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ABSTRACT

Targeted and successful cellular therapies for disease treatment require an extensive
mapping of the complex structure and dynamics of molecular mechanisms which de-
termine the behaviour and function of cell. CELL-seq is a genome-wide screening pro-
cedure measuring specific and targeted protein quantities as phenotypic readouts and is
employed by the Netherlands Cancer Institute to analyze which genes regulate the pro-
tein state of interest. This research aims to explore the current compendium of CELL-
seq screens that investigate a range of phenotypes, to create a mapping of gene-gene
associations that share similar phenotypic profiles and elucidate biology that is hard to
uncover with more conventional screening techniques.

We perform exploratory research to investigate the ability of the screen compendium
to show network structures that reflect known biological processes. We find that with
stringent requirements on interactions the screen compendium shows enrichment for a
wide range of biological processes and known protein-protein interactions. We further
conclude that the experimental design biases network behaviour and needs to be ac-
counted for when constructing networks. We recommended a mutual k-nearest neigh-
bor network construction approach, which yielded networks with the most biological
relevance. We compare the CELL-seq screens using findings from the approaches to the
DepMap dataset, a well-known collection of synthetic lethality CRISPR screens, and find
that the behaviour of these datasets is in many ways mirrored. We conclude that this
is both due to the biology they represent and the differences in the number of screens
in each dataset. Finally, we compare the coverage of biological processes between the
HAP1 compendium and DepMap, and show large overlap in their coverage. Nonethe-
less, the differences they do show leads us to bring forward two hypotheses for gene-
gene interactions that score strongly uniquely in the CELL-seq networks which are bio-
logically plausible but are not found in DepMap or curated literature, warranting future
investigations.

All code pertaining to the methods and figures in this work are hosted on GitLab by
the High Performance Computing Facility of the Netherlands Cancer Institute. As such
the code can be viewed by supervisors, but further details could be shared upon request.
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1
INTRODUCTION

In the post-genomic era, the growing comprehension of cellular biology is catalyzing a
transformative impact on medicine. Conditions ranging from Alzheimer’s disease and
viral infections to aging and cancer are undergoing reevaluation as outcomes of aber-
rant cellular behaviors, remodelling them as promising targets for cellular therapies in-
cluding cellular manipulation [1]. Successful treatment necessitates a mapping of the
complex structure and dynamics of molecular mechanisms and processes which deter-
mine the behaviour and function of cells [2], [3]. To this end, associating DNA sequences
(genotype) to phenotypic outcomes elucidates this molecular architecture and remains
one of the key questions in genetics and systems biology [4], [5].

It is well-established that while most phenotypes exhibit strong genetic associations,
they often explain only a fraction of the total genotypic variance [6]. Instead, a wide
variety of phenotypes are subject to polygenic effects from multiple genes spread widely
across the genome [7]. As such, the identification of each gene’s role in cellular pathways
and its associations with phenotypes heavily depends on understanding its contextual
co-functioning with other genes [8]. These functional relationships can be modelled as a
network of molecular interactions, where genes are represented by nodes and edges be-
tween genes signify a relationship or interaction. Such a network is referred to as a gene-
gene interaction network. The nature and strength of these interactions is systematically
established by the data-collection technique employed. A variety of high-throughput
measurement techniques have taken advantage of these powerful network models; pair-
wise gene knockout screens of yeast have been used to create a map of genetic interac-
tions for the model organism [9], protein-protein interaction (PPI) databases to retrieve
the PPI network associated with hereditary disorders [10] and genome-wide CRISPR/Cas9
screens for mapping genetic interactions in cancer cells [11].

While these approaches show promising results, each suffers from limitations that
propagate from the data collection technique into the produced gene-gene interaction
network. Reductionist biology using pairwise gene knockout screens has provided a
foundation of genetic interactions, but fails to capture the polygenic origin of traits and
scales poorly to the circa 20.000 protein-coding genes in the human genome. Genome-
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wide CRISPR/Cas9 screens often use high-level phenotypes such as growth or cell fit-
ness, which is problematic as not all cellular events affect these phenotypes [12]. In
addition, genes acting in completely different mechanisms can be wrongly associated
by the high-level phenotype, which requires follow-up studies to deconvolve these asso-
ciations [13]. And gene expression measurements by RNA-seq suffer from the fact that
expression needs to be averaged across cells which leads to the inadvertent capturing of
cellular heterogeneity in the data [14] and it does not capture cellular events which do
not have transcriptional effects [12].

1.1. HAPLOID PHENOTYPE SCREENS
CELL-seq is a measurement technique currently used by the Brummelkamp group at the
Netherlands Cancer Institute which aims to overcome the aforementioned limitations of
traditional assay techniques. The central conviction is in concordance with genetic per-
turbation approaches: inducing mutations and measuring their influence on biological
processes is the most powerful unbiased approach linking genotype to phenotype [15].
However, generating and recovering bi-allelic mutants in (human) diploid cells poses a
challenge, as the inactivation of a single allele can remain masked [16]. Furthermore,
the presence of conflicting instructions within two alleles of the same gene adds another
layer of complexity to the genotype-phenotype relationship [17].

CELL-seq overcomes this difficulty by employing a near-haploid cell line termed HAP1
[18]. Haploidy means there is only a single copy of the genome present in the cell. While
haploidy in human cells is normally limited to gametes, the HAP1 cell line is derived
from a chronic myeloid leukemia patient after reprogramming experiments to create
induced pluripotent stem cells. The karyotype for HAP1 cells is shown in Figure 1.1.
The haploid nature of the cell line makes the insertion of a termination sequence into
the genome, gene-trapping, result in a mutation of the gene that prematurely truncates
its RNA transcript making the gene considered nonfunctional. This process is called
gene-trap mutagenesis. In a CELL-seq screen, a large population of cells is subjected to
random gene-trap mutagenesis such that one random gene is inactivated per cell, af-
ter which a quantitative measure of a protein state is measured in each cell. The exact
details of the screening procedure and implications are further discussed in the Method-
ology, but this method allows for the direct linkage of genetic mutations for every gene
inactivated in the population to a protein state. A protein state serves as a low-level
phenotypic readout, meaning much more specificity to a cellular mechanism, whereas
traditional screening methods with high-level phenotypes measure much broader cate-
gorized phenomena like cellular growth.

167 CELL-seq screens have been accumulated by the Brummelkamp group to cre-
ate a haploid phenotype screen compendium which covers a wide range of diverse low-
level phenotypes. The screens accomodate for the polygenic origin of traits, scale to
the entirety of the protein-coding genes in the human genome, use a wide range of low-
level phenotypes to capture very specific phenotypic regulators and are reduced in noise
through its use of a single cell line in all screens. Decades of work in both yeast as a
model organism and in human cancer cells shows that genes with similar phenotypic
associations for high-level phenotypes such as growth or synthetic lethality can be iden-
tified as functionally similar genes through guilt by association [19], [20]. In this work,
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Figure 1.1: Spectral karyogram of the HAP1 cell line, showing its near-haploid composition. Notably, Chromo-
some 15 retains two copies, one of which is fused to Chromosome 19. Also note the reciprocal translocation of
genetic material between Chromosome 9 and Chromosome 22, a hallmark of the original KBM-7 cell line.
Source: Figure adapted from Figure 1a in [21].

we explore CELL-seq as a technique to measure gene-gene interactions, and similarly to
established work on traditional genome-wide assays apply computational techniques to
create a gene-gene interaction network.

1.2. RESEARCH OBJECTIVES
The aim of this research is to extensively explore the compendium of haploid pheno-
type screens, in order to see its merits toward uncovering genome-wide phenotypic as-
sociations in humans. Using computational methods to create networks of interactions
between genes, we hope to map interactions that are hard to uncover using more con-
ventional screening techniques. This will be the first work integrating data of this com-
pendium for the purpose of creating a gene-gene interaction network. As such the work
is exploratory in nature, to establish whether known techniques are directly applicable
to the dataset and systematically exploring interpretable and novel approaches suited
to the characteristics of the dataset. The individual screens were performed to test hy-
potheses related to the measured phenotype, and not originally designed for their in-
tegration leading to network construction. With the integration of all screens, we bring
forward a methodology on how to engineer a solution for a frequent problem in bioin-
formatics, the disparity between original experimental design and required data for in-
teraction modelling [22].
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Towards this goal, we formulated the following research questions.

1. Can we leverage the dataset to create a gene-gene interaction network that shows
proof of relevancy in current literature on genetic interactions?
This study defines gene interactions through phenotypic associations from the
unique screening procedure of CELL-seq. From this we aim to construct a network
of genes that displays the molecular relationships on the basis of a varied range of
phenotypes. We then ask if connectivity patterns in the network relates clearly
to biological phenomena [23]. Using literature on known molecular interactions
of biological systems, protein-protein interactions (PPIs) and protein complex co-
membership we show how constructed networks recapitulate real biology. From
this map, we can extract interactions not established in literature, but apparent
from the screens and network methodology, in order to bring forward hypotheses
for new biology.

2. How does the haploid phenotype screen compendium compare to DepMap, whose
dataset is antagonistic to ours by screening one phenotype over more than a thou-
sand cell lines?
The Cancer Dependency Map Project (DepMap) [24] is a large study and dataset
on dependency profiles of genes in currently over one thousand cancer cell lines
from 31 types of cancer. The dataset consists of a collection of CRISPR screen that
precisely and systematically inactivate genes across the genome and measure the
effect of each perturbation on cell fitness. The large and growing dataset has led to
its inclusion in many reports that show shared functionality of genes based on as-
sociated fitness profiles across cell lines. A very interesting juxtaposition to the
HAP1 screens, is that in DepMap the same phenotype (fitness) is covered over
many cell lines, while the HAP1 screens cover many phenotypes (protein state
readouts) but in a single cell line. Contrasting and comparing to this dataset can
provide meaningful insights into the relevancy of the HAP1 dataset.

3. Does the limited compendium screen size fit the data-hungry task of cellular map-
ping?
The HAP1 screen compendium has been added to over several years and currently
contains 167 screens for a varied selection of phenotypes. It is however important
to acknowledge that there might be an insufficient number of screens to accom-
plish the ambitions of creating a comprehensive biological network. A low number
of screens reduces the statistical power, and therefore hampers accuracy of mean-
ingful associations between genes and could lead to false negatives.

(a) How can we optimally add screens to most effectively increase diversity in the
phenotypic space? Being limited in the number of screens also leads to a more
narrow scope of analysis: currently screened phenotypes may not capture
the full diversity of biological contexts, leading to a limited representation of
gene-gene interactions and functional associations. Consequently, our anal-
yses might overlook crucial interactions relevant in specific cellular contexts.
Future work on the screen compendium aims to expand its library of screens
to combat this. By investigating the current coverage of biological contexts,
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we aim to propose phenotypes for future screens that most efficiently expand
coverage while locking in on most relevant research avenues brought forward
by the results of RQ1.

1.3. OUTLINE
This thesis work is structured as follows. First, the Methodology covers the pipeline used
in this study to answer the research questions outlined above. The visual representa-
tion of the pipeline is depicted in Figure 1.2, illustrating the several stages of this inves-
tigation which the Methodology will cover in order. First, a more in-depth analysis of
the HAP1 dataset discussing general features introduced through the screening method.
The HAP1 screen compendium’s creation is established in literature, but as this work
introduces it for this particular usage, it is important to be extensive in its description,
advantages and limitations. We further elaborate on the secondary contrasting dataset
used in this work for comparative analysis: DepMap. Next we cover how the datasets are
pre-processed in order to accommodate for two of the major biases in the HAP1 screen
compendium, which lead to the pairwise distance matrix for genes used in this research.
Following this, we introduce networks, how they are validated and scored for biological
relevance using literature and external databases, and how their characteristics are de-
fined and measured. To end the Methodology, background information is provided on
used methods to answer the research questions that are presented in the Results Sec-
tion 3. The Results section refers to this background material when more detail is ap-
propriate. The findings in the Results are introduced mostly in chronological order of
the project’s completion. The Conclusion summarizes this works main contributions by
highlighting and answering the research questions. After this summarizing part, a crit-
ical discussion on this work’s limitations is provided and finally recommendations are
made for future work.

Figure 1.2: Overview of the network construction and analysis pipeline of the project.



2
MATERIALS AND METHODS

2.1. DATASETS

2.1.1. HAP1 PHENOTYPE SCREEN COMPENDIUM
The exact CELL-seq procedure is described by Brockmann et al. in [12]. We include an
outline of the procedure in the following paragraph since it is important to understand
the advantages, limitations and biases discussed later in this work. The outline is visual-
ized in Figure 2.1 adapted from Brockmann et al.

Figure 2.1: (A) The pipeline shows a large population of HAP1 cells used to obtain mutational index values for
a specific phenotype. The values and associated statistical significance are shown in the fish-tail plot in (B).

A large population of 108 HAP1 cells is subjected to randomized gene-trap muta-
genesis, by inserting one termination sequence per cell randomly in the genome. The
termination sequence signals the transcriptional complex to release the RNA transcript,
now prematurely, voiding the gene product and thereby nullifying gene expression. This
induces a loss-of-function mutation on a single gene per cell. This population of in-
serted cells is expanded, then fixed to preserve and to halt ongoing chemical reactions,
and finally permeabilized to allow accessing intracellular molecules. These steps allow
an antibody targeting a specific protein of interest, which will be the phenotypic read-
out. The antibody contains a fluorescent stain, so the measurement of protein state

6



2.1. DATASETS

2

7

abundance can be performed using flourescence-activated cell sorting (FACS) [25]. This
fluorescense-level sorted population of cells can be split into categories, such that the
least flourescent cells and most fluorescent cells are categorized as a low- and high pop-
ulation, meaning they have either a very low or very high abundance of the targeted
protein. In the context of the HAP1 dataset, we use the terms high and low population
and high and low channel synonymously. After performing a deep sequencing of mu-
tations on both the low and high populations, the frequency of mutated genes can be
compared between them. This ratio of mutations in both populations is expressed by
the Mutational Index (MI). We use the same definition for MI as Brockmann et al. and
include the equation from [12] in Equation 2.1 here for completeness.

M I = GH /OH

GL/OL
(2.1)

Where GH is the number of insertions within a specific gene in the high channel, OH

is the total number of insertions that are not in that specific gene in the high channel, and
GL and OL are similarly defined but for the low channel. In other words, it is the ratio
between insertions in a gene in the low and high population, normalized by the ratio
between the total amount of out-of-gene insertions in the low and high populations.

To determine whether genes are significantly enriched for disruptive gene-trap in-
tegrations in either low or high channel, the number of insertions in that gene in both
channels were counted as well as the number of total out of gene insertions in both of
the two populations. These four values serve as inputs to a 2x2 contingency table (Table
2.1). A two-sided Fisher’s exact test was used to determine if there was a significant asso-
ciation between the low and high channels for every gene in every screen. The result of
the test is the odds ratio, indicating the strength and direction of the association, and the
corresponding P value. Note that the odds ratio is equal to the definition of MI in Equa-
tion 2.1. The final MI values used in this work are scaled with log2(M I ). The resulting P
values are then adjusted for multiple testing with the Benjamini-Hochberg false discov-
ery rate correction. In summation, a high MI (> 1) determines a negative regulator for a
screen phenotype readout, since this means there are more insertions into the gene in
the high population (disabling expression) and fewer in the low channel comparatively.
The converse (MI < 1) is true for positive regulators. Figure 2.1B shows the result of an
example screen, with the log2(M I ) values on the y-axis and the total insertions (log2)
on the x-axis. Each dot represent one gene of the screen, and genes with a significant P
value from the two-sided Fisher’s exact test are colored as significant (positive or nega-
tive) regulators.

This procedure was performed for 167 screens targeting around 100 different pheno-

High Low
Gene insertions GH GL

Out of gene insertions OH OL

Table 2.1: Contingency table showing the frequency distributions of in- and out-of gene insertions in both
the high and low populations. This contingency table for every gene was analysed for statistical significance
between the high and low population using a Fisher’s exact test.
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types. For the remainder of work, we use the following definition for the HAP1 dataset.
The HAP1 phenotypic screens can be described as a data matrix XH = XH

19385×167
for 19385

genes measured over 167 phenotype screens. Each entry in XH contains the log2(M I )
value. We can similarly define such a matrix holding the corresponding P value from the
Fisher’s exact test for each gene in each screen as defined above.

Related to the P values, when using a significance threshold of α < 0.05, we define
the term score for a gene indicating that when a gene has scored in a screen, it means its
P value was below the significance threshold α. Out of all genes, 11093 genes are deter-
mined to score in at least one screen. Out of those 11093 genes, there is a wide variety of
significant MI values; some gene profiles are varied across all phenotypes, some only for
a specific range and some are highly specific and score for only one phenotype.

In practice, it is generally acknowledged by the biologists conducting and interpret-
ing the phenotype screens that an absolute log2(M I ) value of 1 is considered high. A
log2(M I ) of |1| means the ratio between high and low channel insertions in a gene is
equal to the rate of high and low insertions out of the gene. Out of all genes, 17471 genes
have a log2(M I ) ≥ |1| in at least one screen. As such, setting a pre-defined threshold
for an MI score alone is not fully informative, as there are genes that pass this threshold
without being considered statistically significant (only 11093 are in at least one screen).
Therefore it is required to use thresholds for both the effect size as well as the P value.

A study by Turco et al. that collected and compared genome-wide phenotypic screens
in Saccharomyces cerevisiae uses another metric to determine genes that are strongly as-
sociated to a phenotype [4]. They introduce the concept of a normalized phenotypic
value (NPV), where each gene’s value in the screen is expressed by a modified z-score
standardization where instead of the mean the mode is used as a reference. From these
scores, they determine a gene to be strongly associated to a phenotype if |N PV | ≥ 3. Due
to the different screening procedures between those used in the study by Turco et al.
and the HAP1 screens, and adding the different effect sizes of each screen in the HAP1
dataset, the NPV is not directly applicable here since almost all genes have only non-
recurring MI values and thus the mode almost always occurs only once. Instead of the
mode, a more applicable metric would be to use standard z-scoring with the mean as ref-
erence, which leads to 10503 genes having a z-score ≥ |3| in at least one screen, with only
4955 of them also being considered statistically significant through the corresponding P
value.

2.1.2. DEPMAP: SYNTHETIC LETHALITY GENOME-WIDE CRISPR SCREENS
The Achilles project is a collaborative initiative aimed at unraveling the genetic deter-
minants of cancer vulnerabilities. It encompasses a vast collection of molecular and
pharmacological data from numerous cancer cell lines, representing a diverse range of
cancer types and genetic backgrounds. By perturbing genes and observing their impact
on cell survival and growth, the Achilles project identifies genes essential for cancer cell
viability, which is offered as a valuable resource for the identification of potential ther-
apeutic targets in a cancer dependency map dubbed DepMap [24]. This work uses the
22Q4 version. This version is a dataset of genome-scale CRISPR screens from 1078 cell
lines containing gene-level essentiality scores for 17456 genes. These essentiality scores
are expressed as CERES scores, which are the scores following application of the CERES



2.2. DATASET PREPROCESSING

2

9

algorithm on raw measurements of cell proliferation in a genome-scale CRISPR loss-of-
function screen, which accounts for some specific biological contexts that lead to more
false positives [26]. The dataset was downloaded from https://depmap.org/portal/
download/all/. The required files are Model.csv and CRISPRGeneEffect.csv. In
a similar fashion to XH, we use the following definition for the DepMap dataset. The
DepMap CRISPR synthetic lethality screens can be described as a data matrix XD = XH

17456×167
for 17456 genes measured over 1078 CRISPR screens, such that every entry in XD con-
tains a CERES score for one particular gene in a screen. DepMap uses OncoTree [27], a
widely-adopted tumor classification system to identify tumor types with cell lines. The
22Q4 version captures 31 distinct lineages, and 202 cancer subtypes. Most represented
cancer types are lung (236), lymphoid(208) and CNS/brain (125).

We opted for DepMap for constructing gene-gene interaction networks for four rea-
sons. First and foremost, it is in a sense antagonistic to the HAP1 screen compendium, as
DepMap covers one phenotype but over a variety of cell lines, where HAP1 covers mul-
tiple phenotypes over one cell line. This makes comparing and contrasting interesting,
as we can now compare results to a more traditional approach to see if XH really tackles
limitations of high-level phenotypes. Secondly, the dataset is meticulously curated, con-
taining robust and reliable gene dependency scores derived from rigorous experimental
techniques. The project was continuously improved over six years to accomplish this.
Thirdly, DepMap includes a broad spectrum of cancer cell lines, representing various
tissue origins and genetic alterations. This coverage of a wide range of biology makes
findings across cell lines more robust and conserved, while also allowing research into
specific cancer or tissue types. Finally, the dataset is publicly accessible, and has been
used for several successful realizations of clustering and network approaches [28], [29].
The research by Weinberg et al. identifies a problem with the DepMap data [28] which
translates very well to the HAP1 dataset, the application of their proposed solution on
the HAP1 screen compendium and on the DepMap dataset is described in the following
section. The application of this technique to both datasets makes comparisons between
the two fairer.

