 and g; which depict a sine and cosine respectively.

Because we will fit the response of phase-sensitive filters,
we highlight three phase-dependent convolution phenoma.
Note that a valid convolution of two tensors with equal size
corresponds to the sum of the dot product of two tensors. First,
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Figure 4: (a) [llustration of the half-magnitude profile in the 3D frequency domain of a spatiotemporal Gabor filter. (b) The
three ranges along which the responses of the Gabor half-magnitude profile will be evaluated for the fitting process.

because a sine is an odd signal, the dot product of two sines
at opposite frequencies —f and + f is negative as can be seen
in the top plot in Figure 5. Second, the dot product of a cosine
(an even signal) at opposite frequencies will be positive due
to the even nature of the function as can be seen in the middle
plot in Figure 5. Third, sine and cosine are decorrelated and
thus the dot product will be zero between these two signals
which is illustrated in the bottom plot in Figure 5.
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Figure 5: Dot product of waves with the same frequencies of
different phase. Top: Dot product of two sines with opposite
frequencies resulting in a negative activation. This demon-
strates the odd nature of a sine. Middle: Dot product of two
cosines with opposite frequencies resulting in a positive activ-
ation. This demonstrates the even nature of a cosine. Bottom:
Dot product of a sine and cosine at the same frequency.
Because sine and cosine are decorrelated this results in zero
activation.

Gabor spectral response profile fitting

In the Gabor spectral response fitting process, translating
plane waves s are used as input and we try to minimize the
difference in response between filters in the c6 layer of our
FlowNetS and fitted Gabor filters g. To better approximate the
response of the filters in the c6 layer, we enhance the Gabor
filter output with a gain term K, bias term b, and pass the
response through a ReLU non-linearity. Then the response r
to a convolution with a translating plane wave s and a Gabor
filter g is given by:

r =ReLU (K(s(z,y,1) * g(z,y,1) + b)) S)

where the response r is a function of nine parameters. These
parameters are estimated in a two-step process.

First, a gridsearch is performed to determine the location in
the spatiotemporal frequency domain with the highest response
per filter in the c6 layer. We denote the response of the filters
in the network by 7 and the peak response value by 7. Because
the fitted Gabor filters are phase sensitive, this amounts to
estimating four parameters (Fy, 6o, fi,, o). Therefore, a four-
dimensional grid is constructed of all combinations of these
parameters within a given range and step size. The range and
step size per parameter used for a translating plane wave s can
be seen in Table III in Appendix B. The range for the value of
half spatial wavelength A\o/2 = 1/(2Fy) is chosen so that it
captures the sizes of the chairs present in the training dataset
(as explained in Section III).

Second, the spatiotemporal spread of the Gaussian, de-
termined by (o, 0y,0¢), and the non-linear transformation
parameters (K, b) are estimated. This is done by varying
the Fy, 6y, and f; parameters along three separate ranges.
A depiction of the dimensions along which the response 7 is
evaluated in the spatiotemporal frequency space can be seen in
Figure 4b. The range per parameter along which the responses
are evaluated can be found in Table IV in Appendix B. Then,
we define the cost function £ as the squared difference in
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Figure 6: Location of peak response 7 per filter (n = 592) in the spatiotemporal frequency domain in response to translating
plane waves. Left: Half spatial wavelength )\y/2 and orientation 6y corresponding to peak response 7y per filter. The radial
limit of the axis is set to 500 pixels to improve readability. Right: Half spatial wavelength \y/2 and temporal frequency f,
corresponding to peak response 7y per filter. The distribution of half spatial wavelength exhibits a peak around 200 pixels,
indicated by the black dashed line, which is to be expected due to the nature of the training data.

response between the fitted Gabor filter per datapoint r, and
the filter 7 in the c6 layer per datapoint ¢ along three ranges
of varying parameters in response to a convolution with a
translating plane wave s:

L= lri—fille + > _lr = #illo + D _lre = #57. ©
[ J k

=Lp+ Lo+ Ly,

where L, Ly, and Ly, denote the Sum of Squared Errors
(SSE) along their respective intervals. In order to compare the
obtained cost values between filters, we construct a normalized
cost value L4, by dividing the cost by the squared peak
response of the filter:

Lnorm, = [//72(2) (7)

We constrain the bounds of the Gabor filter parameters to
obtain reasonable values. This leads to a non-linear bounded
convex optimization problem which can be solved using the
robust trust-region-reflective algorithm [66], [67]

B. Results

We found 592 of the 1024 filters in the c6 layer of
FlowNetS to have an activation larger than 0. This indicates
that our network has a lot of ‘dead neurons’, a problem which
can be attributed to the ReLU activation function [68]. The
location of the peak response of the active filters in terms
of half spatial wavelength \(/2, orientation 6, and temporal
frequency f;, can be seen in Figure 6. In the left plot of
Figure 6 it can be seen that the locations of the peak responses

of the filters are well distributed over all angles. Radially,
there is a concentration around a half spatial wavelength
of 200 pixels (indicated by the red dotted line), which is
to be expected based on the nature of the training data as
the average size of the chairs in the training dataset is 200
pixels. The concentration of the peak responses becomes even
more apparent in the right plot of Figure 6 which shows the
distribution along the temporal and half spatial wavelength
axes. Furthermore, we note that the distribution of the temporal
frequencies is skewed toward the Nyquist limit of 0.5 cycle
per frame. A possible reason for this is the low resolution in
the temporal frequency due to the low number frames used as
input. This will be further discussed in Section IV-C.

The fitted modified Gabor functions (Equation 5) seem to
capture the selectivity of the c6 filters of FlowNetS accurately.
In order to give insight into the goodness of fits for all neural
responses in the c6 layer, we show three example responses
corresponding to different normalized cost values L,,op, in
Figure 7. Note that the red and green filters fit the data
reasonably well, but the red filter shows a systematic deviation
from the fitted Gabor filter near & = 0. For this reason, all
the fits and error patterns above the 75% percent threshold,
corresponding to the green filter, were visually inspected
for systematic deviations. A visual inspection is performed
because an auto-correlation procedure is not possible due to a
non-uniformly spaced polar 3D frequency grid[27].

Figure 9A shows a filter in the c6 layer whose response fits
nicely in the Gabor filter framework. Note that the measured
data, fit, and error are visualized in the 2D polar spatial
frequency domain at peak response temporal frequency f,
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Figure 7: Quantitative results of the spectral Gabor filter fitting process. Left: Boxplot containing the total normalized cost
Loorm per filter (n = 592). The blue, green and red cross correspond to a filter at the median, near the 75th percentile and
near the upper whisker limit, respectively. The grey diamonds denote the outliers. Right 3x3 plots: Row-wise the measured
responses of three different filters in ¢6. The top, middle and bottom row correspond to the cost value as indicated in the
boxplot. The dotted line per row denotes the response of the fitted Gabor filter.

and phase ¢q. Furthermore, we find three types of systematic
deviations (Figure 9B, 9C, 9E) from the Gabor model and
conclude that some patterns are too complex for interpretation,
such as Figure 9D, partly due to the limitations of the
methodology, which will be further discussed in Section V.

First, note the red filter in Figure 7 which shows a systematic
deviation from the fitted Gabor filter 180 degrees away from
0. The red filter is responsive to edge structure (|¢p|~ 90°)
and is thus approximately odd. Remember that the dot product
of two odd signals at opposite frequencies results in a negative
value (see Figure 5). However, this filter is sensitive to edge
structure and still produces a positive activation at the opposite
spatial frequency —Fp, corresponding to 180 degrees away
from 6y. In Figure 8 the distribution of the phase values g
versus orientation cost Ly for all filters is depicted. It can be
seen that there are multiple filters responsive to edge structure
which have a high orientation cost £g. One possible reason for
this systematic deviation from the Gabor response is that the
network is able to learn a successful flow filter that is invariant
to polarity (meaning white-black or black-white transitions).
This mechanism can be seen as an improvement over a phase-
sensitive Gabor filter, and merits further investigation in future
work. In Figure 9B the 2D spatial frequency response is
visualized of such a filter.

Second, we find two filters which exhibit weak directional
bias. It should be noted that these types of filters are also found
in the Lateral Geniculate Nucles (LGN) of mammals [28]. An
example of such a filter can be found in Figure 9C.

Third, we also find filters which exhibit two or more Gaus-
sian peaks with similar peak response magnitudes tuned to
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Figure 8: Orientation cost £y per filter as a function of peak
response phase (. It can be seen that a number of filters
activating on edge structure near 90 degrees phase have a
orientation cost.

different spatial frequencies Fj, orientations 6y, and temporal
frequencies f;,. An example of such a filter can be found in
Figure 9E and the 2D spatiotemporal representation corres-
ponding to this filter can be found in Figure 10. A possible
explanation is that these filters are sensitive to occlusion which
will be further discussed in Section V.

Lastly, we also find filters which appear noisy and are hard
to interpret given the limitations of our methodology. Such an
example can be seen in Figure 9D and the limitations of our
methodology will be discussed in Section V.
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(D) Noisy filter pattern which is difficult to interpret given the current limitations of our approach, which will be discussed in

Section V.
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Figure 10: 2D representation of the measured filter response
corresponding to Figure 9E. The positive and negative spatial
frequency (F') axis can be seen in blue and red which
correspond to the blue and red lines in Figure 9E. Two
different Gaussian lobes can be identified tuned to different
spatiotemporal frequencies.

C. Temporal bandwidth

For orientation 6 and temporal frequency f;, the bandwidth
is defined as the width of the filter which provides an output
above half the maximum filter output 7. This leads to a
bandwidth in degrees A, /o and cycles per frame Af;, , for
orientation and temporal frequency respectively:

A-ftl/2 = ftmax - ftmin (8)

A01/2 = emax - emin (9)

For spatial frequency F', the bandwidth is defined in terms
of octaves as follows:

A}71/2 = 10g2 (Fmax/Fmin)

Although we estimate the true parameters of the filters in
the fitting process, due to the non-linear transform in Equation
5 the apparent bandwidth of the filter differs. The bandwidth is
therefore measured based on the fitted Gabor filter response. In
Figure 11 the bandwidth of 75% of the filters with the lowest
normalized cost £,,,,-, can be seen as we deem the fit of these
filters sufficient to analyze. In this figure it can be seen that the

(10)



Inter Quartile Range (IQR) for spatial frequency bandwidth is
between 1 and 2 octaves and the median orientation bandwidth
is approximately 50°. Lastly, this figure illustrates that the
temporal frequency bandwidth is of large extent with a median
of approximately 0.27 cycle per frame. We note that the
network is able to narrow the extent of the filter response
in the temporal domain using the non-linear transformation
K, b, and the ReLU activation function. An illustration of
this mechanism can be seen in Figure 12. In the top plot, the
fitted filter and the measured response 7 over the temporal
frequency range can be seen. In the middle plot the response
without the gain K, bias b, and ReLLU activation function can
be seen. The extent of the half-magnitude profile is wider in
the middle plot. Hence, the nonlinear transformation allows
to reduce the filter’s temporal extent, so that more precise
motion can be measured. The bottom plot indicates what
happens when more frames are added to the input and the other
parameters are kept the same. The dotted line in the bottom
plot corresponds to the dotted line in the top plot. Figure 11
suggests that an even narrower extent could be reached by
feeding the network with more images over time than just
the two subsequent images in FlowNetS. Note that a higher
resolution in the frequency domain is beneficial as this allows
for a more precise measurement of the flow.
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Figure 11: Bandwidth of spatial frequency F' left orientation
0 (middle) and temporal frequency f; (right) for the 75%
filters with the lowest normalized cost L,,orm (n = 397).
This corresponds to all filters upto and including the green
filter in Figure 7. Bandwidth values are determined using the
responses from the fitted Gabor filters.

V. NETWORK RESPONSE TO DILATION & ROTATION

In this section, the sensitivity of the filters in the c6 layer
of our FlowNetS to dilation and rotation is analysed. First,
we explain the limitations of the spectral Gabor response
profile fitting process and why we are not able to discern
filters activating on translation, dilation, and rotation with this
methodology. Also, we simulate the response of an occlusion
filter to this methodology. Second, the methodology used
to identify filters sensitive to dilation and rotation will be
presented. Lastly, our results will be discussed.
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Figure 12: Illustration of how the network is able to decrease
the extent of the filter response in the temporal domain. Top:
Fit and measured data for the median filter of the FlowNetS
network, corresponding to the bottom-right plot in Figure 7.
Middle: The response of the fitted Gabor filter without the bias
term and ReLU non-linearity. Note that the bandwidth of the
signal before this transformation is wider. Bottom: Response
of the fitted Gabor filter when the number of frames are
increased. Note that filter is able to achieve a higher temporal
resolution when more input frames are used.

It should be noted that Gabor translation filters [15] and
occlusion filters [59] already have an analytical description in
both the space-time and frequency domain. Such a description
of dilation and rotation is, to the best of our knowledge,
missing. Therefore, fitting responses of a filter to a dilation
and rotation motion model requires a novel mathematical
foundation which is outside of the scope of this work. In
the following section the analytical description of dilation and
rotation in the space-time is simply multiplied with a Gaussian
to simulate a response.

A. Limitations of Gabor spectral response profile fitting

During the first part of the spectral response profile fitting
process, a gridsearch is performed to find the peak response.
In the subsequent fitting process three response lines are
generated by varying either spatial frequency Fj, temporal
frequency f;,, or orientation ¢y, whilst keeping phase (g
constant. This method only allows the measurement of the
relative attenuation in amplitude with respect to the peak
response 7. This procedure is sufficient for translation which
can be defined as a single constant phase Gaussian in the
3D frequency spectrum and thus produces a Gaussian in
response. In this section, we convolve translating plane waves
with dilation, rotation, and occlusion filters to simulate their
response. Due to the ReLLU activation function the convolution
of two translating plane waves at the same frequency, which
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Figure 13: Simulation of convolution response of a dilation filter dw with a translating plane wave s evaluated with
spatiotemporal frequencies at k integer multiples of the fundamental frequency. Left: Dilating wave d multiplied with a
Gaussian w centered at the origin. Middle left: The power spectrum of the Fourier-transformed dilation filter. Middle right:
The angle ¢ indicating the phase difference between the Fourier components of the dilation filter and the translating plane wave
s at the k integer multiples of the fundamental frequency. A larger phase difference corresponds to a darker color with black
being equal to or greater than /2. Also, a red mask is applied to frequency components with low power. Right: Convolution
response between dilation filter dw and translating plane waves s. The lines indicate the Gaussian pattern perceived by our

methodology.

are more than or equal to 90 degrees out-of-phase, will be
zero (see Figure 5).

In order to determine which frequency components of
dilation and rotation are more than 90 degrees out of phase,
the Discrete Fourier Transform (DFT) [51] is used to trans-
form a simulated space-time signal to a representation in the
frequency domain. The DFT is defined as:

N-1
S 2T
X[k] = Z x[n]e PN
n=0
where k%” is the k-th discrete frequency and [V the total length
of the discrete signal. When the discrete signal is real, the DFT
of the signal will result in a complex number:

(1)

X[k] = Aei® (12)

where the magnitude is denoted by A and the phase value
by . Remember that a valid convolution of two tensors with
equal size corresponds to the dot product of these two tensors.
Furthermore, note that a convolution in the space-time domain
equals to multiplication in the frequency domain according
to the convolution theorem[51]. Because we evaluate the
convolution response only at discrete frequencies of k integer
multiples along the f,, fy, and f;, axis only a single frequency
component of S will contain power3. Then, if we define the k-
th frequency component of the Fourier-transformed translating
plane wave S as the complex vector p, and the k-th frequency
component of the Fourier transformation of the filter to be
analysed (rotation, dilation, or occlusion) as q, the phase
difference between these two complex vectors is defined as
the angle ¢ and given by:

p-q)

Y =cos I (——
pllal

13)

3Not taking into account the complex conjugate frequency component.

where the maximum value of ¢ is 7, and values of ¢ larger
than or equal than 7/2 will result in a zero response due to
the ReLU non-linearity in Equation 5. Thus, 1) is a measure
for how much out-of-phase the frequency components of the
two signals are.

Convolution response: Dilation & rotation filters

In Figure 13, in the left-most plot, the space-time represent-
ation of a dilating wave d (see Equation 14) multiplied with
a Gaussian window w can be seen. In the middle-left plot
the power spectrum of this dilation filter can be seen. In the
middle-right plot, the angle 1) indicates how much out of phase
each frequency component of the occlusion filter is with the
corresponding translating plane wave frequency component.
The right-most plot indicates the convolution response of
the dilation filter dw to translating plane waves s in which
a diamond-like pattern emerges. Because we evaluate the
responses along lines orthogonal to the peak response, the
pattern perceived by our methodology is indicated by the
dashed and solid gray line. These line patterns correspond
to the line patterns in the 3D frequency space in Figure 4b.
Thus, along the varying spatial frequency F' range (solid line)
and the varying temporal frequency range f; (dashed line) a
Gaussian will be perceived. Hence, given the limitations of
our methodology we are not able to discern between dilation
and translation filters.

