

 Challenge the future

Automotive radar:
Real-time implementation of a
joint sensing and
communication waveform on a
microcontroller

Tasneem Rahaman Khan

Automotive RADAR: Real-time
implementation of joint sensing

and communication waveform on
a microcontroller

by

Tasneem Rahaman khan

to obtain the degree of Master of Science

in

Computer Engineering

at the Delft University of Technology,
to be defended publicly on Friday November 30, 2018 at 14:30 PM.

Student number: 4513673
Project duration: January 1, 2018 – November 30, 2018
Thesis committee: Prof. DSc. Alexander Yarovoy, Technische Universiteit Delft

Dr. Ir. Arjan J. van Genderen, Technische Universiteit Delft
Dr. Ir. Faruk Uysal, Technische Universiteit Delft

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

Eleven months ago I embarked onto conducting this thesis work with a mo-
tivation to contribute my knowledge towards the future of the cars. It has
been a commendable journey ever since then. This thesis document is the
fulfillment of the thesis project concerning my master study. The underlying
study and work would have been impossible to complete without receiving
support and help in many different ways. I would like to start with conveying
my sincerest gratitude towards my advisor Prof. DSc. Alexander Yarovoy
for giving me the opportunity to be a part of such a potential thesis topic and
give me a place in the Microwave Sensing, Signals and Systems Group. I want
to extend sincerest credits and gratitude to my daily supervisor Dr. Faruk
Uysal for his scientific and technical guidance and for showing continued
confidence in my skills along with being a good mentor. I also want to thank
my second supervisor Dr. Arjan van Genderen for his constant feedbacks
relating to computer engineering concepts. I would also like to acknowledge
Ir. Pascal Aubry for supporting me extensively with issues relating with MAT-
LAB. Besides, I also thank Mr.René Geraets from NXP for providing me with
all the technical information throughout the thesis work.

It was delightful to be able to work in the friendly, supportive, and pro-
ductive atmosphere of the Microwave Sensing, Signals and Systems Group. I
warmly thank all of my fellow department students from whom I learnedmany
concepts concerningmy thesis, receive important feed-backs and shared count-
less cups of coffee and laughs.

I thank all my well wishers for being there for me time to time. I am hugely
indebted to the Bechan family and friends for all their love, affection and
homely warmth.

Studying at the Technical University of Delft has been truly a pleasure.
The institution has offered me of all the help and support required in times
of crisis and will never be forgotten.

In the end, I express all my sublime gratitude to Abbu, Maa and Tahmiah
for all the encouragement, friendly support, philosophy, wishes, and belief.
Above all, I thank Almighty for making all this possible for me.

Tasneem Rahaman khan
Delft, November 2018

iii

Contents

Summary vii

List of Acronyms ix

1 Introduction 1
1.1 Related work. 3
1.2 Problem Statement. 3
1.3 Organization . 4

2 Theory and Background 5
2.1 Radar . 5
2.2 FMCW Radar . 6
2.3 Communication waveform . 12

2.3.1 Binary-phase coded modulation . 12
2.4 Joint BPSK-LFM waveform . 14
2.5 Microcontroller Architecture . 14

2.5.1 Memory architectures . 15
2.5.2 Need for Multi-core architecture in automotive radars. 16

2.6 Conclusions . 17

3 Hardware and Software Architecture 19
3.1 Hardware Architecture . 19

3.1.1 TEF810x Radar front-end. 19
3.1.2 S32R274 Radar Microcontroller. 21

3.2 Software Architecture . 26
3.2.1 FMCW chirp and frame configurations 26
3.2.2 API . 27
3.2.3 DCC data output modes . 28

3.3 Conclusions . 31

4 System Implementation 33
4.1 Microcontroller programming . 33

4.1.1 host PC to MCU Communication . 34
4.1.2 MCU to host PC communication . 36
4.1.3 Inter-core communication. 37

4.2 LFM- BPSK Implementation . 40
4.3 MATLAB Post-processing . 43
4.4 Validation test case scenario . 44
4.5 Conclusions . 46

v

vi Contents

5 Results and Validation 47
5.1 Real-time 2D FFT spectrum with and without phase coding 47
5.2 Validation of 2D FFT spectrum with and without phase shift 48
5.3 MCU output mode validation . 49

5.3.1 FFT output mode validation . 49
5.3.2 ADC samples output mode validation 53

5.4 Message reconstruction . 55
5.5 Conclusion . 60

6 Conclusion and Future work 61
6.1 Conclusion . 61
6.2 Future scope. 63

A Hardware setup 65
A.1 TEF810X Transceiver . 65
A.2 S32R274 MCU with debugger . 65
A.3 Communication GUI using the TCP/IP ethernet protocol 65
A.4 MCU output mode packet receiver GUI using UDP protocol 66

B Simulations 69
B.1 256 beat signals from FFT output mode . 69
B.2 Beat signals in a 3D view from FFT Output mode 70
B.3 256 beat signals from ADC output mode . 71

C Matlab code 73
C.1 BPSK-LFM signal representation. 73
C.2 2D FFT spectrum with and without phase coding 73
C.3 Extracting raw ADC samples from UDP packets and reconstructing the

message . 76
C.4 Extracting FFT values from UDP packets and reconstructing the mes-

sage . 78

Bibliography 81

Summary

The automotive radars are significantly drifting towards the 77GHz electro-
magnetic spectrum band and by 2020, they will no longer operate in the
24GHz band as per the regulations given by the European Telecommuni-
cations Standards Institute (ETSI) and Federal Communications Commis-
sion (FCC) in Europe and the U.S. With the communication systems also
heaping towards the magnitude of radar functionality, the 77GHz spectrum
has opened a wide scope and possibility to combine both communication and
radar waveforms and offer joint radar sensing-communication functionality.

The true aim of this thesis work is to implement one of the widely used
digital modulation techniques namely Binary Phase Shift Keying (BPSK) to
embed information bits in the Frequency Modulated Continuous Waveform
(FMCW) radar waveform via a Microcontroller (MCU) to facilitate real time
radar processing and information exchange.

The report starts with presenting a theoretical overview on FMCW automo-
tive radar, waveforms for both sensing and communication and a brief review
on the MCU’s in the automotive radars. The next chapter of report gives a de-
tailed explanation on the hardware and software architectures on which the
thesis implementation is carried out. The following chapter of the report fo-
cuses on the main adopted implementation to embed information bits and all
the underlying methodologies related to it. Finally, the results of this thesis
work is diversified into obtaining real time 2D Fast Fourier Transform (FFT)
spectrum, beat signals, reconstructing the message embedded in the FMCW
waveform and validate the correctness of the phase coding.

vii

List of Acronyms

WHO World Health Organization

ETSI European Telecommunications Standards Institute

FCC Federal Communications Commission

OFDM Orthogonal Frequency Division Multiplexing

BPSK Binary Phase Shift Keying

PSK Phase Shift Keying

QPSK Quadrature Phase Shift Keying

EM Electromagnetic

BPSK-LFM Binary Phase Coded Linear Frequency Modulated Waveform

MCU Microcontroller

DSRC Dedicated Short Range Communication

V2V Vehicle-to-Vehicle

mm-Wave Millimeter-Wave

LFM Linear Frequency Modulated

DSSS Direct Spread Sequence Spectrum

CPU Central Processing Unit

ALU Arithmetic Logic Unit

RISC Reduced Instruction Set Computing

MIMO Multiple Input Multiple Output

FMCW Frequency Modulated Continuous Waveform

CW continuous Waveform

FFT Fast Fourier Transform

IF Intermediate Frequency

NRZ Non-Return to Zero

ix

x List of Acronyms

TCP/IP Transmission Control Protocol/Internet Protocol

UDP User Diagram Protocol

DCC Dual Credit Card

SRAM Shared Random Access Memory

GUI Graphical User Interface

ADC Analog Digital Converter

AWGN Additive White Gaussian Noise

BER Bit Error Rate

ENIAC Electronic Numerical Integrator And Computer

EDVAC Electronic Discrete Variable Automatic Computer

API Application Programming Interface

SPT Signal Processing Toolbox

ISA Instruction Set Architecture

SPI Serial peripheral Interface

EMAC Ethernet Media Access Control Address

VCO Voltage Control Oscillator

BSD Berkeley Socket Distribution

ASCII American Standard Code for Information Interchange

1
Introduction

In today’s world, cars are increasingly becoming the center of human’s lives.
According to the recent survey conducted by the World Health Organiza-
tion (WHO) on road safety [20], it was deduced that around 1.25million people
die due to road accidents. It was also predicted that by the year 2030, this
situation will be the 7th leading cause of human death. As the number of ve-
hicles on roads are dramatically increasing, the need for driver assistance is
widely a subject of research interest to the automotive industries. To address
this, the automotive industry has found its interest in deploying radars in the
vehicles to avoid road fatalities. Today’s most desirable vehicles have auto-
motive radars that provide parking and adaptive cruise control assistance to
the driver, while also warning the driver of any fore-coming collisions to avoid
accidents. The main function of radar is to provide detection of any presence
of one or more targets and provide information on the range, angle and mo-
tions relative to the radar. Conventionally, radars are used because of its im-
munity to the environmental influences such as high temperatures, weather
conditions or variation in lighting making radar to be used as an appropriate
technology in autonomous automobiles. Different applications provided by
an automotive radar including the scope of information exchange in vehicles
is shown in the figure 1.1.

Automotive radars operate at the bands in 24 Giga Hertz (GHz) and 77
GHz of the electromagnetic spectrum which is referred to as mmWave band
[6]. Such high operational frequencies are used to obtain higher range reso-
lution. Since the inception of automotive radars, the 24 GHz were initially
developed for short range radar applications such as blind spot detection
and collision avoidance. However, this band shares some limitations as it
may cause interference in the radio astronomy and satellite services. Due to
the spectrum regulations given by the European Telecommunications Stan-
dards Institute (ETSI) and Federal Communications Commission (FCC), these
radars will no longer be available in vehicles by 2020 in Europe and the U.S.
The 24 GHz radars will be replaced by 77 GHz in the future. Particularly, the
77 GHz band(77-81 GHz) provides various advantages such as smaller an-

1

2 1. Introduction

tennas, a sweep bandwidth of 4 GHz which is much larger than what 24 GHz
offers, greater accuracy, high transmit power and a better object resolution.

Figure 1.1: Automotive radar applications [9]

In addition to the driver assistance feature that is fulfilled by automotive
radars by sensing the vehicles around them, it is also essential for the ve-
hicles on road to be able to share their information like speed and updates
on road situations with the vehicles around them in order to avoid accidents
and ensure safety. To address this, it is essential to establish a Vehicle-to-
Vehicle (V2V) communication medium that will allow the vehicles to safely ex-
change raw sensor data to deliver applications such as adaptive cruise control
and forward collision warning [14]. The current v2v communication is built
on Dedicated Short Range Communication (DSRC) standard which functions
in the 5.9 GHz band [4]. However, this standard provides much lesser data
rates of 27 Mbps that is difficult to support the higher end applications for
automated driving. To overcome this limitation and taking advantage of the
very recent developments in this aspect of higher frequency spectrum alloca-
tion for automotive radars, it is been observed that with the digital wireless
communication systems have their carrier frequencies diverging towards the
mmWave standards, which means that it shared the same order of magni-
tude compared to the radars. The inception of the idea concerning the joint
functionality of both sensing and communication is the true motive behind
conducting this thesis. Such a joint functionality system would unquestion-
ably offer various possibilities for more autonomous applications.

1.1. Related work 3

1.1. Related work
In order to achieve the integration of sensing and communication in radar
system, there are currently three techniques as stated in [5] namely: time-
sharing, sub beams and signal sharing. Time sharing technique involves in
reusing the same antenna, transmitter and receiver by using a strobe switch
for switching between communication and radar modes. The advantage of
such technique is its simple design with respect to communication and radar
waveform. However, at any given time, it can only perform one functionality
and that affects the system performance. The second technique is based on
sub-beams which is utilized in phased array radars,wherein the array is bro-
ken down with respect to the radar and communication functionalities and
the third approach is based on signal sharing. The key idea of this approach
is to use a single waveform to perform both radar sensing and communica-
tion without degrading the performance of sensing functionality. Two differ-
ent waveform design concepts were proposed namely Orthogonal Frequency
Division Multiplexing (OFDM) and Direct Spread Sequence Spectrum (DSSS)
to achieve the fusion of the functionalities. Most of the current digital com-
munication systems work on the principle of OFDM mentioned in [13]. In
the paper by [7], OFDM was also introduced as a potentially suitable radar
waveform and in [19], it was also shown that the OFDM offers Doppler es-
timation that depends only on the OFDM symbols instead of the base-band
signal. However, from the recent research on OFDM waveform, very advanced
signal processing methods are required since OFDM has multicarriers. An-
other waveform studied by [18] describes spread spectrum related concepts
that uses single carrier. This approach provided high data rates and good
radar performance. However, it increased the complexity of the Rad-Com im-
plementation. Therefore, in order to employ a joint radar waveform for both
sensing and communication to facilitate ease in implementation and reduce
the complexities, we choose to make use of one of the simplest digital mod-
ulation technique’s that can used to embed information bits in the Linear
Frequency Modulated (LFM) chirp. Digital communication waveforms such
Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK)
and others can be modulated into the linear frequency modulated waveform
which is typically used by current automotive radars. The approach of sig-
nal sharing is highlighted in the work proposed by [18] for joint sensing and
communication system (Rad-Com).

1.2. Problem Statement
The aim of this thesis is to implement a joint waveform on a Microcontroller
(MCU) that can simultaneously be employed for radar sensing as well as for
information transmission in the Electromagnetic (EM) spectrum (77-81GHz)
allotted for automotive vehicles without degrading the performance of radar
sensing. This will enable intelligent interaction among the vehicles on the
road and improve road safety. This implementation is based on the sig-
nal sharing approach for integration of radar and communication system as

4 1. Introduction

stated in [5].
To achieve this goal, we consider one of the most widely known radar

waveforms used in automotive radars, namely, LFM waveform, also known
as chirps for the purpose of sensing. In order to attain information exchange
among vehicles, we encode the data by phase coding the chirp with 0 or 𝜋,
which means only one bit can be embedded per chirp. We take the advantage
of the NXP’s 77 GHz transceiver’s inbuilt feature of binary phase shift key-
ing to encode the data as it is the simplest digital communication waveform.
Further, we investigate the correctness of the message reconstructed.

The main goals of the thesis is to

• Propose software architecture for interface between NXP’s S32R274MCU
and TEF810X transceiver to achieve joint sensing-communication func-
tionalities via radar transceiver for automotive radar applications

• Implement the Binary Phase Coded Linear Frequency Modulated Wave-
form (BPSK-LFM) on the MCU to facilitate real time processing by con-
trolling the radar settings and signal processing in real-time

• Verify the correctness of phase coding by establishing various different
calibration test scenarios

1.3. Organization
This thesis document is structured in the following chapters:

• Chapter 2: We present all the underlying theory relating to the Frequency
Modulated Continuous Waveform (FMCW) radar, discuss the BPSK com-
munication waveform and show the motivation behind using BPSK com-
munication scheme in the radar waveform. In addition to this, we review
the basic concepts of MCU and discuss the idea behind the trend of de-
ploying MCU in automotive radars.

• Chapter 3 : In this chapter, we explain in detail of all the required hard-
ware and software architecture concepts supporting our implementa-
tion.

• Chapter 4 : Here, we present our system Implementation model and
strategies employed to achieve joint sensing-communication waveform
via a MCU to facilitate real time signal processing.

• Chapter 5 : We discuss the results that we achieved as a result of our
system implementation and present the validation of the results.

• Chapter 6: Finally, we summarize the thesis work with a conclusion
along with discussions regarding possible future work that can be im-
mediately investigated as a result of this thesis.

2
Theory and Background

To explain the implementation of a joint waveform on an MCU to achieve both
radar sensing and to enable the information exchange, we start with presenting
the basic concept and working principle of a radar in the first section. Following
this, we explain the basic concept of an automotive radar that works on the
FMCW principle in the second section. After this, to achieve communication
functionality, we give a brief explanation on the BPSK waveform in the next
section. Then, we show the motivation behind using these two waveforms to
achieve the goal. The last sections describe the basic concepts of MCU for the
reader to get familiarized with.

