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Efficient freeway MPC by parameterization of
ALINEA and a speed-limited area

Goof Sterk van de Weg, Andreas Hegyi, Serge Paul Hoogendoorn, Bart De Schutter

Abstract—Freeway congestion can reduce the freeway through-
put due to the capacity drop or due to blocking caused by
spillback to upstream ramps. Research has shown that congestion
can be reduced by the application of ramp metering and variable
speed limits. Model predictive control is a promising strategy
for the optimization of the ramp metering rates and variable
speed limits to improve the freeway throughput. However, several
challenges have to be addressed before it can be applied for the
control of freeway traffic. This paper focuses on the challenge
of reducing the computation time of MPC strategies for the
integration of variable speed limits and ramp metering. This is
realized via a parameterized control strategy that optimizes the
upstream and downstream boundaries of a speed-limited area
and the parameters of the ALINEA ramp metering strategy. Due
to the parameterization, the solution space reduces substantially,
leading to an improved computation time. More specifically,
the number of optimization variables for the variable speed
limit strategy becomes independent of the number of variable
message signs, and the number of optimization variables forthe
ramp metering strategy becomes independent of the prediction
horizon. The control strategy is evaluated with a macroscopic
model of a two-lane freeway with two on-ramps and off-ramps.
It is shown that parameterization realizes improved throughput
when compared to a non-parameterized strategy when using the
same amount of computation time.

Index Terms—Variable speed limits, ramp metering, freeway
management, throughput improvement, model predictive control.

I. I NTRODUCTION

FREEWAY congestion can reduce the freeway throughput
causing societal, economical, and environmental costs.

Two main reasons exists why congestion reduces throughput.
First of all, congestion causes a capacity drop, i.e. the flow
downstream of congestion is lower than the capacity flow that
can be achieved under free-flow conditions [1], [2]. Secondly,
congestion can spill back in the upstream direction and cause
blocking of traffic bound for off-ramps.

Congestion can be mitigated by dynamic traffic management
measures. Two popular dynamic traffic management measures
on which this paper focuses are ramp metering (RM) and
variable speed limits (VSLs). RM is typically used to limit
the number of vehicles that want to enter the freeway from
an on-ramp using a traffic light. In this way, the flow into
a downstream bottleneck can be reduced so that congestion
can be prevented, postponed, or resolved. VSLs are speed
limits that can be varied over time and are displayed using
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variable message signs. VSLs can be used to reduce the speed
of freeway traffic and they are typically applied for safety
reasons. However, several approaches have been designed to
reduce freeway congestion using VSLs. In this paper we
study the application of RM and VSLs to improve freeway
throughput by reducing congestion with the aim of developing
an optimization-based control strategy for the integration of
VSLs and RM.

A. Review of RM and VSL strategies

The development of RM and VSL strategies – i.e. control
algorithms – is an active research area. In this brief overview
we discuss several VSL and RM strategies that aim at freeway
throughput improvement. We focus here on discussing the
mechanisms in traffic flow exploited by the controllers, the
controller properties, and investigate challenges and opportu-
nities for further controller development. After concluding this
section, we review the literature on model predictive control
strategies for the integration of RM and VSLs in the next
section.

1) VSL: According to Hegyiet al. [3], two main categories
of VSL strategies for the improvement of freeway throughput
exist, namely, the homogenizing types and the flow-limiting
types. The idea behind the homogenizing types is that by
displaying VSLs that are similar to the average speed of the
traffic, speed differences between vehicles will be reducedbut
no significant reduction of the average speed will result [4],
[5], [6]. In this way, the traffic flow is homogenized, resulting
in a reduction of the probability of a traffic breakdown, and
thus, leading to an improved freeway throughput. However,
while field tests did show a reduction in speed differences,
implying a more homogeneous traffic flow, no evidence was
found for a improved freeway throughput [5].

The main idea behind VSL strategies of the flow-limiting
type is that by imposing VSLs the flow on the freeway
can be controlled. Several approaches can be found in the
literature that are of the flow-limiting type. Carlsonet al. [7]
proposed a VSL strategy called mainstream traffic flow control
(MTFC) for controlling freeway traffic entering a bottleneck.
This strategy adjusts the VSL value at a location upstream ofa
bottleneck in order to create a controlled congestion upstream
of the bottleneck so that the bottleneck inflow matches the
bottleneck capacity. Several simulation studies were performed
showing improved freeway throughput. Challenges of this
approach are that very low VSL values may have to be
displayed and that the application of the strategy is limited
to specific locations in a road network.
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Hegyi et al. [3] proposed a VSL strategy called SPECIAL-
IST based on shock wave theory against jam waves – i.e.
congestion with a length of roughly 1 to 2 km that propagates
in the upstream direction of the freeway. The SPECIALIST
algorithm detects a jam wave and when it assesses this jam
wave as resolvable it first applies a pre-defined VSL value
instantaneously over a freeway stretch directly upstream of
the jam wave. Next, VSLs are imposed upstream of the speed-
limited area to stabilize the traffic flow – by creating a stable
combination of speed and density – that is approaching the
speed-limited area. This causes a reduction of the flow into the
jam wave so that it can resolve without triggering an upstream
congestion. After the jam wave is resolved, the traffic in the
speed-limited area can be released and a higher freeway flow
can be achieved since the capacity drop is no longer present.
The density and flow in (and downstream of) the speed-
limited area can be controlled by adjusting the speed with
which the upstream (and downstream) boundary of the speed-
limited area propagates. SPECIALIST was tested on the A12
freeway in the Netherlands and it was found that it is capable
of resolving jam waves and stabilizing traffic, resulting in
improved freeway throughput [3]. Recently, Mahajanet al. [8]
proposed a reformulation of SPECIALIST called COSCAL v2.
In contrast to the SPECIALIST algorithm which has a feed-
forward structure, the COSCAL v2 algorithm has a feedback
structure so that it can better adjust its control action to
disturbances.

Chenet al. [9] proposed an alternative approach to resolve
congestion at a bottleneck location. In their approach, VSLs
are imposed upstream of the bottleneck first so that the conges-
tion head moves away from the bottleneck and the impact of
the capacity drop is decreased. After that, by adjusting theVSL
values, the outflow of the speed-limited area is adjusted so that
it matches the bottleneck capacity. To the best knowledge of
the authors, no simulation studies have been carried out yet
with this algorithm.

Recently, Zhanget al. [10] proposed a VSL control strategy
integrated with a lane change control strategy to reduce
bottleneck congestion caused by incidents. In their approach,
lane change control is used to remove the capacity drop and
VSL control is used upstream of the incident location to realize
target densities that maximize the bottleneck flow.

2) RM: Similar to VSL strategies of the flow-limiting type,
RM is primarily used to limit the freeway flow. The most well-
known RM algorithm is ALINEA [11]. This feedback control
strategy for a single on-ramp uses measurements downstream
of the on-ramp and regulates the on-ramp flow with the
objective of keeping the freeway flow near its critical density.
In this way, congestion caused by excessive on-ramp flows
can be prevented or postponed and in this way, the impact
of the capacity drop is reduced, resulting in improved freeway
throughput. Several other control strategies for single on-ramps
exist. Middelhamet al. [12] discusses a demand-capacity RM
strategy that uses upstream freeway flow measurements in
order to maximize the freeway flow. Due to its feed-forward
nature its performance may deteriorate due to disturbancesin
the traffic flow. A major challenge of these local RM strategies
is that the on-ramp queue may spill back to the upstream urban

network. Queue management may help to limit the on-ramp
queue but also reduces the time that RM can be effective [13],
[14].

Coordination of RM at multiple on-ramps can help to
extend the RM time. HERO is an algorithm that coordinates
the ALINEA-based RM actions of different on-ramps [13].
Whenever the queue caused by RM at a downstream on-ramp
exceeds a threshold, the upstream RM installation starts anRM
algorithm that aims at controlling the upstream queue towards
a set-point determined by the downstream on-ramp. This
prevents the queue at the downstream on-ramp from exceeding
the maximum length and allows a longer RM time. Difficulties
of coordination are that there exist time delays between the
interactions of on-ramps and that not all traffic of upstream
on-ramps might be headed to the bottleneck. Not including
these effects may cause unnecessary delays for traffic that is
not headed to the bottleneck, which may not be fair [15].
One way to include these effects is by predicting the (near)
future impact of the control signal on the system performance.
Model-based optimal control approaches are typically suited to
include such effects and will be discussed in the next section.