Similarly, in Figure 14 in the two left-most columns the rep-
resentation of a rotating wave ¢ (see Equation 18) multiplied
with a Gaussian window w in the space-time and frequency
domain can be seen. Note that the 3D power spectrum in
the second column is different from a spherical Gaussian.
In the third column the angle ¢ is depicted, and at high
temporal frequencies (£0.2 cycle per frame) the frequency
components of the rotation filter cw and translating plane
waves s are out-of-phase. Thus, as can be seen in the fourth
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Figure 14: Simulation of convolution response of a rotation filter cw with a translating plane wave s evaluated with
spatiotemporal frequencies at &k integer multiples of the fundamental frequency. Left column: A cosine rotating wave ¢ multiplied
with a Gaussian w at five timesteps. Middle left column: The 3D power spectrum of the Fourier-transformed rotation filter.
Middle right column: The angle v indicating the phase difference between the Fourier components of the rotation filter and
the translating plane wave s at k integer multiples of the fundamental frequency. A larger phase difference corresponds to a
darker color with black being equal to or greater than 7/2. Also, a red mask is applied to frequency components with low
power. Right column: Convolution response between rotation filter cw and translating plane waves s. The circle indicates the
double lobe Gaussian pattern which will be perceived by our methodology by varying orientation 6.
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Figure 15: Simulation of convolution response of an occlusion filter with a translating plane wave s evaluated with
spatiotemporal frequencies at k integer multiples of the fundamental frequency. Left: Example occlusion signal following
the description of Beauchemin et al.[5S9] concerning occlusion in the frequency domain. The signal is composed of a Gaussian,
two cosine translating plane waves s with different spatiotemporal frequencies f,, and f;, and a Heaviside step function. Middle
left: The power spectrum of the Fourier-transformed occlusion filter. In the power spectrum two pairs of Gaussian lobes can
be seen with long ‘tails’ due to the Heaviside step function. Middle right: The angle v indicating the phase difference between
the Fourier components of the rotation filter and the translating plane wave at k integer multiples of the fundamental frequency.
A larger phase difference corresponds to a darker color with black being equal to or greater than /2. Also, a red mask is
applied to frequency components with low power. Right: Convolution response between the occlusion filter and translating
plane waves s. The pattern above the gray line is perceived in Figure 10 as well.

column, these frequency components will not be detected
by our methodology. Note that the pattern perceived along
the varying 6y, as indicated by the circle in the third row
and the fourth column (which corresponds to the circle in
3D frequency space in Figure 4b), is two Gaussian lobes at
opposite frequency. This pattern is similar to the convolution
response of a cosine Gabor filter tuned to stationary patterns
(zero temporal frequency). Therefore, our methodology is also
not able to detect rotation filters.

Convolution response: Occlusion filters

Furthermore, we convolve an occlusion filter, using the
description of Beauchemin et al. [59], with translating plane
waves s. Occlusion in the spatiotemporal domain can be
described as the combination of a Gaussian g, a Heaviside
step function, and two translating plane waves translating
with different frequencies (fz,, fy,. ft,) as can be seen in
the right-most plot in Figure 15. The power spectrum of the
Fourier-transformed filter can be described as two Gaussian
filter pairs with ‘tails’ due to the Heaviside step function and
can be seen in the middle-left plot. In the middle-left plot the
angle 1 is depicted which demonstrates that the ‘tails’ have
a large phase difference. Consequently, in the right-most plot,
only the two pairs of Gaussian lobes will be detected using
our methodology. The pattern above the solid gray line thus
corresponds to two different Gaussian lobes tuned to different
frequencies. This pattern can also be seen in Figure 10, thus
making it likely that this filter is responsive to occlusion.
However, it should be noted that we are not able to discern
such a pattern from the superposition of two regular Gabor
filter pairs tuned to different frequencies.

B. Methodology

In order to assess the sensitivity of the filters to dilation
and rotation, two gridsearches will be performed. We assess
the locations of the peak responses for filters which have a
higher response to dilation or rotation than to translation. We
do not classify a filter as either a rotation or dilation filter, since
a filter can be sensitive to a composition of these respective
motions. This is to be expected given the nature of the training
dataset.

Dilation parametrization
As in [12], a dilating wave d is given by:

d(x,y,t) = cos (2mFy(z, — ax,t) + o) (14)

where o denotes the dilation factor. The training dataset used
to train FlowNetS defines scaling motion in terms of scaling
factor h. Because FlowNetS only takes two frames as input, we
define the relation between affine scaling factor h and dilation
factor a between ¢ = 0 and ¢ = 1 as follows:

1

h=1— 15)

The gridsearch is performed for a scale factor i range of
0.5 till 2.0, as this range encapsulates the scaling factor h
encountered during the training process. The scaling factor
encountered is a combination of scaling motion present in
the dataset and scaling factors applied by the online data
augmentation process. The search space used for the dilation
gridsearch can be found in Table V in Appendix B. In order to
mitigate the effect of temporal aliasing (see Section IV), the
search space is constrained so that the velocity of a point in
the motion field is not more than half its spatial wavelength
Ao/2. It can be shown that the velocity of a point in the motion
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Figure 16: Location of peak response 7y per filter (n = 88) in the spatiotemporal frequency domain in response to dilating
waves. Note that only filters are shown whose peak response 7y was higher than the maximum found in the translation
gridsearch. Left: Half spatial wavelength )\o/2 and initial orientation 6. Right: Half spatial wavelength \o/2 and scale factor
h. The black dashed line indicates the temporal aliasing constraint given by Equation 17.

field for a dilating wave in Equation 14 at £ = 0 is given by
the following relation:

b= (—— )z = (h— 1)

T (16)

Then the temporal aliasing constraint for dilating waves is
given by:

1
(h=1)z < 50 (17)
Rotation parametrization
For rotation the following equation is used to define the
input:

c(x,y,t) = cos (2w Fox,(t) + ©o) (18)
where x,.(t) varies with time and is defined as:
z,(t) = x cos(0p + wt) + ysin(fy + wt) (19)

where w denotes the angular velocity in radians per frame. The
search space for the rotation gridsearch can be found in Table
VI in Appendix B. A constraint was added to the rotation
gridsearch as well to limit the effect of temporal aliasing. The
angular velocity w can be related to a point at distance m from
the center of rotation by v = wm. The maximum distance from
the center of rotation to the edge is equal to half the receptive
field size, which is 383 pixels in the ¢ 6 layer of our FlowNetS.
As the wave rotates around the center pixel and the distance
from the center pixel to the outside pixel is 191.5 pixels, the
velocity at this point should thus be lower than half the spatial
wavelength. The constraint is given by the following relation:

1
WMmax < 5)\() (20)

C. Results

Dilation results

The peak responses of filters which have a higher activation
to dilation than to translation can be seen in Figure 16. We find
that approximately 15% of the filters (i.e. 88 filters) respond
more strongly to dilation than to translation. Furthermore, the
filters show a radially dispersed pattern along the orientation
axis (#) as can be seen in the left plot in Figure 16. In the
right plot in Figure 16 a peak in the distribution of half spatial
wavelengths A\g/2 can be seen near 200 pixels which is to be
expected due to the fact that the average size of a chair in
the training data is 200 pixels. Lastly, the peak responses are
often close to the temporal aliasing limit and the maximum
scaling value of the gridsearch. This is similar to the temporal
peak response location for the translation gridsearch.

Rotation results

In Figure 17, the peak responses of the filters for the rotation
gridsearch can be seen. The left plot in Figure 17 shows an
angular dispersion of the peak responses along the orientation
axis (6p). In the right plot in Figure 17 it can be seen that most
filters are active near the temporal translation and temporal
rotational aliasing limit. Also, a peak in the distribution of half
spatial wavelengths \y/2 can be identified around 250 pixels,
which is slightly higher than expected from the training data.
A possible explanation for this discrepancy is that rotation is
actually a 3D motion and thus the scale should also be limited
along its radial axis. Approximately 45% of the filters activate
more on rotation than on translation. A possible explanation
for this high number of filters is that we do not limit the
wavelength along the axis of rotation. The points in the motion
field at the far end of the receptive field then move with a very
high velocity and therefore the response of the filters in our
FlowNetS will be higher.
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VI. SOLVING THE APERTURE PROBLEM

The previous section showed that individual neurons in the
c6 layer of FlowNetS act as Gabor-like filters for translation,
rotation, and dilation. In this section, we study the aperture
problem and the flow refinement process. We first explain our
methodology and then present the results.

A. Methodology

In order to determine until what scale of input stimuli
FlowNetS can resolve the aperture problem three different ver-
sions of FlowNetS are trained under the same circumstances
with varying receptive field sizes. The receptive field size is
defined as the region in the input images which affects the
value of the feature map at a particular layer and feature
map location. Therefore, we modify the filter size of the
convolutional kernels in layer c6. Layer c6 is composed of
two convolutional layers c6_0 and c6_1. FlowNetS has two
3x3 kernels for layers c6_0 and c6_1. We train two models
with kernels sizes (1x1, 3x3) (Ix1, 1x1) in the last two layers
in the contracting part of the network. We name these models
FlowNetXS and FlowNetXXS, and the receptive field size of
the £6 flow map is 255 pixels and 191 pixels respectively.
Our FlowNetS has a receptive field size of 383 pixels. The
expanding part of FlowNetS features upconvolutional layers
which also increases the receptive field size. The receptive
field size of the £2 flow map is calculated to be 551, 615
and 743 pixels for FlowNetXXS, FlowNetXS and FlowNetS
respectively.

As input, a diagonally translating bar with magnitude |u|=
64 pixels is used. For an input of 1024x768 pixels, the coarsest
flow map £6 size is 16x12 after 6 convolutions with stride 2.
We determine the error of the flow estimate at location (8, 6) of
£ 6, which can be seen in Figure18a marked by the red square,
and therefore center the bar in the input image accordingly.

B. Results

Two translating bar image input pairs are fed into the
network, one pair translating upward right and one translating
downward left. In Figure 18a, the responses to the upward right
translating image pair are shown. The flow field color coding
used is similar to Baker et al.[69] and can be found in Figure
19 in Appendix C. Column-wise, the £6, £4 and £2 flow maps
can be seen. The first row shows that the flow becomes more
refined. Row-wise the scale of the bar is increased. The second
and third row indicate that the network is able to extrapolate
motion cues from the edges of the bar towards the center.
The receptive field size in the expanding part of the network
increases due to the size of the upconvolutional kernels.

In Figure 18b, the average End-Point-Error (EPE) of
FlowNetS, FlowNetXS, and FlowNetXSS can be seen in
response to two diagonally translating input image pairs. The
region in which the flow is measured is indicated by the red
square outline in Figure 18a. From this figure it can be seen
that the ability of the network to resolve the aperture problem
is related to its receptive field size, and the networks with
larger receptive field sizes are able to resolve the aperture
problem at larger scales.

VII. DISCUSSION AND FUTURE WORK
A. Impact on Computer Vision

Due to the emergence of Gabor-like filters in other learning-
based methods our work started out with the expectation
of also finding Gabor-like filters. Traditional Gabor filters
for optical flow estimation had certain disadvantages. They
deal badly with deviations from translation, varying contrast
due to changing lighting conditions, and are subject to the
uncertainty relation, which corresponds to the balance between
localization of the stimuli in the spatial domain and resolution
in the frequency domain. FlowNetS copes with all of these
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Figure 18: Response of FlowNetS, FlowNetXS, and FlowNetXXS to diagonally translating bars (|u|= 64). (a) Column-wise, the
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the largest evaluated translating bar.

issues. We have shown that deviations from translations are
dealt with by additional neurons that are sensitive to deviations
from translation. Moreover, Mayer et al. [70] showed that
FlowNet is able to cope with varying contrast over time due
to changing lighting conditions. Lastly, we have demonstrated
that FlowNetS is able to achieve a better spatial localization
of motion cues in the expanding part of the network thus
overcoming the uncertainty relation.

Based on the high similarity of the neurons to the fitted
Gabor-like filters, it would be worth studying a hybrid ap-
proach, in which there is a fixed Gabor filter bank (extended
with rotation and dilation features), followed by a convolu-
tional multi-layer loss flow refinement part. This would reduce
training time and greatly increase computational efficiency.

In terms of accuracy, FlowNetS did not reach the levels of
state-of-the-art methods. For example, it has poor performance
on sub-pixel flow [22]. One reason for this might be the large
number of strides utilized before the initial flow prediction
is made. Strides reduce the amount of spatial information
available. Hence, future work should investigate the effects
of strides on the performance of FlowNetS.

Also, our analysis shows that a Gabor filter based on two
frames indeed has a large temporal frequency bandwidth, and
hence limited performance concerning flow velocity estima-
tion. This is narrowed somewhat by the non-linear transform-
ations due to the ReLU activation function and bias term.
However, our analysis indicates that this could be further
improved by using more frames and thus providing more
temporal information to the network.

B. Impact on biology

We have used and extended methods from neuropsychology
for determining the types of filters represented by neurons
in FlowNetS’ deep c6 layer. The analysis gave very sim-
ilar results to those on neurons in the mammalian visual
cortex. First, many filter responses fit very accurately with
Gabor filters that capture translational motion. Second, the
spatial and orientation bandwidth statistics show similarity to
bandwidths found in the mammalian visual cortex. Regarding
spatial frequency bandwidth, we report a median bandwidth
of 1.36 octaves, while De Valois et al. [71] found a spatial
frequency bandwidth of 1.4 octaves in the macaque visual
cortex. Similarly, we find a median orientation bandwidth of
52 degrees, while De Valois et al. [72] report a orientation
half-magnitude profile width of 65 degrees. This may be due
to the network having been subjected to optical flow statistics
as also perceived by animals. Third, as in neuropsychological
experiments [52], we observed that some neurons respond
poorly to translating plane waves. In fact, also the reverse-
correlation does not provide an adequate signal-to-noise ratio
for the reconstruction of spatiotemporal receptive field profiles
of these neurons [52]. Our analysis shows that such poor
response may be due to the neurons being sensitive to more
complex motions such as dilation and rotation. Indeed, in the
human brain, channels sensitive to dilation have been found
[73]. However, this did not provide conclusive evidence of
neurons sensitive to dilation. Our analysis and results suggest
that it is worth looking for dilation- and rotation-sensitive
neurons in animal brains. In fact, one could even extend the



analysis to also check for shear, as this forms an additional
basis for the flow field derivatives [74].

VIII. CONCLUSION

In this work we have demonstrated that FlowNetS learns
a bank of spatiotemporal Gabor filters, tuned to different
spatiotemporal frequencies and values of phase, by means of
a spectral response fitting approach used in neuropsychology.
Moreover, our results indicate that the network also learns
a large number of filters that are sensitive to dilation and
rotation. Furthermore, we have demonstrated that the receptive
field size is linked to the scale at which the network can
resolve the aperture problem and that the expanding part of
the network performs a filling-in function which is similar
in function to the filling-in process which occurs in mammal
vision systems.

While we were able to identify the response of filters
to translation, dilation, and rotation separately, we were not
able to show the exact motion patterns causing the maximum
activation of a filter. In reality some filters are most likely
sensitive to a combination of these motions. We are not able
to quantify this due to limitations in our methodology. Future
work should improve our methodology to be able to identify
more complex motion patterns like compositions of affine and
3D motion. The latter of which is present in more realistic
synthetic training datasets like FlyingThings [75].

The novel insights in FlowNetS provide avenues for im-
proving its performance, such as using smaller strides and
providing the network with more input images. Additionally, it
provides interesting avenues for neuropsychological research,
specifically to use our extended method to investigate if animal
brains have dilation- and rotation-sensitive neurons as well.

In this work we studied FlowNetS and we believe this
model is prototypical for fully convolutional networks used
for optical flow determination due to its generic architecture.
This being said, it would be useful in the future to also study
other networks like SpyNet [38] using our methodology.
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APPENDIX A
MODEL DETAILS

Table I outlines the full details of our version of FlowNetS.
The name of the ‘conv’, ‘flow’ and ‘predict_flow’ layer is
abbreviated to ¢, £ and pf respectively throughout the paper.
The output of the ‘predict_flow’ layer is called ‘flow’.

In Table II a performance comparison between our version
of FlowNetS and the original version of Dosovitskiy et al.
[20] can be found on the FlyingChairs [20] and MPI sintel
[76] datasets.

APPENDIX B
GRID SEARCH PARAMETERS

In Table III the parameter ranges used for the translation
gridsearch can be found. Furthermore, in Table IV the para-
meters used for the spectral Gabor response profile fitting can
be found. These are the three ranges along which the output
of the FlowNetS c6 filters will be evaluated. The parameter
ranges used for the dilation gridsearch can found in Table V.
Note that due to rotational symmetry the initial orientation 6
only varies from 0 to 170 degrees. The parameters used for
the rotation gridsearch can be found in Table VI. Also for this
gridsearch the 6 is constrained from 0 to 170 degrees due to
rotational symmetry. Note that the half spatial wavelength \/2
can be transformed to spatial frequency Fp using the relation
Fy = 3.

APPENDIX C
FLOW FIELD COLOR CODING

In Figure 19 the flow field color coding from Baker et al.
[69] is shown. Note that a pixel coordinate system is used
which defines the positive y-axis downward.

o]

Figure 19: Flow field color coding similar to Baker et al. [69].



Name Kernel Stride Padding Ch I/O In Res Out Res Input

convl X7 2 3 6/64 512x384  256x192 Images

conv2 5x5 2 2 64/128 256x192 128x96 convl

conv3_0 5x5 2 2 128/256 128x96 64x48 conv2

conv3_1 3x3 1 1 256/256 64x48 64x48 conv3_0
conv4_0 3x3 2 1 256/512 64x48 32x24 conv3_1

conv4_1 3x3 1 1 512/512 32x24 32x24 conv4_0
conv5_0 3x3 2 1 512/512 32x24 16x12 conv4_1
conv5_1 3x3 1 1 512/512 16x12 16x12 conv5_0
conv6_0 3x3 2 1 512/1024 16x12 8x6 convS5_1
convo_1 3x3 1 1 1024/1024 8x6 8x6 conv6_0
predict_flow6 1x1 1 1 1024/2 8x6 8x6 conv6_1
upconvS 4x4 2 1 1024/512 8x6 16x12 conv6_1
predict_flow5 1x1 1 1 1026/2 16x12 16x12 upconvS+conv5_1 +flow6
upconv4 4x4 2 1 1026/256 16x12 32x24 upconvS+conv5_1 +flow6
predict_flow4 1x1 1 1 770/2 32x24 32x24 upconv4+conv4_1 +flow5
upconv3 4x4 2 1 770/128 32x24 64x48 upconv4+conv4_1 +flow5
predict_flow3 1x1 1 1 386/2 64x48 64x48 upconv3+conv3_1 +flow4
upconv2 4x4 2 1 386/64 64x48 128x96 upconv3+conv3_1 +flow4
predict_flow2 1x1 1 1 19272 128x96 128x96 upconv2+conv2+flow3

Table I: Full details of our version of FlowNetS. Note that the expansive part of the network starts at ‘flow6’.

