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Abstract

This thesis concerns modeling residential real estate selling prices in a hedonic price model
framework on a small spatial-temporal granularity. The research addresses the challenge of
sparse spatial-temporal real estate data, i.e. many combinations of location and time with
few or no transactions, by employing spatial dynamic factor models (SDFMs). Two types
of SDFMs are employed: an SDFM with a 1D spatial structure based on the spatial random
walk and an SDFM with a 2D spatial structure based on the Gaussian random field. To
capture the information on the property characteristics, spatial dynamic factor models are
combined with two different data-driven models, namely a neural network (NN) and an
interpretable version of an NN, the local generalized linear model network (LGLMN). Both
a Bayesian approach and an algorithmic approach are employed to estimate the models
on both a PC and a high-performance computer (HPC). A simulation study is conducted to
demonstrate the ability of an NN to capture linear and non-linear structures when combined
with an SDFM and to show the ability of the LGLMN to replicate a linear structure. Further-
more, the models are evaluated on real transaction data from the municipality of Rotterdam.
The findings demonstrate that the algorithmically estimated NN-adjusted SDFM based on
the spatial random walk (NN-SRW-DFM) outperforms the other models in terms of accuracy
with an out-of-sample MAPE of 0.128. Moreover, the results highlight a trade-off between
accuracy, speed, and interpretability.
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1. Introduction

This thesis concerns the modeling of residential real estate selling prices. A good prediction
of a house price is highly relevant, as the value of a real estate property can be used for
taxation (wealth tax depends on the value of your house), finance (obtaining mortgages),
and investment decisions (e.g. whether to rent out or sell a house).

Various characteristics affect the value of residential real estate, e.g. house size, lot size,
building type, and building year (Firstenberg et al. [1988] ; Sirmans et al. [2006] ; Bourassa
et al. [2009]). In addition to these property characteristics, the value of a house depends
on location and time. Therefore, incorporating spatial-temporal effects in the real estate
valuation model is essential.

Assume we model the spatial-temporal effect gm,t of a property on location m and at time t.
One way to model this effect is by the sum of a random effect for location ψm and a random
effect for time χt, i.e.

gm,t = ψm + χt. (1.1)

However, using this approach, the time and location of observations are incorporated sepa-
rately, and not a combination of the two is incorporated in the model. Therefore, no informa-
tion on price indexes is taken into account. This is undesirable as the price dynamics of real
estate differ across locations (Geltner et al. [2001]). Hence, modeling the spatial-temporal
effect by (1.1) is unsuitable.

To incorporate price dynamics across locations, a trend effect can be used for every location
involved in the model, i.e. having an effect, ωm,t, for every combination of location m and
time t:

gm,t = ωm,t. (1.2)

When considering a larger number of M locations and T time steps, M × T parameters
need to be estimated only for the spatial-temporal components. Besides computational is-
sues of estimating a large number of parameters, there arises a problem with very sparse
spatial-temporal data of real estate transactions when using an effect for every location-time
combination. In general, there is a lot of data available on real estate transactions. How-
ever, when considering a small spatial-temporal granularity, e.g. transactions in a specific
month in a specific neighborhood, the available data is very limited, as there might be a lot
of location-time combinations with no or just a few observations. This concept of spatial-
temporal sparsity of the data is a common point of attention in research in the field of real
estate valuation (Francke et al. [2022]; Ren et al. [2017]; Silver and Graf [2014]; Peng et al.
[2021]; Geltner [2015]; Schwann [1998]). Due to the spatial-temporal sparsity of the data, it
is complex to include spatial-temporal information in a real estate valuation model.

Inspired by Francke et al. [2022], this thesis uses a dynamic factor model (DFM) to capture
the spatial-temporal information of a real estate property. DFMs are introduced by Geweke
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1. Introduction

[1977]. The idea behind a DFM is that a few factors can explain a large fraction of the variance
of many macroeconomic variables. Consider K << M dynamic factors. Then gm,t can be
modeled using a dynamic factor model by

gm,t = ΓmFt, (1.3)

where Γ (M × K) are the loadings and F (K × T) are the factors. In this case, only M ×
K + K × T parameters need to be estimated. Since K << M, this number of parameters is
considerably less than the M × T parameters in (1.2).

Usually, DFMs are used to explain a large fraction of time series into a small number of
factors, i.e. latent trends. That being the case, the objective is to determine the latent trends
F. In this research, the goal of the DFM differs from the typical situation. That is, DFMs
are used to summarize neighborhood sub-trends in a small number of dynamic factors.
However, we are not necessarily interested in the latent trends F, but in the combinations
of the latent trends and the loadings, which constitute the sub-trends of neighborhoods.
Furthermore, in this thesis, two types of DFMs are used that incorporate spatial correlation
between the sub-trends of the neighborhoods.

Apart from the spatial-temporal information, property characteristics affect the price of a
residential real estate property. The effect of property characteristics on the value of the
property might not be straightforward. In advance, it is sometimes unknown in what struc-
ture these characteristics affect the house value and whether these characteristics have an
interaction effect on the value of the house. Furthermore, the effects of the property char-
acteristics on the property value might depend highly on the used case. Therefore, a model
with a data-driven structure is preferred over a model representation with a fixed struc-
ture. This research incorporates this need for flexibility by using an artificial neural net-
work (ANN). A drawback of an ANN is that it lacks interpretability since it acts like a black
box on the in and outflow of information. This research uses the local generalized linear
model network (LGLMN) introduced by Richman and Wüthrich [2023] to incorporate the
need for interpretability in the structure of the ANN.

This thesis provides a solution to the problem of spatial-temporal sparse real estate data
by incorporating spatial-temporal dependencies and including property characteristics in a
data-driven way. This, while keeping mind in can be generalized for different applications
and that categorical effects of the neighborhood can be captured in a data-driven way. This
is done by introducing models that combine an ANN with for each a different type of DFM
to predict selling prices of real estate.

This research has several contributions to the existing research on modeling real estate prices
on spatial-temporal sparse data. A simulation study is performed in which data is generated
from a model with a linear structure and a model with a nonlinear structure for property
characteristics components. It is demonstrated that a neural network is capable of mimick-
ing linear and non-linear structures when combining it with a spatial dynamic factor model.
Results of the simulation study show that the property characteristics components and the
dynamic factors are replicated when using a neural network on the generated data. Further-
more, the simulation study shows that the LGLMN is capable of replicating the regression
coefficients with its ANN structure. Another contribution of this research is that spatial dy-
namic factor models are used in a hedonic price model framework to predict real estate
transaction prices. Additionally, a spatial dynamic factor model is used in combination with
a neural network, to obtain a data-driven model for the real estate properties while using
a spatial-temporal functionality from an econometric model. Lastly, it uses a 2-dimensional
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1.1. Thesis Outline

spatial dynamic factor model while past research on real estate prices only considered a
1-dimensional spatial dynamic factor model (Francke et al. [2022]).

1.1. Thesis Outline

This thesis starts with a review of the literature regarding real estate valuation in Chapter
2. Subsequently, a background on the fully connected feed-forward neural network (FFNN)
and the local generalized linear model network (LGLMN) is given in Chapter 3. Chapter
4 elucidates the models used in this research. Furthermore, a description is given of the
estimation methods and assessment measures of the models. Chapter 6 covers an experiment
about the ability of an ANN to capture linear and non-linear structures on simulated data
and an experiment on the LGLMN to analyze whether it can replicate regression coefficients
from a linear model. A case study on data from the municipality of Rotterdam is performed
for the assessment of the models. Chapter 5 gives a description of the data preparation and
gives an analysis of this data. The results of the models on the data from the municipality
of Rotterdam are outlined in Chapter 7. Finally, the conclusions are discussed in Chapter 8.
This chapter also highlights the limitations of the research and gives recommendations for
future research.
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2. Literature

This chapter reviews some of the important literature about real estate valuation methods.
This thesis uses a hedonic price model (HPM) framework, which will be described in Section
2.1, on cross-sectional data including information on space and time. Section 2.2 covers the
literature regarding the use of ANNs in real estate valuation. In Section 2.3 the literature on
spatial-temporal effects in real estate valuation will be analyzed.

2.1. Hedonic Price Model

The hedonic price model (HPM) is a major approach in modeling real estate transaction
prices. The HPM is derived from the consumer theory of Lancaster [1966]. The theoretical
framework of this model is provided by Rosen [1974]. The HPM is a valuation model that
quantifies the contribution of factors to the value of a property (Malpezzi et al. [2003]). The
HPM is a frequently used methodology in modeling house selling prices (Herath and Maier
[2010]). In real estate valuation literature, multiple versions of the HPM are used to investi-
gate the way how certain attributes (e.g. location, structural attributes, and neighborhood
attributes) affect real estate selling prices (Chau and Chin [2003]). A disadvantage of the us-
age of a HPM is that without prior knowledge about the effect of variables on house selling
prices, it is difficult to determine a functional form.

Another approach in real estate valuation is the repeat sales model (RSM) (Bailey et al. [1963]).
In an RSM the house transaction price is not modeled by its characteristics but only by using
transactions that occurred before. An advantage of using a repeat sales framework is that
there is no need to have data about property characteristics. A drawback of this methodology
is that only transactions of properties that are sold more than once can be used. Another
disadvantage is that changes in property characteristics are unaccounted for in the model.
Furthermore, a repeat sales model can not accommodate changing attribute prices over
time. This research considers data with property characteristics and therefore, this research
is based on the methodology of an HPM.

An expansion of a HPM is the hierarchical trend model (HTM), introduced by Francke and
Vos [2004]. The HTM is a state-space model that is estimated using a Kalman filter. The
HTM contains spatial and temporal dependencies of the selling prices and the housing char-
acteristics are incorporated in the model with a nonlinear structure. The HTM contains a
general trend and cluster trend for the districts and the house types. The model’s statistical
framework allows for the testing of model assumptions and the comparison of competing
models through likelihood analysis. However, a drawback is the need to make distributional
assumptions on both the parameters and structure.
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2.2. Artificial Neural Networks in Real Estate Valuation

An artificial neural network (ANN) is a machine learning (ML) technique constructed to
function as a neural network in a human’s brain. ANNs have the capacity to learn complex
functions from input to output. An ANN is able to detect nonlinear relationships and inter-
actions among variables (Goh [1995]). A drawback of using ANNs is the interpretability, i.e.
the capacity of a human to understand and reason the model (Fan et al. [2020]).

There are various applications of ANNs for the appraisal of real estate. Peterson and Flana-
gan [2009] demonstrated that the ANN has a greater out-of-sample pricing precision than
linear HPMs. Likewise, Tay and Ho [1992] found that the mean absolute error of the ANN
model was lower than the mean absolute error of a multiple regression model when predict-
ing residential apartment prices in Singapore. In contrast, Worzala et al. [1995] did not find
results that show that ANNs perform better than multiple regression models.

Using dummy variables for the spatial information of the properties may result in many
dummies. Therefore, spatial information of the property is typically not explicitly (i.e. using
the coordinates of the property) used in studies that use an ANN for the valuation of real
estate. Chiarazzo et al. [2014] implicitly uses spatial information of the property by using
statistics of the neighborhood, including environmental quality.

2.3. Spatial-temporal Effects

Literature on real estate valuation accounts for location and time effects on the real estate
property in various ways.

Ripley [2005] introduced spatial auto-regression (SAR) models which incorporated spatial
information in an auto-regressive model. This is used in various applications on real estate
valuation (Haider and Miller [2000] ; Fan et al. [2005] ; Bottero et al. [2017] ; Bidanset and
Lombard [2014]).

Hui et al. [2010] models the log selling price of properties in Hong Kong by including distinct
model components for the time, the block unit, and the floor. The time effect is modeled
with a random walk with drift. The block-unit effect is driven by intrinsic features of the
property unit and the floor effect is modeled as a linear function of the floor level. The
hierarchical Bayesian specification of the model is sampled using a Gibbs sampler (Casella
and George [1992]) with weakly informative normal priors.

Brunauer et al. [2013] uses a multi-level version of structured additive regression models
to regress house prices on individual attributes and locational characteristics in a four-level
hierarchical model. Due to its level structure, nonlinear covariate effects can be incorporated
at each level of the hierarchy. The hierarchical structure of the spatial effect of this model
allows for improved predictive quality when spatial units are missing because the model
borrows information from other spatial levels when information from one spatial level is
missing. The model is estimated using a Markov chain Monte Carlo (MCMC) simulation
technique that takes advantage of its hierarchical structure.

