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To the beneficial advancement of all inhabitants of planet Earth.

In particular, as a fellow scientist, I wish to partake in accepting the
responsibility that Richard P. Feynman so correctly stated in 1955;

”It is our responsibility as scientists, knowing the great progress and great value of a satisfactory philosophy of
ignorance, the great progress that is the fruit of freedom of thought, to proclaim the value of this freedom, to

teach how doubt is not to be feared but welcomed and discussed, and to demand this freedom as our duty to all
coming generations.”∼ The value of science
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Summary

Within the remote sensing community, radiometric inter-comparison between optical instru-
ments is desired to obtain long-term trends that surpass the operational lifetime of satellite
missions. The Database for Imaging Multi-spectral Instruments and Tools for Radiometric
Inter-comparison (DIMITRI) is a tool that has been developed for this very purpose. One
of the inter-comparison methodologies that is implemented in this tool is the Rayleigh cali-
bration methodology, through which it is possible to perform in-flight vicarious calibration
for optical instruments. The Rayleigh calibration methodology uses Rayleigh scattering over a
priori determined oceanic locations that have been identified to have suitable and stable radio-
metric characteristics. The Rayleigh calibration methodology is able to generate a simulated
top-of-atmosphere reflectance. DIMITRI includes a database of top-of-atmosphere reflectance
observations and the ratio of this quantity to the simulated top-of-atmosphere reflectance is
defined to be a calibration coefficient, through which the performance of the operational satel-
lite can be monitored.

The objective of this thesis was to initially break up the total uncertainty associated with
the calibration coefficient, caused by uncertainties associated with the input variables, and
to classify it as a combined factor of random and systematic uncertainty components. How-
ever, throughout this thesis, it became clear that not only is this classification ambiguous and
sometimes misleading, but it required much more research and time than initially expected.
This research contains a full description of the reflectance model that is incorporated in the
Rayleigh calibration methodology, outlining all steps, assumptions and methods used to ob-
tain the input variables and the calibration coefficient with a particular certainty. It turns out
that the uncertainties associated with the input variables are both random and systematic in
nature, and these propagate through the Rayleigh calibration methodology to influence the
quality of the calibration coefficient. The propagation of uncertainties have been analyzed
using a simulation-based Monte Carlo method and a power-series based Taylor expansion
method. The Taylor-series method would provide results within one evaluation, as com-
pared with the Monte Carlo simulations which requires a large output sample, and thus a
Taylor-series method was preferred. However, due to the mathematical complexity of the re-
flectance model it became clear that simplifications are required before such an analysis could
be performed.

Using a data analysis to validate the simplified version of the reflectance model through
a Monte Carlo simulation, it was shown that the calibration coefficients obtained from the
simplified version agree to within a 5% of those obtained with the unmodified version. An-
other aspect of the simplified model that is verified is the uncertainty component associated
with the calibration coefficient. With respect to the unmodified model, these uncertainty
components are only allowed to deviate 1%. Using a fourth-order Taylor-series expansion
method uncertainties associated with the input variables have been propagated through the
reflectance model. However, the severe nonlinearity of the underlying model, even after
being simplified, prevents obtaining sufficiently accurate uncertainty components. An alter-
native approach, however, has proven to be successful. It appears that the calibration coeffi-
cients exhibit a semi-linear dependence on the input variables. By assuming the output dis-
tribution is uniform, the uncertainty components have been propagated as if the reflectance
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model is linear and the results are satisfactory.
So far, this research has achieved to establish the sensitivity of the Rayleigh calibration

methodology with respect to its input variables. It has also described the acquisition and
measuring / modelling procedures of the input variables and the calibration coefficient. Un-
fortunately, this research did not achieve a classification of uncertainties, or, a quantifica-
tion for that matter. Future research could use this study to quantify uncertainties for those
sources that have been identified. They can be combined to obtain a total uncertainty compo-
nent associated with the calibration coefficients that can be attributed to uncertainties in the
input variables and or the measurement / modelling procedures in the Rayleigh calibration
methodology.
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Introduction

Within the Earth observation / remote sensing community it is desired to observe long-term
trends of Earth processes. The operational lifetime of a satellite is often too short and thus
successive missions are developed and operated to ensure continuity of monitoring capabili-
ties. To this end, data obtained from different missions must be compared to establish trends
of these processes.

Within this thesis an uncertainty and propagation analysis is performed on one such tool that
provides a platform for the radiometric inter-comparison of satellite observations. This tool is
called DIMITRI and is developed under supervision of Marc Bouvet (ESA/ESTEC). The out-
put of this inter-comparison is accompanied with an associated uncertainty that is described
by Hagolle et al. (1999). Taking into account the influence of Ozone, wind speed, surface
pressure, aerosols and phytoplankton, a maximum uncertainty of 4% is quantified. In 2015 I
had the privilege to work on the augmentation of DIMITRI with OLCI and SLSTR observa-
tions during an internship. At the time, Marc indicated that he was interested in updating
the output to not only include the uncertainty, but to also differentiate between random and
systematic uncertainties. With this in mind, uncertainty and propagation analysis have been
performed on one of the inter-comparison methodologies that is implemented in DIMITRI.

In chapter 1 the context of this a thesis is outlined, explaining why this research is of
interest. Then, in order to investigate the distinction between systematic and random uncer-
tainties, the physical principles on which the radiometric inter-comparison tool are based are
thoroughly addressed in chapter 2. It should be noted that in order to identify (the systematic)
uncertainties in a measurement or modelling process, all assumptions and simplifications in
these processes must be tracked and their impact on the results quantified. This requires a
tedious but necessary study of the available literature in order to identify potential sources of
uncertainties. The tool itself is shortly introduced as well in chapter 3. The basics of uncer-
tainty theory are described in chapter 4 after which an uncertainty analysis and propagation
analysis are performed in chapter 5 to increase the level of insight in the uncertainties associ-
ated with the generated results and also to better research DIMITRI.

Any findings that are presented here can be used for future versions of DIMITRI and pos-
sibly, to update the tool to dispense more information regarding the accuracy of the inter-
comparison output and regarding the propagation of uncertainties.
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Chapter 1

Research context

In this chapter an attempt is made to define the context in which this thesis is conducted.
Why such a thesis is even interesting and to whom it is interesting is outlined in section 1.1
and section 1.2. Then, the how is addressed briefly in section 1.3 and section 1.4, bringing the
reader closer to the purpose of this thesis which is addressed in section 1.5.

1.1 Earth observation

In the field of Earth observation, the scientific community monitors natural processes that oc-
cur on planet Earth. We as inhabitants of this planet are highly dependent on these processes
because they influence the weather (e.g. rainfall or temperature), the climate (e.g. sea surface
height or sea surface temperatures), our agriculture (e.g. crops or fresh water) and our safety
(e.g. floods or droughts). There is no doubt about the relevance of monitoring these processes
in relation to our continued stay on planet Earth.