Model name Model details

FlyingChairs test [EPE]

MPI Sintel clean train [EPE]

MPI Sintel Final train [EPE]

FlowNetS [20]
FlowNetS-ours

original

ReLu activation function, pf layers with 1x1 kernels

2,71
3,10

and no bias term, 300K training iterations, no data
augmentation between frames

4,50
5,06

5,45
5,81

Table II: Performance comparison between the original version of FlowNetS and ours on the MPI-Sintel [76] and FlyingChairs

[20] datasets.

Parameter  Unit Range [start, stop, step size]
Ao/2 pixels [16, 800, 16]

6o degrees [0, 350, 10]

fto cycle per frame  [0.0, 0.5, 0.01]

©o degrees [-180, 170, 10]

Table III: Parameter ranges used for the translating plane wave

gridsearch.
Parameter  Unit Range [start, stop, number of points]
Ao/2 cycle per pixel [16, 800, 50]
6o degrees [0, 350, 36]
fto cycle per frame  [-0.5, 0.5, 50]

Table IV: Parameter ranges used for the Gabor spectral profile

fitting process.

Parameter  Unit Range [start, stop, step size]
Ao/2 pixels [50, 400, 10]

6o degrees [0, 170, 10]

sy - [0.5, 2.0, 0.1]

©o degrees  [-180, 170, 10]

Table V: Parameter ranges used for the dilating wave grid-

search.
Parameter  Unit Range [start, stop, step size]
Ao/2 pixels [50, 400, 10]
6o degrees [0, 170, 10]
wo cycle per frame  [-0.5, 0.5, 0.1]
©o degrees [-180, 170, 10]

Table VI: Parameter ranges used for the rotation gridsearch.
The angular velocity w is limited between —0.5 and 0.5 cycle

1

per sample which corresponds to —57 and %77 radians per
frame respectively.

2
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Time-varying Image Formation

The concept of optical flow was first defined by Gibson, 1950 as follows: consider a moving pattern of
light which hits the retina when an observer moves relative to the environment. The distribution of
these patterns is called optical flow. This information can be exploited by the observer for ego-motion
and scene interpretation. However, the goal of optical flow is application dependent. Baker et al.,
2011 state, based on the taxonomy of B. Horn, 1986, that the motion field is the 2D projection of the
3D motion surfaces in the world. The optical flow is the apparent motion of the brightness patterns
in the image. These two are not always the same, and the goal is application dependent. Regarding
applications where the motion is used to interpret or reconstruct the 3D world, the motion field is what
is desired. In the scope of this thesis, the motion field is of interest. Henceforth, if a reference is made to
optical flow, the motion field is what is referred to. Note that transparency is excluded in this analysis,
which requires the estimation of multiple motions per pixel. This occurs when am object is translucent
enough to emit light through its surface. In this chapter, a derivation of optical flow will be given.
After this, photometric factors will be discussed. Lastly, capturing optical flow ground truth and error
metrics will be discussed. An explanation about temporal sampling and motion blur can be found in
Section 5.1 because it relates to the frequency domain.

2.1 Modeling optical flow

In this section a derivation of optical flow based on the pinhole camera model will be given. Note that
here the main quantities of interest are the visual observables which can be derived using the assumption
that the rotational rates of the observer are known. This section is limited to the derivation of optical
flow for point correspondences. For a derivation of optical flow for planar patches, relating different 3D
surface models, 3D motion models, camera models and 2D motion field models, often used in frame
interpolation and structure from motion applications, the reader is referred to Konrad, 1999.

2.1.1 The pinhole camera model

Longuet-Higgins and Prazdny, 1980 were the first to formulate optical flow. For this derivation, the
authors assumed a pinhole camera model. This means that the hole in which light enters the camera
can be modeled as a point and the retina can be seen as a plane. Note that these assumptions are not
valid for cameras with a wide-angle lens. Consider point A with coordinates (X, Y, Z) in the observer
reference frame OXY Z where O is the aperture of the camera as depicted in Figure 2.1. Note that
the image plane (z,y) is one focal length f away from the aperture O. The observer moves through
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L

— W

Figure 2.1: The pinhole camera with coordinate system OXYZ. Adapted from Longuet-Higgins and Prazdny, 1980.

the environment with velocities U, V, W and rotational velocities p, g, r. It can the be shown that the
velocity component of world point A relative to the moving aperture O are given by:

X=-U—-qZ+rY
Y =-V—rX +pZ (2.1)
Z=-W —pY +¢X

Note the minus signs, as the velocities of A are opposite to the observer in O. The position of the
projection of A on the image plane given by point a are related to each other by:

f

(x7y=f)T:Z(X7KZ)T (22)

Then, for notational convenience f = 1 is assumed so that the location of points on the image plane
can be written as vectors two dimensions. Then, using the quotient rule, optical flow components u
and v can be computed by taking the time derivative of x and y:

u=X/Z2-X2|2*=(-U/Z ~ q+ry) — 2(~W/Z — py + qz) (2.3)
v=Y/Z-YZ|Z? = (-V/Z —rz+p) —y(-W/Z — py + qx) '

Which can also be rewritten in a form that separates the optical flow components in terms of a trans-
lation uT, vT and rotational u®, v component of the motion of the observer:

u=ul +ult v=10T fof (24
u' = (~U+azW)/Z vl = (=V +yW)/Z

uft = —q +ry + pay — q2? v = —rz +p+py? — qzy (2.6)
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2.1.2 Visual observables from optical flow

In the previous section, the relation between a point on the image plane and the motion of an observer
in a static environment was derived. For this setting, the state of the observer is thus equal for all world
points, while the depth Z is unknown and varies per point. Hence, multiple points on the image plane
can be combined to estimate the unknown quantities. However, due to the high number of unknowns
and high computational complexity often a set of simplifying assumptions is used. These result in sets
of parameters related to the motion of the observer and are called visual observables.

Derotation

If the observer has access to its own rotational rates, using gyroscopes for example, the flow can
be derotated. Vision-based applications in MAVs often use this assumption (de Croon et al., 2013).
Longuet-Higgins and Prazdny, 1980 shows that intersection of the line of motion of the observer with
the image plane can be written as:

Tro = U/W Yo = V/W (27)

Assuming the rotation components v and v’ to be zero, equation 2.5 can be rewritten using equation
2.7 as follows:

u=(x—xzo) W/Z v=(y—y)W/Z (2.8)

From which follows that:

u/v=(y —yo)/(x — x0) (2.9)

Thus, it can be seen that at point (zg,yo) on the image plane the optical flow will be zero and not
dependent on the depth Z of the world point. Points further away from this point of expansion will
have an increasing magnitude and therefore the point is referred to as the Focus of Expansion (FoE)
when the observer is moving toward the world point or Focus of Contraction (FoC) when it is moving
away. Also, the relative depth Z/W of world points can be estimated when the location of the FoE or
FoC on the image plane is known. In case the depth Z is known the Time-to-Contact (TTC) is given
by 7 = Z/W. This gives an estimate how fast the observer approaches the FoE world point.

Planar flow

de Croon et al., 2013 introduces, apart from the static scene assumption, also the assumption of a
planar scene in order to simplify the set of equations for optical flow can be simplified even further.
Then, h is defined as the distance between the observer’s camera pinhole O and the planar surface.
Furthermore, the angles o and 3 are the slopes between the X and Y-axis of the observer. Lastly, the
velocity components of the observer are scaled with the depth uwg = U/h,vg = V/h and wy = W/h,
then the the expression for the planar flow field can be defined as:

u = —ug + (aug +wo) * + Pugy — cwexr? — Bwozy

; (2.10)
v = —vg + avez + (Bvo + wo) y — Pwey® — awezy
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If the slopes « and g are of negligible magnitude, which is the case when the planar surface is perpen-
dicular to the Z-axis, the equations further simplify to:

U = —Uug + wox (211)
v = —vg + WoY

From these equations it becomes apparent that the depth-scaled velocities of the observer are essential
for optical flow estimation of planar flow. These normalized velocities are the primary cues, also known
as visual observables, used for navigation. Using these velocities the previously introduced TTC can be
estimated as 7= Z/W = 1/wq. Furthermore, using the mathematical definition of divergence:

V- (50) = o) + g (o) (2.12)

Combined with equation 2.11, leads to the definition of optical flow divergence D. Which is defined as

2
D =2uw, == (2.13)
T

2.2 Photometric factors

In this section photometric factors are discussed which influence time-varying image intensity. Some
optical flow estimation methods make use of pixel intensity representations which are invariant to
different types of changes in lighting over time and are called photometric invariants. For further
discussion refer to section 3.3.1.

Photometric factors include the different illumination sources, material reflectance properties and the
illumination of a scene to account for highlights and shadows. All these factors are difficult to model
accurately. Therefore, instead of providing a complex model for the general case, the dichromatic
reflection model (Shafer, 1985) is used, which ignores all but the simplest forms of reflectance and
illumination. The model states that color distributions will form a parallelogram in RGB space as can
be seen in Figure 2.2. This model relates the observed RGB color ¢x) = (R(x),G(x), B(x))T at a
certain location as the sum of an interface reflection component c;(x) and a body reflection component

cp(x):

c(x) = ¢;i(x) + ¢cp(x) (2.14)

Where the interface reflection component is caused by specular (direction-specific) components of reflec-
tion. Note that the specular component is dependent upon the surface normal and the viewing direction
of the camera. For a perfectly diffuse (Lambertian) surface, however, the body component depends
only on the angle between the surface normal and the sources of illumination and not on the viewing
direction of the camera. This model does not take into account the characteristics of the camera. Using
the assumption that the illumination is spectrally uniform, equation 2.14 can be written in terms of
overall intensity of the light source e, geometrical reflection factor m(x) and the reflectance color ¢:

c(x) = e (mi(x)E(x) + mp(x)&(x)) (2.15)

Thus, it is assumed that the interface (¢;) and body (&) reflectance colors combine linearly and the
geometrical reflection factors m(x), which depend on material properties, serve as weights. Because
of the assumption of spectrally uniform illumination, only achromatic colors ((white to gray to black)
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Figure 2.2: (left) Linear combinations of ¢; and é;, denoted by Ci and Cb respectively, lie on a parallelogram.
(right) The position within the parallelogram determines the magnitude of the geometrical reflection factors m;(x)
and my(x), denoted by mb and mi respectively. Both figures taken from Shafer, 1985.

~

can be modeled. Then all channels of ¢; contribute proportionally; R;(x) = @i(x) = B (x) =: w;(x).
Lastly, if a neutral interface reflection (Lee, Breneman & Schulte, 1990) is assumed, the value of w;(x)
becomes independent of the spatial position and equation 2.15 can be rewritten as:

c(x) = e (m;(x)w;1 + mp(x)Cp(x)) (2.16)

Where 1 = (1,1,1)7. Equation 2.16 is the dichromatic model as presented in Shafer, 1985. Based on
the dichromatic model three types of photometric invariants (independence of photometric variables)
can be distinguished:

1. Global multiplicative illumination changes: Concerning expressions of ¢(x) independent of
the light source intensity e.

2. Shadow and Shading: Concerning expressions of c(x) independent of light source intensity e
and body reflection factor my, given m; = 0 (which is the case for matte surfaces).

3. Highlights and specular reflections: Concerning expressions of c¢(x) independent of light
source intensity e and body reflection factor my; and also interface reflection factor m;.

The main limitations of the dichromatic model are the fact that is does not account for ambient light
and causes problems for uncalibrated images (van de Weijer & Beigpour, 2011).

2.3 Optical flow performance evaluation

For other computer vision areas such as stereo, segmentation and object recognition, ground truth data
can be captured by using specialized sensors or manual labeling. The creation of ground-truth data for
optical flow is difficult because there are no sensors available for optical flow and manual labeling is
often difficult and very time-consuming. This section deals with the capturing of ground truth optical
flow and the evaluation thereof.

2.3.1 Capturing optical flow ground truth

This section deals with the capturing of optical flow ground truth data for the specific purpose of testing
optical flow estimation methods on real-world scenarios and/or providing a benchmark to compare the
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performance of different optical flow estimation methods. Note that the motivation for the creation of
these datasets is highlighting difficulties of optical flow, which include:

e The aperture problem and regions with no or weak texture. Amplifying the fact that the optical
flow estimation problem is ill-posed. Further details will be discussed in Section 3.1.

e Nonrigid motion, motion discontinuities and occlusions.

e Large motion of small scale structure which is a well-know drawback of the coarse-to-fine scheme.
Further discussed in Section 3.3.

o Ilumination changes, highlights and specular reflections.
o Motion blur, defocus blur and atmospheric effects (such as fog).

¢ Camera noise

An overview of the datasets used for benchmarking and testing can be seen in 6.2. A subvision between
the datasets is made based on the method used for obtaining the ground truth of the image sequences:
‘Natural sequences’ refer to sequences made with a real camera and ‘synthetic sequences’ are made
digitally.

Natural sequences

The ‘Middlebury’ (Baker et al., 2011), ‘KITTT 2012’ (Geiger, Lenz & Urtasun, 2012), ‘KITTI 2015’
(Menze & Geiger, 2015) and ‘HD1K’ (Kondermann et al., 2016) contain ground truth data from natural
scenes. Baker et al., 2011 use fluorescent paint (which is only visible to the ground truth camera),
down-sampling of high-resolution images and sequential tracking of small motion to obtain a dense,
sub-pixel accurate ground truth containing non-rigid motion. Geiger et al., 2012 use a car with two
high-resolution cameras, a laser scanner, and a high-accuracy localization system. Their dataset is
focused on the application of autonomous driving. While KITTI 2012 contains sequences from different
geospatial locations, Kondermann et al., 2016 create an autonomous driving dataset which is recorded
in only a single street using a similar setup to KITTI 2012. Their main motivation for creating this
dataset is that it represents challenges specific to urban autonomous driving. The KITTI 2015 uses
a data acquisition method similar to KITTI 2012, however they produce a scene flow dataset which
means a 3D representation of the motion field is made. This 3D motion field can be projected onto the
2D plane to obtain ground truth which we refer to as optical flow.

Synthetic sequences

Both the Middlebury and ‘MPI-Sintel’ (Butler et al., 2012) datasets contain synthetic optical flow
ground truth. The main advantage of generating synthetic datasets is that the ground truth accuracy is
optimal. The drawback is that the rendered ground truth is only as close to real-world scenarios as the
models that describe them. Baker et al., 2011 use the rendering program ‘3Delight’ to generate ground
truth without motion blur. Butler et al., 2012 modify the rendering program ‘Blender’ to obtain dense
optical flow ground truth for the open-source action movie ‘Sintel’. Their synthetic dataset contains long-
sequences, large motions, motion blur, and atmospheric effects. The movie is rendered using different
passes, at which different illumination models are active. The ‘Albedo pass’ is for flat unshaded surfaces,
the ‘Clean pass’ includes shading and specular reflections and the ‘Final pass’ includes motion blur and
atmospheric effects (such as fog).
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Dataset Published in Synthetic/natural ~#Frames for testing Resolution
Middlebury  Baker et al., 2011 S/N 8 640 x 480
KITTT 2012  Geiger, Lenz and Urtasun, 2012 N 194 1,242 x 375
MPI-Sintel ~ Butler, Wulff, Stanley and Black, 2012 S 1,064 1,024 x 436
KITTI 2015 Menze and Geiger, 2015 N 200 1,242 x 375
HD1K Kondermann et al., 2016 N 3,563 2,560 x 1080

Table 2.1: Overview of both synthetic and natural datasets with dense optical flow ground truth. Note that
datasets with a private testset can be used a benchmark. The benchmark most often used is MPI-Sintel. Adapted
from Mayer et al., 2018.

2.3.2 Flow error metrics

In this section, the flow error metrics commonly used in literature are presented. The Angular Error
(AE) was first introduced by D. Fleet and Jepson, 1989 but gained wide adoption thanks to the use
of the measure in the work of Barron, Fleet and Beachemin, 1994. The AE flow field vector estimate
(u,v) and the ground-truth flow vector (ugr, var) is defined as the 3D angle in spatiotemporal space
between (u,v,1.0) and (ugr,ver, 1.0). It is defined as:

AF — cos—! 1.0 +u X ugt +v X var1 (2.17)
VI.0+ w2 +0v2y/1.0 + ugp + v&p '

The consequence of using this error metric is that errors in flow fields with large magnitude are penalized
less than errors in flow fields with a small magnitude. Otte and Nagel, 1994 defined optical flow error
in terms of magnitude of the distance vector between the ground truth and flow field vector estimate.
This is also known as the Endpoint Error (EE) and is defined as:

BE = \/(u— uar)* + (v — var)? (2.18)






Differential Methods

In this Chapter differential image intensity methods are discussed. Firstly, the optical flow constraint
equation will be derived, followed by an explanation of the aperture problem. Next, the taxonomy of
S. S. Beauchemin and Barron, 1995 is used for the distinction between local and global methods. In
the section about global methods the taxonomy of Baker et al., 2011 is used, and a condensed overview
of global energy methods is given. For an in-depth review of the entire field of differential-based optical
flow estimation methods the reader is encouraged to study Barron et al., 1994 and Baker et al., 2011.