2.1. Radar
Radar which stands for Radio Detection and Ranging is a device that en-
ables certain objects to be seen- that is, detected and located at distances
beyond the sight of an unaided eye. Furthermore, radar measures the range
of the object it detects and also measures the speed of such a moving object.
Radars traditionally were invented during the second world war to serve its
purpose in the defence and military applications for long-range air surveil-
lance and short-range detection of low altitude incoming targets. Later on,
it was improvised to be used as weather radars and air-traffic control radar
in the airports to guarantee the safety of air congestion, meteorology, radio
astronomy, and medicine.

Conventionally, a radar system comprises of a transmitter which creates
the energy pulse, an antenna to send these pulses into the atmosphere and
hit the target object and receive the reflected pulse back and a receiver which
detects, amplifies and the transforms the received echo signals.
The radars are broadly classified into pulsed radars and continuous wave
radar. Pulsed radars are used to transmit short and powerful pulses at regu-
lar time intervals. These radars provide range estimations from the time delay
between the transmitted and received echo pulse. In other words, the target
range can be obtained from recording the round trip travel time of a pulse, 𝜏.
Therefore, the distance 𝑅 to the target is given by the following equation.

5

6 2. Theory and Background

𝑅 = 𝑐𝜏/2 (2.1)

where 𝑐 is the velocity of Electromagnetic (EM) wave in free space. In con-
trast to the pulsed radars, unmodulated continuous Waveform (CW) radar
systems transmit a fixed frequency signal, and the receiver gets superim-
posed reflections from multiple targets.

In the case of the target is in motion, the received signal will be shifted
in frequency due to the doppler effect. Such a phenomenon can be used to
estimate the velocity of the target. The limitation of unmodulated CW radars
is its incapability of estimating the range of the target as it operates continu-
ously at the single frequency by which it is not possible to calculate the time
delay between the transmitted and the received signal. In order to overcome
this limitation, a modulation technique was proposed. In this technique, the
carrier wave will be modulated with respect to amplitude, frequency or phase
in order to measure both the time delay between the transmitting and re-
ceiving signal and the doppler frequency shift. Most widely used form of CW
radars used in the automotive industry is the Frequency Modulated Contin-
uous Waveform (FMCW) waveform.

2.2. FMCW Radar
FMCW radars are most widely used in the automotive industry today. They
work on the principle of transmitting a radar signal referred to as a ”chirp” as
seen in the figure 2.3.

FMCW
waveform
generator

Signal
Processing

Low-
pass
filter

A/D

Received
signal

Transmitted
signal

Mixer

Figure 2.1: FMCW radar block diagram

This is a sinusoidal wave whose frequency modulation is linearly increased
with respect to the time; hence, the name linear frequencymodulated(LFM)[2].

2.2. FMCW Radar 7

In other words, the chirp is linearly swept over a range of frequencies with
bandwidth 𝐵 for a duration of chirp, 𝑇. This phenomenon causes the fre-
quency 𝑓(𝑡) to vary linearly at any given time, and is given by the equation:

𝑓(𝑡) = 𝑓 + 𝑆𝑡 (2.2)

where 𝑓 is the carrier frequency, 𝑡 is the instantaneous time and 𝑆 is the
slope of the chirp shown in the figure 2.3 which is expressed as:

𝑆 = 𝐵
𝑇 (2.3)

When 𝑆 is greater than 0, the chirp is referred to as up-chirp, and when
S is less than 0, it is referred to as down chirp. The depiction of an up-chirp
centered at a 100 Hz center frequency is as shown in the figure 2.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (millisec)

-1

-0.5

0

0.5

1

A
m

p
lit

u
d
e

0 50 100 150 200

Frequency (Hz)

10

20

30

40

A
m

p
lit

u
d
e

Figure 2.2: (a) LFM signal in Amplitude-time domain, (b) Chirp signal in frequency-
time domain

As frequency changes over the time, we can obtain instantaneous phase
as:

𝜓(𝑡) = 2𝜋∫ 𝑓(𝑡)𝑑𝑡 + Ψ (2.4)

𝜓(𝑡) = 2𝜋 (𝑓 𝑡 + 𝑆2𝑡) + Ψ (2.5)

Therefore, a transmitting LFM chirp signal is represented as,

𝑋 (𝑡) = 𝐴 𝑐𝑜𝑠(𝜓(𝑡)) (2.6)

8 2. Theory and Background

𝑋 (𝑡) = 𝐴 𝑐𝑜𝑠 (2𝜋 (𝑓 𝑡 + 𝑆2𝑡) + 𝜓) (2.7)

where 𝐴 is the amplitude of the transmitted LFM chirp, 𝜓 is the initial
phase, 𝑓 is the carrier frequency, 𝑆 is the slope of the chirp, and 𝑡 is the
instantaneous time.

Figure 2.3: (a) Single target frequency-time domain, (b) IF signal[12]

According to the FMCW radar principle, the LFM signal is transmitted and
hits the target which is located at an initial distance 𝑅 with a radial velocity
𝑣. The echo signal referred to as returned signal from the target will be the
replica of the transmitted signal but with some time delay 𝜏. The 𝜏 is expressed
as,

𝜏 = 2(𝑅 + 𝑣𝑡)
𝑐 (2.8)

Due to the time delay 𝜏, the received signal is represented as,

𝑋 (𝑡 − 𝜏) = 𝐵 𝑐𝑜𝑠(𝜓(𝑡 − 𝜏)) (2.9)

𝑋 (𝑡 − 𝜏) = 𝐵 𝑐𝑜𝑠 (2𝜋 (𝑓 (𝑡 − 𝜏) + 𝑆2(𝑡 − 𝜏)) + 𝜓) (2.10)

From the figure 2.1, it can be seen that the received signal is mixed with
the transmitted signal. This results in an Intermediate Frequency (IF) signal
𝑋 (𝑡) that is given by,

𝑋 (𝑡) = 𝑋 (𝑡) ⋅ 𝑋 (𝑡) (2.11)

2.2. FMCW Radar 9

The IF signal is obtained as,

𝑋 (𝑡) = 𝐴 𝐵
2 𝑐𝑜𝑠 (2𝜋 (𝑓 𝑡 + 𝑆2𝑡 − 𝑓 (𝑡 − 𝜏) −

𝑆
2(𝑡 − 𝜏))) (2.12)

𝑋 (𝑡) = 𝐴 𝐵
2 𝑐𝑜𝑠 (2𝜋 (𝑓 𝜏 + 𝑆𝑡𝜏 − 𝑆2𝜏)) (2.13)

By substituting equation 2.8 in equation 2.13, we obtain,

𝑋 (𝑡) = 𝐴 𝐵
2 𝑐𝑜𝑠 (2𝜋 (𝑓 2(𝑅 + 𝑣𝑡)𝑐 + 𝑆𝑡2(𝑅 + 𝑣𝑡)𝑐 − 𝑆2 (

2(𝑅 + 𝑣𝑡)
𝑐))) (2.14)

By simplifying the equation 2.14, we get,

𝑋 (𝑡) = 𝐴 𝐵
2 𝑐𝑜𝑠 (2𝜋 ((2𝑆𝑅𝑐 + 2𝑓 𝑣𝑐 − 4𝑆𝑅𝑣𝑐) 𝑡 + 2𝑓 𝑅𝑐 − 2𝑆𝑅𝑐 + 2𝑆𝑣 𝑡𝑐))

(2.15)
From the equation 2.15, we can observe a frequency and a phase term that

has an influence on the how the signal is varying over the time. This frequency
component is usually referred to as ”beat frequency”. The frequency difference
between the transmitted and the received signal is expressed as 𝑓 .

Further, the equation 2.15 can be simplified into,

𝑋 (𝑡) = 𝐴 𝐵
2 𝑐𝑜𝑠 (2𝜋 (2𝑆𝑅𝑐 𝑡 + 2𝑓 𝑣𝑐 𝑡) + 4𝜋𝑓 𝑅𝑐) (2.16)

From equation 2.16, we can see that phase term is constant since 𝑅
is an initial distance from the target, and the main frequency component of
the signal over one chirp period is given by 𝑆 ⋅ . To obtain the beat signals,
it is required to apply the FFT algorithm over the digital sequence. For one
chirp period, the beat frequency can be expressed as,

𝑓 = 𝑆 ⋅ 2𝑅𝑐 (2.17)

From the equation 2.17, we can obtain the range 𝑅 as,

𝑅 = 𝑓 𝑐
2𝑆 (2.18)

From the equation 2.18, it is seen that the frequency of IF signal is directly
proportional to the range estimated to each target. This means that for both
single and multiple target scenarios, certain limits have to established on
how far the targets can be detected by the radar and how close the targets in
the case of multiple targets can be to each other for the radar to be able to
distinguish the targets. To set such limits, the main characteristic is range
resolution. By estimating the range resolution, it is possible to distinguish
closely spaced targets. The range resolution Δ𝑅 is given by:

Δ𝑓 = 2𝐵Δ𝑅
𝑐𝑇 (2.19)

10 2. Theory and Background

Δ𝑅 = 𝑐
2𝐵 (2.20)

where 𝐵 is the swept bandwidth of the chirp, and in the multi-target sce-
narios, the range resolution can be estimated when the two IF signals can be
resolved when the frequency difference between them is greater than .

From equation 2.16, we can also observe a phase term that corre-
sponds to the beat frequency that changes linearly with the number of chirps.
As the phase changes, the frequency of the signal also changes over the num-
ber of chirp. The reason for this is because of the doppler shift in the frequency
due to the relative motion of the target. To obtain the velocity of the target,
we use the doppler shift 𝑓 and is given by,

𝑓 = 2𝑓 𝑣
𝑐 (2.21)

𝑣 = 𝑓 𝑐
2𝑓 (2.22)

We can obtain velocity measurements by looking at the doppler shift of
the signal. This is done by observing the frequency spectrum of the signal
over 𝑛 consecutive chirp periods (𝑛𝑇). This means that the doppler process-
ing is applied on consecutive chirps. In the first approximation, range and
velocity estimations are obtained independently by processing each chirp for
range measurements and processing phase over consecutive chirps for veloc-
ity measurements. A detailed structure of processing range-doppler FFT is
explained in the system implementation chapter.

Similar to the concept of range resolution, the radar has to knowminimum
velocity between two targets for it to be able to distinguish the targets in order
to detect them. Hence, it is essential to have the information on the velocity
resolution.

The radar can separate two or more peaks of the IF signals only if the
doppler frequency which changes over 𝑛 chirp periods is bounded by the fre-
quency resolution.

𝑓 ≥ 1
𝑛𝑇 (2.23)

Therefore, the velocity resolution can be expressed as,

Δ𝑣 = 𝑐
2𝑓

1
𝑛𝑇 (2.24)

The benefit of such the LFM waveform is its improved target detection
feature. It also improved the range resolution of the radar due to reduced
chirp durations. Due to its advantage of canceling the interference and its low
doppler sensitivity, the LFM gained its usage in the area of communication
[21].

More advanced automotive applications call for an advanced FMCW radar
concept namely fast chirp radar. These radars transmit identical chirps with
much shorter duration than the traditional FMCW radars. The fast chirp

2.2. FMCW Radar 11

radars provide independent doppler and range measurements. Due to trans-
mitting chirps with shorter durations and higher slopes, these radars are
capable of increasing the range frequency shift independent of doppler fre-
quency shift.

Concept of MIMO Radar

Tx Array 2λ
spacing

Virtual Array 0.5λ
spacing

Rx Array 0.5λ
spacing

Figure 2.4: MIMO radar with the transmitter, receiver, and virtual Arrays

MIMO refers to a type of radar system that employs multiple transmitter
and receiver waveforms. MIMO radar uses multiple antennas at both trans-
mitter and receiver ends. With these type of radars, it is possible to measure
the target reflections due to the presence of multiple paths between the radar
and the target object. This means that all the transmitting antennas trans-
mit a waveform which is not dependent and different from other transmitting
antennas creating a virtual array (spatial channel) as shown in the figure 2.4
containing information from each transmitting antenna. This means that if
there are 𝑀 number of transmit antennas and 𝑁 number of receive antennas,
then we achieve a 𝑀 ∗ 𝑁 number of spatial channels.

It is undeniable that by using such an arrangement of multiple antennas
both at the transmit and receive sides which results in fewer physical an-
tennas, therefore, constructing an efficient virtual array. In addition to this,
MIMO radar offers other advantages for automotive applications such as in-
creased spatial resolution and higher sensitivity in order to detect very slow
moving targets[8].

12 2. Theory and Background

2.3. Communication waveform
For digital modulation techniques used for transmission of digitally repre-
sented data, we study and investigate one of the widely known modulation
techniques for communication in a radar system.

2.3.1. Binary-phase coded modulation
Binary-phase shift keying is the simplest form of Phase Shift Keying (PSK).
The BPSK digital modulation is a technique which modulates the phase of a
constant sinusoidal carrier(frequency reference signal). Ideally, it uses two
phases 0∘ and 180∘ degree phase shifts. In the case of modulating the LFM
waveform, binary data is transmitted by mapping the bits into up-chirps or
down-chirps [3].
Consider two time-limited energy signals 𝑠 (𝑡) and 𝑠 (𝑡) and a basis function
𝜙 𝑡.
Mathematically,

𝑠 (𝑡) = √2𝐸𝑇 .𝑐𝑜𝑠(2𝜋𝑓 𝑡) = √𝐸 𝜙 (𝑡) (2.25)

𝑠 (𝑡) = √2𝐸𝑇 .𝑐𝑜𝑠(2𝜋𝑓 𝑡 + 𝜋) = −√𝐸 𝜙 (𝑡), 𝑎𝑛𝑑 (2.26)

𝜙 (𝑡) = √ 2𝑇 .𝑐𝑜𝑠(2𝜋𝑓 𝑡), 0 ≤ 𝑡 ≤ 𝑇 (2.27)

where 𝐸 is the bit energy, 𝑇 is the bit duration and is the power spectral
density of Additive White Gaussian Noise (AWGN). The constellation diagram
of the BPSK modulation is shown in the figure 2.5.

The Bit Error Rate (BER) of BPSK in AWGN is given by,

𝐵𝐸𝑅 = 𝑄√2𝐸𝑁 (2.28)

In digital communications, base-band signals are serially transmitted and
represented in 0’s and 1’s logic. In hardware circuitry, a logic 0 relates to
low voltage and logic 1 represents high voltage. However, in order to transmit
information over any significant distance, this representation is not used. All
the circuits in hardware carrying the signal with information must have a
frequency response that extends to DC. This is technically not achievable in
the case of communication circuits as they have transformers. In order to
overcome this problem, the digital modulation takes their inputs in the form
of Non-Return to Zero (NRZ) form. In this case, the encoded bits 1’s and 0’s
are now transmitted as 1 and -1 state values. A basic signal representation
of BPSK modulated LFM is shown in figure 2.29.

2.3. Communication waveform 13

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

In-phase Amplitude

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Q
u
a
d
ra

tu
re

 A
m

p
lit

u
d
e

Constellation: BPSK,PhaseOffset=0rad

01

Figure 2.5: Constellation diagram of BPSK modulation

Figure 2.6: Signal representation of BPSK modulated LFM waveform

14 2. Theory and Background

2.4. Joint BPSK-LFM waveform
According to [21], the BPSK-LFM signal can be represented as:

𝑌(𝑡) = 𝐴(𝑡).𝑋(𝑡) (2.29)

where 𝐴(𝑡) is the BPSK signal and 𝑋(𝑡) is the LFM signal.

𝑌(𝑡) = √ 2𝑇 𝐴 .𝑐𝑜𝑠(2𝜋(𝑓 + 𝑆𝑡)𝑡 + 𝜋(𝑛)) (2.30)

where 𝑛 is the data bits corresponding to either 0 or 1 that serve as a
message signal.

In BPSK modulation, the phase shift occurs whenever there are two bits
with different polarities adjacent to each other. This makes extremely easy
for an observer to see the message encoding in the LFM.

2.5. Microcontroller Architecture
After looking into the automotive radar concepts, it is important to understand
the architecture of an MCU in terms of memory and the processors. The general
idea behind the utilization of multicore architecture for automotive radars is
presented in this section.

An MCU is an intersect between a microprocessor and a microcomputer.
The microprocessors, commonly referred to as the heart of a much larger sys-
tem such as a desktop computer, constitute in what is called as the Central
Processing Unit (CPU) of the computer. They consist of a Arithmetic Logic
Unit (ALU), an instruction decoder, a number of registers, digital input/out-
put lines, memory spaces such as a cache or stack which can be used for
more fast temporary storage and retrieval of data than having to access sys-
tem memory. There is a data bus provided to access the memory and in-
put/output that are externally connected to the processor. Every processor
has a memory architecture and based on that; the processor may have a few
registers such as a program counter that keeps track of the address of the
next instruction register that loads and stores the next incoming instruction.
Additionally, there are general purpose registers available that stores data.
A microcomputer, on the other hand, is a device that contains all the com-
ponents of a computer in a small circuit, but not on a single chip. A typical
microcomputer is an assembly of a microprocessor, memory storage devices,
and input/output lines. They are commonly used for laptops and desktops
but are not in use any longer.

