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Stellingen
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Quantum phenomena in networks of Josephson junctions
van Wiveka Elion

. De hoge waarde van de barriere voor thermisch geactiveerd transport
van vortices gemeten in een array door Tigh et. al. wordt niet, zoals
gesuggereerd veroorzaakt door inhomogeniteiten in het array maar
is een systematisch verschijnsel dat optreedt in arrays dicht bij de
supergeleider-isolator overgang.

T. S. Tighe, A. T. Johnson and M. Tinkham, Phys. Rev. Lett. 44,
10286 (1991) en hoofdstuk 2 van dit proefschrift.

. Een klein array waarop een geschikt magneetveld wordt aangelegd,
vormt een quantum dot voor vortices.

3. Voor het uitvoeren van akoestische metingen aan gesteentes is vloeibare

honing het beste contactmiddel tussen de samples en de akoestische
plaat. Voor longitudinale golven, die ook voor medische toepassingen
gebruikt worden voldoet de in de kliniek gebruikte gel.

. Thermospanningsmetingen zijn niet geschikt voor het bepalen van
het teken van de ladingsdragers in een vaste stof.

. Voor de in het laboratorium gebruikelijke toepassingen kan GE var-
nish verdund worden met alcohol, in plaats van met het gebruikelijke
mengsel van alcohol en de giftige stof tolueen.

5. Het thema noodlot is belangrijk in de werken van Van Schendel alsook
in die van Couperus. Waar bij de eerste het accent op 'nood’ ligt, is
bij de laatste het ’lot’ het belangrijkste.

. Aan natuurkundigen die in hun onderzoek het geluk steeds lijken aan
te trekken, schrijft men een goede fysische intuitie toe.

. Een goede strijkersgroep in een symfonieorkest wordt aangevoerd
vanuit de achterste lessenaars.




10.

11.

In Guatemala zijn de universele rechten van de mens een relatief
begrip.

Het meest vernieuwende element uit de authentieke uitvoeringsprak-
tijk van barokmuziek is de her-introductie van de improvisatie binnen

de klassieke muziek.

Het antwoord op de aan een sollicitant gestelde vraag ,,Wat zijn uw
slechte eigenschappen ?” levert voornamelijk informatie over haar of

zijn ervaring met solliciteren.

2. Het programma van de International Conference of Low Temperature

Physics leent zich uitstekend voor het aanmaken van een kampvuur.

Delft, maart 1995
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Preface

The most well-known property of a superconductor is that it conducts extremely
well. It is not so clear what will happen if two pieces of superconducting material
are separated with an insulating barrier. In our everyday world, no system is
stronger than its weakest link and one would expect a superconductor-insulator-
superconductor junction to be insulating. Ouly thirty years ago physicists knew,
that because electrons are quantum-mechanical particles, there is a finite proba-
bility that they hop, or tunnel, through an insulating barrier. In a superconductor
however, charge carriers are paired, forming Cooper pairs, and the probability
that the two particles constituting a pair would tunnel together seemed to be
too small to cause an observable current. This belief was so strong that when
supercurrents were actually observed in fabricated junctions, the current was at-
tributed to shorts in the insulating barrier. In his Nobel prize lecture, Brian
Josephson tells how he, as a 19 year old graduate student, proved that these
ideas were wrong. Because of the macroscopic coherence within a superconduc-
tor, tunneling rates for Cooper pairs can be much larger than those for electrons.
The supercurrent depends on the difference between the ‘phases’ of the super-
conductors, which is a variable that was theoretically defined but until then did
not seem to be observable.

Since the discovery of the Josephson junction, many experiments have been
performed and theories checked. An interesting question was raised by Anderson,
who considered the fact that a junction also forms a capacitor. When a Cooper
pair tunnels onto a superconductor that is connected to the outside world with
junctions only, the junction capacitors will be charged. What happens when the
required energy, the charging energy, is not available? He proposed that when
junctions are small and the temperature is low enough, the flow of current will
be blocked. In this case the phase difference is no longer a meaningful variable.
According to the laws of quantum mechanics it will strongly fluctuate.

In this thesis several experiments on vortices in two-dimensional arrays of
junctions, and also on smaller networks will be reported on. All networks consist

v



vi Preface

of junctions in the intermediate regime, where phase fluctuations are strong but
the Cooper pairs still flow through the junctions. The "Quantum phenomena” in
the title of this thesis refers to the quantum interference, phase transitions, tun-
neling and the Heisenberg uncertainty relation that are observed in this regime.
This illustrates how the word ‘quantum’ in our field has become equivalent to
‘new’ or ‘interesting’, as it is impossible to explain classical superconductivity, let
alone Josephson currents, without using the framework of quantum mechanics.

For me in the past four years, it has been hard work but also fascinating
to be studying, discussing and sometimes just fantasizing about particles going
through walls, about the paradox of Schridingers cat and about vortices being
particles and also being waves. The results presented in this thesis were obtained
together with many people. First of all I thank Hans Mooij, for all your help
but mostly for your enthusiasm which has been a major source of inspiration.
Secondly I thank Marco Matters, Lydia Sohn, Herre van der Zant en Anne van
Otterlo, for your contribution to the physics, for teaching me, for proof reading
and for your friendship. ‘My’ students Tjerk Oosterkamp, Rogier Receveur, Ian
Wachters, Jeroen Walta and Sin Yeung I thank for the huge part of the ‘hard
work’ that you performed, for your ideas and your questions. I thank all sg-
members and in particular Erik Visscher, Stefan Verbrugh, Peter Hadley, Bram
van der Ende, Kees Harmans, Philippe Lafarge, Alexander van Oudenaarden,
Nijs van der Vaart en Luuk Mur, for help with the equipment that we shared, for
discussions and for the fun that we had together. I benefitted from and enjoyed
discussions with Uli Geigenmiiller, Yuli Nazarov, Gerd Schén and Daniel Estéve.
Technical support was provided by Leo Lander, Chris Gorter, Wim Schot en
Willem de Braver. Hans Romijn and Emile van der Drift helped with sample
fabrication.

En tot slot bedank ik pa en ma, Stien en Willem, het LBE, de vriendinnetjes,
het Qrkest en alle andere mensen die mij hebben helpen onthouden dat er meer
is op deze wereld dan fysica alleen.

Wiveka Elion
February 27, 1995



Contents

Preface v
1 Introduction 1
1.1 Phase and charge as non-commuting variables . . . . .. ... .. 1
1.2 Phase transitions and duality in 2D arrays . . . . ... ... ... 6
1.3 Classical dynamics of vortices . . . .. ... ... ... ...... 10
1.4 Quantum dynamics of vortices . . . . . ... ... ... ... ... 12
1.5 From double junction to two-dimensional array . . . . ... ... 13
1.6 Thesisoutline . . . ... . ... ... .. ... ... ... ... 15
1.7 Appendix: Sample fabrication . . . . ... ... ... .. ..... 16
References . . . . .. .. .. ... ... . 19

2 Quantum phase transitions and vortex dynamics in Josephson-
junction arrays 23
2.1 Introduction . . ... ... .. . ... ... ... 23
2.2 Experimental details . . .. ... ... ... ... ... ...... 28
2.3 S-Itranmsitionsinzerofield . . ... ... ... ... ... . .... 30
2.4 Vortex dynamics . ... ... .. ... ... ... 34
2.5 Field-tuned transitions . . ... .. ... ... ... ... . .... 40
2.6 Discussion and conclusion . . . .. ... .............. 46
References . . . . .. . . . . .. A7

3 The Aharonov-Casher effect for vortices in Josephson-junction
arrays 53
3.1 Introduction . . . ... ... ... ... .. ... ... ... ... 55
3.2 Sample layout and parameters . . . . .. ... ... ... . ..., 58
3.3 Current-voltage characteristics . . . . .. ... ... ... ..... 59
3.4 Simulations . . ... ... .. .. ... 62
3.5 Influence of the gate-voltage, Aharonov-Casher oscillations . . . . 67

vii



viil

3.6

Discussion and conclusion . . . . . . .. ..o 74
References . . . . v v v e e e e e e e e e e 76

4 Interaction between charges and flux quanta in small and large

networks of Josephson junctions 79
4.1 Tmtroduction . . . . . . . . o v o 80
4.2 Persistent currents of Cooper pairs and flux quanta . . . . . . .. 81
4.3 Interference of flux quanta in a double junction . . ... .. ... 82
4.4 Vorticesin 2D arrays . . . . . . . ..o e e 86
4.5 Interference of vortices . . . . . . . . . ... ... .. ... 88
4.6 Hall-effect for vortices . . . . . . . . .« . o 89
47 Conclusion . . . . . . v e 90
4.8 Appendix: Interference-description of the Bloch transistor . . .. 91
References . . . . . v v v i e e e 92
5 Heisenberg’s principle 95
5.1 Introduction . . . . . . . . . . . 95
5.2 Voltage asymmetry in a double junction . .. .. .. .. ... .. 96
5.3 Direct demonstration of Heisenberg’s uncertainty principle in a
superconductor . . . ... ... 99
References . . . . v v v v i i e e e 104
Summary 107
Samenvatting 109

Curriculum Vitae 113



Chapter 1

Introduction

1.1 Phase and charge as non-commuting vari-

ables

An essential property of the superconducting state is that charge carriers can be
described with one macroscopic wavefunction [1]. The amplitude of this wave-
function is easily interpreted as the density of paired charge carriers, Cooper
pairs. The physical importance of the phase of the superconducting wavefunc-
tion became clear with the discovery of the Josephson effect [2]. When two pieces
of superconducting material are connected via a thin insulating barrier, as shown
in Fig. 1.1, a supercurrent will flow that depends on the difference between the
phases ¢; and @ as I = I, sin{p — @2 — ff Adl). Here A is the magnetic vector
potential integrated over the distance between the two superconductors. The
term (@1 — @9 — ff Adl) is known as the gauge-invariant phase difference ¢. I.
is the critical current, which is the maximum supercurrent that can theoretically
flow. It depends on the energy gap in the superconductors and the resistance of
the barrier [3].

Figure 1.1: The original system considered by Josephson and Anderson, two
superconducting grains coupled by an insulating barrier.
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Anderson [4] was the first to realize that also the total capacitance Cy of a
piece of superconductor plays an important role. When a Cooper pair tunnels
onto the superconductor, the electrostatic energy of the system is increased by
an amount (2¢)?/2Cs. At that time it was not possible to fabricate junctions
with such small capacitances that this electrostatic energy is smaller than the
thermal fluctuations. It was however realized that because the charge on the
island and the phase of the superconducting wavefunction are non-commuting
variables a Heisenberg uncertainty relation holds of the form AQA¢ > e If the
electrostatic energy involved is small compared to the Josephson coupling energy
E; = (®¢/27)I,, the phase is a well defined variable and Cooper pairs will flow
freely. If the electrostatic energy is large the number of Cooper pairs is fixed and
the phase is undetermined.

With present day nano-technology it is possible to fabricate junctions in both
regimes and experimentally study the competition between Josephson and charg-
ing effects. A complete treatment of junctions in the superconducting regime can
be found in ref. [5]. An overview of the physics in the charging regime is given in
ref. [6]. While these regimes are often referred to as “classical” and “quantum”
regime respectively, we will reserve the word quantum for quantum fluctnations
of either phase or charge in the regime where both energy scales are comparable.
Here we will discuss one example in this intermediate regime in some detail to
illustrate the importance of the Heisenberg uncertainty relation between charge
and phase.

Cousider the system shown in Fig, 1.2. Two junctions in series are connected
to a voltage source. On the island in between the junctions a charge @, can
be induced by applying a gate voltage U to a small capacitor Cy. The island is
coupled with a third junction to a large superconducting reservoir. This third
junction has a variable Josephson coupling energy E;(®).

Setting the bias voltage V, the gate voltage U and the variable coupling energy
of the third junction all equal to zero the Hamiltonian becomes:

2
H= o Ejcos(p; — ) — Ejcos(p — @), (1.1)

2Cy
where Q is the charge on the island, Cy is the total capacitance of the island, ¢
is the phase on the island and ¢; and ¢, are the phases of the left and the right
contact respectively. Due to the low impedance of the leads to the voltage source
the phases of the superconducting contacts will be classical [6]. As the phase
difference is the only physically relevant variable we can define ¢, = —¢; and
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Figure 1.2: Two small Josephson junctions in series are connected to a voltage
source V. The superconducting tunnel junctions are drawn as two rectangles that
represent the junction capacitor and a cross to represent the Josephson channel.
The ”island” in between both junctions is coupled with a small capacitor to a
gate voltage source U. A junction with variable Josephson coupling E;(®) couples
the island to a superconducting reservoir with a phase that does not fluctuate
quantum mechanically.

separate out the quantum mechanical phase of the island in the Hamiltonian.
Q* )
H=-2—5;—chos<p, (1.2)
where EY; = 2E; cos(#5%x)

This Hamiltonian is similar to that of a single junction. For small E; the
second term can be treated as a perturbation that couples charge eigenstates. The
strength of the coupling depends on the phase difference between the contacts. If
the coupling is strong enough, quantum fluctuations in the charge variable lead
to a supercurrent through the device.
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Fluctuations in the charge variable can be enhanced by applying a voltage U
to the gate that is coupled with a small capacitance Cy to the superconducting
island. The influence of the gate is often expressed in terms of the induced charge
on the capacitor to the gate @, = UC,. If the gate capacitance is small, this
induced charge does not change significantly when Cooper pairs tunnel on and
off the island, and can be treated as a control variable [7]. The energy required
to add a Cooper pair to the island will be lowered to the value of (Q — @Q,)%/Cs.
When the induced charge Q, = 2e, the energy with and without an extra Cooper
pair on the island is the same which enables resonant tunneling of Cooper pairs.

The amplitude of the quantum fluctuations in the charge on the island can
also be changed by tuning the Josephson coupling of the junction that connects
the island to a large superconducting reservoir (Fig. 1.2). Because the reservoir
is otherwise unconnected, no DC current can flow through this third junction
and the time averaged phase difference across it must be zero. However, the
energy cost of quantum fluctuations of the phase ¢ of the island will be increased
by the Josephson coupling energy of this third junction. In chapter 5 we will
show how two junctions in parallel, a DC SQUID, can be used as a junction
with a tunable effective Josephson coupling energy. Strong coupling means a
decrease in the quantum fluctuations of ¢. The corresponding increase in charge
fluctuations leads to a easily measurable increase in the supercurrent though the
double junction [8].

An alternative way to explain the influence of the fluctuations of the phase
on the supercurrent is the following. For a given phase difference between the
contacts, the energetically most favorable value of the phase on the center island
is the one that corresponds to the largest supercurrent. Fluctuations around
this equilibrium value will reduce the supercurrent. Changing fluctuations of
the phase by tuning the Josephson coupling of the third junction will result in
changing the supercurrent.

This experiment provides a clear example of how phase fluctuations corre-
spoud to localization of charge carriers. The wavefunctions of the simple system
discussed above can be calculated exactly. In Fig. 1.3 we show the probability
amplitude, which is the square of the wavefunction, for the variables ¢ and Q.
The solid line gives the probability distribution for the case that the gate voltage
is zero and the island is decoupled from the reservoir. The dashed line gives the
distribution when the island is coupled to the reservoir with a Josephson coupling
of approximately twice that of the other junctions. This coupling clearly enhances
the probability of one additional or one missing Cooper pair on the island, while
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Figure 1.3: Probability amplitude for the phase ¢ (left) and the charge Q (right)
on the island. The solid line represents the case where there is no coupling
between the island and the reservoir. The dashed line corresponds to a coupling
of twice that of the other junctions.

the distribution for the phase variable becomes more sharply peaked around its
equilibrium value of zero.

The competing influence of phase and charge fluctuations also leads to inter-
esting effects in two-dimensional networks of Josephson junctions in the regime
where the Josephson coupling energy is only slightly larger than the charging
energy. In section 2 we will discuss the Josephson and the charging regime in
these arrays and the superconductor-to-insulator phase transitions that separate
the regimes. We will then concentrate on the superconducting regime where vor-
tices are the relevant excitations. In section 3 we will recapitulate the classical
dynamics of vortices. Still in the superconducting regime, but close to the charg-
ing regime the behavior of vortices show interesting effects that will be discussed
in section 4, We have observed quantum tunneling of vortices and quantum in-
terference of vortices around an induced charge, which is a manifestation of the
generalized Aharonov-Casher effect. Section 5, the discussion, deals with the sim-
ilarities and differences between the dynamics of vortices in the quantum regime
and the dynamics of the phase difference in small systems, like the double junc-
tion discussed above. We conclude with an overview of the remaining chapters
of this thesis.
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Figure 1.4: Schematics of a Josephson junction array. Each junction can be

represented as a ideal junction with critical current I, in parallel with a capaci-
tance C and a, voltage dependent shunt resistance Re. Each island has a small

capacitance to ground.

1.2 Phase transitions and duality in 2D arrays

The arrays that we use consist of a lattice of superconducting islands that are
coupled with Josephson junctions. The schematic representation of such an array
is shown in Fig. 1.4. The junctions are underdamped Al — Al,O3 — Al junctions.
Typical values of the McCumber parameter 3, = 27I.(T)CR?/®, of the junctions
vary between 1 and 50 for different samples, if it is assumed that the normal-state
resistance is the effective R, shunting the junction. The quasiparticle or sub-gap
resistance at low temperatures however, is about four orders of magnitude larger.
The Josephson penetration depth is of the order of the array size and shielding or
self-field effects are not taken into account. Arrays are fabricated with the now
standard method of shadow-evaporation that is outlined in the appendix to this
chapter. In chapter one we will further discuss experimental details, here we will
focus on the general physics of such a system.

Starting point for a discussion on the behavior of Josephson junction arrays
is the zero-field phase diagram [9], shown in Fig. 1.5. At zero temperature
the superconducting and the charging regime are separated by a superconductor-
to-insulator phase transition. Approaching from the superconducting side, the
transition marks the point where fluctuations become so strong that the phase is
completely delocalized and the behavior should be evaluated in terms of the num-
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Figure 1.5: The phase diagram as a function of the ratio of Ec/E; and T =
ksT/E; in zero field. The superconducting to resistive boundary is scaled to the
vortex-K'TB transition temperature in the classical limit Tvy as will be discussed
in detail in chapter 2.

ber of Cooper pairs on the islands. At this transition the supercurrent vanishes
and the current-voltage characteristic shows a Coulomb gap. We note that this
transition is well defined, in contrast with the double junction system discussed
above where charging and Josephson effects coexist for a large range of E¢/E;
values.

The possible excitations in the superconducting regime are spin waves, os-
cillating modes of the phases around their equilibrium value, and vortices, of
which an example is shown in Fig. 1.6. The vortex position is defined as the
cell around which the sum of the gauge-invariant phase differences equals 2.
A sum of -2r signifies the presence of an antivortex. These excitations can be
induced by thermal fluctuations or by applying a magnetic field perpendicular to
the array. When raising the temperature, first bound vortex-antivortex pairs will
form. At high enough temperatures these pairs unbind following the rules of the
Kosterlitz-Thouless-Berezinsky (KTB) transition [10]. Apart from a short dis-
cussion of the measured KTB temperatures in chapter two, this thesis reports on
experiments that are performed at low temperatures where vortices are induced
by a magnetic field.