To account for the scarcity of transactions at a fine spatial-temporal granularity, Ren et al.
[2017] introduced a factor model based on a Bayesian non-parametric approach to cluster
correlated sub-regions. This approach has a data-driven structure that learns to correlate
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sub-regions that share similar underlying price dynamics. This method provided reliable
monthly housing indices at the census tract (a sub-region smaller than a neighborhood)
level.

Calainho et al. [2022] utilizes different ML methods to produce property price indices. The
results indicated that the prediction accuracy of the ML algorithm is higher than for linear
models. However, they found that the results of the ML models were unstable for small
samples of data and that they may exhibit estimation bias.

Cafarella et al. [2023] uses ML for the estimation of price indices for different products. A
neural network is used in combination with a hedonic econometric framework to obtain the
price indices of the goods.

This research is closely related to Francke et al. [2022], in which condominium selling prices
are modeled in a RSM framework with a spatial dynamic factor model (SDFM). In this SDFM, a
spatial structure is appointed to the factor loadings. The SDFM from Francke et al. [2022] will
be used in this research as well and will be described more extensively in Section 4.1.1.

Other related research is from Francke and Van de Minne [2023], in which a random ef-
fects model is combined with different machine learning approaches via an iterative process
to predict selling prices of commercial real estate. The random effects part of the model
includes among other things spatial and temporal dependencies, while the ML approach
includes information on covariates. A Besag model (Besag [1974]) is used to include spatial
property effects. Using this Besag model, the spatial effect for each property depends on its
(near) neighbors. The model is estimated using a neural network in a Bayesian framework
and in an iterative way using various ML methods. This iterative approach is faster than
estimating the ANN with MCMC simulation and is more flexible as multiple ML methods can
be used.
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3. Theoretical Background

This chapter describes the theory of models that will be the basis for modeling the property
characteristics in the real estate valuation models that will be proposed in Chapter 4. First,
the FFNN will be elucidated. Subsequently, the LGLMN, which is an interpretable extension
of this FFNN, will be presented.

3.1. Fully Connected Feed-Forward Neural Network (FFNN)

A fully connected feed-forward neural network (FFNN) is a type of ANN in which neurons
are organized into layers, and each neuron in a given layer is connected to every neuron in
the subsequent layer. The FFNN starts with the neurons in an input layer, which contains the
independent variables of the regression model. With the variables from this input layer, the
neurons in the next layer will be constructed by giving weights to neurons in the input layer
and applying a non-linear activation function to the linear combination of the weights and
the values of the neurons of the input layers. This process will continue in this way until the
output layer, which contains the dependent variable, is reached.

The mathematical framework of an FFNN is defined as follows. Let ϕm : R → R a nonlinear
activation function. In this thesis, the sigmoid function is used as an activation function. For
every layer m choose a number qm to be the number of neurons in that layer.

The m-th layer of an FFNN is defined by the mapping

h(m) : Rqm−1 → Rqm , (3.1)

x 7→ h(m)(x) =
(

h(m)
1 (x), ..., h(m)

qm (x)
)⊤

, (3.2)

having neurons h(m)
j (x),1 ≤ j ≤ qm, for x = (x1, ..., xqm−1)

⊤ ∈ Rqm−1 ,

h(m)
j (x) = ϕm

(
ω
(m)
0,j + ⟨ωm

j , x⟩
)
= ϕm

(
ω
(m)
0,j +

qm−1

∑
l=1

ω
(m)
l,j xl

)
,

for given network weights ω
(m)
j = (w(m)

l,j )⊤1≤l≤qm−1
∈ Rqm−1 and bias ω

(m)
0,j ∈ R.

An FFNN of depth d ∈ N is obtained by composing d FFNN layers (3.1) to provide a deep
learned representation,

h(d:1) : Rq0 → Rqd , (3.3)

x 7→ h(d:1)(x) =
(

h(d) ◦ ... ◦ h(1)
)
(x). (3.4)
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Subsequently, the FFNN regression function f (x) is given by

f (x) = β0 + ⟨β, h(d:1)(x)⟩, (3.5)

with regression output parameter β = (β1, ..., βqd)
T ∈ Rqd and bias β0 ∈ R.

A schematic overview of an FFNN is shown in Figure 3.1.
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Figure 3.1.: Schematic overview of a fully Connected feed-forward neural network with an
input dimension equal to 8, 3 hidden layers with dimension 6, and an output layer with
dimension 1.
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3.2. Local Generalized Linear Model Network (LGLMN)

A drawback of using the FFNN from Section 3.1 is its interpretability. Due to the complex
structure of an FFNN it is hard to analyze how individual feature components xj of x affect
the regression function (3.5). Richman and Wüthrich [2023] introduced the local generalized
linear model network (LGLMN), which is an extension of a generalized linear model (GLM)
with an FFNN, that contains the data-driven structure while keeping the interpretable struc-
ture of the GLM.

The idea behind this model is that it uses a FFNN in which is output dimension is equal
to the input dimensions (i.e. the number of independent variables used in the regression).
Subsequently, a layer is added to the FFNN, and a linear activation function will be applied
to the neurons in this added layer and the input variables. Therefore, the last layer consists
of a linear function between the neurons of the second-last layer and the input variables. The
neurons in this second-last layer can be seen as regression attentions of the input variables.
This structure allows for more interpretability than a standard FFNN.

This paper uses the same notation and terminology on the LGLMN as Richman and Wüthrich
[2023]. Let there be a mapping

β : Rq → Rq, (3.6)

with equal input and output dimensions q, defined by a neural network

x 7→ β(x) = z(d:1)(x) =
(

z(d) ◦ ... ◦ z(1)
)
(x). (3.7)

Then the LGLMN is defined by

x 7→ g(µ) = g(µ(x)) = β0 + ⟨β(x), x⟩. (3.8)

Note that, in the regression structure of (3.8) the β j(x)’s are dependent on x. Because of this
dependence β(x) is called a regression attention, instead of a regression parameter, which
it is called when there is no dependence between β and x. Due to its structure, the LGLMN
allows for variable selection, for the study of interactions, and for variable importance rank-
ing.

A schematic overview of an LGLMN is shown in Figure 3.2.

3.2.1. Interpretability

The structure of (3.8) can be interpreted as an attention mechanism as each β j(x) decides
how much attention should be given to feature value xj. This section provides an explanation
of the interpretability of the LGLMN.
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Interactions

The structure of the LGLMN gives information about interactions. Condition

β j(x) = β j(xj), (3.9)

indicates that β j(xj)xj does not interact with other terms.

The component β j(x) can be analyzed for changes in x. If β j(x) is insensitive in the compo-
nents different from j, then there are no interactions. This can be analyzed by examining the
gradients

∇β j(x) =
(

∂

∂x1
β j(x), ...,

∂

∂xq
β j(x)

)T
∈ Rq. (3.10)

The j-th component of the gradient ∇β j(x) indicates whether the term in xj is linear, while
the other components quantify the interaction strengths.

Variable importance

Define the variable importance measure of component j by aggregating the absolute values
of the attention weights

VIj =
1
n

n

∑
i=1

∣∣β̂ j(xi)
∣∣ , (3.11)

for 1 ≤ j ≤ q, where the components are averaged over all observations 1 ≤ i ≤ n. The
components j ∈ {1, ..., q} can be ordered on their importance by their value of VIj, the
higher meaning the more important.

Note that, for a fair comparison of the variable importance VIj in (3.11), the variables xi need
to be normalized. The one-hot encoded variables used in this thesis are not normalized.
Therefore, the normalized variables will be compared with each other on variable impor-
tance, while the one-hot encoded variables will be compared with each other on variable
importance. Note that, since the one-hot encoded variables are not normalized, it does not
make sense to compare the variable importance between normalized variables and one-hot
encoded variables using (3.11) because they have another scale.

Incomplete identifiability

The LGLMN does not have full identifiability in model calibration. Let j ∈ {1, ..., q}. Then the
following structure could be observed:

β j(x)xj = xk, (3.12)

with k ∈ {1, ..., q} and k ̸= j. However, Richman and Wüthrich [2023] did not observe any
such problems in their experiments.
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Figure 3.2.: Schematic overview of a local generalized linear model network with an input
dimension equal to 8 and two hidden layers with dimension 6.
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In this research, the hedonic price methodology will be used with the natural logarithm of
the selling price as a dependent variable. This logarithmic structure is used for multiple
reasons: it allows the value added to vary proportionally with the size and quality of the
home, the variables can be interpreted as a percentage change, and it mitigates problems
with heteroskedasticity (Malpezzi et al. [2003]).

Let yitm be the log selling price of transaction i at time t at location m. Assume without loss
of generality that the time of the transactions is modeled on quarterly level t = 1, .., T, and
the location on a neighborhood level, with M neighborhoods m ∈ {1, ..., M}. In this research,
the log selling price will be modeled as the sum of a property characteristics component, a
spatial-temporal component, and a normally distributed error:

yitm = f (xit) + g(m, t) + εitm, (4.1)

εitm ∼ N (0, σ2
ε ),

where the component f (xit) is a function of the property characteristics xit = (xi,t,1, ..., xi,t,n)
T

and spatial-temporal component g(m, t) is a function of space m and time t.

All models described in this chapter are different variants of the model in equation 4.1. For
the spatial-temporal component, two types of SDFMs will be used. Section 4.1.1 describes the
SDFM based on the spatial random walk (SRW) and Section 4.1.2 describes the SDFM based on
the Gaussian random field (GRF). For the property characteristics component f (xit), a linear
structure, a nonlinear structure, a FFNN structure, and a LGLMN structure will be used which
are elucidated in Section 4.2.

4.1. Spatial Dynamic Factor Model

A spatial dynamic factor model (SDFM) is a DFM containing a spatial structure. There are
multiple applications of SDFMs (Gamerman et al. [2008] ; Lopes et al. [2011] ; Strickland et al.
[2011]), of which one in the repeat sales framework for real estate valuation (Francke et al.
[2022]). All have a common purpose of incorporating spatial dependencies while reducing
the dimensionality and hence the complexity of the problem. This section describes the
methodology of the SDFM used in the setting of this research.

Choose a number of factors K << M. Let g(m, t) be a spatial-temporal effect that depends
on time t ∈ {1, ..., T} and neighborhood m ∈ {1, ..., M}. Then g(m, t) can be modeled using
an SDFM by:

g(m, t) = ΓmFt + εtm, (4.2)

εitm ∼ N (0, σ2
ε ),
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where Γ (M × K) is the matrix of the loadings and F (K × T) is the matrix of the factors.

In this research, the dynamic factors Ft follow a random walk

Ft,k ∼ N (Ft−1,k, 1) , (4.3)

for t = 2, ..., T, starting with F1,k = 0 for all factors k. The structure of the loadings matrix is
dependent on the locations of the observations and differs for the type of SDFM. The loadings
matrices will be elaborated in detail in the following sections. Section 4.1.1 presents an SDFM
with a 1D spatial structure on the loadings matrix and Section 4.1.2 introduces an SDFM
with a 2D spatial structure on the loadings matrix. The 2 types of SDFMs that are used in
this research are elucidated in the subsequent sections.

4.1.1. Spatial Random Walk

The first SDFM that is implemented in this research is an SDFM introduced by Francke et al.
[2022]. In that research, an SDFM is presented to model condominium prices in Manhat-
tan, New York, in a repeat sales framework. In this thesis, the SDFM is adapted to a HPM
framework.

The SDFM has a 1D spatial structure which is specified by a spatial random walk (SRW).
The methodology of this SDFM follows Francke et al. [2022]. Choose the number of factors
K ∈ N. First, define the loadings matrix Γ (M × K) to have an upper triangular structure
with positive diagonal elements for identification purposes:

Γ =



γ+
11 0 · · · · · · 0

γ21 γ+
22

. . .
...

...
...

. . . 0
...

γK−1,1 γK−1,2 . . . γ+
K−1,K−1 0

γK,1 γK,2 . . . γK,K−1 γ+
K,K

...
... · · ·

...
...

γM,1 γM,2 . . . γM,K−1 γM,K


, (4.4)

where the superscript + indicates a positive value.