A Microcontroller, on the other hand, refers to a single device containing
the entire microcomputer on a single chip. That being said, an MCU is an
assembly of the microprocessor, onboard memory, timers, and various other
input/output devices. MCU has replaced microprocessors due to its flexible,
scalable and straightforward use. The critical advantages behind integrating
all the peripherals on a single chip are the reduced space consumption, lower
manufacturing cost, low power consumption, higher reliability and shorter

2.5. Microcontroller Architecture 15

development time cycle. All these advantages constitute in an ideal design of
the embedded systems. Typically, an MCU can be configured to have specific
functionality as per the applications dictated by the user.

Today, the embedded systems are based on the MCU’s. Essentially, em-
bedded systems find their applications in the consumer, cooking, industrial,
automotive, medical, commercial and military fields. The use of MCU in the
automotive industry is expected to lead to significant growth from 2016 to
2024 due MCU used for enhancing the control of autonomous vehicles range
from 8-bit to 32-bit Harvard architecture that offers high performance, low-
cost processors and efficient memory storage capability.

Due to the need for fast throughput alongside the occupation of minimal
chip space, the Reduced Instruction Set Computing (RISC) is preferred as in-
dustrial CPU standard. Current CPUs, such as the ones used in the S32R274
MCU by NXP Semiconductors, have an efficient clock speed and processing
power [11].

2.5.1. Memory architectures
In this section, we review the details on two architectures relating to the mem-
ory arrangement in an MCU and discuss the memory architecture used in the
NXP’s S32R274 MCU. We attempt to provide details within the scope of this
thesis.

Von Neumann architecture
The first generation computers like Electronic Numerical Integrator And Com-
puter (ENIAC) and other computational devices had fixed programs that were
inbuilt with the machines. In order to change the program, the scientists have
to rebuild the entire machine from scratch that would take several weeks and
the computational time increased, and so did the machine complexity. Dur-
ing this time, the von Neumann architecture was named after a scientist who
was involved in the Manhattan project which was dedicated to overcoming the
complexity issue by developing the next computer called Electronic Discrete
Variable Automatic Computer (EDVAC) that would store programs on the ma-
chine. This problem was fixed by using the von Neumann memory architec-
ture that stored the program inmemory, hence called as stored-program. This
memory block is shared between the store-program and data storage, which
allows data to be treated as code and vice-versa. This also leads to using
self-modifying code that would reduce memory use and improve the machine
performance. It was necessary for the CPU to now communicate with external
memory, and this constituted as the bottleneck in such a memory model due
to the less throughput and memory access time by different components on
the machine.

Harvard and modern Harvard architectures
To overcome the Von Neumann bottleneck, a solution was proposed to al-
lot different memory blocks for the program and the data. This immediately
caused parallel and simultaneous access to the program memory and data
memory. Another bottleneck to the Von Neumann architecture was using two

16 2. Theory and Background

different read/write operations on the same path making it singular in oper-
ation. This increased the complexity of the machine. In the Harvard memory
architecture the, write to the data memory and read from the program mem-
ory for the next incoming operation can be duly performed simultaneously.
This reduces the time required for any instruction that accesses data mem-
ory. The Harvard architecture shares one major bottleneck of not being able
to modify the program memory which hugely affects its usage for general pur-
pose systems such as desktops. However, this disadvantage does not apply
to embedded systems. Modern MCU’s are built on a slightly modified Harvard
architecture that allows both read/write operations to program memory used
majorly for the boot-loaders.

Another variant is the modified Harvard architecture which is a cross of
von Neumann and Harvard architectures which inherits the benefits of each
model. Specifically, the data and program again share a memory space simi-
lar to how the von Neumann architecture works, however, data and instruc-
tions do not share cache memories or paths between the CPU and memory.
This allows for less restricted memory access than von Neumann, and yet the
ability to treat code and data as each other that Harvard lacks. One of the
most common examples of processors that use this architecture is the x86
processor found in most personal computers [1].

2.5.2. Need for Multi-core architecture in automotive radars
The automotive industry demands for a more real-time based computational
capability from the MCU so that it can fulfill different application needs. This
leads to increasing complexity and power usage in case of using an MCU with
a single core that is handling and executing different instructions at a given
time. The single core processor work at a clock frequency that does not sup-
port high computational tasks. Apart from the architecture issues, it also
becomes difficult at the hardware level such as heating issues and difficulty
in testing and verifying the platform. Today’s applications work on the prin-
ciple of multithreading, and this trend is shifting towards parallelism. Even
though the single-core systems provide an illusion of parallelism, it is far from
achievement. Let us assume a scenario wherein a single core is performing 4
tasks of highest priority. These tasks are executed in an interleaved fashion,
where switching between 4 different tasks could be impulsed at every fixed
interval of time. This means that if the task with the highest priority is run-
ning, it will receive 25% of the processor time. This also introduces context
switching overheads which leads to over-consumption of processor utiliza-
tion. If we now consider increasing the number of tasks, it means that each
task is receiving only some amount of the processor time. Even though the
processor is fast, it still affects the application in terms of performance and
resource utilization. In order to overcome this problem, we consider using
a multicore processor system. Assuming the same 4 tasks now given to the
multicore processor system, true parallelism is achieved by scheduling each
task on one of the cores, which now means that each task now gets 100% of
the processor’s utilization. However, besides the advantages that multicore

2.6. Conclusions 17

platforms provide, there still are issues with synchronizing the cores that ac-
cess the same shared resource which could cause computational complexity.

The autonomous cars today are increasingly becoming software driven.
The car today contains more software with 100 million lines of code, and
it will only exponentially increase. The automotive industry due to its ad-
vanced driving features is introducing complex challenges, and this will only
need more scalability and high-performance processing speeds to meet the
increasing demands of secure and safe driving. To achieve this demand, var-
ious industries have been manufacturing computationally efficient MCU as a
means to provide signal processing acceleration and to meet the requirements
of high-performance computations and fast chirp-modulation radar systems.

2.6. Conclusions
In this chapter, the brief concepts supporting the FMCW radar has been ex-
plained. One of the widely known modulation technique namely, BPSK, cor-
responding to encoding information in the FMCW radar waveform has been
introduced. The motivation behind using an BPSK-LFM waveform was also
presented. In the end, we attempt to provide a basic concept of an MCU and
discuss the need for MCU in an automotive radar.

3
Hardware and Software Architecture

This section introduces the hardware platform namely the DCC Radar sensor
development board used for automotive radar applications. The DCC Radar
sensor kit is the integration of an S32R274 automotive MCU and a TEF810X
77GHz radar transceiver chip-set. The goal of this thesis, which is achiev-
ing joint waveform implementation to facilitate real-time processing, is realized
on this hardware set-up. The first section presents architectures of the NXP’s
transceiver board and the S32R274 MCU platform that is based on multi-core
architecture which meets high-performance computation demands required by
the fast chirp modulation radar systems by offering unique signal processing
acceleration modules.

The second section is intended to provide detailed information on the struc-
ture of a chirp and how it is configured by means of software tools such as
an Application Programming Interface (API) along with an illustration on the
structure of the extracted results of the raw ADC samples and the FFT from the
DCC.

3.1. Hardware Architecture
This section is broadly classified into two parts which correspond to the hard-
ware architecture on which the work presented in this thesis is carried out:
the first part describes the radar front-end and the second section illustrates
the MCU that is used for controlling the radar front-end to facilitate real-time
signal processing.

3.1.1. TEF810x Radar front-end
The TEF810x radar front-end is a single-chip FMCW radar transceiver for
short-, medium- and long-range automotive applications operating in the fre-
quency band of 76-81 GHz[10].

Some key applications of TEF810X are:

• Adaptive Cruise Control (ACC)

19

20 3. Hardware and Software Architecture

Figure 3.1: TEF810X Radar waveform generator module block diagram [10]

• Autonomous Emergency Braking (AEB)

• Blind-spot monitoring

• Collision avoidance

• Parking assistance

The figure 3.1 shows the flow diagram of various functionalities within the
radar. The radar has three transmitters and four-receiver channels working
on MIMO configuration. It consists of ADC’s at each receiver path, a waveform
generator module (WGM) with a timing engine that is connected to the MCU
using Serial peripheral Interface (SPI) and is used to control the timing of each
chirp and binary phase shifters at each transmitter chain. At the receiver
side, there are high pass filters used for suppression of strong low-frequency
signals and low pass filters for suppressing of signals in the ADC aliasing
band. Each receiver has a SAR ADC that is responsible for digitizing the
signals for processing and has a sampling rate up to 40MS/s and also consists
of a programmable decimation filter with decimation factors of 2,4 and 8.

The ADC digitized output from the receiver end are serialized. To output
this data to the MCU, there are 3 different drivers on the radar front-end:
either CSI-2, CIF, or LVDS. The setup in this thesis work in the DCC uses the
CSI-2 interface. The control of the TEF810x from the MCU is via SPI, and the
adc data is transported from TEF810x to S32R274 via the CSI-2 interface. The
CSI-2 interface can operate using 1, 2 or 4 lanes, and can have a sustained

3.1. Hardware Architecture 21

data throughput rate of up to 2 Gbps.We attempt to explain one main module
of our interest in this thesis in the following section which is the waveform
generator.

Waveform Generator Module
The WGM is an integration of three main modules: the timing engine, sweep
control block and a CW generator block. The timing engine is responsible
for controlling the functional state (power up/down) of the transmitter and
receiver are controlled by means of the enable control lines. It controls the
phase settings of the chirp in cases where the chirp is encoded with data bits
via the binary phase shifters. It also provides a fast switch (On/Off control)
in the transmitter module that is responsible for changing the phase of the
chirp by toggling the phase shifter on and off in quick succession during
transmission of chirp.

Figure 3.2: TEF810X Radar Front-end block diagram [10]

3.1.2. S32R274 Radar Microcontroller
S32R274 is a heterogeneous multi-core MCU platform. To support the radar
and process the data for radars applications, the system is partitioned to
make use of the multiple cores efficiently and available hardware accelerators
to enhance the overall performance [11].

22 3. Hardware and Software Architecture

• Core_0 is an e200z4 processor running at 120 MHz clock frequency and
executes the main entry point function and controls TEF810X. It is re-
sponsible for the triggering acquisition cycles (transceiver RADAR frame
cycles) and managing the operation of the SPI as it processes the ADC
data received from the RADAR front-end.

• Core_1 is e200z7 processor running at 240 MHz clock frequency which
is responsible for handling the FNET networking stack. An interrupt
request to core_1 is raised by core_0 either when the acquisition has
completed (all ADC data is available in MCU Shared Random Access
Memory (SRAM)) or when the Signal Processing Toolbox (SPT) has fin-
ished performing FFT operations. The interrupt service routine uses the
FNET stack to transfer data according to the chosen output mode.

• Core_2 is not used in this application and remains disabled throughout
the project.

The following sections magnify the specifications of each partition and also
gives a brief detail on the communication module that is tailoring all the func-
tionalities within an MCU and radar.

Figure 3.3: S32R274 Radar MCU block diagram [11]

Power architecture: e200z7 and e200z4
S32R274 is a multicore MCU with a safety core which has Power Architecture
e200Z4 which is a 32-bit CPU and a checker core with a dual-issue computa-
tion which is a 32-bit processor and has power architecture e200Z7. The e200
family of processors were specifically designed for real-time applications that

3.1. Hardware Architecture 23

require high computation performance. The e200z4 processor implements a
low-cost version of power architecture technology (PC). To obtain high per-
formances and low-cost MCU, three industries: Apple, IBM and Motorola
collaborated on a common RISC architecture to design a new architecture
which was named as Power architecture(PC). This new architecture resulted
in improved clock rates, a more simplified instruction set, and a higher degree
of super-scalar executions which supports 64-bit. An Instruction Set Archi-
tecture (ISA) by its definition intends to provide all the required information
when someone wants to write a program in machine language or translate
from a high-level language to machine language[15]. In other words, it spec-
ifies the functionalities that the processor has to provide to the designers.
The e200z4 and e200z7 processor cores are compatible with the PowerPC ISA
which makes the PowerPC industry-friendly as it offers a common ISA. One
of the striking features of e200 processor family is that each core is a 32-bit
dual-issue processor with 64-bit general purpose registers(GPR’s) and inde-
pendent instruction and data bus interface units.

Major features of e200z7 processor core include:

• 32-bit dual-issue compliant with PowerPC ISA

• 16KB, four-way set-associative Harvard instruction, and data caches

• signal processing extension unit (SPE) which supports SIMD fixed-point
single-precision floating point operations using the 64-bit GPR’s that
include operations such as add, subtract, diff, multiply-add, compare,
conversion and so on

• low power design-extensive clock gating

• In-order execution, interrupt and exception handling with nested inter-
rupt capability and extensive interrupt vector programmability

• AMBA (advanced microcontroller bus architecture) AHB-Lite (advanced
high-performance bus) 64-bit system bus

• Supports load, store and load multiple/store multiple instructions with
a dedicated 64-bit interface to memory that offers storing and restoring
up to 2 registers per cycle for multiple word instructions; two cycle load
latency and supports Big- and little-endian

The e200z4 processor core differs from the e200z7 processor in the follow-
ing features:

• 4KB, 2/4 way set-associative instruction and data caches

• Dual advanced high-performance (AHB) 2.v6 64-bit system buses

24 3. Hardware and Software Architecture

Communication modules
S32R274 offers various types of communication modes such as Zipwire, Se-
rial inter-processor interface (SIPI), FlexRay, Integrated circuit (I2C), serial
peripheral interface (SPI) and Ethernet MAC (ENET). The aim of this thesis is
achieved by utilizing two communication protocols, namely SPI for radar to
MCU communication and ENET for transferring the data over the internet. A
few advantages of using SPI are that it has a faster data rate of 10s of Mbit-
s/s as compared to I2C communication and is easy to implement in software.
For transporting the processed data from the MCU such as raw ADC samples,
range and doppler FFT values to any host for post-processing, we use ENET
module.

Serial peripheral Interface (SPI)
The Serial peripheral Interface (SPI) communication module is primarily used
for short distance communication in embedded systems and is responsible for
exchanging serial data between the radar and MCU and is synchronous. The
SPI works on the full-duplex principle which means that the communication
between the radar and the MCU is bidirectional and can occur simultane-
ously. The SPI configuration makes use of a master-slave architecture and
has four channels namely:

• SCK: Serial clock generated by the master to initialize the data transfer

• Master SOUT/ Slave SIN: Master Output Slave Input, or Master Out
Slave In. This is the data output from the master peripheral

• Master SIN/ Slave SOUT: Master Input Slave Output, or Master In Slave
Out. This is the data output from the slave peripheral

• PCS[0]/SS: Slave Select

The master peripheral initiates the transfer and generates clock signal SCK
to the slave peripheral it selects. Since it is a full duplex system, during each
SPI clock cycle, the master sends first data bit on the Master SOUT/ Slave SIN
pin and lets the slave read it, and then the slave sends the bit on the Master
SIN/ Slave SOUT pin for the master to read it. The CPOL and CPHA attribute
to the Clock and Transfer Attributes Registers (CTARn) are responsible for
selecting the polarity and phase of the serial clock SCK in the master mode.
CPOL establishes the polarity of the SCK signal, and the CPHA determines the
validity of the data from the slave output before or on the first edge of the SCK
signal. Different configurationmodes can be determined with respect to CPHA
and CPOL. Further configuration modes with respect to CPOL and CPHA are
out of scope to describe in this document. For ease of understanding a basic
SPI master-slave transfer, we explained a basic SPI transfer format with CPHA
= 1 as shown in the figure 3.4.

After the transfer of the first bit, the tCSC delay which is the delay between
the PCS and SCK signals is elapsed during which the master and slave sam-
ple the first data bit on their serial data input signals. After this transfer is

3.1. Hardware Architecture 25

Figure 3.4: SPI transfer timing diagram [10]

complete, the master and slave peripherals now transfer the second data bit
by placing them on the serial data output signals and sample their SIN pins.
For the case with CPHA = 1, the master and the slave peripherals change the
data on their SOUT pins on the odd-numbered clock edges and sample their
SIN pins on the even-numbered clock edges [11].