3.1 Optical flow constraint

Consider the image intensity function I(x,t) which provides the brightness of a pixel at image plane
location x = (z, y)” at time ¢ and let the optical flow be denoted by v = (u, v)*. B. K. Horn and
Schunck, 1981 were the first to introduce the brightness constancy assumption, assuming that under a
short period of time the intensity of a pixel, when it flows from one image to another, does not change.
This combines a number of assumptions; that the scene is Lambertian, the illumination in the scene
is uniform and that there is no vignetting in the camera. The latter means there is no reduction in
brightness towards the edges of the camera compared to the center of the image plane. Now consider
the simple case of translation:

I(x,t)=I(x+v,t+1) (3.1)

This equation can be linearized by applying a first-order Taylor expansion and leads to the Optical Flow
Constraint equation:

VI(x,t) v+ Li(x,t) =0 (3.2)

Where I;(x,t) denotes the temporal image intensity derivative and VI(x,t) = (I(x,t), I, (x, o’
Note that Equation 3.2 has the two optical flow components (u, v)T as unkowns. S. S. Beauchemin
and Barron, 1995 shows that equation 3.2 leads to the aperture problem (Ullman, 1979). Meaning,
only image velocity in the direction of the local image gradient can be determined. Because of the two
unknowns, only one component of velocity can be resolved simultaneously. This problem is illustrated
in Figure 3.1 for a diagonally translating intensity pattern.
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Figure 3.1: lllustration of the aperture problem for a diagonally translating intensity pattern. Note that through
the apertures A and B only the velocity component normal to the intensity pattern can be estimated. Inside
aperture B both velocity components can be resolved. Adapted from S. S. Beauchemin and Barron, 1995.

Note that the optical flow components (u, v)T can be rewritten in terms of the velocity component
perpendicular to the contours of constant intensity, also known as component velocity v,,. Note that
v, = sn, where s is the normal speed and n the normal direction. Equation 3.2 can then be rewritten
as follows:

n(x,t) = _VIx.t) (3.3)

s(x,t) = V(x|

In order to solve for Equation 3.2 more constraints are needed which will be discussed in the following
sections.

3.2 Local methods

Lucas and Kanade, 1981 introduce additional constraints in the form of a local smoothness assumption.
This means it is assumed the optical flow in a local region is constant. Consider a window function
W (x), which gives more weight to the centre. Then the optical flow v can be estimated around the
small spatial neighborhood 2 using:

Y Wi(x) [vz(x, v L) (3.4)

xEN

Which can be seen as a weighted minimization of the local least-squares solution of the optical flow con-
straint. Simoncelli, Adelson and Heeger, 1991 extend the approach to incorporate the eigenvalues of the
least-squares matrix as a confidence measure. Based on the Harris corner detector (Harris & Stephens,
1988), which makes use of the same least-squares matrix (also know as the second moment matrix),
the interpretation of the eigenvalues threshold for eigenvalues is as follows; when both eigenvalues are
small, it is considered a flat region. When one or two eigenvalues are large there is an edge, and if
both are large a corner is detected. Barron et al., 1994 find that using a threshold for both eigenvalues
outperforms using a threshold for the sum of the eigenvalues.

Uras, Girosi, Verri and Torre, 1988 make use of the second-order intensity derivatives to further constrain
Equation 3.2:
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(VVI(x,t))vl = —VI,(x,1) (3.5)

Although this equation provides enough constraints for the velocity to be resolved for a single image
point, estimates from an 8x8 region are used as input, from which they select the eight estimates which
best fit the constraint ||(Vv)TVI(x,t)|| < ||VI;(x,t)||. The drawback of this method is the fact that
the constancy assumption on the gradient (second-order derivatives) are invalid for rotation, dilation,
and shear. While the brightness constancy assumptions allows for affine deformations. Nagel and
Enkelmann, 1986 were the first to show that image points which have high Gaussian curvature, such as
corners, can solve the aperture problem. Note that Gaussian curvature is expressed as det(VVI(x,1)).
It is for this reason Barron et al., 1994 use a threshold on det(VVI(x,t)) for the method of Uras et al.,
1988 to obtain reliable estimates.

3.3 Global methods

Most global intensity-based differential methods phrase the optical flow estimation problem in terms of
a global energy function:

E Giobal = E pata + AE prior (3.6)

Where Epgt, is the data term and Epyo, the prior term and A is a weight factor between both terms.
The data term measures the consistency of the flow with the input images, high energy corresponds to
more deviations from this consistency. The prior term favors certain types of flow fields over others. In
the following sections, the data term, prior term, and optimization of Equation 3.6 will be discussed.
Lastly, sparse-to-dense correspondence matching approaches will be discussed. These methods use
sparse feature matches as an initialization for the global energy function.

3.3.1 Data term

As a starting point for the data term either the non-linearized brightness constancy assumption (Equa-
tion 3.1) or the optical flow constraint (Equation 3.2) is used. When the non-linearized brightness
constancy assumption is used, it is usually converted to the optical flow constraint during optimiza-
tion. Which will be further discussed in Section 3.3.3. Note that both of these equations provide an
error measure per pixel. B. K. Horn and Schunck, 1981 used a quadratic error function (L2 norm) to
aggregate the error. This leads to the following data term:

Epaa =Y {w(x, £)-v + L(x, t)} ’ (3.7)

X

Brox et al., 2004 note that using a quadratic penalty function gives too much weight to outliers in
the estimation. Therefore the L1 norm with a small positive constant e is used which benefits the
optimization because it ensures the resulting function is still convex. This results in the following data
term:

Ebaa = S IV, 0 v + L, 0]+ € (38)

X

Where || - ||1 denotes the L1 norm of the errors.
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Concept Photometric invariance #Ch | AAE orig. | AEE mult. | AEE mult. + add.
Standard RGB None 3 2.65 ° 43.44 ° 43.44 °
HSL (Hue) Shading, highlights and specularities 1 4.28 ° 4.28 °© 4.28 °
Color space
spherical (¢, 6) Shading 2 2.07 ° 2.07 ° 3.37°
N RGB (arithm. mean) | Shading 3 2.22° 222 ° 3.71°
Normalization
RGB (geom. mean) Shading 3 2.26 °© 2.26 °© 5.64 °
Log-derivatives VIn(RGB) Shading 6 2.89 ° 3.04° 4.35°
Brox et al. (2D) | RGB + VRGB Highlights and specularities 9 2.64 ° 3.89° 3.92°

Table 3.1: Performance of the constancy assumption for different concepts with intensity channels containing
photometrically invariants under original, multiplicative and additive lighting in AAE on the street sequence
(http://of-eval.sourceforge.net). Table is adapted from Mileva, Bruhn and Weickert, 2007.

Photometrically invariant features and color

The biggest drawback of the brightness constancy assumption is that it is not able to cope with illumin-
ation changes over time. Therefore, a gradient constancy is used by Brox et al., 2004, which makes the
data term more robust to additive illumination changes. When taking the gradient of the brightness
constancy assumption:

VI(x,t)=VI(x+v,t+1) (3.9)

The gradient constancy assumption assumes the flow to be locally translational. Meaning that the
gradient constancy assumption can be violated by local scale changes, while the brightness constancy
assumption still holds. Note that when equation 3.9 is linearized using a first-order Taylor expansion
the result will be the same as equation 3.5.

Instead of using the gradient constancy assumption, Mileva, Bruhn and Weickert, 2007 consider different
concepts with photometrically invariant intensity channels. The performance of the different concepts
on a synthetic sequence is measured for both multiplicative and additive lighting as can be seen in Table
3.1. From this, it can be seen that the brightness constancy assumption on RGB intensity channels fails
when multiplicative lighting is added to the test sequence. In the HSV color space, the Hue channel is
photometrically invariant to both shadow and shading as well as highlights and specularities. Therefore,
the HSV color space is able to achieve the same level of performance for both multiplicative and additive
lighting (section 2.2). However, because the transform of RGB to HSV color space involves the ratio of
color channel differences, it also discards information. The channels ¢ and 8 of the spherical color space
(r, ¢,0) are invariant to shadow and shading and provide the best results. Also, note the robustness of
the method of Brox et al., 2004 to additive illumination changes.

Zimmer et al., 2011 propose the use of the HSV color space for the data term. By allowing a separate
robustification of each channel, the most suitable channel for each spatial location can be chosen. As can
be seen in Figure 3.2, different channels in the HSV color space! posses various degrees of photometric
invariance. In Figure 3.3 an example of the different weights given to different HSV channels for different
spatial locations are given. Here it can be seen, different channels receive larger or smaller weights in
shadow regions. Especially, note the black regions which correspond to no weight in the value channel
(bottom right) which is sensitive to shading in Figure 3.3.

3.3.2 Prior term

Because the data term has more unknowns than constraints, the problem is ill-posed. Therefore, more
constraints are needed. Most prior terms favor smoothly-varying flow fields. The simplest prior is by

1The hue channel is expressed as an angle in between 0° and 360° and in order to make the hue channel differentiable
the cosine and sine of the angle are used as input.
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Figure 3.2: HSV decomposition of the Rubberwhale
image from the Middlebury optical flow dataset (Baker
et al,, 2011). (top left) RGB image with a zoom in on
the shadow of the wheel. Top right: Hue channel with
maximum values in the saturation and value channels.

(bottom from left to right) The saturation and value

channel respectively. Note that in the hue and
saturation channel the shadow is not visible. Taken

Figure 3.3: The weights visualized for different
channels in the HSV color space. (top left) Zoom in of
the Rubberwhale image of the Middlebury optical flow

dataset(Baker et al., 2011). (top right) Weights
applied to the hue channel. Note that a larger weight

corresponds to brighter pixels. (bottom from left to
right) Weights for the saturation and value channel
respectively. Note that the value channel is not

from Zimmer, Bruhn and Weickert, 2011. invariant to shading and therefore receives almost no
weight in the shaded area. Taken from Zimmer, Bruhn

and Weickert, 2011.

using an L2 norm for the optical flow gradients, first used by B. K. Horn and Schunck, 1981. This can
be written as:

Bprior = [IVull3 + [ Vo[3] (3.10)

X

Where || - ||2 denotes the L2 norm, and V = (dx) is the spatial flow gradient. The combination of
the L2 norm for the data (Equation 3.7) and prior (Equation 3.10) leads to the energy formulation of
B. K. Horn and Schunck, 1981. Note that if more than two frames are used, a spatiotemporal gradient,
defined as V = (0x, 9;), can also be incorporated. Brox et al., 2004 use an L1 norm with a small positive
constant € similar to Equation 3.8 where the absolute values of the gradients are first added, after which
the penalty function is used. A spatial weighting function as a function of the gradient w(VI) to reduce
the influence of the prior term near edges can also be used:

Eprior = Y w(V1) [[[Vull3 + [Vl

X

(3.11)

The use of such a function is based on the assumption edges have a high gradient, and that motion
boundaries often coincide with edges. This term can also be used in combination with a segmentation
algorithm to vary the weight between different segments (Seitz & Baker, 2009). Note that in equation
3.11 the weighting function treats all directions equally. Nagel and Enkelmann, 1986 use an anisotropic
weighting function which penalizes the direction along the image gradient more than the direction
perpendicular to it.

3.3.3 Optimization

One approach used in the minimization of the global energy function is called gradient descent. Let f
denote the vector which results from the concatenation of all optical flow components for every pixel.
Baker and Matthews, 2004 use the simplest form of gradient descent called steepest descent, which
makes steps in the direction of the gradient —%. Also, more advanced approaches have been
used which update the step size for every iteration based on the second derivatives of the global energy
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function with respect to f (M. J. Black & Anandan, 1996). For a non-linear global energy function,
there is no guarantee it will converge to the global minimum, however.

The approaches of Brox et al., 2004; B. K. Horn and Schunck, 1981; Zimmer et al., 2011 allow the
formulation of the global energy function to be written as:

E Global = /E(u(x),v(x),x,ux,vx) dx (3.12)

Where (ux,vx) denote the spatial derivative of the optical flow components and the optical flow com-
ponents are treated as unknown 2D functions rather than unknown values. Then the Euler-Lagrange
equations (Agrawal, 2002) can be used to find the minima of the differentiable global energy Equation
3.12. Note that Fuler-Lagrange equations belongs to the mathematical analysis field called ‘calculus
of variations’ This field studies the use of small variations in functions to find local minima. For this
reason optical flow methods that use this optimization scheme are called variational methods. Note
that for the method of B. K. Horn and Schunck, 1981 the Euler-Lagrange equations are linear and
the linear system of equations can be solved using standard methods like Gauss-Seidel or Successive
Over-Relaxation. Brox et al., 2004 numerically approximate their non-linear model to derive a linear
set of equations which can be solved using the same methods. For non-linear Euler-Lagrange equations,
it can be solved using an iterative method comparable to gradient descent.

Many approaches use a coarse-to-fine strategy to deal with large motions and significantly reduce
computation time (M. J. Black & Anandan, 1996; Bruhn, Weickert & Schnérr, 2005) in the form of
an image pyramid. From bottom to top, the image is down-sampled, resulting in reduced resolution.
The optical flow is then first estimated for the top part of the pyramid, corresponding to the coarsest
resolution. Then, the flow is up-sampled and used as an initialization for the next level. Because the
top-level requires fewer parameters to be estimated and is used as initialization for the next level, the
amount of computation time is significantly reduced. The main limitation of the coarse-to-fine approach
is that it tends to produce erroneous flow on small scale fast-moving objects, which will be discussed in
the following Section.

3.3.4 Matching-based extensions

As mentioned, the drawback of the coarse-to-fine warping scheme is that as soon as the motion of
small-scale structures is larger than its scale, the motion estimation is often incorrect. Human motion
estimation often suffers from this problem as small limbs can move very fast, as can be seen in Figure 3.4.
Brox and Malik, 2011 propose to solve this problem by adding a descriptor matching term to their global
energy function(Brox et al., 2004). This matching term makes use of Histogram of Oriented Gradients
(HOG) descriptors (Dalal, Histograms & Triggs, 2005) to produce sparse feature correspondences. The
drawback of using HOG descriptors is that they implicitly assume rigid motions.

Weinzaepfel, Revaud, Harchaoui and Schmid, 2013 use convolutions from the target image with patches
from the reference image to produce dense matches as can be seen in Figure 3.5. The response maps of
these convolutions are then ‘aggregated’ to obtain response maps equivalent to convolutions of the target
image with larger patches of the reference image at different scales. For details about the ‘aggregation’
process the reader is encouraged to read Weinzaepfel et al., 2013. Figure 3.6 shows that the larger
patches of the reference image provide more distinct activations in the response maps. The matching
architecture works in a bottom-up fashion, the convolutions of the target image with the smallest
patches of the reference image are considered first. As the algorithm moves on to coarser response
maps, the matching problem gets easier, and larger patch matches receive a larger weight. They show
that their approach called ‘DeepFlow’ is able to cope with non-rigid deformations, such as scale changes
and rotations.

Revaud, Weinzaepfel, Harchaoui and Schmid, 2015 tackle the problem of large displacements with
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Figure 3.4: lllustration of large displacement of small structures. (left) The two input images overlayed. (middle)
Flow field produced by Brox, Bruhn, Papenberg and Weickert, 2004. The flow field color coding can be found in
Appendix B with the exception that black instead of white corresponds to zero flow. (right) Flow field produced by
Brox and Malik, 2011. Note the improved optical flow estimation for the hands and balls. Taken from Brox and

Malik, 2011.
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Figure 3.5: The architecture of DeepFlow. The target image is convolved with 4x4 patches of the reference image.
The response maps are then aggregated to obtain the response maps of convolutions with the reference image at
different scales. Adapted from Weinzaepfel, Revaud, Harchaoui and Schmid, 2013.
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Figure 3.6: Visualization of the response map at different scales used in DeepFlow. This illustrates that the larger
scale patches elicit more distinct responses and therefore receive a larger weight. Taken from Weinzaepfel, Revaud,
Harchaoui and Schmid, 2013.
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Figure 3.7: Explanation of '‘EpicFlow. The matches generated using the matching part of the DeepFlow model are
interpolated using the image contours obtained by an edge detector. The contours and matches are used as an
input into the OFH model. Taken from Revaud, Weinzaepfel, Harchaoui and Schmid, 2015.

First Image

Second Image

significant occlusions and build upon the assumption that motion discontinuities often coincide with
contours. Therefore, they interpolate matches obtained by the matching part of the DeepFlow archi-
tecture, using the contours of the reference image as depicted in Figure 3.7 as an additional input.



Correlation-based Methods

This Chapter discusses correlation-based methods. S. S. Beauchemin and Barron, 1995 conclude that
spatiotemporal sampling rates for the computation of spatiotemporal derivatives are often underestim-
ated in their importance, and too often the assumption of aliasing free imaging (see Chapter 5) is made.
At their time of writing the authors conclude that conventional cameras often produce imagery which
contains severe aliasing. Increasing the spatiotemporal sampling or prefiltering the images often helps.
However, when the number of image frames is small, or the image motion is large, accurate and reli-
able spatiotemporal derivatives are not always obtainable. In such a case, correlation-based matching
approaches are a natural choice. Note that correlation-based parametric apparent motion estimation of
image regions is often used in video-compression algorithms such as MPEG (Konrad, 1999).

Correlation-based methods try to maximize the similarity between two different intensity regions
between different frames. Finding the best match is then defined as finding the shift! d =(d,, d,)
which maximizes a similarity score or minimizes a distance measure, such as the Sum-of-Squared Dif-
ferences (SSD):

SSD(x,d) = > > W(i,j)(I(x+ (i,),t) — I(x + (i,4),t + 1)) (4.1)

Jj=—ni=—n

Where W (i, j) denotes a 2D window function over search space 2. Note that equation 4.1 can be seen
as a window-weighted average of a first-order approximation to the temporal derivative I;(x,t) (Barron
et al., 1994).