The loadings γkm have a spatial structure based on the SRW introduced by Francke and
Van de Minne [2021]. The SRW is defined in two steps. First, the travelling sales person
(TSP) algorithm (Lenstra and Kan [1975]) is applied to the coordinates of the centers of
the neighborhoods to derive a 1-dimensional ordering of the neighborhoods. This step
summarizes a 2D space into a 1D line that goes through all neighborhood centers using
the shortest possible route. Unlike Francke et al. [2022], the starting point of the TSP-route
is fixed at the neighborhood with the most observations. This is done because using a
neighborhood with very few observations might give unstable results. The second step of
the SRW assumes the loadings of the SDFM to have a spatial structure based on the following
ordering:

γk,(m) ∼ N
(

γk,(m−1), σ2
γ

)
, (4.5)

16



4.1. Spatial Dynamic Factor Model

where subscripts (m) denote the neighborhoods ordered by the TSP route. Note that, in this
research, it is assumed that the variance is the same for every column of Γ, i.e. σ2

γ does not
depend on k. However, it is possible to have a different variance σ2

γ(k) for every column.

The SDFM based on the SRW is defined by equations (4.2), (4.3), (4.4), and (4.5). A standard
normal distribution is used as the prior distributions for σε and σγ.

Note that due to the Bayesian structure of this SDFM, the spatial-temporal effect of a trans-
action is not only determined by the transactions at the same time and location but also by
transactions at close times and locations. Both geographical similarity of neighborhoods (i.e.
how close they are to each other) and categorical similarity of neighborhoods (i.e. neighbor-
hoods that are similar in terms of characteristics, but that are not necessarily close to each
other, might show similar behavior in selling prices of real estate) are captured by the model.
This categorical similarity of neighborhoods is incorporated in a data-driven way. Therefore,
the model is easily applicable in different situations and also applicable when no data about
the characteristics of a neighborhood itself is available (i.e. when only the location of the
neighborhood and characteristics of the houses in the neighborhood are available but not
characteristics of the neighborhood itself are known, as this might not be the case for every
application).

4.1.2. Gaussian Random Field

In Section 4.1.1, the loadings of the SDFM only contain a 1-dimensional structure based on
the TSP-route through the neighborhood centers. Therefore, there could be neighborhoods
that are close to each other in the sense of 2-dimensional distance but are very far away from
each other in the TSP-ordering. Hence, intuitively a lot of spatial information between the
neighborhoods gets lost when using the SDFM based on the SRW. Gamerman et al. [2008] in-
troduced an SDFM in which the 2-dimensional distance between the neighborhoods is incor-
porated. In this model, the observations are modeled using a GRF, which is a distance-based
Gaussian random process. In the research from Gamerman et al. [2008], the observations
are modeled with each observation having its own sub-trend and without covariate effects.
In this research, covariates or added and the observations are merged based on locational
level (e.g. district level or neighborhood level).

The SDFM based on the GRF is defined as follows. Choose the number of factors K ∈ N. Let
loadings matrix Γ = (Γ1, ..., ΓK). Denote Γk as the kth column of Γ. Then Γk is modeled as a
GRF:

Γk ∼ GRF
(

µk, τ2
k ρϕk (·)

)
:= N

(
µk, τ2

k Rϕk

)
, (4.6)

where µk is a K-dimensional mean vector. The (m, n)-element of the matrix Rϕk (M × M) is
defined by

rmn = exp
−d(m, n)

ϕk
, (4.7)

where d(m, n) is the distance between neighborhood m and neighborhood n and parameter
ϕk > 0.

The SDFM based on the GRF is defined by equations (4.2), (4.3), and (4.6). A standard normal
distribution is used as the prior distributions for σε, ϕk (for k = 1, ..., K), and σF.
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Note that the correlations between these spatial-temporal parts (linear combinations of fac-
tors and loadings) are not a direct function of Euclidean distance but that the information
of these Euclidean distances is captured in the prior distributions of the loadings. Using
this structure, near neighborhoods are stimulated to show similar spatial-temporal behavior,
but still are allowed to show completely different behaviors when necessary. At the same
time, spatially distant neighborhoods are not directly incentivized to show similar spatial-
temporal behavior by the characterization of their priors, however, it is still feasible that
they are. This is a desirable structure, as generally close neighborhoods should show more
similar spatial-temporal trends than distant ones, yet, distant neighborhoods should have
the possibility to show similar trends as distant neighborhoods might look alike in other
terms (e.g. in a city with two distant neighborhoods in which both a university is located,
the spatial-temporal indices of these housing prices might look very similar.).

4.2. Property Characteristics Component

This section elucidates the 4 different property characteristic components used in this re-
search. These components are subsequently described in the order of their simplicity, start-
ing with the linear component and closing with the LGLMN component.

Intuitively, an increase in lot size for a house with a small lot size should have more impact
than an increase in lot size for a house with a large lot size. Therefore, instead of using
the variable lot size as an input for the regression models in this research, linear splines
of the variable are used. The structure of linear splines is described in Section A.1. The
splines for the lot size are divided into the 3 intervals [0, 200), [200, 500), and [500, ∞). The
sub-variables of these splines are used as variables for the linear component in Section 4.2.1
and the non-linear component in Section 4.2.2. The models in Section 4.2.3 and Section 4.2.4
have a data-driven structure, and therefore, only the value of lot size is used as input instead
of using linear splines of the lot size.

4.2.1. Linear Component

The linear property characteristic component is a linear combination of the property char-
acteristics xit and the parameters β = (β1, ..., βn)T including an intercept α. The logarithm
of the house size is added to the model and the lot size is decomposed into linear splines, as
described in Section A.1. The representation of this linear component is given by

f (xit) = α + βxit. (4.8)

4.2.2. Non-linear Component

A linear functional form might not always be the most optimal form to include property
characteristics in a real estate valuation model. For instance, research from Goodman [1978]
has shown a nonlinear relationship between house price and house size.

For the non-linear property characteristics component, this thesis follows a simplification of
Francke and van de Minne [2017], by decomposing the property characteristics value in the
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structure and land value. This component is written as a scalar plus the natural logarithm
of the sum of structure and land value

f (xit) = α + ln (SVit + LVit) + ϵit, (4.9)

where Sit is the structure value and LVit the land value. Subsequently, the value of the
structure can be written as

SVit = (house size(i))β exp

[
H

∑
h=1

SCh(i)γh

]
, (4.10)

where SCh indicates the structure characteristics variable h such as building year and build-
ing type, and γh their corresponding coefficients for h = 1, ..., H, where H is the number of
structure characteristics.

The land value is written as a weighted sum of the linear splines of the lot size, i.e.

LVit =
S

∑
s=1

lss(i)νs, (4.11)

where S the number of linear splines, and lss(i) the value of sub-variable lss of transaction
i.

Equations (4.9), (4.10), and (4.11) form the non-linear structure of the property characteristics
component. In this structure, the coefficients α, β, γh ( h = 1, ..., H), νs ( s = 1, ..., S) will be
estimated.

4.2.3. Neural Network Component

Instead of using a pre-specified structure for the property characteristics component, an
FFNN can be used. The FFNN has a data-driven structure. Only the hyper-parameters such
as the number of layers d and the neurons per layer qm have to be specified in advance. The
neural network representation of the property characteristics component is given by is given
by

f (xit) = β0 + ⟨β, z(d:1)(xit)⟩ (4.12)

where z(d:1)(·) is specified in Section 3.1 with an input layer of dimension q0 = n.

4.2.4. Local Generalized Linear Model Network Component

Lastly, the LGLMN is used as the property characteristics component. This model allows
for a data-driven and interpretable structure. The LGLMN representation of the property
characteristics component is given by

f (xit) = β0 + ⟨β(x), x⟩, (4.13)

where β(x) is defined in Section 3.2 where the input and output layers of the FFNN used in
the LGLMN have a dimension q0 = qd = n.
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4.3. Model Representation

The models in this research are based on the general framework (4.1), in which different
combinations of the 4 property characteristics component f (xit) and the 2 spatial-temporal
components ΓmFt are used. This leads to 8 different models which are shown in Table 4.1.

Table 4.1.: Schematic representation of property characteristics components and the spatial-
temporal components of the models.

Model Property characteristics Spatial-temporal

Linear adjusted SRW-DFM (L-SRW-DFM) Linear SRW
Nonlinear adjusted SRW-DFM (NL-SRW-DFM) Non-linear SRW
NN adjusted SRW-DFM (NN-SRW-DFM) NN SRW
LGLMN adjusted SRW-DFM (LGLMN-SRW-DFM) LGLMN SRW
Linear adjusted GRF-DFM (L-GRF-DFM) Linear GRF
Non-linear adjusted GRF-DFM (NL-GRF-DFM) Non-linear GRF
NN adjusted GRF-DFM (NN-GRF-DFM) NN GRF
LGLMN adjusted GRF-DFM (LGLMN-GRF-DFM) LGLMN GRF

4.3.1. Model Extensions

The models described in Table 4.1 can be extended in several ways, e.g. by adding a common
trend or a by adding random effects. This section describes these extensions.

Common trend

One might suggest that besides sub-trends on a neighborhood level, also a common market
trend, indifferent of location, affects the house price. This common trend, µt can be modeled
by a random walk

µt+1 ∼ N (µt, σ2
µ), µ0 = 0. (4.14)

Subsequently, equation (4.1) can be extended with this common trend:

yitm = f (xit) + ΓmFt + µt + εitm, (4.15)

εitm ∼ N (0, σ2
ε ), .

Random effects of geographical level

When using a very small geographical level (e.g. street level, census tract level, or neigh-
borhood level) in the SDFM it can be heavy to compute. However, information can get lost
when using a larger geographical level (e.g., district level). A possible solution for this is
to use the SDFM on a large geographical level, such as a district, while adding a random
effect of a smaller geographical level, such as a neighborhood to the model. Then the price
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dynamics are modeled only on a district level, while significant price differences between
neighborhoods are still incorporated in the model.

Using this extension, the price of transaction i at time t in district d and neighborhood n
noted as yitdn can be modelled by

yitdn = f (xit) + ΓdFt + νn + εitm, (4.16)

εitm ∼ N (0, σ2
ε ), .

νn ∼ N (0, σ2
ν ),

in which νn is the neighborhood random effect. Especially when using a large number of
dynamic factors, this extension is faster to compute than the SDFM on neighborhood level,
as fewer parameters have to be estimated.

4.4. Model Estimation

In this thesis, the models will be estimated with 2 different estimation techniques: Bayesian
estimation and algorithmic estimation.

4.4.1. Bayesian Estimation

In the Bayesian estimation technique, the models are estimated using the NUTS, introduced
by Hoffman et al. [2014]. This is a MCMC method implemented in high-performance sta-
tistical software Stan (Stan Development Team [2023]). The priors of the parameters are
standard normal distributions. An advantage of this technique is that the models can be es-
timated directly using their given representations. However, a drawback of this estimation
procedure is that it is ineffective to use a Bayesian estimation technique to estimate a FFNN.
Therefore, this thesis only uses an FFNN with 1 hidden layer when using this procedure.

The NUTS-algorithm approximates the posterior distribution of the parameters by iterating
over the sample set of the parameters. First, the algorithm uses warm-up iterations to learn
the parameters. After that, it uses sampling iterations to create posterior draws. This is done
over multiple chains. The settings of the NUTS-algorithm that is used in this research can be
found in Table A.13.

High-performance computer (HPC)

The models based on the FFNN are computationally heavy to estimate and therefore, it can
take a long time to estimate the models. For that reason, the models involving an FFNN are
estimated using the high performance computer (HPC) of DelftBlue (Delft High Performance
Computing Centre [DHPC]).
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Uniqueness of loadings and factors

The output of the NUTS-algorithm is a distribution of each parameter in the model. In
this research, the estimate of a parameter is determined by the mean over all instances
of that parameter of the NUTS-algorithm. Only the estimates of the factors and loadings are
determined differently. For the factors and the loadings of the models, the mean of the linear
combinations over all instances is taken as the estimates in the models. This is done, as the
factors and loadings were not unique for all chains (see figures A.1 and A.3). Thus instead
of using Γ̂mF̂t, we use ˆΓmFt. For neighborhood m and time-step t, the linear combination of
the factors and loadings is given by

ˆΓmFt = meanchains [meaniterations (ΓmFt)] =
1

Nchains

Nchains

∑
k=1

[
1

Niterations(k)

Niterations(k)

∑
i=1

Γm(k, i)Ft(k, i)

]
,

(4.17)

where Nchains is the number of chains and Niterations(k) is the number of iterations in chain
k.