3) Integrated approaches to RM and VSL:Integrating RM
and VSL strategies is expected to lead to further freeway
performance improvements. From a control engineering point
of view this can be explained by the fact that the control
freedom is increased. From a traffic-flow-theoretical pointof
view this can be explained by the possibility to distribute the
flow-limiting task over freeway traffic and on-ramp traffic.
Schellinget al. [16] proposed an extension of SPECIALIST so
that it can cope with a metered on-ramp. Van de Weget al. [17]
extended the in-car algorithm COSCAL v1 – which is similar
to SPECIALIST – with RM. Mahajanet al. [8] extended a
macroscopic version of COSCAL v1, named COSCAL v2
with RM. In these approaches, it is computed at what time
RM is switched on in order to assist the VSL system that
resolves jam waves. These studies show that is it possible to
integrate the VSL and RM task to resolve jam wave using
limited computation time when considering only a single on-
ramp. However, a challenge may be the extension to multiple
on-ramps, which may lead to a complex control problem due
to the time delays between the effects of different actuators.

Carlson et al. [14] integrated the MTFC approach with
RM. They apply ALINEA RM in order to prevent congestion
from forming at the bottleneck location. When the on-ramp is
full or when the RM rate is near its minimum allowed rate,
MTFC control is switched on in order to prolong the RM
time. The authors showed that the approach outperforms non-
integrated algorithms and realizes a performance that is near
the performance realized with optimal control for a bottleneck
scenario simulated using a macroscopic traffic flow model.
An advantage of this approach is that it is based on a simple
feedback control structure. Iordanidouet al. [?] extended this
approach to coordinate RM and VSL actions at different
locations by balancing the travel delays caused by the different
actuators.

4) Conclusions from the literature:In conclusion, RM and
VSLs can both limit the freeway flow. These flow reductions
can be used to prevent, postpone, or resolve congestion,
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resulting in improved freeway throughput, since the impact
of the capacity drop is reduced. Various algorithms have
been developed for RM and VSLs. These algorithms differ
in the traffic-flow-theoretical mechanisms that they exploit
and their control-theoretical structure. Studies have shown that
integrating RM and VSLs can lead to a better performance
when compared to isolated systems. However, the control of
multiple RM and VSL gantries is a complex problem due to
the time delay in the impact of elements on each other.

B. Review of model-based optimization strategies for freeway
traffic control

A promising approach to account for the time delays of
control actions on the network-wide performance is model
predictive control (MPC) [18]. MPC uses a prediction model
to predict the state of a process over a period of time –
called the prediction window – given the current state, a
prediction of the disturbances – i.e. inputs that cannot be
controlled –, and a candidate control signal. Based on this
prediction the performance of the process is expressed using an
objective function. Using an optimization technique the control
signal is found that leads to the minimum (or maximum) of
the objective function. The first step of the control signal is
applied to the process, and at the next time step, when new
measurements are available, the control signal is optimized
again. This is called the receding horizon principle.

Despite the advantages of MPC there also exist several
open problems when it is applied to freeway traffic control
as discussed in detail in [19]. Some key problems are that an
accurate prediction of the traffic demand should be available,
that the controller should be able to deal with uncertainties,
and that the computation time used by the controller should be
short enough for real-time application. In this paper we will
focus on reducing the computation time of an MPC strategy.

Several authors have applied MPC to the freeway traffic
control problem. Kotsialoset al. [20] and Hegyiet al. [21]
used the second-order METANET model as a prediction
model to optimize RM and integrated RM and VSL settings
respectively. An advantage of using second-order models is
that they can model more complex traffic dynamics. However,
a major challenge is that the nonlinear optimization problem
is computationally hard so that real-time application to large
freeway networks is not feasible.

Roughly three main approaches exist to limit the com-
putation time required by an MPC strategy. The first is to
use computationally efficient traffic flow models. To this end,
Gomeset al. [22] and Hajiahmadiet al. [23] use first-order
traffic flow models to formulate linear and mixed integer linear
optimization problems respectively. The disadvantage of using
first-order traffic flow models is that some characteristics of the
traffic dynamics may be lost. This may cause a performance
loss when applied to a more complex traffic process.

The second strategy is to divide the optimization problem
in multiple, possibly overlapping, sub-problems. One such
strategy is distributed MPC as in [24]. In such approaches,
the freeway network is divided into smaller sub-networks.
The sub-problems that need to be solved involve optimization

of the sub-network performance and the impact on the total
network performance. In some cases this might lead to reduced
computation times and similar performance as centralized
MPC.

The third strategy is to reduce the number of control pa-
rameters that need to be optimized by parameterizing existing
control strategies. For instance, Zegeyeet al. [25] integrated
the ALINEA algorithm and a feedback algorithm for VSLs
so that only the gains of the feedback strategies had to be
optimized. The approach was only applied to cases where the
same strategy was used for every actuator type – i.e. VSL
or RM – in the network at every time step. Luet al. [26]
first designed the VSL signal after which the RM rates could
be computed using a linear optimization problem. Recently,
Van de Weget al. [27] proposed a parameterization based on
SPECIALIST to resolve jam waves using VSLs so that the
size of the optimization problem becomes independent of the
number of VSL gantries. It is shown using simulations that
this approach is able to realize similar performance as the
MPC proposed by Hegyiet al. [21] in significantly less CPU
time while outperforming the approach of Zegeyeet al. [25].
A limitation of the approach of [27] is that it is not yet suited
to account for RM and that the performance is only tested in
a scenario where throughput is improved by resolving a jam
wave.

C. Research approach and contributions

This paper presents a parameterized MPC strategy for
integrated RM and VSLs to improve the freeway throughput.
In this way, a better trade-off between the realized throughput
improvement and the utilized computation time for integrated
optimization of RM and VSL is obtained. The method gener-
alizes the previous work of Van de Weget al. [27]. Compared
to that work, two main contributions are made. First of all, the
parameterized VSL approach is extended with a parameterized
RM control strategy. Secondly, an extensive qualitative anal-
ysis into the controller behavior is carried out when applying
the strategy to a jam wave and a bottleneck scenario. Also,
the qualitative behavior of the different combinations of RM
and VSL is studied. In contrast to the work of Zegeyeet
al. [25], per RM installation the RM gain and set-point, and
switching times are added to the optimization problem. The
switching times are used to change the feedback policy when
the traffic situation changes. The parameterization of VSLs
and RM rates in METANET is formulated in such a way that
the optimization problem can be solved using gradient-based
solvers, which are generally faster compared to gradient-free
solvers when the problem size is not too large. The third
contribution of this paper is to provide insight into the impact
of the available computation time budget on the controller
performance.

II. CONTROLLER DESIGN

The parameterized MPC strategy proposed in this paper is
able to optimize both RM rates and VSL values with the
aim of improving the freeway throughput. In the approach
proposed in this paper the head and tail of a speed-limited
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A. Example of a speed-limited area

B. Example of preventing congestion at a bottleneck
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Fig. 1. A: Example of a speed-limited area that can be used to influence the
traffic flow. The red-dashed lines indicate examples of vehicle trajectories.
The second vehicle trajectory illustrates a vehicle experiencing a speed limit
drop twice – as indicated with the red circle –, which should not occur. B: Top
figure: example of a speed-limited area that can be used to prevent congestion
at the bottleneck locationxb. Bottom figure: the demand entering the freeway
at locationx0 [27].

area are parameterized. In this way the number of optimization
parameters becomes independent of the freeway length, which
would be the case when using non-parameterized optimization
approaches. Additionally, we optimize the parameters of the
ALINEA strategy and we optimize the switching times when
the controllers should change the parameters of the ALINEA
strategy or when they should switch RM off. In this way, the
number of optimization parameters for every RM installation
becomes independent of the prediction horizon.

A. Design considerations

Several design considerations are taken into account when
developing the parameterized MPC strategy. Special attention
is payed to satisfy the requirements for applying RM or VSLs
for freeway traffic control. While the primary objective of this
paper is to design a control strategy of which the computation
time required by the controller is lower than the controller
sampling time, (which is in the range of (several) minutes),
some design requirements are taken into account as well,

which are also important for the practical applicability ofthis
method, namely:

1) Only a limited number of VSL values can be displayed.
For instance, in the Netherlands it is only possible to
show 50, 60, 70, 80, 90, and 100 km/h.

2) A VSL or RM system should not cause unsafe situations.
3) An RM system typically causes a queue on the on-ramp.

The queue length should be bounded by a maximum
value to avoid spillback to the upstream road network.