Anandan, 1989 implements a Laplacian pyramid and a coarse-to-fine matching strategy using the SSD
as a distance measure. Using the coarse-to-fine strategy, which first estimates small motions and later
small motions, makes this method more computationally tractable. Also, the Laplacian pyramid helps
to enhance image structure such as edges which are useful for matching. The method of Singh, 1991
is very similar to the one of Anandan, 1989 because it also minimizes the SSD distance measure. It
consists of a two-stage computation. In the first stage, the SSDs of three time-adjacent images are
computed. The motivation for using two SSD surfaces is that it avoids getting trapped in local minima
due to noise or periodic texture. Both methods suffer severely from temporal aliasing (see Chapter 5)
as becomes apparent on the Sinusoid! synthetic sequence (Barron et al., 1994). On top of this, the
performance on sub-pixel motions for correlation-based matching techniques is also poor.

Another drawback of correlation-based methods is that the search space  scales with O(n?) as n
increases. Camus, 1997 describes a way to make the computational complexity of the search space for

Iwhich is an approximation to velocity

49
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correlation-based methods scale with O(n) by using a spatiotemporal search range. He achieves this by
formulating a spatiotemporal search space definition which grows linear in time.



Frequency-based Methods

In this Chapter, frequency-based methods will be discussed. Firstly, the representation of spatiotem-
poral image structure in the frequency domain is explained. Next, the trade-off between frequency
resolution and localization in the space-time will be discussed. Finally, amplitude-based (Heeger, 1987)
and phase-based (D. Fleet & Jepson, 1989; Gautama & Van Hulle, 2002) methods for optical flow
estimation will be discussed.

5.1 Image velocity in the frequency domain

Consider a moving sine wave. The spatial frequency f, of this sine wave is expressed in the number of
cycles per pixel. The latter of which is pixels in our case. The temporal frequency (f;) is expressed in
the number of cycles per frame. Using this relation velocity (which is expressed in pixels per frame) is
found to be:

v=fi/f« (5.1)

Now consider a signal composed of two sinuses y; and y» with each a different spatial frequency f,. The
signal moves with a velocity v, which means that each sine given their spatial frequency has a temporal
frequency of f; = vf,. This means that y,, which has a spatial frequency component twice as high as
wave 1, also has a temporal frequency which is twice as high as y,. This corresponds mathematically
to fi, = fz,v = 2f1, = 2fy,v and this is illustrated in Figure 5.1. Now consider a wave moving at
velocity v that has many spatiotemporal frequencies. Note that all these frequencies will lie on a line
passing through the origin as illustrated in Figure 5.2.

Equation 5.1 can be extended to 2D velocity where the spatial and temporal frequencies can be related
to each other using the following equation:

ft:Ufz+vfy (52)

Where v = (u,v) is the 2D velocity of a translating pattern. Now consider a texture translating with
a constant velocity in the 2D domain. It is expected that all frequency components of this translating
texture will lie on a plane in the 3D spatiotemporal frequency space analogously to the line in the 2D

o1
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case. Note that the slope of the plane corresponds to the magnitude of the 2D velocity vector v and
the direction of v corresponds to the orientation of the plane around the f; axis.
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Figure 5.1: Line y1 and y2 denote a sine-wave with f;, = % and fz, = % cycles per pixel respectively. Note that
the velocity is v = 5 pixels per frame. This corresponds to a temporal frequency of f;, = % and fi, = % cycles
per frame. This means y; is displaced a quarter of its wavelength and y2 half its wavelength while they are both

moving at the same velocity.
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Figure 5.2: All spatiotemporal frequency components for a wave moving at a constant velocity v will lie on a line
passing through the origin with slope arctan Jf—i

Temporal sampling and motion blur

Consider a signal z(¢) which is band-limited. Meaning, it has power up to and including a certain f;___.
Then, according to Shannon’s sampling theorem (Shannon, 1948), it should be sampled with a sampling
frequency larger than 2f, . Therefore, the requirement for frequency of the sampling function fs in
order to avoid aliasing, also known as the Nyquist frequency, corresponds to fs/2 > f; . .

If a signal is not sufficiently band-limited before it is sampled, aliasing can occur. Figure 5.3 illustrates
the ‘window of visibility’ (D. Fleet & Jepson, 1989) of a spatiotemporal signal in the frequency domain
and the location of the aliased power. Note that the temporal sampling will remove high spatial
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frequencies moving at fast speeds. Motion blur in the spatial and frequency domain is illustrated in

Figure 5.4.
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Figure 5.3: After sampling a spatiotemporal signal translating with velocity v the highest spatial and temporal
frequencies are denoted by (fi,, fzo). The dotted lines near the corners of the spatiotemporal window refers to
frequency components with a significant magnitude which occurs due to aliasing when the signal is not properly

band-limited prior to sampling. Adapted from D. Fleet and Jepson, 1989.
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Figure 5.4: (a) Original signal g(z,y). (c) A spatiotemporal representation of the original signal moving with zero
velocity along the red scanline. (d)The spatiotemporal representation of the original signal moving with a positive
velocity. (e) The same representation after applying a vertical blur to the time axis which corresponds to a shutter
filter. (b) Motion blurred version of g(z,y) after applying the vertical motion blur. (f,g,h) Fourier transform of (c),

(d) and (e) respectively. Note that (h) has frequencies limited to Q; € [-Q**, Q***] corresponding to shutter
filter. Taken from Egan, Tseng, Holzschuch, Durand and Ramamoorthi, 2009.

The aperture problem in the frequency domain

Note that the aperture problem in the frequency domain corresponds to the fact that there are two
degrees of freedom in equation 5.2 and only one of two velocity components can be extracted at a time.
This means that a single line like the one illustrated in Figure 5.2 corresponds to the many planes
possible that contain the line of the single component velocity estimate.



54 Frequency-based Methods

5.2 The uncertainty relation

Consider a smooth Gaussian window function g(t) and its Fourier transform depicted in Figure 5.5.
Note that the narrow Gaussian window in the time domain becomes ’broad’ in the frequency domain
(Mulder, van der Vaart, van Staveren, Chu & Mulder, 2016) and vice versa. Note that as the width of
the Gaussian window in time decreases the Gaussian window in frequency space will increase and thus
the ability to resolve different frequencies will be reduced.
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Figure 5.5: A Gaussian window function g(t) and the magnitude of it's Fourier transform |G(f)| for o = 2.

This inability to achieve both resolution in time and the frequency domain is referred to as the un-
certainty relation (Bracewell, 1986; Gabor, 1945). Gabor formulated a theoretical minimum on the
product of the temporal width of a signal and the width of the signal’s power spectrum. Different
definitions of width (or ’extent’) in the context of this formulation exist. The most common definition
is given in terms of the variance of the signal in both the temporal and frequency domain. Note that
for a 1D time signal f(t) the uncertainty principle is as follows:

>1 > ! ~ 0.08 1 (5.3)
UtUw_2, O'th_47T~ .08 cycles .

This means that there is a lower bound on what can be achieved in terms of resolution in time and

the frequency domain. It can be shown that a Gaussian window actually attains this lower bound.
Consider a Gaussian window function g(t) and it’s Fourier transform G(f):

g(t) =, G(f) = —eT (5.4)

Then the variances and lower bound of the uncertainty relation are given by:
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An extension of the proof above for multi-dimensional signals is given in D. Fleet and Jepson, 1989
Appendix B.
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5.3 Gabor filters

In order to extract motion from images it desirable to be able to extract frequency ranges and to localize
this response in the space-time domain. These naturally leads to a Gabor filter (Gabor, 1945) because
these filters operate on the fundamental limit of the uncertainty relation and are thus optimally localized
in both the time and frequency domain. An odd-phase Gabor filter is defined as a Gaussian window

multiplied with a sine:

1 -2 .
g(t)h(t) = exp | 55 ( Sin(27 fi,t) (5.7)
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Figure 5.6: (top left) Gaussian window g(t) with o = 6. (top right) Sine with frequency f; = ;= [cycles/sample].
(bottom right) Multiplication of a Gaussian window g(t) and sine wave h(t) leads to the Gabor filter g(¢)h(t). The
Fourier transform of the Gabor filter corresponds to a convolution of the two Fourier transformed signals in the
frequency domain G(f) * H(f). The resulting signal in the frequency domain can is characterized by the 2
Gaussians centered around + f¢ and — f;.

The Gabor kernel can also be generalized to 3D space-time signals Heeger, 1988 and is given by the
following equation:
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Where (fzy, fyo, ft,) are the spatiotemporal center frequencies to which this filter is tuned to and
(04,0y,0¢) are the standard deviations which control the spread of the 3D Gaussian window. Then to
change the tuning of the filter, the spatiotemporal center frequencies can be adjusted separately. Also,
decreasing the width of the Gaussian window in the space-time domain broadens the Gaussian window
in the frequency domain, thereby trading frequency resolution for localization in the space-time domain.

Gabor filters are often used in quadrature!. Thus, the response of the linear convolution between a
Gabor filter pair and an image sequence is complex-valued:

S(x,t) = p(x,t)e"?™t = I(x,t) * Gabor (x, t) (5.9)

By taking the p(x,t) of the quadrature filter pair, a phase invariant response is achieved. Meaning the
response of the magnitude of the Gabor kernel is invariant to local phase. By taking the argument of
the real and the complex part of the Gabor kernel, the local phase ¢(x,t) can be obtained. The former
is the signal on which the Energy-based method of Heeger, 1988 is based. The later is the signal which
D. Fleet and Jepson, 1989 exploit for the measurement of image velocity.

5.4 Energy-based methods

Heeger, 1988 uses the magnitude of Gabor kernels to extract motion from image sequences. They use
a family of Gabor filters which are all tuned to different spatial orientations but to the same spatial
frequency band (meaning Fy = \/f2 + fyo?). They use a total of twelve filters pairs, where eight are
tuned to patterns moving in a certain direction, and the remaining four are tuned to stationary patterns
at different orientations. Note that the Gabor filters pairs used are not velocity selective but tuned to a
temporal frequency f;. Instead, in order to extract motion, Heeger derives an expression for the expected
response of a Gabor filter pair for translating white noise. Remember that the power spectrum of a
moving texture is contained in a tilted plane with its center in the origin in the spatiotemporal frequency
domain. A different tilt of the plane corresponds to a different velocity magnitude, and a different
velocity direction corresponds to a different orientation of the plane about the origin as illustrated in
Figure 5.7. The expected energy response of a Gabor filter, tuned to certain center frequencies, is a
function of the flow vector (R (u,v)). Then let the measured motion energy by the Gabor filters be
denoted by m;(i = 1 — 12) and the corresponding expected motion energy by R; (u,v). Furthermore,
let the sum of the measured and predicted motion energy for filters with the same spatial orientation
be denoted by the following:

mi=»_ m; (5.10)

JEM;

ISine and cosine are in quadrature, meaning they are 90 degrees out of phase with each other.
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Figure 5.7: The half-magnitude power profile of two Gabor filter pairs in the spatiotemporal frequency domain.
The blue filter pair is tuned to translating patterns while the red filter pair reacts to stationary patterns over time.
The plane contains all the power related to translation with velocity vo. The tilt of the plane represents the motion

magnitude and the orientation 6y represents the orientation of the blue Gabor filter pair. The method of Heeger,

1988 uses 4 filter pairs tuned to stationary patterns (red) and 8 filter pairs tuned to varying orientations and
motions (blue). Adapted from Heeger, 1988.

Ri= > Rj(u,v) (5.11)

Then a cost function £ can be defined which minimizes the difference between the predicted and
measured motion energy:

12  Ry(u,0)]?
L(u,v) = m; — my=———= (5.12)
; |: Ri(u7v)

Minimizing this cost function is analogous to the 2D problem of determining the slope of the line passing
through the origin while only being able to ’view’ it with a certain amount of circular windows. Then
the optimization problem corresponds to determining the slope of the line which minimizes the least-
squares distance between the line and the center of the circular windows. Where the circular windows
correspond to a 2D side-view of the half-magnitude profile of Gabor filters.

Barron et al., 1994 report that the frequency-based methods only produce satisfactory results if the
input images contain translation with spatial and temporal frequencies close to the center frequencies
of the Gabor filters. The primary source of error for realistic image sequences is the fact that the model
only assumes image translation as motion and is unable to deal with deviations from this assumption
such as rotation, dilation and occlusion.

5.5 Phase-based methods

In this Section the phase-based methods of D. Fleet and Jepson, 1989 and Gautama and Van Hulle,
2002 will be discussed. The former is a method based on spatiotemporal convolutions, while the latter
uses spatial convolutions.
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5.5.1 Spatiotemporal filter-based

D. Fleet and Jepson, 1989 define velocity in terms of the phase behavior of velocity-tuned Gabor
filters (equation 5.9). They show phase is more stable to noise as well as small deviations from image
translations which are typical in 3D scenes. As an example, they show that the constant phase contours
of a Gabor kernel provide a better approximation to the motion field of dilating sinusoid as depicted in

O

Figure 5.8: (left) A dilating sinusoid given by I(z,t) = sin (2mz fi, (1 — at)). Where f;, = 13 cycles per pixel,
alpha = 0.005 and the image width and height is 150 pixels. Time is on the vertical axis and the spatial variable x
on the horizontal axis. (middle and right) The magnitude and phase output of the image convolved with a Gabor
kernel. Note that the Gabor kernel is tuned to a velocity of 0 and the same frequency f;, as the dilating sinusoid.
From these images it can be seen that when there is a small deviation from translation the magnitude of the
response quickly vanishes while the constant phase contours still provide a reasonable approximation to the motion
field. As the constant phase contours coincide with the lines from the dilating sinusoid along the time axis. Adapted
from D. Fleet and Jepson, 1989.

Therefore, solutions to constant response (equation5.9) phase (¢(x,t) = ¢) are considered. The com-
ponent of velocity perpendicular to the level phase contours is denoted by v,, = sn, where the speed
and direction are given by:

o —oxt) o Véx ) (5.13)

Vo, 1)’ Ve, )]l

From this definition, it can be seen that this method is, in fact, a differential technique applied to
phase rather than the pixel intensities (see equation 3.3). They also show that phase information
can be unstable, and they impose two constraints on the response of the Gabor kernels. A frequency
constraint and an amplitude constraint. The former is a constraint which constrains the accepted
frequency to 25% of the nominal tuning range of the filter ( ||(fugs fyos f10) — (Fros fuos Fros )| < 071.25
). The latter is a constraint that makes sure the local signal amplitude is as large as the average local
amplitude and at a minimum 5% of the largest response across all filters. The component velocity
estimates of the different filters are combined into a single 2D velocity estimate using a least-squares
technique. Estimates are combined from 5x5 patches, and to this, the best linear 2D velocity model is
fitted which minimizes the least-squares error.

Barron et al., 1994 report that the method performs among the best ones they tested. However, due
to the high amount of convolutions necessary to obtain the phase information, the computational load
is high. They also conclude that the method is sensitive to temporal aliasing, which they claim is due
to the frequency tuning of the filters.
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5.5.2 Spatial filter-based

Gautama and Van Hulle, 2002 take a spatial filter-based approach as opposed to a spatiotemporal
filter-based approach by D. Fleet and Jepson, 1989. They filter an image sequence using a bank of 2D
spatial Gabor filters. From this filter output, the temporal phase gradient is computed. If the temporal
phase gradient is not sufficiently linear over a specific period, the estimate is deemed unreliable and
rejected. The different component velocity estimates are combined to form 2D velocity estimates using a
Recurrent Neural Network (RNN). The component velocity estimates of the different filters each impose
a constraint on the final state of the flow vector v = (u,v). The RNN minimizes the distance between
the constraints imposed by the component velocities and the flow vector state. They illustrate how this
approach can tackle the aperture problem by considering a circle translating with velocity v = (1.5,0.5)
pixels per frame. The component velocities obtained from the different filters can be seen in part A
of Figure 5.9 denoted by the oriented lines. The thick black line in part B of Figure 5.9 denotes the
orthogonal distance between the constraints and the flow vector state v. u and v are denoted by the
thin solid line and thin dashed line respectively.
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Figure 5.9: (left) lllustration of the aperture problem handling by the architecture of Gautama and Van Hulle,
2002. A circle translating with a velocity of v = (1.5,0.5) pixels/frame and the component velocity estimates.
(right) Convergence of the RNN to the correct flow vector state. Taken from Gautama and Van Hulle, 2002.

Gautama and Van Hulle, 2002 report that their method is outperformed by far by the method of D.
Fleet and Jepson, 1989. They attribute this to the fact that they limit their approach to estimates at a
single location, whereas the method of D. Fleet and Jepson, 1989 pools component velocity estimates
from a small spatial neighborhood. They mention the possibility of incorporating spatial pooling into
their architecture as well. However, by forfeiting the purely local aspect of computations, it would be
harder to implement parallel computations and make an efficient implementation. An advantage of
their technique is that it allows computation of flow vectors over arbitrary time spans. They conclude
that increasing the number of frames for optical flow estimation from two to five frames improves the
results initially, but after five frames, the performance remains constant. If a translating object moves
beyond a Gabor filter’s spatial extent, the phase estimation becomes non-linear and thus rejected. The
longer the time span, the higher the chances of this happening. The authors state that the lower flow
densities of the methods of D. Fleet and Jepson, 1989 and Lucas and Kanade, 1981 are due to their
long time spans.






Learning-based Approaches

In this Chapter leaning-based optical flow estimation approaches are discussed. Firstly, the machine-
learning based approaches are explained in Section 6.1. Secondly, the basic theory behind CNNs is
explained. Thirdly, the CNN-based architectures for optical flow estimation are presented. Lastly, the
different aspects of training CNNs for optical flow estimation are introduced.