In order to monitor natural processes scientists use instruments that gather information
from four areas; from space which surrounds the planet, the Earth’s atmosphere, its surface
(both on land and water) and finally from beneath the surface. Scientists and engineers have
worked together over the years to place instruments in these places. Note that space is partic-
ularly interesting because of its unique vantage point. Information can be gathered from the
direct vicinity of the instrument or it can be gathered remotely. In the former case we speak
of in-situ instruments and some examples are a thermometer, pressure gauges or hygrome-
ter. These measure the temperature, pressure and humidity in the environment ‘close‘ to the
instrument. In the latter case we speak of remote sensing instruments, such as a radiometer,
and these measure, e.g. the Sun’s intensity or reflected/emitted radiation from the Earth’s
atmosphere or surface.

1.2 Calibration

An important question that comes to mind is how the scientific community knows that a par-
ticular instrument operates correctly. This guarantee comes from calibration, which is the pro-
cess of establishing to what extend the instrument measures what it is designed to measure.
By using a ‘known‘ source with known characteristics, and measuring that by an instrument,
the characteristics of that particular instrument can be established and a measure of the per-
formance is obtained. This act of verification of an instruments performance is indispensable
to scientific research and forms the foundation upon which the scientific community bases
conclusions and recommendations.

A noteworthy feature for remote sensing instruments in space is that there are more than
one stages of calibration. Before the instrument is launched into space a pre-flight calibration
is performed, where under simulated ‘space-like‘ environmental conditions the instrument is
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tested rigorously. However, the transportation from the test location to its operational envi-
ronment in space is ‘bumpy‘ to say the least. In addition, a launch and orbit ingestion proce-
dure can alter the instrument in such a way that previous performance characterizations are
no longer accurate. Hence, an in-flight / on-board calibration procedure is commenced during
the commissioning phase of the satellite, which can last a few months. During this phase the
instrument is prepared and tested within its operational environment. This allows the scien-
tific community to conclusively characterize the instrument’s performance after launch and
ingestion, after outgassing of trapped air from within the instrument, and under the presence
of cosmic radiation.

Another reason to maintain track of the performance is to identify degradation of the
instrument. It comes as no surprise that the instrument performance is adversely affected in
the hazardous space environment and thus, to be able to rely on the information provided by
an instrument, in-flight calibration is crucial.

So how is in-flight calibration established? In case of a radiometer, black-body targets can
be used which the instrument will look at to give an estimate on their emitted black body
temperature. In case of a spectrometer, highly reflective surfaces such as spectralon diffuse
panels are used to simulate the reflectance of light. These on board calibration equipment
have known characteristics and are used to track how well the instruments operate. How-
ever, the remote sensing instrument is not the only equipment that is subject to degradation,
the in-flight calibration equipment is too. Therefore, there is an additional type of calibra-
tion which is referred to as vicarious calibration. Here artificial/natural sites on Earth with
stable and well known radiometric characteristics can be used for the purpose of in-flight
calibration of instruments and also, their in-flight calibration equipment. In some cases vi-
carious calibration substitutes in-flight calibration equipment entirely when it is determined
that such equipment cannot provide the necessary levels of accuracy. This was the case for the
POLDER instrument on board NASDA’s ADEOS polar orbiting satellite. Implementation of
in-flight calibration equipment can be expensive and difficult and all the effort otherwise re-
quired can be invested in the enhancement of calibration methods over natural sites. In other
cases, such as with the OLCI sensor on board the Sentinel-3 satellite, vicarious calibration is
complementary to the in-flight calibration equipment.

1.3 Atmospheric modelling

Inherent to the monitoring of natural processes on Earth is the fact that it is only possible to ob-
serve processes that are happening at the moment of observation. The scientific community is
not only interested in monitoring these processes ad hoc but are also interested in being able to
make predictions. This requires computer generated models where natural processes under
observation are described analytically and/or numerically to simulate natural processes. An
example are atmospheric models which simulate the propagation of light waves through the
atmosphere and oceanic layer. Interestingly, once it has been established that such a model
is accurate to within a certain degree, it becomes possible to use it for monitoring the perfor-
mance of remote sensing instruments.

The propagation of light through a medium is described by radiative transfer equations,
which can tell us how much light will be reflected back by the atmosphere/surface to be
observed by the instrument on board the spacecraft.

So, how do we model the Earth’s atmosphere? The atmosphere is a relatively thin layer
that surrounds the entire planet and it contains molecules, ions and aerosols. Aerosols are
particles that are much larger than molecules such as sea salt, soot, dust or sand. Out of all
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the elements that are included in the atmosphere only a few are selected to make the atmo-
spheric model manageable. For each element, the concentration per unit volume/column is
given, along with its cross section and shape. Furthermore, information about its scattering,
absorption and reflection properties must also be included. The atmosphere itself can be as-
sumed to be a single flat layer, the so-called plane-parallel assumption, or to be a sphere around
the Earth. Then, using all this information, radiative transfer equations can simulate how
light waves propagate through the atmosphere.

1.4 DIMITRI

Within the remote sensing scientific community, a need for sensor inter-comparison has led
to the development of the Database for Imaging Multi-spectral Instruments and Tools for Ra-
diometric Inter-comparison (DIMITRI). Within this tool a database of reflectances is available
that has been gathered by various instruments that operate in the optical wavebands. Sensor
inter-comparison is useful because long-term trends can be monitored that outlast the natural
lifetime of a single spacecraft. In addition, the collective set of sensor data can be used as a
reference against which new observations are compared.

One performance monitoring capability that this tool has is called the Rayleigh calibration
methodology, which uses Rayleigh scattering over the open ocean for the purpose of absolute
vicarious calibration of remote sensing observations. The Rayleigh calibration methodology
includes a reflectance model which simulates a value for the reflectance at the top of the at-
mosphere. This requires information regarding the actual viewing conditions and also in-
formation regarding the meteorological conditions. Now we have a simulated reflectance,
but how does this help us to monitor the performance of the sensor? To clarify, the simu-
lated reflectance takes the viewing condition of the spacecraft, meteorological conditions and
the date of operation into account. For those same conditions actual observed reflectances are
available. Then, the Rayleigh calibration methodology reads the observed reflectances and
computes a coefficient as the ratio of the observed to simulated reflectance. This coefficient is
referred to as the calibration coefficient and allows the remote sensing community to monitor
the performance degradation and to compare its performance to its predecessor(s). Such as
comparing the performance of OLCI and SLSTR on board the recently launched Sentinel-3A
satellite with their predecessors MERIS and AATSR on board ENVISAT.