A magnetic field applied perpendicular to the array will cause vortices of one
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Figure 1.6: The phase configuration that corresponds to a vortex in the arctan
approximation. The arrows represent angles between 0 and 2 that correspond
to phases of the superconducting wavefunction on the islands. The open circle
shows the position of the vortex.

sign to enter the array from the sides. In an infinite array the number of vortices
will equal the total number of flux quanta applied to the array. The applied
magnetic field is usually given in units of frustration f which is the number of
flux quanta per unit cell. If there is one vortex present in every cell it can easily be
verified that all currents cancel. The system is therefore periodic in f with period
one. At certain values of the magnetic field, like f = 1/2, 1/3 and 1/4, the vortices
form a lattice that is commensurate with the underlying junction network. These
commensurate states are more stable than the non-commensurate ones.

At low temperatures the vortices are generally pinned in the periodic lattice of
the junction network and the array is superconducting. When current is applied
to the array, vortices experience a force perpendicular to the current direction.
Vortex motion will occur when the applied current exceeds the depinning current.
The corresponding time-dependent phase differences across the junctions lead to
finite voltages over the array. In the arrays that we have fabricated, current can
be injected through superconducting busbars as shown in Fig. 1.7. A vortex that
crosses the array in a time At will give rise to a voltage of ®o27/At across the
busbars.

In the charging regime excitations are formed by an extra Cooper pair, that is




1.2. Phase transitions and duality in 2D arrays 9
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Figure 1.7: An array that is, as in the experiment, connected to superconducting
busbars to inject current and to measure the voltage. The black dot represents a
vortex that moves perpendicular to the applied current.

present on an island in addition to the equilibrium number [9]. If the capacitance
to ground is smaller than the junction capacitances, a Cooper pair that resides
on one island will not only charge the junctions connected to it but also junctions
further away. This Cooper pair excitation is the two-dimensional analogue of a
soliton [11] that occurs in systems where a number of junctions is connected in
series. Like vortices in the superconducting regime, Cooper pair excitations are
induced by thermal fluctuations. If all islands are connected by a small capaci-
tance Cy to a gate, additional Cooper pairs can be induced on the islands also
at zero temperature. The dynamics of these excitations in arrays in the charging
regime have been predicted to be dual to the motion of vortices in the regime for
large E;. In the Josephson regime pinned vortices will be mobilized when the
current exceeds the depinning current and the array changes from superconduct-
ing to resistive behavior. In the charging regime a transition from insulating to
resistive behavior occurs when Cooper pairs are delocalized by applying a voltage
larger than a certain threshold voltage. The experimental study of Cooper pair
dynamics is hindered by the fact that there will be random offset charges present
on the islands, due to charged defects in the substrate or in the junction barrier.
It has so far not been possible to obtain a uniform charge frustration.

For arrays with an E¢/E; ratio slightly smaller than the zero-field critical
value a superconductor-to-insulator transition occurs as a function of magnetic
field. This transition is explained using the fact that vortices are bosons and
that they may exhibit quantum properties. When the density of vortices exceeds
a critical value, they will Bose-condense. The resultant superfluid of vortices
leads to an infinite array resistance. This transition has been observed in arrays
[12] and agrees well with scaling theory [13]. From the duality of vortices and
charges one expects an insulating to superconducting transition as a function
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of charge frustration [14]. This charge-tuned transition has not been observed
experimentally.

The field-tuned transition is a result of quantum mechanical properties of
vortices. Generally one expects the dynamics of the vortices to be influenced by
phase fluctuations in arrays that have an E¢/E; ratio close to the critical value.
Before discussing results of these quantum properties we will briefly summarize
the relevant classical vortex dynamics.

1.3 Classical dynamics of vortices

Typical for underdamped arrays is that the junction capacitance plays an impor-
tant role in the array dynamics. The voltages that are induced by the moving
vortex will charge these capacitors. The corresponding electrostatic energy is
proportional to the vortex velocity squared, and can be viewed as the vortex
kinetic energy.

For a single vortex in an infinite array it has been proposed [15, 16, 17] that its
motion along the z-axis of the array can be described by the following equation.

M,z + nz = vEjsin(2rz) + 1 (1.3)

Here M, is the vortex mass, z is the vortex position in units of its cell-to-cell
distance, 7 is a constant that depends on the lattice geometry, 7 is a phenomeno-
logical damping term and [ is the bias current. This equation resembles the
equation of motion for the phase difference across a single underdamped junc-
tion. Instead of the relevant one-dimensional washboard potential in the case of
a single junction, one can think of a two-dimensional ‘egg-carton’ potential in the
case of an array. Just like in a single junction the mass term is proportional to
the junction capacitances.

Fabricated arrays are never infinitely large and in a typical experiment there
will always be more vortices present in the array. Still the single vortex model has
proved useful to explain experimental results [18]. In Fig. 1.8 a typical measured
I-V characteristic is shown of an array in the classical regime. The supercurrent
corresponds to the situation where the vortex is pinned in one of the holes of the
egg-carton. Above the so-called depinning current the vortex moves through the
array at a speed that is determined by the damping present. This resistive regime
is called the flux-flow regime. Not shown in the figure, is that there is a certain
limiting vortex velocity above which the array switches to the superconducting
gap voltage. If the current is still further increased, steps occur in the voltage
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Figure 1.8: Typical current-voltage characteristic in the superconducting regime

corresponding to the rows of the array switching one by one. We will focus on
the part of the I-V shown in Fig. 1.8 and will discuss the different terms of the
equation of motion and their correspondence with experimental results in some
more detail.

The egg carton potential has been calculated in ref. [19] in a quasi-static
approach. For a square lattice, where all islands are coupled to four neighbouring
islands, the cell to cell barrier is 0.2 E;, and for a triangular lattice 0.04 E,;. The
depinning currents consequently become 0.1 I, and 0.02 .. In measurements
on square arrays, values between 0.4 and 0.7 have been found [17, 20]. These
values depend on the frustration and possibly the system size, which signifies
that edge barriers or interactions between vortices do play a role. No systematic
investigation of these effects has so far been carried out. Measured depinning
currents for both the square and the triangular lattice agree with the predicted
values for f = 0.1 and g, ~ 1. For higher §. the depinning current decreases [21].

Eckern and Schmidt [15] have calculated the vortex mass in the continuum
approach. Their result is M, = ®3C/2p?, for a square lattice and M, = ®2/3p?
for a triangular lattice [22] where p is the distance between vortex positions in
nearest neighboring cells. Later work shows that the dynamical band mass can
be up to an order of magnitude larger [23]. In the measured I-V characteristic
hysteresis is visible around the depinning current that, just as in a single junction,
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signifies the presence of the mass term in the equation of motion. In a specially
shaped sample ballistic motion of vortices over 40 triangular lattice cells has been
reported [24].

In simulations and analytical work on underdamped systems it has been found
that moving vortices generate oscillating modes of the junctions (25, 26, 27, 28,
29, 30]. These so called spin waves provide a damping mechanism for the moving
vortex even at high f.. There is still some discussion about the possibility of a
window just above the depinning current for which vortices do not couple to these
spin waves, and also about the influence of the discreteness of charge already in
this regime [31]. The fact that the resistance shunting the fabricated junction is
frequency, or voltage, dependent is not taken into account in the theoretical work.
In experiments on samples with (. around 1 the resistance of the flux flow branch
is found to be of the order of the normal-state resistance of the junctions. In
these samples the single junction plasma frequency is close to the gap frequency
and quasiparticles might be generated as the vortex moves. For samples with
higher f. the flux-flow resistance becomes significantly lower than the normal
state resistance which indicates that spin-wave damping becomes important.

1.4 Quantum dynamics of vortices

At the superconducting side, but close to the transition, we expect to find the
influence of the phase fluctuations on the dynamics of magnetically induced vor-
tices. It has been proposed that as long as the fluctuations are not too strong,
the dynamics of vortices can still be described within the single vortex model
and the vortex behaves as a macroscopic quantum particle [15, 32, 33, 34]. The
vortex is predicted to exhibit zero point fluctuations in this potential well in close
analogy to a single junction, with a vortex plasma frequency that is \/7 hwp in a
square array and +/27/3 hw, in a triangular array, where fw, = VB8E E¢ is the
single junction plasma frequency. These fluctuations are expected to reduce the
depinning current and also quantum tunneling of vortices through the potential
barriers has been predicted.

The experiments reported in chapter two clearly show these features. In sam-
ples close to the S-I transition the depinning current is strongly suppressed. The
branch below this apparent depinning current is no longer perfectly superconduct-
ing but shows a finite resistance even at the lowest measuring temperature of 10
mK. Although results can qualitatively be explained within the single junction
model, quantitatively there are discrepancies that will be discussed in chapter
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two.

Another clear signature of the fact that vortices have quantum mechanical
properties is the observation of vortex interference around an induced charge
that is shown in chapter three. It has been predicted that charge, induced on
an island with a gate, plays the role of a charge vector potential for a vortex,
similar to the magnetic vector potential for a charged particle. The existence of
a charge vector potential can be derived in a ring shaped array [35] and from the
duality between vortices and charges (36, 37]. The resulting definition for the
charge vector potential is § Aqdl = Q.

In a ring-shaped array this vector potential can lead to quantum interference
analogous to the Aharonov-Bohm [38] effect for an electron in a magnetic field. If
a vortex is a macroscopic quantum particle, it will have a wavefunction of which
the phase is sensitive to this vector potential. When a vortex moves around
a loop that encloses an induced charge @, it experiences a phase shift in this
wavefunction that is equal to ¢ = 27Q,/2e. When a vortex moves along a
doubly connected path enclosing a charge, the same phase shift is imposed on
the two parts of the wavefunction. As a function of this induced charge quantum
interference occurs. This phenomenon is a generalized form of the Aharonov-
Casher effect, that has first been predicted for a particle with a magnetic moment
[39], or a flux line in a superconductor [40], moving around an infinite line charge.

We have probed this interference in a specially designed sample shown in
Fig. 3.2.  Vortices can cross the sample along a doubly connected path that
encloses an island on which a charge can be induced with a gate. Interference
should manifest itself as an periodic changing of the number of vortices that pass
at a fixed bias current. When the current is biased above the depinning current
we observe an e-periodic modulation of the flux-flow resistance as a function of
gate voltage. The oscillation is e instead of 2e periodic due to the presence of
a finite number of quasi-particles that we will discuss in more detail in chapter
three.

1.5 From double junction to two-dimensional
array
In the course of this work we have investigated both small systems, such as the

double junction, and 2-D arrays of different sizes. There are several connections
but also differences that will be discussed here.
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Figure 1.9: Layout of the sample used to measure quantum interference, or the
Aharonov-Casher effect, for vortices.

A vortex crossing an array induces a phase slip of 27 and consequently a volt-
age difference across the busbars. Although the vortex carries no local magnetic
flux, the crossing of a vortex corresponds to the crossing of a flux quantum. A
phase slip across a single junction also corresponds to the crossing of a flux quan-
tum. This is most easily shown by connecting the junction in a superconducting
loop. Assuming that any electric field will be confined in the junction, a phase
slip of 27 in a time At corresponds to a change in flux through the loop that is
given by Faradays law:

Ata@ At Atq)oa¢
rh /fEdl / o5 = o (1.4)

The fact that a 27 phase slip across a junction always corresponds to the
motion of a flux quantum implies that instead of the phase difference one can use
a variable that has the dimensions of magnetic flux. However while the phase
difference is periodic in 27, the flux in a loop is in principle a measurable quantity
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and it is not obvious that the behavior of the junction is periodic in this flux.
It has been shown [42, 43, 44] that as soon as a junction is coupled to a low
impedance electromagnetic environment, states differing by a phase of 27 will in
principle be distinguishable. For instance if the environment is inductive the flux,
and if it is resistive the dissipated energy, is at least theoretically a measurable
quantity. However, if the environment impedance is higher than the quantum
resistance R, = e?/h, the periodic phase variable is sufficient to describe the
system. In this case the charge has to be treated as a discrete variable [44].

The supercurrent through a double junction can be described as the current
at which the phase difference between the external contacts starts to move, or
equivalently as the current at which flux quanta start crossing the junctions.
The two possible ways for a flux quantum to cross, over the left or over right
junction, effectively form a doubly connected path. We show in chapter four
that the influence of a charge induced on the island between the junction can
be attributed to interference of flux quanta that resembles the Aharonov-Casher
effect for vortices.

An important difference between the motion of a vortex through an array
and a flux quantum across a junction is that in an array a flux flow branch is
present in the I-V characteristic. In a double junction, current can only flow
at low voltages when Cooper pairs can transfer energy to the electromagnetic
environment. Specific current resonances are present below the gap. In arrays
that are larger than three by three cells a resistive flux flow branch is visible
above the depinning current. In some smaller samples we have also observed the
intermediate situation, where the current resonances are enlarged and broadened
so that they exceed the depinning current and can be mistaken for a ”"bumpy”
flux flow branch.

1.6 Thesis outline

We have tried to give the background information to the rest of this thesis as
well as an overview of the physics to be discussed. Unlike in this introduction,
the chapters hereafter will be presented in the order in which the described ex-
periments were performed. In chapter two we give details of the experimental
arrays and results on phase transitions and first evidence for quantum tunneling
of vortices. In chapter three we discuss the experimental observation of quantum
interference of vortices or the Aharonov-Casher effect. Motivated by work on the
supercurrent modulations in double junctions by other groups, we investigated



16 Chapter 1. Introduction

the connections and differences between the two systems that are reported in
chapter four. We conclude, in chapter five, with the experiment on the device
discussed in the first section of this introduction, that is nicknamed the Heisen-
berg transistor.

Several chapters, or parts of chapters, have been published elsewhere. The
most relevant references are listed below.

Chapter 2: H. S. J. van der Zant, F. C. Fritschy, W. J. Elion and J. E. Mooij,
Phys. Rev. Lett. 69, 2971 (1992).

Chapter 3: W. J. Elion, J. J. Wachters, L. L. Sohn and J. E. Mooij,
Phys. Rev. Lett. 71, 2311 (1993).
Physica B 203, 497 (1995).

Chapter 4: W. J. Elion, P. Hadley, and J. E. Mooij,
To appear in Proceedings of the ICTP-NATO workshop ‘Quantum dynamics
of Submicron structures’, eds. H. Cerdeira, B. Kramer and G. Schén
(Kluwer, 1995).

Chapter 5: W. J. Elion, M. Matters, U. Geigenmiiller, and J. E. Mooij,
Nature 371, 594 (1994).

Longer publications based on chapters 2 and 3 are in progress.

1.7 Appendix: Sample fabrication

The procedure for sample fabrication is pictured in figures 1.10, 1.11 and 1.12.

mask —

E-beam resist —»

substrate —

Figure 1.10: Starting point is a silicium substrate with a 200 nm layer of electron-
beam resist and a second layer of germanium or a harder type of E-beam resist.
This top layer is used as a mask.




1.7. Appendix: Sample fabrication 17

substrate mask, partly resting on resist layer

b)

free-hanging ‘bridge’
~a

-]

Figure 1.11: a: Using nano-lithographic, and etching techniques a pattern is
created as shown. The black figures are the places where both the resist layer
and the mask layer have been etched away. Under the remaining part of the
mask, the resist layer is partly etched away. The lighter elipses point out the
area’s where the mask rests on pilars of resist. b: Crosssections of the pattern
corresponding to the solid and dashed lines in Fig. a. The underetching of the
mask creates free-hanging bridges under which the junction is formed.
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? /A

PR

b)

d)

Figure 1.12: The shadow evaporation process. a: The free hanging bridge in the
magsk casts its shadow on the silicium substrate when Aluminum is evaporated.
b: The sample is subjected to a controlled oxygen pressure to form a barrier
of the desired thickness. c¢: The second layer of aluminum is evaporated and
the junction is formed. d: After lifting of the mask layer, an array of junctions
results.
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Chapter 2

Quantum phase transitions
and vortex dynamics in
Josephson-junction arrays

The data on ‘square’ arrays presented in this chapter are
obtained by H.S.J. van der Zant and the data on ‘triangular’
arrays by W. J. Elion. A joint publication is in progress of
which this chapter is an adapted version

Abstract: In Josephson-junction arrays where the Josephson
coupling energy is of the same order of magnitude as the charging
energy quantum phase transitions occur as a function of the ratio
of these two energies and as a function of magnetic field. The
dynamics of vortices in this regime shows interesting quantum-
mechanical effects that we have experimentally studied in arrays
with square and triangular cells.

2.1 Introduction

In superconducting two-dimensional (2D) systems like Josephson-junction arrays
(1] and thin films [2], the enhancement of quantum-mechanical phase fluctuations
and the corresponding localization of charge carriers induces superconductor-to-
insulator phase transitions. In Josephson-junction arrays the charging effects
that are responsible for localization of charge carriers are characterized by the

23
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charging energy Ec = €?/2C, where C is the junction capacitance. When the
Josephson coupling energy E; is much larger than the charging energy Ec, the
number of Cooper pairs on the islands is undetermined. In this classical regime
the phase of the superconducting wavefunction is a well-defined variable and any
resistive behavior is due to motion of vortices. At low temperatures vortices are
generally pinned in the intrinsic lattice potential so that arrays are in the super-
conducting state. In the opposite limit E¢ >> Ej, the phase is undetermined and
the Cooper pairs are localized on the superconducting islands by the Coulomb
blockade. At low temperatures the arrays are insulating. This superconductor-
to-insulator (S-I) transition [3, 4, 5] is shown in Fig. 2.1a, where current-voltage
(I-V) curves are plotted of three different samples with increasing Ec/Ej ratio.
When E is of the same order as E;, the competing dynamics between vortices
and charges gives rise to new quantum effects and phase transitions. Evidence
for quantum properties of vortices has been found in the observation of the in-
terference of vortices [7] (the Aharonov-Casher effect) and of the field-induced
superconductor-to-insulator transition triggered by a Bose-condensation of vor-
tices [8, 9]. This magnetic-field-tuned transition is shown in Fig. 2.1b, where a
field of 1 Gauss is used to drive the array from the superconducting state with a
small critical current to the insulating state with a small Coulomb gap. This figure
also clearly illustrates the duality between vortices and charges [6, 10, 11, 12].
At the superconducting side of the transition the vortices remain pinned until
the bias current exceeds the so-called depinning current. At the insulating side,
charges are localized by the Coulomb blockade until the bias voltage exceeds a
certain threshold value.

Just as in the classical regime vortices can be induced by a magnetic field, in
the insulating regime additional Cooper pairs can be brought on the islands by
applying a voltage between the ground plane and the array. The resulting uniform
charge distribution is known as charge frustration. The charge-vortex duality
indicates the possibility of a charge-tuned S-I transition [13, 14]. Experimentally
a uniform charge frustration is difficult to achieve because frozen-in offset charges
are intrinsically present in fabricated arrays.