2.2. DATASET PREPROCESSING

2.2.1. GENERALIZED LEAST SQUARES

It is important to note the context in which these screens were performed, as the screens
in XH were not done with this research plan in mind, where a network of interactions
is derived. Instead, they originate from various research efforts with different end-goals.
The screens cover various quantitative cellular traits in multiple areas of biology, but they
do so non-uniformly. Some examples include lipid transport, which has been mapped
by 9 screens; phospho-S6 ribosomal protein as a marker for cell signalling pathways that
respond to both growth factors and the nutritional state of the cell [30] has 10 screens;
and p38 mitogen-activated protein kinases are covered by 3 screens. 34 phenotypes are
covered by only one screen. One of the implications of this varied spread of screen-
to-phenotype coverage is that it introduces strongly related readings, and therefore the
features show nonindependence. For example, genes that are strong regulators of the
p-S6 phenotype are going to have inflated correlations since their activity was explicitly

https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
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measured so frequently.

We have previously described the DepMap data used for comparing and contrasting
the HAP1 dataset. Similarly to HAP1, the DepMap data also shows nonindependence.
In DepMap, this arises due to the origin of certain cell lines from shared tissues or lin-
eages. In 2021, Wainberg et al. tackled the issue of nonindependence in DepMap by
employing a methodology based on generalized least squares (GLS) [28]. This approach
explicitly considers the nonindependence of cell lines, ensuring accurate analysis and
interpretation of the data. Introduced by Aitken in 1935 [31], Generalized Least Squares
(GLS) constitutes a technique for parameter estimation within a linear regression model.
Its application is designed for application when the residuals of a regression model ex-
hibit a discernible level of covariance or correlation, which violates a core assumption of
ordinary least squares. The implementation used by Weinberg et al. incorporates a com-
putationally efficient method to solve GLS, described in the methodology of the work by
Weinberg et al. As such, we used the publicly available code 1 of [28] verbatim to ensure
reproducibility.

We ran GLS on each gene pair in XH and separately also for XD, thus resulting in a
distance matrix D = D

Xn×Xn
of GLS P values where Xn represents the number of genes in

each dataset X. We use the notation DH for the distance matrix of the HAP1 dataset and
similarly use DD for the DepMap dataset. The GLS P values represent the statistical sig-
nificance of the null hypothesis where the coefficient is equal to 0. Interactions lower
than the predetermined α< 0.05 are significant. In concordance with the work by Wein-
berg et al., we applied Benjamini-Hochberg FDR correction on the GLS P values. For
every gene-gene pair, GLS also provides the sign of the interaction.

Finally, D was transformed using − log10(D) such that higher values in D correspond
to relations with higher confidence scores. Due to the size of D, all values were converted
from float64 to float32, which due to floating point errors led to some small P values
being set to 0. Since − log10(0) is undefined, those values were transformed to the lowest
P value > 0 for that gene. The GLS procedure is visualized in Figure 2.2.

Figure 2.2: From dataset XH / XD to a distance matrix of GLS P values between every gene-gene pair.

1https://github.com/kundajelab/coessentiality/tree/master

https://github.com/kundajelab/coessentiality/tree/master
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2.2.2. MONTE CARLO SAMPLING AGAINST BIASED CORRELATIONS
As discussed, the individual phenotype screens are the result of a large population of
cells being subjected to randomized gene-trap mutagenesis. Due this nature of the screens,
it is not possible for each screen to include the exact same number of HAP1 cells, nor for
every gene to be covered equally by the gene-trapping. As such, screens have different
effect sizes and not all genes are scored in every screen. After being sorted into a high
and low population, genes that were not inserted into in the high or low population are
given a count of 1 in the channel for that population. We use 1 instead of 0 in order to
avoid division by 0 errors when calculating the MI using Equation 2.1.

With uninserted genes or with low values for gene insertions, Equation 2.1 is essen-
tially simplified to OH

OL
, which we define as the screen offset. A consequence of this is that

in each screen many uninserted genes have an MI value equal to the screen offset. When
using the MI profiles of MI values across 167 screens to correlate genes, many gene-pairs
are correlating almost perfectly; a biased correlation due to a lack of insertions. Since the
number of insertions used for the MI can be so low, most of the scores equal to the gene
offset have a large associated P value of up to 1. So the biased correlations are high even
though the associated confidence intervals (CIs) of each MI are also high.

A proposed solution to lessen the effect of biased correlations by taking the P values
of the MIs into account is to use Monte Carlo sampling to determine a MI value for a
gene in each screen based on the size of the CI. The procedure is as follows. We begin
with a matrix of 19385 genes over 167 screens where each gene thus has 167 MI values,
each with their own associated P value based on the number of insertions. The Fisher’s
exact test doest not provide the width of the CI directly, but we can calculate it with a
standard formula. We use the definition of the formula for CI from the book by Tenny
and Hoffman, who also indicate it to be standard practice to use the 95% confidence
interval [32]. The formula is given in Equation 2.2.

C I = exp(ln(OR)±Z ×SE) (2.2)

Where OR is the odds ratio from the Fisher’s exact test, Z is the critical value from
the standard normal distribution corresponding to the desired confidence level, in our
case standardly defined to be 1.96 for 95%, and SE is the standard error of the natural

logarithm of odds ratio. SE is given by SE =
√

1
a + 1

b + 1
c + 1

d , where a,b,c and d are the
counts from the 2x2 contingency table shown in Table 2.1. The ± can be interpreted as a
+ when calculating the upper 95% CI and as a − when calculating the lower 95% CI, so
the final width of the CI is given by the upper CI minus the lower CI. Now that we have
the width of the confidence interval, we sample a new MI value by taking one sample
from a normal distribution placed on the CI, defined as N (M I , C I

2∗1.96 )). The result is a
data matrix of 19385 genes over 167 screens but now with a newly sampled MI value. We
perform this approach 1000 times resulting in 1000 data matrices.

For each of the 1000 data matrices, we run GLS as described in the previous section.
So now, for each gene-gene pair we get 1000 GLS P values, each of the P values based
on the MI values found in one of the 1000 sampled data matrices. Each GLS P value was
scaled with − log10(P ), such that higher values can be interpreted as more significant. We
take the median of those 1000 − log10 scaled GLS P values and denote it as the true GLS
P value for that specific gene-gene pair, which we henceforth refer to as the median GLS
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P value. This approach of calculating the median GLS P values was validated prior to the
commencement of this work by showing that meaningful clusters enriched for terms in
the Reactome pathway database [33] after projecting the 19385 x 19385 matrix of median
GLS P values using UMAP and clustering the UMAP projection using DBSCAN [34]. We
do not apply the MC sampling procedure to the DepMap dataset since the above prob-
lem of too little insertions leading to biased correlations does not translate to the original
CERES score matrix employed by DepMap. As such, the definition of DD remains unal-
tered since its definition in Section 2.3, but DH now contains the median GLS P values
obtained from the above sampling procedure.

We can visualize the effect of the Monte Carlo sampling by showing the distribution
of median GLS P values for each gene to all other genes, or all values from the 19385 x
19385 median GLS P value distance matrix. The distribution is shown in Figure 2.3. We
contrast the distribution of the HAP1 dataset based median GLS P values with the 17456
x 17456 GLS P values matrix of the DepMap dataset.

For DepMap, we report a similar distribution to the one in Figure 1b of the work
that introduces the GLS approach and applies it to DepMap by Wainberg et al [28]. As
specified by their approach, the median of the distribution should be close to 0.5 for
a well-calibrated method. They report a median of 0.48 for DepMap, while Figure 2.3
shows a median of 0.5. This is most likely due to the usage of the most recent 22Q4
version of DepMap which more than doubles the number of cell lines compared to the
18Q3 version of [28].

Figure 2.3: Distribution of (median) GLS P values for every gene-gene combination in the HAP1 dataset (left)
and DepMap dataset (right). The median is shown for both datasets to show calibration, and does not refer to
the median of the MC sampled GLS P values.

The HAP1 dataset distribution does not show an even spread of median GLS P val-
ues and more closely resembles a Gaussian. Gene-gene pairs that showed no correlation
at first can start to show correlating behaviour by nature of the sampling. Instead of an
even spread across the P value range, we see that most gene-gene pairs start to show
a P value around 0.5 for their GLS. Due to the nature of the MC sampling, genes with
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low confidence intervals remain quite similar to the original reported MI values. Cor-
relations of gene-gene pairs where each has a high number of insertions remain fairly
stable across samples. On the other end, gene-gene pairs with high correlations due to
a lack of insertions leading to biased correlations are much less likely to do so. We show
in Chapter 3.4 that no interactions reported in the finalized networks have GLS P values
in the range of the distribution’s mean, which should reassure that even though the MC
sampling signature is present in the distribution, the significant interactions (P < 0.05)
are those found in the presented networks.

2.3. NETWORK CONSTRUCTION

In this work we use the term network and graph interchangeably. We formally define
a graph as G = (V ,E), where V is a set of vertices (or nodes) such that every v ∈ V rep-
resents a gene, and E is the set of edges such that every edge e ∈ E is a set of paired
vertices. An edge is weighted according to the GLS P value in the distance matrix DH or
DD depending on the dataset as defined in the Data Preprocessing Section. Biologically
an edge represent the weighted degree to which two genes have phenotypic profiles (the
MI and P values across screens in XH or essentiality scores in XD) that show a relation-
ship based on the GLS analysis of Section 2.2.1 (and also 2.2.2 for HAP1). Since we lack
information about direction of interaction in the distance matrix D, we define G to be an
undirected graph, and as such E is the set of unordered paired vertices. As described in
previous sections, the HAP1 dataset XH was not suited for direct network analysis due to
feature nonindependence and biased correlations. Therefore, results presented here are
based on the previously defined distance matrix D unless explicitly stated otherwise.

This work is exploratory in nature, and thus at every point the findings of an analy-
ses informed the next direction of the research. As the story progresses, we present the
methods for network construction and the decisions behind each applied method in the
Results. However, this section in the Methodology details how networks were analyzed,
validated for accuracy and visualized. In some cases it is important to include additional
background on the working of algorithms or approaches. Therefore, there is a dedicated
’Background’ section that provides additional information further along in the Methods.

2.3.1. COMMUNITY FINDING

We applied community detection to retrieve groups of nodes that exhibit a higher inter-
connectivity. Nodes in a module work together (interact) to achieve a distinct function
[35] or entail a similar process. Genes with similar profiles for broad phenotypes or gene
expression measurements often indicate them being active in the same biological pro-
cesses [36]. Structural analysis can hypothesize which areas of a network form such a
community. In this work the terms communities, clusters and modules will refer to the
same structural patterns in the context of network analysis, and as such they can be sub-
stituted for one another. For community detection we employed the Leiden algorithm
[37]. Leiden is closely related to a network property concerning community structures
called modularity (Q). Modularity acts as a quantifier, assessing the degree to which
nodes within a network form closely-knit clusters that exceed random expectations. A
graph with high modularity has a tendency to be grouped into communities, since its
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subgraphs have more edges than what would be expected by chance. In other words,
there are subgraphs that have a significant amount of internal connections and fewer
external connections. Modularity is defined to be −1 ≤ Q ≤ 1, with Q = 1 indicating a
perfect subdivision of non-overlapping communities, Q closer to 0 means subdivision
is not significantly better than random, and Q =−1 meaning the network is subdivided
worse than expected by random chance. The Leiden algorithm treats the community
detection problem as a Q maximization problem. As stated by Brandes et al., modularity
optimization is a NP-hard problem [38], and therefore the Leiden algorithm is a heuris-
tics algorithm.

In brief, the Leiden algorithm starts with a partition of the network in which each
node belongs to a distinct community. Then for each node vi , the algorithm calculates
the change in modularity δQ when moving vi into the community of another neighbor
v j . vi is moved to the community that gains the maximum change in δQ. It is therefore
a greedy algorithm, randomly starting at a node vi and making the optimal choice at
each iteration. This continues until no further movements improve on Q, after which all
communities are bundled into one super-node each which representing each commu-
nity, called the aggregate network. These super-nodes are connected with edges whose
weights are the sum of all edges between the communities before they are represented
by super-nodes, after which the algorithm returns to the movement phase until it con-
verges when no moves in the aggregate networks improve Q.

Furthermore, the Leiden algorithm is applicable to weighted networks, and due to
it being a modularity optimization algorithm, has very interpretable results. We turned
to the Leiden algorithm after its recent recommendation on clustering in single cell ap-
proaches [39], and frequent inclusion in other biological networks. The community_leiden
implementation of the igraph package has several hyperparameters. We tested a range
of parameters for the resolution (scale of clusters found) and switched between mod-
ularity and the Constant Potts Model for the objective function. Final values include a
resolution of 1, the modularity as objective functions and running the algorithm until a
stable number of partitions was found.

2.3.2. NETWORK VALIDATION

We conducted five assessments of the ability of created networks to recall known biolog-
ical relationships based on well-established databases for such relationships.

GO:BP ENRICHMENT ANALYSIS

The networks in this work aim to showcase cellular organization through the mapping
of phenotypic relationships. Functional annotation of nodes and communities in the
network can be used to identify which parts of biology are reflected accurately in the
network and how they relate to each other. Additionally, uncharacterized genes that are
shown to correspond to the same functional annotation can help elucidate their func-
tion, a method extensively used in Saccharomyces cerevisiae genetic interactions such as
in the SAFE method by Baryshnikova [40]. Functional annotations are provided by the
Gene Ontology (GO) database [41], a standard resource to describe the roles of genes in a
biological context. The GO database is a vocabulary of associations between genes and
GO terms, which are subdivided into three categories biological context: i) molecular
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function (GO:MF), ii) biological process (GO:BP) and iii) cellular component (GO:CC).
In yeast it was shown that genes with similarly phenotypic profiles are frequently co-
occurring in the same biological process [42]. Therefore, similar to SAFE and others, this
work only uses GO biological process (GO:BP) terms. Besides extensive usage of GO term
enrichment analysis in literature, this analysis was also recommended by a 2013 survey
on gene regulatory network inference evaluation metrics [43].

The GO:BP terms describe the functional theme associated to a gene and are struc-
tured in a directed acyclic graph (DAG) representing a hierarchical ontology structure
such that GO terms at the top of the tree describe broad categories of biology to which
many genes are associated while terms become more specific towards the leaves. To
establish whether a group of genes can be associated to or defined by a GO term, a com-
mon approach is to perform gene set enrichment analysis (GSEA). Enrichment is defined
as a metric of statistical overrepresentation of a a biological process within a given set of
genes when compared to a larger background set of genes. An example would be the
set of genes belonging to a retrieved community of a network of the HAP1 screen com-
pendium where the background is all the genes in the network.

Enrichment analysis was performed using the g:Profiler API [44], available at https:
//biit.cs.ut.ee/gprofiler. g:Profiler was introduced as a tool to standardize en-
richment analysis for different databases, and it was used in this work due to its exten-
sive information of evidence of genes belonging to a GO term, and its frequent quarterly
updates of databases. To ensure the annotations are of highest quality, we explicitly did
not include any electronic annotations of genes to a GO term. Therefore all GO terms
found in the network are based on experimental evidence only. One downside to using
g:Profiler is that is not clear which genes are used as a background for the enrichment
analysis. Therefore the API calls always include the background set of genes (all genes in
the network) so that enrichment analysis is accurate, but this does impede on the speed.
Because of the time it takes to perform the enrichment, we limited the number of com-
munities found to the 500 largest in each network. From emperical evidence we see that
this amount usually captures all the communities in found networks.

g:Profiler calculates the enrichment using a one-sided Fisher’s exact test, measuring
the significance of the association between the genes in the query set and those belong-
ing to an ontology term. The returned P value is the probability of observing the inter-
section between the two, plus all possible larger intersections. The P values all undergo
multiple testing correction using the g:SCS algorithm, which is the default method for
doing such a correction on P values from enrichment analysis. The algortihm was intro-
duced in the work by Reimend et al. along with implementation details [45], but notably
it is specifically designed for the ontology structure of GO, and as such is better suited
than more traditional over-representation methods like Bonferroni.

STRING ASSESSMENT

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) [46] is a widely
used and highly reliable resource for exploring protein-protein interactions and func-
tional associations. Besides cluster annotations, STRING provides interaction scores for
gene-gene pairs that are determined to have an interaction via evidence originating from
computational similarities based on inter-species whole-genome comparison, direct lab

https://biit.cs.ut.ee/gprofiler
https://biit.cs.ut.ee/gprofiler
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assays, presence in other well-known and curated interaction databases and finally co-
occurence of proteins in papers published on PubMed (text-mining) [47]. The inter-
actions are scored between the range of 0 and 1000, and are classified by the STRING-
specified confidence thresholds (low ≥ 150, medium ≥ 400, high ≥ 700, highest ≥ 900).
The approach to GO enrichment is very dependent on the found subsets of genes, found
in this work by community detection algorithms. By only considering edges in the net-
work as, STRING validation is thus complementary to GO:BP enrichment analysis as it
is cluster-agnostic.

As STRING enrichment in this work is used on edges in the network, this allows for
the introduction of measurements on precision and recall of the network. Precision of
the network refers to the rate of true positive predictions over all positive predictions:
precision = T P

T P+F P . The recall, or sensitivity, refers to the rate of true positive predic-

tions over the actual positives: recall = T P
T P+F N . In the context of biological networks

in this work, a prediction reflects an edge being present between two nodes in the net-
work. For this work, we conduct an analysis of precision-recall curves similar to the
work on biological networks by Pan et al., who note the inability of a network to cap-
ture all known interactions (recall of 1) but still allows for a comparative analysis be-
tween datasets or networks [48]. However, a direct comparison of values is more difficult
when network sizes differ, since the number of nodes influences the total number of ac-
tual positives. Nonetheless, overall trends can be insightful and compared between net-
works. The threshold for when an interaction is considered true can be varied between
STRING interaction scores of 0 and 1000, which means that for each of those values a
value for precision and recall can be calculated and plotted. The precision-recall analy-
ses in this work do highlight STRING interactions with a score of 400, indicating medium
confidence in the evidence for an interaction.

CORUM4.0 VALIDATION

The CORUM database [49] is a widely-used collection of manually curated mammalian
protein complexes to validate the ability of network interactions to reflect known biol-
ogy [13], [28], [50]. The database, started in 2007, has received frequent updates with
the latest 4.0 version being released in January 2023. At time of writing, the CORUM4.0
database servers are suffering from a cyber-attack and are therefore not available for a
public download. Fortunately, the CORUM4.0 complexes were sent to us by the database’s
author after an inquiry about the server outage. The CORUM team was hopeful that
after the issues were resolved, the complex database could be downloaded again from
http://mips.helmholtz-muenchen.de/corum/.

In a similar approach to Replogle et al. [13], we used a cluster-agnostic approach and
looked for complexes who had at least 66% of genes present in the presented network.
Nodes that had a degree of 0 were not considered. Since protein complexes are tightly
connected, every complex was treated as a fully connected network with the genes in
the complex as nodes and every node having an undirected link to all others in the com-
plex. These links are used in the Results to show interaction strength of CORUM verified
connections in the data versus those connections of the background distribution of con-
nections between all possible gene pairs. In addition we can sum the number of edges
that are part of unique CORUM complexes.

http://mips.helmholtz-muenchen.de/corum/
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GENE SET ENRICHMENT SCORES

The curated databases used in this work all bring relevant aspects when evaluating bi-
ological relevance of resulting networks. To more uniformly compare the network’s re-
capitulation of the databases, we perform an enrichment analysis in a similar fashion
to Boyle, Pritchard and Greenleaf [50]. By only looking at gene-gene interactions, we
determine co-annotation by any term in the GO, STRING or CORUM databases. An ad-
ditional advantage is this approach’s inclusion of a term for edges not present in the
network but do show co-annotation in a database. This can be seen as a measure of the
network’s recall, because it penalizes the enrichment score when a network lacks many
edges which it should contain if the network construction method and the dataset truly
capture known interactions. The summed enrichment for these interactions are calcu-
lated as in Equation 2.3.

Enrichment= log2(
E f c /Ec

E f /E
) (2.3)

Where E is the number of all possible edges between nodes in the network, Ec are
the edges actually present in the network, E f c are present edges which are co-annotated
in a database, and E f are edges not present in the network, but are annotated in an
external database. To determine all possible edges between nodes in the network, we
only considered nodes in the network with a degree > 0.

CONTROL CLUSTER BEHAVIOUR

Prior to commencing this work, twelve groups of genes in the HAP1 dataset were cu-
rated by academics actively researching with the CELL-seq screening technology to find
groups with highly similar phenotypic profiles amongst the genes. These groups were
manually annotated and confirmed to reflect true biological processes and are confirmed
to interact by literature. The group sizes range from three to five genes, and they are
highly diverse in their representation of biological processes. As a control, we can track
the behaviour of the genes belonging to the twelve groups and find whether each group
individually clusters together in the network. Since the controls originate from the HAP1
compendium itself, their usage is heavily specific for the HAP1 dataset only. The twelve
groups of genes and their associated GO:BP terms are found in Table B.2.

The twelve groups showed quite different interaction strengths in DepMap however,
where some groups translated almost one-to-one, some other groups did not contain
any strong inner-group connection. For example, the group associated to the endosomal
transport GO:BP term was also present in DepMap with very high interaction strengths,
while the protein O-linked glycosylation group did not show any meaningful interactions
in DepMap, since the genes in that group are related to muscle development and do
not necessarily score in synthetic lethality screens. As such a different set of controls is
required for DepMap.

The 2021 work by Shimada et al. introduced the ECHODOTS clustering algorithm
to find clusters of genes with similar dependency strengths that are robust to stochastic
influences from the t-SNE algorithm [29]. They applied the ECHODOTS algorithm to
DepMap, retrieving clusters with highly correlating profiles across cell lines and created
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a web-tool to explore them dubbed shinyDepMap2. Using this tool, we recovered ten
groups of genes that are similarly sized to the HAP1 control groups, and were further
required to each be enriched for a GO:BP term. To aid comparison, seven of the groups
recovered are related to one other HAP1 control group through an overlap in genes and
similar GO:BP term enrichment. An additional three groups were added based on them
being in the top scoring groups from the ECHODOTS algorithm listed in Figure 5B of the
shinyDepMap work. The control groups are listed in Table B.3.