4) The RM rate is typically bounded by a minimum and
maximum value.

Below, first the design considerations of the VSLs are intro-
duced, followed by the considerations for implementing RM.

1) VSL control design considerations:As indicated by Van
de Weg et al. [28], a speed-limited area – as shown in
Figure 1 A – can be created by imposing VSLs. It follows from
shock-wave theory that there is a relation between the slopeof
the boundaries of the speed-limited area and the resulting flow
and density downstream of that slope [3], [29]. If the slope
is steeper (more negative) then the resulting density and flow
are higher. By adjusting the speed with which the upstream
boundary – i.e. the tail – propagates over time, a stable
combination of density and flow can be realized in the speed-
limited area. Similarly, by adjusting the speed with which the
downstream boundary – i.e. the head – propagates over time,
the outflow of the speed-limited area can be controlled so that
it is just below or at the freeway capacity. SPECIALIST is
an example of an algorithm that uses a speed-limited area to
resolve a jam wave [3].

Figure 1 B presents an example of using a speed-limited
area in order to prevent congestion at a bottleneck. At timet1
(h) an excess demand – as illustrated in the bottom figure –
enters the freeway at locationx0 (km). The time-space plot in
the top figure shows that this demand reaches the bottleneck
locationxb (km) at timet2 (h). At this time, congestion would
appear in a no control situation. However, by imposing a
speed-limited area as illustrated in the top figure, congestion
may be prevented.

Note that the effectiveness of this control method is limited
by the length of the stretch over which speed limits are avail-
able. If the necessary queue storage space exceeds this length
then the approach becomes ineffective. An analysis method
to evaluate the expected effectiveness based on measurement
data is presented in [28].

Several design considerations are taken into account when
implementing a speed-limited area. First of all, it is assumed
that the value of the speed-limits in the speed-limited areais
constant over time. This implies that a segment between two
variable message signs is either speed-limited or not. Addi-
tionally, it is assumed that only one speed-limited area canbe
active at a time. Apart from that, the dynamics of the head and
tail of the speed-limited area should be such that the individual
vehicles can only enter and exit the speed-limited area once.
If an individual vehicle observes multiple fluctuations of the
speed limits, this can lead to unsafe situations, annoyance,
or poor compliance. As an example, the second vehicle in
Figure 1 A experiences such fluctuations. In order to prevent
such behavior, the positionsxH,sl (km) and xT,sl (km) of
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Time step
k − 1, kc = (k − 1)/Cc + 1 = 1, ku = (k − 1)/Cu + 1 = 1

k = 30, kc = (k − 1)/Cc + 1 = 6, ku = (k − 1)/Cu + 1 = 2

Model sampling timeT (h)Control sampling timeT c (h)
Control signal update sampling timeT u (h)
Control horizonN cT c (h)
Prediction horizonNpT c (h)

Fig. 2. Overview of the timing used in the paper forT is 10 s,T c is 60 s,Tu is 300 s.

respectively the head and the tail of the speed-limited area
are allowed to propagate in the downstream direction with a
speed that is lower or equal to the effective speedveff (km/h).
In the upstream direction they can propagate with any speed.

The speed in the speed-limited area is equal to the effective
speedveff corresponding to the imposed VSLs. The effective
speed is defined as the speed with which vehicles drive in the
speed-limited area which includes possible non-compliance.
This can be estimated e.g. from field tests as presented in [3].

The proposed parameterization reduces the number of opti-
mization variables for VSLs to two per control time step. Note
that the number of optimization variables at every control time
step used in a nominal MPC strategy is equal to the number of
VSL actuators. Hence, the advantage of this parameterization
is that the number of optimization variables is reduced, and
that the number of optimization variables is independent of
the number of VSL actuators.

2) RM control design considerations:A feedback RM
algorithm is used in this paper to control the on-ramp flow
that has to satisfy the following properties:

• The RM ratero(k) (-) of an origino should be between
the minimum allowed RM ratermin ≥ 0 (-) and1.

• The on-ramp queue lengthwo(k) (veh) should not exceed
its maximum valuewmax

o (veh).
Different RM strategies could be applied depending on the

traffic situation. For instance, when preventing congestion at a
bottleneck location, the most sensible control strategy would
be to control the on-ramp flows in such a way that the flow
into a bottleneck is at or just below its capacity. The ALINEA
algorithm is specifically designed to realize this objective. The
ALINEA algorithm has the following form [30]:

ro(k + 1) = ro(k) +Ko
ρcritm − ρm,1(k)

ρcritm

, (1)

where ρcritm (veh/km/lane) is the critical density of the link
directly downstream of the on-ramp,ρm,1(k) (veh/km/lane)
is the current density in the most upstream segment of the
downstream link, andKo (-) is the feedback gain.

When resolving a jam, the flow into the jam should be
reduced as much as possible. The standard ALINEA RM
algorithm is not suited to realize this, since it tries to fit as
much traffic onto the freeway without exceeding the critical
density. This can be solved by adapting the set-pointρseto, (k)
(veh/km/lane) of the ALINEA strategy [31], [25]:

ro(k + 1) = ro(k) +Ko

ρseto, (k)− ρm,1(k)

ρseto, (k)
. (2)

Another advantage of including such a set-point is that
coordination of on-ramps becomes possible. In the case of
a downstream bottleneck or congestion, the set-points of the
controllers of different on-ramps can be coordinated in order
to distribute the RM task over the RM installations.

Finally, it might be necessary to switch set-points a certain
number of times. For instance, when resolving a jam, the
preferred strategy might be to reduce the on-ramp inflow as
much as possible until the moment when the jam has been
resolved and afterwards the freeway flow can be increased to
capacity so that the on-ramp outflow can also be increased.
These two different tasks require different set-points. There-
fore, we propose the following feedback control algorithm:

• Initially, RM is off until switching timetswitch
o,1 (h).

• From switching timetswitch
o,1 until switching timetswitch

o,2

(h), the feedback law (2) with feedback gainKs
o,1 (-) and

set-pointρseto,1 (veh/km/lane) is used.
• From switching timetswitch

o,2 until switching timetswitch
o,3

(h), the feedback law (2) with feedback gainKs
o,2 (-) and

set-pointρseto,2 (veh/km/lane) is used.
• After time tswitch

o,3 the RM installation is switched off.

This parameterization requires 5 parameters per RM instal-
lation, namely, three switching times, and two set-points.
If needed, the approach can be extended by adding more
switching time instants or to optimize the feedback gains,
which are now manually tuned.

C. Traffic flow modelling: the extended METANET model

An extended version of the METANET model is adopted to
predict the evolution of the traffic in the MPC controller. The
METANET model presented in [32] along with the extensions
proposed in [21] is adopted since it provides a detailed descrip-
tion of the traffic dynamics and it can reproduce relevant traffic
characteristics such as jam waves and the capacity drop. Note
that in the description below only the elements relevant for
this paper are discussed. For a full description of the model
see [32] and [21].

In the METANET model, a freeway is divided into homo-
geneous – i.e. having a constant number of lanes, no on-ramps
and off-ramps, and constant characteristics – linksm that are
connected by nodes [32]. Each linkm consists ofNm (-)
segments of lengthLm (km) with a number ofλm (-) lanes.
The flow qm,i(k) (veh/h), densityρm,i(k) (veh/km/lane) and
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V
(

ρm,i(k)
)

= min
[

vfreem exp

(

−
1

am

(

ρm,i(k)

ρcritm (k)

)am
)

, vctrlm,i(k)
]

. (6)

qlimµ,1(k) =











λµv
lim
µ,1(k)ρ

crit
µ

[

− aµ ln

(

vlimµ,1(k)

vfreeµ (k)

)1/aµ
]

if vlimµ,1(k) < V
(

ρcritµ (k)
)

qcapµ if vlimµ,1(k) ≥ V
(

ρcritµ (k)
)

(9)

B. Timing

Before continuing, the timing of the approach is introducedand is illustrated in Figure 2. The discrete-time second-order traffic
model METANET is used to describe the evolution of the traffic[32]. The time step of the model is indicated withk (-) and
the corresponding sampling time withT (h). The time stepk refers to the period

[

Tk, T (k+1)
)

. The control signal sampling
time is T c = CcT (h) with Cc ∈ N

+ (-), meaning that the value of the control signal can change at time instantskcT c (h).
The control signal is updated at time instantkuT u (h) for which it holds that the control signal update timeT u = CuT (h)
with Cu ∈ N

+ (-). Note that it holds thatt = Tk = T ckc = T uku (h). The controller predicts the evolution of the traffic
from control time stepkc + 1 until control time stepkc +Np whereNp (-) is the prediction horizon. The control input from
control time stepkc until control time stepkc + N c is optimized by the controller whereN c (-) is the control horizon and
N c ≤ Np. After the control horizon the control signal is taken to be constant.