The physics of quantum vortex dynamics and phase transitions in artificially
fabricated Josephson-junction arrays is closely related to work on thin granular
and amorphous superconducting films. An overview on recent experiments is
presented in ref. [2]. In granular films, superconducting grains are coupled by
irregular Josephson junctions of different strength. The capacitance to ground
of the islands is of the same order as the inter-grain capacitance whereas in




2.1. Introduction 25

2l a)f=0.1 ]
— L
24 1
50
4 b) EJ/E=1.25
g o
4
-25 0 25
vV (uv)

Figure 2.1: Current-voltage characteristics measured at low temperatures as a
function of a) the ratio Ec/FE; and b) the applied magnetic field, showing the
crossover from superconducting-like to insulating-like behavior with a charging
gap. The curve taken at Ec/FE; = 1.7 has been scaled with a factor of 8 in the
y-axis.
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arrays the junction capacitance dominates. In amorphous films, the normal-
state resistance plays the role of the Josephson coupling and the localizing effect
of charges by random disorder can be compared to the charging effects in a
Josephson-junction array. Near the S-I transition the amplitude of the order
parameter is strongly suppressed [15], while in Josephson-junction arrays for the
fields and temperatures of interest only phase fluctuations of the order parameter
are important. Josephson junction arrays can be used as model systems for these
2D superconductors because parameters can be measured and to a large extent
varied independently. A disadvantage of fabricated arrays is that finite size effects
play a more important role than in films; typical arrays have sizes of 100 by 100
cells.

In a magnetic field the behavior of junction arrays is richer than that of films.
When in the classical limit (Ec < E;) a magnetic field is applied perpendicular
to the array vortices enter above some small critical field [16] and their density
increases with increasing magnetic field. Defining the frustration f as the number
of flux quanta per unit cell, about one vortex will be present per 1/f cells. At
fractional values of f the magnetic vortices form a lattice which is commensurate
to the underlying junction network. The stability of the vortex lattice against
a bias current leads to a decrease in the zero-bias resistance. In correspondence
with theoretical predictions [17, 18, 19] we observe dips, in order of their relative
strength, at f = 1/2,1/3,1/4 and 2/5 in square arrays and at f = 1/2,1/4
and 1/3 in triangular arrays as is shown in Fig. 2.2. Recent work [20] shows
that in triangular arrays commensurate states occur at frustration values f =
1/2—-1/2N-!, where N is an integer number. In Fig. 2.2b we can clearly identify
these states for N=1 to 6. Near these fractional values of f, defects from the
ordered lattice (excess single vortices or domain walls) are believed to determine
the array dynamics. At commensurate fields with high stability such as f =1/2
and f = 1/4 (square array) and f = 1/3 (triangular array) arrays qualitatively
behave in a similar way as near zero magnetic field. Because all properties of the
array are periodic in f with period f =1 an increase of the applied frustration
beyond f = 1/2 does not lead to new physics.

Arrays in the regime where Ec < Ej [21, 22, 23] and the regime where
Ec > E; [3, 24, 25| have been studied by other groups as well as ours. The
intermediate regime has not yet been investigated systematically. Here, we will
give an overview of the quantum-mechanical effects observed in these arrays and
compare them with existing theories. This chapter is organized as follows. In
the next section, we give the array characteristics and some of the experimental
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Figure 2.2: Typical plots of the zero-bias resistance versus magnetic frustration,
for a) square array and b) triangular array. In addition to the commensurate
states labeled in the figure, the triangular array also shows dips at f = 5/12 and

F=3/1.
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details. In section 3, we summarize results on the zero-field S-I transition as a
function of the E¢/E; ratio. In section 4 we will discuss in detail the arrays that
are at the superconducting side of the zero-field phase diagram, but close to the
transition. In the presence of a non-commensurate magnetic field, we observe
a strong influence of the £;/E¢ ratio on the vortex dynamics. In section 5 we
report on the S-I transition induced by magnetic field that is observed in the
arrays closest to the transition and has been attributed to Bose-condensation of
vortices. Finally we will present our conclusions and discuss the questions that
remain on the vortex behavior in this regime.

2.2 Experimental details

Arrays in this study are fabricated of all-aluminum high-quality Josephson tun-
nel junctions with a shadow-evaporation technique [26]. The islands are coupled
with small tunnel junctions to four neighbors (square cells) or to six neighbors
(triangular cells). We will refer to these arrays as “square” or “triangular” re-
spectively. The smallest junctions have an area of 0.01 um?, All arrays are 190
cells long (L=190) and 60 cells wide (W = 60). A unit cell of the array has an
area (S) of 4 um? and one island has an area of about 1 pm?.

An independent estimate of the junction capacitance C is obtained from mea-
suring the voltage offset (Vomset) at high bias currents at T=10mK in a magnetic
field of 2T. Using the so-called local rule {27] and neglecting possible parasitic
contributions (capacitance to ground and capacitances between islands further
away) Voges = Le?/(2C). We find C to be 1.1{F for our smallest junctions
leading to a charging energy (Ec = €%/(2C)) of 0.84K. The local rule is com-
monly used to determine the junction capacitance in small series arrays, in which
the parasitic contribution is known. We find similar capacitance values in these
systems when junctions are made with the same fabrication process.

We have measured Cj, the island capacitance to ground, in smaller arrays with
high E¢/E; ratio by applying a voltage between the array and the underlying
ground plane. When sweeping the voltage one observes oscillations in the current
just above the charging gap which, in the normal state, should have a period of
e/Cp. From this experiment we find Cp = 12x1071® F so that for our arrays, C
is at least two orders of magnitude larger than Cj.

The normal-state junction resistance R, follows from the normal-state array
resistance ,, measured at 4.2 K, R, = Wr,/L. The maximum junction critical
current in the absence of charging effects and thermal fluctuations (1) is assumed
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Sample | R, | C | BA(0) |E;/ks|Ec/E;| v
(kQ) | ({F) | R. = R, | (K) (f=0)
st | 3 [ 11| 96 021 | 455
S2 153 | 11| 174 | 050 | 1.82
S3 145|111 | 156 | 053 | 1.67 | (0.28)
S4 [115| 11| 124 | 066 | 125 | 04
S5 [105|11] 113 | 073 | LIl 0.7

S6 5 | 1.1 5.4 15 0.56 | 0.83
S7 g | 2 15.6 0.96 | 048 | 0.85
S8 6.8 | 1.7 | 113 1.1 045 | 0.88
S9 2.5 | 1.1 2.7 3.1 027 | 0.90
S10 | 33 | 35| 113 2.3 0.14

S11 |[1.14 ] 11 1.2 67 | 013 | 095
T1 [257] 12 29 0.30 2.6 1.15
T2 |238| 17 39 0.32 1.7 1.6
T3 | 83 | 11 8.7 0.92 0.9 1.51
T4 47 | 11 7.2 1.6 035 | 1.85

Table 2.1: Sample parameters

to be given by the Ambegaokar-Baratoff value [28] with a measured critical tem-
perature of 1.35K. At low temperatures, I.R,=322 4 V. The Josephson coupling
energy of a junction E; (=®¢l./(2n)) is inversely proportional to R,. In this
paper, we present data on arrays with R,-values ranging from 1 k) to 36 kQ,
while junctions capacitances remain between 1-3.5 {F.

To compare the influence of the ratio of E¢/E; on the properties of square
and triangular arrays, we have to take into account that the different geometries
will influence the freedom of the phases or localization of the charge carriers on
the islands. In square arrays each island is coupled to four junctions while in
triangular arrays each island is coupled to six junctions. The energy required to
store an additional Cooper pair on an island in a triangular lattice is 2/3 times
that in a square lattice with the same junction capacitances. Also we expect the
freedom of the phase on the island to be determined by the Josephson coupling
energy of all junctions connected to it. To account for these effects we have
defined an effective ratio x as ¢ = E¢/F; for square arrays and z = 4E¢/9E;
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for the triangular arrays.

In small series arrays it is known that all islands carry random offset charges
that are presumably caused by charged defects in the junctions or substrate.
Free charges will partly compensate these offset charges so that their value lies
between —e and +e. These charges can be nulled out by the use of a gate for
each island. In a 2D array similar offset charges are expected. Here in practice
they cannot be compensated because too many gate electrodes would be required,
with complicated fabrication, and tuning, procedures. Some degree of intrinsic
disorder is therefore present as random offset charges cause the strength of the
charging energy to vary from site to site.

The degree of damping in junctions is commonly defined through the Mc-
Cumber parameter 3,(T) = 2rI.(T)CR?/®y, where R, is the effective damping
resistance per junction. The junctions of all our arrays are underdamped (8. > 1)
even when we take R, = R,. At low temperatures and as long as the voltage
across the junction is significantly lower than the gap voltage, we expect that the
dissipation in the junctions is determined by the quasi-particle resistance which
is orders of magnitudes larger than R,.

At low temperatures, the flux penetration depth AL (T) = ®/(2mpol(T)) is
much larger than the array sizes so that the magnetic field is essentially uniform
over the whole array. Self-induced magnetic fields can therefore be neglected in
our arrays. A similar conclusion can be drawn by considering the ratio of the cell
inductance (we estimate the geometrical inductance to be of the order of 1 pH) to
the Josephson inductance (> 1 nA). In table I, we summarize the characteristics
of the arrays that have been measured.

We measure the arrays in a dilution refrigerator inside y-metal and lead mag-
netic shields at temperatures down to 10mK. Electrical leads are filtered with
rfi feedthrough filters at the entrance of the cryostat and at low temperatures by
means of RC and microwave filters. Small perpendicular magnetic fields can be
applied by two coils of superconducting wire, placed in a Helmholtz configuration.

2.3 S-I transitions in zero field

The S-I transitions as a function of the E¢/E; ratio have been theoretically stud-
ied in infinite, square arrays in zero field and without disorder. Fazio and Schon
[10] have calculated the phase diagram and from the vortex-charge duality esti-
mated the critical value z., separating superconducting and insulating behavior
at T = 0. In the absence of damping the result is z., = 7°/(2a). The factor a
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arises from the symmetry breaking term, which is the spin-wave contribution to
the charge correlation function and is larger but of order one. Dissipation due to
quasi-particle tunneling increases z., by a factor (1 — a?)™!, where oy = R,/R.
).

It has been argued that the zero-temperature resistance R at the critical
point is finite so that the array acts like a normal metal right at the S-I transition
[6]. From the vortex-charge duality one expects the resistance to be the quantum
resistance of pairs, R, = h/4e®* = 6.45 k€. This value of the resistance can
be thought of as the simultaneous passing of one Cooper pair and one vortex
through the system. More detailed calculations on interacting bosons on a 2D
lattice (Bose-Hubbard model) have shown that in the absence of disorder and
dissipation R has a universal value of 8R, /7 [29, 30]. When resistive shunting
of the junctions is included, R is expected to be of the order of R,/0.12 [14].

Figure 2.3 shows the resistive transitions of six different square arrays in zero
magnetic field.  The array resistance per junction (Rp) is measured with a
very small transport current (< 107%7.) in the linear part of the current-voltage
characteristic. Three arrays become superconducting, two arrays insulating and
one array close to the S-1 transition shows a doubly reentrant dependence. The
horizontal dashed line in Fig. 2.3 is the zero-temperature universal resistance
value of 8R, /.

The three samples that become superconducting at low temperatures, undergo
a Kosterlitz-Thouless-Berezinskii (KTB) phase transition [31] with unbinding of
vortex and antivortex pairs. The linear resistance above the KTB transition fol-
lows a square-root cusp dependence [32] on temperature. For classical square
arrays the KTB-transition temperature is Ty = wE;/(2evkg) with ey = 1.7.
When approaching the S-I transition we find that Ty decreases. At low resis-
tance levels (Ry < 1073R,,), deviations from the square-root cusp dependence are
found and the resistance decreases exponentially, indicating thermally activated
behavior. We have shown that this is connected to single-vortex crossings over
the finite width of the sample [16].

Two arrays become insulating, showing a continuous increase of Ry as T is
lowered. Like other groups [24, 25] we don’t find evidence for an KTB transition
of Cooper pairs excitations [10, 33, 34] which is possibly due to the small effective
screening length [33, 35] or the presence of random offset charges [36]. Instead the
measurements show an exponential decay of the conductance which is discussed
in detail in ref. [24].

The resistance of sample S3 has a very remarkable dependence on temper-
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Figure 2.3: The zero-field linear resistance per junction measured as a func-
tion of temperature for six different arrays. Curved dashed lines are fits to the
vortex-KTB square-root cusp formula. The dashed horizontal line shows the
zero-temperature unjversal resistance of the S-I transition at f = 0.

ature. Starting at high temperatures, R, first decreases when the temperature
is lowered. Over two orders of magnitude it follows the square-root cusp ex-
pression. Below T=150mK, however, Ry increases by more than three orders of
magnitude, and at 40 mK it starts to decrease again. Singly reentrant behavior
in the quantum regime is also observed in thin films [37]. It can be attributed
to the influence of damping (38, 39], the combination of damping and finite size
effects [40] or the presence of random offset charges on the islands [14]. For the
second reentrant behavior at 40 mK we have no explanation. We have observed
a clear second reentrant transition also in sample S4 at the commensurate field of
1/3 and in sample T1 at a frustration of f=0.03. It seems to be a general feature
of arrays close to the transition.

Summarizing the zero-field results we have constructed the phase diagram
shown in Fig. 2.4. The square and triangular markers represent data obtained on
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Figure 2.4: Measured phase diagram of our arrays in zero magnetic field, showing
the superconductor-to-insulator transition at x = 1.7. Squares represent data
obtained on arrays with square cells, and triangles represent data of arrays with
triangular cells. The scaling factor 7,9 is 1.45 for the square arrays and 1.7 for the
triangular arrays. Dashed lines are guides to the eye. The solid line corresponds
to theoretical results of José et. al. .The transition temperature of sample S1
at r = 4.55 and 7/7,4 = 1 is not shown in the figure but falls on the line that
separates the insulating from the conductive regime.

square and triangular arrays respectively. The superconducting-to-normal phase
boundary is the vortex-KTB phase transition. Temperature on the vertical axis
in this figure is given in units of 7 = kT /E; and scaled to the experimentally
determined KTB transition temperature 7y of the samples closest to the classical
limit. For square arrays 7yq is 0.95, which is close to the value of 0.9 that has
been calculated [41, 42]. For the triangular arrays we find 7y is 1.7 which should
be compared to the calculated value of 1.45 [19]. As a function of z a clear,
systematic decrease of the KTB transition temperatures is observed, both for
square and triangular arrays.

As discussed above no phase transition was observed for the insulating arrays.
The data points represent the crossover from a region where Ry > 10°R, to a
region where 107 < Ry/R, < 10*2. In the insulating regime, we find good quan-
titative agreement (within 15 %) with ‘phase boundaries’ from the Harvard [24]
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and Chalmers [25] data when taking the same definition and specific capacitances.
For the square arrays we find that z..(f = 0) & 1.7. If we neglect quasiparticle
tunneling @ ~ 3 in agreement with the predictions from Fazio and Schén [10].

The solid line in Fig. 2.4 is the result of a recent study in which corrections to
the classical KTB-transition temperature are calculated using an analytic WKB
renormalization group approach supported by non-perturbative Quantum Monte
Carlo simulations [43]. These calculations indicate universal behavior when pa-
rameters are normalized as in Fig. 2.4. The dashed line is the Quantum Monte
Carlo result which fits our data well especially in view of the absence of fitting
parameters.

2.4 Vortex dynamics

In the classical regime where E¢ < Fj, the dynamics of vortices is often explained
in terms of non-interacting vortices obeying an equation of motion analogous to
the equation for the phase difference across a single junction [44, 45, 46]. Vortices
with mass My move in the intrinsic periodic potential of the lattice. Damping is
taken into account by a phenomenological viscosity term. The cell-to-cell energy
barrier F, for a single vortex has been calculated numerically in a quasi-static
approach [32] to be Ey = vE;, where v = 0.2 for a large square array and 0.043
for a large triangular array. Depinning of vortices is expected at (v/2)(W +1)I..

In a continuum approach the vortex mass M, is found to be M, = ®3C/2p*
for a square [44) and ®3C/3p? for a triangular lattice [47], where p is the distance
between vortex positions in nearest neighboring cells. More recent calculations
show that the dynamic band mass might be an order of magnitude larger [48].

The influence of a finite resistance shunting the junction can be translated into
a vortex McCumber parameter that is 3., = v, in a square lattice and 5., =
376./2 in a triangular lattice. In recent numerical calculations it has been shown
that in an underdamped array an additional dissipation mechanism arises because
the moving vortices induce oscillatory modes, called spin waves. These spin waves
can lead to an effective damping that is higher than R, [49, 50, 51, 52, 53].

For the experimental situation the single vortex model is clearly an oversim-
plification. Typical measurements are performed in a field of f = 0.1, where the
distance between vortices is as small as three cells and vortex-vortex interaction
may not be negligible. At the edges of the array, field dependent barriers may
be present that are also not accounted for. Still several experimental results can
well be explained within this model.
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The temperature dependence of the zero-bias resistance (vortex creep) has
been measured in square arrays. It shows exponential behavior and values for the
corresponding energy barriers lie between 0.3 and 0.7 E; [45, 54). The depinning
current at low temperatures for 3. = 1 approaches the calculated values in both
square and triangular samples [23]. Lower values are found for higher values of
B.. Above the depinning current, there is a flux-flow branch where the resistance
increases linearly with f for f < 0.2 and like in single junctions, hysteresis in the
I-V curves indicates the presence of a mass term [21]. In the flux flow regime the
effective damping resistance can be measured and is found to be of the order of
R, for 3. between about 1 and 50, and lower than R, for higher values of 5. [23].

Here we will focus on the differences that we find in the vortex dynamics
of arrays when approaching the S-I transition. For low vortex densities (low
f and not too close to the S-I transition), we will discuss our results within
the single vortex model. Theoretically it has been shown that the influence of
phase fluctuations on the vortex dynamics can be modelled as a lowering of the
cell-to-cell barrier, the depinning current and the vortex mass [55]. The trends
that we observe in our experiments are in agreement with these predictions.
Quantitatively, there are deviations indicating that the vortex dynamics near the
trapsition are still not completely understood.

In Fig. 2.5, the resistance of sample S11 measured with a small current is
shown as a function of 1/7. For this array 1/7 = 10 corresponds to a temperature
of about 650 mK. One clearly sees the exponential behavior, which extends over
more than three orders of magnitude in Ry. All arrays on the superconducting
side of the S-I transition show a region with exponential decay and we have fitted
our data in this regime to a standard Arrhenius form with a frustration dependent
energy barrier

Ro(7) = 1 Rpe7M), (2.1)

In table II, we summarize the results of our samples giving the values of v(f)
and ¢; for f = 0.1 of all samples and some f-values for one square and triangular
array in particular.

The values of the energy barriers for our triangular and square arrays are
plotted in Fig. 2.6a. Just as in the zero-field phase diagram we have plotted the
effective ratio z on the x-axis of Fig. 2.6a and for the square arrays we have added
some values obtained on arrays in the classical regime.