6.1 Machine-learning-based approaches

M. Black, Yacoob, Jepson and Fleet, 1997; D. J. Fleet, Black, Yacoob and Jepson, 2000 are the first
to propose a complex image motion representation as a linear sum of learned orthogonal basis flows
as can be seen in Figure 6.1. Because the linear sum of orthogonal basis flows can approximate a
large varierty of motions fields. M. Black et al., 1997 extract the learned basis flows from a small
synthetic training set using Principal Component Analysis (PCA). Wulff and Black, 2015 take a similar
approach. However, in order to compute the orthogonal basis flows, they use the optical flow algorithm
‘GPUFlow’ (Werlberger et al., 2009) to compute the optical flow for four Hollywood movies. Then,
they use robust PCA to extract the orthogonal basis flow fields. Also, they use sparse feature matching
as initialization to cope with long-range correspondences and regress these matches to a dense flow field
using the orthogonal basis flow fields.

Roth, Black, Roth and Black, 2009 propose a Field-of-Experts model which can be used to learn image
priors that reflect the spatial statistics of natural scenes. The Field-of-Experts model can be seen as a
shallow CNN. Sun et al., 2008 use this FoE and use a global energy function in which the prior term
is replaced by the Field-of-Experts model and the data term consists of a small set of convolutional
filters. Because, at the time, there was not sufficient training data and only a small number of filters
was used, it did not display the potential of learning-based approaches.

Van Hateren and Ruderman, 1998 has shown that Independent Component Analysis (ICA) of natural
image sequences lead to Gabor filters (which are also found in simple cells in the primary visual cortex
in the human brain). Thus when applying these filters it is possible to extract motion from image
sequences. ICA is different from PCA in that it imposes an higher order independence. PCA only
allows for second-order independence.
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Figure 6.1: A motion field can be represented as a linear sum of orthogonal basis flows. Taken from D. J. Fleet,
Black, Yacoob and Jepson, 2000.

6.2 Convolutional Neural Networks

First used by LeCun, 1989, CNNs are designed to process data that come in the form of arrays (LeCun,
Bengio & Hinton, 2015). Commonly used input signals are 1D arrays for signals and sequences (such
as language), 2D arrays for images, and 3D arrays for video. In order to categorize a neural network
as a CNN it needs to contain at least one convolutional layer. Consider Figure 6.2, the solid red
squares in the output feature maps correspond to a convolution operation which was performed by the
multiplication of a weight matrix called convolutional kernel (LeCun, 1989) with a local path in the
input feature map. Note that this multiplication happens channel-wise, and often a bias term is added.

It follows that every single value in a channel in the output feature maps corresponds to a different
spatial location in the input feature maps multiplied with the same convolutional kernel. Therefore, the
weights are shared across different regions of the image. This makes sense for images; if a pattern is to
be extracted from an image, this pattern can be located in any part of the image. Also, local groups of
pixel intensities are often highly correlated and form distinctive features (LeCun et al., 2015).

The convolutional operation is often followed by a pooling operation; semantically similar features are
spatially merged into one. A max-pooling unit computes the maximum of a local patch in a feature map
and often a stride! of more than one is used to reduce the dimension of the output feature maps.The
pooling operation makes the input invariant to small shifts. CNNs exploit the fact that many signals are
composed of several lower-level ones. For images, local patches form edges, edges form patterns, patterns
form into parts and parts form into objects. CNNs often have many layers. In the first convolutional
layers lower-level features such as lines are extracted and in the deeper layers more complex patterns
can be distinguished. After the pooling layer usually an activation function is used. The most popular
activation function is called Rectified Linear Unit (ReLU), given by the function f(z) = maz(z,0). The
ReLU activation function enables much faster in neural networks with a lot of layers (LeCun et al.,
2015).

Ever since the object recognition competition called ImageNet in 2012, the research interest in CNNs has
improved dramatically. A CNN designed by Krizhevsky, Sutskever and Hinton, 2012 called ‘AlexNet’
achieved spectacular results by almost halving the error rates of the best competitors. The main
advances of this approach were an efficient GPU implementation which improved training times, and a
new regularization technique called dropout (Srivastava, Hinton, Krizhevsky & Salakhutdinov, 2014).
AlexNet caused a revolution in computer vision and CNNs have since been the state-of-the-art approach
on almost all recognition and detection tasks (Razavian, Azizpour, Sullivan & Carlsson, 2014).

6.3 CNN architectures for optical flow estimation

In this Section different CNNs architectures of optical flow estimation are discussed. Firstly, the encoder-
decoder type networks are presented. Which have been the dominant approach in CNN-based methods
for optical flow estimation. Note that also the many additions to the original encoder-decoder structure
are included. After which an architecture based on signal processing principles is discussed.

1The number of spatial shifts in the input feature map between convolutions in the input feature maps
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Figure 6.2: The high dimensional convolution operation in CNNs. The input feature maps are N-dimensional
corresponding to bath-size N and have C channels. Consider the 2D convolution of a single RGB (N=1, C=3)
image with M filters. Note that the channel-wise convolutions of the filters with the input feature maps are summed
and often a bias term is added. The amount of channels in the output feature maps is therefore equal to the
amount of filters. Adapted from Sze, Chen, Yang and Emer, 2017 .

6.3.1 Encoder-decoder

In Dosovitskiy et al., 2015 the first end-to-end trained CNNs for optical flow estimation were introduced.
Based on the U-Net architecture (Ronneberger et al., 2015), two architectures called ‘FlowNetSimple’
and ‘FlowNetCorr’ (further referred to as FlowNetS and FlowNetC) are designed which take an image
pair as input and produce a corresponding optical flow field as output. Both of these architectures
are built on the underlying idea that in the contractive part of the network the spatial image in-
formation is compressed and the amount of distinct features increases, while in the expanding part
up-convolutions(Eigen, Puhrsch & Fergus, 2014) are used to increase the resolution of the optical flow
field. FlowNetS takes two stacked RGB images in a six-channel input. In the first three layers of
FlowNetC two separate image processing streams are used which contain the same weights (also known
as a Siamese network). After these three layers, a correlation-layer is used which computes the similar-
ity score between the two input streams. The output of the correlation-layer is called a cost-volume. In
order to make the method computationally tractable, the maximum displacement for patch comparison
is limited. This means the maximum optical flow which FlowNetC can register is also limited. Skip
connections are used in both FlowNetS and FlowNetC to transfer information from a resolution level
in the contracting part to its corresponding resolution in the expansive part. The contracting part of
both FlowNetS and FlowNetC can be seen in Figure 6.3 and the expansive part in Figure 6.4.

Each convolutional block consists of a bank of convolutional filters and a ReLU activation function. In
the contractive part of the network the filter size decreases, while the number of feature maps increases.
For the reduction of spatial resolution, each convolution in the contracting part uses a stride of 22.
In order to increase the resolution in the expansive part, a stride of 2 is used for the up-convolutions
as well. The authors generate a synthetic dataset in order to train their CNN (which will be further
discussed in subsection 6.4.1). In Ilg et al., 2017 it was found that FlowNetC consistently outperforms
FlowNetS?. In Table 6.1 a detailed breakdown of the performance of FlowNetS, FlowNetC and SpyNet
(a pyramid spatiotemporal filter-based CNN discussed next section) can be seen. From this table it can
be seen that the estimates produced by FlowNetS are more blurry and the error for large velocities is
significantly higher than FlowNetC.

2 According to Springenberg, Dosovitskiy, Brox and Riedmiller, 2014, the max-pooling operation in an encoder-decoder
network can be replaced by an increased stride without loss in accuracy on several image recognition benchmarks.

3QOriginally, Dosovitskiy et al., 2015 report similar performance of FlowNetS and FlowNetC. However, Ilg et al., 2017 later
conclude a mistake in training FlowNetC is made thus show that FlowNetC significantly outperforms FlowNetS.
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Figure 6.3: (top) The contractive part of the architecture of FlowNetS. Two RGB pictures are convolved with
several layers of convolutional filters followed by a stride of 2. (bottom) The contractive part of the FlowNetC
architecture with three convolutional layers which share identical weights. In the correlation layer, patchwise
multiplicative similarity scores are computed. Taken from Dosovitskiy et al., 2015.
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Figure 6.4: Expansive part of the architecture used in both FlowNetS and FlowNetC. Up-convolution is used to
obtain a high resolution pixel-wise prediction. Taken from Dosovitskiy et al., 2015.
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Model all  do—10 dio—s0 deo—140 So—10 S10-40 S0+

FlowNetS+ft  6.96  5.99 3.56 2.19 1.42 3.81  40.10
FlowNetC+ft 6.85  5.57 3.18 1.99 1.62 3.97  33.37
SpyNet+ft 6.64 5.50 3.12 1.71 0.83 3.34 4344

Table 6.1: Detailed breakdown of the performance of SpyNet, FlowNetS and FlowNetC on the MPI-sintel clean
pass for different velocities (s) and distances (d) from motion boundaries. ‘+ft’ corresponds to trained on the
FlyingChairs dataset and finetuned on the MPI-Sintel clean pass (see Section 6.4) . Values correspond to AEE per
breakdown element. Note the decreased performance at high velocities for the spatiotemporal filter-based CNNs
(SpyNet and FlowNetS) and near motion boundaries. The relative error near motion boundaries as fraction of all
AEE is also higher for FlowNetS and SpyNet. Taken from Ranjan and Black, 2017.
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Figure 6.5: Architecture of FlowNet2. One FlowNetC and two FlowNetS architectures are stacked in series and
combined in parallel with a single FlowNetSD architecture. Their output is fed to the Fusion architecture to
produce a final flow estimate. In the FlowNet2-CSS architecture the two input images along with the warped image,
initial flow estimate and brightness errortare concatenated and used as input for the intermediate FlowNetS
architectures. The braces indicate concatenation of different elements. Taken from lig et al., 2017.

Domain knowledge: warping, pyramid structure, and flow refinement

In a follow-up, Ilg et al., 2017 use a stacked architecture, warp the target image towards the reference
image using intermediate optical flow and generate more synthetic training data with a higher degree of
complexity (see section 6.4.1). Stacking a network with one FlowNetC and two subsequent FlowNetS
models (further referred to as ‘FlowNet2-CSS’) performs best. However, FlowNet2-CSS still performs
poorly at estimating small displacements, and therefore a new architecture called ‘FlowNetSD’ is de-
signed. The FlowNet2-CSS and FlowNet2-SD output are fed into a ‘Fusion’ network to obtain the final
flow estimate. The complete architecture is called ‘FlowNet2’ as can be seen in Figure 6.5.

Also, the network width of FlowNetS versus performance is investigated, and a wider network (which
corresponds to an increased amount of convolutional filters) does not significantly improve performance.
A network width factor of % produces fast execution times while still producing reasonable results.
FlowNet2 achieves near state-of-the-art performance at a runtime of two orders of magnitude lower. It
should be noted that the runtime is compared to other methods such as EpicFlow (Revaud et al., 2015)
and Deepflow (Weinzaepfel et al., 2013) which are executed on a CPU while FlowNet2 runs on a GPU.

‘SpyNet’ (Ranjan & Black, 2017) addresses the model size issue of FlowNet by using a spatial pyramid
network and warping of the target image towards the reference image in between different pyramid
levels. SpyNet uses a spatiotemporal filter-based approach similar to FlowNetS. The architecture of
SpyNet can be seen in Figure 6.6. They find that unlike the filters in FlowNetC the filters found in
SPyNet resemble Gabor filters, as can be seen in Figure 6.7, and most are equally sensitive to all color
channels and thus appear grayscale. Because SpyNet uses a pyramid structure, it runs into the well-

4The difference between the reference and the target image warped with the previously estimated flow.
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Figure 6.6: Architecture of SpyNet for a 3-level pyramid network. The Go network produces an initial flow
estimation vg using the images I¢ and I as input which correspond to a downsampled version of the original input
images I2 and I?. The initial flow estimate v is upsampled and used to warp IZ. Then, the output of Gy, v1, is
added to the upsampled flow Vi which leads to V4. This process repeats in every layer in the pyramid. Taken from
Ranjan and Black, 2017.
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Figure 6.7: (left) Visualization of the filters of the first convolutional layer of the third level of the pyramid of
SpyNet. The left and right filters are upsampled using nearest-neighbor and bilinear interpolation respectively. Note
that ¢; — t2 represents the temporal difference between the spatial filters. The filters resemble second derivative
Gaussian or Gabor filters. Taken from Ranjan and Black, 2017. (right) Filters taken from the first layer of
FlowNetC. The filters show a high frequency structure unlike the classic spatiotemporal filters. Taken from
Dosovitskiy et al., 2015.

known limitation for dealing with large motions of small scale structures. Small scale objects that move
with a high velocity thus often result in erroneous flow estimations.

Sun, Yang, Liu and Kautz, 2018 use a correlation-based architecture, similar to the one in FlowNetC,
feature warping, pyramid structure, and a context network for flow refinement. However, in their
architecture, called ‘PWC-Net’ they compute the cost-volume after six convolutional layers instead of
three like FlowNetC. Thus the search range is smaller while the receptive field is larger. After obtaining
an initial flow estimate, the authors warp the feature maps of the lower level convolutional layers.
It should be noted that PWC-net also fails to detect large motion of small scale objects, which is a
consequence of the pyramid structure. In a similar manner to Giiney and Geiger, 2017, the initial
flow estimate is used as an input to a context network which makes use of dilated convolutions which
increase the receptive field in order to integrate context information into the final flow estimate (Yu &
Koltun, 2015). Note that PWC-Net is often used as a starting point for subsequent researchers.

In both T. W. Hui, Tang and Loy, 2018 and Zweig and Wolf, 2017, the authors show that a fully
convolutional network (without stride and max-pooling) is able to perform flow refinement efficiently.
T. W. Hui et al., 2018 use flow refinement after their correlation-based architecture performs an initial
flow estimation. Using the warped feature maps and initial flow estimate, the flow is further refined to
sub-pixel level. Zweig and Wolf, 2017 show that a data-driven approach for sparse to dense interpolation
using a (sparse) optical flow, edge map as an extra input and multi-layer loss outperforms EpicFlow.
The architecture of Zweig and Wolf, 2017 can be seen in Figure 6.8. Note that this architecture is not a
fully end-to-end trained CNN for optical flow estimation. Instead, it interpolates (sparse) flow maps to
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Figure 6.8: Fully convolutional network for flow field refinement. An initial (sparse) flow field is used as input along
with an edge map and binary mask containing all the missing pixels and a multi-layer loss is used for training.
Taken from Zweig and Wolf, 2017.

a dense flow output. This network serves as an explanation of the decoder part used in both FlowNetS
and FlowNetC.

Occlusion estimation

Ilg, Saikia, Keuper and Brox, 2018 extend FlowNet2 to perform joint estimation of occlusions, motion
boundaries, and optical flow. The authors include residual connections in between the different models
in the stacked architecture and omit the brightness error as inputs. They conclude that joint estimation
of optical flow and occlusions does not improve nor degrade the results. Based on this finding, they
conclude that FlowNet already implicitly performs all necessary occlusion reasoning and by making the
occlusion output explicit, the occlusion output is obtained as an additional output whilst performance
stays the same.

Neoral, Sochman and Matas, 2019 extend the architecture of PWC-Net to include information from
multiple frames and improve occlusion performance. They perform an explicit occlusion estimation
based on the output of the cost volume and the optical flow estimation from the previous frame pair.
They perform occlusion estimation based on the cost volume because intuitively when the cost for all
nearby displacements is high for a pixel, it is likely occluded in the next frame. Because they use the
cost-volume instead of optical flow for their occlusion prediction, they avoid the use of flow already
corrupted by occlusion. The authors set a new state-of-the-art on occluded regions on the MPI-sintel
Final pass.

Liu, Lyu, King and Xu, 2019 also extend the architecture of PWC-Net to include multiple frames for
optical flow estimation and improved occlusion estimation. However, they use a self-supervised approach
using two separate networks called the ‘non-occluded-model’ (NOC-model) and the ‘occluded-model’
(OCC-model). Where the former is focused on accurate flow estimation for non-occluded pixels. This
output is used as a guide for the learning of optical flow of occluded pixels (OCC-model) where the
ground truth is optical flow with self-induced occlusions. This method is currently overall state of the
art for all both supervised and unsupervised methods on the MPI-Sintel Final pass even though the
method of Neoral et al., 2019 performs significantly better on occluded pixels.

Uncertainty estimation

Motivated by the claim that uncertainty information is vital makings decision based on supervised
learning estimates, ‘FlowNetH’ is introduced by Ilg, Ozgun et al., 2018 which produces real-time uncer-
tainty estimates for optical flow estimation. FlowNetH is based on the architecture of FlowNetC. The
authors recognize the drawbacks of black-box learning-based approaches and state there is no guaran-
tee that a CNN for optical flow estimation such as FlowNet2 will work under challenging scenarios.
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Figure 6.9: Uncertainty and optical flow estimation by FlowNetH. (Left) reference image of image pair taken from
KITTI 2015. (Middle) The estimated optical flow. (Right) Uncertainty estimation, higher values correspond to red.
Note that the shadow has a high uncertainty value unlike the car. Taken from llg, Ozgun et al., 2018.

Inspired by the approach of Rupprecht et al., 2017, FlowNetH is adapted to make multiple hypotheses
and Winner-Takes-All loss (Guzmadan-rivera, Batra & Kohli, 2012) is used to only penalize the best
prediction. FlowNetH produces state-of-the art uncertainty estimations and the authors demonstrate
that the uncertainty estimation is high for various difficult cases®, one of them can be seen Figure 6.9.