... ...

Mainstream origin
Mainstream exit

Off-ramp On-ramp

Segment 1 Segmenti SegmentNm

Fig. 3. Example of the METANET elements used in this paper. A freeway
consist of mainstream origins, links, segments, off-ramps, on-ramps, and
mainstream exits.

speedvm,i(k) (km/h) in a link are updated according to:

qm,i(k) = ρm,i(k)vm,i(k)λm , (3)

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm

(

qm,i−1(k)− qm,i(k)
)

,

(4)

vm,i(k + 1) = vm,i(k) +
T

τ

(

V
(

ρm,i(k)
)

− vm,i(k)
)

+
T

Lm
vm,i(k)

(

vm,i−1(k)− vm,i(k)
)

−
ηT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
, (5)

In the latter equation,τ and κ are model parameters. The
parameterη (-) is set toηhigh when the downstream density is
higher than the densityρm,i+1(k) in segmenti, and it is set to
ηlow when the downstream density is lower. This adjustment is
adopted from [21] to reproduce the capacity drop. The speed
V
(

ρm,i(k)
)

(km/h) is given in (6) wheream (-) is a model
parameter, the speedvfreem (km/h) is the free-flow speed of link
m, and the densityρcritm (veh/km) is the critical density, and

where the speedvctrlm,i(k) (km/h) is the effective speed of the
imposed speed limits that is corrected for the compliance of
the road-users.

An origin is modeled using a simple queuing model describ-
ing the number of vehicleswo(k) (veh) in the origin queue as
a function of the demanddo(k) (veh) and the outflowqo(k)
(veh/h):

wo(k + 1) = wo(k) + T
(

do(k)− qo(k)
)

. (7)

When an origin acts as the mainstream origin, the outflow is
given by:

qo(k) = min
[

do(k) +
wo(k)

T
, qlimµ,1(k)

]

, (8)

where the flowqlimµ,1(k), see (9), is determined by the traf-
fic condition in the first link and the speedvlimµ,1(k) =
min[vctrlµ,1 (k), vµ1(k)]. When an origin acts a a metered on-
ramp, the outflow is given by:

qo(k) = min
[

do(k) +
wo(k)

T
,Q0ro(k), Q0

ρmax
m − ρm,1(k)

ρmax
m − ρcritm

]

,

(10)

with Q0 (veh/h) the on-ramp capacity, andro(k) ∈ [0, 1] the
RM rate.

In the case that there is an on-ramp upstream of linkm,
then the term

−
δT qo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
, (11)

is added to (5) for the first segment of linkm with δ (-) a
model parameter.

Finally, when a linkm has no leaving link – i.e. it is the
most downstream link – the densityρm,ilast

m
+1 downstream of

the last segmentilastm is equal to:

ρm,ilast
m

+1 = max
[

ρDS(k),min[ρm,ilast
m

(k), ρcritm ]
]

, (12)

where the densityρDS(k) (veh/km/lane) is the destination
density, which can be used as a boundary condition to the
model.
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vctrlm,i(k) =

{

veff if xH,sl(k) > xm,i andxT,sl(k) < xm,i + Lm andxH,sl(k) > xT,sl(k)

vfree otherwise,
(13)

γm,i(k) = max

[

Lm −max[xT,sl(k)− xm,i, 0]−max[xm,i + Lm,i − xH,sl(k), 0]

Lm
, 0

]

(14)

r̃o,ip(k) =











1 if ip = 1 or ip = npol

max

(

min

(

r̃o(k − 1) +Ks
o,ip

ρseto,ip − ρm,1(k − 1)

ρseto,ip
, 1

)

, 0

)

otherwise
(17)

fp
ip(k) =



























max[0, T +min[tswitch
o,ip − kT ]]

T
if ip = 1

max[0, T −max[tswitch
o,ip−1 − (k − 1)T, 0]

T
if ip = npol

max[0, T −max[tswitch
o,ip−1 − (k − 1)T, 0] + min[tswitch

o,ip − kT ]]

T
otherwise

(18)

D. Extensions for parameterized MPC

This section details extensions that are included in order to
use the model for parameterized MPC. These extensions do
not affect the dynamic equations of the traffic states but rather
the equations that relate the parameterized control signals to
the dynamic equations to the control signals. Although the
paper focuses on the use of METANET, the extensions may
also be used in combination with other macroscopic traffic
flow models.

1) Extension with a speed-limited area:In this paper, the
VSLs vctrlm,i(k) are determined by the headxH,sl(k) (km) and
tail xT,sl(k) (km) of the speed-limited area as defined in (13),
wherexm,i (km) is the most upstream location of segmenti
of link m.

In practice, the speed-limited area can either cover an entire
segment or not cover it at all. This implies that the gradient
of the objective function is not a continuous function of
the location of the speed-limited area. In order to realize a
gradient of the VSL signal that is differentiable everywhere,
a parameterγm,i(k) (-) is introduced. The parameterγm,i(k)
denotes the fraction of the segment that is covered by speed
limits as defined in (14).

In the optimization, the speedvctrlm,i(k) in (6) is replaced by
v̂ctrlm,i(k) by taking the weighted average of the effective speed
veff and the equilibrium speedvFD

(

ρm,i(k)
)

:

v̂ctrlm,i(k) = γm,i(k)v
eff + (1 − γm,i(k))v

FD
(

ρm,i(k)
)

. (15)

2) Extension with feedback ramp metering:The feedback
RM control strategy results in a flow reduction factorr̃o(k)
(-) that limits the on-ramp flow [20]. The overall RM control
strategy is as follows: until timetswitch

o,1 RM is off and the RM
rate is equal to 1; this policy is indicated with policy index
ip = 1 (-). After that time until timetswitch

o,2 the ALINEA
algorithm is used to meter the on-ramp traffic with the gain
Ks

o,2 to reach the set pointρseto,2; this corresponds to policy
ip = 2. After time tswitch

o,2 until time tswitch
o,3 the maximum

queue length strategy is used with gainKs
o,3 to reach the set-

pointρseto,3; this corresponds to policyip = 3. After time tswitch
o,3

the RM rate is switched to 1; this corresponds to policyip =

4. In total a number ofnpol = 4 (-) policies per ramp are
available.

The switching time instantstswitch
o,ip are real-valued while the

actual model timing is discrete. This leads to a discontinuous
gradient. In order to prevent this, the RM rates of the different
policies r̃o,ip(k) are linearly interpolated giving the potential
RM rate r̃o(k) when a switching time lies in a time interval:

r̃o(k) =

npol

∑

ip=1

fp
ip(k)r̃o,ip (k) , (16)

where the RM rates̃ro,ip(k) of the policiesip are given in
(17) and the fractionfp

ip(k) represents the fraction of the time
step that is covered by policyip and which is computed using
(18).

The next step is translating the RM ratẽro(k) to the actual
applied RM ratero(k):

ro(k) =
(1− r̃o(k))q

R,min
o (k) + r̃o(k)q

R,max
o (k)

Q0
, (19)

with the minimum on-ramp flowqR,min
o (k) (veh/h) defined

by the minimum allowed RM rate and the minimum required
RM rate to prevent the on-ramp queue required to prevent the
on-ramp queue from exceeding its maximum:

qR,min
o (k) = max

[

rminQ0,
wo(k) + do(k)T − wmax

o

T

]

.

(20)

The maximum on-ramp flowqR,max
o (k) (veh/h) is defined

similarly as in (10):

qR,max
o (k) = min

[

do(k) +
wo(k)

T
,Q0, Q0

ρmax
m − ρm,1(k)

ρmax
m − ρcritm

]

(21)

E. Objective function and constraints

The objective of the controller is to minimize the Total Time
Spent (TTS) by all the vehicles on the freeway by changing
the VSLs and RM rates over the time stepskc = kuCt +
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1, . . . , kuCt + Np. The following objective functionJ(ku)
expresses the TTS:

J(ku) = T

kuCu+NpCc

∑

k̂=kuCu+1

{

∑

(m,i)∈Ilinks

ρm,i(k̂)Lmλm+
∑

o∈Iorig

wo(k̂)

}

.