2.3.3. NETWORK METRICS

For each generated network, we examined both connectivity and functional metrics to
gain a more complete understanding. Connectivity metrics, like node count and de-
gree, gauge the number of nodes sharing similar interaction strengths among nodes.
We also tracked the number and sizes of connected components, which are linked con-
nected subgraphs separate from other nodes. The count of components gave insights
into network fragmentation as interactions changed, impacting functionality. For in-
stance, stricter interaction strengths could isolate previously connected components,
disrupting information flow. As an additional reference, Supplementary Table B.1 con-
tains the brief definitions for characteristics of networks that are frequently referred to
in this work. The characteristics; degree, cluster coefficient, betweenness centrality and
neighborhood connectivity, are common in literature and their definitions listed here
are from Barabási’s book on network science [51].

For functional metrics we used two approaches. The Leiden algorithm was applied
to detect communities of highly inter-connected groups of nodes. We can thus track the
number and sizes of communities found. Edges in these communities as well as in the
overall network were validated according to the approaches in Section 2.3.2. The second
functional metric is to track the behaviour of groups of genes which are well-established
in the literature to interact and are captured by the HAP1 screen compendium with high
interaction strengths (see Section 2.3.2). We know a priori that a network which accu-
rately reflects biological processes should have the genes in each group in the same com-
munity, and most preferably those communities should include only one gene group
each since the groups have high interaction strengths and are related to diverse and spe-
cific GO:BP terms. They therefore act as positive controls for the community detection.

2.3.4. VISUALIZATION

In general, graphs were treated as Graph objects from the igraph Python library [52].
As is common practice for biological networks, results were visualized in Cytoscape 3.10
[53]. Each created network’s layout was produced with the edge-weighted spring embed-
ded layout in Cytoscape, similar to SAFE [40]. For larger components consisting of many
interactions, the prefuse force directed layout was applied as it more quickly calculates a
layout and so it can be efficiency applied to the giant components of networks presented
in this work. Nodes are coloured according to the biological process the found commu-
nity belongs to. Nodes with a bold white line are evidence genes, meaning that they
are annotated by the Gene Ontology to the GO:BP term for which the entire community

2https://labsyspharm.shinyapps.io/depmap/

https://labsyspharm.shinyapps.io/depmap/
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is enriched. Edges between nodes range in the amount of whitespace or "dashedness"
from a straight line, to a line with points and dashes, to a dashed line, and finally a line
with only \characters. These four categories reflects the categories for strength of inter-
actions in the STRING database. The more whitespace a line contains, the less strongly
it is connected in the STRING database. Finally, diamond shaped nodes are those part
of CORUM4.0 annotated complexes.

2.4. BACKGROUND ON METHODS

2.4.1. CLUSTERONE MODULE DISCOVERY
Nepusz, Yu and Paccanaro introduced the ClusterOne algorithm in 2012 as a density-
based clustering approach with the ability to find overlapping clusters [54]. The philos-
ophy behind the algorithm is to identify groups of densely connected nodes by mea-
suring their cohesiveness. Cohesiveness is a quality function that uses the assumption
that well-defined regions in the feature space have many within-region connections and
few boundary interactions, meaning interactions between nodes within the region and
nodes outside the region. The algorithm starts with one seed node as a found cluster V .
In a greedy fashion, the algorithm adds another node to this cluster which increases the
quality function of the cluster the most. The quality (cohesiveness) of V , is defined in a
similar fashion to [54] in Equation 2.4.

f (V ) = Σei n

Σei n +Σebound
(2.4)

ei n are the edges within the cluster V , while ebound are those edges between nodes
in V and nodes outside of V . In this work, the edges are weighted and therefore the
cohesiveness function sums over the weights of ei n and ebound . Nodes can also be re-
moved from V at any point if that improves cohesiveness. This process continues until
no neighbors of any vertices in V can be added that improve cohesiveness.

As the algorithm performs this approach for every node, often nodes are part of mul-
tiple clusters. Those clusters with a high overlap are merged together to form one cluster.
In the final step, the density of all found clusters is compared to a user-defined threshold
d , and only those with a higher density are kept in the final results. For the clusters, their
density is calculated as d(V ) = Ve

Vn (Vn−1)/2 , where Ve is the number of edges in V and Vn is
the number of vertices in V . It is thus a ratio between the number of edges in V against
the maximum number of possible edges. Weinberg et al. [28] logically relate this param-
eter d to cluster sizes, as clusters with fewer nodes need relatively fewer within-cluster
connections to produce a higher density d(V ).

2.4.2. ARACNE-AP NETWORK CONSTRUCTION
One of the algorithms applied to assess whether XH was out-of-the-box suited for analy-
sis by known gene-gene network inference algorithms is ARACNE-AP [55]. ARACNE-AP
uses a different approach to traditional correlation-based relationships between sam-
ples in a dataset, instead employing mutual information I to measure the dependence
between two variables [56]. The most interpretable definition of mutual information is
given in Equation 2.5, where DK L is the Kullback-Leibler divergence. Intuitively, the mu-
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tual information between genes X and Y (I (X ,Y )) is 0 when X and Y are independent,
meaning that observing X will not provide any information about Y . As a property of
DK L , the mutual information is non-negative and has no upper-bound.

I (X ,Y ) = DK L(P(X ,Y )||PX ×PY ) (2.5)

ARACNE requires a single run to estimate the threshold for Mutual Information, to
estimate when interactions are discarded from the network. Then 100 runs of the algo-
rithm with bootstrapping were ran, which is the same amount of runs as the authors of
ARACNE-AP use on The Cancer Genome Atlas dataset. Then all 100 runs are combined
into a single consensus network, based on the statistical significance of the number of
times an edge is found in each bootstrap, using Bonferroni corrected P values < 0.05 as
threshold. Technical details for reproducibility are found in Supplementary C.

2.4.3. MUTUAL K-NEAREST NEIGHBOR NETWORKS

In this work, we define the MKNN graph in a similar fashion to Zhang, Kiranyaz and
Gabbouj [57]. D was previously defined as a symmetric distance matrix containing the
GLS P value between every pair of genes in either the HAP1 screen compendium (DH)
or the DepMap dataset (DD). Let di represent one row of such a distance matrix for a
gene i , such that di is the vector of GLS P values between a gene i and all other genes
in the dataset. Then let K (di ) be the set of k nearest neighbors of data point di , with
obvious connotation that |K (di )| = k. Again let G = (V ,E) be a graph with every gene
being represented as a node v ∈ V . We connect a pair of nodes vi and v j if the two end
data points di and d j are in each other’s set K . Formally, (vi , v j ) ∈ E =⇒ d j ∈ K (di )∧
di ∈ K (d j ). The constructed graph is the MKNN graph, note that it is undirected and
variable depending on the chosen value for k. The MKNN graph can be stated to be more
stringent, arising from the reciprocal affinity criteria, and can be considered a subgraph
of a KNN graph. In a KNN graph, every node’s degree is always ≥ k, while in the MKKN
graph every node’s degree is always ≤ k.

2.4.4. DISTRIBUTION FITTING

We employed Scipy’s scipy.stats.rv_continuous.fit function to robustly estimate
parameters for a distribution model, where the data entered are the values from D. This
was done individually for every gene in the dataset. We employ the Kolmogorov-Smirnov
(KS) test as a statistical tool to estimate goodness-of-fit between the observed data and
the estimated distribution. We perform a one-sample KS test, where a distance is quan-
tified between the empirical distribution function of the sample and the cumulative dis-
tribution function (CDF) of the generalized Pareto distribution (GPD). To determine the
significance of the goodness-of-fit, we calculate the P value associated with the KS test
statistic. The KS test is defined as such that when the P value is is high it means the null
hypothesis of the fit being accurate is true and a low P value suggests the null hypothesis
should be rejected. We employed the default α = 0.05 threshold and defined all genes
whose KS-test’s associated P value was > 0.05 to be well-fit by the distribution.
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2.4.5. GENE GROUPS FOR SEPARATED BIOLOGY CONTROL NETWORKS
Section 3.4.3 covers the creation of networks from a set of 500 genes that are selected
to be from five different groups of biology. One hundred genes each were selected that
are related to either DNA repair, apoptosis, translation, transcription factors or the mi-
tochondria. The genes annotated to these groups were gathered from highly curated
sources widely used in literature. The mitochondrial genes are found in the MitoCarta3.0
collection [58]. The transcription factors are those from the 2018 work by Lambert et al.
published in Cell [59]. For the remaining three groups, these were selected from hall-
mark human gene sets curated by the Molecular Signatures Database [60]. From those
lists, we selected a sample of 100 from each such that every gene was present in both the
HAP1 compendium and the DepMap dataset.

2.4.6. BIOLOGICAL COVERAGE ANALYSIS: OBTAINING BROAD GO:BP TERMS
The GO:BP database is organized as Directed Acyclic Graph (DAG) data-structure, where
the general Biological Process GO term is situated at the root and GO terms are hierarchi-
cally annotated based on specificity of the process up until a depth of 11 where the leaf
GO terms reside. One thing to keep in mind is that there can be multiple paths between
two nodes, due to the intrinsic un-hierarchical ordering of biological processes in nature.
GOATOOLS [61] is a library created for Python specifically to perform queries and en-
richment analysis on the gene ontology (GO). The gene ontology was download from the
official source at http://geneontology.org/docs/download-ontology/. For initial
GO term comparison between datasets, the aim is to use the propagation of annotations
property in the GO tree and for each term obtain the broader GO terms at the first and
second levels of the ontology. To this end, we employed a breadth-first-search algorithm
which started from a GO:BP term retrieved from the networks and move up the tree and
located all the first and second level terms that could be reached from the starting term.
All unique level 1 and 2 terms are stored, and as such one specific GO term can have
multiple broader categories in the upper levels.

http://geneontology.org/docs/download-ontology/
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RESULTS

This chapter presents an overview of approaches used to establish networks that recover
meaningful biological relationships in both the HAP1 and DepMap datasets. We further
perform PCA analysis and comparative analysis to DepMap to investigate the contri-
bution of the limited number of screens in the HAP1 screen compendium. After net-
work and screen analysis, a comparative investigation on the coverage of biology of both
datasets is performed. This brings forward hypotheses for potential new interactions
the HAP1 screen compendium highlights. Finally, these hypotheses give suggestions on
which phenotypes to cover with new screens.

3.1. DATASET ANALYSIS USING ESTABLISHED METHODS
To lay the groundwork for creating gene-gene interaction networks based on the HAP1
screen compendium XH, we establish a baseline by applying two known methods from
literature to the dataset. This baseline gauges whether the uniquely defined HAP1 phe-
notypic profiles for genes shows straight out-of-the-box results for seminal methods
used for gene-gene network inference, originally designed for different datasets. These
results serve as a benchmark for future analyses. The experiments are conducted using
the method proposed from the GLS method by Weinberg et al. [28] and the ARACNE-AP
model [55]. We’ve opted for the GLS method since the work by Weinberg et al. validated
the retrieved clusters in a network based on the DepMap dataset to recapitulate known
biology by using an enrichment analysis similar to the approach employed in this work.
In addition, the GLS preprocessing step of the screen compendium to a distance ma-
trix was brought forward by their method. This approach can thus give insights into the
HAP1 screen compendium when compared to DepMap. ARACNE-AP was chosen due
its well-established presence in the literature [62] and its unique approach to calculat-
ing pairwise relationships between genes based on an information theoretic framework.
As argued by Margolin et al. in the original ARACNE implementation [63], the informa-
tion theoretic approach is more suited than traditional correlation-based approaches for
capturing non-linear relationships between genes and also comparatively more robust
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to noise. ARACNE-AP was originally designed to work with a matrix of gene expression
data, but mutual information is not exclusive to gene expression and can be applied to
any two variables whose values can be modelled using a probability distribution.

CLUSTERONE
The effort of Weinberg et al. towards a genome-wide network can be summarized into
three core contributions; the application of GLS to the dataset, finding clusters of genes
with a clustering algorithm, and using diffusion maps combined with a UMAP projec-
tion for final mapping and visualization. Since the final mapping is mostly for visualiza-
tion purposes and reliant on the results from the clustering algorithm, we confine our
approach to only employ the clustering algorithm on the distance matrices D. The clus-
tering applied is an established density-based algorithm termed ClusterONE [54]. Clus-
terONE finds potentially overlapping modules based on a network structure or distance
matrix by greedily "growing" regions from nodes as starting points until the quality of the
module is above a user-provided hyperparameter density d, which dictates how strong
within-module interactions are relative to interactions to vertices outside the module. A
background on ClusterONE and its parameters are further described in Section 2.4.1.

As the functioning of this algorithm is highly dependent on the value of d, [28] uses
the values 0.2, 0.5 and 0.9 for d and treats the resulting modules as a singular output
from the algorithm. For weighted graphs, the default value is 0.5. By using a range of
values for d, multiple biological scales are captured, where low values for d return large
clusters while high values for d correspond to smaller clusters of specific functional orga-
nization. We apply ClusterONE on the FDR corrected GLS P values in DH and DD. After
ClusterONE analysis, quality of the resulting clusters are assessed by performing GO:BP
Enrichment Analysis, as described in Section 2.3.2.

The number of resulting modules are shown in Table 3.1. Results for DD are included
as a control proving the implementation works as intended. Indeed for DD we find a
little over 200 more modules than originally found in [28], most likely due to the in-
creased number of cell lines included in the newest iteration of DepMap used in this
research. For DH, we see the algorithm is not suited for finding larger-scale clusters, with
the d = 0.2 adding every node and edge to a single cluster after 10 days of runtime. Af-
ter seven days of runtime on the NKI’s RHPC cluster, 14% progress was reached using
d = 0.5, therefore ClusterONE using d = 0.5 on DH is considered not feasible. The pro-
gram was still running, indicating they most likely got "stuck" in calculating a module
which never reached the exit condition of its density. Since d = 0.2 returned one cluster

Modules in DH (HAP1) Modules in DD (DepMap)
density d = 0.2 1 367
density d = 0.5 N.A. 1995
density d = 0.9 612 3077

Total 613 5439
Total % of genes in modules 15.3% 88.1%

Table 3.1: Clusters generated by ClusterONE [54] on both datasets following the procedure described by [28].
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after ten days, most likely there will be similarly spaced intervals returning large modules
for d = 0.5. We hypothesize that since the bulk of interactions have a median GLS P value
between 0.4 and 0.6 (see Figure 2.3), many edges are added without it being detrimental
to the total scoring of within-group edges relative to the boundary edges, and thus the
exit condition requires a stricter quality parameter.

For d = 0.9, 612 clusters were generated with GO:BP enrichment analysis showing
439 are enriched for a GO:BP term, with 211 distinct terms in total. The high number of
overlapping GO terms is due to the fact that genes can be constituents of multiple clus-
ters, which leads to many clusters with a relatively large overlap being enriched for the
same term. This result indicates that XH is able to capture known biological processes
with relatively small-scale clusters, ranging from 700 genes to 5 genes. Processes with
the highest enrichment P values (− log10(P value)) pertain to mitochondrial gene expres-
sion (185.2), post-translational modification of proteins (42.3) and organelle membrane
transport (38.7). Biological processes like hippo signalling and TOR signalling are most
prominent and account for 50 of the enriched communities. Table 3.1 does show that
there is a large number of genes in HAP1 that are not accounted for in the modules. A lot
of starting seed nodes thus did not form a module, the following sections that do not use
ClusterONE will further analyze this behaviour of DH.

Figure 3.1: Distribution of the ClusterONE module qualities for d = 0.9.

The distribution of ClusterONE’s quality function, as defined in the Methodology, is
shown in Figure 3.1. Both the the spread and overall quality of modules are lower in DH

than in DD. Another important metric for the modules is the depth of the GO terms for
which they are enriched. A greater depth indicates a greater specificity of the biological
process. The average GO Term depth of ClusterONE terms is 5.37, where the maximum
attainable depth is 11 in the GO:BP tree. Comparisons against this number will be made
in following approaches. In conclusion, ClusterONE does capture groups of genes signif-
icantly enriched for a biological process, but there is room for improvement on the HAP1
screen compendium. Its failure to provide meaningful clusters on low densities indicate
that only relatively smaller groups of nodes show coherent clustering, likely due to the
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MC sampling already filtering for strong interactions to be retained in the dataset, or a
lacking number of screens in the compendium. However, dense clusters are found to
recapitulate known biology in smaller groups of genes albeit with less coverage of genes
and number of modules than DepMap. These result spark several investigations in sub-
sequent sections.

ARACNE-AP
The ARACNE-AP algorithm uses an information theoretic approach along with boot-
strapping of the samples to provide a network more robust to noisy data and able to
capture non-linear relationships. The background for ARACNE-AP is given in Section
2.4.2. ARACNE-AP was applied to both the original XH and the distance matrix DH.
Experiments on DH were not successful, as the matrix of 19385 x 19385 required too
much memory for even a single bootstrap, which was not feasible even on the NKI’s
RHPC cluster. Application on the original XH should serve as an indicator for the suc-
cess of non-linear methods on the raw dataset, unaltered for issues relating to screen
non-independence and biased linear correlations. The ARACNE-AP retrieved network is
shown in Figure 3.2.

We see a clear distinction of two densely connected components, sparsely connected
by a few intermediary genes. The largest component, consisting of 15540 nodes, is en-
riched for being a cellular process with a (− log10(P value)) of 81.2, which is a very broad
GO:BP term for which 14266 genes are annotated. The smaller green component is en-
riched for the G protein-coupled receptor signaling pathway (17.6). While not as broad
as cellular process, the G protein family acts as molecular switches in cells and are in-
volved in GTP/GDP signalling, which is an essential mechanism and not limited to a
single process. A remaining large group of 712 genes is enriched for the sensory percep-
tion of smell (20.5). This shows how GO:BP enrichment analysis is not always insightful
for such large terms as sensory perception of smell.654 genes in that group are not asso-
ciated with that term, so the term’s precision is low at 0.08, but since we do capture 57%
of the term’s annotated genes in the 712, it is enriched.

The ARACNE-AP approach does cover all genes in comparison to ClusterONE, but

Figure 3.2: The interaction network derived from ARACNE-AP applied on XH. Genes are represented as nodes,
edges are mutual information values which are above the pre-calculated threshold, and nodes are coloured by
enriched GO:BP term.
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is not suited for finding communities that are meaningful in a biological context. The
GO:BP terms covered are very broad and do not provide much information on gene-
gene interactions. Calculating mutual information involves estimating a probability dis-
tribution for each gene, and such a task becomes quite difficult with the low number of
samples (167 screens). As these samples are also not corrected for not scoring in screens
and nonindependence of screens, these distributions can also become quite related, and
even the applied bootstrapping procedure does not account for the relatedness of most
genes. As their mutual information values become so similar, it is harder for any cluster-
ing algorithm to determine clusters of smaller size.

In conclusion, out-of-the-box application of established methods for network in-
ference do provide a baseline to compare further analyses against, but are not show-
ing overall satisfactory results when applied to the HAP1 screen compendium. Found
clusters are either too broad to provide meaningful insights or cannot be found with
ClusterONE in the HAP1 screen compendium. However ClusterONE does find enriched
modules that do capture biological processes, but compared to DepMap there is a fewer
amount and they are of lower quality according to the ClusterONE’s quality metric. The
dataset does either not have enough features to be informative, or the phenotypic simi-
larities of the genes do not lend themselves perfectly to these methods, which were orig-
inally designed for PPI datasets for ClusterONE and microarray expression profiles for
ARACNE. In those cases, PPI datasets are more suited for ClusterONE since often they
are composed of several experiments that do not necessarily cover the same parts of the
interactome (diverging cell lines or experimental design) and proteins often form com-
plexes with similar interaction profiles, both reasons can lead to denser more modular
connections in PPI profile matrices [64]. Microarray data in general measures the expres-
sion levels of thousands of genes simultaneously, and as such the data matrices contain
many features, leading to works only selecting those features that are most varied across
the samples. This abundance of features is much better suited to ARACNE-AP’s informa-
tion theoretic approach, where a probability distribution needs to be modelled for each
sample.

3.2. INTERPRETABLE NETWORKS TO DETERMINE MEANINGFUL

GENE-GENE INTERACTIONS

We next sought to investigate the underlying cause for the varying results following anal-
yses by known methods. Since there is no background information on the structural
features of the HAP1 dataset’s distance matrix DH, this requires a more fundamental
approach. Therefore, to more systematically determine the networking and clustering
behaviour of our dataset, we apply two interpretable and commonly used methods for
pairwise relationship modelling in a graph. The methods are i) networks with nodes that
are connected only when edges are stronger than a global cut-off value and ii) a k-nearest
neighbor (KNN) network.
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GLOBAL INTERACTION THRESHOLD NETWORK
Let G = (V ,E) be a graph. To determine whether two vertices v1, v2 ∈ V share an edge,
the global interaction cut-off graph is defined by function fg l obal shown in Equation 3.1.

fg l obal (vi , v j ,α) =
{

1 if Di , j ≥α

0, otherwise
(3.1)

Two vertices in G are connected only if their value in the distance matrix D is above a
predefined thresholdα. Note that the values in the distance matrices were (− log10(P value))
scaled such that higher values equate to more significant GLS P values. Global interac-
tion cut-offs are frequently used in literature to determine when to connect nodes, such
as in the seminal global yeast interaction network from the Boone lab [9] or when map-
ping genetic interactions in cancer cells as done by Rauscher et al. [11]. There is no
standard value for α as it is dependent on the data and research objective and Rauscher
et al. discussed the trade-off between the amount of information added into the net-
work (high α) versus its usefulness in analysis (low α). We therefore conduct an analysis
of network behaviour in a more systematic manner by measuring several network prop-
erties (Section 2.3.3) over a wide array of values for α. We can determine how stable the
network is to reduced strictness of interaction threshold [28].