1.5 Objective

All the aforementioned was presented to explain and justify this thesis research. The objec-
tive, briefly mentioned in the introduction, is to analyze how uncertainties associated with the
input variables propagate through the Rayleigh calibration methodologies, and what their in-
fluence will be on the resulting calibration coefficient. Particularly interesting is researching
how a distinction can be made between two types of uncertainties; Type A and Type B, often
referred to as random and systematic.
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Chapter 2

Reflectance model
In this chapter the reflectance model that is incorporated in the Rayleigh calibration methodology is thoroughly
described. However, before diving into the physics of the reflectance model, the principle on which the Rayleigh
calibration methodology is based, called the two-band method, is addressed in section 2.1 to give the reader a
clear handle on why the fundamentals of wave propagation through the atmosphere (section 2.2) and the ocean
(section 2.3) are explained.

2.1 The two-band method

In the introduction it was explained that DIMITRI is a tool which can be used to monitor
the performance of optical instruments that operate on satellites. DIMITRI is equipped with a
Rayleigh Calibration Methodology (RCM), which is an algorithm that observes Rayleigh scat-
tering over the open ocean for the purpose of vicarious calibration. The reason why Rayleigh
scattering is used is because, under certain conditions, it amounts to approximately 90% of
the observed signal (Fougnie et al., 2002) and becomes very predictable (VERMOTE et al.,
1992). The conditions are that the ocean surface is carefully selected based on radiometric
stability, where low chlorophyll concentrations are present, low wind speeds and with little
to no presence of clouds or large aerosol loading.

DIMITRI contains a database of radiometric data which are the observed top-of-atmosphere
reflectance provided by several optical instruments. These are denoted by ρTOAobs . The database
also includes geometrical and meteorological data corresponding with the sensor observation
conditions. Under the same viewing and atmospheric conditions, the RCM is able to simulate
top-of-atmosphere reflectances and these are denoted by ρTOAsim . The resulting simulated re-
flectances are viewed as a reference for ρTOAobs because ρTOAsim are verified and validated against
in-situ data. In DIMITRI, a ratio of ρTOAobs to ρTOAsim is calculated and this is called the calibration
coefficient, C, which is the parameter that can be ‘tracked‘ throughout the sensor’s lifetime to
monitor its performance.

So how are ρTOAsim simulated in the RCM? ρTOAsim consists of several other types of reflectances;
which are reflectance due to Rayleigh scattering (ρR), reflectance due to aerosol scattering (ρa),
water-leaving reflectance (ρw), reflectance due to Sunglint (fresnel reflection on the water sur-
face) (ρg) and reflectance due to foam on the water surface (ρf ). All necessary terms will be
explained in due time but for the moment the focus lies on addressing the two-band method.
To that end, VERMOTE et al. (1992) explain that estimates for ρa, ρg and ρf from the near-
infrared (NIR) bands are easier to attain than from shorter λ. At longer λ the contribution of
Rayleigh scattering to the ρTOA signal decreases. In fact, the RCM is only valid for λ < 700nm
because the Rayleigh scattering becomes otherwise too small (Barker et al., 2014). VERMOTE
et al., 1992 have determined that for λ = 0.78 − 0.89nm, ρR is several orders of magnitude
smaller than at λ = 0.43 − 0.47nm. Then, the signal that is obtained at longer λ is mostly
due to ρa and partly due to ρf . ρw is negligible and ρg as well, except for a particular Sunglint
angle. However, the angle under which Sunglint is observed is determined and reflectance
values for this angle are not included, allowing ρg to be ignored.
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It was mentioned that for long λ ρR decreases. This does not imply that ρa and ρf can be
determined more accurately for very long λ. The purpose of retrieving information of ρa and
ρf from long λ is to eventually extrapolate information to short λ. In order to avoid extrap-
olation errors, it is better to use a NIR band that is as close as possible to the visible bands.
VERMOTE et al., 1992 performed this procedure for the VEGETATION instrument and the
waveband that was most suitable for this role was at λ = 865nm, even though a band existed
at λ = 1580 − 1750nm. Out of ρa and ρf , the former is approximately 33% - 800% larger,
depending on the Sun zenith angle θs and the viewing zenith angle θv (see Figure 2.11), which
means that ρf can be ignored. This means that the reflectance that is observed at λ = 865nm
can be viewed as ρ865

a and this can be propagated to short (visible) bands. The usage of the
NIR band for extraction of the aerosol content constitutes the name two-band method.

At this point the appropriate amount of introduction is given and we can continue with
addressing the definition and physical principles on which the reflectance model is based.
Mathematically, the model is defined as follows (Barker et al., 2014);

ρTOAsim = tgas (ρpath + td tu ρw + Td Tu ρg) (2.1)

TABLE 2.1: Reflectance model for the Rayleigh calibration methodology in DIMITRI - variable definition

Variable Definition

ρTOAsim The simulated top-of-atmosphere reflectance.
tgas Transmittance, both up and down, due to H2O, O2 and O3 absorption.
ρpath Atmospheric path reflectance due to molecules, aerosols, and multiple

interactions between these.
td & tu Total transmittance (direct and diffuse) due to molecules and aerosols,

both down and up.
ρw Water-leaving reflectance.

Td & Tu Transmittance (direct) both down and up.
ρg Sunglint reflectance at sea level.

The variables (see Table 2.1) can be divided in two sections, where the first one addresses
wave propagation through the atmosphere and the second addresses wave propagation through
the ocean.

2.2 Atmospheric wave propagation

In order to thoroughly understand the reflectance model very basic physical concepts are
addressed in subsection 2.3.1. Afterwards, aerosol models are introduced in subsection 2.2.2.
These are models that attempt to resemble the scattering of light in the atmosphere for a given
molecular and aerosol constituents. Finally, two physical quantities remain to be explained
and these are ρpath and the t, and they are discussed in subsection 2.2.3 and subsection 2.2.4
respectively.

1Note that this drawing is made using the online drawing tool available on https://www.draw.io/

https://www.draw.io/
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FIGURE 2.1: Arbitrary viewing geometry with the
Sun zenith angle (sza), θs, the viewing zenith angle
(vza), θv and finally the relative azimuth angle (raa),

∆φ.

FIGURE 2.2: Energy transition levels of a Hydro-
gen atom and the process of absorption and emission

between these levels.

2.2.1 Fundamentals

Two forms of radiative transfer can be explained by the energy levels of electrons in an atom2.
Electrons have a unique set of energy levels or states that they can be in, depending on the
atom. These levels, for the sake of illustration, correspond with concentric circles with a
different radii about the nucleus (see Figure 2.2). The lowest energy level lies the closest to
the nucleus and is referred to as the ground level (indicated by n = 1). The further the level
is removed from the nucleus the higher the energy level is and the maximum energy level is
the level at which the electron completely escapes its bonds with the nucleus and the atom
becomes ionized.