4.4.2. Algorithmic Estimation

The estimation of an FFNN using the NUTS requires a lot of computing power, compared
to other methods such as the stochastic gradient descent (SGD) algorithm (Amari [1993]).
However, the SDFMs used in this research can not be estimated simultaneously with the FFNN
when using the SGD algorithm. Therefore, inspired by Francke and Van de Minne [2023], in
addition to the Bayesian approach described in Section 4.4.1, an algorithmic approach will
be used to estimate the models.

The idea of this algorithmic approach is that the estimation of the model is split into 2
parts: the estimation of the spatial-temporal component and the estimation of the property
characteristics component. Unlike the Bayesian estimation procedure, these 2 parts will
not be estimated simultaneously, but they will be estimated consecutively repeatedly until
convergence. This approach has 2 advantages compared to the Bayesian approach. The first
advantage is that it is faster, since when estimating an FFNN separately from an SDFM, fast
methods such as SGD can be used to estimate the FFNN. Therefore, a more complex FFNN, i.e.
an FFNN with more layers, can be used, which could better capture the underlying structure
of the data. Another advantage is that the FFNN can be replaced easily with other ML models,
even models that can not be estimated, or models that take even longer to estimate in a
Bayesian estimation procedure (Francke and Van de Minne [2023]). Therefore, this structure
also allows for the usage of the LGLMN instead of the FFNN. This method, as described in
Section 3.2, is more interpretable than a FFNN which is a desired feature. A limitation of this
algorithmic approach is that it is hard or even impossible to know in advance whether the
model converges. The algorithm used in this research is stated in Algorithm 1.
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Algorithm 1 Iterative algorithm to estimate models with an FFNN or LGLMN

1. Estimate: L-SRW-DFM or L-GRF-DFM with NUTS.
2. Compute: in-sample MAPE and set ∆MAPE at an arbitrarily high number
While |∆MAPE | ≥ C0 do
3. Compute: ỹitm = yitm − Γ̂mFt
4. Train: FFNN or LGLMN over set {ỹitm, xit}, which gives f̂
5. Compute: FFNN or LGLMN algorithm over set y∗itm = yitm − f̂ (xit)

6. Estimate: y∗itm = ΓmFt + εit to derive Γ̂mFt, using NUTS

7. Compute: in-sample MAPE, mean(abs(yitm − ȳitm − f̂ (x̄it)))
end while

4.5. Assessment of Performance

4.5.1. Prediction Accuracy Measures

Commonly used measures for prediction accuracy in real estate valuation are the mean
absolute percentage error (MAPE) and the root mean squared error (RMSE) (Lee [2022] ; Wang
et al. [2014] ; Abidoye and Chan [2018] ; Uzut and Buyrukoglu [2020] ; Khobragade et al.
[2018]). Furthermore, when assessing the performance of an ANN, the MAPE and the RMSE
are two of the most commonly used measures (Twomey and Smith [1995]). This section
describes the 3 prediction accuracy measures that are used in this research: MAPE, RMSE,
and RMSE of the log price.

Mean absolute percentage error (MAPE)

The MAPE is the mean of the absolute differences in percentage between the predicted value
and the true value. Therefore, this measure is easy to interpret. Since the MAPE is a relative
measure, it can still give an indication of the performance of valuation models when using
different models on different data sets. The MAPE is formulated as

MAPE =
1
N

N

∑
i=1

|eyi − eŷi |
eyi

, (4.18)

with N the number of observations, yi the true log transaction price of observation i, and ŷi
the predicted log transaction price of observation i.

Root mean squared error (RMSE)

In the field of real estate valuation, significant errors are particularly undesirable. Unlike the
MAPE, the RMSE penalizes larger errors more than smaller errors, and therefore, it proves to
be a useful measure for prediction accuracy. The RMSE is computed by

RMSE =

√√√√ 1
N

N

∑
i=1

(
eyi − eŷi

)2 (4.19)
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for N the number of observations, yi the true log transaction price of observation i, and ŷi
the predicted log transaction price of observation i.

Root mean squared error of the log price

In the models that are used in this research, the dependent variable is the natural logarithm
of the house selling price. The models in this thesis are optimized based on this measure.
Therefore, also this measure is used for the evaluation of the models. The RMSE log price is
computed by

RMSE log price =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (4.20)

for N the number of observations, yi the true log transaction price of observation i, and ŷi
the predicted log transaction price of observation i.

4.5.2. Validation Methods

Train-test split

In this research, we are particularly interested how the models perform on unseen data.
Therefore, the data set is randomly split into a 70/30 train/test split. The training set is
used to estimate the models and the test set is used to evaluate the performance of the
models.

K-fold cross validation

A K-fold cross-validation is used on the training set, for the selection of some hyper-
parameters. In k-fold cross-validation (CV) the data set will be randomly divided into k
groups of approximately equal size. The first fold is treated as the validation set, and the
model is fit on the data of the other k − 1 folds. The mean squared error (MSE) is computed
on the observations in the validation set. This is done k times, and every time a different
fold is used as a validation set. This leads to k different estimates of the MSE. The k-fold CV
estimate is the average of these values

CV(k) =
1
k

k

∑
i=1

MSE(i). (4.21)

In this research a k-fold cross-validation is performed using k = 5, as it is shown empirically
that this value results in estimates that suffer neither from extremely high bias nor from
excessively high variance (James et al. [2013]). Note that the MSE in (4.21) can be interchanged
by another loss function but in this thesis, the MSE will be used (Hastie et al. [2009]).
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4.5.3. Convergence of Bayesian Estimation

To reflect on the convergence of the NUTS-algorithm, the convergence diagnostic R̂ is ana-
lyzed. The R̂ is a statistic that compares parameter estimates across the chains in the NUTS-
algorithm. If chains have not mixed well the value for R̂ is larger than 1. A rule-of-thumb is
to only use samples when the values of R̂ < 1.05 (Vehtari et al. [2021]).
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5. Data

The data used in this research is on residential real estate transactions in the Netherlands
and is provided by Ortec Finance. For this research, only data from the municipality of
Rotterdam is used. Section 5.1 describes the data preparation and Section 5.2 gives a detailed
data analysis.

5.1. Data Preparation

There are 40 observations with a lot size larger than 2000. These observations are removed.
Furthermore, there is data that is labeled as located in the municipality of Rotterdam but
with latitude and longitude values that do not correspond to the latitude and longitude
values of Rotterdam. These observations are omitted as well. After removing the described
observations, the database contains 30,016 observations. All observations range from 02-01-
2009 until 31-03-2021. The observations are quarterly.

5.2. Data Analysis

The dependent variable in this research is the natural logarithm of the house selling price.
The independent variables used in this research are: house size, lot size, building type, and
building year class. A limited number of independent variables is employed, as the usage
of more independent variables increases the likelihood of misspecification. Furthermore,
these independent variables are very basic and as a consequence, they are unusually always
available. Therefore, this data set does not contain any missing data about these variables.

Table 5.1 shows the summary statistics of the quantitative variables used in this research.
Both the statistics of the selling prices and the log selling prices are shown. The average
selling price is about 270k euros. The summary statistics of the house size and of the lot size
for the observations where the lot size is larger than 0 are shown in table 5.1. The smallest
house in the data sample is 24 m2 and the largest house is 750 m2. Summary statistics of the
quantitative variables per building type are shown in Appendix A.3.

Table 5.1.: Summary statistics of quantitative variables.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Price (in 1000 EUR) 30,016 270 190 32 155 325 3,100
Log price (in EUR) 30,016 12.3 0.6 10.4 12.0 12.7 15.0
House size (in m2) 30,016 105 44 24 75 125 750
Lot size (obs. > 0, m2) 11,327 204 175 18 122 214 1,992
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Linear splines are used for variable lot size. The interval of this variable is divided into 3
sub-intervals using s1 = 200 and s2 = 500 in equation A.1. The distribution of the lot size
of the observations over the linear splines is shown in table 5.2. Note that more than half
of the observations have a lot size equal to zero, which indicates that those observations do
not have a piece of land next to the property, such as a garden, which seems reasonable as
the observations are from Rotterdam which is an urban area. Table 5.2 shows the summary
statistics of the sub-variables of the lot size. For the majority of the observations, these sub-
variables are 0, as the majority of the observations have a lot size equal to 0.

Table 5.2.: Summary statistics of the linear splines variables

Statistic N Mean St. Dev. Pctl(25) Median Pctl(75) Max

Lot size = 0 18,689 0 0 0 0 0 0
ls1 8,109 58.050 78.400 0 0 133 200
ls2 2,679 13.059 51.053 0 0 0 300
ls3 539 5.972 61.953 0 0 0 1,492

Figure 5.1 shows the correlation matrix of the numerical independent variables. As expected
the correlation between the house size and the sub-variables of the lot size is significant.
However, it is never very correlated, and thus both the house size and the sub-variables of the
lot size will be used as input for the models.

Figure 5.1.: Correlation matrix of numerical independent variables.

The data set contains 16 different secondary building types, which can be generalized into
5 primary building types: detached, semi-detached, corner house, terraced house, and apartment.
Table A.1 shows the primary- and secondary-building types in the data set. A 5-fold CV
is performed when using the 16 different secondary building types and when using the 5
primary building types in the L-SRW-DFM on the training set. The model performed slightly
better when using the 5 building types instead of 16 based on the CV value (Table A.10). As

28



5.2. Data Analysis

the results are better for the 5 primary building types and the estimation of the model is
faster, only the 5 primary building types will be used for the estimation and evaluation of
the models in this thesis. The bar plot in figure 5.2 shows the distribution of the observations
over the 5 different building types. Apartments are the most common building types, which
is in line with a large number of houses with a lot size equal to 0 as shown in Table 5.2.
Detached houses are the least common building type, which is hardly surprising in an
urban area such as Rotterdam.

Figure 5.2.: Observations of the building types.

The distribution of the observations over the building year classes is shown in figure 5.3.
The class with houses built after 2014 is the smallest. However, note that this is also one of
the smallest time frames of the building year classes as the data reaches March 2021.

The data set contains observations in 76 different neighborhoods. Table 5.3 shows summary
statistics on how many observations neighborhoods have. On average, the neighborhoods
have 395 observations. The neighborhood with the least observations has one observation
and the neighborhood with the most observations has 1,278.

Table 5.3.: Observations per neighborhood

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Observations 395 329 1 139 349 577 1,278

Figure 5.4 shows a histogram of the transactions over time. At first, each quarter has ap-
proximately the same amount of transactions. Later on, more transactions have been made
but with more fluctuations. Furthermore, there are no quarters with very few observations.
There are no seasonality patterns observed.
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Figure 5.3.: Observations of the building year classes.

Figure 5.4.: Observations over time in quarters.
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6. Simulation Study: Ability of the Neural
Network in Capturing Linear and
Non-linear Structures

Neural networks can capture both linear and non-linear structures (Goh [1995]). However,
it is not clear in advance whether an FFNN can have those structures in combination with an
SDFM. This section assesses the ability of the neural network to capture linear and non-linear
structures in the property characteristics components of the models. An investigation of the
model is conducted using realistic simulated data from a data generating process (DGP).
The simulated data is obtained from a model containing a linear structure, as well as from
a model containing a non-linear structure. The FFNNs are estimated using the Bayesian
estimation procedure. Section 6.4 assesses the ability of an LGLMN to replicate regression
coefficients of a linear structure when using an algorithmic estimation.

6.1. Data Generating Process

To generate data based on a linear and a non-linear structure, the L-SRW-DFM and the
NL-SRW-DFM are estimated using the NUTS-algorithm on a sample of 10% of the total Rot-
terdam data set described in Chapter 5. The reason why only 10% of this data set is used
is that it is faster to estimate the models on a smaller data set. Using the estimates of the
parameters of these models, new data is created by sampling from the normal distribution.
The location parameter of the normal distribution is equal to the combination of the esti-
mated parameters and the data and the variance is equal to the variance of the errors of the
model on the real data. Hence, for the model with the linear structure, the log transaction
price ysim(xit, m, t) for covariates xit, neighborhood m, and time t, is simulated from

ysim(xit, m, t) ∼ N
(

α̂ + β̂xit + Γ̂mft, σ̂ε
2
)

, (6.1)

where the estimated parameters are indicated with a hat.

Likewise, for the model with the nonlinear structure, the log transaction price is simulated
from

ysim(xit, m, t) ∼ N
(

α̂ + ln

(
(house size(i))β̂ exp

[
H

∑
h=1

SCh(i)γ̂h

]
+

S

∑
s=1

lss(i)ν̂s

)
+ Γ̂mft, σ̂ε

2

)
.