Ethernet Media Access Control Address (EMAC) module
The EMAC module is mainly used to transfer data between the device and
the host device that are connected on the same network based on the Ether-
net protocol. This module is capable of implementing 10/100/10001-Mbit/s
synchronous operations. The ENET is compliant with the IEEE802.3-2002
standard and provides half 10/100-Mbit/s and full-duplex Gigabit Ethernet
Local area network (LAN)[11]. The purpose of describing this module in this
document is its purpose of providing various hardware acceleration blocks
to optimize the performance of network controllers that provide TCP/IP and
UDP protocol services. We use these protocols in this thesis for establishing
communication between the host device to the MCU to send a message that
is to be encoded in the chirp and between the MCU to the host to send the
raw data that is processed for various other radar applications. The use of
these protocols is described in the system implementation chapter.

Signal Processing Toolbox (SPT)
The SPT contains all the hardware modules required for processing of the
sampled radar signals. It is a powerful processing engine containing high-
performance signal processing operations, driven by a specific use-oriented
instruction set. The programmability ensures flexibility for modifications of
signal processing. The Central Processing Unit (CPU) is removed from fre-
quent scheduling of hardware operations, but still controls and interacts with
the processing flow. SPT has an interface to the MIPI-CSI2 receiver module to

26 3. Hardware and Software Architecture

transport received ADC samples into the MCU Shared Random Access Mem-
ory (SRAM). The FFT engine is used to perform window and FFT operations
on the received data.

3.2. Software Architecture
3.2.1. FMCW chirp and frame configurations
The TEF810x radar transmits a sequence of chirps in frames. It is possible
to transmit up to 65534 chirps per frame. The TEF810x allows the user
to control the parameters of chirps in a frame by essentially defining what
is called as profiles. A profile is a template for the timing parameters of a
single chirp. It is possible to define four profiles, and each chirp in a frame is
associated with one profile. The chirp timing parameters that are set within
timing engine registers per profile include:

𝑓𝑐ℎ𝑖𝑟𝑝,𝑠𝑡𝑜𝑝

𝑓𝑐ℎ𝑖𝑟𝑝,𝑠𝑡𝑎𝑟𝑡

Tchirp

𝒕

Tchirp

𝐂𝐡𝐢𝐫𝐩 𝟏

𝑡𝑟𝑒𝑠𝑒𝑡,1 𝑡𝑟𝑒𝑠𝑒𝑡,2

𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞

 𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡

"𝐴𝐷𝐶 𝑠𝑎𝑚𝑝𝑙𝑒𝑠"

𝑡𝑑𝑤𝑒𝑙𝑙 ,1 𝑡𝑠𝑒𝑡𝑡𝑙𝑒,1 𝑡𝑑𝑤𝑒𝑙𝑙 ,2 𝑡𝑠𝑒𝑡𝑡𝑙𝑒,2

𝐂𝐡𝐢𝐫𝐩 𝟐

Figure 3.5: FMCW Chirp timing parameters [10]

• chirp period, 𝑇

• Dwell time, 𝑡

• Settle time, 𝑡

• reset time, 𝑡

• Number of ADC samples

• On/off control and the phase state of the TX sections.

3.2. Software Architecture 27

3.2.2. Application Programming Interface (API)
In computer programming, an API is a set of routines, functions and data
structures that are used to interface with the software components and make
them communicate with each other. The NXP’s radar API provides convenient
access to the radar functions and offers full flexibility on configuring the radar
and its chirp parameters depending on the application requirements. The
following API calls are used in this thesis [16]:

• chip_ISM_Init

• chip_CC_IPFuncReset

• chip_CAFC_VCOFreqCalibrate

• chip_TE_ChirpTrigMode

• chip_TE_StaticConfig

• chip_Chirp_Program

• chip_LO_Control

• chip_TX_ProfileConfig

• chip_TX_Control

• chip_RX_ProfileConfig

• chip_CAFC_EnableVCO

• chip_CC_IPFuncReset

• chip_CC_SerializerInterfaceSet

• chip_CSI2_Config

• chip_SC_CWMode

• chip_MCLK_Recalibrate

• chip_TE_ChirpStart

The radar is initialized by calling the chip_ISM_Init() function. After the
radar is initialized, it needs to reset in order to configure the radar regis-
ters by calling chip_CAFC_VCOFreqCalibrate() that is responsible for per-
forming the loading of Voltage Control Oscillator (VCO) calibration table and
chip_CC_IPFuncReset(). The next step is to program the parameters of the
chirp by defining different profiles both at transmitter and receiver end. This
is done by calling the chirp program, profileConfig functions for both trans-
mitter and receiver. After this the radar has to reset again; therefore the
chip_CC_IPFuncReset() is used, but this is different from the first reset func-
tion, after which the MIPI CSI-2 interface of the radar is configured. In the

28 3. Hardware and Software Architecture

end, the master clock is recalibrated with the chip_MCLK_Recalibrate() func-
tion. After the entire radar configuration is loaded, the radar now is now
ready to start the transmission of the sequence of chirps in one radar frame
by initializing the chip_TE_ChirpStart() call function. More API calls will be
introduced in the phase coding section of chapter 4.

3.2.3. DCC data output modes
The MCU supports three output modes based on the acquired digitized sam-
ples of the received signal that it receives from the radar namely: ADC samples
output mode, range FFT and doppler FFT. To fulfill the goals of this thesis, it
is essential to extract the raw ADC samples and FFT results and store them on
the host PC to further process them in MATLAB. For this purpose, it is essen-
tial to study the packet structures of these output modes to build plots that
support our requirements in MATLAB. Further, to obtain the phase informa-
tion with respect to the communication message, we follow the flow diagram
shown in the figure 3.6 where we consider both the output modes. The most
relevant results will be shown in the chapter 5.

phase information of the
communication message

Can be obtained from two
measurements outputted

from MCU

Raw ADC
samples

FFT output
mode

Range FFT Doppler FFT

Figure 3.6: Flow diagram of obtaining phase information

ADC sample output mode
The ADC sample output mode acquires the ADC samples for a full RADAR
frame (M samples * P channels * N chirps). After the acquisition, the radar

3.2. Software Architecture 29

transports the ADC data to the MCU in the form of UDP packets via the SPI
communication channel between the radar front-end and the MCU. This data
is buffered in MCU SRAM, and the output transfer begins when the frame
acquisition is completed. The ADC samples that are output over UDP are a
signed 16-bit value. 1024 KB of MCU SRAM is allocated for buffering the ADC
sample data, and each ADC sample occupies 2 bytes in the memory [11].

ADC Output mode
UDP Payload Byte Offset Field Description
0 Data type identifier (constant)

0x2016 = ADC data output
2 RADAR frame number (scan cy-

cle counter) 0 - 65535 (rolls over)
4 RADAR chirp sequence number

0 to N (number of programmed
chirps)

6 Packet number in sequence for
this chirp

7 Total packets expected for this
chirp

8 End of packet ADC sample data

Table 3.1: ADC Output mode [11]

The ADC samples output is in the form of UDP packets. For each chirp
in the radar frame, a sequence of UDP packets is transferred with a data
payload that contains the ADC samples for the channels that are enabled.
Each packet has a custom header before the start of UDP payload data. A
typical UDP packet has a size of 1472 bytes of payload data. The structure
of the ADC payload data header structure is shown in table 3.1. Generally,
the ADC sample data for a chirp cannot be fully contained in the payload of
a single UDP packet so it will be transported by a number of full-size packets
followed by a smaller final packet containing the remaining data. Each of
these packets has an ADC data payload header so that the sample data can
be reconstructed at the receiver[11].

FFT data output mode
After the raw ADC samples are acquired in the SRAM, the FFT hardware
accelerator in the SPT performs FFT operations. To obtain range FFT values,
the FFT is performed on the real-valued ADC samples. Since the ADC samples
are real-valued and applied as the input to the FFT to get range FFT, half
the bins in the range FFT can be eliminated. This results in M/2 range bin
outputs. With this, second FFT is performed for these range bin outputs
across all the chirps to get the doppler FFT. This means that an M- Point FFT
is performed using all samples of each chirp and N-point FFT is performed
on the M/2 times. The output of the FFT is either a 24-bit or 16-bit signed

30 3. Hardware and Software Architecture

complex number. The host device receives the FFT results in the form of an
array of unsigned 8 bytes. To further plot 2D FFT(range/doppler), the host
device has to convert the unsigned 8 bytes integer to 32-bit signed complex
double.

FFT Output mode
UDP Payload Byte Offset Field Description
0 Data type identifier (constant)

0x2017 = Doppler FFT Output
(24-bit complex number format)
0x2018 = Range FFT Output
(24-bit complex number format)
0x2019 = Doppler FFT Output
(16-bit complex number format)
0x2020 = Range FFT Output
(16-bit complex number format)

2 RADAR frame number (scan cy-
cle counter) 0 - 65535 (rolls over)

4 Range bin index (0 – M/2)
6 Receiver channel (4 bits), 0 =

Channel A, 1 = Channel B, 2 =
Channel C, 3 = Channel D

6.5 Doppler FFT Output mode -
Starting Doppler bin index (12
bits) 0–N, Range FFT Output
mode – Starting chirp index (12
bits) 0–N

8 to End of packet FFT result data

Table 3.2: FFT Output mode [11]

To explain this clearly, let us consider an example with the radar con-
figured to transmit 256 chirps(N) in one frame. Each chirp consists of 256
samples(M). This means that for each receiver channel, we receive 128(M/2)
UDP packets, one for each range bin which will give 128 range bins for 256
samples. These UDP packets contain 256 complex data points correspond-
ing to one chirp each in the frame. These complex data points are fixed point
24-bit complex numbers. It can be possible that the FFT result data for a
particular range bin is too large exceeding the usual 1472 bytes of payload
size in a UDP packet. Therefore, it is sent in another packet. For the first
packet with FFT result, the UDP byte offset field at 6.5 has the index of 0,
and the other packets that follow the first packet are given an index of 183
which is clearly mentioned in the table 3.3. In our case, we configured 256
chirps and obtain 24-bit complex values. Two UDP packets with index 0 and
index 183 are required.

3.3. Conclusions 31

Starting Doppler bin Index
Chirps (N) Complex

Number
Format

Memory
size:Single
Range Bin

Total UDP
Packets
Needed

Packet
0 In-
dex

Packet
1 In-
dex

Packet
2
Index

128 24-bit 1024
bytes

1 0 N/A N/A

128 16-bit 512 bytes 1 0 N/A N/A
256 24-bit 2048

bytes
2 0 183 N/A

256 16-bit 1024
bytes

1 0 N/A N/A

512 24-bit 4096
bytes

3 0 183 366

512 16-bit 2048
bytes

2 0 367 N/A

Table 3.3: FFT Output mode [11]

3.3. Conclusions
This chapter reflects on the hardware and the software platforms that support
our thesis work. The details on the architectures of both the radar front end
and the MCU that relates to this work have been presented. In terms of the
radar front end, of all the other modules on the radar, information on the
timing engine module in the waveform generator module was explained.

With respect to the MCU, we discussed the functionality of different on-
board cores(processors), main features of the processors, communicationmod-
ule responsible for establishing the communication between the three devices
(host PC, MCU, and the radar front-end) and signal processing toolbox that
is responsible for computing algorithms for various radar applications. Two
different MCU output modes namely: raw ADC sample values and FFT which
is the result of the SPT performing algorithms on the raw ADC data have been
discussed.

4
System Implementation

In the previous chapters, all the necessary theory on the FMCW radars, differ-
ent waveforms considered to achieve joint sensing-communication functionality
along with supporting the theory on MCU’s have been explained. Along with
this, related software and hardware architectures on which the implementa-
tion is carried have been explained in detail.

The purpose of this chapter is to describe and clarify various aspects of the
implementation conducted to achieve joint-sensing and communication func-
tionalities. The chapter is sectioned into four parts. The first part explains vari-
ous communication protocol schemes to build a reliable communication channel
between the host PC to MCU to send and receive information back and forth and
address the need of intercore MCU communication.

The second part explains the methodology to implement the phase modula-
tion on the LFM chirps to encode the message received from MCU by the host
PC. The third part illustrates the MATLAB post-processing scenarios to validate
the radar and communication functionalities and the fourth part presents the
test scenario considered for analysis of the data.

4.1. Microcontroller programming
The communication functionalities needed to fulfill the goal which is modu-
lating the LFM chirps generated by the waveform generator on the radar front-
end by the information that is present in the MCU fed by the host machine is
broken down into three stages:

1. Radar to MCU communication via SPI

2. MCU to host communication via Giga Ethernet using TCP/IP protocol
for exchanging the communication message

3. MCU to host communication via Giga Ethernet using UDP protocol to
output raw ADC samples and plot range and doppler FFT acquired by
the MCU in order to observe and test the phase coding

33

34 4. System Implementation

Figure 4.1: System implementation block diagram

4.1.1. host PC to MCU Communication
To be able to achieve an application that would send a message across the
MCU, the host has to establish a communication channel with the MCU. Es-
sentially, these two devices will be communicating over the internet. The most
commonly used internet communication protocols are TCP/IP and UDP to
send bits of data in packets to an IP address. TCP/IP belongs to the transport-
layer protocol in terms of the Open Systems Interconnection model(OSI) net-
work model. It provides a reliable virtual-circuit connection between two de-
vices connected over a network, that is, a connection is first established be-
fore data transmission begins. The information is transferred without errors
or duplication and is received in the same order as it is sent. TCP/IP treats
the data as a stream of bytes. The S32R274 MCU is configured to support
Ethernet stack for communication purposes on core_1 which is based on the
FNET stack. The FNET is a free, open source dual IP stack to attain embed-
ded communication software for 32-bit MCU and is primarily used to support
data exchange over UDP. However, we also extended the possibility of it to
support additional network services such as TCP/IP.

UDP is also a transport-layer protocol and is an alternative to TCP/IP.
UDP is not preferred for this task due to its unreliable datagram connection
between the devices. Data is transmitted link by link, and there is no end-
to-end connection. The service provides no guarantees. Data can be lost or
duplicated, and datagrams can arrive out of order. Therefore we choose to
implement the TCP/IP protocol due to its data integrity for this task as no
loss of data is desired. For this purpose, we built a listening echo server on
the DCC board. Moreover, we implemented a client connection on the PC
which makes communication possible between MCU and any PC. This setup

4.1. Microcontroller programming 35

fnet_socket()

socket()

 fnet_socket_bind()

 fnet_socket_listen()

 fnet_socket_accept()

 fnet_socket_recv()

 fnet_socket_send()

 fnet_socket_close()

 connect()

 send()

 recv()

 close()

block here until there is a

connection from the client

Client(Host PC)

Server(MCU)

Establish

connection

Requesting

for data

Echoing the

data

Figure 4.2: Flow diagram for establishing TCP/IP communication protocol between
client and server

is bidirectional. The TCP/IP protocol works on the functionality of creating
sockets at both the client and server ends. We use one of the widely known
socket programming API namely the Berkeley Socket Distribution (BSD) sock-
ets that facilitate an easy flow of creating various distributed applications that
exchange the data between programs located on two different or same com-
puter devices without the user having much understanding on the various
levels of the OSI network model. In order to use this software tool, a certain
set of system calls are utilized to establish communication endpoints known
as sockets and then exchange information between the two devices each con-
figured with a socket. To utilize BSD sockets, we will make two different
applications, each associated with what is called as a client/server model

36 4. System Implementation

where one process (the client) makes a request for a connection and the other
process (the server) accepts that connection request and initializes the data
transfer. The method in which the task of sending data from the host PC to
the MCU is performed is shown in the flowchart of figure 4.2.

The server, in our case for this task, is the MCU. The server first creates a
socket to initialize the data transfer, binds it to an address and sets up queues
to listen to the incoming connection requests. On the client (host PC) side, a
socket is created as well and bonded with the same address as of the server.
After creating the socket, it requests for establishing a connection with the
server to whom it has to send the data. Soon after the server accepts the
client’s request for connection, it grants, and a bi-directional communication
takes place. Once the connection is established between the host PC and the
MCU, the client sends a message, and the server acknowledges it by echoing
the message which proves that the MCU has received the message sent by the
client. After the communication process is finished, the close call terminates
all the sockets.

4.1.2. MCU to host PC communication
The received signals from the radar front-end are processed into three output
modes: raw ADC samples, range, and doppler FFT. The visualizer application
on the host PC to create the plot of 2D FFT (range/doppler) is achieved by
establishing a UDP communication channel with the MCU. Unlike the com-
munication application using TCP/IP protocol, this task uses a UDP connec-
tion due to the following advantages. One of the attractive features of UDP
is since it does not need to retransmit the lost packets nor does it do any
connection setup, sending the data comes with less delay. This lower delay
makes UDP an appealing choice for delay-sensitive applications like audio,
video and real-time applications. Also, UDP has a small packet header over-
head of only 8 bytes whereas TCP/IP has 20 bytes of header.