(22)

Here, the setI links (-) is the set of indices of all pairs of
segments and links, the setIorig (-) is the set of all origin
indices, and the setIramps is the set of all on-ramp indices.

Using this objective function the MPC optimization problem
can be formulated:

min
ū(ku)

J(ku)

Subject to

Model: Eq. (3) – Eq. (21),

Initial states and disturbances:

ρm,i(k
uCu), vctrlm,i(k

uCu) , ρDS(k̂), do(k̂) ,

Constraints:

BL ≤ Aū(ku) ≤ BU . (23)

The matrixA and vectorsBL and BU represent the linear
inequality constraints on the VSL and RM control signal
respectively as detailed in the next subsections. The control
signal ū(ku) is a vector consisting of the parameters of the
head and tail of the speed-limited area – i.e. the initial location
of the headxH,sl(kuCu+Cc) (km) and tailxT,sl(kuCu+Cc)
(km), and the speedvH,sl(kc) (km/h) andvT,sl(kc) (km/h)
of the head and tail over time – and the parameters of the
feedback control laws of the different on-ramps – i.e. the
switching timestswitch

o,1 (ku), tswitch
o,2 (ku), andtswitch

o,3 (ku), and
the set-pointsρseto,1(k

u) andρseto,2(k
u).

1) VSL signal and constraints:The evolution of the head
and tail of the speed-limited area is described by the initial
location of the headxH,sl(kuCu +Cc) and tailxT,sl(kuCu +
Cc), and the speedvH,sl(kc) andvT,sl(kc) of the head and tail
over time respectively. After the control horizonN c, until the
prediction horizonNp, the speed of the head and tail locations
are assumed to remain constant:

vH,sl(kc) = vH,sl(kuCt +N c) if kc > kuCt +N c , (24)

vT,sl(kc) = vT,sl(kuCt +N c) if kc > kuCt +N c . (25)

Based on the control vector, the location of the head and
the tail of the control scheme at every time stepk can be
computed:

xH,sl(k) = xH,sl(kuCu + Cc) +
kc

∑

j=kuCu+Cc+1

vH,sl(⌊(j − 1)/Cc⌋)T ,

(26)

xT,sl(k) = xT,sl(kuCu + Cc) +
kc

∑

j=kuCu+Cc+1

vT,sl(⌊(j − 1)/Cc⌋)T .

(27)

Several constraints have to be respected when optimizing
the VSLs. First of all, the position of the head and tail have

to lie within the upstream boundsxH,0 (km) andxT,0 (km)
and downstream boundsxH,end (km) andxT,end (km):

xH,0 ≤ xH,sl(kuCu + Cc) ≤ xH,end , (28)

xT,0 ≤ xT,sl(kuCu + Cc) ≤ xT,end . (29)

If at time stepkuCu + Cc the speed limits are not active or
cover only 1 segment, i.e. whenxH,sl(kuCu+Cc|ku−1)−1 ≤
xT,sl(kuCu +Cc|ku − 1), then these bounds are equal to the
upstreamx0 (km) and downstream end of the freewayxend

(km). The notation(. . . |ku − 1) indicates the control signal
that is computed at time stepku−1. However, when the speed
limits are active at control stepkuCu +Cc, then the location
of the headxH,sl(kuCu+Cc|ku) and tailxT,sl(kuCu+Cc|ku)
at control stepkuCu + Cc should be equal to the previously
computed valuesxH,sl(kuCu +Cc|ku − 1) andxT,sl(kuCu +
Cc|ku−1). In that case, the constraints are set to the following:

xH,0 = xH,sl(kuCu + Cc|ku − 1) , (30)

xH,end = xH,sl(kuCu + Cc|ku − 1) , (31)

xT,0 = xT,sl(kuCu + Cc|ku − 1) , (32)

xT,end = xT,sl(kuCu + Cc|ku − 1) . (33)

Secondly, the head and tail are allowed to propagate down-
stream with at mostveff (km/h) or to propagate upstream
with any speed so that they cannot ‘overtake’ a speed-limited
vehicle:

vH,sl(kc) ≤ veff , (34)

vT,sl(kc) ≤ veff . (35)

Thirdly, the position of the head should be at or more
downstream than the initial position of the tail:

xH,sl(k) ≥ xT,sl(k) . (36)

2) RM constraints: The RM control signal of an indi-
vidual on-ramp consists of the switching timestswitch

o,1 (ku),
tswitch
o,2 (ku), and tswitch

o,3 (ku), and the set-pointsρseto,1(k
u) and

ρseto,2(k
u). By varying these parameters, the RM rate is affected.

Several constraints on these parameters are included. First, it
has to hold that the set-pointsρseto,ip(k

u) should be between0
and the maximum set-pointρset,max

o,ip (veh/km/lane):

0 < ρseto,1(k
u) ≤ ρset,max

o,1 (37)

0 < ρseto,2(k
u) ≤ ρset,max

o,2 . (38)

Secondly, the switching time instants need to be constrained.
Two cases are possible. The first case is that no RM is active
at time stepkc. Then, it should hold that:

kuT u + T c ≤ tswitch
o,1 (ku) ≤ kuT u +NpT c (39)

tswitch
o,1 + T c ≤ tswitch

o,2 (ku) ≤ kuT u +NpT c (40)

tswitch
o,2 + T c ≤ tswitch

o,3 (ku) ≤ kuT u +NpT c (41)

The second case is that RM is active at time stepku. This
is the case whentini(ku) = max(tswitch

o,1 (ku − 1), kuT u) <
kuT u + T c and tswitch

o,3 (ku − 1) ≥ kuT u + T c. In this case
the MPC should not be able to changetswitch

o,1 (ku) because it



TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.0, NO. 0, JANUARY 2017 9

Process model: extended METANET
Sampling timeT (s)

EveryT u (s)

Current state

Demands
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Model predictive control strategy

Prediction model: extended METANET

Sampling timeT (s), control time stepT c (s)

Translation
V

S
L

va
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es

Parameterized signal

ALINEA settings

ALINEA

EveryT c (s)

RM rates

RM rates
Densities

Fig. 4. Simulation set-up

lies within the current time stepkuCt that cannot be affected.
This is realized by the following constraints:

tini(ku) ≤ tswitch
o,1 (ku) + T c ≤ tini(ku) (42)

kuT u + T c ≤ tswitch
o,2 (ku) ≤ kuT u +NpT c (43)

tswitch
o,2 + T c ≤ tswitch

o,3 (ku) ≤ kuT u +NpT c (44)

III. S IMULATION EXPERIMENTS

Simulations are carried out in order to investigate the
controller behavior and performance in terms of CPU time
used and TTS improvement of the controller. To this end,
several simulations are performed in which the traffic situation
and controller set-up is varied.

The main topic for investigation is the trade-off between the
computation time and the realized throughput improvement.To
this end, the parameterized MPC (PMPC) strategy is compared
with a nominal MPC (NMPC) strategy that directly optimizes
the individual VSL values and RM rates. The NMPC strategy
is expected to realize a similar or higher TTS when given
sufficient CPU time. In order to obtain a fair comparison, both
the control strategies are given the same CPU time budgets.
It is expected that the PMPC strategy is able to obtain similar
throughput improvement in less CPU time budget.

Additionally, the performance is compared when consider-
ing different controller set-ups, namely RM-only, VSL-only,
and integrated RM and VSL, and when applied to different
traffic situations, i.e. when resolving a jam wave – as done
by the SPECIALIST algorithm – or by preventing congestion
due to a high on-ramp flow. This allows to evaluate the added
value of integrating the control measures in different scenarios.
It is expected that integrated RM and VSL can realize the
best throughput improvement because it has a larger control
freedom, but that it does not necessarily lead to the best trade-
off between computation time and realized throughput.

O0
O1 O2

5 km 1 km1 km 5 km 8 km

Fig. 5. Simulation network

A. Simulation set-up

Figure 4 provides an overview of the simulation set-up. The
extended METANET model as detailed in this paper is used
as the process model – i.e. the real-world – and the prediction
model. When implemented as the process model 3 small
changes are made. First of all, the parameterγm,i(k) is set
to 1 in the process model ifγm,i(k) > 0.1 such that the entire
segment is either speed-limited or not in order to reproduce
the discrete spacing of the variable message signs. Secondly,
the switching times are rounded to the nearest multiple ofT
that is less then or equal to the switching time. Thirdly, a lead-
in procedure is introduced for the VSLs preventing too large
speed drops on the freeway. To this end, the VSL value of a
gantry is set to the minimum of the desired VSL and the VSL
value of the downstream gantry increased with 10 km/h which
is iteratively computed from downstream to upstream.