(6.2)

Note that two data sets are simulated in this DGP. One contains a linear structure for the
property characteristics component and one contains a nonlinear structure. Both data sets
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contain 3,075 observations over a training set and a test set, which is split into a training set
of 2,152 observations and a test set of 923 observations. The estimates σ̂ε

2 of equations (6.1)
and (6.2) are shown in Table 6.1.

Table 6.1.: Estimated variance of the models simulated by the DGP.

L-SRW-DFM NL-SRW-DFM

σ̂ε
2 0.174 0.173

6.2. Assessment

To assess the ability of the neural network to capture linear and nonlinear structures, the
NN-SRW-DFM is estimated on both the generated data with a linear structure and the gener-
ated data with a nonlinear structure. For comparison also the L-SRW-DFM and the NL-SRW-DFM
are respectively estimated on the generated data with a linear structure and the generated
data with a nonlinear structure. These models are the ’true’ models for this data, and there-
fore, ideally the results of the NN-SRW-DFM on the data set should be close to the results of
the L-SRW-DFM and the NL-SRW-DFM.

For the assessment of the models, the performance measures are compared to analyze
whether the models that use a neural network perform nearly as well as their linear and non-
linear counterparts. Furthermore, differences between the estimated property characteristics
components, and the differences between the estimated spatial-temporal components of the
models are compared.

The difference between the property characteristics components of the models is given by

fT(xit)− fE(xit), (6.3)

where fT(·) is the function of the property characteristics in the true model and fE(·) the
function of the property characteristics in the estimated model.

Likewise, the difference between the spatial-temporal components of the models is given by

(ΓmFt)T − (ΓmFt)E , (6.4)

where the subscript T indicates the true model and the subscript E indicates the estimated
model.

6.3. Results

This section discusses the results of the NN-SRW-DFM on the artificial data compared to the
results of respectively the L-SRW-DFM and the NL-SRW-DFM on respectively the data with the
linear structure and the data with the nonlinear structure.
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6.3.1. Linear Structure

Table 6.2 shows the in-sample and out-of-sample prediction accuracy measures of the L-SRW-DFM
and the NN-SRW-DFM. The NN-SRW-DFM performs better on the in-sample data, which is an
indicator of the over-fitting of the model. The out-of-sample performance is slightly worse
for the NN-SRW-DFM compared to the L-SRW-DFM. However, the performance measures of the
NN-SRW-DFM are very close to the ones of the L-SRW-DFM, which is the first sign that the FFNN
is able to capture the linear structure well.

Table 6.2.: In-sample and out-of-sample performance measures of the models on data simu-
lated from the L-SRW-DFM.

L-SRW-DFM NN-SRW-DFM

MAPE (in) 0.136 0.131
MAPE (out) 0.140 0.144
RMSE (in) 51,589 49,347
RMSE (out) 53,197 55,169
RMSE log price (in) 0.167 0.162
RMSE log price (out) 0.174 0.177

The estimated coefficients of the property characteristics part of the true L-SRW-DFM and
the L-SRW-DFM on the generated data are shown in Table A.7. Note that the estimates are
very similar which is as expected as the model on the right-hand-side is estimated on data
generated from the coefficients on the left-hand-side.

Table 6.3 shows the distributions of the differences between the true property characteristics
component and the estimated property characteristics components of the L-SRW-DFM and the
NN-SRW-DFM on the simulated data. Note that the standard deviation is a bit higher and the
absolute values of the minimum and maximum differences are greater when comparing the
base model with the L-SRW-DFM. However, the distribution of the difference between the true
property characteristics component and the property characteristics component estimated
with the NN-SRW-DFM is clearly not far off from the distribution of the differences of the
fixed part between the base model and the L-SRW-DFM.

Table 6.3.: In-sample and out-of-sample distributions of the differences of the true property
characteristics components and the property characteristics components estimated from
the L-SRW-DFM and NN-SRW-DFM on the artificial data.

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

L-SRW-DFM (in) −0.012 0.020 −0.149 −0.025 −0.011 0.003 0.053
L-SRW-DFM (out) −0.010 0.020 −0.141 −0.022 −0.008 0.004 0.052
NN-SRW-DFM (in) −0.004 0.039 −0.287 −0.023 0.006 0.015 0.212
NN-SRW-DFM (out) −0.014 0.043 −0.228 −0.040 −0.006 0.011 0.189

Table 6.4 shows the distributions of the differences between the true spatial-temporal compo-
nent and the spatial-temporal components of the L-SRW-DFM and the NN-SRW-DFM estimated
on the simulated data. Note that both the in-sample and out-of-sample distributions of
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these differences are very similar. This is what should be expected as the structure of the
spatial-temporal component is the same for both models.

Table 6.4.: In-sample and out-of-sample distributions of the differences of the true spatial-
temporal components and the spatial-temporal components estimated from the L-SRW-
DFM and NN-SRW-DFM on the artificial data.

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

L-SRW-DFM (in) 0.011 0.045 −0.172 −0.015 0.012 0.040 0.151
L-SRW-DFM (out) 0.011 0.046 −0.140 −0.014 0.012 0.039 0.149
NN-SRW-DFM (in) 0.003 0.045 −0.184 −0.024 0.003 0.030 0.156
NN-SRW-DFM (out) 0.003 0.046 −0.153 −0.022 0.002 0.032 0.151

In Figure A.1 the factors of the true L-SRW-DFM model, and of the L-SRW-DFM and the
NN-SRW-DFM on the data are plotted for every chain of the NUTS iterations. Likewise, in Fig-
ure A.2 the loadings of the true L-SRW-DFM model, and of the L-SRW-DFM and the NN-SRW-DFM
on the data are shown for every chain. Note that although the factors are not unique for
every chain(see Section 4.4.1), there seem to be two ’flavors’. The factors of chains 1, 2, and
4 are very similar, while the factors of chain 3 are different from the ones in chains 1, 2, and
4. These flavors are recovered by the L-SRW-DFM and the NN-SRW-DFM when estimated on
the data. The factors of chains 1 and 2 in Figure A.1b are similar to the factors of chains 1,
2, and 4 in Figure A.1a. Likewise, the factors of chains 3 and 4 in Figure A.1b are similar to
the factors of chains 3 in Figure A.1a. Note that also the factors in Figure A.1c are similar
to the ones in Figure A.1a. However, note that the scales on the axis are different, and thus,
the structure is replicated on another scale.

6.3.2. Nonlinear Structure

Table 6.5 shows respectively the in-sample and out-of-sample prediction accuracy measures
of the NL-SRW-DFM and the NN-SRW-DFM. As for the NL-SRW-DFM, the NN-SRW-DFM performs
better on the in-sample data and is slightly worse on the out-of-sample data. Also for the
nonlinear structure, the NN-SRW-DFM performs quite well as the performance measures are
close to the ones of the true model.

Table 6.5.: In-sample and out-of-sample performance measures of the models on data simu-
lated from the NL-SRW-DFM.

NL-SRW-DFM NN-SRW-DFM

MAPE (in) 0.129 0.123
MAPE (out) 0.149 0.156
RMSE (in) 50,995 45,946
RMSE (out) 53,034 56,721
RMSE log price (in) 0.161 0.154
RMSE log price (out) 0.185 0.191
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The estimated coefficients of the property characteristics part of the true NL-SRW-DFM and the
NL-SRW-DFM on the generated data are shown in Table A.8. Note that, as for the L-SRW-DFM,
the estimates are very similar which is as expected as the model on the right-hand-side is
estimated on data generated from the coefficients on the left-hand-side.

Table 6.6 shows the distributions of the differences between the true property characteristics
component and the estimated property characteristics components of the NL-SRW-DFM and
the NN-SRW-DFM on the simulated data. As for the linear structure, the standard deviation is
a bit higher and the absolute values of the minimum and maximum differences are greater,
when comparing the base model with the NL-SRW-DFM. However, the distribution of the dif-
ference between the true property characteristics component and the NN-SRW-DFM is clearly
not far off from the distribution of the differences of the property characteristics components
between the base and the NL-SRW-DFM.

Table 6.6.: In-sample and out-of-sample distributions of the differences of the true property
characteristics components and the property characteristics components estimated from
the NL-SRW-DFM and NN-SRW-DFM on the artificial data.

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

NL-SRW-DFM (in) 0.019 0.021 −0.075 0.004 0.020 0.036 0.067
NL-SRW-DFM (out) 0.018 0.022 −0.063 0.004 0.018 0.036 0.063
NN-SRW-DFM (in) 0.018 0.043 −0.206 −0.001 0.019 0.043 0.242
NN-SRW-DFM (out) 0.011 0.058 −0.215 −0.024 0.019 0.049 0.277

Table 6.7 shows the distributions of the differences between the true spatial-temporal com-
ponent and the spatial-temporal component of the NL-SRW-DFM and the NN-SRW-DFM on the
artificial data. As for the linear structure, both the in-sample and out-of-sample distributions
of these differences are very similar. Again, this is as expected since both models have the
same structure for the trend part.

Table 6.7.: In-sample and out-of-sample distributions of the differences of the true spatial-
temporal components and the spatial-temporal components estimated from the NL-SRW-
DFM and NN-SRW-DFM on the artificial data.

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

NL-SRW-DFM (in) −0.018 0.046 −0.200 −0.048 −0.017 0.011 0.193
NL-SRW-DFM (out) −0.016 0.045 −0.153 −0.043 −0.016 0.012 0.187
NN-SRW-DFM (in) −0.017 0.047 −0.227 −0.048 −0.016 0.012 0.206
NN-SRW-DFM (out) −0.014 0.046 −0.142 −0.043 −0.015 0.013 0.177

In Figure A.3 the factors of the true NL-SRW-DFM model, and of the NL-SRW-DFM and the
NN-SRW-DFM estimated on the generated data, are plotted for every chain of the NUTS-
algorithm. Likewise, in Figure A.4 the loadings of the true NL-SRW-DFM model, and of
the NL-SRW-DFM and the NN-SRW-DFM estimated on the generated data are shown for every
chain. As for the NL-SRW-DFM, the factors are not unique, as they are not the same for ev-
ery chain. However, again there are two types of flavors. The factors of chain 3 in Figure
A.3a are recovered by the NL-SRW-DFM in chains 3 and 4 and by the NN-SRW-DFM in chain 1.
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Likewise, the factors of chains 1,2,4 in Figure A.3a are recovered by chains 1 and 2 in Figure
A.3b and by chains 2, 3, and 4 in Figure A.3c. As for the L-SRW-DFM, the scales on the axis
are different, and thus, the structure is replicated on another scale.

6.4. Replication of linear structure by the LGLMN

Another experiment is been performed on whether the LGLMN is able to replicate linear
structures and their interpretability. The ability of the LGLMN to replicate non-linear struc-
tures is outside the scope of this thesis. Again, data is generated with the true L-SRW-DFM
following (6.1), but this time on the whole data set, since the iterative model is more sta-
ble when using more data. Thereafter, both the L-SRW-DFM and the LGLMN-SRW-DFM are
estimated on the generated data. Table A.9 shows the estimated coefficients of the true
L-SRW-DFM and the L-SRW-DFM estimated on the generated data.

Table 6.8 shows the results of the L-SRW-DFM and the LGLMN-SRW-DFM on data generated
from the L-SRW-DFM. The LGLMN-SRW-DFM performs quite well on the generated data since
the performance measures are not far off from the performance measures of the L-SRW-DFM.
Therefore, based on the performance measures, the LGLMN can handle the linear structure
quite well.

Table 6.8.: In-sample and out-of-sample performance measures of the models on data simu-
lated from the L-SRW-DFM.

L-SRW-DFM LGLMN-SRW-DFM

MAPE (in) 0.147 0.150
MAPE (out) 0.150 0.153
RMSE (in) 71,698 71,479
RMSE (out) 82,627 78,537
RMSE log price (in) 0.185 0.187
RMSE log price (out) 0.188 0.192

Since the data is generated from a model with a linear structure (the L-SRW-DFM), the
LGLMN-SRW-DFM should replicate this linear structure, i.e. we should have

β j(xi) ≈ β̂ j, (6.5)

where β j(xi) is the regression attention of variable j for transaction i for the LGLMN-SRW-DFM

and β̂ j the estimated regression coefficient of the true L-SRW-DFM.