If illuminated by a photon that has an energy that corresponds with the gap between any
of these energy states, an electron can jump from its ground state to the next energy state, or
any other of its higher states, depending on the photon energy. This jump up is called excita-
tion of the electron and this increase of energy through illumination is called absorption. If a
photon has a slightly different energy level than the gap between the energy states, the elec-
tron completely ignores this photon. It must receive the exact amount of (usually expressed
in) electron Volts to jump from one state to a higher state.

Reversely, an electron can jump down from its higher energy levels to any intermediate or
ground state by emitting energy in the form of a photon with a particular wavelength. This
jump down is called de-excitation and this decrease of energy is called emission.

In radiative transfer there is another important property referred to as extinction. This
does not only refer to the phenomena that the intensity of light is reduced in the direction of
propagation due to absorption, but it also accounts for the reduction in the intensity of light
that is redirected in another direction than the direction of propagation, which is referred to
as scattering. In the field of oceanography, absorption and scattering are also referred to as
Inherent Optical Properties (IOPs) of particles.

2Illustration inspired by this video: https://www.youtube.com/watch?v=h3E9jNDnrDo

https://www.youtube.com/watch?v=h3E9jNDnrDo
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TABLE 2.2: Radiometric quantities and units
(Kamp, 2007)

Quantity [symbol] Units

Radiant energy [Q] [J ]
Radiant power or flux [Φ] [W ]
Irradiance [E] [Wm−2]
Spectral irradiance [Eλ] [Wm−2nm−1]
Intensity [I] [Wsr−1]
Spectral intensity [Iλ] [Wsr−1nm−1]
Radiance [L] [Wm−2sr−1]
Spectral radiance [Lλ] [Wm−2sr−1nm−1]

TABLE 2.3: Solar spectrum and respective ranges of
λ acquired from Bruno and Svoronos (2005). All λ

are given in nm.

Ultra-Violet (UV): 10 < λ < 300

Far Ultra-Violet 10 < λ < 200
Near Ultra-Violet 185 < λ < 380

Visible (VIS): 380 < λ < 750

Violet 380 < λ < 450
Blue 450 < λ < 495
Green 495 < λ < 570
Yellow 570 < λ < 590
Orange 590 < λ < 620
Red 620 < λ < 750

Near Infrared (NIR): 750 < λ < 3000

2.2.1.1 Radiative transfer

There are a few radiometric quantities that refer to the amount of energy that is transferred.
First of all, there is the energy that is radiated by a source (such as the sun), referred to as
radiant energy. The amount of radiant energy per unit of time is called the radiant power. The
radiant energy and radiant power are expressed in respectively [J ] and [W ]. Another quan-
tity is called irradiance, which is the amount of power (or flux) per unit area (

[
m−2

]
). If it is

additionally expressed as a function of wavelength (
[
nm−1

]
) it is referred to as spectral irra-

diance. In radiative transfer, however, another quantity is used; namely intensity (I), which
is the amount of radiant power per unit of solid angle (i.e.; steradians (

[
sr−1

]
)). Sometimes

the intensity is also expressed as a function of wavelength, in which case it is referred to as
spectral intensity. Another frequently used quantity is the radiance, which is defined as the
amount of energy per unit area per unit solid angle. Similar to the intensity, radiance can also
be expressed as a function of wavelength, in which it is referred to as spectral radiance3. The
units corresponding with these quantities are given in Table 2.2.

Extinction is parameterized by an extinction coefficient, denoted by κ, and is dependent on
the size-distribution, shape, optical properties of the particles and surrounding gas present in
the line of propagation (Hansen and Travis, 1974). Recall that κ is quantified by the combined
effect of absorption (denoted by α) and scattering. The scattering of light is parameterized
by a scattering coefficient σ, which is a parameter that describes the likelihood of an effective
area of a particle that causes light to be scattered by that particle. This is why this parameter
is also referred to as the scattering cross-section. Note that this need not be the same as the
actual cross-section of a particle, i.e. its geometrical cross-section. Finally, κ, for a particular
wavelength, is expressed as;

κ = α+ σ (2.2)
3Note that the spectral intensity (or spectral radiance) can also be expressed as a function of frequency, due to

the relation between the frequency (ν) of an electromagnetic wave, λ and its velocity (c) in vacuum; λν = c. In
this case the quantities (see Table 2.2) are denoted as Iν in [Wsr−1Hz−1] and Lν in [Wm−2sr−1Hz−1] (Lissauer
and De Pater, 2013).
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In radiative transfer, the change of I as it propagates through a medium (e.g.; the atmosphere)
along the propagation path s, is due to the difference between emission (denoted by j) and κ,
i.e.;

dI

ds
= j − κI (2.3)

If a scenario is assumed in which there is no emission by the medium through which light
propagates, i.e.; j = 0, the equation reduces to;

dI

ds
= −κI ⇒ I = I0e

−κs (2.4)

The exponent of Equation 2.4 is the optical depth, denoted by τ , and is defined by the integral
of κ along the normal to the surface of the Earth (i.e. in the zenith direction, denoted by z);

τ =

∫
z
κ(z)dz ⇒ dτ

dz
= κ (2.5)

Note that the relation between z and s can be written as;

dz = cos(θ)ds (2.6)

where θ is the zenith angle. An interesting expression occurs when the radiative transfer
equation, including the emission factor, is expressed as function of τ . First Equation 2.6 is
substituted in Equation 2.3;

dI

dz/ cos(θ)
= j − κI (2.7)

Upon substitution of τ this can be rewritten as follows;(
dτ

dz

)−1

· cos(θ)
dI

dz
= (j − κI) · κ−1 ⇒ cos(θ)

dI

dτ
=
j

κ
− I (2.8)

Equation 2.8 is referred to as the general equation of radiative transfer. There is a simplifi-
cation applied to this equation which assumes that light is propagated along the zenith, i.e.;
θ = 0 and thus cos(θ) = 1. Substitution in Equation 2.8 results in:

dI

dτ
=
j

κ
− I (2.9)

The first right-hand term is defined as the source function S = j/κ. Incorporating these into
the equation and solving the ODE yields;

dI

dτ
= S − I

⇒ I ′ eτ + I eτ = S eτ ⇒
∫ τ

0

d

dτ
[eτI (τ)] dτ =

∫ τ

0
S eτdτ

⇒ eτI (τ) = I (0) + S (eτ − 1) ⇒ I (τ) = S + e−τ (I (0)− S)

(2.10)

This is the solution to Equation 2.3, in which I (0) = I0 is the background intensity. τ is defined
to be 0 at the top of the atmosphere and increases as light propagates through the atmosphere
(Lissauer and De Pater, 2013).