A 20 km long freeway with 2 on-ramps and 2 off-ramps
is considered as shown in Figure 5. The freeway consists of
three origins and 20 identical segments with a length of 1 km
and 2 lanes. Every segment has the same parameters, adopted
from [32], namely:T = 10 s, τ = 18 s, κ = 40 veh/km/lane,
ρcrit = 33.5 veh/km/lane,am = 1.867, vfree = 102 km/h,
ηhigh = 65 km/h2, ηlow = 30 km/h2. Using these parameters,
a capacity of 2000 veh/h/lane is realized and a capacity drop
can be observed. The freeway traffic is simulated for scenarios
of 3 hours. All the segments can be controlled by means of
VSLs. The value of the effective speed limitveff is set to
50 km/h. The two on-ramps are controlled by means of RM.
The minimum RM rate is set to 0.05, the feedback gains of
the PMPC strategy are set toKs

o,ip = 0.5, and the maximum
density set-point is set toρset,max

o,ip = 60 veh/km/lane.
The process and prediction model sampling time stepsT

are set to 10 seconds. The control signal update time stepT u

is set to 300 seconds, and the control time stepT c is set to 60
seconds. This means that every 300 seconds the control signal
is optimized based on the current traffic state. The values of
the control signals are allowed to change every 60 seconds.

It is assumed that no measurement noise affects the traffic
state used by the MPC strategy. Also, it is assumed that a
prediction of the demand and turn-fractions is available for
the MPC strategy.

The evaluation is carried out using Matlab R2015a on a
computer with a 3.6 GHz processor, 8 cores, and 16 Gb RAM.
For the optimization the Sequential Quadratic Programming
algorithm of the fmincon solver of the MATLAB optimization
toolbox is used, the function tolerance is set to5 · 10−3 and
the step tolerance is set to1 · 10−7. Parallel computing on
8 cores is used to determine the numerical derivative of the
objective function. In order to realize a fair comparison, both
approaches are given the same amount of CPU time in which
they can find the optimal solution. When this computation
time is not reached, the optimization is repeated from a new,
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Fig. 6. Results of the jam wave case using a CPU time budget of 3600 s. Every column represent a different control strategy.The first three rows show the
contour plots of the traffic dynamics, the fourth row shows the origin queues, and the bottom 2 rows show the control signals.

randomly selected starting point. When the computation time
is exceeded, the optimization is stopped. The best solution
out of the different starts is applied to the process. All the

simulations are repeated with three budgets, namely 300, 600,
1200, 1800, and 3600 seconds. To speed up the simulations,
parallel computing is used to compute the gradient. For a fair
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comparison, the CPU time budget reflects the total computa-
tion time used by all the cores. Because the computations are
carried out in parallel, the actual elapsed time is smaller than
the CPU time budget.

The NMPC approach is implemented as follows. Similar as
in [20], the RM rater̃o(k) of an on-ramp is directly optimized.
It is bounded between0 and 1 and constrained in such a
way that the RM can change with a maximum of 0.25 per
control step. The optimized RM ratẽro(k) is translated to the
actual applied RM ratero(k) using (19). The VSL strategy
proposed in [21] is implemented. The VSL values are bounded
so that they are larger than 50 km/h and smaller than the free
flow speed. Additionally, the following constraint is included
vctrlm,i(k

c) ≤ vctrlm,i+1(k
c)+10 preventing sudden speed drops in

the downstream direction.

B. Case I: jam wave

A scenario in which a jam wave is present on the freeway
is evaluated. Figure 6 (a)–(f) shows the no-control situation in
which a jam wave enters the freeway at the most downstream
end. This jam is created by increasing the density at the
downstream end of the freeway from time 380 s to 1080 s. The
demand at the origins are equal to 3800 veh/h, 455 veh/h, and
400 veh/h until time 5500 s for the mainstream origin (O0), on-
ramp 1 (O1) and on-ramp 2 (O2) respectively. The percentage
of traffic exiting at the off-ramps is 10% and 12% for off-
ramp 1 and 2 respectively. After time 5500 s the demands
decrease to 3500 veh/h, 240 veh/h, and 260 veh/h respectively.
The capacity drop due to this jam wave, determined using
simulation experiments, is approximately 5.6%. The total time
spent of the no-control scenario is 3325.1 veh·h.

Various control set-ups are tested in the control scenario.In
order to evaluate the performance and behavior of the MPC
strategy when resolving a fully formed jam wave, so that we
can interpret the solution, which is expected to be similar to the
solution of SPECIALIST, the controller is started after 1500
seconds. Note that this represents an artificial situation,since
in practice the MPC strategy is always active so that it will start
controlling before the jam wave is fully formed. The maximum
on-ramp queue length is set to 150 vehicles for both ramps.
The prediction horizon is set to 4800 seconds and the control
horizon is set to 2400 seconds. The control horizon is not
applicable to the parameterized RM strategy, because a specific
choice of the switching times fully determines the controller
behavior over any horizon. Note that the VSL control signal
is allowed to change every 60 seconds so that 40 steps are to
be optimized.

The control horizon is not relevant for the parameterized
RM strategy, since it optimizes the swiching time instants
when the feedback RM strategy is changes instead of explicitly
optimizing the RM rates at the control sampling time steps.

Table I presents the quantitative results for the different
computation time budgets. It can be observed that a com-
putation time budget of 1200 seconds is sufficient for all
the parameterized strategies to realize the best throughput
improvement. The average elapsed times per controller update
for these budgets are all below 300 seconds. The RM-only
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Fig. 7. Network outflow in (a) the jam wave and (b) the bottleneck case using
different control strategies.

NMPC strategy achieves similar performance as the PMPC
strategy for a budget of 3600 seconds. However, even the
budget of 3600 seconds does not seem to be enough for VSL-
only or integrated VSL and RM using the NMPC strategy.

The qualitative results of the VSL-only case shown in
Figures 6 (g)–(l) show that the jam wave is resolved by
imposing a speed-limited area upstream of the jam wave,
similar as done by the SPECIALIST algorithm. Figures 6 (m)–
(r) show the results of resolving the jam wave using the RM-
only strategy. It can be seen that it takes longer for the RM-
only to resolve the jam wave explaining the lower TTS gain.
Figures 6 (s)–(x) show that the integration of VSLs and RM
reduces the application of VSLs upstream of on-ramp 1, as
well as the time over which VSLs are needed. Figure 7 (a)
shows the total network outflows for the different control
strategies. It can be seen that it takes longer for the RM-only
strategy to improve the total network outflow. Also, it can be
seen that the integration of VSL and RM reduces the initial
outflow reduction and a quicker outflow increase after the jam
has resolved when compared to the VSL-only case, explaining
the TTS improvement.

C. Case II: bottleneck

The second case consists of a traffic jam caused by a
too high on-ramp flow. The no control situation is shown in
Figure 8 (a)–(f). The origin demands were set to 3900 veh/h,
455 veh/h, and 390 veh/h for the mainstream origin (O0), on-
ramp 1 (O1), and on-ramp 2 (O2) respectively, and they were
taken to be constant until time 4500 s except for on-ramp 1 of
which the inflow from time 1500 s to 2000 s was increased to
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TABLE I
OVERVIEW OF QUANTITATIVE RESULTS FOR BOTH CASES. THE NO CONTROLTTS IS 3325.1VEH·H FOR THE JAM WAVE CASE AND2536.0VEH·H FOR

THE BOTTLENECK CASE. THE PERCENTAGE GAIN INTTS FOR THE CLOSED-LOOP SIMULATION COMPARED TO THE NO CONTROL SITUATION AND THE

AVERAGE ELAPSED TIME(ET) PER ITERATION ARE PRESENTED.