Initial results of the analysis while varying from P values of 0.01 to 0.5 in 50 steps
is shown in Figure 3.3. Interestingly, we see a clear staircase pattern in the number of
nodes, showing that nodes are clearly grouped by interaction strengths at certain thresh-
olds, since the number of nodes also stays equal for a few values of α. This is due to an
important feature of the data which has to be mentioned. The results of the MC sampling
procedure (see Methodology), which was used to create DH, did not precisely contain the
median GLS P value from the 1000 sampled GLS matrices. Instead the resulting P values
were discretized into 400 equi-sized bins, which led to a maximum of 400 unique values
being used in the DH distance matrix. As such, the jumps in the number of connected
nodes can correspond to the α cut-off edging over one of the 400 binned GLS P val-
ues, thereby at once including all edges that correspond to that bin. This discretization
was performed prior to the commencement of this thesis work as a method to conserve
memory during the memory-intensive sampling step. The analyses performed specif-
ically in this section 3.2 are fully based on this discretized version of DH. Later in this
work, we see that this discretized DH was not suited for certain analyses, which will be
discussed appropriately 1.

The leaps in number of nodes are thus explained by the discretization, but the overall
trend is indicative of another phenomenon. Almost all nodes were part of a single large
connected component as shown by the overlapping red and blue lines in Figure 3.3. We
observe that already at P values < 0.05 there is one large network component while the
remaining nodes remain either fully disconnected or forming pairs of nodes. The net-
work representative of fg l obal with α = 0.01 (the first network in Figure 3.3) is shown in
Figure 3.4. The Leiden clustering algorithm is unable to distinguish smaller communi-
ties in the network, which is densely connected due to the high number of edges relative

1Note that section 3.1 does not use the discretized version as these analyses were re-performed for a more
complete analysis later in the project’s timeline.
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Figure 3.3: Analysis of connective and functional metrics for a range of α values from 0.01 to 0.5. The left
graph tracks global metrics relating to number of nodes and component sizes. The right graph shows results
of community finding.

to the number of nodes. When looking at the number of positive control clusters cor-
rectly clustered for this network in Figure 3.3b, all twelve groups are clustered together.
They are however all found within the same community, while these twelve groups are
functionally very different, indicating the lack of information such a global network re-
trieves in this setting. Figure 3.3b shows the number of disconnected components over
the range of values as well as the number of communities found by the Leiden algorithm,
showing they are heavily related. Disconnected components, found by Leiden to be dis-
tinct communities, can no longer be distinguished as seperate commmunities when the
components merge.

To gain further insights into the topological organization of the network, we analyzed
the variation of nearest neighbors given by the degree distribution [65], shown in Figure
A.1. The degree distribution provides valuable insights into how nodes are connected
and how information or influence flows within the network. The degree distribution of
the network appears to follow a power law, where a small number of nodes referred to
as hub nodes have a high degree and connect the remaining nodes with sparser degrees,
which is a well-documented feature of biological networks [66]. However, two important
features of the distribution do not conform to power law behaviour.

First, there are a very small number of nodes with an incredibly high degree, mak-
ing the spread of the distribution extremely broad. These hub nodes are not completely
unmerited. The genes with highest degrees on average score in a high number (> 50) of
screens. The top 5 hub nodes by degree (degree varying from 1778 to 1710) are NRXN1,
DLG2, TRPM3, ROBO2 and SYT1, which also make sense in a biological context. NRXN1
encodes a membrane protein involved in cell-cell-interactions, and required for the for-
mation of complexes for efficient neurotransmission and the formation of synaptic con-
tacts. DLG2 encodes a protein involved in scaffolding for receptors ans signalling pro-
teins, and is known to be related to the RAF/MAP kinase cascade and unblocking of
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Figure 3.4: fg l obal network using α= 0.01. Leiden community algorithm returns five large clusters related to
broad GO:BP terms.

NMDA receptors. TRPM3 encodes a protein belonging to the transient receptor poten-
tial family, responsible for cellular calcium signaling. ROBO2 encodes a protein highly
conserved between human and fly’s, and is a transmembrane receptor functioning in
axon guidance and cell migration. SYT1 encodes a member of the synaptotagmin pro-
tein family, another integral membrane protein family that play a role in membrane sig-
nalling during trafficking of synaptic vesicles. The hub nodes are all essential for sig-
nalling processes, especially related to neural regions, and as such their high involve-
ment with many processes involving a number of other genes is not unwarranted.

Another important characteristics of these genes is that they are relatively long in
terms of base-pairs (bp) on the genome. The lengths are retrieved from BioMart [67], a
well-established tool used for analyses on gene lengths like in the work by Lopes et al
[68]. As the CELL-seq screens are performed with randomized gene-trap procedures,
larger genes simply have a higher probability of being truncated than smaller genes.
As such, they have a higher number of insertions when compared to the other genes.
The method to calculate the MI of genes as described in the dataset description in the
Methodology uses the number of in-gene insertions. When the values for in-gene inser-
tions are relatively higher when compared to the out-of-gene insertions, the MI values
tend to become larger too, and also influences their P values for significance in screens.
The hub nodes truly reflecting a biology or being a result of the experimental approach
(or both) is a point to investigate further in the following sections.

A second interesting feature of the distribution is a very large concentration of nodes
with a degree of 1, which is not conform the power-law. As such the distribution ap-
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pears bi-modal. This can be indicative of a commonly observed phenom in (biological)
networks called a core-periphery structure. The 1999 work by Borgatti and Everett first
formalizes this structure as a meso-scale feature of networks where an undirected net-
work can be broadly partitioned into two sets, where one set contains a densely con-
nected core which is surrounded by a periphery of nodes which have sparse connections
within the periphery itself, but have more connections to the core [69]. This behaviour
is visualized for the HAP1 compendium in the next section.

The core-periphery structure is extremely apparent in the HAP1 screen compendium
when analyzing networks with an extremely low value forα. As larger values forα (> 0.01)
showed similar behaviours, we opted to investigate lower values of α more extensively,
and thus the range of α values is defined in log space to evaluate 100 values between 1E-
10 to 1. The fg l obal network ofα= 1∗10−10 is shown in Supplementary Figure A.2. The P
value threshold for interactions is the lowest investigated in this work. Characteristics of
the network are summarized in Table 3.2. The strong interactions lead to a more favor-
able identification of 35 communities with enriched for a unique GO:BP term. By far the
largest term is mitochondrial gene expression, almost completely covering the second
largest component in the graph (light blue). This is unsurprising, as it was also one of
the major clusters found with the ClusterONE algorithm. The network is in general quite
sparse, consisting of multiple disconnected components. Of the 500 genes with the high-
est degree in the fg l obalα = 0.01 graph, the most prominent hub nodes, 80% are found
in this extremely sparse α = 1∗ 10−10 network. This supports the conclusion that the
more densely connected component in the α= 0.01 network is largely due to the higher
interactions strengths found between those nodes and for that reason are important in
providing connectivity in the larger network.

Network Feature Value

Number of Nodes 1521
Number of Edges 5670
GO:BP Enriched Communities 35
Total Communities 103
Giant Component Size 1041

Table 3.2: Characteristics of the fg l obal network with α= 1∗10−10

The separation of a dense and strongly connected core overlapped with a much larger
and sparser periphery component apparent in the network is an actively researched
topic in statistics [70]. However, finding a suitable approach for this dataset would not
contribute to answering the research questions. A strongly defined "core" would not give
any information on the remaining genes, while one of the crucial ideas behind the HAP1
screen compendium is that gene-gene interactions that are associated by more specific
phenotypes should cover areas of biology less prominent in datasets that measure broad
phenotypes such as survival. Furthermore, a threshold for the core would also have to
be highly specific in regards to the biological processes involved. Defining one singular
value forα to split the core does not cover the complex and diverse interactions in differ-
ing biological contexts. Not all pathways are created equally, and interaction strengths
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between genes in different pathways are not of singular strength throughout the cell and
their measurements are heavily dependent on the experimental conditions. Setting a
low value for α could thus lose information on pathways that are still very relevant. And
trying to capture all interactions results in a noisy and uninterpretable network. The pro-
posal of a core-periphery separation algorithm is therefore outside the score of this net-
work. To potentially improve upon aforementioned disadvantages of one global thresh-
old, we apply k-nearest neighbor (KNN) graph construction, which ensures all nodes are
contributing to the overall network structure.

k-NEAREST NEIGHBOR NETWORKS

k-nearest neighbor (KNN) approaches lie at the foundation of many non-parametric
clustering algorithms, as well as biological networks like in the work by Weinberg et al.
[28]. Additionally, prior to this thesis work the HAP1 screen compendium was analyzed
using UMAP, which showed coherent clusters forming enriched for Reactome [33] terms,
which is a database of biological pathways, and UMAP employs KNN networks for the di-
mensionality reduction [71]. These results are not included in this work, but the coherent
clusters were only found with the number of neighbor parameters k = 2, the lowest pos-
sible value, meaning only the most local neighborhoods are able to recapitulate biology.
UMAP specifically employs KNN networks since it is often applied to high-dimensional
data, where distances between nodes tend to become larger but also more similar due to
the curse of dimensionality. The difference between a node and its first neighbor could
therefore be large, but the subsequent differences to other neighbors are smaller. This
is an advantage of using KNN networks over a global interaction cut-off, as this adds a
focus on local connectivity irrespective of absolute distances.

We performed a similar analysis to the global networks by analyzing the networks
created by varying k over a range from 1 to 40. In addition to the structural and functional
metrics, we track the total properties for a network to lend itself to community discovery
and subsequent enrichment for GO:BP terms for those communities. Results for the
grid search are presented in Figure 3.5. Presented results are showing k values from 1 to
10 to not overpopulate the graph, and in addition the number of communities in each
subsequent network is similar to the k = 10 network.

Figure 3.5 shows the distribution of GO:BP enrichment P values for each community
in the networks found with the Leiden algorithm for each value of k. The k = 1 network
logically retains the largest number of separate components, and is shown in Supple-
mentary Figure A.4. The largest component has 20% of total nodes and is split into 10
communities, while many other components are comprised of a singular community.
From the Figure, 191 out of 429 communities found are enriched for a GO:BP term. This
is in line with the findings from running the ClusterONE algorithm with a high density
setting (small-scale clusters): there are biological processes captured by the dataset but
clear separation of those processes requires sole consideration of a node’s extremely lo-
cal neighborhood of (d = 0.9 or k = 1), where we obtain the most enriched communities
in absolute terms.

We can further evaluate the quality of the network using the STRING database and
CORUM databases (Methodology 2.3.2), and plot the precision-recall curves of known
STRING interactions in Figure 3.6A. The threshold of 400 are STRING interactions of
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Figure 3.5: Distribution of GO:BP enrichment P values for communities in networks found over a range of k.
Also noted are the deepest term found in the GO tree, as well as the average term depth.

medium confidence. The recall is very low, since all nodes are participating in the net-
works but the k = 1 ensures there are very few edges. The precision is comparatively
high, slightly over half of edges are interactions in string with medium confidence. The
enrichment in the CORUM database is shown in Figure 3.6B. The background distribu-
tion (blue) shows the distribution of GLS P values from all possible edges in the net-
work (V ×V ), which is similar to the observed GLS distribution from Figure 2.3. The
red distribution are the GLS P values from the interactions in the network also found in
CORUM. The interactions capture those relations in 3622 CORUM complexes out of the
total 5204. This shows that the GLS P values of gene pairs found in CORUM are signifi-
cantly stronger than the background distribution of all edges (by Mann-Whitney U test),
but the distance between the medians is quite close. Furthermore, the low edge count
of k = 1 leads to CORUM complexes being "hit" but not fully captured, as those are most
frequently composed of 3 to 5 proteins many intra-complex interactions.

Figure 3.6: Precision recall curve for STRING and a GLS P value distribution comparison for CORUM4.0 of the
KNN k = 1 networks.
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When we increase k to 2, the entire network becomes immediately connected and
forms one large component. The number of communities found reduces eight-fold, the
Leiden algorithm struggles in finding small denser-connected regions in this connected
component. As a result, community sizes increase, and while most of them are enriched
we note that the statistical over-representation analysis which calculates enrichment is
very dependent on the size of the community and the number of annotations to the GO
term, meaning that as community sizes increase in general the GO terms for which they
are enriched have more annotations. More annotations to a GO term are generally those
associated to a broader category of biology, in other words specificity of biological pro-
cesses covered is lost as k increases. This is further highlighted by the inability to identify
the control clusters as distinct communities in all networks k > 2, while the k = 1 net-
work does capture 9 out of 12 controls in separate enriched modules. For visualization,
the k = 4 network is shown in Figure 3.7.

Figure 3.7: k = 4 KNN network. Nodes are colored according to community found.

This k = 4 networks visually functions as a representative of all k >= 2 networks. The
KNN network structure has more clearly shown the core-periphery structure present in
the data. We can naively separate the two partitions by simply selecting the nodes in the
clearly visible donut shape as the periphery and the center as the core. The core con-
tains 55.6% of nodes and 90.1% of edges, showing the densely connected core juxtaposi-
tioned with the sparse peripheral. This structure also gives insights into why the Leiden
communities becoming increasingly large too, when examining the distribution of the
neighborhood connectivity of nodes shown in Figure 3.8. Neighborhood connectivity of
a node is the average degree of its neighbors, which has also been shown to commonly
follow a power-law distribution in PPI networks [72]. In the case of Figure 3.8 there is
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a distinct bi-modality where one large group of nodes is very densely connected in its
communities while another group has sparser connectivity. The Leiden algorithm has a
resolution parameter that accounts for this, but this is pre-defined before analysis and
is here more skewed towards larger communities if the amount of interactions make the
clusters less modular.

Figure 3.8: Distribution of neighborhood connectivity of the nodes in the k = 4 network

Such a structure does not indicate a direct flaw of the screen compendium; core-
periphery structures are a feature of gene regulatory networks and PPI networks, where a
set of master regulators or core proteins is highly conserved and performs essential func-
tions, while the more peripheral regulation and proteins are related to more more organ-
specific functions [73]. We asked whether this core-periphery structure was strictly a
feature from biology or if is inherent to the HAP1 screen compendium. As noted in the
dataset description, 11093 out of 19385 genes found in the screen compendium are a
significant regulator according to their P values in at least one screen. The remaining are
never significant, and have in common that they contain a lower number of insertions
throughout all screens. We analyzed the proportion of genes in both partitions based
on the amount of times they score as a regulator in a screen. The number of screens
in which a gene scores for the k = 4 network is plotted in the pie-chart in Figure A.3.
The periphery is dominated by genes that did not score in any screen, and 94% of genes
score in either none or one screen. Additional distribution comparisons are illustrated in
Figure 3.9, revealing a broader range of screen numbers within the core. Notably, genes
with scores across up to 60 screens are also detected in the periphery, implying a lack of
scoring is not the only reason for a gene to reside in the periphery.

Employing a Mann-Whitney U test, we find evidence to reject the null hypothesis
that these samples share the same distribution. Hence, these distributions exhibit sig-
nificant differences. We chose the Mann-Whitney U test over a conventional t-test due
to the prevalence of genes that score in no screens, making the data not normally dis-
tributed. We note that the analysis shown here is for k = 4 only, however this trend
continues for all values of k up to the analysis bound of 40. Those networks show an
increasing shift of genes to this core structure until only 7 or 8 communities remain. Fur-
ther analyses using the global and KNN networks using only genes found in significant
screens resulted in more densely connected structures that did not lend themselves well
to community analysis, akin to the "core-like" structures as above. This core-periphery
relation is investigated more in future sections.
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Figure 3.9: Data for the KNN network with k = 4. Comparison of the distribution of the number of screens per
gene in which they are deemed significant. The Mann Whitney U test shows they differ significantly.

To summarize, the networks with more lenient global thresholds and k values >1
show a core-periphery structure, containing extremely large communities with broad
GO:BP enrichment terms. The networks are too noisy and not able to effectively reca-
pitulate biology. A global threshold is only suitable for the analysis of the dataset when
it is so low that only the most extreme interactions remain. Likewise, only if k = 1 com-
munities are found in the KNN networks which show enrichment for GO:BP terms and
contain 9 out of 12 control clusters. We therefore continue to explore the dataset in order
to bring forward the most biologically relevant and comprehensive gene-gene interac-
tion network, knowing that local neighborhoods should be prioritized. We additionally
investigate more thoroughly why the HAP1 screen compendium shows the above de-
scribed network structures.

3.3. STRINGENCY OF MUTUAL K-NEAREST NEIGHBOR GRAPHS

SHOWS MEANINGFUL CLUSTERING
To continue the investigation into local neighborhoods we propose the application of the
mutual k-nearest neighbor (MKNN) graph structure on the screen compendium. This
section argues why and how such networks address previous limitations and then con-
tinues with an analysis of the MKNN networks for a range of k values.

The MKNN approach introduces the concept of reciprocal affinity in the nearest
neighbor relation: nodes are nearest neighbors if and only if both nodes are each other’s
k-nearest neighbors. While its use is less wide-spread than the standard KNN graphs,
several variations for clustering algorithms have been introduced which exploit commu-
nity structures found in MKNN graphs [57], [74]. In the work of Sardana and Bhatnagar,
MKNN network structures are specifically employed to successfully find communities
in synthetically created datasets that show clear core-periphery structures [75], which
was clearly apparent in the previous network construction methods and limited the bi-
ological relevance of communities in the networks. Sardana and Bhatnagar also employ
ClusterONE as a baseline and note similar results when applying their approach on a PPI
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network, which ClusterONE is designed for.
The 2021 work by Dalmia and Sia proposes the usage of MKNN networks in UMAP

over the standard KNN structures [76]. They argue MKNN graphs can reduce the hub
effect, highly relevant for our dataset problem in particular. The hub effect is the phe-
nom that some nodes become highly connected hub nodes in the KNN graphs, which
adds noise to the graph by losing local structure. Findings from the global and KNN
graphs show the hub effect is present in the dataset: hub nodes found in the networks
correspond to those nodes with overall highest interaction strengths and score the most
in the CELL-seq screens and as a result dominate network connectivity patterns. In ad-
dition, the experimental design of CELL-seq screens biases towards longer genes being
inserted into, leading to an increased presence as hub nodes shown in the global net-
works. In the KNN networks with k ≥ 2 this is also apparent, some outlying nodes show
a degree of over 3000 compared to the bulk of genes having a degree of k. Dalmia and Sia
show a successful application of the MKNN structure that improves upon the hub effect
and as such it has been implemented as an option in the official UMAP Python package.
As such, the approach aims to correct for the biased hub nodes while not completely
eliminating hub structures as they are present in biological networks. The hub node be-
haviour in MKNN networks is shown in this section and further analyzed in section 3.4.
We provide a formal definition of MKNN graphs in the background section 2.4.3.

We again construct networks over a range of k values and show the GO:BP enrich-
ment distributions in Figure 3.10. The MKNN graphs do not show immediate conver-
gence to a smaller number of components like in the KNN k ≥ 2 graphs. Instead they
retain the feature of containing many separated components over the span of k val-
ues. This fragmentation of subgraphs is expected behaviour of MKNN graphs due to
the added stringency, and can be interpreted as a positive attribute for the task of find-
ing meaningful clusters, as reasoned by Ozaki et al. [77] who select the MKNN struc-
ture specifically for this purpose. The MKNN graphs indeed are more suited for finding
clusters in this work as well, the fragmented components can be individually applied to
the Leiden algorithm which struggled in finding communities in large subgraphs of the
global and KNN networks. An example of the fragmentation is shown in Supplementary
Figure A.5.

Figure 3.10: HAP1: Distribution of GO:BP enrichment P values for communities in networks found over a range
of k. Also noted are the deepest term found in the GO tree, as well as the average term depth.
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Figure 3.11: A: Largest subgraph of the MKNN k = 6 network, nodes colored by unique GO:BP term. B: Shows
that the GLS P values of edges found in the network (red) that are associated to the same CORUM complex are
in general much lower (=better) than the P values of all possible edges. C: Enrichment of edges in the network
for all three GO categroies, STRING, STRING with intermediate strengths and higher, and CORUM.

As k increases, the most notable change is the increase in size of the largest com-
ponent, as the smaller components merge together. In the KNN networks, this large
component, there observed to be "core-like", has the downside of being too dense for
clustering algorithms to find meaningful specific clusters. Due to the added stringency
of MKNN however, the smaller components merge with relatively few new connections,
and the large component retains separability into Leiden clusters. This can be seen in
the giant component of the k = 6 network in Figure 3.11. The large component consists
of around 940 nodes, which were determined by the Leiden algorithm to consists of 30
relatively dense communities, each one enriched for a GO:BP term. The separability is
evident by the presence of 11 out of 12 control clusters being identified as communities,
each enriched for a GO:BP term related to those listed in Table B.2. Not only do we find
more controls than in the KNN k = 1 network, they are connected into one component
too, which is beneficial because the network should ideally highlight all the interaction
patterns in a cell. The remaining network consists of smaller subgraphs usually contain-
ing 1-3 enriched communities, and a considerable group of nodes that do not connect
to the remaining network, which is an observed phenom in MKNN networks [76]. The
behaviour of these isolated vertices is addressed in Section 3.4.