The objective in applying the general equation of radiative transfer to a particular medium
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is to calculate the intensity, irradiance or reflectance of light after it has passed through that
medium. In order to apply the general equation of radiative transfer (Equation 2.3) to a par-
ticular medium, details of that medium must be provided. The particles in a medium, such
as gases and aerosols within the Earth’s atmosphere and their respective properties are ex-
amples of such details. After selecting which elements to include in a medium and after their
optical properties have been defined, the propagation of light through that medium can be
addressed by choosing one of the many radiative transfer solvers (Mayer, and Kylling, 2005)
that are available.

2.2.1.2 Radiance versus reflectance

Throughout the year, as the Earth orbits about the Sun in an elliptical trajectory, the extrater-
restrial solar irradiance F will vary with the Earth-Sun distance according to the following
relation;

F =
L�

4πr2
�

(2.11)

L� is the solar luminosity, which is the radiant energy of the Sun per unit of time and amounts
to 3.827×1026W . r� is the heliocentric (i.e.; Earth-Sun) distance and is expressed in astronomical
units (AU ), where 1 AU amounts to 1.496 × 1011m. When r� is equal to 1, F is referred to
as the solar constant (denoted by F�), which amounts to approximately 1366W m−2 (Lissauer
and De Pater, 2013).

From Equation 2.11 it is evident that F is a function of r and does not have a constant
value. In order to avoid using a variable whose value changes throughout the year, the quan-
tity apparent reflectance is introduced and is defined as follows:

ρ =
πL r2
�

E′� cos θs
(2.12)

The apparent reflectance is the ratio of the radiance L to the solar irradiance E� and has a
value between 0 and 1. In this equation any kind of radiance, LTOA or Lw, can be converted
to a reflectance. The solar irradiance, as can be seen in Figure 2.3, depends on λ but also on
the distance between the Sun and the Earth. In RCM the spectral Solar irradiance (in units of
mW m−2 nm−1) is corrected for the distance between the Sun and Earth;

E′� = E�
(

1 + e cos

(
2π

day − 3

diy

))
(2.13)

where the variable diy stands for days in year and is the number of days in that calendar year,
which can be 365 or 366 if it is a leap year. e is the Earth’s orbital eccentricity and equals to
0.0167. The variable day is the number of days that has passed since 1 January of that calendar
year.

2.2.1.3 Rayleigh scattering

Rayleigh scattering is caused by small particles suspended in the atmosphere, colouring
the Earth’s atmosphere a blue colour. This type of scattering has been described by Lord
Rayleigh (Rayleigh, 1899) and a (very) simplified version of this scattering theory, including
the Rayleigh scattering criteria and Rayleigh optical depth, will be discussed here. An under-
lying assumption of this theory is that the atmosphere contains isotropic and homogeneous
spheres (McLinden, 1998).
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FIGURE 2.3: Solar spectrum as a function of λ, including a blackbody graph representing the radiation of the
Sun, acquired from Lissauer and De Pater (2013).

There are two conditions for Rayleigh scattering and they are related to the size parameter
x and the complex index of refraction nc. The size parameter is defined as

x =
2πr

λ
(2.14)

in which r is the radius of the particle and λ the wavelength of radiation. One of the conditions
for Rayleigh scattering is that the size parameter of the particle should be much smaller than
λ, i.e.

x� λ (2.15)

nc is defined as;
nc = n− iκ (2.16)

where n is the index of refraction. n is the ratio of c, which is the velocity of light in vacuum,
to the velocity of light in a particular medium, v (Kamp, 2007);

n =
c

v
(2.17)

The complex term iκ describes the absorption of light and n describes the refraction of light.
The Second condition that must be met such that Rayleigh scattering occurs is that the size
parameter must be much smaller than λ after light has passed through a particular medium,
i.e.;

x� λ

|nc|
(2.18)
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The total optical depth, which is a kind of attenuation of intensity, consists of three contri-
butions (Bodhaine et al., 1999);

• optical depth due to Rayleigh scattering (τR);

• optical depth due to aerosol scattering (τa); and

• optical depth due to gaseous absorption by e.g.; H2O, O3 and NO2 (τ g).

τR depends on the scattering cross section σ, the pressure P , Avogadro’s numberA4, the mean
molecular mass of the air ma

5 and finally on the gravitational constant g;

τR = σ
PA

mag
(2.19)

σ is defined as (Bodhaine et al., 1999);

σ =
24π3

(
n2
s − 1

)2
λ4N2 (n2

s + 2)2 Fk (2.20a)

FK =

(
6 + 3ρ

6− 7ρ

)
(2.20b)

where N is the molecular density, ns is n for air and FK describes the effect of molecular
anisotropy and is defined as the depolarization term6 (also referred to as the F(air) or the King
factor), where ρ is the depolarization factor (or ratio).

Rayleigh scattering is the most abundant type of scattering that occurs in the atmosphere.
Looking at Equation 2.20a it can be seen that the amount of scattering is proportional to λ
(when the dependence of δ and n on λ are ignored) as follows;

σ ∝ 1

λ4
(2.22)

Looking at the spectrum of light, as provided by Bruno and Svoronos (2005) (Table 2.3) and
using Equation 2.22, it can be stated that light with short λ scatters more than light with a

4The value of this parameter has been acquired from Lissauer and De Pater (2013) and has the value: A =
6.022142× 1023mole−1.

5Note that in Bodhaine et al. (1999) this parameter is referred to as molecular weight, which is in fact not a
correct term since in physics weight is defined as the product of the mass and the gravitational constant, i.e.;
w = mg.

6The origin of the depolarization term (Young, 1981), which is in fact a correction, has to do with the fact that
anisotropic molecules scatter light more strongly compared to isotropic molecules for particular scattering angles.
Initially it was Jean Cabannes who showed (in 1921) that the scattered intensity could be expressed in terms of
ρ for randomly oriented molecules illuminated by unpolarized (i.e.; natural) light. For the same n, anisotropic
molecules scattered more light than isotropic molecules and in the scenario of 90◦ scattering, a correction term
was introduced and Cabannes quantified it to be

Fc =

(
6 + 6ρ

6− 7ρ

)
(2.21)

This strongly resembles FK in Equation 2.20b but is referred to as the Cabannes factor. FK was introduced because
in 1923 Louis King discovered, contrary to Cabannes’ assumption, that Fc was not applicable to the total scatter-
ing scenario due to the change in the angular distribution of the scattered light caused by the anisotropy. This
underestimation of the total scattering by Cabannes was corrected for by King through the implementation of FK
as shown in Equation 2.20b.
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long λ;

σblue ∝
1

4004
≈ 3.9e−11

σred ∝
1

6204
≈ 6.8e−12

(2.23)

From the examples in Equation 2.23 it becomes clear that there is a (3.9e−11/6.8e−12 ≈) 6 times
higher likelihood that light with λblue scatters compared to light with λred, which is the reason
why the atmosphere has a blue colour7. Along the same line of reasoning, it can be justified
that the atmosphere should have a violet colour, because that has an even shorter λ. There are
two reasons why this is not the case;

1. The sun emits less radiation at λUV than at λV IS . This becomes clear when looking at
the graph of the blackbody radiation of the sun (see Figure 2.3). It can be seen that at
0.1µm, which is more or less in the middle of λUV according to Table 2.3, the amount of
radiation emitted by the sun is much less than at λV IS , or specifically, than λblue.