For square arrays the energy barriers initially increase as x increases with
about a factor of four. Around z = 1/2, there is a sharp decrease of almost
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Figure 2.5: The linear resistance per junction of array S11 (a), and array S5 (b)

measured as a function of inverse renormalized temperature 7

-1

for various values of the magnetic field.
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Figure 2.6: a: Energy barriers, E,, determined from the thermally activated
behavior of the zero bias resistance at f = 0.1, for different samples versus x. b:
The array depinning current normalized to the array critical current of different
samples as a function of x for f=0.1 at a temperature of 10 mK. The connecting
lines are only a guide to the eye.

2F; and from that point on the energy barriers decrease. At the S-I transition,
E}, =~ 0. Similar behavior is found for other values of the frustration. The three
datapoints on triangular arrays indicate a similar sharp decrease at a slightly
lower value of z, 0.15 < z < 0.4. For the higher z values the energy barriers of
the triangular arrays are about a factor of 3 smaller than those for square arrays.

Quantum fluctuations are expected to reduce the effective barrier height for
vortex motion. At this point we don't have an explanation for the fact that the
energy barriers initially increase as we approach the transition. When plotting
the data as function of the plasma frequency of the single junctions w, = v/8E;Ec
in the array, the increase of the barrier is found to be close to Aw,. The sharp
decrease both for square and triangular arrays occurs at the point where fiw, =
E;.

In the classical regime the energy barriers are roughly proportional to the
depinning current. In the case of finite zero bias resistance the depinning current
is defined as the current where the voltage deviates 2 pV from the linear zero-
bias, or supercurrent branch. We have determined these depinning currents as a
function of z from the I-V curves at the temperature of 10 mK. In going from
the classical to the quantum regime, we find that the hysteresis disappears and
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Sample | f [ Y(f) | ¢1 | Roo | Smeas | Ssv | Smeas/Ssv
()
S4 01 | - |- [220] - - -
S5 [0025] 0.7 |0.1] 2.6 | 102 [26] 3.9
00505 (03| 11 | 94 |23]| 40
0075| 0.4 {05 35 | 86 [22] 4.0
01 | 03 |04| 150 | 74 {20] 38
015 | 01 |04| 80 | 60 |14 43
0.9 | 0.05 |0.3]2300] 51 |12 44
S6 01 | 05 [07] 22 | 94 |37 26
S7 01 | 1.8 [01]002] 167 |57 29
S8 01 [ 20 [05] - - - -
9 01 | 1.6 |04 - - - -
sio | 01 |15 |08 - - - -
s11 | 01 [ 1.3 [20] - - - -

T2 01 | 01 |0.4)5067! 3.5 [0.7 5.1
T3 003 ] 10 102] 68 | 94 |27 3.5
005 | 05 (02,746 | 74 |21 3.6
0075| 03 (03| 392 | 6.0 |17 3.5
01 | 02 (04| 746 | 5.7 | 1.5 3.8
0.125| 0.2 | 0.5|1057 | 5.5 |15 3.6
T4 0.1 25 |17 - - - -

Table 2.2: Resistive behavior

that the critical current is largely suppressed. In Fig. 2.6b, the depinning current
at f = 0.1 is shown as determined from the I-V curves. At low z the depinning
current of square arrays is suppressed by about a factor of 3 and surprisingly
the same for square and triangular arrays. The depinning current is clearly not
proportional to the barrier height. Already in the classical regime it has been
observed that the depinning current is sensitive to the amount of damping. In the
quantum regime depinning will probably be triggered by quantum fluctuations.
The depinning current will then not be so sensitive to the barrier height but
mainly depend on the damping present.

For the samples with lowest z, those in the regime where the energy barriers
decrease, we observe metallic behavior at the lowest temperatures; below a certain
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critical temperature between 100 and 200 mK the resistance becomes temperature
independent and remains finite down to the base temperature of 10 mK of our
dilution refrigerator. In Table II we have also listed the values of the finite
resistance per junction (Rg). We do not expect the metallic behavior to be
due to an effective noise temperature of 100 mK in our heavily filtered set-up,
because several samples do show a changing resistance below this temperature.
For example in Fig. 2.3 we see that the resistance still changes considerably for
T < 100 mK. We checked that varying the measuring current made no difference
in Ro(T) and self-heating effects can therefore also be excluded.

While at higher temperatures vortices are expected to be mobile due to ther-
mal fluctuations, classically one would expect them to be pinned in the vortex
lattice at 10 mK. The fact that we find a finite resistance at those temperatures
signifies that there exist a quantum transport mechanism for vortices analogous
to quantum tunneling of the phase in single junctions [56]. The exponential
behavior at higher temperatures and the flattening off of the resistance at low
temperatures fits well with the description of a single quantum-mechanical parti-
cle in a potential well. Assuming particles to be vortices with mass My tunneling
through barriers of E, = y(f)E,, one can estimate Ryo from the analogy with
single junctions [57] (moderate damping regime) :

Rgo = 7.2RqfV/1207s 7%, (2.2)

where s is given by

5= %g‘/zEbMu (1+ 0'27 ) (2.3)

e,v

and [, is the vortex McCumber parameter. We have fitted our data to Eq. 2.2
and in Table II, we have listed the measured values of s as Smeqs-

From the discussion on the measured values of the barrier height it is clear
that significant modifications of the single vortex model are neccessary in this
regime. However, to get a feeling for the magnitude of the measured quantum
tunnel rates, we list the values that are calculated from equation 2.3 using the
quasi-statically calculated, classical mass for a vortex [44], the measured barrier
height and an effective damping of the normal state resistance. The measured
values are about a factor of four higher than the ones calculated in the simple
approximation but differences between samples and between values of frustration
are small. The influence of the frustration and ratio E¢/E; mainly manifests itself
in the value of the barrier height. We could simply conclude that the results are
consistent with the single vortex model using a mass that is an order of magnitude
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higher than the one calculated in the static approximation. However as long as
the dependence of the barrier height is not understood we do not want to stress
this conclusion.

Another possible model for quantum tunneling of vortices that includes collec-
tive effects but also disorder, is variable range hopping as discussed by Fisher e.a.
[58]. In this model the vortex hopping length increases with decreasing temper-
ature. As the hopping length becomes larger than the distance between vortices
the temperature dependence changes from the classical Arrhenius behavior to a
power law of the form exp —(Tp/T)", where Ty is a function of the barrier height
and 7 is a constant between 2/3 and 4/5. In this model a temperature indepen-
dent resistance arises at low temperatures when the vortex hopping length equals
the width of the finite sample. In the 60 cells wide arrays that we measured this
seems not unreasonable. We have fitted the resistance in the temperature depen-
dent regime to the predicted Arrhenius behavior at high temperatures, and the
predicted power law at lower temperatures. For most arrays this does not im-
prove the agreement. In view of the large number of fitting parameters involved
we do not want to draw definite conclusions about the validity of this model.

2.5 Field-tuned transitions

In arrays with = near its critical value, where the strongest quantum fluctuations
are expected there exists a critical field above which vortices Bose condense.
As a Bose-condensate of vortices leads to insulating behavior this manifests it-
self as a magnetic-field-induced S-I transition. This field-tuned transition has
been considered theoretically by Fisher [59] in disordered systems and has first
been observed [60] in disordered InQO, films. In Fisher’s description, at low mag-
netic fields vortices are pinned in a vortex glass. For higher fields, the vortex
density increases and at some critical density, the vortices Bose-condense. The
resultant vortex superfluid leads to an infinite resistance. Because charges and
vortices are dual near the S-I transition, this transition can also be thought of
as Bose condensation of charges that happens with decreasing magnetic field. In
Josephson-junction arrays we don't expect vortices to form a disordered glass.
Because of the disorder due to the random offset charges discussed before, the
description is however adequate also for our system.

The general characteristic of this S-I transition is that when f is increased
from zero, the temperature dependence of the resistance changes sign at critical
values +f,. This is visible in the Ro(T') plots of Fig. 2.7. Below a critical value
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Figure 2.7: The linear resistance of sample T2 (a) and sample S4 (b) as a function
of temperature for different values of the magnetic field.

fe, the resistance has a tendency to decrease upon cooling down. The resistance
versus temperature looks similar to the samples discussed in the previous section,
including the metallic behavior at low temperatures. Above f, the resistance has
a tendency to increase and for low temperatures reaches a value that might be
orders of magnitudes higher than the normal-state resistance. This sign change in
the temperature dependence corresponds to the change in the I-V characteristic
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Figure 2.8: The linear resistance per junction of array T2 measured as a function
of the magnetic field for T = 50 mK (dotted line), 100 mK and 155 mK. Below
the critical field f., the resistance decreases when T is lowered; above fc in the
range f. < f < 0.25 the resistance increases.

shown in Fig. 2.1b.

A detailed way of observing the field-tuned S-I transition is by measuring the
resistance versus magnetic field for different temperatures. For sample T2 the
result is shown in Fig. 2.8. In the range 0 < f < 1/3, the R(f) curves look
very similar to the ones measured in thin films. Below the critical field f.=0.18
the resistance becomes smaller when the temperature is lowered and above f.
the resistance increases. In the upper part of tabel III we give the values of f.
and R, for the two square and the two triangular samples that showed similar
field~tuned transitions.

According to Fisher [59], the slopes of the R(f) curves at f. should follow
a power-law dependence on T with power —1/(zpvp). The exponents zp and
vp characterize the scaling behavior of the field-tuned S-I transition. When on
a double logarithmic plot the slopes of the R(f) curves at f. are plotted versus
1/T, we find a straight line in the temperature range 50 < T < 500 mK, as shown
in Fig. 2.9 for sample T2 and S5. The reciprocal of this straight line equals the
product zpvg. We find values between 1.2 and 2 in the different samples which
are also listed in table III. These values are consistent with the values found in
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Figure 2.9: The slopes of the R(f) curves of samples T2 and S5 at f, plotted as
a function of the inverse temperature. The slope of the dashed lines determines
the product of the critical exponents zgvg.

other junction arrays [9], InO,-films [60] and high-T., films [61, 62] as well as with
the theoretical expectations (25 = 1 and vg > 1). Right at the transition a
universal resistance of the order of the quantum resistance is predicted [59]. We
find resistances R, between 2.5 and 11.5 k.

A new feature introduced by Josephson-junction arrays is the existence of
field-tuned transitions near commensurate values of the applied field, f.omm [8, 9].
Studying the R(f) curves of sample T2 in more detail, we see critical behavior
not only around f = 0, but also around f = 1/4, f = 1/2 and, slightly less
pronounced, at f = 1/3 and f = 2/3. In this sample in total 10 critical points
are present when going from f = 0 to 1. For sample S5 we see similar transitions
at f =1/3 and f = 1/2. For each of these values, except f = 1/3 in sample T2,
zpvp has been determined as described above. In the lower part of tabel I1I we list
the results for sample T2 and S5, where we have defined f. = %+ foomm 6. For T2,
we find values of zgvp around 1 and critical resistance values of 11 kQ. For the
square array S5, the values of zgvg are about the same, but the critical resistance
is a factor 3 smaller. These transitions have not been studied theoretically. For
samples close to the S-I transition the commensurate states generally become
less pronounced which explains why in samples T1 and S4 we only observe a
transition around f=0.
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rSampleLfcomm l 6 1 R(kQ) ] ZBI/B]

sS4 0 | o1 ] 25 [ 12
S5 0 | o022 4 1.5
T1 0 | 002 45 |(44)
T2 0 |o014| 115 | 21

S5 1/2 | 005 | 34 1.2 |
1/3 |0015| 46 | 06
T2 | 1/2 {0025 11 0.7
1/4 |0.025| 12 0.8
1/3 | 001 | 145 -

Table 2.3: Critical exponents of field-tuned transitions

The changing nature of the I-V characteristic at the S-I transition is shown
in Fig. 2.10 in more detail and once more illustrates the competing dynamics
of vortices and charges. Below f. the J-V shows a supercurrent branch with
a non-zero slope arising from quantum tunneling of vortices as discussed in the
previous section. When the field is increased above f. a small charging gap opens
up in the supercurrent branch, but at larger scale the curve resemubles an I-V
characteristic on the superconducting side of the transition. As in studies on
granular Al films [63], these characteristics can be interpreted as an electric-field
tuned S-I transition where a dc bias voltage is used to overcome the Coulomb
barrier and at least partly recover Josephson tunneling. In a single junction a
negative resistance like we observe in our 2D arrays (see inset) is known as the
‘Bloch nose’ [3, 64]. For low currents, the -V follows a high resistance branch, but
at higher currents coherent Cooper pair tunneling processes (Bloch oscillations)
become important and decrease the averaged voltage across the junction.

Studying the width of the gap as a function of frustration we find that it
increases linearly with f as shown in Fig. 2.11. Theoretical studies on the Bose-
Hubbard model have considered the width of this charging gap [14]. They expect
the gap at T = 0 to be proportional to v/f, and predict a linear dependence, as
we observe in experiment, at 7 # 0 and/or in the presence of offset charges.
The absolute value of the gap is much smaller than the one calculated without
the presence of offset charges. Although detailed calculations for our case of
arrays with small capacitances to ground are not available it is expected that the
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Figure 2.10: Current-voltage characteristic of sample T1 at several values of the
magnetic field. I-V characteristics are offset in the z-direction for clarity. Note
the larger scale than that of Fig. 1. The inset shows the I-V characteristic at
f=0.2 on an expanded scale.

1 7
s
//
300t e .T1 It
)
> ~ u--S3 e
1 7
< 200+ w847 1
[o W - -
© A -7
=1} 2 -
7 P
100} L -
s
/,."/A’ .-
g 3d a o omc oW |

frustration

Figure 2.11: The width of the gap of samples T1, S3 and 5S4 measured as a
function of the frustration f.



46 Chapter 2. Quantum phase transitions and ...

disorder will greatly reduce the effective threshold voltage [65].

2.6 Discussion and conclusion

In the zero-field phase diagram discussed in section 2.3 we used the effective ratio
of the Josephson coupling energy and the charging energy x. The guide to the
eye in fig 2.4 suggests that in terms of this effective ratio the transition for the
triangular arrays is at 7., = 1.7, the same value as that of square arrays. We
have checked whether this leads to a consistent picture for the critical exponents
that are predicted for S-I transitions as a function of E¢/E; in zero and non-zero
magnetic field [59]. In order to compare the theoretical results for films with our
results, we replace the amount of disorder A and the critical amount of disorder
A, by the effective ratio z and z., respectively. The KTB transition temperature
7y and the critical field f, should then scale like:

TV = (Icr - -T)w (24)
and
for (2o — 2)* (2.5)

For the square arrays, using T = 1.7, we find that zv = 0.5 and v = 1.5. Using
again ., = 1.7 for triangular arrays we find the same critical exponent v = 1.5.

In fitting our square and triangular data points to equation 2.5 we find that
the proportionality constant is a factor of 5 smaller for triangular arrays than
for square arrays. This indicates that the magnetic field suppresses the effective
E; much stronger in a triangular array than in a square array but we don't
know of any exact calculation on the influence of the geometry on the field-tuned
transition. We note that results on vortex dynamics in the classical regime also
indicate a stronger influence of the magnetic field in triangular arrays.

Both for the zero-field S-I transition and at the field-induced transition it has
been argued that the zero-temperature resistance right at the transition should
be universal. For the transition in zero field we find at the transition a doubly
reentrant dependence of the resistance on temperature. The resistance at 10 mK
is close to the predicted value in absence of damping of 16 k2 [29], but we cannot
be certain about its value at zero temperature. At the field-induced transitions at
higher magnetic fields the resistance is temperature independent below about 100
mK. The resistance right at the transitions is again of the order of the quantum
resistance but varies from 2.5 to 11.5 k{) in between different samples. For the
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triangular arrays we should probably look at the resistance per square, which is
0.5 times the junction resistance. In that case the resistances vary between 2 and
6 kQ.

The phase transitions described above generally fit well with the observations
on thin films. A new feature of these arrays are the phase transitions at com-
mensurate values of the magnetic field that will be described elsewhere in more
detail [66]. In arrays the dynamics of vortices are of special interest. The obser-
vations discussed in this chapter show that the decreasing ratio of E¢/E;, or the
enhancement of phase fluctuations, has a profound influence on the dynamics of
vortices. With decreasing ratio of Ec/E; we observe a decrease of the depin-
ning current and surprisingly an increase of the barrier for thermally activated
behavior. Closer to the transition both the barrier and the depinning current
decrease and a finite zero-bias resistance appears that indicates some mechanism
of quantum transport. In samples closest to the zero-field transition a magnetic
field induces Bose-condensation of vortices.

Although we don’t have an explanation for the anomalous behavior of the
barrier height, the data do suggest a systematic dependence on the junction
plasma frequency that should be investigated in more detail. We note that close
to the transition the influence of random offset charge becomes important and
might decrease vortex coherence. The exponential decrease of the resistance
and the flattening off at low temperatures qualitatively fits well to the single-
vortex model. The fact that the junction parameters are so well known, calls
for a quantitative study of these quantum dynamics. When the random offset
charges and possibly edge effects can be included in theoretical models it should
be possible to decide on the general nature and the properties of the vortex in
this quantum regime.
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Chapter 3

The Aharonov-Casher effect
for vortices in
Josephson-junction arrays

W. J. Elion, J. J. Wachters, L. L. Sohn, and J. E. Mooij

Department of Applied Physics, Delft University of Technology and
Delft Institute for Micro-Electronics and Submicron technology (DIMES),
P. O. Box 5046, 2600 GA Delft, The Netherlands

Abstract: We report on an experiment where we observe
quantum-mechanical interference of vortices around an induced
charge. In a specially designed sample, vortices move along a
doubly connected path. On the superconducting island enclosed
by the path a charge can be induced by capacitive coupling to a
gate. In the resistance that arises from the moving vortices we
find clear oscillations as a function of gate voltage. The period of
the oscillations corresponds to the single electron charge e, due to
the presence of a small but finite number of quasiparticles. The
oscillations are due to quantum interference of vortices which is
a manifestation of the generalized Aharonov-Casher effect.
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Figure 3.1: Scanning-electron-microscope photograph of the device used to mea-
sure the Aharonov-Casher effect for vortices.
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3.1 Introduction

In a two-dimensional array of underdamped Josephson junctions it is possible to
magnetically induce vortices, with associated supercurrents flowing through the
junctions, and simultaneously induce a polarization charge on the superconduct-
ing islands. This idea has attracted ample theoretical interest, especially on the
nature of the possible interaction between vortices and the polarized charge. As
a consequence of the fact that vortices behave as macroscopic quantum particles
(1, 2, 3, 4] it has been shown that a vortex moving around a polarized charge
Q, experiences a phase shift in its wavefunction (4, 5, 6]. This phase shift can
lead to a persistent current of vortices or, when a vortex moves along a doubly
connected path, to interference effects. Here we report on the first experiment
that demonstrates this [7]. We measure the transport of vortices in a specially
designed array shown in Fig 3.1 and Fig. 3.2. As a function of the charge induced
on the island that is enclosed by the two possible vortex paths we observe clear
periodic oscillations. This is due to quantum interference of vortices, which, as
we will discuss later, is a manifestation of the Aharonov-Casher effect [8].