CPU budget: 300 s CPU budget: 600 s CPU budget: 1200 s CPU budget: 1800 s CPU budget: 3600 s
% gain ET (s) % gain ET (s) % gain ET (s) % gain ET (s) % gain ET (s)

Ja
m

w
av

e

P
M

P
C VSL 3.9 57.7 11.1 103.3 11.1 207.8 11.1 311.7 11.2 621.5

RM 7.2 74.6 7.3 148.8 7.3 297.9 7.3 446.6 7.3 890.4
VSL RM 10.8 57.6 11.2 110.1 11.6 209.5 11.7 316.7 11.9 624.6

N
M

P
C VSL 1.0 54.4 5.5 127.7 8.7 181.0 9.5 291.9 10.1 521.1

RM 4.1 48.0 4.5 94.7 5.2 179.7 5.2 267.3 7.3 528.3
VSL RM 0.8 73.4 8.1 173.1 8.1 173.0 9.8 294.5 11.2 554.8

B
ot

tle
ne

ck

P
M

P
C VSL 4.7 45.9 5.0 97.3 9.3 194.7 9.2 299.4 9.2 604.8

RM 9.7 74.2 9.7 147.9 9.7 295.5 9.7 443.2 9.7 883.0
VSL RM 9.1 46.3 9.6 88.6 9.8 195.1 10.0 293.3 10.0 605.5

N
M

P
C VSL -3.1 54.3 3.8 125.7 5.4 191.9 6.8 285.9 9.2 531.5

RM 9.9 48.6 9.9 91.2 9.9 171.3 9.9 260.2 9.9 508.2
VSL RM -3.6 73.6 2.7 172.3 2.7 180.9 5.3 316.6 6.8 550.3

1500 veh/h triggering a traffic jam. The percentage of traffic
exiting at the off-ramps is 10% and 12% for off-ramp 1 and 2
respectively. After time 4500 s the demands decreased to 3500
veh/h for the mainstream origin and to 260 veh/h for on-ramp
2. The resulting TTS is 2536.0 veh·h.

Several control set-ups are evaluated in the control situation.
The maximum on-ramp queue lengths were set to 75 and
20 vehicles for on-ramp 1 and 2 respectively. Due to this,
coordination between the two on-ramps is required, since the
capacity of on-ramp 2 is not sufficient to prevent congestion
on its own. The prediction horizon is set to 4800 seconds and
the control horizon is set to 2400 seconds.

Table I presents the quantitative results for the different
computation time budgets. It can be observed that for VSL-
only and integrated VSL and RM set-ups the PMPC realizes
higher TTS gains in shorter budgets. For the RM-only case,
both the NMPC and PMPC realize similar TTS improvements,
namely 9.9% and 9.7% respectively for short CPU time budget
of 300 seconds.

The qualitative results of the VSL-only strategy shown in
Figures 8 (g)–(l) indicate the ability to prevent bottleneck
congestion by imposing a speed-limited area upstream of
on-ramp 2. Figures 8 (m)–(r) show that in the RM-only
case on-ramp 1 starts metering immediately so that this flow
reduction arrives at on-ramp 2 when the demand increases.
The qualitative results of the integrated VSL and RM case in
Figures 8 (s)–(x) indicate that the integration of VSL and RM
reduces the extent to which VSLs are imposed upstream of on-
ramp 1. When comparing the outflow plots in Figure 7 (b) it
can be seen that the integrated VSL and RM strategy limits the
initial flow reduction when compared to the VSL-only strategy.
It also shows that integrated VSL and RM is able to quicker
restore the network outflow when compared to RM-only.

IV. CONCLUSIONS AND RECOMMENDATIONS

In this paper the computation time of an MPC strategy
for integrated RM and VSLs was improved considerably by
parameterizing a control scheme based on ALINEA ramp
metering and a SPECIALIST-like VSL control scheme. Due to
this, the dimension of the optimization problem has become
independent of the number of VSL signs. Additionally, the

number of parameters needed per on-ramp has become in-
dependent of the prediction horizon. Simulations have shown
that the control approach proposed in this paper can achieve
a better performance then a non-parameterized MPC strategy
when using the same budget of computation time for VSL-only
and integrated VSL and RM strategies. It was found that the
non-parameterized strategy realizes a slightly better throughput
improvement for the RM-only case.

In further research, the impact of noise and uncertainties on
controller performance can be studied. When needed, a robust
control design may have to be designed. Additionally, it canbe
studied how the approach can be extended to include multiple
VSL areas when applying it to larger freeway networks. It
is also recommended to compare the proposed strategy to
simpler, uncoordinated or non-predictive strategies. Also, the
use of in-vehicle technologies may lead to improved detection
and actuation possibilities and potentially a reformulation of
the control strategy. Future research can also investigateap-
proaches to further improve the computation time, for instance,
using a problem-tailored algorithm to solve the optimization
problem as discussed in [33].

ACKNOWLEDGMENT

This work is part of the research programme ‘The Appli-
cation of Operations Research in Urban Transport’, which is
(partly) financed by the Netherlands Organisation for Scientific
Research (NWO).

REFERENCES

[1] F. L. Hall and K. Agyemang-Duah, “Freeway capacity drop and the
definition of capacity,”Transportation research record, no. 1320, 1991.

[2] B. S. Kerner and H. Rehborn, “Experimental features and characteristics
of traffic jams,” Physical Review E, vol. 53, no. 2, p. R1297, 1996.

[3] A. Hegyi, S. Hoogendoorn, M. Schreuder, and H. Stoelhorst, “Dynamic
speed limit control to resolve shock waves on freeways - fieldtest results
of the SPECIALIST algorithm,” inProceedings of the 13th International
IEEE Conference on ITS, (Madeira, Portugal), pp. 519–524, 2010.

[4] S. Smulders, “Control of freeway traffic flow by variable speed signs,”
Transportation Research Part B-Methodological, vol. 24, no. 2, pp. 111–
132, 1990.

[5] E. van den Hoogen and S. Smulders, “Control by variable-speed signs -
results of the Dutch experiment,” inProceedings of the 7th International
Conference on Road Traffic Monitoring and Control, (London, England),
pp. 145–149, 1994.



TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.0, NO. 0, JANUARY 2017 13

0

5

10

15

L
o

c
a

ti
o

n
 (

k
m

)

(a) Speed (km/h)

40

60

80

100

0

5

10

15

L
o

c
a

ti
o

n
 (

k
m

)

(b) Flow (veh/h)

2500

3000

3500

4000

0

5

10

15

L
o
c
a
ti
o
n
 (

k
m

)

(c) Density (veh/km/lane)

0

20

40

60

80

0

100

200

300

N
 v

e
h
ic

le
s
 (

v
e
h
)

(d) Origin queues

0

5

10

15

L
o
c
a
ti
o
n
 (

k
m

)

(e) VSL (km/h)

0  0.5 1  1.5

Time (h)

0

0.25

0.5

0.75

1

R
M

 r
a
te

 (
-)

(f) RM signals

(g) Speed (km/h)

(h) Flow (veh/h)

(i) Density (veh/km/lane)

(j) Origin queues

(k) VSL (km/h)

40

60

80

100

0  0.5 1  1.5

Time (h)

(l) RM signals

(m) Speed (km/h)

(n) Flow (veh/h)

(o) Density (veh/km/lane)

(p) Origin queues

(q) VSL (km/h)

0  0.5 1  1.5

Time (h)

(r) RM signals

(s) Speed (km/h)

(t) Flow (veh/h)

(u) Density (veh/km/lane)

(v) Origin queues

(w) VSL (km/h)

0  0.5 1  1.5

Time (h)

0

20

40

60

s
e

t  (
v
e
h
/k

m
/l
a
n
e
)

(x) RM signals

No control VSL RM VSL and RM

Fig. 8. Results of the bottleneck case using a CPU time budgetof 3600 s. Every column represent a different control strategy. The first three rows show the
contour plots of the traffic dynamics, the fourth row shows the origin queues, and the bottom 2 rows show the control signals.

[6] R. D. Kühne, “Freeway control using a dynamic traffic flowmodel and
vehicle reidentification techniques,”Transportation Research Record,
no. 1320, pp. 251–259, 1991.

[7] R. C. Carlson, I. Papamichail, and M. Papageorgiou, “Local feedback-

based mainstream traffic flow control on motorways using variable
speed limits,”IEEE Transactions on Intelligent Transportation Systems,
vol. 12, no. 4, pp. 1261–1276, 2011.

[8] N. Mahajan, A. Hegyi, G. S. van de Weg, and S. P. Hoogendoorn,



TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.0, NO. 0, JANUARY 2017 14

“Integrated variable speed limit and ramp metering controlagainst jam
waves a COSCAL v2 based approach,” inProceedings of the 17th
International Conference on ITS, (Las Palmas, Spain), pp. 1156–1162,
2015.

[9] D. Chen, S. Ahn, and A. Hegyi, “Variable speed limit control for steady
and oscillatory queues at fixed freeway bottlenecks,”Transportation
Research Part B: Methodological, vol. 70, pp. 340–358, 2014.