6.3.2 Signal processing principles

In Teney and Hebert, 2016 the authors design a shallow CNN based on signal processing principles and
revisit the approach of Heeger, 1988. Instead of producing an output optical flow map that produces
pixel-wise estimations, their approach outputs a distributed representation of orientations and speeds
per pixel. The network consists of two convolutional layers, 1 pooling layer and two pixelwise weights
(1x1 convolutions). This allows them to estimate transparent and overlapping motions which most
traditional optical flow methods are not capable of. They design their CNN in such a way that it is
invariant to additive brightness changes, in-plane rotations, local image phase, and local image structure.
Local image structure invariance is desired to account for intensity differences of patterns at different
orientations moving with a different velocity magnitude and direction (e.g., a grid pattern of horizontal
lines crossing fainter vertical ones). The result is a relatively shallow CNN with four convolutional
layers. The consequence of their design is that the estimation of large motions is limited due to the small
receptive field size. Therefore, a coarse-to-fine warping strategy is incorporated into the architecture,
which allows the network to estimate the flow iteratively. The approach fails near occlusions boundaries,
and the authors conclude that proper performance near occlusion boundaries requires reasoning over a
broad temporal and/or spatial extent which their shallow CNN is not able to do. The authors conclude
that the different design choices in FlowNet and their CNN seem complimentary and that it would be
interesting to investigate a combination of the two.

6.4 Training CNNs for optical flow estimation

In this Section the different aspects which come into play when training CNNs for optical flow estimation
will be discussed. Firstly, the hugely contributing factor of synthetic training datasets is presented.
Secondly, the data augmentation and learning rates are discussed.

6.4.1 Synthetic training datasets

Even though MPI-Sintel has over a 1,000 image pairs available for training, Dosovitskiy et al., 2015
found this amount not sufficient for training a CNN and rendered their own synthetic training dataset
called ‘FlyingsChairs’ Chairs were chosen because they come in many different shapes (topologically
diverse) and textures and the fact that they are not semantically similar to real-world scenes. Meaning,
that the trained networks are able to generalize point correspondence estimation from the synthetic data

Shttps://www.youtube.com/watch?v=HvyovWSo8uE
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Figure 6.10: An example of the three different lighting models used for generating a synthetic dataset used to train
FlowNetC and test on MPI-Sintel. (left to right) The dynamic, static and shadeless lighting model respectively.
Taken from Mayer et al., 2018.

to real-world scenes. Note that FlyingChairs only contains 2D affine transformations. Inspired by the
success of FlyingChairs a new dataset called ‘FlyingsThings3D’ (Mayer et al., 2016) was made containing
3D motion, 3D objects models, camera motion, and realistic lighting. In Ilg et al., 2017 FlowNetS was
trained on both these datasets, and it was found that training on FlyingChairs outperformed training
on the more realistic and diverse FlyingsThings3D dataset.

This was the motivation for an extensive ablation study by Mayer et al., 2018 to determine what factors
make a synthetic dataset for optical flow estimation successful. Regarding the superior performance
of FlyingChairs, the authors reason that introducing a too sophisticated dataset too early might con-
fuse the network because it has not yet developed an understanding of the concept of finding point
correspondences. Therefore, curriculum learning® is used in Ilg, Ozgun et al., 2018 to first train the
network on FlyingChairs and then on FlyingThings3D. They also conclude that diversity for a synthetic
dataset is important, and having knowledge about the camera helps. When camera distortions, such as
Bayer-artifacts and lens-distortion, were introduced in the synthetic dataset, the performance improved
on real data. Furthermore, three different lighting models in the synthetic dataset were used to test
the effect on performance. One model without lighting or shading, a static lighting model where a
fixed ‘shadow texture’ is used for each object and a dynamic model with a single source shining onto
the scene from a random direction which also includes specular highlights. The network trained on the
static lighting model dataset performs best even though the testset (MPI-Sintel) contains both specular
highlights and Lambertian surfaces. While the network can effectively exploit the latter, for the former,
it needs to distinguish between different surface materials and this confuses the network. Based on their
ablation study, Mayer et al., 2018 conclude that synthetic training data can be improved if it is possible
to reason about the target domain or testset. They did find that when they created such synthetic
training datasets with extra effects they noticed a drop in performance on the original datset. This
implies that there is no single best general-purpose synthetic training dataset. A conclusion which they
find ‘disappointing’.

Recently, even more synthetic datasets have become available for optical flow concerning a specific
application. Like Virtual KITTI (Gaidon, Wang, Cabon & Vig, 2016) for autonomous driving and
SceneNet for indoor scenes (McCormac, Handa, Leutenegger & Davison, 2017). An overview of optical
flow datasets, both synthetic and natural can be found in Table 6.2.

6.4.2 Data augmentation and learning rates

Data augmentation is deemed a crucial step in the training of CNNs for optical flow estimation(Dosovitskiy
et al., 2015; Tlg et al., 2017; Mayer et al., 2018; Sun et al., 2018). Mayer et al., 2018 perform an ab-
lation study for augmentations on color and geometry (cropping, rotating, etc.) on one frame or both
frames and conclude that all the augmentations used to train FlowNetS, FlowNetC and FlowNet2 work
complimentary. Comparing the training of FlowNetC with and without augmentation, it is found that
a 100-fold reduction in the training data with augmentation still provides better results than training
without data augmentation. However, the best results were achieved when using both augmentation

6Training a network on a gradually increasing complex task
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Dataset Published in Synthetic/natural ~ Private testset #Frames for training Resolution
UCL Mac Aodha, Brostow and Pollefeys, 2010 S 4 640 x 480
Middlebury Baker et al., 2011 N v 8 640 x 480
KITTI 2012 Geiger, Lenz and Urtasun, 2012 N v 194 1,242 x 375
MPI-Sintel Butler, Wulff, Stanley and Black, 2012 S v 1,064 1,024 x 436
KITTI 2015 Menze and Geiger, 2015 N v 200 1,242 x 375
FlyingChairs Dosovitskiy et al., 2015 S 21,818 512 x 384
FlyingThings3D Mayer et al., 2016 S 22,872 960 x 540
Monkaa Mayer et al., 2016 S 8,591 960 x 540
Driving Mayer et al., 2016 S 4,392 960 x 540
Virtual KITTI Gaidon, Wang, Cabon and Vig, 2016 S 21,260 1,242 x 375
HD1K Kondermann et al., 2016 N v 3,563 2,560 x 1080
SceneNet RGB-D  McCormac, Handa, Leutenegger and Davison, 2017 S ~5,000,000 320 x 240

Table 6.2: Overview of both synthetic and natural datasets with dense optical flow ground truth. Note that
datasets with a private testset can be used a benchmark. The benchmark most often used is MPI-Sintel. Adapted
from Mayer et al., 2018.

Frame 15 of Ambush_3 Frame 16 [ElowNetCH

Figure 6.11: Flow predictions for different image pairs from MPI-Sintel. FlownetC is retrained using training
schedule with a disruptive learning rate. The retrained CNN is called FlowNetC+. Taken from Sun, Yang, Liu and
Kautz, 2018.

and as much training data as possible.

Sun et al., 2018 modify the augmentation schedule of FlowNet and report improved performance;
horizontal flips are added, and they no longer add additive Gaussian noise to training data. Also,
they use a disruptive learning rate schedule for their PWC-Net architecture. A disruptive learning rate
schedule is a schedule which also increases the learning rate over time at certain intervals. When they
applied this disruptive schedule to FlowNetS and FlowNetC, they were able to reduce the AEE on
MPI-Sintel by about ~ 20% and ~ 50% respectively, which results in FlowNetC even outperforming
FlowNet2. Qualitative results can be seen in Figure 6.11.



Synthesis of literature

In this Chapter a synthesis of the conducted literature study is performed. All the relevant literature
for the understanding of spatiotemporal filter-based CNNs has been collected and analyzed, and the
knowledge gap can be identified.

7.1 Conventional optical flow estimation methods

Local differential methods have proven to be fast, reliable, and computationally tractable for computing
sparse optical flow fields. For this reason, it is often used in robotic navigation applications for vehicles
such as MAVs. The drawback of second-order differential methods is that they are not able to deal
with deviations from translation such as affine motion. Global methods produce dense flow fields
using additional constraints. However, the very restrictive isotropic global smoothness assumption of
B. K. Horn and Schunck, 1981 does not hold for realistic scenes. Barron et al., 1994 also points out
that the local smoothness assumption of Lucas and Kanade, 1981 is more stable to noise than the
global smoothness assumption. Ever since the work of Brox et al., 2004, global differential methods
have dominated the optical flow estimation benchmarks for over a decade. Various improvements have
been made to deal with long-range motions and occlusions. However, a significant drawback is the
long computation-time of these methods. Differential methods are based on assumptions, such as the
brightness constancy assumption (equation 3.1), which are coarse approximations to reality and these
assumptions limit the performance. Research has focused on improving these assumptions and making
the methods more robust to deviations from these assumptions. Thus, leading to slow but steady
progress.

Heeger, 1988 derives an expected response of Gabor filters based on translating white noise. They
sacrifice the main advantage of frequency-based methods; the ability to resolve velocity components
of intensity patterns at different orientations (e.g. a grid pattern of vertical lines crossing fainter
horizontal ones). Furthermore, the amplitude signal is not stable to deviations from 2D motion and
illumination changes (D. Fleet & Jepson, 1989). Phase is more robust to deviations to global scene
illumination changes than amplitude and differential methods. However, both methods produce blurry
flow maps due to the uncertainty relation and this has historically played in favor of the global differential
methods(Teney & Hebert, 2016). Note that various time-varying image intensity phenomena are more
easily described in the frequency domain, including motion blur, aliasing, and occlusion (S. Beauchemin
& Barron, 2000). The method of D. Fleet and Jepson, 1989 can be seen as a local differential method
applied to the phase signal of Gabor kernels. Barron et al., 1994 also conclude that phase-based methods
are more sensitive to aliasing than local differential-based methods.
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Spatiotemporal sampling rates are of great importance. If sampling rates are not high enough aliasing
can occur in both the spatial and temporal domain (S. S. Beauchemin & Barron, 1995). Aliasing-
free imagery is important for differential-based methods in order to compute accurate derivatives for
correlation-based methods to reduce the search area because of the increased temporal resolution and
for frequency-based methods to limit the number of frequency components in the Fourier domain due to
aliasing. When it is not possible to increase the temporal sampling rate and obtain accurate derivatives,
it is natural to use coarse-to-fine correlation-based matching approaches. It should be noted that these
approaches do suffer from the inherent limitation of coarse-to-fine schemes; getting stuck in local optima.

7.2 Learning-based methods

Machine-learning-based methods

Sun et al., 2008 was among the first to propose an end-to-end trained learning-based optical flow
estimation method. Although the first results seemed promising. It did not fully show the potential
of learning-based approaches at the time. Wulff and Black, 2015 generated more training data using
a computationally expensive optical flow estimation method to generate ground-truth data from four
Hollywood movies. Interestingly, their method was able to outperform the method which was used to
obtain the ground-truth flow. The performance of their method was still-below the state-of-the-art,
however.

CNN-based methods

Ever since the work of Dosovitskiy et al., 2015 the research interest in CNN-based optical flow estimation
methods has surged. Due to the generation of synthetic datasets, the use of an encoder-decoder CNN
architecture and more computing power, CNN-based optical flow estimation methods have become the
state-of-the-art on competitive benchmarks such as MPI-Sintel(Butler et al., 2012). Dosovitskiy et al.,
2015 propose a correlation-based architecture which performs pixel-wise similarity matching (FlowNetC)
and a spatiotemporal filter-based architecture which takes two stacked images as input (FlowNetS). Ilg
et al., 2017 conclude that FlowNetC outperforms FlowNetS'. Subsequent researchers have often focused
on improving the performance of the correlation-based architecture (T.-W. Hui, Tang & Loy, 2019; Sun
et al., 2018), with the noteable exception of Ranjan and Black, 2017 who introduced a spatiotemporal
filter-based architecture with a pyramid structure.

Real-world application considerations

Ilg et al., 2017 report that one of the limitations for real-world applications is the fact that both
FlowNet architectures cannot detect small (sub-pixel) motions. For traditional methods, small motions
are easier. The MPI-Sintel and FlyingChairs dataset both contain relatively large motions and there-
fore a new dataset containing small motions is constructed called ChairsSDHom. FlowNetC performs
pixel-wise similarity matches and is therefore not able to extract sub-pixel motion. Spatiotemporal
based convolutional filters are able to extract subpixel motion(T.-W. Hui et al., 2019). However, there
is no quantitative evaluation on the sub-pixel performance of FlowNetS and FlowNetC. In order to es-
timate sub-pixel motions, Ilg et al., 2017 modify the original architecture of FlowNetS by using smaller
convolutional kernels in the first few layers of new network, and extra convolutional layers are added
in the expansive part of the network to deal with noise.

Also, Mayer et al., 2018 found that when the camera defects which occur in real imaging (lens distortion,
blur and Bayer-artifacts) are synthesized into the synthetic training dataset the performance improves.
This is an advantage of learning-based methods over conventional optical flow estimation methods.
Because conventional methods require imagery free of camera distortions for the computation of accurate
derivatives.

1Originally, Dosovitskiy et al., 2015 do not provide the complete breakdown of the performance on the MPI-Sintel dataset
of their FlowNet architectures without variational refinement. They state that the performance of FlowNetC on larger
motions is worse than that of FlowNetS. However, in Ilg et al., 2017 it is stated that in their previous work they made a
mistake and conclude that Dosovitskiy et al., 2015 did not train FlowNetS under the same conditions as FlowNetC. This
claim is supported by the work of Ranjan and Black, 2017 who reports the detailed performance breakdown of SpyNet,
FlowNetC and FlowNetS on the MPI-Sintel clean pass.
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Occlusion reasoning

The shallow end-to-end trained CNN of Teney and Hebert, 2016 is able to estimate optical flow but
it fails near occlusion boundaries. Therefore, the authors conclude that occlusion estimation requires
reasoning over a larger temporal or spatial span. Ilg, Saikia et al., 2018 train FlowNetS to perform
occlusion estimation from just two input images without giving optical flow as input and conclude
this is feasible. When adding the flow as input, the estimates clearly improve. Furthermore, they
train variants of FlowNetC to perform optical flow estimation, occlusion estimation, and a version
that estimates them jointly. They report no noticeable drop in performance when jointly estimating
optical flow and occlusions and conclude, based on this finding, that both FlowNet architectures already
perform occlusion reasoning.

Knowledge gap

While the workings of the correlation-based architecture are known due to the explicit patch-wise
similarity computation, there has been no research on the workings of the spatiotemporal filter-based
architecture. Only a visualization of the filters of the first layer of SpyNet has been done by Ranjan and
Black, 2017 where they claim that the filters of the first layer resemble Gabor filters. It remains unclear
if FlowNetS uses Gabor filters to estimate motion and if FlowNetS suffers from blurry flow maps due
to the uncertainty relation. In the detailed performance breakdown in Table 6.1 it can be seen that
the flow maps produced by FlowNetS are more blurry than FlowNetC. However, Zweig and Wolf, 2017
have shown that a fully convolutional network can be used to interpolate motion cues inside motion
boundaries. Such a mechanism is thus able to overcome the main drawback of filter-based motion
estimation. In order to gain a better insight into the workings of FlowNetS synthetic input is generated
to examine the behavior of FlowNetS in Part III.
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Methodology

The goal of these preliminary evaluations is to gain insight into how spatiotemporal filter-based CNNs
perform optical flow estimation. These experiments serve as study of the behavior of these networks
and what their limitations are. The error characteristics of these networks can also be compared to
conventional methods to determine their similarities and differences. The latter does not provide a
definitive answer as to how these CNNs but it can provide an indication.

This Chapter firstly present an outline of the analysis in section 8.1. Secondly, the specification and
implementation of the models used in this preliminary evaluation is given in Section 8.2. Lastly, the
creation of synthetic optical flow ground truth will be discussed in Section 8.3.

8.1 Outline of the experiments

In this Section an outline of the experiments will be given. These experiments serve to answer (parts
of) the research question given in Chapter 1. A total of five experiments will be performed which, are
described below:

e Experiment 1: Visualizing the first layer of the filter in the spatiotemporal filter-based CNNs.

o The goal of experiment 1: Gain insight into what kind of signals these networks exploit. In the
past, it has been shown that often spatiotemporal filters emerge form learning-based approaches.

o Experiment 2: A breakdown of the AEE versus the motion magnitude for simple translational
motion.

e The goal of experiment 2: To compare the optical flow error characteristics to conventional
methods and to examine the performance in for different velocities.

o Experiment 3: A breakdown of the AEE versus the angle with a unit circle of constant mag-
nitude.

e The goal of experiment 3: To determine if the filters in the network are orientation sensitive
and if they are stable for different orientations of constant magnitude.

e Experiment 4: A breakdown of the AEE versus the scale of a diagonally translating object.

e The goal of experiment 4: To determine how the networks cope with the aperture problem
and to estimate their performance on large motion of small-scale structures.
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o Experiment 5: A breakdown of the AEE versus the amount of occlusion for a horizontally
translating object.

e The goal of experiment 5: To estimate the occlusion ‘reasoning’ abilities of the networks.

The results of these experiments will be given in Chapter 9.