In a two-dimensional array of underdamped Josephson junctions, vortices in
the classical regime are described as particles with a mass (9, 10]. This mass
relates to the fact that a moving vortex will charge the junction capacitances
(C). The corresponding electrostatic energy is proportional to the square of the
vortex velocity, and can be viewed as the kinetic energy of the vortex. It has been
proposed [1, 2, 3, 4] that a vortex can also be considered a macroscopic quantum
particle. In fabricated arrays where the charging energy, Ec = €?/2C, is only
slightly smaller than the Josephson coupling energy, E;, quantum-mechanical
behavior of vortices has indeed been observed experimentally [11]. Arrays in this
regime show a finite zero-bias resistance at 10 mK which is attributed to quantum
tunneling of vortices. For E;/E¢ values of order one, a quantum phase transition
can be induced by a magnetic field, as a result of Bose condensation of vortices
[11].

The interaction between vortices and an induced charge was first described
by Van Wees [5]. He considers a ring-shaped array of Josephson junctions that
is bounded by superconducting banks. A charge @, can be induced on the inner
bank by means of a small capacitor that is connected to a voltage source. A vortex
in this array is restricted to a circular path. When a current I flows from the inner
to the outer bank, the vortex experiences a tangential force F' = ®qI/L, where @y
is the flux quantum %/2e and L is the circumference of the loop. After a vortex
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has moved around the circular path once its position is the same as at the start.
Therefore the force F' cannot be expressed as the gradient of a scalar potential.
Instead a charge vector potential Ag, defined as § Agdl = Qg, is introduced so
that the force on the vortex equals F = ®ydAg/dt. The resulting generalized
vortex momentum is thus p + ®oAq and the corresponding Hamiltonian of the
system is

(p+ ®oAg)?

v

H= +E,() (3.1)

Here E,(z) is a small periodic potential term that is proportional to the Josephson
coupling energy and arises from the discreteness of the lattice. m, is the vortex
mass that equals ®2C/2S in a square lattice with cell area S. A vortex that
moves around the loop once will acquire a phase shift of ";—’; § Agdl = 27r%1. The
charge on the inner ring induces a persistent vortex current that results in a
persistent voltage. When the loop is open, so that vortices can enter at one point
and exit at another, the same relative phase difference, 2%%, is imposed on the
two vortex paths between the points.

The dynamics of quantum vortices in a charged junction array have been
addressed by several other authors. Orlando et. al. [6] have arrived at simi-
lar conclusions as Van Wees by applying the Bohr Sommerfeld criterion to the
canonical momentum of vortices in a superconducting ring. Fazio [4] et. al. have
calculated the energy levels of a small ring-shaped array in the presence of a vor-
tex. They find that these levels are sensitive to the charge induced on the center
island.

The interference of vortices around an induced charge can be visualized as the
dual of the interference of Cooper pairs moving in a loop that encloses magnetic
flux. In the same way that the latter is related to the Aharonov Bohm effect {12],
the interference of vortices is a form of the Aharonov-Casher effect. In the origi-
nal work Aharonov and Casher discussed the interference of a magnetic particle
moving around an infinite line charge. This effect has been observed for neutron
beams [13]. Reznik and Aharonov [14] pointed out that magnetic vortices in a
superconductor should also experience the AC effect. In the Josephson-junction
arrays considered here, the Josephson penetration depth is comparable to the size
of the array and the magnetic flux is divided over all cells. Still, a moving vortex
is connected with a moving flux quantum and the vortex interference around an
induced charge is a manifestation of the generalized Aharonov-Casher effect.

In the remaining sections we will present our experimental results on the in-
terference of vortices. The specially-shaped array that we use is smaller than
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Figure 3.2: Schematic layout of the sample. Rectangles are superconducting
aluminum islands and crosses denote Josephson junctions. The junctions in the
hexagon have a smaller junction area than the junctions that couple the array
to superconducting current and voltage contacts. The dashed lines show the
possible vortex paths.

arrays that we have previously studied for other purposes. We have therefore
investigated the classical properties of the array in some detail using numerical
simulations. First we will describe the experimental details of our samples. We
will discuss the measured I-V characteristics for different magnetic fields and
compare them with the results of simulations performed in the classical limit.
We will then discuss the influence of the applied gate voltage on the I-V charac-
teristic. The periodic oscillations that we observe in the flux-low resistance are
due to the Aharonov-Casher effect. The last section contains a discussion of the
presented results and conclusions.
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3.2 Sample layout and parameters

In Fig. 3.2 we show the layout of the device that we designed to measure quan-
tum interference of vortices. Main part of the device is a hexagon-shaped array
consisting of six triangular cells of small Josephson junctions. A vortex can move
across the hexagon along two possible paths that are drawn with a dashed line in
Fig. 3.2. On the superconducting island enclosed by the two paths, a charge can
be induced by a gate that is fabricated near and in the same plane as the array.

Quantum effects in arrays generally become more pronounced as the charging
energy is increased with respect to the Josephson coupling energy. However, if the
charging energy is larger than the Josephson coupling energy a superconductor-
to-insulator (S-I) phase transition occurs. We therefore choose the junction pa-
rameters such that the ratio E;/E¢ of the junctions in the hexagon is between 1
and 1.5.

The hexagon-shaped array is coupled to superconducting busbars via junc-
tions that have a larger critical current. The corresponding larger Josephson
coupling, energy ensures that the barrier for a vortex to cross these junctions is
higher and thus confines the vortex to the two paths in the hexagon. When the
coupling energy is too large we expect that the freedom of the phases on the
outer islands will be restrained and the hexagon, no longer resembles a 2D array.
Contacts are connected to the busbars to current bias the array and measure the
voltage. Because the gate is evaporated in the same plane as the junctions it will
capacitively couple to all islands in the array. As long as the vortex is confined to
the hexagon only the center island is enclosed by the vortex path. The relative
phase difference between the vortex paths should then solely be determined by
the charge induced on this center island.

Junctions are underdamped Al — Al;O3 — Al junctions that are fabricated
with a standard shadow-evaporation technique [15]. The larger critical current
of the side junctions is obtained by using a larger junction area. Consequently,
the capacitance of these junctions is larger by the same factor, that we refer to
as o. We have measured several samples with different junction parameters and
different values of «. Here we will report on samples A, B and C that have values
of o of 3, 2 and 1.5 respectively. The normal state resistance of the junctions in
the hexagon is 5.5 k§2 for sample A, 7.7 k2 for sample B and 8.2 k{2 for sample
C. The capacitance of these junctions is about 1fF in all samples and the ratio of
E; over E¢ is calculated to be 1.5, 1.1 and 1.0 for samples A, B, and C. These
parameters are summarized in Table .
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[Sample | o [ R (k) | C (1F) | By/Ec [ Tuc (mK) |
A 3 5.5 1 1.5 450
B 2 7.7 1 1.1 500
C 1.5 8.2 1 1.0 | 650

Table 3.1: Sample parameters

Measurements were performed in a dilution refrigerator at temperatures down
to 10 mK. Leads were extensively filtered both at room temperature with rfi
feedthrough filters and at mixing chamber temperature with RC and microwave
filtering. Magnetic shielding was provided by p-metal and lead shields. With a
small magnet, magnetic fields up to 1 mT could be applied perpendicular to the
array.

3.3 Current-voltage characteristics

The conductive properties that we measure in samples A, B, and C are very
similar. As we will show later, a value of & = 3 is most ideal to observe the
Aharonov-Casher oscillations. We will therefore discuss the properties of sample
A in detail and where neccessary comment on differences with samples B and C.

In Fig. 3.3 we show the measured critical current of array A as a function
of magunetic field. This critical current is defined as the bias current where the
voltage exceeds 2 pV. For specific values of the magnetic field, such as 0.8, 1.2, 1.7
and 2.2 Gauss, the critical current exhibits sharply pronounced minima. In a large
array one finds broad minima in the critical current due to the matching of the
vortex lattice and the junction lattice [16]. The sharp dips that we find resemble
more those found in a long Josephson junction or an array of junctions in parallel.
In these systems each dip in the critical current marks the transition between a
number of N and N + 1 flux quanta in the array. In the classical simulations
that will be discussed in the next section, we find that in our small array the dips
also correspond to transitions between different vortex configurations. In general
all properties of a Josephson-junction array are periodic in the applied flux, with
a period of one flux quantum per cell. Because of the different cell sizes in our
sample, full periodicity does not occur within the range of 1 mT of our small
magnet. The critical current of samples B and C shows similar behavior. The
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Figure 3.3: The critical current of sample A as a function of magnetic field applied
perpendicular to the array.

dips occur within 15 % of the same field values as in sample A, while the relative
height of the dips varies for the different samples.

We can distinguish three different types of current-voltage (J-V) characteris-
tics for different values of the magnetic field. In zero field, as shown for sample
A in Fig. 3.4a, the voltage jumps to the BCS gap voltage as soon as the current
exceeds the critical current. A similar I-V characteristic is found for all values
of the magnetic field where the critical current is higher than about 20 nA. When
the bias current is increased further as shown in Fig. 3.4b, the voltage jumps to
two, three and four times the gap voltage in a manner that resembles the row-
switching feature in large arrays. The two rows in the hexagon can not switch
independently, which results in a smearing of the fourth jump.

For magnetic fields where the critical current is suppressed to below 20 nA, we
find the I-V characteristic shown in Fig. 3.5a. Below the gap a resistive regime is
visible that we will refer to as the flux-flow branch. The resistance of this branch
is of the order of the normal state resistance of the junctions. Hysteretic features
are present around the critical current. Looking more closely at the return branch
in the hysteretic part of the I-V characteristic we find that it consists of two parts
that have a different resistance. Similar features are more pronounced at higher
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Figure 3.4: a: The current-voltage characteristic of sample A in zero field. b: I-V
characteristic on larger scale, in a field of 1.2 Gauss. The row switching feature
is visible for all magnetic fields.

field values that we will not discuss further in this paper. We attribute these
effects to the small size and the different junction parameters in our array.

In Fig. 3.5b, we show the I-V characteristic for a magnetic field of 1.2 Gauss,
which corresponds to a dip in the critical current, Hysteretic features are no
longer visible and detailed analysis shows that the differential resistance below
the apparent critical current remains finite. For this particular magnetic field we
measure a zero-bias resistance of 80 2. A similar zero-bias resistance has been
observed in large arrays with this E;/E¢ ratio [11]. We associate this branch
with quantum tunneling of vortices through the array. We have also measured
this zero-bias resistance directly using a lock-in technique. The measuring current
is 1 nA which is significantly lower than the measured depinning current and we
have checked that the voltage depends linearly on this current. As a function
of magnetic field we observe sharp peaks at the field values where the critical
current is most suppressed. For samples B and C the zero-bias resistance is
generally higher but of the same order of magnitude as in sample A.
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Figure 3.5: a: Current-voltage characteristic of sample A in a magnetic field of
0.65 Gauss. The flux-flow branch appears for all magnetic fields where the critical
current is suppressed below about 20 nA. b: I-V characteristic in a magnetic field
of 1.2 Gauss which corresponds to a pronounced dip in the critical current. The
arrow points at the bias current at which the differential resistance shown in Fig.
3.9 was measured.

The fact that a magnetic field can tune the I-V characteristic to show either
semiclassical or quantum-mechanical features is typical for these small arrays.
In larger arrays a change in the nature of the I-V characteristic with applied
magnetic field is only observed for an E;/E¢ ratio in between 0.9 and 0.7. In this
regime the magnetic field induces a superconductor-to-insulator phase transition.
Our small arrays have a somewhat higher E;/E¢ ratio and do not show such a

phase transition.

3.4 Simulations

The geometry of the sample that we use is different from the usual arrays that we
measure, in that it is very small and that it has different cell sizes. Although the
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c) d)

Figure 3.6: The equilibrium vortex positions for a) 0.08 < f < 0.095, b) 0.1 <
f<0.12,¢)0.125 < f <0.205 and d) 0.21 < f < 0.235. For f < 0.08 there
are no vortices present. All configurations can be mirrored around the symmetry
axes of the array.

measured I-V characteristics show a depinning current and a flux-flow regime just
like those of large arrays, we found it essential to check whether these phenomena
can indeed be associated with the depinning and flow of vortices. We therefore
investigate the classical properties of the array, (i.e. neglecting charging effects)
using static and dynamic numerical simulations [17).

The geometry used corresponds to that of the fabricated sample. The cell
areas have been estimated from the sample layout, assuming that flux penetrating
a superconducting island can be added to the flux through the nearest cell. The
area of the outer cells numbered 1, 5, 6 and 10 (see Fig. 3.6), is twice as large as
the cell area of the middle cells in the hexagon, 2,4,7 and 9. The area of cells 3
and 8 is smaller than that of cell 2 by a factor of 4/5. The magnetic field is given
in units of frustration f which is defined as the flux through cell 2 divided by the
flux quantum.

Static Properties

In the classical limit the Hamiltonian of the array is:
h
H =% ;5E545[1 — cos(di ~ ¢j — Vi) — 2—6119 (3.2)
where the sum is over the nearest neigbhours, ¢; is the phase of the ith island,
T, = (2n/®o) f] Adl, with A = Hzj the magnetic vector potential and 9 is
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the phase difference across the busbars. Starting from an initial random phase
configuration, we solve the equation (9H/0¢;) = 0 iteratively to find the local
minimum of energy [18]. To identify the vortex positions we sum the phase
differences in each of the cells. A vortex corresponds to a sum of the phase
differences of an integer number times 27. Repeating this procedure several
times the minimum phase and vortex configurations have been calculated as a
function of magnetic field. Our results are shown in Fig. 3.6. For a magnetic field
higher than 0.075 the energy of the system is lowered by introducing a vortex in
cell 3 or 8. For fields higher than 0.095 the vortex is preferably present in cell
2, 4, 7 or 9. When the frustration exceeds f = 0.12 a second vortex enters the
array and for f = 0.21 the third. The repulsion between vortices at this point is
so strong that vortices will also be present in the outer cells.

We have calculated the barrier that a vortex has to overcome to move through
the array by fixing the phase difference ¥ across the busbars and calculating the
ground state energy as a function of #. The result is shown in Fig. 3.7.

For zero field the energy of a vortex in the array is higher than outside. As the
field increases this potential barrier changes to a potential well in which a vortex
is trapped. For this small array the field dependent edge barriers are clearly more
important than the cell to cell barriers that have been calculated in large arrays
[18]. The energy plots correspond to a vortex moving quasi-statically through
the hexagon. We can estimate the energy barrier for a vortex to cross the outer
larger junctions by setting the phase difference across the junction between cells
1 and 6 to w. The corresponding energy at f=0.08 is 4.5 E; higher than the
energy for a vortex in the hexagon. If we repeat this calculation for the case
where a = 1.5 the energy difference is only E;. We conclude that the possibility
to find a vortex in the outer cells is significantly higher if & = 1.5 than if o = 3.

Dynamic Properties

We have calculated the dynamic properties of our array modelling each junc-
tion with the RCSJ (resistively and capacitively shunted junction) model. The
resulting coupled second order differential equations are of the form:

dz’)’ij
dat?

LAl

dt

I
+siny; = + (3.3)

+Gn I

Be

where . is the McCumber parameter 2ei.CR? /h and +;; is the gauge-invariant
phase difference, ¢; — ¢; — ¥;;. To account for the large quasiparticle resistance
in our underdamped junctions we use a voltage-dependent shunt-resistance. This




3.4. Simulations 65

T

10 \_~/ T
f=0.12

f=0.085

"

5t f= ]

E, (Ep)

1 —_—

0 0.5 1 15 2

Vin

Figure 3.7: Quasi-statically calculated energy barriers for a vortex to cross the
Aharonov-Casher sample, for the case where o = 3

shunt resistance is the normal state resistance, R,, for voltages above the gap, and
100R,, for lower voltages. As the geometrical inductance of the cells is estimated
to be 10 pH we have neglected self inductance in our simulations.

Using a fourth order Runge-Kutta method the coupled differential equations
are solved. The resulting I-V characteristics are compared to the experimental
data, and analysed in terms of the individual phase differences. The calculated
critical current versus magnetic field is shown in Fig. 3.8a. The structure is very
similar to that found experimentally (Fig. 3.3). Comparing the critical current
with the calculated vortex configurations in Fig. 3.6, we find that the dip at
f=0.08 corresponds to a transition from zero to one vortex in the array. The dip
at f=1.2 corresponds to the transition from one to two vortices and the dip at
2.0 corresponds to a transition from two to three vortices. At a frustration of
1.6, where a dip is also visible, the difference between having vortices in cells
2 and 9 and having vortices in cells 2 and 4 is minimal. The absolute value of
the calculated critical current is larger than the measured result. We expect the
critical current to be reduced by quantum fluctuations. As the junctions in the
hexagon are more sensitive to quantum fluctuations than the larger junctions this
effect will also change the relative depth of the different dips.
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Figure 3.8: a: Critical current versus magnetic field, calculated by solving the set
of classical RCSJ equations for all junctions in the array. Current is normalized
to its zero field value. b: Calculated current-voltage characteristic for f = 0.08.
Current is normalized to the zero field critical current and voltage to the BCS
gap voltage. The resistive branch corresponds to vortices moving across the array
over one of the possible paths in the hexagon.

The calculated I-V characteristic for the magnetic field that corresponds to
the first dip in the critical current is shown in Fig. 3.8b. As in the experiment
we observe a critical current, a resistive branch below the gap and a jump to
the superconducting gap voltage at higher currents. We do not find a zero-bias
resistance in these classical simulations. We have evaluated the time dependence
of the phase differences of the individual junctions for a fixed bias current. In
the flux-flow branch we find that vortices move through the hexagon along one
of the expected paths.

In Jarger underdamped arrays it is well known that motion of vortices can
induce oscillatory modes that are called spin waves. In our small system, we do
find that phases oscillate after the vortex has left the array, but we do not find
any systematic behavior.
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Although the voltage in the flux-flow branch is much lower than the BCS gap
voltage, the shape of the I-V characteristic is to a large extent determined by the
normal state resistance. The subgap resistance can also be chosen 10.000 times
the normal state resistance without a significantly different result. From the phase
differences across the individual junctions we find that the voltage across specific
junctions does exceed the gap on time scales of the order of the junction plasma
frequency. In order to obtain a solution which corresponds to flux-flow, we have
to use a normal state resistance of 1 k2 instead of the actual value of 5.5 k€2 of
sample A. The fact that we have to assume a somewhat lower value for the normal
state resistance signifies that in the experiment there is an additional source of
dissipation that is not included in the simulations. As a possible mechanism we
think of high frequency damping due to the low impedance of the leads to the
current source.