To assess the capability of the network to recall known biology, we compared edges
in the network to known manually curated databases of biological interactions. Figure
3.11b shows again a CORUM validation, and compared to the KNN k = 1 in Figure 3.6 the



3

38 3. RESULTS

medians are further apart and the peak of GLS P values with high interaction strengths is
more pronounced. Figure 3.11c shows the precision-recall curve, which at 400 threshold
are better than the KNN k = 1 network. Because precision and recall as presented here
are dependent on the number of nodes and edges in the network, these values are higher
due to the many non-connected nodes in the MKNN networks, making the comparison
more unfair (see Methodology 2.3.2). However, in the KNN networks the k = 1 is the only
network showing any result, and precision and recall drop-off steeply with the increase
of k. In the MKNN these values are much more stable as k increases, however there is
a trade-off between precision and recall: we capture more edges as k increases but they
become increasingly less informative when comparing to biological databases.

The MKNN method retains a large amount of enriched communities over the span
of tested k values. The largest number of enriched terms found in k = 2 with 221 com-
munities enriched for a GO:BP term. 205 of those GO:BP terms are unique, a similar
amount to the 211 unique GO:BP terms found by ClusterONE (Table 3.1 has 612 clusters
for HAP1 with 211 unique terms). As mentioned in the ClusterONE analysis, average GO
Term depth of ClusterONE terms is 5.37, versus 5.91 in the k = 2 network and 5.59 in all
k networks (deeper indicating more specific categories in the ontology).

We compare the results of the MKNN on the HAP1 screens to MKNN networks con-
structed from DepMap, varying again over a range of 1 to 20 k values. The GO:BP enrich-
ment distribution is shown in Figure 3.12. Interestingly, in the lower values of k more
communities are found in DepMap and more are enriched for a GO:BP term. The en-
richment P values are also higher across the board compared to those in the HAP1 com-
pendium networks. As k increases we find fewer communities, but the relative amount
of enriched among those is quite high, indicated by the white box plots from k = 6 on-
wards to boast more than 50% of communities enriched. In terms of structure, the con-
nectivity is much more apparent in this dataset than in HAP1. The largest component
already contains around 60% of nodes at k = 4, and grows to become almost fully con-
nected at k = 20, while in HAP1 this component remains relatively small. Most nodes in
HAP1 are further singular and thus disconnected from all other nodes, while in DepMap
this is a much less prominent feature and at k = 20 is barely apparent. In both HAP1 and
DepMap however, we do report that the stronger interactions in terms of GLS P values
are also those most found in the STRING database, showing that both datasets detect
known interactions in their experimental approaches, as seen in Supplementary Figure
A.6. As k increases, the MKNN remains stringent on HAP1 and included primarily strong
interactions, while at DepMap the number of edges and components becomes high and
starts to include relatively lower GLS P values.

To conclude this section, the MKNN structures prove to be a more fruitful endeav-
our compared to the global threshold networks. The KNN network with k = 1 is more
comparable in performance to the MKNN networks. However, the MKNN networks do
capture more communities enriched for GO:BP terms, and as k increases this complete
collapse to a core-periphery structure is not apparent. Instead, we find modular and
informative components such as the giant component in the MKNN k = 6 networks.
The stringency of MKNN networks keeps the focus on local connectivity, but becomes
structurally much more akin to the desired gene-gene interaction network. The MKNN
networks also capture a similar number of enriched communities to ClusterONE and
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Figure 3.12: DepMap: Distribution of GO:BP enrichment P values for communities found in the networks over
a range of k.

more control clusters than the k = 1 network.

However, there remain two flaws with this approach. First, the same k is used for
all genes, and similar to the global and KNN networks the MKNN networks are there-
fore limited in their representation of actual biology, where some gene products act in
many pathways compared to other genes related to more specific functions. Secondly,
many genes are isolated vertices and do thus not add information to the network. That
is a feature of MKNN networks and has the potential to reduce noise. However, we find
that for example genes associated to the mitochondria are also widely spread through-
out those unconnected nodes. In the global and KNN networks those genes were con-
necting much more frequently but their inclusion at more lenient thresholds turned the
networks uninformative, and as such all proposed methods thus far do not bring for-
ward a solid solution for this problem. It however indicates that the MKNN could be too
stringent in its connection criteria. The next section continues with analyzing why and
how these behavioral patterns of the MKNN networks are occurring, and whether this
can be improved upon. Furthermore, the different connectivity patterns in HAP1 and
DepMap should be investigated to answer more conclusively why they behave so differ-
ently. Finally, the knowledge behind genes’ network behaviour can further contribute
to making adjustments to this behaviour specific to the gene properties. Therefore the
following section will additionally include approaches to include isolated vertices and
further expands MKNN networks to incorporate gene characteristics.

3.4. HOW GLS PROFILES RELATE TO NETWORK BEHAVIOUR

The networks showed varying patterns in node connectivity and community alignment.
Many of the nodes show a degree of 0, due to the stringent connectivity criteria in the
MKNN network. Other nodes have a maximum degree of k and are part of large com-
munities (> 50 nodes) and some form their own sub-network with fewer nodes. We asked
what properties of the genes represented in the network determined their behaviour in
the network. For this we made an inquiry into the properties of the distribution of GLS P
values for each gene that denote connectivity to all other genes found in the distance ma-
trix D. In addition, now that we have identified the MKNN networks to better mine the
HAP1 screen compendium for relevant biological properties, we can continue with com-
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parisons between the features of the HAP1 screen compendium to those of DepMap. As
before, let DH denote the GLS distance matrix for the HAP1 data and let DD be the same
for DepMap.

In order to extract meaningful characteristics from the distributions of GLS P values
from each gene to all other genes, we tried to fit the most sensible statistical distribu-
tion on the distribution of each gene’s GLS P values. The following approach to find the
most sensible distribution makes no prior assumptions on the type or parameters of the
distribution. Python’s Scipy package [78] has circa 80 different distributions, and for a
random sample of 500 genes we attempted to fit each of the distributions to the row in
D belonging to that gene. How a fit was determined is provided in the background sec-
tion of the Methodology 2.4.4. This showed not a single distribution fitted any of the 500
GLS P value distributions. The culprit was the discretization step performed on the MC
sampling used to create the median GLS P values as was also found and described in the
section on global threshold networks. The discrete nature of the GLS P values along with
a non-uniform spread of the 400 possible values at each gene made fitting a distribution
not possible. We therefore recalculated the MC sampled GLS distance matrices over a
period of two weeks without a discretization step. Analysis shows that now all gene-gene
GLS P values are now unique and expressed with 32-bit floating point precision.

Figure 3.13 A and C show the resampled distribution of GLS P values for a representa-
tive gene in both DH and DD . The distribution in DD is most easily interpretable, we see
a Pareto distribution showing that most genes have low interaction strengths and rela-
tively few genes are found with higher connection strengths. In the DH dataset however,
we see no such Pareto distribution, instead it is showing a consequence of the MC sam-
pling as explained in Section 2.2 and shown in Figure 2.3. Again, attempting to describe
the distribution with any of the circa 80 at disposal did not result in any gene being fit.
However, the MKNN graphs have shown the best results for relatively low values of k,
and also ensure that a node’s degree is at most k. This means only the strongest connec-
tions are considered. This equates to the tails of the distributions shown in Figure 3.13.
We argue that we can thus analyze only the tail behaviours of the distributions when the
objective is to analyze the reason for behaviours shown in the MKNN graphs. When only
analyzing the tails, we also see a more Pareto-like trend in both distributions for DH and
DD , making the comparisons between the two more equivalent.

Figure 3.13: A and C: GLS P value distribution of a representative sample for DH and DD. B and D: 90th per-
centile tail of the distributions.
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A standard method to model the tail of another distribution is to describe the tail
using a Generalized Pareto Distribution (GPD). We follow a similar method to the one
used by Thijssen and Wessels [79] and use a rule of thumb that the tail of the distribution
is estimated by 10% of samples. The GPD is described by three parameters, the location
µ, the scale σ and shape ξ. µ corresponds to a location or threshold value above which
the tail is modelled. σ controls the spread of the distribution and ξ determines the tail
behaviour. The probability density function (PDF) of the GPD is given in Equation 3.2.

f (x;µ,σ,ξ) = 1

σ

(
1+ξ

x −µ

σ

)− 1
ξ
−1

(3.2)

Let q denote the q-th percentile of the data for each gene, and so we set q = 90 for
the 10% rule. Therefore, for each gene the value of q determines the location parame-
ter µ. The visualization of the 90th percentile tails is shown in Figure 3.13 B and D. We
then estimate the σ and ξ parameters for each gene as described in the background Sec-
tion 2.4.4. We use the default threshold of α = 0.05 and find that 81% of genes in DH

and 93% of genes in DD are well fitted by the GPD. Upon closer inspection of the worst-
fitting estimations, we note that the GPD is still visually close to the true distributions,
as seen in Figure A.7. This indicates in some genes there are some peaks in the bins in
the tail distributions which the estimation method could not account for, or the spread
was too extreme, both reasons hampering the fit. Further attempts to find distinguish-
ing characteristics between the groups of genes that are poorly- and well-fitted in both
datasets proved inconclusive. However it is clear that the groups of poorly-fitted genes
have a much higher estimated shape parameter than the well-fitted group. Since such
high percentages are properly fitted we assume findings can be generalized to the rest of
the datasets and proceed with analyses.

3.4.1. DISTRIBUTION TO NETWORK BEHAVIOUR CORRELATIONS SHOW THE

DIFFERENCES BETWEEN HAP1 AND DEPMAP
Now that we have fitted a GPD to each gene, we can more formally correlate behaviours
of the distribution to behaviours in the MKNN graphs. We calculate the MKNN graphs
for a wide range of k-values, and extract for each node in the graph its degree, its clus-
tering coefficient and its betweenness centrality (defined in Supplementary Table B.1).
These connectivity metrics serve as a summary of the graph’s behaviour. We then cor-
relate these network behaviours to properties of the well-fitted GPDs. We are interested
in large values for k, since nodes have more freedom to show connectivity patterns, but
also since a low value for k does not produce enough unique possible data-points to
allow for a meaningful correlation of 19385 unique GPD parameters to for example de-
gree or clustering coefficient, which are dependent on k. We therefore performed a grid
search over k values from 10 to 200. We show the resulting scatter plots with correlations
for both DH and DD in Supplementary Figures A.10 and A.11 for a representative net-
work k = 100. The correlations between the distributions and the degree of nodes over
the range of k values is shown in Figure 3.14 and similarly the correlations to the cluster-
ing coefficient and betweenness centrality are provided in Supplementary Figures A.8,
A.9.

Pertaining to the GPD parameters first. Interestingly the correlations are quite diver-
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Figure 3.14: Pearson correlations of GLS distribution parameters and the degree of genes in the MKNN net-
works for k in range [10, 200].

gent between DH and DD. The shape parameter (ξ) has low but increasing correlations
with the degree of nodes in DH, but in DD this correlation almost instantly declines as
k grows. However, ξ does correlate significantly with the cluster coefficient of nodes in
both, especially so in DepMap (see Supplementary Figures A.10 and A.11). Nodes with
more heavy-tailed GPDs (higher ξ) are more likely to include extreme events or outliers,
and in the networks are correlated to have neighbors which are also more connected
amongst each other.

The location parameter (µ or ’loc’) essentially translates to the − log10(GLS P value)
that a node has for the 90th percentile threshold. Therefore, it is logical for there to be
a high correlation between µ and degree. Since a MKNN network is built around recip-
rocal affinity, when GLS P values are in general higher than they are more likely to be
reciprocated between nodes, and nodes with lower values GLS P values are more likely
to be disconnected. This is also why the µ and the mean of the distributions are very
similar in their correlation values. In DepMap, from k = 100 onwards the correlation of
0.95 shows almost exact linear correlation for this trend. But for µ, the cluster coefficient
and betweenness centrality correlate opposite to each other in both datasets, where in
DH nodes with a higher µ tend to be part of well-connected neighborhoods, in DD the
neighborhoods are almost irrelevant but they are much more important in regulating
overall connectivity in the network. The scatter plots (A.10, A.11) also shows that overall
the cluster coefficient for nodes in DepMap networks is lower than those in HAP1, while
the betweenness centrality is far higher. This shows that while most nodes are connected
to the largest component in DD (as per the previous section), their neighbours are in
general more dissimilar in their interactions strengths. Since betweenness centrality is
dependent on the number of nodes in a connected component, it is no surprise that in
the disconnected nodes in DH lower this value substantially compared to DD.
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Finally for the scale parameter (σ), the higher σ becomes, the greater the spread or
dispersion of the distribution. Since a larger dispersion or range can also indicate larger
values in the distributions, the correlation behaviour shown by µ and σ are similar in
all datasets and correlations. The MKNN networks are more prone to pick the largest
connections, and as such, the same assessments for the µ parameter are true for the
scale σ.

In the KNN networks, there was a significant difference in behaviour between genes
in the core and in the periphery of the networks and found that the number of screens in
which genes in those groups score is significantly different (Figure 3.9). We continued the
investigation into the effect of the number of scored screens in HAP1, and see in Figure
3.14 and Supplementary Figure A.8 that there is a significant correlation between the
degree and to a lesser extent the cluster coefficient of nodes and the number of screens
in which a node has a significant P value. Furthermore, we find that over the range of
analyzed MKNN networks there are just 6 genes that are enriched for a GO:BP term in
the networks that are not significant regulators in any screen.

An investigation to ascertain a correlation between significant screens and network
behaviour per gene in DepMap is not trivial, as DepMap uses a slightly different defini-
tion for a gene to significantly score. DepMap uses a list of gold-standard nonessential
genes from Hart et al. [80] and a list of essential genes which is the intersection of the
gold-standard list from Blomen et al. [81] and an essential list again by Hart et al. [80]. It
then takes the distribution of CERES scores from the dataset for each gene in both lists
to get a distribution for nonessential genes and essential genes. For every other gene not
in those lists, it captures the profile of CERES scores and determines a probability for
how likely that gene belongs to the either distribution. This raises an important prob-
lem in determining when a gene scores significantly. The threshold for this probability
would be arbitrary, and no literature presents a suitable one except from a blog post on
the DepMap forums where one of the contributors to the Achilles Project suggests 0.5 as
a threshold [82]. But this seems rather arbitrary, and due to the different biological con-
texts in cell lines would most likely have to differ between each screen. A 50% chance of
a gene being essential is not robust enough to consider it being significant in a screen,
and therefore we do not analyze this metric in the DepMap dataset.

3.4.2. DEGREE DISTRIBUTIONS CAPTURE THE CONTRAST BETWEEN HAP1
SCREENS AND DEPMAP

When analyzing the MKNN networks for both datasets over a large range of k values, it
became apparent that the network in DepMap consists of a large component which from
small k values onwards always contains > 80% of nodes in the dataset, while HAP1 net-
works tend to have one component of around 1500 nodes and more groups of smaller
components, with the bulk of nodes being singular and not interacting with the net-
work. This is clear when analyzing the behaviour of degree distributions of the networks
of both datasets over the range of k values. For the MKNN networks they are shown in
Supplementary Figures A.12 and A.13. The degree distributions at the midpoint k = 100
are shown in Figure 3.15. The distributions are close to mirrored, meaning HAP1 has
more genes which tend to have lower degrees while DepMap has more genes with higher
degrees. As k increases, the extremes become more and more apparent. The more free-
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Figure 3.15: Degree distributions for HAP1 (blue) and DepMap (purple) in the MKNN k = 100 network.

dom is given, the more nodes in DepMap get a higher degree and the more nodes in
HAP1 shift ever so slowly to having a higher degree.

The degree distributions and knowledge of the fragmentation of components pro-
vides an explanation for some of the previous observed GPD correlations. The fragmen-
tation into different sized components alters the betweenness centrality of nodes, since
fewer nodes are connected by any path. In DepMap the giant component including most
nodes with many connections does the opposite, and this is why the correlations in Sup-
plementary Figure A.9 are not significant with any feature of the GPD nor with the num-
ber of scored screens in the HAP1 dataset while in DepMap the location and scale grow to
correlate almost linearly. As the differences in sizes and connectivity of the components
are already present at lower values of k, the correlations around the cluster coefficient
are stable in DepMap and increase in HAP1 as the connectivity also increases (Supple-
mentary Figure A.8. We continue investigation by asking why these differences in both
degree and GPD distributions are present in the datasets.

3.4.3. CONTROL NETWORKS SHOW DIFFERENCES IN CONNECTIVITY PAT-
TERNS

We asked whether the different network behaviours in terms of connectivity and degree
distributions are inherently related to the differences in phenotypes for which the HAP1
screens and the DepMap CRISPR screens are designed for. The trend is that under all net-
work construction methods that DepMap has a much higher percentage of nodes that
are connected and there is no distinct separation between a core and periphery, and the
degree distributions are mirrored in the datasets (see previous Section). As a control ex-
periment, we selected five groups of genes from separated areas of biology. The groups
are genes related to DNA repair, apoptosis, translation, transcription factors and the mi-
tochondria and for each group 100 random genes were selected (selected according to
Methodology 2.4.5). The underlying assumption is that it is much more likely for genes
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within those groups to show interactions in the network, rather than genes interacting
between different groups, since this would also be true in a cellular environment.

We construct MKNN networks with these 500 genes over a range of k values from
10 to 100 with steps of 10. Already at k = 10, the network is connected in DD with all
500 nodes while DH remains separated into multiple components, largest of which is 30
nodes. Again, there is fragmentation in DH and connection in DD, and there are already
connections between the five distinct groups in both datasets. As a measure of sepa-
rability of these groups the modularity Q of the network can be calculated. Modularity
is also used by the Leiden algorithm, and therefore discussed in the Methodology 2.3.1.
Zooming in at an even lower range of k values from range 1 tot 10, the trend in modu-
larity is quickly shown, see Figure 3.16. The division between the five control groups is
better than a random subdivision in the HAP1 network at all values of k compared to
DepMap, and in addition remains fairly stable. As k increases, and thus the maximum
degree nodes can have increases, in DepMap its shown that even these varied groups of
biology are become increasingly hard to separate.

Figure 3.16: Modularity of control networks over a range of MKNN networks.

With the specific protein states measured in the HAP1 screens, it is not expected for
most genes to be involved in the regulation or mechanistics of a protein machinery or
specific cellular process. In DepMap, synthetic lethality is a much broader phenotype.
Already 1500 genes are considered essential by DepMap as defined by Hart and Blomen,
and their CERES distributions over all cell lines follow a Gaussian distribution that are
highly similar [83]. For such high-level phenotypes it is in general a problem that genes
acting in completely different mechanisms can be wrongly associated by the high-level
phenotype [13]. The HAP1 screen compendium, even though these five regions of bi-
ology were not necessarily screened for, does show how the more specific protein-state
readout phenotypes are less likely to associate gene pairs as is the case in DepMap.
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3.4.4. PEAK AT THE HAP1 DEGREE DISTRIBUTIONS IMPLICATES SIGNIFI-
CANT SCREEN GENES

In Figure 3.15, a feature of the degree distribution of the HAP1 dataset is the peak at the
maximum degree. This is also pertinent across k values in Figure A.12. The fact that this
trend is consistent raised suspicion that this behaviour was due to a data artifact. We an-
alyzed the behaviour of nodes which showed a maximum degree. Notably, seven genes
have a maximum degree of k in all networks: DLG2, FHIT, LAMA2, MRPS28, NARS2,
PDSS2, TRPM3. Each gene is frequently scored, and is significant by P value in 34 to 117
screens. Furthermore, they are again amongst some of the lengthier genes in the human
genome, increasing the odds of being inserted into in the CELL-seq screens, similar to
the discussion in the global networks.

From the MKNN k = 10 network onwards, we selected a group of 408 genes that were
consistently showing a maximum degree in subsequent networks. We compared param-
eters of the GPD distributions of those 408 genes against the rest of the genes in the XH

dataset. Results are shown in the violin plot in Figure 3.17. For every tested parameter,
shape, scale, mean, variance and number of significant screens, the distribution of val-
ues for the groups differed significantly. Genes with more connectivity than most genes
thus tend to have distributions in DH which are more heavy-tailed, more dispersed, and
also generally contain larger interaction strengths.

Figure 3.17: Violin plot comparing genes with maximum degree in the network to the remaining genes.

The distribution is most dissimilar when considering the number of screens the genes
are scored in. The mean of the maximum degree nodes is almost 40 while for the re-
maining nodes this is 1 and the distribution is centered around 0. The outliers in the
distribution of all genes which show there are genes that score in > 140 screens are those
that are connected in the network with a high degree, just never a maximum degree of k.
The MKNNs network have thus not removed the hub nodes in its entirety, and they are
still showing to be genes that are more frequently significant in the HAP1 screen com-
pendium. Their influence on the network’s ability to recapitulate biology has however
decreased, as the MKNN networks even with the inclusion of those genes show better
recapitulation of biology than the global and KNN networks. The MKNN networks tack-
led the hub problem, the over-representation of hub nodes, by increasing the fragmen-
tation of the networks and thereby allowing for these hub nodes to be present but still
allow meaningful enriched communities to be found. The cost of this fragmentation is
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that an extremely large groups of nodes remains disconnected from all other nodes. The
group of isolated nodes does decrease when increasing k (Supplementary Figure A.15).
But networks of higher k values are less biologically relevant in terms of enrichment. The
amount of isolated vertices was raised as a problem in both ClusterONE and global net-
work analyses, and we therefore investigate why this is so apparent in MKNN networks
as well and attempt a method to resolve this in the following two sections.