2. The human eyes are tuned to see blue, green and red colours more efficiently, i.e. human
eyes are more sensitive to these colours and this sensitivity drops significantly for other
λ (whyistheskyblue, 2013).

The two conditions for the occurrence of Rayleigh scattering (Equation 2.15 and Equation 2.18)
are both met in case of molecules, which is why Rayleigh scattering is sometimes referred to
as molecular scattering.

2.2.2 Aerosol models through MYSTIC simulations

In order to perform radiative transfer calculations of light propagation through the Earth’s at-
mosphere a radiative transfer model can be used. These radiative transfer models, such as the
software package called libRadtran, solve the equation of radiative transfer for a given distri-
bution of optical properties. In DIMITRI a modified version of the libRadtran 3D Monte Carlo
model, referred to as MYSTIC, is implemented and is used ”for the physically correct tracing of
photons in cloudy atmospheres” (Mayer, and Kylling, 2005). In MYSTIC the radiative transfer
equation is 3 dimensional and the atmosphere is assumed to consists of parallel planes, re-
ferred to as the plane-parallel assumption. This assumption is generally valid for θs ≤ 70◦. The
relevant radiometric quantities that MYSTIC evaluates are the radiance L and the irradiance
E.

The libRadtran package includes vertical profiles of many trace gases, e.g.; O3, NO2 or
CO and many others8. In addition to the atmospheric composition, pressure and temperature
profiles are also included. For a given altitude (i.e. level) these profiles provide information
regarding the quantity in question. However, as opposed to this level-type definition of quan-
tities, the radiative transfer solvers in libRadtran use a layer-type definition of such quantities.
The quantities are then interpolated, either linearly or logarithmically, between two levels to
give average layer properties for a given quantity.

7Interestingly, the oceans are blue not because of absorption or scattering at λblue but because of vibrational tran-
sitions that occurs between the Hydrogen and Oxygen bonds of the water molecules. In fact, the blue colour comes
from selective absorption of red portions of λV IS , this absorption causes highly excited molecular vibrations and
this causes the ocean to colour blue (M, 2008).

8For the complete list of the trace gases and their corresponding cross sections, see Table 2 in Mayer, and
Kylling (2005).
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DIMITRI has the capability to compare data that has been acquired by different satellites.
The instruments on board these satellites vary in spatial resolution, radiometric precision,
temporal coverage and spectral characteristics. In addition to these changes, given the fact
that the measurements are made at different times and that the Earth, and its atmosphere, are
highly dynamic, data will vary with sensor characteristics. A parameter that is used for data
inter-comparison, is the relative spectral response of the instrument, which ”describes the quan-
tum efficiency of a sensor at specific wavelengths over the range of a spectral band” (Fleming, 2006).
In order to make meaningful comparisons between instrument data, the effect of the rela-
tive spectral response of an instrument on broadband spectral measurements must be taken
into account. The main issue is that the magnitude of the relative spectral response effect
varies with spectral signatures of Earth observation features that are observed, for different
instruments. This may result in inconsistencies of data and reduced accuracy and precision
(Fleming, 2006).

Table 2.4 provides a list of different configurations which allows MYSTIC to simulate ρa.
What is noticeable from Table 2.4 is that a selection of λ is made for which ρa is simulated. The
instruments whose data are included in DIMITRI make observations on a particular λ. Each
band has a band width, usually of a few nanometers, and each band has associated with it a
relative spectral response. λ that are shown in Table 2.4 are chosen such that there are at least
two λ that fall within the relative spectral response, for the purpose of data inter-comparison.

While the possibility in MYSTIC exists to use the vectorial mode9 of the sea surface bi-
directional distribution reflectance function (see Appendix B) that includes polarization, non-
vectorial (scalar) equations originating from Cox and Munk (1954) are implemented. These
equations describe the relationship between the distribution of the sea surface slope at dif-
ferent wind speeds in relation to the reflection and refraction from the sea surface10. The
plane-parallel atmosphere assumption throughout the simulations is maintained whilst the
possibility exists in MYSTIC to use a spherical shell atmosphere, in which the atmosphere is
assumed to be a (homogeneous) spherical shell about the Earth (Spada, Krol, and Stammes,
2006). An advantage of the plane-parallel assumption is that the reflectance that is defined
with respect to the irradiance directly above a specific point is equal to the irradiance at the
sensor. For the spherical shell this would only be the case if sensor is directly above the
viewing point (θv = 0◦). Another complication with the spherical shell atmosphere is that
MYSTIC in libRadtran defines θs, θv and ∆φ at the instrument and not at the surface (Hedley
and Mazeran, 2013).

2.2.2.1 Maritime Clean aerosol model

The MC50 model is short for a Maritime Clean aerosol model and here the mass of the aerosols
are given for a relative humidity of 50%. This aerosol model is implemented in DIMITRI and
is described by Hess, Koepke, and Schult (1998).

The atmosphere is divided in 3 layers each of which contains a mixture of aerosols11 (see
Figure 2.4). The bottom layer is referred to as the boundary layer and extends from the sea

9The vectorial mode has been validated twice; against a MERIS atmospheric correction LUT and an indepen-
dent model developed by the Finish meteorological institute, referred to as Siro.

10The method includes the translation of the statistics of the plane of the Sun’s glitter pattern on the sea surface,
to the statistics of the slope distribution.

11Note that the mineral transported layer, which extends from 2 km − 3.5 km, has been ignored and not imple-
mented in DIMITRI.
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TABLE 2.4: Parameters of the aerosol models (Barker et al., 2014). The angles are expressed in degrees and vw
is expressed in ms−1.