3.5 Influence of the gate-voltage, Aharonov-

Casher oscillations

All measurements discussed thus far were performed with the gate connected
to ground to emsure a constant induced charge on the center island. In this
section we will discuss the changes occurring in the I-V characteristic when the
gate voltage is swept. To detect changes accurately we use a standard lock-in
technique and measure the differential resistance for different values of the current
bias. At a field of 1.2 Gauss, corresponding to the second and deepest dip in the
critical current we current-bias the sample at 5 nA. This is just above the critical
current which is pointed out by the arrow in the I-V characteristic at this field,
shown in Fig. 3.5b. In Fig. 3.9 the differential resistance of sample A is shown
as a function of gate voltage.  Clearly a periodic modulation is visible. We
choose a large enough bias current to not include the tiny remaining hysteresis
in the modulation which would result in anomalously large oscillations. Still the
modulation amplitude is largest just above the depinning current and decreases
for higher bias currents. Similar oscillations were found at other values of the
magnetic fields. At magnetic fields where the depinning current is smallest we
generally find the largest modulation amplitudes.

The depinning current itself also shows some modulation with gate voltage
especially when its absolute value is strongly suppressed. For the field of 1.2
Gauss this modulation is shown in Fig. 3.10. The relative amplitude of these
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Figure 3.9: Differential resistance of sample A as a function of gate voltage in
a field of 1.2 Gauss, which corresponds to the current-voltage characteristic of
Fig. 3.5b. The bias current is 5 nA with 0.25 nA modulation amplitude. inset:
Fourier transformation of the signal.

St

<
w E
\ S ﬂLWwMﬂvNﬂwmJbﬂfMﬂv“#NﬂMWMvﬂfMﬁmwﬁvﬂgﬂmv«
\
| 4y 1
; =75 -50 -25

Vgate (mV)

Figure 3.10: Critical current of sample A versus gate voltage in a field of 1.2
Gauss, which corresponds to the I-V characteristic of Fig. 3.5b.
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Figure 3.11: Current-voltage characteristics of sample A in a magnetic field of
1.2 Gauss (solid line) and 1.15 Gauss (dashed line).

oscillations does not exceed a few percent. We did not find any influence on
the critical current in zero field, nor at any magnetic field where no flux-flow
branch is present in the /-V characteristic. We did not measure the full I-
V characteristic at different gate voltages. We do however want to compare the
measured oscillations due to the gate voltage with the changes that occur in the I-
V characteristic as a function of magnetic field, shown in Fig. 3.11. Measuring the
magnetically induced change with the lock-in technique described above would
yield larger but qualitatively similar oscillations as those observed as a function
of gate voltage.

To determine the period of the oscillations we measured the capacitance of
the gate to the center island. We fabricated a different sample using essentially
the same layout as in Fig. 3.2. All large junctions were shorted and six small
junctions were left out, so that the center island was only connected to the su-
perconducting banks via two junctions. We measured several samples with a
junction resistance higher than 50 kQ2 and applied a 2 T magnetic field to com-
pletely suppress superconductivity. The measured I-V characteristic shows the
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Coulomb gap that is typical for a high-resistance double junction. The current
just above the threshold voltage is known to show an e-periodic dependence on
gate voltage. From the period of these oscillations we find that the capacitance
of the gate to the center island is 40 aF.

The oscillations in the I-V characteristic are shown to be e-periodically depen-
dent on the charge on the center island. These oscillations are only measurable
when a flux-flow branch is present in the -V characteristic and the voltage across
the array can be attributed to the crossing of vortices. We therefore conclude
that the transport of vortices depends e-periodically on the charge enclosed by
the two most favorable vortex paths. The Aharonov-Casher effect for vortices
in Josephson-junction arrays has a fundamental period of 2e. However, as men-
tioned in ref. [5], this full periodicity is only measurable when typical quasiparti-
cle tunneling times are long on the time scale on which the gate voltage is varied.
Although one might not expect quasiparticles to be present at a temperature of
10 mK, it is experimentally well known that it is difficult to completely eliminate
them {19, 20, 21, 22]. In our simulations we find that quasiparticles can also
be generated in the array when vortices are moving through. The tunnel rates
for quasiparticles are so small that no significant contribution to the current is
expected. Still, on the typical five minute time scale on which the gate voltage is
varied, tunneling of quasiparticles is not negligible. Whenever the gate-induced
charge exceeds the value of e/2, a quasiparticle will tunnel onto the island and
reset the charge to -e/2. In this manner the induced charge will remain between
the limits of [-e/2,e/2] and e-periodic behavior will be observed.

For the magnetic field of 2.2 Gauss, we find the oscillation shown in Fig. 3.12,
that consists of more than one Fourier component. From the simulations that
we discussed in the previous section, we know that at this particular magnetic
field vortices will also be present in the outer cells. When the motion of the
vortices is no longer confined to the hexagon, the charge on other islands than
the center island of the array will influence the relative phase difference between
the two vortex paths.

The importance of confining the vortices to the hexagon is illustrated by the
results of the measurements on samples B and C. Both samples show similar
oscillations as sample A in the flux-flow resistance, and smaller oscillations in the
critical current. The zero-bias resistance is higher than in sample A and oscilla-
tions can also be detected in the zero-bias resistance. For the lowest magnetic
field where the critical current is at a minimum the oscillations are similar to the
ones observed in sample A at this field. The Fourier transform shows a clear peak,
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Figure 3.12: Differential resistance of sample A in the flux-low branch as a
function of gate voltage in a field of 2.2 Gauss. inset: Fourier transformation of
the signal.

shown in Fig. 3.13 for sample C, at a frequency of 265V !, which corresponds to
an e-periodic oscillation around the middle island. In sample B some beating of
the oscillation is visible. At the second dip of the magnetic field the oscillations
in both samples become complex. The Fourier transform of sample C shown in
Fig. 3.13, shows three different periods, each similar to the ones we observed in
sample A at a field of 2.2 Gauss. These different periods may well result from
the vortices being no longer well confined to the hexagon. In these samples we
expect the confinement to be less effective because the outer junctions are only
larger by a factor of 1.5 or 1.

Measurements on other samples confirmed the importance of a. We did not
measure on samples with o larger than three as the junction barriers, that are
only a few atomic layers thick, then easily short. Most likely, when the size of
the outer junctions is increased, a too large part of the current will low through
the outer junctions in the hexagon. As expected, also the value of E;/E¢ is
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Figure 3.13: Fourier transformation of the oscillations in the flux-flow regime
in Sample C, at a field of 0.8 Gauss (solid line) and 1.35 Gauss (dashed line).
These field values correspond to the first and the second dip in the critical current

respectively.

important. Small ratios seem to lead to larger oscillation amplitudes, but when
E;/Ec is smaller than 1 the dips in the critical current become less pronounced
and mainly complex oscillations are observed. We expect the vortices to become
less localized as E;/Ec decreases and therefore confinement might no longer be
effective at too small values.

We have looked at the behavior of all three samples in the normal state by
applying a magnetic field of 2 T. The /-V characteristic shows the remnants of
a charging gap. The resistance at zero-bias is less than twice the normal-state
resistance in all samples. We did not find any influence of the gate voltage on the
I-V characteristic in samples A and B. Sample C does however show a complex
periodic modulation of the current at a fixed bias voltage. A Fourier transfor-
mation of this modulation shows the same three frequencies as we observed in
this sample in the Aharonov-Casher oscillations at higher magnetic fields. From
these measurements we conclude that the influence of the gate on the -V char-
acteristic is generally smaller in the normal state than in the superconducting
state. The oscillations in sample C indicate that the different periods observed
in some oscillations in samples in the superconducting state are indeed due to
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charge induced on other islands than the central one.

To study the temperature dependence of the oscillation amplitude, and thus of
the vortex interference, we have measured the oscillations in samples A, B, and C
at different temperatures. When raising the temperature the relative oscillation
amplitude had decreased by a factor of 10 at a temperature of 450 mK for sample
A, 500 mK for sample B and 650 for sample C. Because the oscillation amplitude
is very sensitive to the value of the current bias and because the shape of the I-V
characteristic changes with temperature, we do not want to be specific about the
precise shape of the decrease.

The effect of finite temperature has been discussed for a closed ring geometry
(5]. For a free vortex in a loop with a circumference L the separation between
levels is estimated to be 8 E¢/L*. In our small array we expect the vortex mass
to be higher and the level separation to be lower than 100 mK. In experiments
on Aharonov-Bohm interference in normal metal rings the phase shift ¢ not only
depends on the enclosed magnetic flux ® but also on the difference in length
between the left and right path AL. The total phase shift thus becomes o =
21®/®y + 2wAL/A, where X is the wavevector of the participating electrons
[23). When thermal fluctuations become larger than the distance between energy
levels the distribution of the wavevectors will equal AL and the interference
averages out. In our Aharonov-Casher sample we can roughly estimate the vortex
wavelength assuming that one vortex moves through the triangular lattice of the
hexagon at constant velocity. A typical voltage of 10 4V corresponds to a vortex
wavelength that is larger than array size. On this scale we expect the left and
the right vortex path to be symmetric and it is not so clear how the separation
between energy levels will determine the temperature dependence.

The interference does depend on the ratio between the charging energy of
the center island and the temperature. In particular we expect the amplitude
of the interference to decrease when quasiparticles are no longer localized by the
Coulomb energy. The tunneling of Cooper pairs on and off the center island does
not influence the acquired phase difference of the vortices, because the interference
is a 2e periodic effect. Tunneling of a quasiparticle however, changes the phase
difference by w. As long as the tunneling times are longer than the typical
vortex passing time of 200 ps we expect to see a gradual decrease as a function
of temperature. In our experiment the quasiparticles will not be in thermal
equilibrium and exact calculation is impossible. The measured values, listed in
Table 1 as T, are in the right temperature range.
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3.6 Discussion and conclusion

To find a flux-flow solution in the /-V characteristic there must be damping
present in the system. In our classical simulations the dissipation in the flux-flow
regime is mainly determined by the normal state resistance, which is a conse-
quence of the voltage across specific junctions momentarily exceeding the gap
voltage. This occurs when a vortex crosses a junction, but also due to the com-
plex oscillations of the phases that a vortex excites in its wake. In our simulations
we have to assume a smaller normal-state resistance than we actually had in our
experiment in order to find a branch in which vortices move at a more or less
controlled speed. This signifies that an additional damping mechanism is present
in our experimental system. We expect that in our small array the high-frequency
components of the motion of the phases on the busbars will be damped by the
low impedance of the electromagnetic environment. As the plasma frequency of
the junctions is of the same order of magnitude as the Josephson coupling energy,
quantum fluctuations can certainly not be neglected. These quantum fluctuations
will change the interaction between the vortices and the spinwave-type oscilla-
tions but no quantitative predictions are available for our small system. It would
be interesting to study the dissipation theoretically in more detail and possibly
translate results into an effective inelastic scattering length for vortices.

The fact that we find an e-periodic dependence on the gate voltage in our
superconducting system is a phenomenon that has often been observed in, for
instance, double junction systems [19, 20, 21, 22|. It is clear that the presence
of quasiparticles will reduce the expected period. That quasiparticles are present
at these low temperatures has been attributed to thermal fluctuations in the
measurement leads and to the breaking up of Cooper pairs on the island by
incident photons. In our array quasiparticles might also be created by the moving
vortices.

There are similarities between a double junction system and our Aharonov-
Casher experiment. In a double junction, a supercurrent is observed when the
Josephson coupling energy is of the same order of magnitude as the charging en-
ergy. This current arises because charge eigenstates are coupled by the Josephson
coupling {24]. By applying a gate voltage to the island in between the junctions,
the energy required to have an additional Cooper pair on the island can be low-
ered, which increases the supercurrent. It would be interesting to compare both
systems by calculating the quantum mechanical tunneling rates for Cooper pairs
through the Aharonov-Casher sample. Including the influence of the environ-
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ment through the P(E) function, as discussed in for instance ref. [25], one could
probably also analyze the dissipation mechanism discussed in the last section.
However, the complex geometry and the fact that one also needs to consider
finite voltage solutions make this a difficult task.

We have shown elsewhere [26] that the double junction can also be analyzed
in terms of the phase differences across the junctions that are the conjugate
variables to the charge. The tunneling of Cooper pairs is shown to be equivalent
to the interference of the phase variable, which shows the close relation with
the experiment that is reported on here. An important feature for the presently
discussed experiment is that we analyse the interference in a flux-flow branch
where vortices move at a controlled speed. We also find that in our geometry,
where charges are induced on several islands, the path along which the vortices
move is important.

The concept of a charge vector potential that is responsible for the Aharonov-
Casher effect, has been used also to describe infinite arrays where equal amount
of charge is induced on every island (4, 27]. This charge frustration plays the
dual role to magnetic frustration. Theoretical results indicate [28] that when
E; and E¢ are of the same order of magnitude both mechanisms have a similar
influence on the array behavior but of opposite sign. In our experiment we do
not know what gate voltage corresponds to zero induced charge because offset
charges will be present on the island. The influence of the induced charge on the
I-V characteristic is much smaller than the influence of the magnetic field, but
shows similar features.

To conclude: We have observed that the transport of vortices through an array
depends periodically on the induced charge enclosed by the possible vortex paths.
These oscillations are due to the quantum mechanical interference of vortices and
clearly demonstrate the Aharonov-Casher effect.
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Chapter 4

Interaction between charges and flux
quanta in small and large networks of
Josephson junctions
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Abstract: In systems of Josephson junctions where the charg-
ing energy is of the same order of magnitude as the Josephson
coupling energy, it is equally natural to describe the system in
terms of the charge on the junction capacitors or in terms of the
gauge-invariant phase difference across the junction. A changing
gauge-invariant phase difference implies motion of flux quanta
across the junction. By analyzing a double junction in terms
of these moving flux quanta a parallel can be drawn with a 2D
Josephson junction array through which vortices move. The in-
fluence of an induced charge can in both systems be attributed
to quantum interference of flux quanta.
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4.1 Introduction

The dynamics of classical Josephson junctions are usually described in terms of
the gauge-invariant phase difference ¢. The derivative of this phase with respect
to time is proportional to the charge @ on the junction capacitor. When the
junctions dynamics are treated quantum mechanically, charge and phase do not
commute. This leads to an Heisenberg uncertainty relation A¢AQ > e [1]. The
fluctuations depend on the ratio between the Josephson coupling energy E; and
the charging energy E¢ = %, where C is the junction capacitance. For large
Josephson coupling energy phase fluctuations are small and it is convenient to
describe the junction dynamics in terms of this phase. If the charging energy is
largest, the charge on the junction capacitor is the most natural choice.

Instead of the gauge-invariant phase difference one can also use a variable
that has the dimension of magnetic flux. A phase slip of 27 then corresponds to
the motion of a flux quantum across the junction. If a junction is connected in a
closed loop /, this is the simple consequence of Faradays law: ¢ E.dl = —33;@(1),
where ®(1) is the flux enclosed by the loop. The issue will be discussed in some
more detail in the next section.

Severa] experiments on systems of junctions with comparable Josephson and
charging energy show the interplay between Josephson and charging effects 2, 3,
4, 5, 6]. In this intermediate regime the physical mechanisms can be explained in
terms of Cooper pair tunneling or phase motion and the choice for either conju-
gate variable depends on convenience or convention. An example is the system of
two small Josephson junctions in series that is also known as the Bloch-transistor.
At temperatures lower than Ec/kp single Cooper pair tunneling events are en-
ergetically unfavorable. However, the Josephson coupling energy couples charge
eigenstates [7] and when the coupling is strong enough a supercurrent is observed
to flow through the system. The electrostatic energy of a Cooper pair on the
island in between the two junctions can be changed by applying a voltage to a
gate that is coupled to the island through a small capacitor. As a function of
the charge induced on this gate capacitor a modulation of the supercurrent is
observed that is 2e-periodic as long as the presence and creation of quasiparticles
can be neglected [2, 3, 4, 5, 6, 8].

We will show that there is an equivalent description of this system in terms
of interference of flux quanta. This concept follows from earlier work on single
junctions that we will briefly recapitulate in the next section. The interesting
aspect of this approach is that it gives more insight into the relation between a
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Figure 4.1: Schematic drawing of a) the rf-SQUID and b) the Cooper pair box.

1

double junction and a two-dimensional array through which vortices pass. We
will compare the motion of vortices in arrays with the motion of flux quanta in
smaller systems of junctions. In particular we compare the interference of flux
quanta in a double junction with the quantum interference of vortices that has
been predicted [9] and observed [10] in a Josephson junction array.

4.2 Persistent currents of Cooper pairs and flux

quanta

A familiar system in which flux is clearly related to tunneling of the gauge-
invariant phase difference is the rf-SQUID that is schematically drawn in Fig. 4.1a.

The Hamiltonian of the system reads:

2 - 2
Q_ + (® Qemt)

H=3¢e 2L

-E, cos(27r2) (4.1)
)

Here L is the loop inductance, ® is the flux in the loop and ®.,; is the
externally applied flux. The gauge-invariant phase difference across the junction
is given by 2%%. If the inductance is large the Hamiltonian is periodic in @
with a period of one flux quantum &, = h/2e. The energy eigenstates can be
classified according to the Bloch theorem [11, 12]. Each value of the applied
flux corresponds to a persistent current of Cooper pairs in the ring. There are
interesting predictions for macroscopic coherence of two quantum states at ® =
®,/2 [13] but these have so far not been observed experimentally.
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The dual circuit to the rf-SQUID is the Cooper pair box that is shown in
Fig. 4.1b [14]. A single Josephson junction is connected to a voltage source via a
capacitor. If the capacitor is very small compared to the junction capacitance the
induced charge @, can be treated as a control parameter and the Hamiltonian of
the system is

H=(Q-Q,)?*/2C ~ E;jcos ¢ (4.2)

For Ec > E; the gate voltage charges the gate capacitor and effectively
changes the voltage across the junction. The charge Q can be interpreted as the
momentum operator in the phase representation. For every gate voltage there is
a persistent motion of the phase difference across the junction and consequently
a persistent current of flux quanta. When the gate-voltage is increased and the
charge on the gate-capacitor exceeds e, a Cooper pair will tunnel across the
junction to keep the system in its lowest energy band.

The rf-SQUID and the Cooper pair box are dual systems, where the roles of
phase and charge are reversed [14]. The induced charge @, plays the role of the
flux in the example of the rf SQUID.

A subtle difference between the variables of flux and phase is that the phase
is periodic, while the flux is an extended variable, This issue has been extensively
discussed in literature {15, 16, 17]. It is argued that for a junction that is coupled
to the electromagnetic environment there is a finite change in energy connected
with the changing of the phase difference and the situation before and after a
27 phase slip are therefore not indistinguishable. In the example of the rf-squid
the loop inductance makes it in principle possible to count the number of flux
quanta present in the ring. In this case the charge on the junction capacitor is a
continuous variable. For a junction that is decoupled from the environment as in
the Cooper pair box, the change in energy connected with a 2w phase slip is zero.
The Hamiltonian is periodic in either flux or phase difference and the conjugate
variable, the charge on the island, is discrete.

| 4.3 Interference of flux quanta in a double junc-
tion

The Cooper pair box discussed above shows persistent currents of phase-difference
or flux. We can extend the picture by looking at the "open” geometry where
a doubly connected path leads to interference. The approach we will take is
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Figure 4.2: Schematic drawing of the double junction discussed. Two large ca-
pacitors are connected in parallel with the current source, which closely resembles
the situation in the experiment.

analogous to the picture of the washboard potential that is commonly used for a
single junction in the classical limit. We connect the junction through a perfect
current source, which is equivalent to making the inductance in Fig. 4.1a go to
infinity. The phase difference ¢ across the junction obeys the following equation
of motion:

b - .
5 0o+ Lsing=1 (4.3)

This equation resembles the equation of motion of a particle in a washboard
potential. Because damping is not included in this model dynamic calculations
are not possible. Still the washboard model is valid to calculate the critical
current of the system, which is the current above which the equation has no stable
solution. The position of the particle in ¢-space has a one to one correspondence
to the position of a flux quantum moving in real space. Although we cannot tell
the position of the flux quantum exactly, we know that when the phase difference
across the junction changes by 27, a flux quantum moves across.