The Radar software programmed on MCU supports three output modes:
raw ADC samples, range FFT or doppler FFT. The default output mode is
doppler FFT. In order to capture raw ADC samples and plot range FFT, the
default configuration on radar and MCU is modified. The default output mode
performs 2D FFT on the acquired ADC samples and outputs the FFT results as
User datagram protocol (UDP) packets over the Ethernet interface. To further
process the FFT values in order to obtain various results corresponding to
the testing of phase coding is achieved by making a UDP listener application
on the host PC that will receive all the data of the FFT in real time. The
application is built on the same principle such as the TCP/IP. However, since
UDP is a connection-less protocol, the calls such as listening and accepting
from the server side is not needed.

The server, in our case for this task, is the host PC. The server first creates
a socket to initialize the data transfer. On the client (MCU) side, a socket is
created as well and bonded with the same address as of the server with the
system call fnet_Socket(). Once the connection is established, the client sends

4.1. Microcontroller programming 37

the data to the server using the call fnet_socket_send(). After the communi-
cation process is finished, the close call terminates all the sockets with close()
call. The method in which the task of sending SPT processed ADC samples
and FFT values from the MCU to the host PC is shown in the flowchart of
figure 4.3.

Socket() fnet_socket()

 recv()

 send()

 fnet_socket_bind()

 fnet_socket_send()

 fnet_socket_recv()

fnet_socket_close()

Client(MCU) Server(Host PC)

 close()

block here until the data is

received after request

Replying the

data

Figure 4.3: Flow diagram for establishing UDP communication protocol between client
and server

4.1.3. Inter-core communication
The Core_0 on the MCU handles the radar processing. The Ethernet stack
responsible for all the communications is located on core_1. The incoming
data from the host to the MCU is handled by the core_1, that being said, this
core stores the data it received from the host into the local memory. This data
has to be applied to the chirps generated from the waveform generator situ-
ated on the radar front-end. The radar front-end is controlled by the core_0
on the MCU. This means that the core_0 now should be able to communicate

38 4. System Implementation

with core_1 to apply the data to the chirps. For this purpose, we use a special
module namely hardware semaphores present on MCU [17].

Figure 4.4: Hardware Semaphores mechanism for Inter-core communication

In a dual-processor chip, semaphores are used to let each processor know
who has control of shared memory. In our case, core_0 and core_1 share
the same memory to read and write respectively. Before a core can update or
read memory coherently, it has to check the semaphore to see if the other core
is not already updating the memory. If the semaphore is clear, it can write
common memory, but if it is set, it has to wait for the other core to finish
and clear the semaphore. During initialization of the process of reading and
writing, the shared memory is assigned to semaphore gate 0.

• Core 1 locks the semaphore gate 0. Updates the memory, unlocks the
gate, and generates a signal to the core 0 to read.

• Core 0 waits for core_1 to finish writing into the shared memory and
after receiving signal to read, it locks the gate 0, reads and resets the
gate.

• Before writing in the shared memory again, core_1 has to check the
semaphore to see if the other core has finished reading, in order to pre-
vent overwriting. If the semaphore is clear, it can write into the memory,
but if it is set, it has to wait for the other core to finish reading and clear
the semaphore.

One of the major reasons why we implemented semaphores for inter-core
communications is its mutual exclusion principle. The shared memory is
accessed by both the cores in the critical section of their semaphore code

4.1. Microcontroller programming 39

Figure 4.5: Hardware Semaphores for Inter-core communication in core_0

Figure 4.6: Hardware Semaphores for Inter-core communication in core_1

segment which can be seen in the red box of the figures 4.5 and 4.6. It is
essential to ensure that while one core is executing in its critical section, the
other core should not be allowed to execute in its critical section. This means
that the access to a particular section must be an atomic action. One core
can execute its critical section by waiting until the next core has entered and
left its critical section. In other words, only one core at a time is allowed
to execute its critical section. Therefore, we made this process more robust
by using interrupt signals in the code segment of semaphores for each core.
From figure 4.5 and 4.6, it can be seen that the interrupt signal set by core_0
is cleared by the core_1 to write the data in the shared memory and leaves

40 4. System Implementation

Figure 4.7: Mutual exclusion principle

the critical section. Following this, core_1 executes its critical section and
sets a signal to the core_0 that it can execute its critical section. This mecha-
nism loops for as long as there is data to write and read without causing any
synchronization issues as seen in 4.7.

4.2. LFM- BPSK Implementation
To achieve the goal of phase coding the linear frequency modulated chirps,
the MCU is programmed in association with the timing engine that is located
on the radar front-end. The timing engine and the MCU are synchronized
with the same clock and connected using a serial peripheral interface (SPI)
communication protocol. In order to transmit the information, the wave has
to be initially phase coded (with 0 or 𝜋), which means that each chirp can be
coded with one bit at a time. There are two ways to control the phase shift
from MCU:

• Using timing engine module settings: timing engine consists of 4 chirp
profiles. Each chirp profile is a template that defines the chirp timing.
In other words, each chirp in the frame of a sequence of chirps that is
transmitted is associated with one of the four profiles.

• Using the phase shifter: make the phase shifter follow the level on an
I/O pin via the hardware BPS hard switches as seen in the figure 3.1.
This makes the phase shifter on the radar board to toggle on and off at

4.2. LFM- BPSK Implementation 41

Figure 4.8: Software Implementation of BPSK-LFM modulation on MCU on core_0

quick succession between the chirps.

The second technique allows for a higher bit rate from the communication per-
spective but is harder to decode and also harder to retain the normal radar
functionality. Therefore, we implement the phase coding using the first tech-
nique which utilizes the hardware timing engine registers. The flowchart of
the implementation is shown in figure 4.8 We first initialize the timing engine
module located on the radar front-end from the MCU in order to send the bits
of information from MCU to the radar front-end transmitter end.

One of the ways of sending the bits to the radar front end is by accessing
the API calls. However, for ease of implementation and to avoid unwanted
overheads, we directly access the timing engine registers that also hold the
phase shift settings. Once the timing engine registers are initialized, it is es-
sential to simultaneously initialize the semaphore module as it is required
for the core_0 to get the information bits from core_1 as all of the radar pro-
cessing and sending of bits to the timing engine module is taking place in
the core_0. Once the core_0 gets message bits, it proceeds with signal pro-
cessing. In this implementation, the ADC values and the processing of range
takes place simultaneously in the SPT. The timing engine register where the
bits will be sent is first read by the MCU via the API call ”Chip_reg_read”. The
register contains three bits for the phase shift settings, one for each trans-
mitter. We make use of only one transmitter to toggle the phase between the
chirps. These bits are collected in the variable binary phase shift (BPS) corre-
spondingly in each profile that is responsible for enabling a 180-degree phase

42 4. System Implementation

shift for each transmitter.

Essentially, a profile is a collection of radar front-end settings correspond-
ing to the chirps, like frequency and timing settings, and - more importantly,
the BPS settings. The timing engine can be configured to use a different pro-
file for each chirp. So, by creating profiles with different BPS settings, we
can control the BPS setting in the transmitters. Since only four profiles can
be defined, which is far less than the number of bits in the communication
message, we cannot create a profile for each message bit due to hardware
and memory limitation. Therefore, we apply a strategy here: we configure
the timing engine to alternate between profile 0 and 1 for the consecutive
chirps. Moreover, while the timing engine is using profile 0, we update pro-
file 1 with a new BPS setting, and vice versa as illustrated in the figure 4.9.
Here, we considered one ASCII character associating with the communication
message of our interest, ”𝐻”. The binary bits corresponding to the letter ”𝐻”
are 01101000. From the above strategy, we can observe that while sending
the first bit ”0” in the profile 0, we are already configuring the second bit in
the profile 1. Then, while sending the second bit the profile 0, we are again
configuring the profile 0 with the third bit. This continues for all the bits in
the message.

In the sequence of the chirps in a frame which is encoded with one bit each,
we keep the values of the first two chirps constant. These associates with the
message passing frame where the payload data can be easily identified in the
stream of different radar frames.

P0 P1 P0 P1 P0 P1 P0

0 1 1 0 1 0 0

P1

0

LFM
chirps

Profiles associated
with each chirps

BPSK bits to encode
in each profile and

chirp

Binary bits corresponding to the

ASCII character “H”

1 2 3 4 5 6 7 8

Figure 4.9: Software Implementation of BPSK bits in each chirp

The information bits received from the core_1 are stored in a buffer of
core_0. To send these bits to the register, we consider each byte of the mes-
sage and implement it in an 8-bit counter. The 8-bit counter triggers the
bit at the least significant position of the byte at every iteration and keeps

4.3. MATLAB Post-processing 43

shifting for eight times and masks it with and operation. By doing this, at
every instance, the BPS variable gets one bit from the byte of information and
writes this to the timing engine register using the chirp_reg_0 API call. These
registers are associated with each profile.

It is only possible to send and reconstruct the data bits if the number of bits
is equal to the number of chirps. Therefore, for the configuration involving
256 chirps, it is possible to send 256 bits. For example, consider a message
with message size as 10 bytes. From the implementation perspective, it is
only possible to embed one bit per chirp. This means that in order to send
10 ∗ 8𝑏𝑖𝑡𝑠 = 80𝑏𝑖𝑡𝑠 of data, we still require 256 − 80𝑏𝑖𝑡𝑠 = 176𝑏𝑖𝑡𝑠 of dump
message bits. In order to overcome the dump message bits, we optimized our
client (host PC) from where the message is initially sent, by making the client
append 0’s after the message ends if the message size is less than 256 bits.
In this way, we achieve 256 chirps with 256 bits of information.

4.3. MATLAB Post-processing
The center goal of this thesis is to extract phase information from the beat
signals in order to read each bit of information encoded in the chirp as it
is known that the beat signals contain the information of range, doppler,
and phase. To realize this, it is important to understand the digital spectral
analysis of FMCW radar. This analysis is broken down into range and doppler
processing.

Range
bins

AD
C

AD
C

AD
C

FF
T

FF
T

FF
T

Range
bins

Do
pp

le
r

bi
ns

Ch
irp

#

Column
wise FFT

1
2

N

tim
e

frequency

Figure 4.10: Range/doppler processing

44 4. System Implementation

The relation between the target’s range and beat signal is shown in the
equation 2.18. The target’s range can be computed from the beat frequencies[22].
The beat frequencies can be obtained by sampling the beat signal and apply-
ing FFT along the sampled sequence. This results in obtaining the range
dependent amplitude and phase values.

This means that each chirp generates M samples. For N chirps, a block
of N*M samples is formed. These sampled values are stored in a data matrix
comprising of rows and columns, and a specific memory location on MCU is
dedicated to it, after which, the data matrix is subjected to the range and
doppler processing. Each row in the data matrix now consists of all the sam-
ples of a single chirp. In a sequence, these rows, one by one undergoes FFT
resulting in N*M block. Each row comprises with the baseband signals of the
corresponding chirps. The row data in the matrix is commonly referred to as
slow-time. To obtain velocity information, FFT is applied on the columns of
the data matrix yielding the range/doppler spectrum. This is referred to as
fast time. Since we can extract all three output modes: ADC samples, range
FFT values and doppler FFT values from the MCU after performing signal
processing on the acquired samples, we choose to extract values of both raw
ADC samples and doppler FFT. By doing so, we show that it is possible to
reconstruct the communication message by looking at the phase information
in the case of the stationary target by post processing both the ADC samples
and the doppler FFT values in the results chapters.

4.4. Validation test case scenario
To validate our BPSK-LFM implementation, we considered a validation test
scenario with a stationary target. The stationary target considered for this
purpose is a strong corner reflector. Corner reflectors are very useful to re-
flect strong radar echoes from the target making it useful for radar system
calibration.

In this validation test case scenario, the DCC module is kept constant at
a fixed distance from the corner reflector. Once this setup is arranged, we
initialize the output mode from the MCU to be either raw ADC samples, range
FFT or doppler FFT. Once the initialization is defined, the UDP server on the
host PC is launched to start collecting the required data from the output mode
selected and store it in a binary file (.bin) for further MATLAB post-processing.
Further, we considered the values shown in the table 4.1 to configure the
chirp parameters. Two configurations were provided in the demo kit initially
to configure the radar front-end. However, to accomplish our implementation,
we made use of the configuration_1.

4.4. Validation test case scenario 45

Radar module

Tx 1 Rx1 Rx2 Rx3 Rx4

Scenario: Corner
reflector hanging from
the ceiling

Radar front-end is facing
towards the ceiling

The distance from the
corner reflector to the
radar is 2 meters

Figure 4.11: Validation test case scenario setup

Chirp parameters configuration
Parameter Unit Configuration_1 Configuration_2
Start frequency GHz 78.5 78.5
Number of
chirps (N)

256 128

Dwell time us 40.05 13.8
Settle time us 5 5
Jumpback time us 0.25 0.25
Reset time us 5 5
ADC Samples
(M)

256 512

ADC sample
rate

Msps 10 20

Minimum chirp
rate

us 26.3 49.5

Chirp band-
width

GHz 1.5 375 MHz

Data rate MBPS 240 240
Receiver chan-
nels

4 4

Table 4.1: Chirp, profile and frame configuration parameters

46 4. System Implementation

4.5. Conclusions
To fulfill the aim of embedding communication message in an LFM waveform,
we first built a client on the host PC as a source of sending the message bits to
the MCU which acts as s server to receive the message bits. The client-server
model is built on the TCP/IP protocol concerning the ethernet connection
between the host PC and the MCU. We chose to implement the TCP/IP pro-
tocol due to its data integrity and message delivery guarantee. The incoming
message bits are stored in the local memory of the core_1 of the MCU as the
ethernet stack is located there. However, the message bits can be further sent
to the radar front end only from the core_0 as it is responsible for configuring
the radar and for radar processing. To solve this issue, we used hardware
semaphores to create an inter-core communication between the core_0 and
core_1. Following this, the software implementation of the BPSK-LFM wave-
form was achieved.

To validate the communication message we sent across the radar LFM
waveform, we consider extracting two output mode values on the host PC
offered by the MCU where the SPT performs algorithms to compute the range
and velocity of the target. The two output modes are raw ADC sample values
and doppler FFT values. We require these two values to further post process
in MATLAB to obtain the phase information. Therefore, we built a client-
server model using a UDP protocol where MCU is the client that outputs the
two measurements to the server (host PC).

5
Results and Validation

This chapter of the thesis is dedicated to present the most relevant results of our
implementation. We follow the flow diagram shown in the figure 3.6 to obtain
the end goal which is the phase information corresponding to the communica-
tion message. After showing the results, we validate the implementation. In
the first two sections, we show the validity of the real-time 2D FFT spectrum
with the MATLAB simulated spectrum in a stationary target scenario. The next
part focuses on the real-time 2D FFT plots obtained from the application pro-
vided by NXP. The following sections are dedicated to showing different plots
achieved from collecting different values related to range, raw ADC samples,
and doppler FFT with and without phase coding. The final section presents
the reconstruction of the message encoded in the LFM chirp and reflects on the
validation of reconstructing the message bits from the chirp using MATLAB.

5.1. Real-time 2D FFT spectrum with and without phase
coding

In this section, we start by presenting the real-time 2D FFT spectrum that
plots range on the X-axis and velocity on the Y-axis as seen in the figure 5.1.
The plot was achieved by a 2D FFT visualizer provided by the NXP.

(a) (b)

Figure 5.1: Real-time 2D FFT spectrum: (a)without phase coding, and (b)with phase coding

We do not have more information regarding the application and therefore
can only attempt to explain what has been perceived from the plot as much

47

48 5. Results and Validation

as we could. This plot is a result of acquiring the UDP packets from the MCU
after the SPT performs radar signal processing on the raw ADC samples to
obtain range/doppler measurements.

5.2. Validation of 2D FFT spectrumwith andwithout phase
shift

In this section, we present the 2D FFT output plot of a stationary target sim-
ulated by MATLAB as shown in the figure 5.2 for 256 chirps. This simulation
reflects the spectrum of 2D FFT when there is no phase coding in the LFM
waveform.

It can be seen here that for doppler frequency of 0KHz, the target is located
at 100m corresponding to -60 dB magnitude.