3.4.5. CONNECTING ISOLATED NODES SHOWS PRESENCE OF HUB NODES

To increase connectivity of MKNN graphs, the work by de Sousa, Rezenda and Batista
suggest adding an edge between each isolated vertex and its highest ranking nearest
neighbor [84], termed the nearest neighbor (NN) approach. This method for increasing
connectivity improved results in the work by Dalmia en Sia the least out of additional
attempted methods from literature [76], but we argue its interpretability gives insights
into why so many nodes remain disconnected.

As an experiment, we applied NN to all isolated vertices over several MKNN net-
works and gauged whether this improved biological relevance of networks. Additionally
we analyzed which nodes these isolated vertices want to connect to the most but are not
reciprocated in the MKNN networks. Results are shown in Figure 3.18. At lower more lo-
cal values of k, it is already apparent how the stringency of the MKNN networks retains
a high precision of 0.8 at STRING interactions stronger than 400. Edges present in the
network are overrepresented by those who are known to interact, while the additional
edges in the NN networks are in lesser numbers represented in STRING, and the addi-
tional nodes now participating in the network also lowers the total recall of the network.
However, at higher values for k the precision in MKNN networks tends to decrease while
in NN networks this actually increases. In other words, as fewer nodes are isolated, it
becomes increasingly useful for overall recapitulation of biology to add them to the net-
work. This overall precision-recall curve trend however starts to become more similar to
MKNN networks as k becomes larger than 100, as fewer nodes are isolated.

At the k = 10 MKNN network with NN we analyzed which new connections were
formed. In that network, 55.7% of vertices are isolated. When analyzing to which nodes
they are connected using the NN approach, we find that all these isolated vertices want
to connect to a similar group of nodes, only 25.6% of the connected network. We can
perform a similar analysis as before, and compare the distributions of these nodes’ DH

values to find why these are favoured for connections. We remove the overlapping nodes
of maximum degree from the previous section from this set, leaving 22.5% of connected
nodes. There is thus little overlap between nodes that are favoured for connection by iso-
lated vertices and those with maximum degree. The results of the comparison are shown
in the violin plot in Figure 3.19. The results are similar to the nodes with maximum de-
gree from the previous section. Again, the distributions of the genes which are favoured
for connections show heavier tails, higher overall connections, and a larger spread of val-
ues. There is again a significant difference between these nodes in terms of the number
of screens they score in, albeit less exaggerated than with the maximum degree nodes.
The distribution is more centered around those nodes who score in 17 screens.

We conclude from these analyses that there is a subset of nodes which have higher
values for all GPD parameters, overall interaction strengths, and are more frequently sig-
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Figure 3.18: Precision-recall curves of STRING interactions in the MKNN networks and in MKNN networks
with NN.

nificant regulators in screens which makes them dominant in their influence on network
connectivity patterns. It is however difficult to determine if this behaviour is due to un-
derlying biology or from biases in the experimental design. While the presence of hub
nodes is a common feature of biological networks generated from most types of biolog-
ical data, our performed analyses show that their influence in the global and KNN net-
works are so large, that it is not possible to identify meaningful communities associated
to a biological process. We can not with full certainty conclude whether this presence is
exaggerated due to experimental design, or whether current approaches to analyze the
networks fall short of accommodating for patterns present in actual biology.

We have shown for some genes with hub node behaviour that they are associated
with signalling pathways or function in processes where many genes interplay. But genes

Figure 3.19: Violin plot comparing genes that isolated vertices want to connect to in the network to the remain-
ing genes.
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that they are relatively long play are more frequently inserted due to the experimental de-
sign. In addition, it is known there are also genes that impact fluorescence levels in the
cell by for example regulating cell size are also more frequently found in the high and low
populations, thus skewing their representation in the dataset. In the MKNN network’s
stringency, we limit the degree of hub nodes to at most k with reciprocal affinity and
do find more communities and more precisely find interactions also found in curated
databases. Even still, the previous analyses on GPD parameters show that scoring is still
very important for these nodes to be present in the MKNN networks. In future works,
this relation between biological relevance and experimental design should be more inti-
mately investigated in the HAP1 screen compendium.

3.4.6. DISTRIBUTION PARAMETER WEIGHTED MKNN NETWORKS

One goal was to incorporate gene specific characteristics to determine a local value for k
for each gene. In the cell the amount of interactions per gene product is also not uniform,
and the experimental design of the CELL-seq screens has further shown that gene length
and their significance in screens is highly associated to network behaviour. We propose a
method to take the characteristic of a gene’s interaction most associated with its degree,
and weigh k based on that characteristic.

We employed the following method to determine a local k: a MKNN network be-
gins with a pre-determined value for k, which will serve as the base value for each node.
Then the range of values of the distribution characteristic for all genes are binned into k
+ 1 bins, labelled from 0 to k. The label of the bin where that node’s characteristic lies is
added to that node’s pre-determined k value. The histogram binning method is sensitive
to outliers of the correlated statistic. Therefore the statistic was first winsorized to cap-
ture outliers below the 5th and above the 95th percentile. Winsorizing sets all the outliers
below or above these percentiles to the value of the percentiles. In practice those values
will land in the first or last bin, but the spread between those bins will be more homo-
geneous since the bin edges are no longer skewed due to outliers as seen in Figure 3.20.
The approach ensures that k values become at most twice as much as the base k value
for that network, as it has been established networks with lower k values tend to show
more enrichment for biological processes.

(a) Naive binning method shows the outliers stretching
the x-axis towards extremes making the second bin over-
represented.

(b) After winsorizing the statistic, the spread of bins is
much more homogeneous and representative of the un-
derlying distribution.

Figure 3.20: Reduction of the effect of outliers leads to more sensible binning used in the weighted-K Nearest
Neighbour networks.
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Figure 3.21: STRING precision-recall curves in DepMap Weighted-MKNN and the MKNN.

Observing the graph in Figure 3.14, for the HAP1 dataset the most correlated char-
acteristics with degree are the number of significant screens, the location µ (loc, and
associated also the mean), and the scale σ. Though notably, these correlations are not
strongly present in the smaller range of k values. Similarly in DepMap, this holds true
for µ and σ. We calculate MKNN networks with the above-described k weighing for the
range [1, 10]. We show a section of the distributions of GO:BP enrichment P values in
Supplementary Figure A.16 for both datasets.

In the HAP1 screen compendium, the resulting networks are not an improvement
over a fixed k value for all the most correlated characteristics. The best network was the
one weighted by the number of unique screens genes score in. As the effect of weighted
k becomes more noticable at higher k values, there is a large drop in the number of
communities found to be enriched. This method likely perpetuates the biases towards
the number of screens and therefore does not improve. Still, it was the most successful
out of all GPD parameters with higher correlations.

In DepMap, we do find a network at weighted-MKNN k = 3 with the most amount of
communities enriched of all networks thus far when the correlated parameter is µ (see
Supplementary Figure A.16) at k = 3. This network thus allows networks to have a de-
gree of at most 6. Interestingly, when we compare the STRING scores of this network
to that of the MKNN k = 6, we find almost identical values in Figure 3.21. So while the
overall quality of interactions is very similar, the number of communities enriched does
increase, indicating this extra freedom of three k values does appear to improve the net-
works.

To conclude, the method applied to determine a local k value is a linear method that
bins the distribution of the correlated characteristic. Since Pearson correlations quantify
the strength and direction of a linear relationship between the variables, it is therefore
not surprising that DepMap, who had already better correlations at low k values, shows
an improvement where the HAP1 screen compendium does not. Further attempts with
a method that assigns a wider range of k did not improve. We continue with a different
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method to determine a local k value not reliant on the GPD parameters in Section 3.6.

3.5. ANALYSIS ON INDIVIDUAL SCREEN CONTRIBUTIONS
An essential consideration in large-scale screening studies is the sufficiency of the num-
ber of screens employed, as well as the extent to which these screens contribute inde-
pendent functional information. We perform a principal component analysis (PCA) on
the dataset to generate insights on feature importance. Most interestingly, we find a
near-linear relationship between the number of components and the phenotypic vari-
ance they explain, shown in Figure 3.22. The first 6 PCs account for 20% of the variance,
after which the trend is almost linear for the remaining components, indicating that the
dataset contains a relatively consistent pattern of variation across multiple screens, and
thus they offer unique information to the dataset. This equal contribution of variation
indicates the dataset is limited by the number of screens, since there is no significant
decrease in variance explained added by each consecutive PC, meaning the dataset does
not lend itself well to dimensionality reduction.

Figure 3.22: The number of Principal Components (PCs) plotted against the amount of variance in the dataset
they explain.

In the section on Generalized Least Squares, it was elaborated that the non-uniform
coverage of phenotypes lead to related readings in the HAP1 screen compendium which
makes the features show nonindependence. To quantify this nonindependence, we in-
vestigate the loadings of the components which account for the most variance, and find
that the first principal component (PC1) accounts for ∼ 6% of the total variance. We
can continue to determine the influence of each feature (screen) on the component by
obtaining the magnitude of the loading of each feature on PC1, signifying the strength
and direction of the relationship. The loadings are shown in Figure 3.23. Phenotypes
with the some of the most coverage, RPS6 (10 screens) and lipid transport (9 screens) are
indicated by bars with extended lines. As can be clearly seen, their influence on the vari-
ance explained by the first component is not only one of the highest, screens within the
phenotype are also quite close, indicating screens within the phenotype also contribute
similarly.
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Figure 3.23: The loadings of the first principal component of the HAP1 dataset. Loadings are normalized.

3.5.1. ANALYSIS ON DEPMAP WITH LIMITED SCREENS

We asked whether the difference in network behaviour between the HAP1 screen com-
pendium and DepMap was not merely due to the different biological interpretations,
but rather due to the number of screens in DepMap being over 6 times as much as in
the HAP1 dataset. To this end, we constructed MKNN networks over a range of k values
using splits of the DepMap dataset. We opted to retain coverage of the cancer lineages in
the splits since that is one of the strengths of DepMap. Additionally, there are not enough
screens from myeloid cancer alone to make a comparison to the CELL-seq screens since
the myeloid cell lines would be most similar to HAP1, which is derived from a chronic
myeloid leukemia cell line.

As mentioned, DepMap contains 31 distinct cancer lineages, with some lineages only
being represented by one or a few cell lines. To retain coverage of cancer types over the
splits of screens, we selected screens only for the 15 most present cancer lineages, leaving
879 screens. This amount was used to create five distinct splits of 167 screens, equal to
the size of the HAP1 screen compendium. On those five splits we can calculate the GLS
distance matrix to obtain five distance matrices {DD1, ...,DD5}. We track connectivity and
functional metrics for the range of MKNN networks for each distance matrix and average
the results to deal with potential outlying splits. We opted for five unique splits over a
bootstrapping approach with potentially more splits since the computational overhead
is infeasible for this project.

The degree distribution of the resulting networks are shown in Figure 3.24. The distri-
butions are the mean distributions over the five splits, but in Supplementary Figure A.14
it is shown the distributions do not vary much over the splits. The degree distributions
show the connectivity patterns of the DepMap networks with all screens are conserved
when using a reduced number of screens, as the progression over values of k is almost
identical to those in DepMap with all screens in Supplementary Figure A.13. The net-
work behaviour is therefore not a result of the greater number of screens that DepMap
has when compared to the HAP1 screen compendium.

We next evaluated the quality of the split networks, and report the results of the best
split in Figure 3.25. The overall distribution of GO:BP enrichment P values, as well as
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Figure 3.24: Average degree distribution of the networks from five DepMap splits of 167 screens.

the absolute number of enriched communities found is worse across all k values in the
best split network when compared to DepMap in Figure 3.12. In addition, the Leiden
algorithm was unable to detect communities in the network from k = 12 and onwards.
This shows how the limited number of screens are less informative and do not allow
for networks with any modularity, and the only enriched GO term is the broadest one
possible, ’biological process’. While the degree distributions are visually similar to the
original DepMap MKNN networks, the networks are not connected such that there are
denser subgraphs in the networks. This highlights how the HAP1 screen compendium
with its smaller number of screens is able to capture more enriched and more overall
communities that reflect biology compared to DepMap with fewer screens.

Figure 3.25: Distribution of GO:BP enrichment P values of the best split of 167 DepMap screens.
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While community analysis is thus hampered, we can further evaluate the quality of
the network using the STRING database (Methodology 2.6.2) and plot the precision-
recall curves of known STRING interactions in Figure 3.26. The curves are shown for
two k values to highlight the difference over time, as k = 1 networks contain fewer edges
than k = 20 networks this will impact the ability of recall and precision of the networks.
The values of precision, recall, and their harmonic mean the F1 score are smaller in the
split networks, but the differences are not substantial and their trends are comparable.
This indicates that even with a smaller feature size there are still relevant relationships
captured in the dataset.

Figure 3.26: Precision recall curves of the DepMap dataset against the split dataset. The highlighted threshold
is the point on the PR curve at which STRING interactions with a score of 400 are considered a true interaction.

3.6. ROBUSTNESS OF NEIGHBOUR DECREASE SHOWS CLUSTER

COHERENCE
We next investigated a novel method to construct gene-gene interaction networks with
gene-specific thresholds for interactions. Again let G = (V ,E) be a graph with every gene
being represented as a node v ∈ V . Assume a node vi is connected to all other nodes
found in its distance matrix entry di . Similar to a global network, we can increase the
threshold for GLS P values along the range found in di and note that the number of nodes
that vi interacts with will decrease as the threshold becomes more stringent. We can plot
the number of neighbors against the GLS P value threshold for a gene as shown in Figure
3.27. We set an arbitrary number of 1000 steps and count the number of interactions
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in di that cross this threshold. In general, we observe that the drop-off is negligible at
first as the threshold is very lenient, then drops very steeply as it not expected for a gene
to have an interaction with most other genes, until the drop-off rate diminishes and we
are left with a core number of genes still sharing an interaction. We define this section
of the diminishing drop-off rate as the most robust number of genes that are in a core
set of interactions for that gene, as increases in the GLS P value threshold do not greatly
influence the amount of genes in this core set. Robustness in this context thus refers to
the persistence and reliability of a trend, meaning it has overcome short-term variation.

Figure 3.27: Trend of decreasing number of neighbours as the threshold for GLS P values increases. Distribu-
tion is representative of most genes from the dataset, differing in the exact range of GLS P values and speed of
decrease.

We asked if we can estimate at what threshold the number of neighbors reaches this
robust zone for each gene. The number of genes remaining in the core set of a gene’s
robust are can serve as a value for k in the MKNN networks. Interestingly, this problem
translates quite well from different fields. In deep learning, this problem is frequently
encountered when determining when a model has converged to stop the training as the
validation loss no longer shows significant decrease. In physics, we can interpret the
graph in Figure 3.27 as a hill, and when rolling a ball off the side of the hill we can ask
when the ball starts to show a stable speed after rolling down the hill. Both of these
applications will have a singular point on the axis to determine when the robust zone
begins, when using early stopping for the deep learning application [85] or when creating
and calculating a free-body diagram for the ball in physics. Since we are more interest in
when the neighbor decrease trend is robust, we aim for a solution that accounts for an
area of the graph over multiple thresholds points.

For this reason, we apply an approach from economics (and other disciplines) and
estimate when the neighbor decrease graph is robust using a moving average (MA). MAs
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are frequently employed for the smoothing and denoising of time series data as well as
trend detection in stock market analysis [86] and has through history been consistently
been employed in the development of trading strategies [87]. We define a MA over the
GLS P value thresholds similar to the definition by Zakamulin [88], such that the MA uses
a fixed-size window that is rolled over the thresholds shown in Equation 3.3.

M At (W ) =
∑W

t=0 Nt

W
(3.3)

W is the size of the window, t is the starting threshold and Nt is the number of genes
that are above the threshold t for a specific gene, defined as the "neighbors" of a gene
at a threshold. There is no optimal size of the window W and it is dataset dependent.
To determine when a trend is robust, we use the Moving-average-change-of-direction
rule [88], which is defined as M At (W )− M At−1(W ). We roll the moving average win-
dow across the GLS P value threshold axis and stop the movement when the change-
of-direction equals 0, the moment in the change-of-direction rule to change purchasing
behaviour. When a MA window is of sufficient size W , we can thus say the core neigh-
borhood has not changed for at least W threshold changes.

To determine a value for W , we use the groups of control genes from Table B.2 for the
HAP1 dataset and Table B.3 for DepMap. Per group, we begin with a large window size
W = 250, a quarter of the maximum window when using 1000 threshold steps. Per gene
group, we apply the MA and determine how many genes are left at threshold t when
the change-of-direction rule shows 0. If this does not happen for any of the genes in
the group, we decrease W by 1 and start again. When all genes have a threshold t for a
specific value W , each gene has a core set of neighbors whose GLS P value interaction
strength ≥ t . We define a small undirected network with the genes in the control group
as nodes, and add edges between them if a gene is in another gene’s core group. Any
additional nodes in the core groups of neighbors are also added and connected. If this
small network consists of only one component, meaning that we can find a path from
each gene in the control group to every other gene in the control group, we have found
an appropriate size of W for that control group. Such a network for the first control group
is shown in Figure 3.28. In the figure, a window size of 249 connects the control group as
there are edges such that there is a path between every gene. Note two additional nodes
are added from the core groups.

We perform this analysis for every control group in DH and DD. We find that the
largest value for W for a MA such that every control group is connected in DH is 54, and
for DH this is 86. We extrapolate these sizes for W to every gene in the datasets. For each
gene we can deduce the threshold t at which the change-of-direction with M At (54) or
M At (86) is 0 for the respective datasets. The number of neighbors in the core group with
GLS P value threshold ≥ t is the specific k value for that gene in the MKNN network.
If the change-of-direction for the MA is never 0, we use a default value for k, such that
again a grid search over k can be performed. The resulting distributions of k values are
shown in Supplementary Figure A.17.

We again perform a grid search over a range of k from 0 to 10, creating MKNN net-
works with the k values as shown in Figure A.17 and adding 0 to 10 additional k values in
each network to check if the found k values are not too stringent. We define these net-
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Figure 3.28: A: The EED-EZH2-SUZ12-MTF2 control group with − log10(P ) values as interaction strengths.
B: The small network found when applying a MA with window size 249. Every gene in the control group is
presented as a node along with additional nodes in the core sets. PSG9 is added from the MTF2 core group,
SUV39H2 is added from the core groups of both EZH2 and EED.

works as Robust-MKNN networks. The best network for both datasets is shown in Figure
3.29.

Figure 3.29: Largest component of each dataset’s best network based on overall enrichment scores. MA window
sizes are 54 and 86 for DH and DD respectively.

The networks with highest enrichment scores (highest number of GO:BP terms and
cluster-agnostic enrichment) are those that do not add additional k values to the nodes
in the network. Robust-MKNN does show a different behaviour than previously shown
network construction methods. In HAP1, it is overall worse in finding GO:BP enriched
communities for all tested k values. But the giant component of Figure 3.29 contains
many enriched and separable communities, finding all 12 control clusters while being
of larger size than the giant components of regular MKNN networks from k in range [1,
10]. Because the window sizes are defined by the control clusters, finding all twelve is
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not surprising. If the goal is to create a more connected network whose interactions are
more comprehensive of cellular biology, this approach can be promising. However, since
its metrics of recapitulating biology are overall lower than standard MKNN networks, as
of this moment we do not recommend this approach over MKNN.

In DepMap, the size of the giant component and the number of enriched communi-
ties in it is below those found by the MKNN networks as well as in the weighted-MKNN
networks, as such this approach is not the best for a desire more connected component
network. We do again find all positive controls clustered separately. This worse perfor-
mance can be due to the the window size not being generalizable to the remaining genes,
or the fact that too much freedom is given in terms of k values and we have previously
seen the best networks are yielded with lower k values in DepMap. Therefore, as of now
this approach is also not recommended for DepMap. Variations on the robust network
construction method did not yield better results over the standard MA, therefore recom-
mendations for future work are made in the Conclusion.

3.7. COVERAGE OF BIOLOGY
To interpret gene-gene interaction network communities, one of the main methods in
bioinformatics is to identify the functional information that best describes the genes
in the community. The Methodology (2.3.2) describes how in this work the functional
associations of gene groups are associated to terms from the Gene Ontology Biological
Processes (GO:BP) using gene set enrichment analysis (GSEA). With this vocabulary of
represented GO terms in the networks, we asked what parts of biology are covered in the
HAP1 screen compendium, how this compares to the coverage by DepMap, and how the
compendium can be expanded to expand its coverage in an optimal manner.

To answer this question, we collected all recapitulated functional categories from
the MKNN networks of both the HAP1 screen compendium and DepMap over a range
of k values from 1 to 20. For both datasets this amount to a total of 4691 GO:BP terms
that communities were functionally enriched for. Such large lists of enriched terms are
frequently the results of such analyses, due to the nature of gene annotations in GO.
GO, and the knowledge it contains, is a dynamic and ever-expanding compendium of
knowledge, and for many gene products not all associations are known or verified. This
leads to some genes being annotated to very specific terms lower in the tree structure,
while others are only associated to broad terms. GO accounts for this by propagating
annotations of genes to all parents of a term so that enrichment analysis can also be
successful for genes with non-specific annotations [89].