We use the same approach in a more complicated system consisting of two
junctions in series, the Bloch-transistor. The island in between the two junctions
is coupled to a gate with a small capacitor C, so that a charge @, can be induced.
The system is connected to a current source in parallel with two large capacitors
Cy. This connection, shown in Fig. 4.2, closely resembles the experimental set-up,
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where all the measurement leads have a large capacitance to ground.
The Hamiltonian is:
¢

— 2 2
(Q- - Q) + Qr 2?—1 cOs — O+ Cos — — 21%¢+ (4.4)

H="¢6%c, T20+20 ‘o 2 2

The variables are Eﬁ‘m and 32¢_ where ¢ is the sum of the phase differences of
both junctions and ¢- is the dlf‘ference between them. The conjugated variables
are the charge on the external capacitors ,Q4, and the charge on the island Q_
respectively.

An outline of the derivation of this Hamiltonian is given in the Appendix to
this chapter. The Hamiltonian corresponds to the classical equations of motion:

¢+¢

Q. + 21,sin =+ cos 5 =2 (4.5)
Q_ + 21, cos Qi sin 4)2' 0 (4.6)

These equations resemble those of a particle in a two-dimensional potential land-
scape. Because of the different capacitances in the problem, the particle has a
different (band) mass in the two directions. In general the capacitance of the
leads to ground Cp will be much larger than the capacitance to the gate C,; and
¢, is a classical variable. The applied current tilts the potential in the ¢, direc-
tion and the critical current is determined by the onset of motion of this external
phase. In Fig. 4.3a we draw the minimum energy of the system as a function of
the external phase difference ¢..

When the external phase difference approaches the value of m the internal
phase difference switches from 0 to 27 or to -27. These possibilities correspond
to a phase slip occurring, or the flux quantum crossing, over the left or over the
right junction. By measuring the flux through the loop with the current source it
is in principle possible to tell that the external phase difference has changed with
27. The internal phase difference is a periodic variable and the value of -27 and
27 are indistinguishable from the initial value of 0. Reducing the internal phase
difference to values between [—m, 7| we find a doubly connected path in ¢-space
that is shown in Fig. 4.3b. This path is equivalent to a doubly connected path
of a flux quantum in real space.

Until now we have followed a completely classical approach. It is known that
when the charging energy becomes of the order of the Josephson coupling energy,
the internal phase difference becomes a quantum mechanical variable. We then
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Figure 4.3: a: Minimum energy as a function of the external phase difference ¢,
b: Corresponding doubly connected path in ¢-space.

expect quantum interference to occur between the two paths shown in Fig. 4.3b.
The induced charge Q, gives rise to a phase difference between both paths just
as in the dual system ,a DC squid, the phase difference between the interfering
Cooper pairs depends on the applied flux. Like in ref.[9] we could also define a
charge-vector potential in the periodic ¢_ direction as @, = — ¢ d¢_A, to show
that there will be a phase shift between both paths that is equal to 2#%. This
interference will influence the onset of phase motion, and thereby the critical
current of the system.
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As discussed in the introduction to this chapter, the critical current has ex-
perimentally been observed to depend on gate voltage. The usual description in
terms of tunneling of Cooper pairs is equivalent, and dual to, the interference of
flux quanta discussed above.

4.4 Vortices in 2D arrays

It is interesting to compare the motion of flux quanta across a junction with the
motion of vortices in a two-dimensional Josephson junction array. An array of
N x N junctions can be described with N? coupled equations of motion. In the
presence of a magnetic field, the energy of the array is lowered by introducing a
number of vortices. These vortices correspond to a special pattern in the config-
uration of the phases. The complexity of the description can be largely reduced
by using an equation of motion for the vortices, instead of for the junctions. For
a vortex moving along the z-direction in the array this equation takes the form:

I
M, + ni — yEysin(2nz) = T (4.7)

M, = ?%9 is the vortex mass, x is the position of the vortex in units of the lattice
constant and < depends on the lattice geometry. 7 is the effective damping. It
has been shown experimentally that vortices act like particles with a mass that
move in the periodic potential of the junction lattice (18, 19].

The additional degrees of freedom are attributed to spin waves, fluctuations
of the phases around the equilibrium value. Although dissipation in an array
is not yet completely understood, it is clear that in a large array these spin
waves provide an effective damping mechanism for the moving vortex, even if the
junctions themselves are underdamped [21]. The damping present ensures that a
vortex can move through the array at a controlled speed, which manifests itself as
a branch of finite resistance below the gap that is called the flux flow resistance.

In a double junction there is no flux flow regime. The voltage switches to the
superconducting gap as soon as the current exceeds the critical current. When
the system is measured using a voltage bias it has been found that Cooper pairs
cannot only tunnel at zero voltage but also, to a lesser extent, at specific voltages
that match dissipative modes of the electromagnetic environment. In very small
arrays with a special layout we have observed the I-V characteristic shown in
Fig. 4.4. The behavior resembles that of a double junction but the additional
degrees of freedom enhance and broaden the resonances. There seems to be a
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Figure 4.4: Example of a current-voltage characteristic of a small 2D structure
which resembles both the double junction and a larger array. The sample consists
of a pentagon-shaped array that is connected with two large junctions on each
side to the superconducting busbars. Just as for the Y-sample shown in Fig.
5.1, an extra voltage probe is present. The lead resistance in this two point
measurement has not been substracted.

smooth transition between the double junction, with frequency dependent damp-
ing provided mainly by the environment, and a large array where the damping is
determined by the junctions in the array.

The number of vortices in an infinitely large array is equal to the number of
flux quanta applied. In a typical fabricated array with small Al — Al,O; — Al
junctions, the Josephson penetration depth is so large that the magnetic flux is
not confined to the center of the vortex but almost uniform across the array.
Still a moving vortex carries a flux quantum. To inject current into an array
experimentally, superconducting busbars are often connected to the two sides.
The phase difference between the busbars can be viewed as the analogue of the
external phase difference in a double junction. Each vortex that moves across the
array will give rise to a 27 phase slip across the busbars. For low magnetic fields
where it is not favorable to have a vortex in the array the complete array resembles
a single junction with an effective Josephson coupling energy that depends on the

magnetic field.
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Figure 4.5: The proposed geometry to measure persistent current of vortices.

4.5 Interference of vortices

In arrays with small junctions vortices have been shown to exhibit quantum
mechanical properties [22). Van Wees (9] has studied quantum states of vortices
in a ring shaped array, bounded by superconducting banks as shown in Fig. 4.5.
A charge Q, can be induced to the superconducting inner ring, by means of
a small gate capacitance. If the Josephson coupling energy is larger but of the
same order as the charging energy of the junctions, a voltage is induced between
the inner and outer bank that corresponds to a persistent current of vortices
in the array. This persistent current is analogous to the persistent current of
flux quanta moving across the junction in the Cooper pair box. A charge vector
potential is defined as A, through the relation Q, = — § A,dl. The generalized
vortex momentum becomes P, + ®yA, and the appropriate vortex Hamiltonian
is:
2
H= (_P%%_Aq)_ + Ey(z) (4.8)
where P, is the canonical vortex momentum and E, is the periodic potential of
the lattice that is assumed to be small. In an array where vortices can cross
along a doubly connected path, quantum vortices interfere as a function of the
induced charge. This prediction has been tested in a recent experiment [10] using
a specially-shaped array. As a result of vortex crossings, a resistive branch is
observed in the I-V characteristic. The slope of this branch shows a periodic




4.6. Hall-effect for vortices 89

modulation with the charge induced on an island enclosed by the two possible
vortex paths. This effect is due to interference of vortices.

4.6 Hall-effect for vortices

The notion of a charge vector potential can also be used for an infinitely large
array in which the same non-zero charge g, is induced on every island. In analogy
to the well know magnetic frustration, the induced charge in this case is known
as charge frustration. A vortex moving in this array is predicted to experience
a force F = ¢,.®y(7 x 7). Here ¥ is the vortex velocity and 7 is the unit vector
perpendicular to the array. This force is sometimes referred to as the Magnus force
because its direction is perpendicular to the vortex velocity and gives rise to an
Hall angle. Contrary to the Aharonov-Casher effect, the Hall effect is a classical
phenomenon arising from the gate capacitor charging the islands. A handwaving
argument for the existence of this force is the following. When a vortex moves
across a junction connecting islands A and B, a potential difference is induced
that is proportional to the vortex velocity. The energy on the capacitance to
the gate of islands A and B changes by an amount (V? — (V, — Vu))?)/2C,,
where V4 = ~Vp are the potentials of island A and B. For V;, = 0 the energy
that the vortex requires to change the phase of island A and B will be the same.
If V, is not zero it will be different. The fact that the phase on one island can
change with less energy cost than the other leads to a bending of the vortex path.
The actual path depends on the energy of all islands and also on the dissipation
present. The force can however conveniently be described by the expression given
above, acting on a point-like vortex particle.

There is one fundamental question to this description. If the vortex is viewed
as a point particle it will never be located on the superconducting islands in the
array. On the other hand, the induced charge and the corresponding charge-field
is only present on the islands. In this sense the vortex in the charge-frustrated
array is equivalent to an electron moving through a two dimensional space in
which a lattice of screened (AB) fluxes is present. Aharonov e.a. (23] have shown
that in this case also a Hall effect exists that is periodic in the flux with period
.

We have also defined a charge vector potential for the double junction system
in section 3 of this chapter. When biasing the system with a non-floating and
finite voltage bias it is possible to induce an asymmetry in the voltages across
both junctions. This will be discussed in the next chapter in more detail. We do
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not propose to call this asymmetry a Hall effect. A similar asymmetry is present
in the dual system which is the DC squid. Here the current flowing through both
junctions is no longer equal when a magnetic field is applied.

4.7 Conclusion

We have shown how a vortex crossing an array bears close resemblance to a flux
quantum that crosses a junction when the phase difference changes by 27. Both
in an array and in a double junction the I-V' characteristic can be influenced
by an induced charge. In the case of an array this can clearly be attributed to
interference of vortices along a doubly connected path. In a less intuitive manner,
a double junction can also be described in terms of interfering flux quanta. This
description is the dual of the usual description in terms of tunneling of Cooper
pairs. In an array the same vector potential that determines the phase shift for
interfering vortex paths, leads to a Hall angle when all islands in the array are
charged uniformly.

The interference of flux quanta discussed above relies on the concept of charge
quantisation just as interference of Cooper pairs is the result of flux quantisation.
The interference of Cooper pairs in an rf-SQUID is also related to persistent
currents in normal metal rings. Apart from the absence of macroscopic coherence
in the normal state, the physical mechanism of a quantum mechanical phase shift
induced by the magnetic field is the same. In the normal state the dual to the
Aharonov-Bohm effect [24] is the Aharonov-Casher effect [25] where flux quanta
move around an infinite line charge. The interference of flux quanta in systems
of Josephson junctions is a generalized form of the Aharonov-Casher effect.
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4.8 Appendix: Interference-description of the

Bloch transistor

In the circuit of Fig. 3 current conservation in every node means:

Lsing; + 200G, — I~ GV =0
Lsingg + 20Chy — I — CoVp =0 (4.9)
I.sing; + 220 — I.sin gy — BCéy + CgV, =0

where ¢;(;) are the gauge-invariant phase differences across junction 1(2), Vi)
are the voltages across the large capacitances Cp, and Vj is the voltage across the
gate capacitance.

Also the sum of the voltages around every loop should be zero.

_ B
{Vl+U Vot ord1 =0 (4.10)

‘/2 -U + V;; + %?:(pz =0
where U is the voltage applied to the gate C,.

It is useful to change to sum and difference variables, ¢, = ¢ + @9 and ¢ =
@1 — ¢o. We find the following set of equations:
$8Céy — Co(Vi + Vo) + 2L sin § cos § = 21
%‘}QcL + C’QV{, + 2; cos £ sin =0
C,Vy = —Co(Vi - V&) (411)
%}‘{% =-(Vi1+ 1)
204 =2V, — 20— (Vi ~ Vh)

We introduce two new variables: The charge on the island

&, -
Q- = 2—7‘:C¢_ + GV, (4.12)

and the total charge on the other capacitors:
T o

The equations can now be written as 4 equations of motion:

Q Céy — Co(Vi + Va) (4.13)

Q+ + 21, sin ?,I;t cos ‘%‘ =27
Q-+ 2Iccos%isin"’32‘—. =
Q- =220+ Cy)p- + Co(U + Mi54))

(4.14)
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with the "boundary” condition:
CyVy = ~Co(Vi = V3) (4.15)

Defining @y = CgV and assuming Vi — V, « U the Lagrangian of the system
becomes:

Q> - Q% o o+ ¢ Dy
= 291, cos =¥ cos == + 21 = .
L 20+C, T 2C + 20 g Hecos reos o+ 20504 (4.16)

The conjugate variable of 22¢_ is

— o = - 4.17

By 50 (4.17)
and the conjugate variable of 22¢, is

2r 6L

22 2Z = 4.18

TR (418)
The Hamiltonian that follows from this Lagrangian then takes the familiar form:

(Q_ — Qu)? Q% @ Pr  P- o
= ~ =291, cos Z¥ cos &= — 212 41

H= o ese, Ti0+C, iy sy Uyt (419)
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Chapter 5

Heisenberg’s principle

5.1 Introduction

While pioneering research is inevitably unpredictable this aspect is usually not
stressed when results are presented. A good example is the article on the demon-
stration of the Heisenberg principle in a superconductor that is reproduced in
section three of this chapter. Originally we intended to measure the Hall ef-
fect for vortices in a small Josephson junction array. It has been predicted that
moving vortices experience a force perpendicular to their velocity when charge
is induced on the islands of an array [1, 2]. To measure this we thought of a Y
shaped array, shown in Fig. 5.1, where vortices enter at one end and can choose
two paths to leave the array. On the island where the vortex path splits a charge
can be induced with a gate. The fraction of vortices going out through the left
and right path should depend periodically on the induced charge.

When the finite size of the sample turned out to have a large influence, we
decided to first study how the voltage is divided in a much smaller structure,
two junctions in series with a gate capacitively coupled to the island in between
the two junctions. As we will show in the next section one expects the voltage
across both junctions to depend on the gate voltage and bias voltage. To study
these effects we used a sample that had been fabricated for another purpose and
that was slightly different from what we had in mind originally. Only after the
first measurements were performed we realized that the sample was very suitable
to demonstrate the fundamental Heisenberg uncertainty relation between phase
and number of Cooper pairs in a superconductor. Sofar we have only performed
detailed study of the latter phenomenon of which we will report in this chapter.

Possibly at the expense of clarity we will present the results in this chapter in
chronological order. First we will discuss the expected voltage asymmetry that

95
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Figure 5.1: Proposed geometry to measure Hall effect for vortices. The squares
are superconducting islands and the crosses denote Josephson junctions. The
dashed line shows the possible vortex paths.

we wanted to study in the double junction system. Then we will report the results
of the first measurements that showed interesting effects in the critical current of
the device.

5.2 Voltage asymmetry in a double junction

The AC Josephson relation states that a voltage across a Josephson junction di-
rectly corresponds to motion of the phase difference across that junction. This
relation also holds when the junction capacitance C is 50 small that the charg-
ing energy E. = €2/2C of the junction is larger than the Josephson coupling
energy. In geometries where the flow of Cooper pairs is blocked by the charging
energy the phase difference will be subject to quantum fluctuations. Still the
expectation value obeys the AC Josephson relation. Biittiker {3] has discussed
the consequences for the case where a voltage is induced across a single junction
through a small gate capacitor and a voltage source. Taking the Josephson cou-
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Figure 5.2: Two superconducting tunnel junctions in series, connected to a volt-
age source V. The center island has a small capacitance C, to a gate voltage
source U.

pling energy as a small perturbation in the Hamiltonian he has shown that the
gate voltage induces a persistent motion of the gauge-invariant phase difference.
For two junctions in series a similar phenomenon occurs. Consider, as shown
in Fig. 5.2, a double junction biased with voltage V and with a gate voltage U
applied to the center island through a small capacitor. When V = 0 this system
is very similar to the single Cooper pair box. In the limit of small E; the po-
tential on the center island V. shows the familiar saw-tooth dependence on the
gate voltage that we show in Fig. 5.3. For low voltages the island potential is
given by V, = UCg/(2C + C,). When the gate voltage exceeds the value of e/Cyg
the energy of the system will be lowered by the tunneling of a Cooper pair onto
the island. A non-zero potential of the island will cause a voltage difference of
opposite sign across both junctions. The phase difference reacts correspondingly
and a current of flux quanta moves across both junctions in different directions.
For a symmetrically applied bias voltage V lower than e/C one expects voltages
across the left and right junctions of V, — V/2 and V. + V/2.

If E; is comparable to the charging energy the situation becomes more com-
plex. The equation of motion for the difference ¢_ of the phase across the left
and the right junction is [4]:

® C,. - o
(ﬁ)Z(C + 7”)¢>— +2E; sin %— =0 (5.1)
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Figure 5.3: The potential of the center island V. as a function of the applied
gatevoltage U, in the limit of small E;.

with at t=0
$2C+C,
=2 .
2 C, ¢ v (5.2)
For E; = 0 we recover the results given above, considering that 2V, = q§

For finite E; the equation resembles that of a particle with mass moving in a
periodic potential. The gate voltage determines the velocity at t=0. We assume
the particle to be at the bottom of the well at t=0, so that for large E; it will just
oscillate back and forth. The average velocity, and the average island potential,
will be equal to zero. If the particle obeys classical mechanics its velocity becomes
different from zero when the kinetic energy at the bottom of the potential is larger
than the barrier height. This condition is satisfied if E(T—f"c—U 2 > 2E;. Taking
a maximum value CyU = e this becomes ﬁ%c—g > 2F;. When approaching this
limit quantum fluctuations have to be taken into account that will smoothen the
transition.

If the bias voltage is non-zero, the potential well becomes time dependent.
Hadley [5] has numerically studied the classical voltage solutions for zero gate
voltage, including a finite amount of damping. The results show that for the
underdamped junctions case the voltage is generally not divided symmetrically
over the two junctions. The results depend sensitively on bias voltage and for
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some voltages show possibly chaotic behaviour.