Figure 6.1a shows a plot of the regression attentions of the house size variable against the
house size xij for every transaction i for different building types. Except for the building
type ’Apartment’, all regression attentions are around 0.286, which is the estimate of the
coefficient of house size from the true L-SRW-DFM (See Table A.9). Hence, for the transactions
that do not have building type ’Apartment’, we have the desired property (6.5) with j being
the index of the variable house size. Figure 6.1b shows a plot of the regression attentions of
the lot size variable against the lot size xij for every transaction i for different building types
with j being the index of the lot is. Except for the building type ’Apartment’, all regression
attentions are around 0.009, which is the estimate of the coefficient of the lot size from the
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true L-SRW-DFM (See Table A.9). The reason why the building type ’Apartment’ does not
have the (6.5) is probably due to unidentifiability since a lot size equal to zero implies that
the building type is ’Apartment’ and the other way around (Table A.2). For identifiability,
not only the one-hot-encoded variable ’Apartment’ should have been removed from the data
set when estimating the models, but the one-hot-encoded building type variable in addition.
Then the models can be uniquely identified, since the building type ’Apartment’ will be
incorporated in the model by the lot size.

Figure 6.2a shows box plots of the regression attentions of the different building types.
Note that the regression attentions do not correspond with the estimated coefficients of the
true L-SRW-DFM as shown in Table A.9. This is probably because the building types are not
uniquely identified in the model. Figure 6.2b shows box plots of the regression attentions of
the different building year classes. Note that the attentions are to a great extent around the
coefficients of the building year classes of the true L-SRW-DFM as shown in Table A.9.

Figure 6.3 plots the interaction strength between house size (variable index j) and lot size
(variable index k)

∂

∂xk
β j(xi), (6.6)

against the house size xij for all observations i. Since the data is generated from the
L-SRW-DFM, there should be no interaction between the lot size and the house size. However,
as shown in the plot, the interaction strength will increase with an increase in house size.
Hence, the LGLMN-SRW-DFM does not perfectly replicate the structure with no interactions.
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(a) Attentions of house size.

(b) Attentions of lot size.

Figure 6.1.: Feature contributions of the quantitative variables in the LGLMN-SRW-DFM
based on data generated with the L-SRW-DFM.

38



6.4. Replication of linear structure by the LGLMN

(a) Attentions of building types.

(b) Attention of building year classes.

Figure 6.2.: Attentions of the categorical variables in the LGLMN-SRW-DFM based on data
generated with the L-SRW-DFM.
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Figure 6.3.: Interaction strength of lot size over different values of house size in the LGLMN-
SRW-DFM on data generated with the L-SRW-DFM.
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7. Results

This section covers the assessment of the results of the models described in Chapter 4.
Section 7.1 will cover the results of the performance measures on the models and Section 7.2
interprets the results of the structures of the LGLMN-SRW-DFM and the LGLMN-GRF-DFM.

An experiment with 5-fold CV on the L-SRW-DFM when using different numbers of dynamic
factors showed the CV-value for the number of factors was approximately equal for K ≥ 2.
The results of this experiment are shown in Table A.11. Therefore, for evaluating the models
in this chapter, 2 factors are used as it is computationally faster to use fewer factors and
there is no significant improvement when using more than 2 factors. The variables building
type and building year class are incorporated in the models as one-hot-encoded variables.
Therefore, for identification purposes, the variables most-common of the most common
observations for building type (which is the type apartment) and building year class (which is
the class 1930-1944) are removed from the training and test set. The geographical levels
used in this section are based on neighborhoods as the results were the best when using
this geographical level on the L-SRW-DFM. The models used in this research contain several
hyper-parameters which can be found in Table A.12.

7.1. Performance Results

The L-SRW-DFM and NL-SRW-DFM are estimated on a normal computer, which took respec-
tively 12 hours and 14 hours to estimate with the entire training set. The other models
are computed on the HPC of DelftBlue because they are computationally heavier. The
NN-SRW-DFM and the NN-GRF-DFM are estimated using the Bayesian approach with only
one hidden layer for computational reasons. Furthermore, both models are also estimated
using the algorithmic approach with four hidden layers, since extra layers do not add a lot
of computational complexity when estimating the models using the algorithmic approach.
The models using a LGLMN are only estimated using the algorithmic approach as they need
at least two hidden layers to include both an FFNN structure in the first hidden layer and a
linear structure in the last hidden layer.

Table 7.1 and Table 7.2 respectively show the in-sample and the out-of-sample performance
of the models on the data from the municipality of Rotterdam described in Chapter 5. The
models with a linear parametric structure for the property characteristics outperform the
models with a non-linear parametric structure. The LGLMN-SRW-DFM estimated using an
algorithmic approach performs the best on the in-sample performance measures, while the
NN-SRW-DFM performs the best on the out-of-sample performance measures, except for the
L-SRW-DFM and L-GRF-DFM, which perform better on out-of-sample RMSE. Furthermore, the
models using a GRF as a spatial-temporal component show similar results to their analogs
using an SRW. Note that the NN-SRW-DFM performs better when estimated using the algo-
rithmic approach compared to when estimated using the Bayesian approach. This can be
explained by two reasons. Firstly, the Bayesian approach only uses a limited number of
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iterations because of computational reasons, and therefore, using more iterations might im-
prove the performance of the model. Secondly, the FFNN in the Bayesian approach only has
one hidden layer for computational reasons, while the FFNN in the algorithmic approach has
4 hidden layers and therefore, it might be able to capture more complex structures. Observe
that, the models using an SDFM based on the SRW perform about as well as the models using
an SDFM based on the GRF, and sometimes even slightly better. Therefore, the 2-dimensional
spatial structure of the SDFM based on the GRF does not seem to have a lot of added value
compared to the 1-dimensional structure of the SRW.

Table 7.1.: In-sample performance measures of the models on data from the municipality of
Rotterdam.

MAPE RMSE RMSE log price

L-SRW-DFM 0.129 66,614 0.168
NL-SRW-DFM 0.131 69,660 0.171
NN-SRW-DFM 0.126 66,379 0.167
NN-SRW-DFM (alg.) 0.125 64,799 0.164
LGLMN-SRW-DFM (alg.) 0.124 61,731 0.162
L-GRF-DFM 0.129 66,449 0.168
NL-GRF-DFM 0.131 69,526 0.171
NN-GRF-DFM 0.128 63,077 0.167
NN-GRF-DFM (alg.) 0.126 66,034 0.165
LGLMN-GRF-DFM (alg.) 0.127 65,226 0.166

Note: The models are estimated with the Bayesian estimation procedure except
for the models with (alg.). The preferred model for each metric is in bold.

Table 7.2.: Out-of-sample performance measures of the models on data from the municipality
of Rotterdam.

MAPE RMSE RMSE log price

L-SRW-DFM 0.129 65,685 0.171
NL-SRW-DFM 0.133 68,648 0.174
NN-SRW-DFM 0.129 65,786 0.169
NN-SRW-DFM (alg.) 0.128 66,101 0.168
LGLMN-SRW-DFM (alg.) 0.130 66,704 0.172
L-GRF-DFM 0.131 65,555 0.171
NL-GRF-DFM 0.133 68,521 0.174
NN-GRF-DFM 0.131 68,421 0.171
NN-GRF-DFM (alg.) 0.129 68,694 0.169
LGLMN-GRF-DFM (alg.) 0.133 72,969 0.171

Note: The models are estimated with the Bayesian estimation procedure except
for the models with (alg.). The preferred model for each metric is in bold.

Appendix A.9 shows tables of the estimations of the parameters regarding the property char-
acteristics, i.e. the spatial-temporal invariant parameters. The estimated parameters are in
the ’mean’ columns of the tables. Furthermore, quantiles of the posterior samples of the pa-
rameters are shown. As can be seen in the tables, the confidence in the parameters is high, as
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the standard deviation (StdDev) is low and the difference between the 5% and 95% quantiles
is low in general. The R̂-values are close to 1 for all estimations of the parameters regarding
property characteristics which indicates that the algorithm has converged to these values.
Note that the parameters of the L-SRW-DFM are similar to those of the L-GRF-DFM. Likewise,
the estimated parameters of the NL-SRW-DFM and the NL-GRF-DFM are comparable.

In Table A.15, the results of the L-SRW-DFM based on districts are shown and the results of the
L-SRW-DFM include neighborhood random effects. The L-SRW-DFM therefore includes neigh-
borhood information but only uses trends on a district level. Note that the L-SRW-DFM per-
forms worse when using districts compared to when using neighborhoods in the SDFM, and
therefore, it is good to incorporate neighborhood information in the models. Furthermore,
note that the L-SRW-DFM on districts with neighborhood random effects performs worse than
the L-SRW-DFM on neighborhoods. Therefore, it is better not to include information on neigh-
borhoods as random effects but to include neighborhood information in the SDFM to capture
the price dynamics of the neighborhoods.

7.2. Interpretation of the LGLMN Results

7.2.1. LGLMN-SRW-DFM

The variable importance of the quantitative variables is measured by (3.11). The variable
importance of house size is 3.37 and the importance of lot size is 8.81. Therefore, the variable
lot size is more important for the LGLMN-SRW-DFM than the house size. This may be because
lot size contains a lot of information since a lot size equal to zero implies that the house is an
apartment and high lot size indicates a house is presumably a detached house.

The feature contribution is the product of the regression attention and the variable, i.e.

β j(xi)xij, (7.1)

with j the index of the variable and i the observation. Figure 7.1 shows the feature contri-
butions of the house size and the lot size estimated by the LGLMN-SRW-DFM. For all building
types, the contribution of house size starts high, then gets lower, and subsequently increases
again. The increase in contribution is what should be expected since a higher house size
should contribute more than the selling price of the house. The decrease at the start is not
what is expected but that can be explained by a small number of transactions with a very
low house size. Note that, apart from the house type ’Apartment’, the contribution for all
house types is quite similar. This suggests that the regression attention for house size is in-
dependent of the building types. The dissimilar behavior of the contribution of house size
for the building type apartment can be explained by the fact that the model is not uniquely
identifiable for the building type apartment, as described in Section 6.4.

There is no clear pattern between the lot size and the contribution of the different building
types. However, observe that the contribution of the lot size on the house price is mostly
positive, especially when the lot size is high.

Figure 7.3 shows the feature contributions of the categorical variables estimated by the
LGLMN-SRW-DFM. The median of the contribution of all building types is positive, but a
lot of observations are negative since the 25% quantile is negative. The contributions of the
building year classes are quite decisive in a positive or negative contribution since for most
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(a) Feature contribution of house size.

(b) Feature contribution of lot size.

Figure 7.1.: Feature contributions of the quantitative variables in the LGLMN-SRW-DFM.
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(a) Feature contributions of building types.

(b) Feature contributions of building year classes.

Figure 7.2.: Feature contributions of the categorical variables in the LGLMN-SRW-DFM.
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(a) Feature contributions of building types.

(b) Feature contributions of building year classes.

Figure 7.3.: Attentions of the categorical variables in the LGLMN-SRW-DFM.

building year classes, the 25% quantile of the contribution is above zero or the 75% quantile
of the contribution is below zero.

7.2.2. LGLMN-GRF-DFM

The variable importance of house size is 3.28 and the importance of lot size is 6.93. Therefore,
as with the LGLMN-SRW-DFM, the variable lot size is more important for the LGLMN-GRF-DFM
than the house size.

Figure 7.4 shows the feature contributions of the house size and the lot size estimated by
the LGLMN-GRF-DFM. As with the LGLMN-SRW-DFM, for all building types, the contribu-
tion of house size starts high, then decreases, and subsequently increases again. As for the
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(a) Feature contribution of house size.

(b) Feature contribution of lot size.

Figure 7.4.: Feature contributions of the quantitative variables in the LGLMN-GRF-DFM.
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(a) Feature contributions of building types.

(b) Feature contributions of building year classes.

Figure 7.5.: Feature contributions of the categorical variables in the LGLMN-GRF-DFM.

LGLMN-SRW-DFM, there is no clear pattern between the lot size and the contribution of the
different building types.