Parameters n Values

λ 386
340 < λ < 1100nm − δλ = 4nm
1120 < λ < 5000nm − δλ = 20nm

θs 9 0, 10.2229, 21.3480, 32.4790, 43.6114,
54.7444, 65.8776, 77.0110, 85

θv 9 0, 10.2229, 21.3480, 32.4790, 43.6114,
54.7444, 65.8776, 77.0110, 85

∆φ 5 0, 45, 90, 135, 180
vw 3 1.5, 5, 10

τ550
a 7 0, 0.04, 0.06, 0.13, 0.53, 0.83

FIGURE 2.4: The atmosphere with three distinct layers used for aerosol models.

surface up to 2 km and contains water soluble and sea salt aerosols12. The second layer is called
the free troposphere layer and extends from 2 km altitude up to the tropopause (12 km). This
layer contains water soluble and insoluble, soot and sulphate droplets. Out of these only water
soluble aerosols reach the top layer of this boundary and have a density of 5 to 10 times
higher than in the boundary layer (Barker et al., 2014). The third layer is referred to as the
free stratosphere layer and is assumed to be between 12 and 35 km. The aerosol Sulfate (75%
solution of Sulphuric acid in water: H2SO4) is used as the stratospheric background aerosol
with a concentration of only 3 particles per cm3. Sulfate is only to be considered for the
calculation of τ and the results yield an optical depth of τ = 0.005.

By default, the MC50 model has incorporated sea salt particles with an amount of 20 par-
ticles per m3. Given that the concentration of particles is linked to the wind speed through an
empirical relation developed by Koepke et al. (1997), the assumption of 20 particles per m3

corresponds with a wind speed of 8.9 m/s. The sea salt particles make up for only 0.013% of
all aerosols whereas the water soluble aerosol represents the large majority (98.7%). However
soot, water insoluble and sulphate droplet aerosols are added in DIMITRI. The concentra-
tion of these aerosols could not be retrieved from the documentation that is available for the
DIMITRI tool.

Each aerosol is described by a log-normal size distribution and refractive index. The prop-
erties of this distribution are the width of the distribution, the mode radius of the volume and

12Note that there are two modes in which sea salt is incorporated in order to account for the effect of wind
speed on the increase of the number of particles and the different particle sizes. These two modes are called sea
salt accumulated mode (SSAM) and sea salt coarse mode (SSCM).
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number distribution and the upper and lower limits of the particle size. The radiative prop-
erties of aerosols are modelled with Mie theory. τa is the sum of the 3 aerosol(s) extinction
coefficients that have been defined from altitude profiles for each of the 3 atmospheric layers
in Figure 2.413.

2.2.2.2 MERIS atmospheric correction models

The MAR50 and the MAR99 are atmospheric correction models that incorporate 50% and
99% relative humidity, respectively. These have been developed for the MERIS instrument,
which is the predecessor of the OLCI instrument and was on board the ENVISAT satellite.
The term atmospheric correction means the identification of the ρw from ρTOA. This procedure
determines ρa at λ865 and through spectral extrapolation the contribution of ρa to shorter λ
is calculated. The accuracy of the atmospheric correction procedure thus depends heavily
on the aerosol model and its capacity to quantify the wavelength dependency of the aerosol
model and its ability to extrapolate between the NIR and blue wavelengths. For RCM, which
uses Rayleigh scattering over the ocean, the Maritime aerosol model defined by Baker, Bourg,
and Brockmann (2011) is included in DIMITRI.

MAR50 and MAR99 have been calculated using MYSTIC’s Mie scattering tool (included
in libRadtran) in its vectorial mode. This tool generates single scattering albedos and Mueller
matrices14 which are consequentially used as input by the libRadtran package. Additional
input are the vertical profiles of aerosol components. The aerosol model is split in the same
three layers as seen in Figure 2.4, with the difference that the stratsosphere is defined up to
50 km. There are two components for the Maritime aerosol models with 50% and 99% rel-
ative humidity, the rural aerosol mixtures and oceanic components15, which are both found in
the boundary layer. The former is made up out of water soluble (70%) and dust-like aerosols
(30%) and forms 99% of the particles in the Maritime model. The oceanic component consists
out of the Sea-salt solution in water and forms only 1% of the Maritime model. The MAR50
has continental aerosols in the troposphere and H2SO4 in the stratosphere. The continen-
tal aerosols are water solubles, dust-like and soot components, which represent respectively
93.8998%, 0.0002% and 6.1% of the particles present. The atmosphere for the MAR50 and
MAR99 consists of the following particles; molecules that cause Rayleigh scattering, aerosols
that cause scattering and absorption, O3 and O2 & H2O gases that result in absorption and
finally clouds, which cause scattering and absorption.

2.2.3 Path reflectance

In subsection 2.2.2 it was explained which aerosol models are included in DIMITRI. The rea-
son aerosol models are defined is to quantify ρa, which depends on τ865

a . The procedure that
is incorporated in the RCM to calculate τ865

a requires knowledge of ρpath, which is why this
quantity is defined prior to the calculation of τ865

a .

13Basic optical properties of aerosols are published in Koepke et al. (1997).
14These are matrices that can be used to reproduce the effect of a given optical element when applied to a stokes vector.

The polarization state (e.g. linear, vertical or circular), for example, has a corresponding predetermined ma-
trix structure that can be used. For more information, see http://scienceworld.wolfram.com/physics/
MuellerMatrix.html.

15The parameters of the log-normal size distribution for the rural and oceanic aerosol components with 50%
and 99% relative humidity, are given in Table 7-3 of Baker, Bourg, and Brockmann (2011). In addition, the aerosol
optical properties for the Maritime model; single scattering albedo, scattering coefficient and extinction coefficient
per MERIS sensor bands, are given in Table 10.2.

http://scienceworld.wolfram.com/physics/MuellerMatrix.html
http://scienceworld.wolfram.com/physics/MuellerMatrix.html
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2.2.3.1 Theory

ρpath includes all photons that have traveled through the atmosphere and have scattered more
than 1 times, except for those that have traveled through the ocean. This is why in order to
calculate this quantity, an atmospheric correction (AC) algorithm must be applied to ‘filter‘
out Lw from LTOA. Generally speaking, it is assumed that for AC algorithms ρR and ρa are
separable. ρpath is then quantified over a black ocean (meaning that ρw = 0) as the separable
sum of the two components;

ρpath = ρR + ρa (2.24)

Equation 2.24 is valid only when single scattering is considered and can be viewed as an ap-
proximation of the multiple scattering case. However, in the NIR domain, approximately 30%
of the scattered light is due to multiple scattering and thus AC algorithms that do not take
multiple scattering into account fail to provide accurate solutions. Thus, the assumption that
the two type of scattering can be separately quantified must be abandoned. Instead, Antoine
and Morel (1999) have formulated the following exact definition for ρpath;

ρpath = ρ′R + ρ′a + ρR, a (2.25)

in which the components’ definition is slightly changed. In Equation 2.24 ρR is defined in
an aerosol-free atmosphere (referred to as clear sky or clear atmosphere) and ρa in a (hypothet-
ical) molecular-free atmosphere (i.e.; only aerosols). In Equation 2.25 ρ′R (or ρ′a) quantify the
reflectance due to solely Rayleigh (or aerosol) scattering, but in the presence of aerosols (or
molecules). The last term in Equation 2.25 quantifies the reflectance as a consequence of suc-
cessive multiple scattering by both molecules and aerosols. Antoine and Morel (1999) have
expressed the increase in ρpath as a consequence of adding aerosols to an aerosol-free atmo-
sphere with the ratio;

ρpath
ρR

=
ρ′R + ρ′a + ρR, a

ρR
= f (τa) (2.26)

Because aerosols have an influence on multiple scattering, a relationship is defined between
τa and the ratio ρpath/ρR which can be used to solve τ865

a . To explain this Figure 2.5 is taken
from Antoine and Morel (1999).