We planned to experimentally study these asymmetry effects in a double
junction with a third junction coupled to the island as a probe to measure the
voltage. To reduce the chance of a phaseslip across this junction its critical
current must be large compared to the measuring current of the voltage meter.
On the other hand if this junction is too large we expect to destroy the charging
effects on the central island and thereby the influence of the gate voltage. In the
device that was used, the third junction was formed by two junctions in parallel,
a DC squid, so that the effective Josephson coupling energy could be modulated
by the magnetic field. Important aspect of this sample is that the contact pad
to which this junction is connected is a large superconductor of which the phase
is classical. The next section describes the results that we obtained measuring
the supercurrent through the device while this pad was not yet connected to any
measuring apparatus but just to macroscopic measuring leads.

5.3 Direct demonstration of Heisenberg’s un-

certainty principle in a superconductor

W. J. Elion, M. Matters, U. Geigenmiiller, and J. E. Mooij

Department of Applied Physics, Delft University of Technology
and Delft Institute for Micro-Electronics and Submicron technology (DIMES),
P. O. Boz 5046, 2600 GA Delft, The Netherlands

A Heisenberg uncertainty relation exists between any two non-commuting
variables of a quantum-mechanical system. In a superconducting grain
one has the number of Cooper pairs () and the phase of the supercon-
ducting wave function (¢). Suppressing fluctuations in either variable
leads to enhanced fluctuations in the other [6, 7]. In a fabricated
device we can suppress quantum-mechanical fluctuations in the phase
with a SQUID that provides a variable coupling between the grain and
a large superconducting reservoir. We measure the supercurrent that
flows through two small-capacitance Josephson tunnel junctions that
are connected to the grain. The total capacitance of the grain is so
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small that the number of Cooper pairs is well-defined and charge trans-
port through the grain is only possible through quantum-mechanical
fluctuations in n. Strong coupling of the phase to the reservoir leads
to enhanced fluctuations in n. As a result, we observe a large increase
in the supercurrent through the grain.

In the superconducting state, Cooper pairs of electrons form a condensate that
can be described with one macroscopic wave function. As a general consequence
of this description, the number of Cooper pairs and the phase of the super-
conducting wave function are non-commuting variables [6]. The corresponding
Heisenberg uncertainty relation has the form AnAyp > 1/2. Due to the periodical
nature of ¢, slight modifications are neccessary when Ay becomes of the order
of 27 [8]. Anderson [7] discussed the implications of this uncertainty relation
in connection with the Josephson effect[9]. For an isolated grain the number of
Cooper pairs is fixed and the phase is completely uncertain. If two macroscopic
superconductors are connected via a thin insulating barrier, the phase difference
between the two is well-determined. The number of Cooper pairs in each su-
perconductor fluctuates strongly. Depending on the phase difference charge will
flow through the barrier. With the present-day nanofabrication technology it is
possible to experimentally study the intermediate regime where the uncertainties
in n and @ are comparable. An example is the system of two small Josephson
junctions in series. The capacitance of the junctions can be made so small that
the electrostatic energy required to add one Cooper pair to the island in between
the junctions is much larger than the thermal energy kpT. This charging energy
will tend to keep the number of Cooper pairs on the island fixed. The Josephson
coupling connects charge eigenstates differing by one Cooper pair. This coupling
induces quantum-mechanical fluctuations of the charge, which result in a super-
current through the device. The influence of the ratio of the charging energy and
the Josephson coupling energy on the maximum supercurrent of a double junction
has been studied both theoretically [10, 11] and experimentally [12, 13, 14, 15, 18].

We have proceeded from a different angle: we keep the junction parameters
of the double junction fixed and explicitly use the fact that, due to the Heisen-
berg relation, charge fluctuations increase when fluctuations in the phase are
suppressed. Suppression of the phase fluctuations can be achieved by coupling
the island with a third Josephson junction to a superconducting reservoir that
has a large capacitance to ground. Since the reservoir is otherwise unconnected
the average current through this junction must be zero and the classical phase
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Figure 5.4: Layout of our device. The crosses are Al — Aly,O3 — Al Josephson
junctions that are connected with aluminium lines. The junction parameters are
such that the quantum mechanical fluctuations of the number of Cooper pairs
and the phase of the island are comparable. The large capacitor represents the
capacitance to ground of a macroscopic lead that is not connected to any mea-
suring apparatus. This reservoir has a superconducting phase that is constant in
time. The SQUID, consisting of two junctions in parallel can be treated as a sin-
gle junction with a flux-dependent Josephson coupling energy. The stronger the
effective Josephson coupling between the island and the reservoir, the more the
fluctuations in the phase of the island are suppressed. All leads are filtered with
rfi feedthrough filters at room temperature and with RC and microwave filters
at mixing chamber temperature. The resulting frequency-dependent response of
the bias circuitry is responsible for a non-ideal behaviour of the current source.
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of the superconducting reservoir is equal to the average value of the phase ¢ of
the island. Quantum fluctuations of ¢ will give rise to a time-dependent phase
difference. As the Josephson energy of the junction is increased by such a phase
difference, fluctuations in ¢ will be suppressed. Stronger effective Josephson cou-
pling results in stronger suppression of the fluctuations. To be able to actually
tune fluctuations in the phase, we have connected the island to a superconduct-
ing reservoir via two junctions in parallel, a SQUID (Fig. 5.4). We use this
SQUID as a single junction of which the critical current, and thereby the effec-
tive Josephson coupling energy, can be changed by applying a small magnetic
field perpendicular to the device {16, 17). The effective Josephson coupling is
largest when the number of magnetic flux quanta threading the loop is integral.
For half-integral numbers the Josephson coupling will be close to zero so that the
island is practically decoupled from the superconducting reservoir.

We have fabricated the device shown in Fig. 5.4, choosing junction parameters
such that the Josephson coupling energy is of the same order of magnitude as
the charging energy. In this regime both the phase of the island and the number
of Cooper pairs are quantum mechanical variables that fluctuate around their
equilibrium value. We have measured the current-voltage characteristics of the
two junctions that are connected to the current source. We observe a supercurrent
branch with a residual resistance that is lower than our measuring sensitivity of
10 ©. We can clearly identify a switching current at which the voltage jumps to
the superconducting gap. In Figure 5.5 we plot the measured switching current
as a function of flux through the SQUID. We observe a large modulation that
is periodic with a period of one flux quantum through the SQUID. For integral
number of flux quanta phase fluctuations are most strongly suppressed and the
resulting enhanced charge fluctuations lead to an increase in the supercurrent.

We have calculated the influence of the flux on the supercurrent through
the device using the method described in ref. [10]. The ground state energy is
calculated from the electrostatic hamiltonian which is the sum of the charging
energy of the island and the Josephson coupling of all four junctions. The critical
current of the device follows from the derivative of the ground state energy with
respect to the phase difference of the measuring contacts. Thermal fluctuations of
¢ at our measuring temperature of 10 mK are negligible considering the energy
difference of 2 K between the ground state and the first excited state. The
influence of the flux through the SQUID ou the critical current is the purely
quantum mechanical consequence of tuning the phase fluctuations on the island
and vanishes in the classical limit where the Josephson coupling energy is much
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Figure 5.5: Maximum supercurrent versus flux through the SQUID. The dots
represent the switching current measured through the junctions connected to
the current source. The solid line shows the calculated results, that are scaled
linearly to account for the small but finite classical noise in the leads and the
environmental impedance in the measurement. Flux is plotted in units of the
flux quantum @y = h/2e. For zero flux in the SQUID the coupling between the
phase of the island ¢ and the reservoir is strongest and fluctuations in ¢ are
suppressed. As a consequence, fluctuations in the number of Cooper pairs are
enhanced which results in a large increase of the supercurrent. The magnetic
field, that we apply perpendicular to the device, is of the order of a few gauss
and does not influence the other junctions of the system. The measurements
are performed at a temperature of 10 mK. We have verified that there is no
non-integral offset charge present on the island at the time of the measurement.
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larger than the charging energy. The calculated critical current is generally found
to be larger than the measured switching current because of small but finite
classical noise present in the leads. [14, 15, 18] The exact relation depends on
the details of the environmental impedance. In absence of a generally established
theory we have scaled the critical current linearly. Fig. 5.5 shows good agreement
of both relative amplitude and periodicity of the maximum supercurrent in theory
and experiment.

We have experimentally shown that fluctuations in the phase of the supercon-
ducting island of a double-junction system can be modulated without changing
the Josephson coupling energy of the junctions that carry the bias current. The
resulting modulation of the supercurrent clearly illustrates the Heisenberg un-
certainty principle for phase and number of Cooper pairs on a superconductor.
Squeezing the fluctuations of one variable by the coupling to a reservoir, with the
purpose of enhancing the transport connected with the other conjugate variable,
may find wider application in quantum coherent circuits.

We thank Y. Nazarov for helpful discussions. We acknowledge support from
the Netherlands foundation for fundamental research on matter (FOM).
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Summary

In this thesis we report on measurements on different networks of Josephson
junctions. The capacitance C' and the critical current of the junctions are such
that the Josephson coupling energy is of the same order of magnitude as the
charging energy e?/2C. The competing influence of both energy scales leads to
several interesting quantum phenomena.

In two-dimensional arrays of Josephson junctions superconductor-to-insulator
(S-I) phase transitions occur as a function of the ratio between the charging energy
and the Josephson coupling energy, and as a function of magnetic field. We have
measured these phase transitions using arrays with different junction parameters
and with square and triangular cells. The experimental results are compared
to theoretical work. Special attention is payed to the dynamics of magnetically
induced vortices close to the S-I transition. In a magnetic field the zero-bias
resistance of the array shows an exponential dependence on temperature. For
the arrays closest to the S-I transition this resistance flattens off below a certain
temperature between 200 and 100 mK. The fact that in these samples a finite
zero-bias resistance persists down to 10 mK indicates the presence of a quantum
transport mechanism for vortices. Qualitatively the results match predictions for
the thermally activated and quantum tunneling of a single particle in a potential
well. To explain results quantitatively several questions remain to be solved.

We have further studied properties of vortices in the quantum regime, in a
specially shaped sample where magnetically induced vortices cross along a doubly
connected path. On the superconducting island enclosed by the path a charge
is induced by means of a gate. The resistance arising from the vortex cross-
ings shows clear e-periodic dependence on the induced charge. These oscillations
are due to quantum interference of vortices which is a generalized form of the
Aharonov-Casher effect. The quantum interference of vortices in Josephson junc-
tion arrays is fundamentally 2e-periodic, but observation of the full periodicity in
our experiment is hindered by the presence of a finite number of quasiparticles.

In systems of two junctions in series, with comparable charging energy and
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Josephson coupling energy, the maximum supercurrent depends on the charge
induced on the island in between the two junctions. There is a subtle relation
between the Aharonov-Casher effect discussed above and the gate-induced os-
cillations in the supercurrent through a double junction. The supercurrent can
be interpreted as the current at which the sum of the phase differences of both
junctions is no longer stable, or equivalently as the current at which flux quanta
start to move across the junction. The two possible ways for flux quanta to cross,
over the left or the right junction, form a doubly connected path. In this de-
scription the influence of a gate voltage on the supercurrent can be attributed
to interference of flux quanta that move along this path. Differences between
the motion of vortices in an array and the dynamics of the phase difference in a
double junction are discussed.

We have also measured the supercurrent through a double junction system us-
ing a special layout. In addition to the junctions connected to the current source,
the center island was connected with two junctions in parallel, a DC SQUID, to
a superconducting reservoir with a large capacitance to ground. The phase of
the reservoir is classical and the Josephson coupling of the SQUID squeezes the
quantum mechanical fluctuations of the phase on the island. When the effective
Josephson coupling of the SQUID is reduced by applying a magnetic field we ob-
serve a strong suppression of the supercurrent through the double junction. The
enhancement of phase fluctuations on the island corresponds to localization of
Cooper pairs. This experiment clearly demonstrates the Heisenberg uncertainty
relation between charge and phase, that is the central ingredient for the quantum
phenomena discussed in this thesis.




Samenvatting: Quantum phenomena in
netwerken van Josephsonjuncties

In dit proefschrift wordt experimenteel onderzoek beschreven aan netwerken van
Josephsonjuncties, kleine contacten van twee stukken supergeleidend materiaal
met daartussen een elektrisch isolerende barriére. In het supergeleidende mate-
riaal wordt de stroom gedragen door Cooperparen, deeltjes die bestaan uit twee
gekoppelde elektronen. Om het gedrag van een supergeleider quantummecha-
nisch te kunnen beschrijven, gebruikt men één macroscopische golffunctie, een
vergelijking van de vorm ¥ = |¥|e**. De amplitude |¥|? van die golffunctie is
een maat voor het aantal Cooper paren in de supergeleider. Een directe fysische
interpretatie van de fase ¢ van de golffunctie, die een waarde tussen 0 en 27 kan
aannemen, is niet zo eenvoudig. Het blijkt echter dat in een Josephsonjunctie,
waar twee supergeleiders door een dunne barriére verbonden zijn, stroom door die
barriére loopt die evenredig is met het verschil in de fases van beide supergelei-
ders. Dat de Cooperparen door de isolerende barriére heen kunnen tunnelen is
een typisch gevolg van de quantummechanica, waar geen klassiek analogon voor
bestaat. In welke mate ze door de barriére tunnelen hangt af van de zogenaamde
Josephson-koppelingsenergie, die bepaald wordt door de eigenschappen van de
junctie.

Tweedimensionale arrays van Josephsonjuncties bestaan uit een rooster van
stukken supergeleidend materiaal, de supergeleidende eilanden, die zijn verbon-
den met Josephson juncties. In zo’n netwerk kunnen faseverschillen geinduceerd
worden met een magneetveld dat loodrecht op het netwerk wordt aangelegd. Als
gevolg hiervan onstaan wervelstromen die vortices genoemd worden. Het gedrag
van vortices vertoont veel overeenkomst met dat van deeltjes, of balletjes. Het
rooster van Josephson juncties vormt een potentiaallandschap dat voorgesteld
kan worden als een eierdoos. Een stroom die door het array gestuurd wordt,
oefent een kracht uit op de vortices. Als de stroom groot genoeg is kunnen deze
wervelstromen als geheel door het array bewegen, zoals balletjes door een gekan-
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telde eierdoos. Doordat een bewegende vortex een spanning veroorzaakt, kan de
dynamica van deze wervelstromen experimenteel bestudeerd worden.

Voor de kleine juncties die met de huidige technieken zoals beschreven in
de appendix van hoofdstuk 1 kunnen worden gemaakt, hangt de grootte van
de superstroom door een junctie niet meer alleen af van het faseverschil. Een
Josephsonjunctie bestaat uit twee (super)geleidende vlakken met een isolerend
medium daartussen, en vormt een condensator waarvan de capaciteit in eerste
benadering evenredig is met de oppervlakte van de junctie, Wanneer een Cooper-
paar naar een supergeleidend eiland tunnelt, zullen de condensatoren gevormd
door de juncties die aan het eiland zijn verbonden elektrisch geladen worden.
De ladingsenergie die hiervoor nodig is, is e?/2Cyx, waarbij Cx de som van de
capaciteiten is. Juncties met een oppervlak van 0.1 um? hebben een capaciteit
van slechts 1 fF en bij de temperaturen rond 10 mK waarbij gemeten wordt, is
er niet altijd genoeg energie beschikbaar. De relatieve sterkte van de Josephson-
koppelingsenergie en de ladingsenergie bepaalt of er een superstroom door de
barriére loopt of dat de barriére isolerend is. In deze systemen wordt duidelijk
dat er een Heisenberg onzekerheidsrelatie bestaat tussen de fase en de lading
op een supergeleider. Als de ladingsenergie klein is, wordt de stroom door de
barriére volledig bepaald door het faseverschil. Als gevolg van de stroom die
door de juncties loopt, zal het aantal Cooperparen op de supergeleider sterk
fluctueren. Als de ladingsenergie groot is, ligt het aantal Cooperparen op een
eiland vast en er kan geen superstroom lopen. Het faseverschil fluctueert zo sterk
dat het fysisch een onbepaalde parameter is. De ‘Quantum Phenomena’ uit de
titel van dit proefschrift slaan op de effecten die optreden in het gebied tussen
deze twee uitersten.

In tweedimensionale netwerken, arrays, van Josephsonjuncties treedt een super
geleider-isolator faseovergang op bij het varieren van de ratio tussen de Joseph-
son-koppelingsenergie en de ladingsenergie. Wanneer het array isolerend is, is het
model van vortices of wervelstromen die zich als balletjes gedragen niet meer een-
voudig toe te passen. Aan de supergeleidende kant, maar vlakbij de faseovergang,
is het gedrag van vortices bestudeerd. Het blijkt dat de vortices die opgebouwd
zijn uit biljoenen quantummechanische deeltjes, zelf ook weer quantummecha-
nische effecten vertonen. Zo kan een vortex als geheel door de hobbels van het
potentiaallandschap tunnelen. Als men in arrays vlak bij de overgang met het
magneetveld steeds meer vortices induceert, treedt ook een supergeleider-isolator
faseovergang op. De isolerende toestand wordt hier beschreven als een supergelei-
dend zijn van vortices.
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Als de vortex een quantummechanisch deeltje is, zal het naast deeltjes-, ook
golfeigenschappen vertonen. In een speciaal ontworpen array is een experiment
gedaan waarbij vortices interfereren, net als licht wat door twee gaatjes op een
scherm valt. Het verschil tussen constructieve en destructieve interferentie wordt
gemaakt door een lading via een kleine condensator te induceren op het eiland
waar de vortices omheen bewegen. Dit effect is, behalve een indicatie dat vor-
tices inderdaad quantummechanische deeltjes zijn, ook een manifestatie van een
fundamenteel fysisch effect van interferentie van magnetische deeltjes om een
lading. Naar de wetenschappers die deze interferentie voorspelden, wordt dit het
Aharonov-Casher effect genoemd.

De competitie tussen ladings-, en Josephsoneffecten wordt ook veel bestudeerd
in kleine systemen van bijvoorbeeld twee juncties in serie. Deze systemen worden
niet met vortices beschreven, maar met het tunnelen van Cooperparen. In zo’n
dubbele junctie heeft een geinduceerde lading invloed op de superstroom. De
relatie tussen dit effect en de interferentie van vortices in arrays wordt duidelijker
door het systeem niet in termen van Cooperparen, maar in termen van fases te
analyseren.

Tot slot beschrijven we een experiment waarin nog eens het basisprincipe
van de ‘Quantum Phenomena’ wordt gedemonstreerd. Met een uitbreiding van
de dubbele junctie kunnen fluctuaties in de fase op het eiland worden beperkt
of vergroot zonder dat er verder iets verandert aan de eigenschappen van de
juncties waar de stroom doorheen loopt. Met het verkleinen van de fluctuaties
van de fase worden fluctuaties in het aantal Cooperparen groter en dit resulteert
in een duidelijke toename van de stroom door de dubbele junctie. Dit effect is
een manifestatie van de onzekerheidsrelatie van Heisenberg voor lading en fase in
een supergeleider.

Wiveka Elion
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