Stationary target no BPSK

50 100 150 200

Range (m)

-100

-80

-60

-40

-20

0

20

40

60

80

100

D
o

p
p

le
r

fr
e

q
u

e
n

c
y
 (

k
H

z
)

-120

-100

-80

-60

-40

-20

0

Figure 5.2: MATLAB simulated 2D FFT spectrum without phase coding

This section presents the output plot simulated in MATLAB for stationary
targets. In this simulation, phase coding was applied, and the result can be
seen in the figure 5.3. We applied a sequence of ”11110000” corresponding to
the BPSK signal. The signal representation of the BPSK-LFM waveform can
be seen in the figure 2.29.

If we observe the output of both real-time and MATLAB simulated 2D FFT
spectrums, it can be seen that the spectrum is a representation of the fre-
quencies corresponding within a chirp (representing the distance along the
X-axis) and the frequencies found between the consecutive chirps (represent-
ing the velocity along the Y-axis). With the phenomenon of phase modulating
the LFM waveform at the transmitter end, we are changing the phase between
the chirps. By doing this, we are causing an additional phase shift in addi-
tion to the phase shift obtained due to doppler shift, which means that we are
adding extra frequencies to the received signal and interfering with what is
interpreted as the velocity at the receiver end. To obtain velocity, we look at
the frequencies between the consecutive chirps. These additional frequencies
are interpreted as added velocities in the 2D spectrum as seen in the figure
5.1b for real-time and figure 5.3 for MATLAB simulated output.

5.3. MCU output mode validation 49

Stationary target with BPSK

50 100 150 200

Range (m)

-100

-80

-60

-40

-20

0

20

40

60

80

100

D
o

p
p

le
r

fr
e

q
u

e
n

c
y
 (

k
H

z
)

-120

-100

-80

-60

-40

-20

0

Figure 5.3: MATLAB simulated 2D FFT spectrum with phase coding

5.3. MCU output mode validation
The ADC module on the radar front-end converts all the received analog sig-
nals into digitized samples and sends them to the MCU and is then stored in
the SRAM on the MCU. To enable target detection and to achieve information
on the range and the velocity of the target, the SPT module on the MCU per-
forms 1D and 2D FFT respectively. Therefore, the MCU is able to deliver the
computed values of raw ADC samples, range FFT and doppler FFT. The ob-
jective of this thesis work which is sending the bits in the LFM waveform and
then reconstructing the waveform to achieve the message bits is fulfilled by
extracting raw ADC samples and doppler FFT values from the MCU and post
process the values on the host PC to observe and validate the phase change
corresponding to the communication message bits.

In this section, we present the most relevant plots achieved by enabling
the MCU to output raw ADC sample values and doppler FFT values. The
initial MCU output mode was configured to doppler FFT and therefore we first
implemented the doppler FFT output mode. After we collected the doppler FFT
values, we configured the MCU to output the raw ADC samples.

5.3.1. FFT output mode validation
After presenting the 2D FFT spectrum plots in both cases of real-time and
simulated for stationary with and without the phase coding, we now illustrate
the results and validation of range, doppler, beat signals and phase variations
obtained by configuring the MCU to operate in the first output mode namely
doppler FFT. We considered four different strings of information bits sent
across the radar via MCU from the host PC.

2D FFT(range-doppler) Spectrum
Figure 5.4 shows the range/doppler spectrum with different test strings for
the corner-reflector target placed at a 10 m distance from the radar module. It
is important to note that the 2D FFT response was plotted only for one frame
(Frame1) obtained from one receiver (Rx1).

50 5. Results and Validation

To obtain the range/doppler plot, the SPT in the MCU performs two FFT
operations on the acquired raw ADC samples in the SRAM. The first FFT
operates on the samples within a chirp and separates the data over distance
(into range bins). This was done for each chirp. The second FFT operates
across consecutive chirps, it takes the sample from a particular range bin
from each chirp. This separates the data over velocity (into doppler bins).
This was done for each range bin. The spectrum is a result of processing the
doppler FFT values accumulated in a .bin file in MATLAB. The explanation
for such an unstable spectrum that was shown in the previous section is also
valid for this case.

Frame # 1, Rx #1

20 40 60 80 100 120

Range bin #

50

100

150

200

250

D
o

p
p

le
r

b
in

 #

(a) String 1 (helloworld)

Frame # 4, Rx #1

20 40 60 80 100 120

Range bin #

50

100

150

200

250

D
o

p
p

le
r

b
in

 #

(b) String 2 (greenlight)

Frame # 1, Rx #1

20 40 60 80 100 120

Range bin #

50

100

150

200

250

D
o

p
p

le
r

b
in

 #

(c) String 3 (iamrobotand icandrive)

Frame # 1, Rx #1

20 40 60 80 100 120

Range bin #

50

100

150

200

250

D
o

p
p

le
r

b
in

 #

(d) string 4 (STOP!@123GO)

Figure 5.4: 2D FFT spectrum for four different test strings

1D FFT (range) spectrum at zero doppler cut
Once the doppler spectrum has been processed from the doppler FFT values
received from the MCU on the host PC, we proceed with processing the range
spectrum between the radar and the stationary target. When the target is in
the moving state, it is difficult to identify any phase shift between the chirps
caused by encoding the bits as there is always a relative velocity between

5.3. MCU output mode validation 51

the radar and the moving target and this introduces doppler effect. Due to
this reason, having the velocity as zero will make it possible for observing the
phase shifts between the chirps caused by information bits. Therefore, in the

0 20 40 60 80 100 120 140

Range bin #

-80

-70

-60

-50

-40

-30

-20

-10

0

N
o

rm
a

liz
e

d
 p

o
w

e
r

(d
B

)

Range profile zero Doppler cut

X: 15

Y: -2.048

(a) String 1 (helloworld)

0 20 40 60 80 100 120 140

Range bin #

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

N
o

rm
a

liz
e

d
 p

o
w

e
r

(d
B

)

Range profile zero Doppler cut

(b) String 2 (greenlight)

0 20 40 60 80 100 120 140

Range bin #

-80

-70

-60

-50

-40

-30

-20

-10

0

N
o

rm
a

liz
e

d
 p

o
w

e
r

(d
B

)

Range profile zero Doppler cut

(c) String 3 (iamrobotandidrive)

0 20 40 60 80 100 120 140

Range bin #

-80

-70

-60

-50

-40

-30

-20

-10

0

N
o

rm
a

liz
e

d
 p

o
w

e
r

(d
B

)

Range profile zero Doppler cut

(d) string 4 (STOP!@123GO)

Figure 5.5: Range Plot at zero doppler cut

figure 5.5, we show the range spectrum of the radar and the stationary target
at zero doppler cut when the target was placed at a fixed distance of 10 m
from the radar. From the (1D) FFT analysis at zero doppler cut, the peak
signal values differs for every string. For string 1, the peak signal was located
at −4.127 dB. This peak corresponds to the target in the range bin 15 which
is equal target distance of 10. From the analytical point of view, it was also
observed that the range-bin corresponding to target was found to be equal in
all the chirps for every frame and for all the receivers. This is because both
target and radar were stationary throughout the entire measurement time.

Beat signals
The beat signals are obtained either from acquired raw ADC samples or from
the doppler FFT values. To achieve beat signals, we made use of the doppler
FFT values. In MATLAB, after processing the range and doppler plots, we

52 5. Results and Validation

applied inverse FFT over the dimension of the range. We performed the IFFT
for all the four different test cases. The resulting beat signal plots are shown
in the figure 5.6 corresponding to one chirp. Further, we also show beat
signals for all the 256 chirps in the figure B.1 from the appendix B section.

0 20 40 60 80 100 120 140

Sample index

-6

-4

-2

0

2

4

6

M
a

g
n

it
u

d
e

10-9 beat signal for chirp 1

(a) String 1 (helloworld)

0 20 40 60 80 100 120 140

Sample index

-6

-4

-2

0

2

4

6

M
a

g
n

it
u

d
e

10-9 beat signal for chirp 1

(b) String 2 (greenlight)

0 20 40 60 80 100 120 140

Sample index

-6

-4

-2

0

2

4

6

M
a

g
n

it
u

d
e

10-9 beat signal for chirp 1

(c) String 3 (iamrobotandidrivegreenlight)

0 20 40 60 80 100 120 140

Sample index

-3

-2

-1

0

1

2

3

M
a

g
n

it
u

d
e

10-9 beat signal for chirp 1

(d) string 4 (STOP!@123GO)

Figure 5.6: Beat signals for 256 chirps acquired from doppler FFT output values for four
different test strings

It is interesting to note that the beat signal achieved from the doppler FFT
values is preceded by a windowing operation. By default, this is a Dolph-
Chebyshev -110dB window with 16-bit real coefficients. Further, due to win-
dowing, it becomes difficult to observe the phase toggles between the chirp as
will be discussed in the upcoming sections.

5.3. MCU output mode validation 53

5.3.2. ADC samples output mode validation
In the previous section, we have illustrated various plots concerning range,
doppler, beat signals and phase variations obtained by configuring the MCU
to operate in the first output mode namely doppler FFT. In this section, we
present the plots by configuring the MCU to output raw ADC samples values.

Beat signals
For the output mode transferring raw ADC data, we can get clear beat signals
without any windowing, thereby, achieving a clear plot of phase variations
between chirp to chirp. The output plot of beat signals is shown in the figure
5.7 that corresponds to one chirp. Further, we also show beat signals for all
the 256 chirps in the figure B.3 from the appendix B section.

50 100 150 200 250

Sample index

-6000

-4000

-2000

0

2000

4000

6000

A
D

C
 v

a
lu

e

beat signal of chirp 1

(a) String 1 (helloworld)

50 100 150 200 250

Sample index

-6000

-4000

-2000

0

2000

4000

6000

A
D

C
 v

a
lu

e

beat signal of chirp 1

(b) String 2 (greenlight)

50 100 150 200 250

Sample index

-6000

-4000

-2000

0

2000

4000

6000

A
D

C
 v

a
lu

e

beat signal of chirp 1

(c) String 3 (iamrobotandidrive)

50 100 150 200 250

Sample index

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

A
D

C
 v

a
lu

e

beat signal of chirp 1

(d) string 4 (STOP!@123GO)

Figure 5.7: Beat signal corresponding to one chirp for four different strings

1D FFT spectrum
After obtaining the beat signals from the raw ADC samples, we now validate
the range of the stationary target by performing first FFT operation over the
time samples. In contrast to the FFT output mode, where the SPT in the
MCU is performing the FFT operation on the time samples, here, we obtain
the range information of the target by post processing the raw ADC samples

54 5. Results and Validation

in MATLAB. We applied a window function preceded by the range FFT, and,
in our case, the windowing is a dolph chebyshev function with -110 DB level.
As NXP’s default window function is the dolph chebyshev, we considered the
same for accuracy.

From the table 4.1, we use configuration_1 to program the chirp parame-
ters in this thesis work. Considering the values of chirp duration 𝑇 and band-
width of the chirp 𝐵, we compute the round trip time delay of the transmitted
and received chirps and find out the frequency shift which is also called as
beat frequency and is denoted as 𝑓 . To obtain the range 𝑅 of the target, we
use the equation 2.18, where the relation between the beat frequencies 𝑓 and
the range 𝑅 is shown. The range plots for four different strings is shown in
the figure 5.8. For all the scenarios, the range of the target from the radar
was found to be approximately 1.4m. This is because we considered the tar-
get to be stationary for all the test string cases. The validation of the range
from beat signals indeed shows us that the range computed from the beat
frequencies is same as that of the ground truth range.

0 5 10 15 20 25 30

Range(m) #

50

60

70

80

90

100

110

120

130

140

150

M
a

g
n

it
u

d
e

 #

Range plot

X: 1.4

Y: 140.3

(a) String 1 (helloworld)

0 5 10 15 20 25 30

Range(m) #

60

70

80

90

100

110

120

130

140

150

M
a

g
n

it
u

d
e

 #

Range plot

X: 1.4

Y: 140.7

(b) String 2 (greenlight)

0 5 10 15 20 25 30

Range(m) #

40

50

60

70

80

90

100

110

120

130

140

M
a

g
n

it
u

d
e

 #

Range plot

X: 1.4

Y: 131.9

(c) String 3 (iamrobotandidrive)

0 5 10 15 20 25 30

Range(m) #

50

60

70

80

90

100

110

120

130

140

M
a

g
n

it
u

d
e

 #

Range plot

X: 1.4

Y: 138.4

(d) string 4 (STOP!@123GO)

Figure 5.8: Range plots from the beat frequencies for different strings

5.4. Message reconstruction 55

5.4. Message reconstruction
As detailed in the implementation chapter, where we have encoded the mes-
sage bits in the LFM waveform, we show the reconstruction of the message.

The message on the client was entered in American Standard Code for
Information Interchange (ASCII) characters. Each character is represented
as 1 byte which extends into 8 bits. We reconstruct the message in MATLAB
from the doppler FFT (.bin) file. The data present in the .bin file is in terms of
unsigned 8-bit values.

String h e l l o w o r l d
Reconst. String h e l l o w o r l d

(a)
String g r e e n l i g h t

Reconst. String g r e e n l i g h t

(b)
String i am robot and i can drive

Reconst. String i am robot and i can drive

(c)
String S T O P ! @ 1 2 3 G O

Reconst. String S T O P ! @ 1 2 3 G O

(d)

Table 5.1: Message reconstruction

After receiving the uint_8 values, we convert it to double values in MATLAB
and reconstruct the message by looking at the phase variations and obtain
the messages as shown in the table 5.1. In the process of reconstructing
the message, we have to note that the message received from the client is
stored in the big-endian format in the buffer of MCU. After the binary phase
shift setting is applied on the message bit by bit, the message is stored in the
UDP packets in big-endian. To be able to recover the message bit by bit in
the correct order, in MATLAB, the entire string is flipped from right to left for
every 8 bits in an array of 32 bytes. In addition to reconstructing the message,
it is also possible to validate the phase variations of the signal with respect
to the message encoded by two ways: the first way is by processing the raw
ADC samples, and other is to use the doppler FFT values.

56 5. Results and Validation

Phase variation plot from raw ADC samples output mode
In the figure 5.9 which is the result of phase variations obtained from the beat
signals, the phase toggling can clearly observed for 256 chirps and 256 ADC
samples. The change in two colors successively corresponds to the bit toggle
of 0 to 1 and 1 to 0. For example, let us consider the phase toggling along the
256 chirps at the sample index 113. We obtain the figure 5.10. In principle,
we can look at any sample index, but we chose the sample index at which the
beat signal has the highest peak from figure 5.7 for all the strings.

256 Beat signals

50 100 150 200 250

Chirp index

50

100

150

200

250

S
a
m

p
le

 i
n

d
e
x

(a) String 1 (helloworld)

256 Beat signals

50 100 150 200 250

Chirp index

50

100

150

200

250

S
a
m

p
le

 i
n
d
e
x

(b) String 2 (greenlight)
256 Beat signals

50 100 150 200 250

Chirp index

50

100

150

200

250

S
a

m
p

le
 i
n

d
e

x

(c) String 3 (iamrobotandidrive)
256 Beat signals

50 100 150 200 250

Chirp index

50

100

150

200

250

S
a

m
p

le
 i
n

d
e

x

(d) String 4 (STOP!123@GO)

Figure 5.9: Phase variations from beat signals acquired from raw ADC samples

For string 1 which specifies ””helloworld”, the binary value is extracted as
”1011010100110001101100011011110110111011101111011001001
110001100010011” preceded by 9 bits of header and appended by 0’s until
the 32bytes is reached as shown in the figure 5.10. Similarly, all the other
strings also can be extracted.