8.2 Model specification

In this Section the models which are going to be evaluated are discussed. The models used for evaluation
are spatiotemporal filter-based CNNs (FlowNet2S and SpyNet), a correlation-based CNN (FlowNet2C)
and a matching-based global energy method (LDOF). Note that FlowNet2S differs from FlowNetS in
that it is first trained on FlyingChairs and then on FlyingsThings3D. FlyingChairs contains only planar
motion while FlyingsThings3D contains true 3D motion. Ilg et al., 2017 conclude that FlowNetS and
FlowNetC were not trained under the same conditions, and therefore a comparison between these models
is not deemed feasible. Note that SpyNet was only trained on FlyingChairs. Because the experiments
only include planar motion and the error characteristics are of primary interest this is not deemed an
issue. For FlowNet2S and FlowNet2C the PyTorch' implementation of NVIDIA? was used. The weights
of the original model (Ilg et al., 2017), which was implemented in Caffe 3, were converted to PyTorch.
The implementation was verified by checking the output on the training set of the MPI-Sintel clean
pass with the performance specified by the authors. Regarding SpyNet (the original model is written in
Torch?), a PyTorch reimplementation® is used with the original weights provided by the author. Note
that Torch and PyTorch use Lua and Python as their interface language, respectively. However, they
both make use of THNN®, a part of Torch which was written in C. Lastly, for the LDOF method, an
executable from the author’s website was used”.

8.3 Creating synthetic optical flow ground truth

In this Section the methodology for the creation of optical flow ground truth will be given. Note that for
the creation of optical flow ground truth the Pillow® python module was used. This module provides
methods for image manipulation and the creation of geometry. The coordinate system used by this
Pillow can be seen in Figure 8.1. Pillow does not support interpolation of a pixel when a geometry does
not span a complete pixel. Therefore it is not possible to create sub-pixel accurate ground-truth with
this module. It is also due to this inability to deal with sub-pixel displacement that solely rectangular
objects were used in the experiments.

Most of the models are trained on the FlyingChairs synthetic dataset. This dataset contains background
images taken from Flickr in the categories ‘city’, ‘landscape’ and ‘mountain’. It was found that the CNNs
trained on this dataset performed poorly if a background image was not present. Therefore, an image
from the ‘mountain’ category was retrieved from Flickr and can be seen in Figure 8.2. The image size
used in all experiments is 512x384. This is the same size as the images in the MPI-Sintel dataset, a
benchmark used by all CNN-based methods.

Thttps://github.com/pytorch/pytorch
2https://github.com/NVIDIA /flownet2-pytorch
3https://github.com/BVLC/caffe
4https://github.com/anuragranj/spynet
Shttps://github.com/sniklaus/pytorch-spynet
Shttps://github.com/torch/nn/tree/master/lib/ THNN
"https://lmb.informatik.uni-freiburg.de/resources/software.php
8https://github.com/python-pillow /Pillow
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Figure 8.1: The pixel coordinate system used by the Pillow python module. The origin corresponds to the top left
corner of the image.

Figure 8.2: Background used for the creation of synthetic optical flow ground truth.






Preliminary Results

In this Chapter the results of the preliminary experiments will be discussed. Firstly, the filters are
visualized in order to determine if they show any resemblance to spatiotemporal filters. Secondly, the
error versus motion magnitude is presented. After which, the orientation sensitivity will be analyzed.
Furthermore, the scale up and until the models can resolve the aperture problem will be evaluated and
the behavior of network near occluded image structure is examined.

0.1 Filter visualizations

In this Section the filters of FlowNet2S and SpyNet will be visualized. Note that Ranjan and Black,
2017 have already shown in their work that the filters in the first convolutional layer of SpyNet resemble
Gabor filters. Therefore, the filter visualization, which can be seen in Figure 9.1, mainly serves as a
comparison between FlowNet2S and SpyNet. From the FlowNet2S model, ten filters are randomly
selected from the first convolutional layers, which has a total of 64 filters. From the SpyNet model
ten filters are also randomly selected but from the first pyramid level. SpyNet is trained sequentially,
meaning they train one pyramid level first and then add more pyramid levels at higher resolution with
the previous pyramid level as initialization. Therefore, filters at different levels of the pyramid the filters
become more defined (Ranjan & Black, 2017). Both the filter the filters of size 7x7 and are bi-linearly
upsampled to size 14x14. In Figure 9.1 the weights of both models are visualized. Note that the third
and sixth column correspond to the temporal difference. For SpyNet some of the filters clearly resemble
Gabor filters (e.g., row 4, 7 and 10). For FlowNet2S the filters do not exhibit such clear resemblance
to Gabor filters.

9.2 Motion magnitude

A synthetic test sequence is generated to investigate the characteristics of the error patterns of the
different models. In Figure 9.2 the input sequence used for this experiment is visualized. Multiple
image pairs are generated for a translating black square with an increasingly higher horizontal velocity
component. The AEE for all pixels, inside and outside the square versus the magnitude of the horizontal
velocity component can be seen in Figure 9.3. Multiple observations can be made from these three
graphs. Firstly, for the LDOF model the AEE is increasing linearly from 2 till about 80 after which
it fails. This can be seen even more clearly from the AEE inside the square which spikes around this
magnitude. Both FlowNet2S and SpyNet exhibit similar error patterns. The main difference is that
SpyNet shows better overall performance for lower velocities and fails more rapidly and at a lower

81



82 Preliminary Results

FlowNet2S

3 e

3

|

o

"

L10.

T
]

ot med 21

i35

o

tl to tl t0-t1

Figure 9.1: (Column 1 to 3) The weights of the first convolutional layer of FlowNet2S for to,t1 and to — t1
respectively. (Column 4 to 6) The weights of the first convolutional layer of SpyNet for the first pyramid level for
to,t1 and to — t1 respectively. The rows correspond to different filters. Red details a high value and blue a low
value. A relative depth map per filter is used, meaning every entry has its colors scaled to their own filters. These
filters are visualized without the bias term added to them. This is because with a relative depth map the addition of
a bias term does not influence the visual appearance of the filter.
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Figure 9.2: Synthetic test sequence used for the motion magnitude experiment. A background with a black square
of size 64x64 is translated horizontally, symmetrically about the vertical axis, with an increasingly larger horizontal
velocity magnitude. This image pair corresponds to a velocity magnitude of v = (100, 0).

velocity magnitude. This becomes apparent in the ‘AEE inside the square’ plot. Furthermore, it can
be seen that the AEE for both FlowNet2S and SpyNet increase in a linear fashion until they fail. The
error pattern for FlowNet2C outside the circle is quite erratic. It should also be noted that the four
different models fail in different ways, and this can be seen in Figure 9.4.

9.3 Orientation sensitivity

In order to test the sensitivity and stability of optical flow estimation with respect to different orient-
ations of constant image translation magnitude another synthetic test sequence is generated. For this
sequence, a black square is placed in the center of the image and moved with a constant total velocity
magnitude of ||v|| = 100 at different angles with respect to the horizon. Due to the fact that the
Pillow library does not support sub-pixel rendering for the angles of 45° 4+ k90° the velocity components
are rounded to the nearest integer. This results in a total magnitude of /2 % (71)2 = 100.409. This
difference in magnitude is deemed negligible. The resulting error patterns can be seen in Figure 9.5.
Note that the top-left radar plot corresponds to the AEE. The other three radar plots correspond to
the deviation in percentage of the AEE to the mean of the AEE for all rotations. It is interesting to
see that the models all have the highest deviation from their mean AEE at different orientations even
though they were trained on mostly the same data. It should be noted that SpyNet seams particularly
unstable at an orientation of 315°. Upon inspection, it was found that for this orientation SpyNet does
estimate the correct angle but overestimates the magnitude of the velocity by =~ 12%.

9.4 Aperture and scale problem

To test how the models cope with the aperture problem and with the velocity of small scale structures
a square is diagonally translating with constant velocity v = (50, 50) for increasing square sizes. The
results can be seen in Figure 9.6. In the top plot, it can be seen that the behavior is fairly consistent
except for the largest square, which moves from edge to edge, which produces poor estimates for
FlowNet2S and FlowNet2C. There is no obvious reason as to why they fail this way. The total maximum
span of the movement is 334 + 50 = 384 pixels. Using the model details from FlowNet2S as specified
in Table A.1 and a readily available script! which allows for the calculation of the receptive field size.
The receptive field size is defined as the region in the input space that a particular output feature is
affected by. For the ‘flow6’ layer, the receptive field size was calculated to be 479 pixels. Using Table
A2 the receptive field size was calculated for SpyNet. This resulted in a value of 31 pixels. The lowest
level of the pyramid has an input size of 32x24. Thus, when accounting for the number of times the
flow estimate is upsampled. The receptive field size is equivalent to 31 % 2* = 496. From the middle

Thttps://gist.github.com/Nikasal889/781a8eb20c5b32{8e378353cdeddaa’1
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Figure 9.3: (top to bottom) Motion magnitude versus the AEE for all pixels, pixels inside the square and pixels

outside the square respectively for the FlowNet2S,SpyNet, FlowNet2C and LDOF models. The magnitude of the

square used as input is 64x64 pixels.
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Figure 9.4: (all) Flow estimation produced by the four different models for v = (218, 0) corresponding to a bright
red ground truth color. Note that the color coding is similar to Baker et al., 2011 is used an can be found in
Appenfix B. (top left) Flow map corresponding to the FlowNet2S model. The model predicts that the square is
moving outward (to the left) of the frame. (top right) Flow map corresponding to the SpyNet model. At larger
velocities SpyNet has difficulty matching the squares at different timesteps and the estimate contains multiple colors
corresponding to different velocity angles. (Bottom right) Flow map corresponding to the FlowNet2C model. Also
FlowNet2C has trouble matching the complete patch at high velocities. At high velocities FlowNet2C does have the
best performance. (Bottom right) Flow map corresponding to the LDOF model. This model produces a flow
estimate corresponding to disappearing edges and appearing texture.
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Figure 9.5: (top left) AEE for FlowNet2S, SpyNet and FlowNet2C for a square translating with ||v|| ~ 100 at
different orientations with respect to the horizon. (top right clockwise to bottom left) The deviation from the mean
AEE in percentage at different orientations of the model for SpyNet, FlowNet2S and FlowNet2C respectively.
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plot, it can be seen that all models still have issues with motion larger than the scale of the input. This
issue seems to affect SpyNet the most. This is most likely due to their pyramidal structure, which is
known to be prone to this issue. One of the main motivations for the U-net architecture of FlowNet2S
and FlowNet2C is the fact that it can combine features from multiple scales. However, both models
also seem to suffer from the issue of large motion of small scale structures.

9.5 Occlusion

In order to test the occlusion reasoning capabilities, a translating square with velocity v = (64,0) is
occluded by a white rectangle in the second frame, as can be seen in Figure 9.8, with increasing width.
The results can be seen in Figure 9.7. In the top plot, it can be seen that the AEE for all pixels of
FlowNet2S is fairly constant. Even if the object is completely occluded in the second frame, it is able
to produce an estimate with consistent accuracy. SpyNet is able to cope with the occlusion for lower
occlusion rectangle width. The performance starts to deteriorate rapidly after a rectangle width of 40
pixels. The performance of FlowNet2C is the worst for medium occlusion. The reason for this can be
seen in Figure 9.9. It is only able to correlate the edges of the square between the two input frames.
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Figure 9.6: (top to bottom) AEE for FlowNet2S, SpyNet and FlowNet2C for a diagonally translating square with
velocity v = (50, 50) symmetrically around the origin versus the size of the square for all pixels, pixels inside the

square and pixels outside the square.
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Figure 9.7: (top to bottom) AEE for FlowNet2S, SpyNet and FlowNet2C for a translating square with velocity
v = (50, 50) which is occluded in the second frame by a rectangle of increasing width for all pixels, pixels inside the
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Figure 9.8: Synthetic test sequence used for the occlusion experiment. A background with a black square of size
64x64 is translated horizontally, symmetrically about the vertical axis. It is occluded in the second frame by a
rectangle of increasing width. This image pair corresponds to a velocity magnitude of v = (64,0) and an occlusion
rectangle width of 32 pixels.

| B L

Figure 9.9: (left) The flow map of FlowNet2C for an occlusion rectangle width of 32 pixels, meaning half the
square is occluded in the second frame. The model is only able to match the edges of the square in the two frames.
(right) The flow map of SpyNet for an occlusion rectangle width of 64 pixels, meaning the square is completely
occluded in the second frame. Here the model estimates the square disappears in the second frame.
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Discussion of Preliminary Results

The preliminary evaluations have provided insight into the filters present (in the first layer) and have
given an indication of the error characteristics of different CNN-based optical flow estimation methods.
In this Chapter the results from these preliminary evaluations will be discussed.

In Section 9.1 the filters of FlowNet2S and SpyNet were visualized. It could be seen that some filters
of SpyNet resemble Gabor filters. In Section 6.1 it was established that Gabor filters often emerge
from learning-based approaches. This is due to the fact that they are optimally localized in space-time
(Section 5.2). The filters of FlowNet2S on the other do not show such a clear temporal structure. Sun
et al.,; 2018 showed that using a disruptive learning rate, the performance of FlowNetS can be vastly
improved!. This is an indication that the performance of the FlowNetS architecture can still be vastly
improved. The filters on all three networks appeared orientation sensitive. Sometimes deviating as
much as 30% from the mean AEE of all orientations as can be seen in Figure 9.5. Even though the
AEE for SpyNet is relatively small it is undesirable to have large deviations from the mean for different
orientations.

Furthermore, it could be seen that the error outside of the square increased for the spatiotemporal
filter-based models. This could be a consequence of the possible presence of Gabor filters which suffer
from the uncertainty relation. Even though FlowNet2S and FlowNet2C have been trained on more
data and have more parameters, for the simple case of image translation, SpyNet outperforms both
these models up until velocities around 120 pixels per frame. This clearly shows the benefits of the
pyramidal structure of SpyNet, which is different from the encoder-decoder architecture of FlowNet2S
and FlowNet2C. The downside is that it does suffer most from the problem of large motion from small
scale structures. Even though one of the main motivations for the U-net architecture in both FlowNet
is to avoid this problem, both models still suffer from it. All models do have a receptive field size in
their highest layer sufficiently high enough to deal with the aperture problem. This is not surprising,
given the fact that in the training data, often the background or camera moves, and thus large regions
are moving with the same velocity.

For more difficult optical flow problems, such as occlusion, something interesting happens. For the cases
with highly occluded objects in the second frame both FlowNet2S and FlowNet2C ‘guess’ or ‘reason’
that the object must be behind the other object. SpyNet estimates that the square ‘disappears’ and
shows an inverse color wheel. For the motion magnitude experiment, similar failure case could be seen.
After a magnitude of 150 pixels, FlowNet2S estimates that the square moves outside of the frame to
the left. The LDOF method, on the other hand, estimates a disappearing square for large motion
magnitudes. Qualitatively, a case can be made for either failure mode. Quantitatively, the disappearing
failure mode is better.

1The AEE on MPI-Sintel improved from 3.79 to 2.80 for FlowNetS.
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Model Details

This appendix contains details about the FlowNetS and SpyNet models which are used in the prelimary
evaluations. The model details of FlowNetS can be seen in Table A.1 and the details of SpyNet are
given in Table A.2.
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Name Kernel Stride Padding ChI/O In Res Out Res Input
convl =7 2 3 6/64 512x384  256x192 Images
conv2 5x5 2 2 64/128 256x192 128x96 convl
convy 5x5 2 2 128/256 128x96 64x48 conv2
conv3_ 1 3x3 1 1 256/256 64x48 64x48 conv3
conv4 3x3 2 1 256/512 64x48 32x24 conv3_1
conv4d_1 3x3 1 1 512/512 32x24 32x24 conv4
convh 3x3 2 1 512/512 32x24 16x12 convd_ 1
convh_1 3x3 1 1 512/512 16x12 16x12 convh
conv6 3x3 2 1 512/1024 16x12 8x6 convh_1
conv6_1 3x3 1 1 1024/1024 8x6 8x6 conv6
flow6 3x3 1 1 1024/2 8x6 8x6 conv6_1
upconvd 4x4 2 1 1024/512 8x6 16x12 conv6_1
flowh 3x3 1 1 1026/2 16x12 16x12 upconvbs+convs_14+flow6
upconv4 4x4 2 1 1026/256 16x12 32x24 upconvb+convh_ 1+flow6
flow4 3x3 1 1 770/2 32x24 32x24 upconv4d+conv4d 1+flowh
upconv3 4x4 2 1 770/128 32x24 64x48 upconv4d+conv4d_1+4+flowh
flow3 3x3 1 1 386/2 64x48 64x48 upconv3+conv3_ 1+flowd
upconv2 4x4 2 1 386/64 64x48 128x96 upconv3d+conv3d_ 1+flow4
flow2 3x3 1 1 192/2 128x96 128x96 upconv2-+conv2+-flow3

Table A.1: Model details of FlowNetS. The expansive part of the network starts at ‘flow6’. Note the difference in
the expansive part of the network is different than the dimensions provided in Dosovitskiy et al., 2015. Also note
that even in Mayer et al., 2018 the dimensions are not correctly specified for the sizes of the upconvolutional kernels

of FlowNet2C.

Name Kernel Stride Padding ChI/0 In Res Out Res Input
convpyramidQ <7 1 3 (8,32,64,32,16)/2  32x24 32x24 Images+flow0
convpyramidl <7 1 3 (8,32,64,32,16)/2  64x48 64x48 Images+convpyramid0
convpyramid2 <7 1 3 (8,32,64,32,16)/2  128x96 128x96  Images+convpyramidl
convpyramid3 =7 1 3 (8,32,64,32,16)/2 256x192  256x192  Images+convpyramid2
convpyramid4 <7 1 3 (8,32,64,32,16)/2 512x384  512x384  Images+convpyramid3

Table A.2: Model details of SpyNet. ‘flowQ’ refers to zero-valued initial flow map estimate. Between pyramid levels
the flow estimate is bilinearly upsampled.



Flow Field Map

The flowfield color coding used throughout this thesis can be found in Figure B.1.

Figure B.1: Flow field color coding taken from Baker et al., 2011. Following the color coding rightward motion
corresponds to a red color. Note that every flow field map in this thesis is normalized using their largest and lowest
motion magnitudes.
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