[10] Y. Zhang and P. A. Ioannou, “Combined variable speed limit and lane
change control for highway traffic,”IEEE Transactions on Intelligent
Transportation Systems, 2016.

[11] H. Hadj-Salem, J. Blosseville, and M. Papageorgiou, “Alinea: A local
feedback control law for on ramp metering; a real life study,” in
Proceedings of the Third International Conference on Road Traffic
Control, pp. 194–198, 1990.

[12] F. Middelham and H. Taale, “Ramp metering in the Netherlands: an
overview,” in Proceedings of the 11th IFAC Symposium on Control in
Transportation Systems, vol. 39, pp. 267–272, 2006.

[13] I. Papamichail and M. Papageorgiou, “Traffic-responsive linked ramp-
metering control,” IEEE Transactions on Intelligent Transportation
Systems, vol. 9, no. 1, pp. 111–121, 2008.

[14] R. C. Carlson, I. Papamichail, and M. Papageorgiou, “Integrated feed-
back ramp metering and mainstream traffic flow control on motorways
using variable speed limits,”Transportation Research Part C: Emerging
Technologies, vol. 46, pp. 209–221, 2014.

[15] A. Kotsialos and M. Papageorgiou, “Efficiency and equity properties
of freeway network-wide ramp metering with amoc,”Transportation
Research Part C: Emerging Technologies, vol. 12, no. 6, pp. 401–420,
2004.

[16] I. Schelling, A. Hegyi, and S. Hoogendoorn, “SPECIALIST-RM -
integrated variable speed limit control and ramp metering based on shock
wave theory,” inProceedings of the 14th International IEEE Conference
on ITS, (New York, USA), pp. 2154–2159, 2011.

[17] G. S. van de Weg, A. Hegyi, H. Hellendoorn, and S. E. Shladover,
“Cooperative systems based control for integrating ramp metering and
variable speed limits,” inProceedings of the 93rd Annual Meeting of
the Transportation Research Board, 2014.

[18] J. Rawlings and D. Mayne,Model Predictive Control: Theory and
Design. Madison, Wisconsin: Nob Hill Publishing, 2009.

[19] M. Burger, M. Van Den Berg, A. Hegyi, B. De Schutter, and J. Hellen-
doorn, “Considerations for model-based traffic control,”Transportation
Research Part C: Emerging Technologies, vol. 35, pp. 1–19, 2013.

[20] A. Kotsialos, M. Papageorgiou, and F. Middelham, “Local and optimal
coordinated ramp metering for freeway networks,”Journal of ITS, vol. 9,
no. 4, pp. 187–203, 2005.

[21] A. Hegyi, B. De Schutter, and H. Hellendoorn, “Optimal coordination
of variable speed limits to suppress shock waves,”IEEE Transactions
on Intelligent Transportation Systems, vol. 6, no. 1, pp. 102–112, 2005.

[22] G. Gomes and R. Horowitz, “Optimal freeway ramp metering using
the asymmetric cell transmission model,”Transportation Research Part
C-Emerging Technologies, vol. 14, no. 4, pp. 244–262, 2006.

[23] M. Hajiahmadi, G. S. van de Weg, C. Tampère, R. Corthout, A. Hegyi,
B. De Schutter, and H. Hellendoorn, “Integrated predictivecontrol of
freeway networks using the extended link transmission model,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 1,
pp. 65–78, 2015.

[24] J. R. D. Frejo and E. F. Camacho, “Global versus local MPCalgorithms
in freeway traffic control with ramp metering and variable speed limits,”
IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4,
pp. 1556–1565, 2012.

[25] S. K. Zegeye, B. De Schutter, H. Hellendoorn, E. A. Breunesse,
and A. Hegyi, “A predictive traffic controller for sustainable mobility
using parameterized control policies,”IEEE Transactions on Intelligent
Transportation Systems, vol. 13, no. 3, pp. 1420–1429, 2012.

[26] X.-Y. Lu, P. Varaiya, R. Horowitz, D. Su, and S. Shladover, “Novel
freeway traffic control with variable speed limit and coordinated ramp
metering,”Transportation Research Record: Journal of the Transporta-
tion Research Board, no. 2229, pp. 55–65, 2011.

[27] G. S. van de Weg, A. Hegyi, S. P. Hoogendoorn, and B. De Schutter, “Ef-
ficient model predictive control for variable speed limits by optimizing
parameterized control schemes,” inProceedings of the 17th International
Conference on ITS, (Las Palmas, Spain), pp. 1137–1142, 2015.

[28] G. S. van de Weg, A. Hegyi, and S. P. Hoogendoorn, “Ex-ante data
analysis approach for assessing the effect of variable speed limits,”
in Proceedings of the 17th International Conference on ITS, (Qindao,
China), pp. 1317–1322, 2014.

[29] M. J. Lighthill and G. B. Whitham, “On kinematic waves, II. a theory of
traffic flow on long crowded roads,” inProceedings of the Royal Society

of London Series A-Mathematical and Physical Sciences, vol. 229A,
pp. 317–345, 1955.

[30] M. Papageorgiou, J. M. Blosseville, and H. Hadj-Salem,“Modeling
and real-time control of traffic flow on the southern part of boulevard-
peripherique in Paris part 2: Coordinated on-ramp metering,” Trans-
portation Research Part A-Policy and Practice, vol. 24, no. 5, pp. 361–
370, 1988.

[31] E. Smaragdis, M. Papageorgiou, and E. Kosmatopoulos, “A flow-
maximizing adaptive local ramp metering strategy,”Transportation
Research Part B: Methodological, vol. 38, no. 3, pp. 251–270, 2004.

[32] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middelham,
“Traffic flow modeling of large-scale motorway networks using the
macroscopic modeling tool metanet,”IEEE Transactions on Intelligent
Transportation Systems, vol. 3, no. 4, pp. 282–292, 2002.

[33] A. Kotsialos, M. Papageorgiou, M. Mangeas, and H. Haj-Salem, “Co-
ordinated and integrated control of motorway networks via non-linear
optimal control,”Transportation Research Part C: Emerging Technolo-
gies, vol. 10, no. 1, pp. 65–84, 2002.

Goof Sterk van de Wegreceived his Ph.D. degree
from Delft University of Technology (TU Delft) in
the Netherlands in 2017 and his M.Sc. degree in
Systems and Control in 2013 from the TU Delft
as well. His main research interest is the design of
control algorithms for cooperative systems, traffic
lights, variable speed limits, ramp metering, and
route guidance to improve the performance of road
traffic networks.

Andreas Hegyi is an Assistent Professor at TU Delft
in the Netherlands. He received his M.Sc. degree
in Electrical Engineering in 1998 and the Ph.D. in
2004, both from the TU Delft, The Netherlands.
From 2004 to 2007 he was a postdoctoral researcher
at TU Delft and at Ghent University. He is the author
or coauthor of over 100 papers. He is a member
of IEEE and IEEE-ITSS, member of IFAC-CTS,
and has served as Program Chair of the IEEE-ITSC
2013 conference and as General Chair of the IXth
TRISTAN symposium 2016, and IPC member of

various other conferences. Dr. Hegyi is Associate Editor ofIEEE Transactions
on Intelligent Transportation Systems and member of the Editorial Board of
Transportation Research Part C. His research interests arein the areas of
Traffic Flow Modeling and Control, Connected and Cooperative Vehicles,
Traffic State Estimation, and Traffic Data Analysis.

Serge Paul Hoogendoornis a full professor at the
TU Delft, where he holds the chair Traffic Oper-
ations and Management. He is also Distinguished
Professor Smart Urban Mobility at the same uni-
versity. He received his M.Sc. degree in Applied
Mathematics in 1995 and his PhD in Civil Engineer-
ing in 1999. He is (co-)author of over 280 papers.
He is a member of the TRB Traffic Flow Theory
Committee and chairs the TRB Crowd Modeling and
Management subcommittee. He is IAC member of
the ISTTT. He is editor of the Journal of Advanced

Transportation, EJTL and EJTIR. In 2014, he received an ERC Advanced
Grant. His research interest cover a variety of topics, including traffic flow
theory, traffic management, ITS, and active mode mobility.

Bart De Schutter (IEEE member since 2008, se-
nior member since 2010) is a full professor at the
Delft Center for Systems and Control of TU Delft
in Delft, The Netherlands. He is senior editor of
the IEEE Transactions on Intelligent Transportation
Systems. His current research interests include in-
telligent transportation and infrastructure systems,
hybrid systems, and multi-level control.