Figure 7.5 shows the feature contributions of the categorical variables estimated by the
LGLMN-GRF-DFM. As with the LGLMN-SRW-DFM, the median of the contribution of all build-
ing types is positive, but a lot of observations are negative since the 25% quantile is negative.
Moreover, the contributions of the building year classes are quite decisive in a positive or
negative contribution since for most building year classes, the 25% quantile of the contribu-
tion is above zero or the 75% quantile of the contribution is below zero.
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7.2.3. Remarks on Interpretability of LGLMN

The results from the models using the LGLMN do show some patterns. The contribution
of the house size increases when the house size increases. Furthermore, the LGLMN is quite
decisive in whether a building year class positively or negatively affects the house price. No
clear patterns are shown on the contributions of the lot size and the interactions along the
variables. Furthermore, the LGLMN structure can give insights into how variables contribute
and interact, yet no strong quantification can be made on how an increase/decrease of a
specific variable affects the housing price.
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8.1. Conclusion

Data on real estate transactions is very sparse. That is, when considering a small time
scale and location, e.g. quarterly transactions on a neighborhood level, there are a lot of
spatial-temporal combinations with few or no observations. Nevertheless, price dynamics
over fine geographies are highly desirable. This research provides a solution to the problem
of spatial-temporal sparse real estate data by incorporating spatial-temporal dependencies
using an SDFM, while including property characteristics in a data-driven way.

The natural logarithm of the selling price is modeled by the sum of a spatial-temporal com-
ponent and a property characteristics component. Two different types of SDFMs are used
as spatial-temporal components. Both parametric structures (linear and non-linear), and
data-driven driven structures (an FFNN and an interpretable adjustment of the FFNN, the
LGLMN), are used as property characteristics components. One SDFM is based on the SRW
and has a 1-dimensional spatial structure, while the other SDFM is based on the GRF and
has a 2-dimensional spatial structure. The estimation of the FFNN or the LGLMN using the
NUTS-algorithm is computationally very heavy. Therefore, both an algorithmic procedure
and the HPC of DelftBlue are used to estimate the models. The models are estimated with
a Bayesian estimation procure and with an algorithmic procedure that algorithmically es-
timates the property characteristics component and the spatial-temporal component of the
log price. In Chapter 6 a simulation study was performed to assess the ability of a neural
network to capture linear and non-linear structures when combining it with an SDFM in a
Bayesian representation. The neural network was able to properly replicate both linear and
non-linear structures and to clone the dynamic factors (although on another scale). Further-
more, the LGLMN was able to replicate the linear structure quite well, although the models
were not uniquely identifiable.

The models with a linear parametric structure for the property characteristics outperform
the models with a non-linear parametric structure. Furthermore, the results of the models
with a GRF as a spatial-temporal component performed similarly as their analogs using a
SRW to capture spatial-temporal dependencies. Therefore, it is recommended to use the
SRW as a spatial-temporal component as this is computationally faster to compute. The
NN-SRW-DFM that was estimated with the iterative approach performed better than its linear
and non-linear analogs. Hence, the NN-SRW-DFM might be the preferred choice of the models
for the prediction of real estate selling prices. However, a drawback of this method is that
it is uninterpretable, and therefore, one might still prefer to use the LGLMN-SRW-DFM or
the L-SRW-DFM instead. Hence, the recommended method depends on a trade-off between
accuracy on the one hand and speed and interpretability on the other.
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8.2. Limitations and Future Research

The training of the models that involved an FFNN took a lot of computational power. This
might not be a large drawback as the prediction using the model on new data is fast and
does not have to be estimated on a daily basis. Although when considering larger data sets,
which is quite obvious to do as this data set only considers data of one municipality, this
might be a problem.

Because of the large amount of computational power needed for the models, only 400 warm-
up and 400 sampling iterations were used on 4 different chains to estimate the models. The
prediction accuracy of a model might improve when using more iterations, but this will lead
to an even longer time to estimate the models.

In this research, some assumptions have been made that applied to all models based on
results from the L-SRW-DFM. Based on an experiment in which the L-SRW-DFM is estimated
with different numbers of dynamic factors, the choice was made to use 2 factors as it was
optimal when considering accuracy and estimation time. When using the SRW with another
model for property characteristics or an SDFM based on the GRF, using 2 factors might not
be the optimal number, and therefore, these models might improve when using a different
number of factors. Likewise, other assumptions based on results of the L-SRW-DFM were the
usage of 5 building types instead of 16, and using neighborhoods as a geographical level
instead of districts. These choices could have turned out differently if the experiments were
performed on the other models. Since the models were computationally heavy, this was
outside the scope of this thesis. Future research could analyze whether the accuracy of the
model improves when using a different number of factors.

The models in this research are analyzed only on data from the municipality of Rotterdam.
Therefore, when considering only the neighborhoods in this municipality an SDFM with a 1-
dimensional spatial structure, might be enough to capture the relevant spatial information.
However, when considering data from a larger geography, e.g. a country, an SDFM with
a 2-dimensional structure might be more suitable as it might be harder to capture spatial
information in one path. Future research can investigate whether more complex spatial
structures (e.g. the SDFM based on the GRF) are preferable when using a larger geography.

The models in this thesis can only be used to make predictions of house selling prices and
not to make forecasts. Future research could focus on the extension of these models to also
make forecasts.
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A. Appendix

A.1. Linear Splines

The interval of the lot size of a house is [0, ∞). This interval can be divided into multiple
sub-intervals by choosing S numbers s1, ..., sS such that:

[0, ∞) = [0, s1) ∪ [s1, s2) ∪ ... ∪ [sS, ∞), (A.1)

where S is the number of splines.

The splines are created by dividing the variable lot size into S sub-variables ls1, ..., lsS com-
puted by:

ls1 = min(s1, lot size),

ls2 = min(s2 − s1, (lot size − s1)
+),

...

lsS−1 = min(sS − sS−1, (lot size − sS−1)
+),

lsS = (lot size − sS)
+

Note that the sub-variables s1, ..., sS sum up to the lot size, i.e. lot size = ∑S
s=1 lss.
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A. Appendix

A.2. Building types

Table A.1.: Primary and secondary building types in the Rotterdam data set.

Primary building type Secondary building type (FW type)

Detached Detached (1)
Semi-detached Semi-detached (2)
Semi-detached Linked semi-detached (3)
Semi-detached Half semi-detached house (5)

Terraced Linked house (4)
Terraced Terraced house (6)

Corner house Corner house (7)
Corner house End-of-terrace house (8)

Apartment Gallery flat (9)
Apartment Porch flat (10)
Apartment Corridor flat (11)
Apartment Maisonette (12)
Apartment Ground floor apartment (13)
Apartment Upstairs apartment (14)
Apartment Apartment in a building with a shared entrance (15)
Apartment Penthouse (51)
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A.3. Quantitative variables per building type

A.3. Quantitative variables per building type

Table A.2.: Summary statistics of quantitative variables of building type Apartment

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Price (in 1000 EUR) 18,689 222 129 32 135 280 1,795
Log price (in EUR) 18,689 12.2 0.5 10.4 11.8 12.5 14.4
House size (in m2) 18,689 87 30 24 65 102 310
Lot size (obs. > 0, m2) 0 0 0 0 0 0 0

Table A.3.: Summary statistics of quantitative variables of building type Semi-detached

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Price (in 1000 EUR) 1,159 460 248 92 290 560 2,500
Log price (in EUR) 1,159 12.9 0.5 11.4 12.6 13.2 14.7
House size (in m2) 1,159 154 49 54 123 179 654
Lot size (obs. > 0, m2) 1,159 303 149 32 214 363 1,790

Table A.4.: Summary statistics of quantitative variables of building type Terraced

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Price (in 1000 EUR) 7,015 301 170 45 193 350 2,430
Log price (in EUR) 7,015 12.5 0.5 10.7 12.2 12.8 14.7
House size (in m2) 7,015 127 40 40 104 140 634
Lot size (obs. > 0, m2) 7,015 145 66 18 135 160 1,662

Table A.5.: Summary statistics of quantitative variables of building type Corner house

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Price (in 1000 EUR) 2,477 324 187 84 205 0 384 1,925
Log price (in EUR) 2,477 12.6 0.5 11.3 12.2 12.9 14.5
House size (in m2) 2,477 128 38 50 105 145 390
Lot size (obs. > 0, m2) 2,477 200 84 33 186 242 818

Table A.6.: Summary statistics of quantitative variables of building type Detached

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Price (in 1000 EUR) 676 761 471 98 435 950 3,100
Log price (in EUR) 676 13.4 0.6 11.5 13.0 13.8 14.9
House size (in m2) 676 205 85 58 150 245 750
Lot size (obs. > 0, m2) 676 663 378 80 391 857 1,992
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A.4. Multimodality of factors and loadings

(a) Factors of base model: L-SRW-DFM.

(b) Factors of L-SRW-DFM on generated data
from base model.

(c) Factors of NN-SRW-DFM on generated
data from base model.

Figure A.1.: Factors of the base model: L-SRW-DFM and of the L-SRW-DFM and NN-SRW-
DFM estimated on data simulated from the base model.
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A.4. Multimodality of factors and loadings

(a) Loadings of base: TSP SDFM lincomp

(b) Loadings of TSP SDFM lincomp on base (c) Loadings of TSP SDFM NN on base

Figure A.2.: Loadings of the base model: TSP SDFM with linear components and of the
models estimated on data simulated from the base model.
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A. Appendix

(a) Factors of base: TSP SDFM nonlincomp

(b) Factors of TSP SDFM nonlincomp on base (c) Factors of TSP SDFM NN on base

Figure A.3.: Factors of the base model: TSP SDFM with nonlinear components and of the
models estimated on data simulated from the base model.
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A.4. Multimodality of factors and loadings

(a) Loadings of base: TSP SDFM nonlincomp

(b) Loadings of TSP SDFM nonlincomp on
base (c) Loadings of TSP SDFM NN on base

Figure A.4.: Loadings of the base model: TSP SDFM with nonlinear components and of the
models estimated on data simulated from the base model.
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A. Appendix

A.5. Estimated Coefficients Simulation Study

Table A.7.: Estimates of the coefficients of the property characteristics component for the
true L-SRW-DFM and the L-SRW-DFM estimated on the data generated from the DGP.

True L-SRW-DFM Estimated L-SRW-DFM

Mean St. Dev. R̂ Mean St. Dev. R̂

α̂ 8.334 0.086 1.000 8.209 0.083 1.001
β̂1 0.815 0.016 1.000 0.843 0.016 1.001
β̂2 -0.012 0.029 1.000 -0.034 0.029 0.999
β̂3 -0.066 0.050 1.000 -0.056 0.049 1.000
β̂4 0.002 0.016 0.999 0.027 0.016 0.999
β̂5 -0.036 0.019 0.999 -0.063 0.019 1.000
β̂6 0.041 0.014 1.000 0.060 0.014 1.000
β̂7 0.006 0.023 1.000 0.007 0.022 1.000
β̂8 0.138 0.056 1.000 0.241 0.054 1.000
β̂9 0.087 0.034 0.999 0.083 0.034 1.000
β̂10 0.078 0.023 1.000 0.071 0.023 1.000
β̂11 0.011 0.019 1.000 0.022 0.019 1.000
β̂12 -0.004 0.017 1.000 -0.002 0.017 0.999
β̂13 -0.016 0.020 1.000 -0.013 0.020 1.000
β̂14 -0.009 0.024 1.000 0.002 0.025 1.001
β̂15 0.044 0.020 1.000 0.059 0.020 1.000
β̂16 0.188 0.018 1.000 0.205 0.018 1.001
β̂17 0.261 0.031 1.000 0.234 0.032 1.000
β̂18 0.252 0.052 1.000 0.224 0.052 1.001
ν̂1 0.001 0.0001 0.999 0.001 0.0001 1.001
ν̂2 0.001 0.0001 1.000 0.001 0.0001 0.999
ν̂3 0.00003 0.0001 1.000 0.0002 0.0001 1.000
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A.5. Estimated Coefficients Simulation Study

Table A.8.: Estimates of the coefficients of the property characteristics component for the true
NL-SRW-DFM and the NL-SRW-DFM estimated on the data generated from the DGP.