5.4. Message reconstruction 57

000000000001011010100110001101100011011011110110111011101111011001001110001101100010011000

50 100 150 200 250

Chirp index

0

0.5

1

(a) String 1 (helloworld)

010100001110011001001110101001101010011001110110001101101001011011100110000101100010111000

50 100 150 200 250

Chirp index

0

0.5

1

(b) String 2 (greenlight)
00000000100101101000011010110110010011101111011001000110111101100010111010000110011101100010011010010110001001100100111010010110011011101010011000

50 100 150 200 250

Chirp index

0

0.5

1

(c) String 3 (iamrobotandidrive)
0000000011001010001010101111001000001010100001001000110001001100110011000000001011100010111100101100010011000100

50 100 150 200 250

Chirp index

0

0.5

1

(d) String 4 (STOP!123@GO)

Figure 5.10: Phase variations beat signals and corresponding binary values for four
different test strings acquired from raw ADC samples

58 5. Results and Validation

Phase variation plot from FFT output mode
In the figure 5.11 which is the result of phase variations obtained from the
FFT output mode, the phase toggling can be observed for 256 chirps and 256
ADC samples. For example, let us consider the phase is toggling along the
256 chirps at the sample index 60. In principle, we can look at any sam-
ple index, but we chose the sample index at which the beat signal has the
highest peak from figure 5.6 for all the strings. The change in two colors suc-
cessively corresponds to the bit toggle of 0 to 1 and 1 to 0. It is hard to observe
the phase toggling as the doppler FFT values extracted are a result of apply-
ing windowing, as the side lobes are suppressed in contrast with the phase
variation plot obtained from raw ADC samples. For string 1 which specifies

Phase variations

1 10 20 30 40 50 60 70 80 90 100

Chirp index

20

40

60

80

100

S
a
m

p
le

 i
n
d
e
x

(a) String 1 (helloworld)

Phase variations

1 10 20 30 40 50 60 70 80 90 100

Chirp index

20

40

60

80

100

S
a
m

p
le

 i
n
d
e
x

(b) String 2 (greenlight)
Phase variations

1 10 20 30 40 50 60 70 80 90 100

Chirp index

20

40

60

80

100

S
a
m

p
le

 i
n
d
e
x

(c) String 3 (iamrobotandidrive)
Phase variations

1 10 20 30 40 50 60 70 80 90 100

Chirp index

20

40

60

80

100

S
a
m

p
le

 i
n
d
e
x

(d) String 4 (STOP!@123GO)

Figure 5.11: Phase variations from beat signals acquired from FFT values

””helloworld”, the binary value is extracted as
”1011010100110001101100011011110110111011101111011001001

5.4. Message reconstruction 59

110001100010011” preceded by 9 bits of header and appended by 0’s until
the 32bytes is reached as shown in the figure 5.12. Similarly, all the other
strings also can be extracted. It is interesting to note that the phase varia-
tion plot from the beat signal is quite clear than the phase variations from
doppler FFT values. The reason for such behavior is windowing. A window-
ing operation precedes both the range and doppler FFT. By default, this is a
Dolph-Chebyshev -110dB window with 16-bit real coefficients. This is not the
case for the beat signals obtained from the raw ADC samples where the beat
signals are obtained before applying any windowing. Therefore, it is ideal to
look at the beat signals from raw ADC samples to correctly verify the phase
coding.

111111110001011010100110001101100011011011110110111011101111011001001110001101100010011000

0 50 100 150 200 250

0

0.5

1

(a) String 1 (helloworld)

111111111110011001001110101001101010011001110110001101101001011011100110000101100010111001

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

(b) String 2 (greenlight)
11111111100101101000011010110110010011101111011001000110111101100010111010000110011101100010011010010110001001100100111010010110011011101010011001

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

(c) String 3 (iamrobotandidrive)
1111111111001010001010101111001000001010100001000000001010001100010011001100110010000100111000101111001001

0 50 100 150 200 250

0

0.5

1

(d) String 4 (STOP!@123GO)

Figure 5.12: Phase variations beat signals Phase variations beat signals and corre-
sponding binary values for four different test strings acquired from FFT values

60 5. Results and Validation

5.5. Conclusion
One of the first results corresponds to the validation of the real time 2D FFT
spectrum by implementing LFM-BPSK in MATLAB. We considered four different
strings to acknowledge the implementation of LFM-BPSKwaveform and present
different plots related to its behavior such as its 2D FFT spectrum, the number
of receiver channels per frame, range profile sequence with zero doppler cut,
range plot and phase variations between chirps at a selected single range bin
selected. In addition to this, we show beat frequency plots and also prove the
phase variations from the plot.

6
Conclusion and Future work

6.1. Conclusion
The essence of exploiting both sensing and communication in the same wave-
form transmitted from the radar is the true motive behind conducting this
thesis work. We aim to implement one of the widely acknowledged form of
modulation techniques based on phase to embed information bits in to the
radar waveform using a MCU as the autonomous cars today are increasingly
becoming software driven requiring high performance processing speeds. The
thesis was carried out on hardware platform provided by NXP, namely the
DCC, which is an integration of high performance 32bit S32R274 MCU that
provides strong signal processing acceleration and a radar front-end TEF810X
which is based on fast-chirp modulation.

In order to achieve a real-time information exchange from radar to enable
dual functionality of both sensing and communication in a vehicle, we have
performed the following stages of implementation. In the end of the implemen-
tation, we successfully were able to send the message in the LFM chirps from
the radar in real time. Following this, we also reconstructed the message cor-
rectly by post processing both the raw ADC samples and range/doppler FFT
values which are a result of the SPT toolbox performing computations on the
received signals in the MCU.

In the first stage of the implementation, we built a Graphical User Inter-
face (GUI) interface between the host PC and MCU based on TCP/IP commu-
nication protocol to send message bits to the MCU by setting up a listening
echo server on the DCC board. Moreover we implemented a client connection
on the PC which makes communication possible between MCU and any host
making it bidirectional in nature. Following this, to receive the UDP packets
that contain range, doppler and raw ADC samples in order to further conduct
post-processing in MATLAB, a UDP listening server was built on the host PC
and client on MCU. The MCU which saves the processed range, doppler and
ADC samples, outputs them into the UDP packets and stores them into the

61

62 6. Conclusion and Future work

SRAM of the MCU.

From the system implemention, it can see that there was a challenge with
respect to sending the message bits from MCU to the radar front end as the
data is stored in the local memory of core_1 and all the radar processing
happens in core_0. Therefore, we implemented a technique to establish inter
core communication between core_0 and core_1 using hardware semaphores.
Once the communication is established, we send few test strings of message
from the host PC to the MCU and begin the process of sending them to the
radar via timing engine registers bit by bit. It was important to consider one
test case scenario to conduct the experiments, being, the stationary target.
We did not perform the BPSK-LFM implementation on the moving target due
to the fact that in order to the doppler information is obtained by looking at
the phase shift which is a result of doppler phenomenon between consecutive
chirps. When we are encoding the chirp with message bits, we are causing
addition phase shifts. In the current implementation, where we are observing
the phase shifts on the echo received signals on the same radar board as that
of the transmitter, the receiver interprets the phase shift as the doppler infor-
mation. This makes it impossible to reconstruct phase shifts corresponding
to message bits. Therefore, we keep the radar at a fixed distance from the
target to obtain the phase information. When using this implementation for
radar-to-radar communication, the transmitting radar would compensate for
the phase shifts in its receiver before processing the data, thus obtaining a
clean spectrum usable for range/velocity measurements. The receiving radar
will not compute the full 2D spectrum from the signal, but instead analyze
the phase jumps between consecutive chirps to reconstruct the bit stream.

While it is possible to observe the phase toggling from both the raw ADC
sample values and the doppler FFT values outputted by the MCU, it was de-
duced that, indeed, the raw ADC samples provide clear beat signals with-
out any windowing unlike the beat signals obtained from post processing the
doppler FFT values. However, we also included and analyzed the beat signals
and phase information obtained by the doppler FFT values as the end appli-
cation offered by the DCC board is a doppler spectrum that provides the range
information of the target contributing to target detection. In other words, the
SPT in the MCU is able to perform the acquisition of the ADC samples and
compute the range and velocity of the target in parallel. We take this advan-
tage and prove that indeed it is possible to reconstruct the message with the
doppler FFT values as well.

Finally, coming back to our research question of achieving joint sensing
and communication functionality in a radar via a MCU, to facilitate real time
processing, we successfully accomplished the following goals. Firstly, the
software architecture for the interface between the NXP’s S32R274 MCU,
TEF810X transceiver and the host PC was proposed. Secondly, we imple-
mented the binary phase coded linear frequency modulated waveform (BPSK-

6.2. Future scope 63

LFM) on the MCU to facilitate real time information exchange and lastly, the
correctness of phase coding was validated by establishing a test scenario with
a stationary target.

6.2. Future scope
Lastly, we conclude our work with some final future work suggestions that
involves message reconstruction and the number of bits encoded per chirp.
The immediate followup field of investigation to this thesis would be to work
on building a robust decoder at the receiver end that will reconstruct the
message without any inconsistency in the message bits. It is also important
to note that the message sent from the client to the MCU is a continuous
stream of ASCII characters without a space. Conventionally, it is required to
send messages with spaces between the words. In the limited span of this
thesis work, we could not identify where the issue lies. However, this could
be valuable to start working with instantly. Furthermore, it is interesting to
notice from research conducted that it is possible to encode one chirp with
more than one bit of information by switching the chirp not only at 0 or 180
degrees but also at other angles. This technique is referred to as reduced
binary phase shift keying.

A
Hardware setup

The Dual Credit Card (DCC) radar sensor board is an integration of TEF810X1
77GHz RADAR transceiver chipset and the S32R274 automotive MCU that
can be used for radar software development, performance/system evaluation
and application demonstration.

A.1. TEF810X Transceiver
The figure A.1 depicts the front and rear side of the TEF810x transceiver.
The transceiver board is connected to the S32R274 MCU via the stacking
connectors that is also located on the rear side of the MCU.

A.2. S32R274 MCU with debugger
The S32R274 Microcontroller (MCU) board component of the DCC includes
a high-speed connector for Nexus debug hardware which is Nexus Aurora
debug compatible debug hardware and can be connected directly to this con-
nector. For cases where the available debug hardware supports only JTAG
connection to the microcontroller, a debug adapter board (X-JTAG-CON) is
needed to expand this connector to provide the standard 14-pin JTAG con-
nector, shown in figure A.2. The JTAG connector is used by the P&E Micro
Multilink debug hardware Interface hardware to provide the debug interface
to S32R274 and support reprogramming of the embedded flash memory with
a new firmware binary.

A.3. Communication GUI using the Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) ethernet pro-
tocol

The snippet of the communication application on host PC (client) from where
the message is sent to the MCU (server) is shown in the figure A.3

65

66 A. Hardware setup

Figure A.1: NXP’s TEF810X transceiver front and rear side

(a) NXP’s S32R274 MCU front and rear
side[?]

(b) NXP’s S32R274 with JTAG connector[?
]

Figure A.2: NXP’s automotive S32R274 MCU with Debug Adapter card Attached

A.4. MCU output mode packet receiver GUI using UDP
protocol

The snippet of the receiver application on host PC (server) on which the pro-
cessed raw ADC samples, range/doppler FFT values are sent from the MCU

A.4. MCU output mode packet receiver GUI using UDP protocol 67

Figure A.3: TCP/IP client-server GUI on host PC to send messages to the MCU

(server) is shown in the figure A.4

Figure A.4: UDP client-server GUI to receive packets from MCU on the host PC

B
Simulations

B.1. 256 beat signals from FFT output mode
The figure B.1 plots all the 256 beat signals corresponding to 256 chirps for
four test strings. These beat signals are obtained from processing the FFT
values in MATLAB that is sent from the MCU to the host PC where the post
processing is occurring.

0 20 40 60 80 100 120 140

Sample index

-3

-2

-1

0

1

2

3

M
a

g
n

it
u

d
e

10-5 256 beat signals

(a) String 1 (helloworld)

0 20 40 60 80 100 120 140

Sample index

-3

-2

-1

0

1

2

3

M
a

g
n

it
u

d
e

10-5 256 beat signals

(b) String 2 (greenlight)

0 20 40 60 80 100 120 140

Sample index

-3

-2

-1

0

1

2

3

M
a

g
n

it
u

d
e

10-5 256 beat signals

(c) String 3 (iamrobotandidrive)

0 20 40 60 80 100 120 140

Sample index

-1.5

-1

-0.5

0

0.5

1

1.5

M
a

g
n

it
u

d
e

10-5 256 beat signals

(d) string 4 (STOP!@123GO)

Figure B.1: Beat signals for 256 chirps obtained from FFT values for four different strings

69

70 B. Simulations

B.2. Beat signals in a 3D view from FFT Output mode
This section illustrates the beat signals in 3-dimensional axis obtained from
the doppler Fast Fourier Transform (FFT) values. In MATLAB, after process-
ing the range and doppler plots, we applied inverse FFT over the dimension
of the range. We performed the IFFT for all the four different test cases. The
resulting beat signal plots are shown in the figure B.2. The plots shows num-
ber of samples and corresponding number of chirps. This plot gives a clear
representation of beat signals with both samples and chirps index.

Figure B.2: Beat Signals in a 3D view

B.3. 256 beat signals from ADC output mode 71

B.3. 256 beat signals from ADC output mode
The figure B.3 plots all the 256 beat signals corresponding to 256 chirps for
four test strings. These beat signals are obtained from processing the raw
ADC sample values in MATLAB that is sent from the MCU to the host PC
where the post processing is occurring.

50 100 150 200 250

Sample index

-6000

-4000

-2000

0

2000

4000

6000

A
D

C
 v

a
lu

e

256 beat signals

(a) String 1 (helloworld)

50 100 150 200 250

Sample index

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

A
D

C
 v

a
lu

e

256 beat signals

(b) String 2 (iamrobotandidrive)

50 100 150 200 250

Sample index

-8000

-6000

-4000

-2000

0

2000

4000

6000

A
D

C
 v

a
lu

e

256 beat signals

(c) String 3 (greenlight)

50 100 150 200 250

Sample index

-6000

-4000

-2000

0

2000

4000

6000

A
D

C
 v

a
lu

e

256 beat signals

(d) string 4 (STOP!@123GO)

Figure B.3: Beat signals for 256 chirps obtained from rawADC sample values for four different
strings

C
Matlab code

These MATLAB codes correspond to the post processing of the UDP packet
data received from theMCU that contain the ADC samples and FFT(range/doppler)
values to achieve the results as shown in the results chapter. The code was
written in collaboration with ir.Pascal Aubry in the MS3 Dept. of TU Delft.

C.1. BPSK-LFM signal representation

1 t = l i n s p a c e (0 , .5 , 1001) ;
2

3 Y = ch i rp (t) ;
4 f i g u r e ; p l o t (Y)
5

6 Z = repmat (Y, 1 , 6) ;
7

8 code = [1 1 1 1 1 1] ;
9

10 ZZ = reshape (Z , 1001 , 6) ;
11 ccode = repmat (code , 1001 , 1) ;
12

13

14 ZZZ = ZZ.* ccode ;
15

16 ZZZZ = reshape (ZZZ,1 , 6006) ;
17 cccode = reshape (ccode , 1 , 6006) ;
18

19 t t = l i n s p a c e (0 ,1 ,6006) ;
20 f i g u r e ;
21 subplot (3 , 1 , 1) ; p l o t (tt , cccode) ; yl im ([1 . 2 1 . 2]) ; t i t l e (’ Binary Data ’)
22 subplot (3 , 1 , 2) ; p l o t (tt , Z) ; t i t l e (’ Unmodulated LFM Chirps S i gna l s ’)
23 subplot (3 , 1 , 3) ; p l o t (tt , ZZZZ) ; t i t l e (’BPSK Modulated LFM’)

C.2. 2D FFT spectrum with and without phase coding

1 c l e a r ; c l c ; %c l o s e a l l

73

74 C. Matlab code

2

3 c = 3e8 ;
4 f c = 100 e6 ;
5 B = 50 e6 ;
6 T = 5e 6;
7 K = B/T;
8

9 f s = .5 e9 ;
10 dt = 1/ f s ;
11 t = 0 : dt :T;
12

13 Nsamp = length (t) ;
14 Nsweeps = 256 ;
15

16 SNR = 10 ; % 10dB
17

18 ThetaLFM = ((K*t B)/2+ f c) . * t ;
19 Txchirp = (exp (1 i *2* p i *ThetaLFM)) ;
20

21 f = l i n s p a c e (0 , f s , l ength (Txchirp)) ;
22 f i g u r e ; p l o t (f /1e6 ,20* log10 (abs (f f t (Txchirp))))
23

24 tgtR = 100 ;
25 tgtDlay = 2* tgtR/c ;
26

27 Rxchirp = i f f t (f f t (Txchirp . *exp(2* p i *1 i *(f+rand
28 (1 ,Nsamp) *1 e5) . *(tgtDlay+rand (1 ,Nsamp) *1e 11)))) . * rand (1 ,Nsamp) /SNR;
29

30 BS = Txchirp . * conj (Rxchirp) ;
31

32 maxRange = c*T/2 ;
33 Range = l i n s p a c e (0 ,maxRange ,Nsamp) ;
34

35 PRF = 1/T;
36 fd = l i n s p a c e (PRF/2 ,PRF/2 ,Nsweeps) ;
37

38 f i g u r e ; p l o t (Range ,20* log10 (abs (f f t (BS.*hamming(Nsamp) ’))))
39