3.7.1. NAIVE HIGHER-ORDER COMPARISON SHOWS LITTLE DIFFERENCES

To tackle the differences in GO term specificity between terms, we used this propagation
of terms property and for every enriched term found the GO terms it is also annotated for
at the first and second levels of the hierarchy. Since high level terms cover more general
cellular processes, this could give an oversight into coverage of fundamental areas HAP1
screens and DepMap cover. We transformed the list of enriched terms to first and sec-
ond level terms as described in the background Methodology (2.4.6), and present the re-
sults in Supplementary Figure A.18. The two plots show the first two levels of the GO:BP
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ontological tree, with the inner node being the term "biological process" and the two
concentric circles around being the first level (20 terms) and second level (395 terms) of
the ontology. The nodes are coloured by the number of times they are found enriched
in the networks. The plots both show largest enrichment for the broadest categories in
level 1 meaning the categories which capture most terms in the ontology like "cellular
process", "biological regulation" and "metabolic process". No differences between the
datasets stood out, most terms were in agreement and most number of 2nd level terms
showed enrichment in DepMap only.

This comparison did not provide a definite differences between biological coverage
of the datasets. As argued by Supek et al., one of the problems of such a visualization is
the lack of information these high-level terms provide when performing comparison of
GSEA results [90]. Some of the problems include the unbalanced DAG structure, such
that some terms have more children and are thus more frequently enriched, lack of in-
formation on term specificity differences between datasets, and genes being unevenly
annotated which leads to a bias in representation due to some categories simply hav-
ing more genes annotated [91]. Furthermore, the assymetry of the tree means that for
many annotations it is possible to reach many second and first level terms while only
ever moving up the tree in different paths, meaning the GO structure is not particularly
suited towards finding a singular correct higher-level annotation for a GO term. As such,
the visualization in Figure A.18 does not tackle the term specificity problems, and the
downstream GO enrichment analysis requires a more sophisticated approach.

3.7.2. SEMANTIC SIMILARITY GO TERM CLUSTERING HIGHLIGHTS ENRICH-
MENT CHARACTERISTICS

For this reason, this work continued analysis using GO-Compass (Gene Ontology list
comparison using Semantic Similarity), a tool for comparing lists of GO terms published
in 2023 by Harbig, Paz and Nieselt [89]. The tool is based on semantic similarity, which
is a distance measure between GO terms especially developed for the GO structure’s as-
symetry. For this tool, we applied the recommended definition for semantic similarity by
the authors of GO-Compass termed the Wang semantic similarity. This measure was in-
troduced in 2007 by Wang et al [92]. The measure defines a distance between two GO:BP
terms by considering the set of common ancestors in the ontology alongside their infor-
mation content, and is therefore much more suited for the comparison of a set of GO:BP
terms.

Using this distance, GO-Compass employs hierarchical clustering on the input list
of GO terms found from the network analysis, such that groups of highly semantically
similar terms are created which are then represented by one parent term, based on the
REVIGO algorithm by Supek et al [90]. This hierarchical clustering also weights the found
enrichment P values of the found terms. The hierarchical clustering can be manipulated
such that the terms at the leaves of the hierarchy are guaranteed to show no value of
semantic similarity higher than a pre-determined cut than a cut-off value named dis-
pensability. The dispensability of GO terms is defined to be in the range [0, 1], and is
anti-correlated with the uniqueness of a GO term in the hierarchical graph, meaning that
low dispensability values lead to a term being more unique, "an outlier when compared
semantically to the whole list" [90], and vice-versa.
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Figure 3.30: Bar graph of enrichment -log10(P values) of 100 GO:BP terms found using GO-Compass.

We set the dispensability cut-off to 0.33 which resulted in a representation of the
4691 unique GO:BP terms to one hundred terms at the leaves of the hierarchy that are
guaranteed to be as semantically dissimilar as possible, based on a background ontol-
ogy and the inputted list of GO:VP terms and their enrichment P values. One hundred
terms was chosen as a representative set of GO:BP terms. Other thresholds were exam-
ined and future work could change this threshold to include more or fewer terms. 11
of the one hundred terms are unique to the HAP1 dataset, 31 are unique to DepMap
and 58 are shared. The bar graph in Figure 3.30 shows the enrichment values (in log-
scale) of the captured GO:BP terms from the networks. The bar graph is coloured by 10
different groups which indicate each group shares a common ancestor GO-term in the
hierarchical clustering not present in other groups. These ancestors are the 10 GO:BP
terms most semantically dissimilar when using a dispensability cut-off of 0.1 on the hi-
erarchical clustering tree, and function to separate the 100 terms into 10 distinct areas
of biology. The dotted-line represent the threshold for significance (α < 0.05) which is
approximately 1.3 in log-scale.

OVERLAP BETWEEN DATASETS

The overlap is quite remarkable, 27 of the top 30 most enriched terms in DepMap are also
captured in the HAP1 networks, with "CENP-A containing chromatin assembly", "detox-
ification of copper-ion" and "somatic diversification of immunoglobulins" not present
in HAP1. It is not surprising for these terms to be more present in DepMap than in HAP1.
CENP-A is a histone variant which provides structural integrity to the chromatin in cells
and is present in the centromere region of a chromosome. Its function is important for
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chromosome segregation during cell division [93]. As the HAP1 cells are haploid, this
separation of chromosomes is not a part of mitosis, the process of cell division, and
therefore the CENP-A reliant chromatin assembly is logically less represented in HAP1
cells. Detoxification of copper-ion is a a GO term related to an important regulatory
function of cellular reaction to copper ion, which is a micronutrient essential to the func-
tion of cells and human health [94]. Its essentiality indicates it should score high in the
DepMap dataset in particular. Finally, the somatic diversification of immunoglobulins
is an essential function of cells, since this GO term is related to the ability of antibod-
ies to be modified to specific antigens. Antibodies are exclusively produced by B cells.
DepMap covers a wide range of cancer cell lines, and some of these cell lines are B cells
or related to B cell lymphomas2. Vice-versa, the top 30 most enriched GO:BP terms in
HAP1 are all enriched in DepMap.

The graph shows for most groups that enrichment P values in DepMap are gener-
ally higher, indicating DepMap is better at representing those GO terms in the networks.
However, statistical overrepresentation is also dependent on the size of the background
gene set, and since DepMap contains about 2000 fewer genes than the HAP1 screen
compendium, enrichment values will always be not perfectly comparable. It is however
promising that with a limited number of screens the overlap in higher-level GO terms
between the datasets is so large.

GO TERMS UNIQUE TO THE HAP1 SCREEN COMPENDIUM

Eleven GO:BP terms found in the networks are unique to the HAP1 screen compendium,
and are highlighted in Supplementary Figure A.19. One of the goals of this work is to
bring forward hypotheses for biological interactions not present in literature or other
datasets. Therefore, these eleven unique GO:BP terms are a promising set of interactions
to investigate further. In addition, the networks’ proven capacity to generate biologi-
cally meaningful clusters opens up possibilities for attributing gene functions to genes
present within the these found communities, even if not all genes or their interactions
with the community documented in the literature [4]. Therefore, we identified the asso-
ciated networks and communities belonging to each unique enriched term, and inves-
tigated which genes of the community are annotated to that term and whether these in-
teractions are sensible from a biological perspective and whether they can present novel
interactions. Note that all genes found in the 11 GO:BP communities are present in both
datasets and the uniqueness is therefore not derived from a lack of presence in DepMap.

For seven of the found GO terms, the enriched GO terms do not lend themselves for
the discovery of interactions unique to biology or to the HAP1 screen compendium for
that matter. Two GO terms were associated with communities of > 30 genes, but only two
or three genes in those communities were annotated for that GO term. The GO terms
for these communities thus show barely passing significance for enrichment just below
the significance threshold of α = 0.05, and GO terms at a greater depth (more specific)
are much more suited to describe these groups, but those are also found in DepMap.
Another two enrichment’s which are not too meaningful are related to pairs of genes,
which are both only found in k = 1 networks. As these networks grow, these pairs of
genes join larger communities which are highly enriched for a specific GO term shared

2https://depmap.org/portal/cell_line/ACH-000070?tab=overview

https://depmap.org/portal/cell_line/ACH-000070?tab=overview
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between both datasets. These pairs are thus only found as the most closest related gene
pairs, and are enriched for a more broader GO term at barely significant threshold simply
as a consequence of the strict k = 1 network. However, they are also recapitulated in the
STRING database as known interactions. Another three unique GO:BP terms stem from a
similar issue, where a pair or triplets of genes are annotated to a higher level GO:BP term
not present in DepMap, to which only one or two genes are annotated in the database,
but a more specific GO term for which all two or three are annotated exists that is shared
in DepMap and also a better representative. This could indicate that some of those genes
should contain an annotation in the GO term database to the higher-level term, which
could result from the varying annotations bias in GO as mentioned earlier. All of these
interactions are known in literature so their annotation to the same GO:BP term could
be sensible, however it is not fruitful for potential new interactions found in the HAP1
screen compendium.

However, the remaining four unique GO terms come from singular gene-gene pairs
that are present in networks with relatively high k values > 5, for which there is either
little evidence in known literature or in DepMap but are sensible in biological context.
They are listed in Table 3.3. Note that each pair is enriched with a barely significant P
value, a more stringent cut-off for enrichment would not have found these GO terms.
However their conserved presence as pairs over a range of k in the MKNN networks,
robust reciprocal affinity, and potential hypotheses for interactions warrant further in-
vestigation.

GO:BP Term P
value

Enriched
Commu-
nity

GO Annotated
Gene

−l og10 (GLS
P Value)

glycolipid transloca-
tion

0.0467 RFT1,
DNAJC11

RFT1 0.879

lipopolysaccharide
catabolic process

0.0496 AOAH,
PPP2R2B

AOAH 5.837

negative regulation
of microtubule nu-
cleation

0.0496 ARHGEF7,
PAK2

ARHGEF7 1.420

positive regulation
of uterine smooth
muscle contraction

0.0490 GPALPP1,
GPER1

GPER1 0.202

Table 3.3: Enriched interactions unique in the HAP1 screen compendium.

Glycolipid translocation. RFT1 is a gene coding for the RFT1 protein whose func-
tion is related to the transport of oligosaccharide (multiple carbohydrates) through the
membrane of the endoplasmic reticulum (ER), a cellular subunit [95]. DNAJC11 en-
codes for a protein involved in the organization of the mitochondrial membrane and
it is especially involved with the Mitochondrial Contact Site and Cristae Organizing Sys-
tem (MICOS) complex [96]. The ER and mitochondria have been shown to interact in
the cell for various purposes, and their main form of interaction is due to contact be-
tween their membrane structures [97]. Contact sites on their membranes are termed
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mitochondria-associated ER membranes (MAMs). One of the primary involvements of
MAMs are lipid transfer between the two organelles and calcium signalling where cal-
cium is transported from the calcium-rich ER to the mitochondria. Oligosaccharides
can facilitate in the protein-protein interactions required for the MAM to perform its
functions. The MICOS complex is involved with the architecture of the mitochondrial
membrane including formation of the MAM and thus the physical tethering of the ER to
the mitochondria. Therefore, the interaction of RFT1 and DNJAC11, both in their loca-
tion and function seems logically supported by cellular biology. However, the interaction
strength is not that high and neither is the enrichment P value, furthermore they are not
involved in the STRING database. The pair’s biological context, its uniqueness to HAP1
and the fact that these genes only interact with each other up until k = 5 networks do
warrant closer examination in a laboratory setting.

Lipopolysaccharide catabolic process. The HAP1 dataset shows the highest inter-
action strength of the four uniquely enriched gene pairs between AOAH and PPP2R2B.
Their interaction is not found in STRING or CORUM, and using g:profiler they are not
enriched in any other major database. However they have been mentioned together in
the work by Xiong et al. which studies the expression profiles of genes in B cells during
the progression of Alzheimer’s Disease (AD), wherein PPP2R2B and AOAH are both in the
top 18 of upregulated genes as AD progresses [98]. They identify PPP2R2B as known to
be involved with AD, but AOAH’s inclusion is not further explored. AOAH is a lipide, an
enzyme related to fats, and most closely associated to detoxify lipopolysaccharides (LPS)
on the outer membrane of gram-negative bacteria, a sub-class of bacteria [99]. Interest-
ingly, both LPS on its own and gram-negative bacteria are involved in several pathologies
related to AD, and they are being suggested as targets for therapeutics to treat AD [100].
AOAH role in LPS detoxification is critical for the immune’s response to bacterial infec-
tions, and its role in AD as well as PPP2R2B’s known role in neural function make this
interaction a strong candidate for further analysis in a laboratory setting.

Negative regulation of microtubule nucleation. The interaction between ARHGEF7
and PAK2 shows the highest possible STRING score of 999. Their involvement with the
cytoskeletal organization was already hypothesized in the beginning of the 21st century
and has been later experimentally confirmed. The GO term for which they are enriched
is quite specific to microtubule creation for which ARHGEF7 is annotated, and while
PAK2 is involved with the overall organization of the cytoskeleton of which microtubules
are an important part, no literature supported PAK2 in their creation. Since their in-
teraction is well-studied, the GO term is most likely accurate and its exclusion of PAK2
warranted.

Positive regulation of uterine smooth muscle contraction. The interaction strength
between GPALPP1 and GPER1 is quite low, however they are connected to only each
other until k = 10, after which they join into a larger community of 41 nodes that is en-
riched but these two genes are not associated to that GO term. Their low interaction
strength do not indicate that the screens overall show these genes as a meaningful inter-
action. However, it is interesting that this interaction is not documented in literature but
these two genes both play a role in AD, similar to the second relation in Table 3.3. The
literature on GPALPP1 is limited, however it is mentioned in a recent June 2023 study
by Wu et al. as a biomarker for the diagnosis of AD [101]. GPER1 on the other hand is
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a well studied endrogen receptor protein that is associated to interact with female sex
hormones to regulate menstrual cycles. For this reason it is associated to the unique
GO:BP term. A 2019 review by Roque et al. does implicate GPER1 as being associated
with several diseases among which is AD, citing experimental trials in mice models and
some literature suggesting it being used as a therapeutic target to treat AD [102]. The
biological context therefore makes this interaction not entirely unlikely, both being as-
sociated to AD, but more evidence would be required to substantiate their interaction.
Coupled with the low GLS P value score this interaction is worth mentioning but should
not be the first interaction to investigate experimentally.

3.7.3. EXPANSION OF THE HAP1 SCREEN COMPENDIUM

One of the goals of this work was to bring forward recommendations on how to expand
the HAP1 screen compendium in an optimal fashion. This section will elaborate on the
difficulties of selecting an optimal expansion and lists some approaches. However, we
can make direct recommendations for expansion which flow from the found interactions
unique to the HAP1 screen compendium brought forward in the previous section. The
most promising additional screens are those that investigate the RFT1-DNAJC11 and the
AOAH-PPP2R2B interactions. It would be interesting to perform a differential analysis
for those four proteins. Four screens can be performed which screen for those proteins.
Then, similarly to other screens in the compendium, HAP1 cells that have one of those
genes knocked-out can be cloned for an additional four knockout screens. This would
allow direct comparison between the activity of genes that are regulators for those phe-
notypes when the gene is present and when it is not.

Besides direct knockout analyses, additional screens could also be performed for the
processes related to these interactions. The RFT1-DNJAC11 interaction is most likely
present in the compendium due to nine screens being related to lipid transport. A more
targeted phenotype to this interaction would be more appropriate as to not further con-
tribute to the nonindependence of screens. Further research could be done into proteins
involved in the MAM, which is vital to understand the interactions between the mito-
chondria and endoplasmic reticulum and this is further supported by the work of Xia et
al. who note the limited study in organelle-organelle interaction and the importance of
the interaction of the mitochondria with other organelles in cancer [97]. As mentioned,
one of the functions of the MAM is calcium signalling, which is the transport of calcium
ions for cell signalling involved in a multitude of processes. Two potential screens could
be for ITPR3 and SIGMAR1, which are both proteins located at the MAM interface and
path of the calcium signalling pathways. For the AOAH-PPP2R2B interactions, a screen
for a phenotype that could include their involvement is more difficult, as they already
have a highly significant interaction in the GLS P value matrix. The literature implicates
them being present during development of AD and specifically points to the involvement
of gram-negative bacteria in AD, but this is a multi-faceted area of many protein-protein
interactions contributing and selecting one or two phenotypes is not feasible without
intimate knowledge of involved processes. Of course, the experimental validation is not
limited to CELL-seq screens and could be explored using other techniques to measure
biological interactions like gene expression or mass spectrometry.

Instead of recommendations for screens brought forward by the data, an approach
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for expansion could be to screen for phenotypes that make the compendium more sim-
ilar to other well-studied datasets such as DepMap. This could in aid in future compar-
isons of their relative performance in network analysis. Using DepMap, it could be in-
teresting to add screens for proteins that are involved in the GO:BP terms that are found
in DepMap but not in HAP1. However, for many of these terms it would be quite diffi-
cult to do so. The three examples of terms in DepMap and not in HAP1 that are most
enriched are there due to the nature of the cell lines in DepMap and the essentiality phe-
notype. Certain processes simply cannot be recovered due to only using one cell line,
where cellular activity is particular to that cell type. In addition, processes that could be
shown in HAP1 which are enriched only in DepMap are mostly those related to cell sur-
vival. DepMap gives insights into these processes since that is its experimental design.
In CELL-seq screens, it is very difficult to screen for phenotypes essential to survival. In-
sertions into essential genes are hard to measure since an insertion leads to the essential
gene’s protein not being expressed, and this could lead to cell death. The insertions can
only be counted and sorted with FACS on live cells.

Another method would be to expand coverage of the GO:BP tree as much as possible.
Since the GO is an expansive representation of cellular biology, hitting most categories
using the screens is a method to track progress in covering all cellular processes. A start-
ing point could be three broader level 1 terms of the GO:BP tree not covered by the com-
pendium; "biological phase", "biological process involved in intraspecies interaction be-
tween organisms" and "detoxification". Biological phase and detoxification are related
to process with repetitive processes such as mitosis or immune response and removal of
toxic molecules, both mostly associated with essential processes which are again hard
to screen for. Intraspecies interaction is a term related to social behaviours, applicable
to organisms which show group behaviour. About 60 genes are annotated to this term
in humans and screens could thus potentially target this category. The problem is with
ticking of categories in the ontology is that associations are very unbalanced, and even
at the same level terms can be associated with many or a few genes. The expansiveness
of the tree and the relations between terms that jump levels of hierarchy and the multi-
ple paths between children and parents make it hard to identify optimal categories for
coverage. The literature does not propose a solution as of yet for this problem.

Finally, an important consideration for potential supplementary screenings is the
observed divergence in behavior between genes that demonstrate significance and ex-
hibit a log2(M I ) ≥ |1|, compared to those that do not meet these criteria. Notably, genes
that do not score in the compendium display a markedly reduced rate of being integrated
into networks and enriched communities. This distinction is exemplified by the subset
of 8090 genes that are common to both HAP1 and DepMap datasets but do not score
in any screening. Prioritizing the design of phenotypes that are under the regulation of
genes within this list of 8090 shared genes could alleviate this divergence. In the process
of deliberating what phenotypes to screen for, an initial phase would involve formulating
hypotheses about genes with higher likelihoods of scoring in the screen based on knowl-
edge of the phenotype. An additional step could entail cross-referencing these postu-
lated genes with the aforementioned compilation of 8090 genes. This cross-referencing
step serves as an adjunctive metric for gauging the potential contribution of conducting
the proposed screen.
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CONCLUSION AND DISCUSSION

4.1. CONCLUSION
This study is the culmination of a scientific exploration aimed at assessing the capabil-
ities of the compendium of haploid phenotype screens to be integrated for the purpose
of creating a gene-gene interaction network. The construction of biological networks
is integral to broadening understanding of cellular interactions and ultimately hopes
to identify targets for treatment of diseases with cellular therapies. Such networks are
primarily based on biological datasets such as gene expression, pairwise gene knock-
out screens, protein-protein interaction databases or genome-wide interaction profiles
associated to high-level phenotypes such as essentiality or growth. The unique haploid
screens designed for measuring varied cellular phenotypes have not before been applied
in such contexts. Therefore this work is exploratory in nature. The guiding line in this
work aims to establish whether known techniques are directly applicable to the dataset
and systematically exploring interpretable and novel approaches suited to the charac-
teristics of the dataset.

The efforts towards this goal are centered around four research questions, with at the
center of the inquiry:

Can we leverage the dataset to create a gene-gene interaction network that shows proof of
relevancy in current literature on genetic interactions?

To answer this main question, we applied two approaches from literature designed
for clustering and gene-gene interaction network inference to serve as a benchmark,
ClusterONE and ARACNE-AP. ClusterONE showed that the HAP1 dataset does contain
smaller densely-connected groups of genes that recapitulate known biology, while ARACNE-
AP’s information theoretic approach found a network without structural characteristics,
making it unsuited for biological interpretation. Since the dataset has unique proper-
ties not presently evaluated by other approaches in literature, we next sought to inves-
tigate the dataset’s network capabilities more systematically by applying known and in-
terpretable approaches for network creation. As such, we created networks that only
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include interactions above a pre-defined threshold, and showed that very strong inter-
actions strengths are limited to a subset of nodes and that this was a requirement for
networks to be informative. In a KNN network approach, only at the most immediate in-
teraction of k = 1 we find dense clusters associated to biology, but as k increased to 2 and
above the network lost most structural properties that allow for enrichment of groups of
genes as well as an overabundance of interactions not found in databases of curated
real interactions. We conclude the dataset contains a core-periphery structure where a
smaller group of highly inter-connected genes is juxtapositioned by a large subset genes
that exhibit of sparse connectivity.