True NL-SRW-DFM Estimated NL-SRW-DFM

Mean St. Dev. R̂ Mean St. Dev. R̂

α̂ 8.129 0.085 1.000 8.055 0.077 0.999
β̂ 0.859 0.016 1.000 0.870 0.014 1.000

γ̂1 -0.020 0.034 1.000 0.010 0.032 0.999
γ̂2 -0.010 0.061 0.999 0.019 0.059 1.000
γ̂3 0.004 0.016 0.999 -0.002 0.015 1.000
γ̂4 -0.044 0.020 1.000 -0.034 0.019 1.000
γ̂5 0.043 0.014 1.000 0.032 0.013 1.000
γ̂6 0.011 0.023 0.999 0.047 0.023 0.999
γ̂7 0.128 0.054 0.999 0.123 0.054 1.000
γ̂8 0.096 0.036 1.000 0.143 0.034 0.999
γ̂9 0.077 0.025 1.001 0.101 0.023 0.999
γ̂10 0.004 0.021 1.001 0.007 0.019 1.000
γ̂11 0.005 0.017 1.001 -0.006 0.016 1.000
γ̂12 -0.002 0.022 1.001 0.004 0.020 0.999
γ̂13 0.009 0.026 1.001 0.059 0.025 1.000
γ̂14 0.058 0.022 1.001 0.046 0.020 1.000
γ̂15 0.144 0.021 1.002 0.166 0.020 1.000
γ̂16 0.201 0.019 1.002 0.222 0.018 0.999
γ̂17 0.291 0.034 1.000 0.313 0.032 0.999
γ̂18 0.280 0.056 1.001 0.350 0.053 1.001
ν̂1 0.053 0.006 0.999 0.047 0.006 0.999
ν̂2 0.153 0.016 1.000 0.154 0.017 0.999
ν̂3 0.032 0.015 1.000 0.053 0.017 1.001
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Table A.9.: Estimate of the coefficients of the true L-SRW-DFM and the L-SRW-DFM esti-
mated on the data generated from the true L-SRW-DFM used for the experiment of the
LGLMN-SRW-DFM.

True L-SRW-DFM Estimated L-SRW-DFM

Coefficient (variable) Mean St. Dev. R̂ Mean St. Dev. R̂

α (intercept) 12.112 0.015 0.998 12.137 0.015 0.999
β1 (house size) 0.286 0.002 1.000 0.285 0.002 1.003
β2 (lot size) 0.009 0.002 1.000 0.006 0.002 0.999
β3 (semi-detached) 0.317 0.008 1.000 0.323 0.008 0.998
β4 (terraced) 0.146 0.004 0.998 0.150 0.004 1.000
β5 (corner house) 0.209 0.006 0.998 0.206 0.006 0.999
β6 (detached) 0.386 0.011 0.999 0.390 0.011 1.000
β7 ( - 1899) 0.060 0.011 0.998 0.059 0.011 0.998
β8 (1900 - 1919) 0.071 0.008 0.999 0.085 0.007 0.999
β9 (1920 - 1929) 0.044 0.007 1.003 0.038 0.007 1.002
β10 (1945 - 1959) -0.041 0.005 0.999 -0.047 0.005 0.999
β11 (1960 - 1969) -0.082 0.007 0.999 -0.080 0.006 0.998
β12 (1970 - 1979) -0.027 0.009 0.999 -0.016 0.009 0.999
β13 (1980 - 1989) 0.030 0.007 1.000 0.035 0.007 0.999
β14 (1990 - 1999) 0.123 0.007 0.999 0.126 0.007 0.999
β15 (2000 - 2009) 0.205 0.006 0.998 0.210 0.006 1.001
β16 (2010 - 2014) 0.241 0.011 0.999 0.245 0.011 0.999
β17 (2015 - ) 0.211 0.017 0.999 0.223 0.018 0.999
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A.6. Experiments on Number of Factors and Building types

A.6. Experiments on Number of Factors and Building types

Table A.10.: CV values for the SRW-DFlin when using the 5 primary building types and 16
secondary building types.

Using 5 primary building types Using 16 secondary building types

CV value 4, 196, 972, 208 4, 216, 531, 198

Table A.11.: CV values on an experiment with 5-fold CV to see how many dynamic factors to
use for the SRW-DFlin. The model is estimated for a different number of factors K = 1,...,6.

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

4, 518, 623, 937 4, 196, 972, 208 4, 189, 297, 819 4, 208, 286, 544 4, 207, 119, 291 4, 210, 591, 623
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A.7. Hyper-parameters

Table A.12.: Hyper-parameters of the Bayesian estimation procedure.

Hyper-parameter Hyper-parameter value

Number of factors 2
Number of knots of FFNN with 1 hidden layer 20

Table A.13.: Settings of the NUTS-algorithm.

Hyper-parameter Hyper-parameter value

Number of sampling iterations 500
Number of warm-up iterations 500

Maximum tree-depth 12
Number of chains 4

Table A.14.: Hyper-parameters of the iterative estimation procedure.

Hyper-parameter Hyper-parameter value

Number of layers 4
Number of knots per layer 20

Batch size 500
Number of epochs 1000
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A.8. Result for variations in spatial geographies

A.8. Result for variations in spatial geographies

Table A.15.: In-sample and out-of-sample performance measures of the models with different
spatial geographies on data from the municipality of Rotterdam.

MAPE RMSE RMSE log price

SRW-DFlin on districts (in) 0.132 69,493 0.173
SRW-DFlin on districts with neighborhood RE (in) 0.129 66,956 0.171
SRW-DFlin on districts (out) 0.133 73,263 0.175
SRW-DFlin on districts with neighborhood RE (out) 0.129 71,477 0.170
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A. Appendix

A.9. Estimates of property characteristic component
parameters

Table A.16.: Estimation of the time-invariant parameters of the L-SRW-DFM

Parameter Mean StdDev 5% 50% 95% R̂

α 8.465876 0.024439 8.425966 8.465645 8.505752 0.999266
β1 0.792944 0.004651 0.785090 0.792902 0.800410 0.997994
β2 -0.019612 0.013924 -0.041725 -0.019894 0.002785 1.002402
β3 -0.081630 0.009670 -0.097117 -0.081743 -0.065547 1.002206
β4 -0.081470 0.012092 -0.101050 -0.081566 -0.061924 1.002196
β5 0.061691 0.015287 0.036158 0.061996 0.087193 1.002709
β6 0.087161 0.009448 0.071021 0.087470 0.102240 0.997868
β7 0.080840 0.006723 0.069933 0.081047 0.091669 0.999969
β8 0.031871 0.006237 0.021577 0.031768 0.041969 1.000334
β9 -0.016862 0.005028 -0.025319 -0.016793 -0.008430 1.002462
β10 -0.059182 0.006325 -0.069556 -0.059169 -0.048773 1.001007
β11 -0.028267 0.007660 -0.041101 -0.028326 -0.016523 1.000422
β12 0.028435 0.006092 0.018298 0.028332 0.038674 1.002816
β13 0.105162 0.006112 0.094873 0.105022 0.115210 0.999248
β14 0.183835 0.005629 0.174697 0.183813 0.193226 1.001882
β15 0.239947 0.009884 0.223671 0.239806 0.256080 1.002327
β16 0.227928 0.016145 0.200733 0.228168 0.254610 0.997803
β17 0.001415 0.000069 0.001301 0.001415 0.001527 1.002070
β18 0.000792 0.000039 0.000728 0.000792 0.000854 0.999497
β19 0.000022 0.000007 0.000011 0.000021 0.000032 1.000328
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A.9. Estimates of property characteristic component parameters

Table A.17.: Estimation of the time-invariant parameters of the NL-SRW-DFM

Parameter Mean StdDev 5% 50% 95% R̂

α 6.393192 0.035957 6.335853 6.393226 6.454386 1.000774
β 3.753167 0.022067 3.716420 3.753094 3.788175 1.001303
ν1 0.393236 0.027489 0.347797 0.393487 0.439790 1.002019
ν2 0.591594 0.031885 0.539096 0.591112 0.643140 1.000785
ν3 0.029457 0.008645 0.015768 0.029255 0.044140 1.000463
γ1 0.261361 0.015191 0.236784 0.261333 0.286874 1.001703
γ2 0.089709 0.012875 0.068151 0.089917 0.110566 1.000181
γ3 -0.034642 0.009601 -0.050414 -0.034368 -0.018866 1.000855
γ4 -0.024717 0.011722 -0.044379 -0.024769 -0.005498 1.000643
γ5 0.093402 0.010494 0.076401 0.093341 0.111043 0.999743
γ6 0.086184 0.007504 0.073784 0.086285 0.098548 0.999926
γ7 0.023754 0.007206 0.011719 0.023898 0.035592 1.002816
γ8 -0.010279 0.005170 -0.018608 -0.010270 -0.001701 1.000978
γ9 -0.050550 0.006543 -0.061280 -0.050400 -0.040027 1.000366
γ10 -0.013757 0.008534 -0.027547 -0.013758 0.000782 1.001105
γ11 0.034192 0.006808 0.023292 0.034002 0.045787 1.001167
γ12 0.113470 0.006891 0.102000 0.113338 0.124946 1.002488
γ13 0.194670 0.006090 0.184478 0.194691 0.204582 1.000824
γ14 0.262041 0.010231 0.246026 0.261736 0.279329 1.000469
γ15 0.253817 0.017377 0.224591 0.253765 0.282295 0.999588

Table A.18.: Estimation of the time-invariant parameters of the -LGRF-DFM

Parameter Mean StdDev 5% 50% 95% R̂

α 8.470578 0.025510 8.426654 8.471118 8.512071 1.000284
β1 0.792208 0.004845 0.784406 0.792134 0.800485 1.000158
β2 0.001409 0.000066 0.001302 0.001408 0.001518 1.001667
β3 0.000787 0.000040 0.000723 0.000787 0.000852 0.999067
β4 0.000026 0.000007 0.000015 0.000026 0.000037 0.999393
β5 0.062667 0.015847 0.036059 0.063072 0.088504 1.000714
β6 -0.018461 0.013440 -0.040348 -0.018458 0.003808 1.000711
β7 -0.080479 0.009720 -0.096547 -0.080512 -0.064456 1.001513
β8 -0.080252 0.011776 -0.100455 -0.080143 -0.061213 1.003226
β9 0.086148 0.009930 0.069788 0.086014 0.102444 0.997857
β10 0.079417 0.006951 0.068339 0.079241 0.091064 0.999555
β11 0.031892 0.006324 0.021561 0.031816 0.042058 1.000601
β12 -0.017416 0.004907 -0.025723 -0.017099 -0.009693 1.005887
β13 -0.059991 0.006144 -0.070039 -0.059987 -0.049937 0.998604
β14 -0.028956 0.007654 -0.041495 -0.028872 -0.015929 0.998432
β15 0.028360 0.005907 0.018702 0.028508 0.037943 0.997961
β16 0.103658 0.006244 0.093428 0.103840 0.113824 1.000050
β17 0.182393 0.005477 0.173264 0.182317 0.191287 1.000725
β18 0.238454 0.009471 0.223084 0.238243 0.254290 0.998496
β19 0.226946 0.016480 0.200221 0.226781 0.255313 0.998300
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Table A.19.: Estimation of the time-invariant parameters of the NL-GRF-DFM

Parameter Mean StdDev 5% 50% 95% R̂

α 6.403259 0.037513 6.342585 6.403067 6.466521 0.999858
β 3.747285 0.023110 3.709171 3.747202 3.785224 0.998931
ν1 0.389489 0.027721 0.344995 0.388378 0.434364 1.001682
ν2 0.584177 0.031343 0.534618 0.583628 0.637441 1.001505
ν3 0.031529 0.009065 0.017404 0.031406 0.046898 0.999324
γ1 0.261422 0.015194 0.236461 0.262121 0.286628 1.004477
γ2 0.089860 0.012656 0.068639 0.089908 0.110410 1.000504
γ3 -0.034116 0.009587 -0.050829 -0.034056 -0.018986 1.000926
γ4 -0.024288 0.011807 -0.044082 -0.024226 -0.005667 1.000855
γ5 0.093459 0.009648 0.078360 0.093357 0.109859 0.999075
γ6 0.086004 0.007295 0.074251 0.085789 0.098174 0.999840
γ7 0.023803 0.007053 0.012489 0.023669 0.035320 1.000262
γ8 -0.010748 0.005157 -0.019443 -0.010892 -0.002192 1.001383
γ9 -0.050705 0.006617 -0.061365 -0.050598 -0.040026 0.999362
γ10 -0.013763 0.008327 -0.027549 -0.013855 -0.000242 0.999378
γ11 0.034723 0.006858 0.022882 0.034709 0.046741 0.999493
γ12 0.112497 0.006611 0.101649 0.112345 0.123414 1.001837
γ13 0.193923 0.006009 0.184084 0.193929 0.203499 1.001193
γ14 0.261267 0.010605 0.243996 0.261847 0.279009 0.998996
γ15 0.254620 0.017761 0.224875 0.254638 0.282949 0.998775
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