40

41 %% BPSK
42 Pattern = [ones (1 , 4) 1*ones (1 , 4)] ; % equ iva l en t to 11111000
43 Code = repmat (Pattern , 1 , Nsweeps/ l ength (Pattern)) ; % repeat Pattern ...

over number o f sweeps
44

45

46 BURSTcoded = Code ’ *BS ;
47 BURST = ones (256 ,1) *BS ;
48

49 window = hamming(Nsweeps) *hamming(Nsamp) ’ ;
50

51 RngDopp = f f t 2 (BURST.*window) ;
52 RngDoppcoded = f f t 2 (BURSTcoded.*window) ;
53

54

55

56

C.2. 2D FFT spectrum with and without phase coding 75

57 f i g u r e ;
58 imagesc (Range , fd /1e3 , f f t s h i f t (20* log10 (abs (RngDopp) /max(abs (RngDopp (:))))
59 , 1)) ;
60 c ax i s ([120 0]) ; xl im ([5 0 200]) ; colormap j e t ; t i t l e (’ S ta t i onary ...

t a r g e t no BPSK ’)
61 x l ab e l (’Range (m) ’) ; y l ab e l (’ Doppler f requency (kHz) ’)
62 f i g u r e ;
63 imagesc (Range , fd /1e3 , f f t s h i f t (20* log10 (abs (RngDoppcoded) /
64 max(abs (RngDoppcoded (:)))) , 1)) ;
65 c ax i s ([120 0]) ; xl im ([5 0 200]) ; colormap j e t ; t i t l e (’ S ta t i onary ...

t a r g e t with BPSK ’)
66 x l ab e l (’Range (m) ’) ; y l ab e l (’ Doppler f requency (kHz) ’)
67

68

69 % [a , b]=max((abs (f f t (BS)))) ;
70 % f i g u r e ; p l o t (rad2deg (ang le (RngProf (: , b)))) ;

76 C. Matlab code

C.3. Extracting rawADCsamples fromUDPpackets and
reconstructing the message

1 f i d = fopen (’O: \ the s i s_code_f ina l \matlab_f ina l \adc_measurments\
2 adc_phase_stationary_diamrobot.bin ’) ;
3

4 NSamp = 256 ; % Samples per ch i rp
5 NChirps = 256 ; % Chirps per frame
6

7 k=1; % k = UDP packet number
8 whi le ¬ f e o f (f i d)
9 DataTypeID(k , :) = (f r ead (f id , 2 , ’ u int8 ’)) ;
10 FrameNumber(k) = f r ead (f id , 1 , ’ u int16 ’ , ’ b ’) ;
11 ChirpSeqNum(k) = f r ead (f id , 1 , ’ u int16 ’ , ’ b ’) ;
12 PacketNum(k) = f r ead (f id , 1 , ’ u int8 ’ , ’ b ’) ;
13 TotPacketNum(k) = f r ead (f id , 1 , ’ u int8 ’ , ’ b ’) ;
14 bu f f e r (: , k) = f r ead (f id ,4*183 , ’ in t16 ’ , ’ b ’) ;
15 k = k+1;
16 % i f k==512
17 % break
18 % end
19 end
20 f c l o s e (f i d) ;
21

22 % f ind s t a r t o f f i r s t and l a s t f u l l frames
23 idx1stFrame = f i nd (ChirpSeqNum==0,1, ’ f i r s t ’) ;
24 idxlastFrame = f i nd (ChirpSeqNum==0,1, ’ l a s t ’) 2;
25 Data = bu f f e r (: , idx1stFrame : idxlastFrame) ;
26 [M,N] = s i z e (Data) ;
27

28 % re arange data per Rx Channel
29 % s t i t c h 2 packages toge the r
30 Data = reshape (Data ,M*2 ,N/2) ;
31

32 [M,N]= s i z e (Data) ;
33 n = 1 ;
34 f o r m = 1 : 3 2 :M
35 A(n : n+7 , :) = Data (m:m+7 , :) ;
36 B(n : n+7 , :) = Data (m+8:m+15 , :) ;
37 C(n : n+7 , :) = Data (m+16:m+23 , :) ;
38 D(n : n+7 , :) = Data (m+24:m+31 , :) ;
39 n = n+8;
40 end
41

42 A = A(1 :NSamp , :) ;
43 B = B(1 :NSamp , :) ;
44 C = C(1 :NSamp , :) ;
45 D = D(1 :NSamp , :) ;
46

47 A = reshape (A,NSamp, NChirps ,N/NChirps) ;
48 B = reshape (B,NSamp, NChirps ,N/NChirps) ;
49 C = reshape (C,NSamp, NChirps ,N/NChirps) ;
50 D = reshape (D,NSamp, NChirps ,N/NChirps) ;
51

C.3. Extracting raw ADC samples from UDP packets and reconstructing the
message 77

52 f i g u r e ; imagesc (A(: , : , 1)) ;
53 colormap bone ; x l ab e l (’ Chirp index ’) ; y l ab e l (’ Sample index ’)
54 t i t l e (’ 256 Beat s i g n a l s ’)
55

56 f i g u r e ; p l o t (A(: , : , 1))
57 xlim ([1 256]) ; t i t l e (’ 256 beat s i g n a l s ’) ;
58 x l ab e l (’ Sample index ’) ; y l ab e l (’ADC value ’)
59

60 AA = A(113 , : , 1) ;
61 AAA = AA;
62 AAA(AA>0) = 0 ;
63 AAA(AA<0) = 1 ;
64

65 RxBinStr = num2str (AAA’) ’ ;
66

67 f i g u r e ; p l o t (AA)
68 x l ab e l (’ Chirp index ’) ; y l ab e l (’ADC value ’) ;
69 t i t l e (’ Beat s i g n a l ADC value f o r sample #113 ’)
70

71

72 f i g u r e ; bar (AAA)
73 xlim ([1 256]) ; t i t l e (RxBinStr , ’ f o n t s i z e ’ , 7) ;
74 x l ab e l (’ Chirp index ’)
75

76 RxSTR_char = [] ;
77 j j = 1 ;
78 s t a r t b i t = 9 ;
79 f o r i i = s t a r t b i t :8:256 s t a r t b i t
80 tmp = RxBinStr (i i : i i +7) ;
81 tmp2 = f l i p l r (tmp) ;
82 RxSTR_char(j j) = bin2dec (tmp2) ;
83 j j=j j +1;
84 end
85 char (RxSTR_char)

78 C. Matlab code

C.4. Extracting FFT values from UDP packets and re-
constructing the message

1 load (’O: \ the s i s_code_f ina l \matlab_f inal
2 \FIGURES_helloworld\Data4_helloworld_v1.mat ’)
3

4 [NDop,NRange ,NRx,NFrame]= s i z e (Data4) ;
5 f i g u r e ;
6 f o r n = 1 :NFrame
7 imagesc (f f t s h i f t (20* log10 (abs (squeeze (Data4
8 (: , : , 1 , n)) /max(abs (Data4 (:))))) , 1)) ;
9 c ax i s ([80 0]) ; colormap j e t ;
10 t i t l e ([’Frame # ’ num2str (n) ’ , Rx #1 ’])
11 x l ab e l (’Range bin ’)
12 y l ab e l (’ Doppler bin ’)
13 % M = getframe ;
14 % writeVideo (v ,M) ;
15 pause (. 1) ;
16 end
17 colormap coo l
18 % c l o s e (v) ;
19

20 f i g u r e ; p l o t (f f t s h i f t (20* log10 (abs (squeeze (Data4
21 (1 , : , 1 , 1)) /max(abs (Data4 (:))))) , 1)) ;
22 x l ab e l (’Range bin ’)
23 y l ab e l (’ Normalized power (dB) ’)
24 t i t l e (’Range p r o f i l e ze ro Doppler cut ’)
25

26 %% PHASE CODING CHECK
27 RP = i f f t (Data4) ; % perform IFFT to get range p r o f i l e s sequence
28 f i g u r e ; imagesc ((20* log10 (abs (squeeze (RP(: , : , 1)) /max(abs (RP(:))))))) ;
29 x l ab e l (’Range bin ’)
30 y l ab e l (’ Doppler bin ’)
31 t i t l e (’ 256 range p r o f i l e s ’)
32 colormap j e t
33

34 % s e l e c t s t rong ta r g e t range bin
35 tgtBin = 15 ; % manually
36

37 [maxv , maxi] = max(max(abs (squeeze (RP(: , : , 1))))) ; % programmatica l ly
38

39

40 Rx_phseq = angle (squeeze (RP(: , maxi , 1 , 1))) ;
41 f i g u r e ; stem (rad2deg (Rx_phseq) , ’ o ’) ;
42 x l ab e l (’ Chirp index ’)
43 y l ab e l (’ Phase (deg) ’)
44 t i t l e (’ Phase o f range bin 15 ’)
45

46 Rx_binseq = uint8 ((cos (Rx_phseq min (Rx_phseq))+1)/2) ;
47 f i g u r e ; bar (abs (double (Rx_binseq) 1)) ;
48 RxBinStr = num2str (Rx_binseq) ’ ; % V1
49 %RxBinStr = num2str (abs (double (Rx_binseq) 1)) ’ ; % V2
50

51 t i t l e (RxBinStr , ’ f o n t s i z e ’ , 7)

C.4. Extracting FFT values from UDP packets and reconstructing the message 79

52

53

54 RxSTR_char = [] ;
55 j j = 1 ;
56 s t a r t b i t = 9 ;
57 f o r i i = s t a r t b i t :8:256 s t a r t b i t
58 tmp = RxBinStr (i i : i i +7) ;
59 tmp2 = f l i p l r (tmp) ;
60 RxSTR_char(j j) = bin2dec (tmp2) ;
61 j j=j j +1;
62 end
63 char (RxSTR_char)
64

65 %% Beat S i gna l s
66

67 BS = i f f t (RP, [] , 2) ;
68

69 f i g u r e ; p l o t (squeeze (r e a l (BS (: , : , 1))) ’)
70 t i t l e (’ 256 beat s i g n a l s ’) ;
71 x l ab e l (’ Sample index ’)
72 y l ab e l (’Magnitude ’)
73 % f i g u r e ; imagesc (squeeze (r e a l (BS (: , : , 1))) ’)
74 %
75 % f i g u r e ; p l o t (20* log10 (abs (RP(128 , : , 1))) ’)
76

77 f i g u r e ; mesh (squeeze (r e a l (BS (: , : , 1))) ’)
78 shading i n t e rp
79 colormap coo l
80 x l ab e l (’ Chirp index ’)
81 y l ab e l (’ Sample index ’)
82 % z l a b e l (’ Magnitude ’)
83 t i t l e (’ 256 beat S i gna l s ’)
84

85 f i g u r e ; ...
imagesc (log10 (squeeze (r e a l (BS (: , : , 1)) min (min ((r e a l (BS (: , : , 1)))))) ’))

86 colormap bone
87 c ax i s ([5 4 . 5])
88 x l ab e l (’ Chirp index ’)
89 y l ab e l (’ Sample index ’)
90 % z l a b e l (’ Magnitude ’)
91 t i t l e (’ Phase v a r i a t i o n s ’)

Bibliography

[1] Peter Alley. Introductory microcontroller programming. Master’s thesis,
WORCESTER POLYTECHNIC INSTITUTE, 2011.

[2] G. Brooker. Understanding millimetre wave FMCW radars. 1st Interna-
tional Conference on Sensing Technology, page pp. 152–157, Nov 2005.

[3] Prof. R.V. Rajakumar, Prof. Saswat Chakrabarti. Lectures on Module:1
Introduction to Digital Communications and Information Theory. Nptel, IIT
Kharagpur.

[4] J.Choi, N.Gonzalez-Prelcic, R.Daniels, C.R.Bhat, and R.W.HeathJr.
Millimeter-wave vehicular communication to support massive automo-
tive sensing. IEEE Communications Magazine, vol. 54(no. 12):pp. 160–
167, December 2016.

[5] S. Quan, W. Qian, J. Guq, and V. Zhang. Radar-communication integra-
tion: An overview. In The 7th IEEE/International Conference on Advanced
Infocomm Technology, pages 93–103, 2014.

[6] Texas Instruments. URL https://e2e.ti.com/blogs_/b/behind_
the_wheel/archive/2017/10/25.

[7] N. Levanon. Multifrequency complementary phase-coded radar signal.
IEEE Proceedings-Radar, Sonar and Navigation, pages 147(6):276–2843,
2000.

[8] J. Li and P. Stoica. MIMO radar with collocated antennas. IEEE Signal
Processing Magazine, 24:106 – 114, September 2007.

[9] Mast, 2018. URL http://www.masttechnologies.com/automotive/.

[10] TEF810X Fully-Integrated 77 GHz Radar Transceiver. NXP Semiconduc-
tors.

[11] S32R274 DCC Software Guide: Technical Guide to S32R274 and
TEF810X Dual Credit Card Sensor Software v1.3. NXP Semiconductors
Semiconductors, 2017.

[12] S. Rao. Introduction to mmWave sensing: FMCW radars. Texas Instru-
ments (TI) mmWave Training Series, 2017.

[13] T. S. Rappaport. Wireless communications: principles and practice, vol-
ume 2. Prentice Hall PTR, New Jersey, 1996.

81

https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2017/10/25
https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2017/10/25
http://www.masttechnologies.com/automotive/

82 Bibliography

[14] P.Papadimitratos, A.LaFortelle, K.Evenssen, R.Brignolo and S.Cosenza.
Vehicular communication systems:enabling technologies, applications,
and future outlook on intelligent transportation. IEEE Communications
Magazine, vol. 47(no. 11):pp. 84–95, 2009.

[15] Ph.D. Rodrigo Romero. EE 3376 Microprocessor Systems I. University of
Texas at El Paso.

[16] NXP Semiconductors. Guide to Dolphin API, 2017 .

[17] Mong Sim. A Practical Approach to Hardware Semaphores For MCP56xx
and MPC57xx Multi-core Qorivva Devices. NXP Semiconductors Semicon-
ductors, 2014.

[18] Christian Sturm and Werner Wiesbeck. Waveform design and signal pro-
cessing aspects for fusion of wireless communications and radar sensing.
Proceedings of the IEEE, 99(7), July July 2011.

[19] Y. L. Sit, C. Sturm, and T. Zwick. Doppler estimation in an OFDM joint
radar and communication system. German Microwave Conference, pages
1–4, 2011.

[20] WHO. Global status report on road safety. Technical report, 2015.

[21] Z. Zhang, M. Nowak, M. Wicks and Z. Wu. Bio-inspired RF steganogra-
phy via linear chirp radar signals. IEEE Communications Magzine, pages
2–6, June 2016.

[22] V. Winkler. Range doppler detection for automotive FMCW radars. Eu-
ropean Microwave Conference, page pp. 1445–1448, Oct 2007.

	Summary
	List of Acronyms
	Introduction
	Related work
	Problem Statement
	Organization

	Theory and Background
	Radar
	FMCW Radar
	Communication waveform
	Binary-phase coded modulation

	Joint BPSK-LFM waveform
	Microcontroller Architecture
	Memory architectures
	Need for Multi-core architecture in automotive radars

	Conclusions

	Hardware and Software Architecture
	Hardware Architecture
	TEF810x Radar front-end
	S32R274 Radar Microcontroller

	Software Architecture
	FMCW chirp and frame configurations
	API
	DCC data output modes

	Conclusions

	System Implementation
	Microcontroller programming
	host PC to MCU Communication
	MCU to host PC communication
	Inter-core communication

	LFM- BPSK Implementation
	MATLAB Post-processing
	Validation test case scenario
	Conclusions

	Results and Validation
	Real-time 2D FFT spectrum with and without phase coding
	Validation of 2D FFT spectrum with and without phase shift
	MCU output mode validation
	FFT output mode validation
	ADC samples output mode validation

	Message reconstruction
	Conclusion

	Conclusion and Future work
	Conclusion
	Future scope

	Hardware setup
	TEF810X Transceiver
	S32R274 MCU with debugger
	Communication GUI using the TCP/IP ethernet protocol
	MCU output mode packet receiver GUI using UDP protocol

	Simulations
	256 beat signals from FFT output mode
	Beat signals in a 3D view from FFT Output mode
	256 beat signals from ADC output mode

	Matlab code
	BPSK-LFM signal representation
	2D FFT spectrum with and without phase coding
	Extracting raw ADC samples from UDP packets and reconstructing the message
	Extracting FFT values from UDP packets and reconstructing the message

	Bibliography