As such, we moved on to an approach that maintains the focus on local connec-
tivity, while being used in literature to target such core-periphery structures: mutual
KNN (MKNN). The application of MKNN on the dataset captured the most number of
associated biological processes and had high precision in capturing interactions that are
known to reflect real biological interactions. The structure of the MKNN networks pos-
itively impacted the dense core structure by limiting the number of interactions, which
led to networks with few nodes that interact and also many isolated vertices.

We continued the analysis into why the networks presented these behaviours by fit-
ting a generalized Pareto distribution on each genes’ distribution on the distance ma-
trices, and find that nodes that show higher connectivity in the networks are those with
a heavy-tailed and more dispersed distribution, along with higher average interaction
strengths. Importantly, we also found that there is a discrepancy in behaviour between
genes that are scored as a regulator in many phenotype screens versus those that never or
rarely score. While some of the genes that score the most are those associated to many bi-
ological interactions, the experimental design is also biased towards finding those genes
that are of longer length or influence fluorescence levels when the cell populations are
sorted. As the networks that scored the best are those that limited the influence of those
genes with the most connectivity, we hypothesize that the behaviour of those genes is
not merely due to biological reasons but goes in conjunction with biases brought for-
ward by the experimental design.

The aforementioned approaches are based on a threshold or k value that is equally
applied to all nodes in the network. However, one value does not capture the intri-
cate range of dynamics present in a cellular environment, and therefore two approaches
were newly presented to predict an optimal value for k in the MKNN networks. Un-
fortunately, the GPD parameter weighted MKNN approach worsened the networks in
the HAP1 screen compendium, and arguably did not improve the MKNN networks from
DepMap a considerable amount. The linear relationship between the GPD parameters
and the networks did not hold true in the HAP1 dataset for small values of k. The second
approach, termed robust-MKNN, did furthermore not improve upon a standard MKNN
structure. However, its application to the HAP1 dataset did result in a network with the
largest number of interactions in a singular component that showed separability of the
component into several densely structured groups annotated to different biological pro-
cesses. As such, this shows potential for a future fine-tuning of this method to generate
a more comprehensive cellular wiring map.

One of the goals of this work was to identify novel gene-gene interactions that are
unique to the CELL-seq screens brought forward by the gene-gene interaction networks.
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We have shown the HAP1 screen compendium contains genes with similar phenotypic
profiles that in combination are able to recapitulate known biological processes in con-
structed networks. Furthermore, interactions in the networks show that those with the
strongest interactions are more likely to also score high in the STRING PPI database
as well as in the CORUM protein complex database. The networks’ proven capacity
to generate biologically meaningful clusters opens up possibilities for attributing gene
functions to genes present within the networks, even if their interactions are not docu-
mented in the literature. As such, we identified two gene pairs that i) associate over a
wide range of MKNN networks, ii) whose interactions are unique to the HAP1 screens
and not present in curated databases, and iii) do show a potential interaction when
examining their biological context. The interaction between the RFT1 and DNAJC11
gene products is hypothesized to be related to the contact site between the membranes
of the mitochondria and the endoplasmic reticulum. Another interaction conserved
over networks in the CELL-seq screens is the relationship between AOAH and PPP2R2B.
They have recently been discovered in literature as possible bio-markers for the pro-
gression of Alzheimer’s disease (AD), and their functional annotations additionally place
them in processes related to AD. We therefore recommend designing an experiment
to more thoroughly investigate these specific interactions, or experimentally verifying
them through additional screens.

How does the haploid phenotype screen compendium compare to DepMap, whose
dataset is antagonistic to ours by screening one phenotype over more than a thousand cell

lines?

The network analyses showed varying behaviours in the HAP1 screen compendium and
DepMap networks, as well as differences in the biological processes they recover. Most
notably, we find that in the most suited approach for HAP1 analysis, mutual KNN net-
works, the behaviours in terms of connectivity are close to mirrored. The highest pro-
portion of genes in DepMap is connected with a high degree, while in HAP1 the oppo-
site of true. The networks in DepMap show they are quickly inclined to create one giant
component, while the HAP1 network consists of fragmented subgraphs. The conducted
experiments show that the behaviour of the networks is dictated by the experimental de-
sign of the screens, where DepMap screens for a high-level phenotype and HAP1 screens
for diverse cellular phenotypes.

We furthermore investigated the differences in biological coverage between the datasets
as defined by their coverage of the gene ontology, a database which represents the struc-
ture of biological processes in cells. We find that to a large degree the retrieved processes
are in concordance, while the overall enrichment shows that DepMap has a higher sig-
nificance for the shared processes. We do find processes that are uniquely associated to
the HAP1 and DepMap datasets. These unique processes were further investigated and
eventually led to the proposal of potentially new interactions described above.

Does the limited compendium screen size fit the data-hungry task of cellular mapping?

A limitation of the dataset is the number of screens being small, which reduces its sta-
tistical power and hampers the accuracy of found interactions. A PCA analysis of the
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dataset shows that there is an almost linear trend between the number of screens and
the percentage of variance they explain. Most screens contribute equally to the variance
and almost all screens are required to explain 90% of variance, which shows the impor-
tance of each screens inclusion in the dataset and how impactful the reduction of screens
would be. We advocate for the expansion of the dataset in order to increase confidence
in the shown interactions.

We further investigated if the large discrepancy in the number of screens, 167 for
HAP1 and 1078 for DepMap, was an additional reason for the differences in network
behaviours. The conducted experiment split the DepMap data into five groups of 167
screens that retain the coverage of diverse cancer lineages, and again construct MKNN
networks using these splits and average their results. This shows that networks cre-
ated with all 167 HAP1 screens are better at recapitulating biological processes and in-
teractions compared to DepMap when DepMap is limited to 167 screens. The above-
mentioned structural behaviours remained intact, but the limited number of screens
did hugely impact the ability to recall known biology. The HAP1 compendium derived
networks are therefore competitive despite the limited sample size.

How can we optimally add screens to most effectively increase diversity in the phenotypic
space?

The limited number of screens in the compendium narrows its ability to capture the
full range of biological contexts and additional screens could thus benefit the ability
of networks to show crucial interactions relevant in more contexts than those currently
screened for. In addition, new screens can also more closely validate novel interactions
that are brought forward by the current compendium. One of the aims of this expan-
sion of CELL-seq screens is to further investigate potential interactions that are unique
to the dataset. For these reasons we recommended additional screens to be performed
that investigate the gene products of the genes involved in brought-forward possible
novel interactions, RFT1-DNAJC11 and AOAH-PPP2R2B. It is important to investigate
further if these interactions are brought forward by the nonindependence, and if screen-
ing for these interactions further exaggerate this nonindependence. A secondary ap-
proach would be to screen for phenotypes not directly concerning those interactions
but rather the underlying processes, which are mitochondrial-endoplasmic reticulum
pathways and processes associated to AD. If these interactions are not suited for inves-
tigation, and rather the expansion of phenotypic diversity and mediation of noninde-
pendence is the goal, this work does not conclusively establish an approach. There are
problems related to increasing diversity based on the gene ontology structure, as well as
problems in screening for phenotypes to make the compendium’s coverage more akin to
that of DepMap. However, we do recommend that when hypothesizing potential targets
for future screens, it is important to weigh those screens with more importance if they
are more likely to score previously unscored genes.

4.2. LIMITATIONS
This work has attempted to answer the research questions in an exploratory manner us-
ing a network-based approach. In comparing to DepMap, we limited the comparisons
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to behavioural or functional patterns of the networks that were brought forward by the
approaches employed in this work. DepMap however is a well-established dataset and
other works create networks or perform clustering approaches that are more tailored to-
wards DepMap and are therefore much more successful in creating networks. For exam-
ple, when showing HAP1 is competitive to DepMap when DepMap has a limited number
of screens, this could have been a feature of the MKNN approach not being optimal for
DepMap instead of a strength of the HAP1 screen compendium. Furthermore, we are
limited in our analyses by only viewing the HAP1 screens through the network perspec-
tive.

Another limitation of this work is that it is built on some assumptions which are not
fully verified. The effect of the preprocessing approaches on the dataset are not thor-
oughly examined here. Since the networks do show relevant biology, we assume cor-
rectness of these approaches but do not quantify to which extent they aid or limit the
networks. This could have helped in reasoning about whether the observed network
behaviour stem from biology, experimental design or preprocessing methods. Further-
more, in the Robust-MKNN networks we assumed that the found window to ascertain
robustness could be found on the control clusters and then generalized to the remain-
ing genes. However, the analysis on the GPD’s have shown that distributions between
strong connectors and other genes are quite varied, and a more suitable approach to
determining robustness for all genes could have benefited the Robust-MKNN networks.

In addition, one primary method of assessing network quality and biological cover-
age was based on the functional enrichment of found communities in the network. How-
ever, this method is highly dependent on the clustering algorithm. While network quality
was also assessed in cluster-agnostic manners, biological coverage was fully dependent
on this. The Leiden algorithm used in this work was chosen due to its interpretability
and presence in literature. It is also highly dependent on a resolution parameter that
can be adapted to, in general, recuperate communities of larger or smaller sizes. We
acknowledge that for some networks that show less modularity or fragmentation a grid-
search should have been performed for this resolution parameter. This grid-search was
performed for some MKNN networks but not systematically, and a more thorough in-
vestigation would have certainly aided to the conclusiveness of found results. Finally,
the expansion of the screen compendium by this cluster-based approach with coverage
did not yield conclusive approaches to expand the phenotype screens to cover most bi-
ology. A more thorough comparison of coverage in other known databases or with other
datasets could have mitigated that.

4.3. FUTURE RESEARCH RECOMMENDATIONS
One of the primary findings of this work is the relatedness between a genes behaviour
in networks and the number of times it scored as a regulator in the phenotype screens.
This work does implicate the experimental design of the CELL-seq screens towards this
behaviour, and shows that when corrected for, the overall network quality improves.
However, it is important to investigate whether the hub node behaviour of this genes
is entirely due to the measurement technique, a reflection of biology, or both. While we
hypothesize experimental design as the culprit, a more thorough investigation into this
could aim to potentially correct for the experimental biases towards those over repre-
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sented genes. This could be in the form of a preprocessing step prior to the applications
of a network construction method. When it is in detail known what the biases are and
how they can best be dealt with, one research avenue is to explore whether the CELL-seq
screen compendium can be complimentary to other datasets like DepMap. Perhaps in-
tegration of the CELL-seq screens with other datasets can aid in expand the coverage of
biology.

Initially, one of the aims of this work was to also include causal inference on the di-
rection of interactions in the networks or include hierarchical organization of biology.
For the inference of hierarchy, we did attempt to include analyses using a tool devel-
oped by the Ideker lab for this purposed titled DDOT [103]. However, the application of
this algorithm was unfeasible due to its long running time and memory requirements.
Even an application of a smaller set of genes solely from the mitochondria did not pro-
duce any results. We propose a more thorough investigation into why this popular algo-
rithm is not applicable to the HAP1 screens. For further causal inference, the application
of ARACNE-AP showed the difficulties of estimating a probability distribution with the
limited number of screens for the calculation of mutual information. Since mutual infor-
mation is commonly used in causal inference strategies, we recommend to investigate
whether the features of the distribution of GLS P values would instead more suited for
estimating mutual information. The memory requirements were too large for all genes
when calculating them for ARACNE-AP, but could be feasible for a subset of genes.

In the approach for estimating when a decrease in neighbors was robust in Section
3.6, we used a simple moving average (MA). However, recent literature from trend es-
timation in finance [87], [88] as well as denoising tasks of frequently employed deep
learning optimizers such as ADAM employ more sophisticated approaches to the MA,
such as exponentially weighted MA or a double-crossover MA. In addition the change-
of-direction indicator can be too strict in some cases and rather a percentage drop off
could be employed like in most early stopping approaches. We’ve experimented with
both additional mentioned MAs, as well as more lenient change-of-direction indicators,
but never found a better alternative than the simple MA employed in the work. It is of
course highly dependent on the control groups used, and the assumption that a MA with
the right parameters (type, window size, change rule) can be extrapolated from those
fitted controls to the entire dataset. Because the approach did show meaningful cluster-
ing, we suggest a more precise deep-dive into this method of finding a local threshold
for genes in this application.
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SUPPLEMENTARY FIGURES

Figure A.1: Degree distribution of the fg l obal network using α= 0.01. Density is for a degree d is calculated as
nd
n , the fraction of nodes with degree d over all nodes.

Figure A.2: The network consists of a group of disconnected sub-networks. The largest component (top left)
contains two thirds of the total nodes.
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Figure A.3: Pie-chart showing the distribution of genes scoring in 0, 1, 2 or >2 screens.

Figure A.4: Overview of the KNN k = 1 network.
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Figure A.5: Snippet of separate components in the MKNN k = 4 graph. Nodes are coloured according to unique
GO:BP terms, with white nodes representing no enrichment.

Figure A.6: Density of GLS P value interactions in the STRING database for HAP1 and DepMap at a wide range
of k.
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Figure A.7: The five genes with the worst fitting GPD in DH .

Figure A.8: Pearson correlations of GLS distribution parameters and the clustering coefficient of genes in the
MKNN networks for k in range [10, 200].
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Figure A.9: Pearson correlations of GLS distribution parameters and the betweenness centrality of genes in the
MKNN networks for k in range [10, 200].
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Figure A.10: HAP1: Correlations between three network connectivity parameters and several parameters of the
generalized Pareto distributions.
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Figure A.11: DepMap: Correlations between three network connectivity parameters and several parameters of
the generalized Pareto distributions.
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Figure A.12: Degree distributions of the MKNN networks in the HAP1 dataset over a range of k values.

Figure A.13: Degree distributions of the MKNN networks in the DepMap dataset over a range of k values.
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Figure A.14: Degree distribution of the DepMap splits colored for mean and standard deviation over splits.

Figure A.15: Number of nodes that have a degree of 0 over a range of KMNN networks.

Figure A.16: Distribution of GO:BP enrichment P values of Weighted-MKNN networks for both datasets.
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Figure A.17: Distribution of k values for all genes in the datasets based on the number of genes left in the core
group using a MA window or 54 or 86 respectively. When no robust area was found using this window, genes
are assigned k = 0.
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Figure A.18: Coverage of 1st and 2nd level GO:BP terms of HAP1 (top) and DepMap (bottom) datasets.
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Figure A.19: Bar graph of enrichment -log10(P values) of 100 GO:BP terms found using GO-Compass.
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SUPPLEMENTARY TABLES

Term Definition
Degree The number of edges of a vertex to other vertices. The connected

vertices are that nodes’ neighborhood.
Clustering
Coefficient

Measures if a node’s neighbors show local clustering.

C (v) = Σenv

max(env )
(B.1)

It is the number of edges between neighbors of v divided by the
maximum possible amount of edges between neighbors of v .

Betweenness
centrality

Measures a nodes’ importance of connectivity in the graph.

B(v) = ∑
s ̸=v ̸=t

σst (v)

σst
. (B.2)

σ represent a shortest path between two nodes. Thus, B(v) is the
fraction of shortest paths between all node pairs that go through v
over all the shortest paths between node pairs.

Neighborhood
Connectivity

The average degree of a nodes’ neighbors.

Table B.1: Graph Theory Terms and Definitions
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Control Cluster Genes GO Biological Process Enriched Term
EED, EZH2, SUZ12, MTF2 Histone H3-K27 methylation
MAPKAP1, RICTOR,
INPP4A, MLST8, INPPL1

TOR signalling

VPS16, VPS33A, VPS18,
VPS41, VPS11

Endosomal vescicle fusion

WASHC4, COMMD8,
VPS35L, CCDC22,
COMMD3

Endosomal transport

CD274, PTPN2, IFNGR2,
JAK2, IFNGR1

Type II interferon-mediated signaling pathway

DAG1, LARGE1, B4GAT1,
RXYLT1, B3GALNT2

Protein O-linked glycolisation

COA3, PDSS2, NARS2,
COA7, COX17

Mitochondrial cytochrome c oxidase assembly

ACSL3, HILPDA, GPAT3,
ACSL1, DGAT1

Long-chain farry-acyl-CoA metabolic process

SMAD5, BMPR2, SMAD7,
SMURF1, SMURF2

BMP signalling pathway

KRAS, NF1, MAPK1,
SHOC2

Ras protein signal transduction

CTNNB1, CTNND1, AXIN1 Canonical Wnt signaling pathway
CDK6, SKP2, CDKN2C,
CCND3, CDK4

G1/S transition of mitotic cell cycle

Table B.2: HAP1 Screen Compendium Control Clusters with associated GO Biological Process Enriched Terms
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Control Cluster Genes GO Biological Process Enriched Term
SUZ12, EED, RING1, EZH2,
BCOR

Histone modification

MAPKAP1, MLST8, PDPK1,
AKT2, AKT1

Positive regulation of protein phosphorylation

VPS18, VPS33A, VPS41,
VPS16, FLCN, ARL8B,
BORCS5, SPG21, TBC1D5

Endosomal vescicle fusion

WASHC4, COMMD8,
VPS35L, CCDC22,
COMMD3

Endosomal transport

CDK6, CCND3, TGIF2,
MYC, MAX

Negative regulation of transcription by RNA poly-
merase II

DDX3X, RPS4X Positive regulation of canonical Wnt signaling pathway
INTS12, INTS6, INTS7,
PRCC

snRNA 3’-end processing

KRAS, PRKCE, RAF1,
SHOC2, BRAF, MAPK1,
CTNNB1, TCF7L2

protein serine kinase activity

MRPL1, RMND1, MPV17L2 Mitochondrial translation
TRIT1, COQ7, COQ6, AT-
PAF2

Ubiquinone biosynthetic process

Table B.3: DepMap Control Clusters with associated GO Biological Process Enriched Terms
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DETAILS ON IMPLEMENTATION FOR

REPRODUCIBILITY

C.1. ARACNE-AP
The ARACNE-AP package was installed following the instructions on https://github.
com/califano-lab/ARACNe-AP. It requires the JAVA JDK > 1.8 and the ANT package. As
ANT is not installed on NKI’s RHPC cluster, the repository was built with ANT on a local
Linux distribution, and the created .jar file then moved to the cluster storage. The pro-
gram requires two inputs, a gene expression matrix and a list of regulators (e.g. transcip-
tion factors). The list of transcription factors (TFs) used was defined by the 2018 Cell pa-
per by Lambert et al., which provides a catalog of likely TFs in human cells [59], and was
downloaded directly from http://humantfs.ccbr.utoronto.ca/download.php. The
substitute for the gene expression matrix was the previously defined XH . For the exper-
iment using DH as input, the matrix was defined as 19385 genes and correspondingly
19385 samples, with the median GLS P values rounded to 6 decimals.

C.2. GO-COMPASS
GO-Compass uses a React based web-tool for the visualization of results and a Python
back end for the implementation of the algorithm. The webtool is available on https:
//go-compass-tuevis.cs.uni-tuebingen.de/. However, when preparing the data
according to their specified directions, an error occured when running the tool. Upon
downloading the Github repository, we found this was due to a bug in the React front
end which referred to an outdated library. We therefore corrected this mistake and ran
GO-Compass locally. This built can of course be shared or forked to a GitHub repository
upon request.

97

https://github.com/califano-lab/ARACNe-AP
https://github.com/califano-lab/ARACNe-AP
http://humantfs.ccbr.utoronto.ca/download.php
https://go-compass-tuevis.cs.uni-tuebingen.de/
https://go-compass-tuevis.cs.uni-tuebingen.de/

	Preface
	Abstract
	Introduction
	Haploid Phenotype Screens
	Research Objectives
	Outline

	Materials and Methods
	Datasets
	HAP1 Phenotype Screen Compendium
	DepMap: Synthetic Lethality genome-wide CRISPR screens

	Dataset Preprocessing
	Generalized Least Squares
	Monte Carlo Sampling Against Biased Correlations

	Network Construction
	Community Finding
	Network Validation
	Network Metrics
	Visualization

	Background on Methods
	ClusterONE Module Discovery
	ARACNE-AP Network Construction
	Mutual k-Nearest Neighbor Networks
	Distribution Fitting
	Gene Groups for Separated Biology Control Networks
	Biological Coverage Analysis: Obtaining Broad GO:BP Terms


	Results
	Dataset Analysis using Established Methods
	Interpretable Networks to Determine Meaningful Gene-Gene Interactions
	Stringency of Mutual K-Nearest Neighbor Graphs Shows Meaningful Clustering
	How GLS Profiles Relate to Network Behaviour
	Distribution to Network Behaviour Correlations Show the Differences Between HAP1 and DepMap
	Degree Distributions Capture the Contrast between HAP1 Screens and DepMap
	Control Networks Show Differences in Connectivity Patterns
	Peak at the HAP1 Degree Distributions Implicates Significant Screen Genes
	Connecting Isolated Nodes Shows Presence of Hub Nodes
	Distribution Parameter Weighted MKNN Networks

	Analysis on Individual Screen Contributions
	Analysis on DepMap with Limited Screens

	Robustness of Neighbour Decrease Shows Cluster Coherence
	Coverage of Biology
	Naive Higher-Order Comparison Shows Little Differences
	Semantic Similarity GO Term Clustering Highlights Enrichment Characteristics
	Expansion of the HAP1 Screen Compendium


	Conclusion and Discussion
	Conclusion
	Limitations
	Future Research Recommendations

	Supplementary Figures
	Supplementary Tables
	Details on Implementation for Reproducibility
	ARACNE-AP
	GO-Compass