Two ratios at two λ in the NIR are defined; (ρpath/ρR)λ=865 and (ρpath/ρR)λ=775
16. In this

procedure, these two ratios are considered to be the true ratios and will be used as a reference
later on. Their values depend on the aerosol model that is chosen and this becomes clear
when looking at the Marine aerosol model that has been plotted in Figure 2.5 for different
values of relative humidity. Shettle and Fenn (1979) have explained that ”as the relative hu-
midity increases, water vapor condenses out of the atmosphere onto the particulates suspended in the
atmosphere. This condensed water increases the size of the aerosols and changes their composition and
their effective refractive index. The resulting effect of the aerosols on the absorption and scattering
of light will correspondingly be modified.” This effect is clearly illustrated in points 1 and 2 of
Figure 2.5, where depending on the relative humidity, different τa values will be equal to the
same (ρpath/ρR)λ=865 ratio. Through spectral attenuation coefficients of aerosols at 865nm, the
set of τ865

a values are converted to a set of equivalent τ775
a values (step 3). Using the same

aerosol model with the same relative humidity settings, the set of τ775
a values are matched

with different (ρpath/ρR)λ=775 values (steps 4 and 5). When these are compared with the true
(ρpath/ρR)λ=775 value, the two aerosol models that lie closest are selected to define a mixing

16In this calculation, ρpath is the total reflectance because in the NIR it is assumed that there is no water-leaving
reflectance. Furthermore, note that ρR is computed and is the Rayleigh reflectance in an aerosol-free atmosphere.
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FIGURE 2.5: A graphical representation of the two-band method (Antoine and Morel, 1999).

ratio, through which (ρpath/ρR) in the visible domain can be determined from its values at
λ =775 and 865 nm17.

Antoine and Morel (1999) have included a correction term that accounts for computations
of ρpath with values for the pressure P that differ from the standard atmospheric pressure
Ps, which is equal to 1023.25hPa. This is necessary because ignoring variations can lead to
significant errors in the AC procedure. In an atmosphere that contains molecules and aerosols
this empirical correction term, resulting in ρpath values to be achieved to within ±0.5%, is
defined as follows;

ρPpath = ρPspath

(
1 +

P − Ps
Ps

η

)
(2.27)

where (P − Ps)/Ps = ∆P/Ps is the pressure correction term and η18 is defined as;

η = τR/ (τR + τa) . (2.28)

2.2.3.2 Application to the Rayleigh Calibration methodology

In RCM, the ratio (ρpath/ρR)λ=865 is acquired through the evaluation of a quadratic polyno-
mial, as a function of τa. For a given aerosol model (MC50, MAR50 or MAR99), viewing
geometry (θs, θv,∆φ) and wind speed (vw), a quadratic polynomial as a function of τa is fitted
to values of (ρpath/ρR)λ=865. The only values that are stored in a Look-Up Table (LUT)19 are
the polynomial coefficients, which during the RCM are retrieved through linear interpolation
as follows;

ρpath
ρR

= f (λ, τa, vw, θs, θv,∆φ) = XC0 +XC1τa +XC2τ
2
a (2.29)

17The remainder of the procedure will not be addressed. For more information please consult Antoine and
Morel (1999).

18see page 48 of meris atbd 2.7 v5.1.
19These are tables that are used to store data in that can be loaded in DIMITRI when required by the RCM.
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whereXC0, XC1 andXC2 are the coefficients of the polynomial fit corresponding to different
aerosol models and the parameters shown in Equation 2.29 (Barker et al., 2014). Note that
ρpath can be acquired from Equation 2.29 by multiplying Equation 2.29 with ρR.

Now that the aerosol models are introduced, the AC procedure has been explained and
ρpath introduced, the retrieval of τ865

a , as is implemented in the RCM, can be addressed. Be-
ginning with ρTOAobs , a correction for gaseous absorption is applied. This is achieved by deter-
mining the transmission, which is calculated for the geometry where the Sun is at the zenith
(exactly above the point of observation) and the instrument has a nadir view (looking exactly
down). These values are retrieved through linear interpolation as a function of λ. At this
point ρTOAobs data can be corrected for gaseous absorption in the following manner;

ρTOAobsO3
= ρTOAobs /tO3 (2.30)

where tO3 represents the upward and downward gaseous transmission due to O3. The proce-
dure continues with the calculation of ρR, which is used in Equation 2.29 and is determined
through linear interpolation of a LUT acquired through MYSTIC simulations. The interpola-
tion is performed for particular values of λ, θs, θv, ∆φ and vw. Then, τ865

R is calculated (Hansen
and Travis, 1974) as follows20;

τ865
R = 8.524e−3 λ−4 + 9.63e−5 λ−6 + 1.1e−6 λ−8 (2.31)

The procedure to acquire ρ865
a from the ratio (ρpath/ρR)λ=865 requires an iterative approach.

An initial value of τ865
a conform standard atmospheric conditions of 0.05 is used to correct

ρTOAobs for pressure variations as follows21;

ρTOAobsO3P
= ρTOAobsO3

(
1−

τ865
R

τ865
R + τ865

a

(
P

Ps − 1

))
(2.32)

Then, ρpath/ρR and all the other parameters shown in Equation 2.29 are used to retrieve the
polynomial coefficients. Given that the ratio ρpath/ρR is known a priori, an inversion of Equa-
tion 2.29 will be performed using positive values only to retrieve the polynomial coefficients
in order to calculate the next estimate for τ865

a . Within 3 iterations, the value for τ865
a con-

verges (Barker et al., 2014). Hagolle et al. (1999) emphasize that valid observations used for
the estimation of the aerosols require a correction. Therefore, a threshold is applied for the
purpose of selecting very clear atmospheres at 865nm. This threshold is calculated by taking
the product of the difference between ρR and the corrected observed ρTOAobs and multiplying
this with θs. The result of this product must be between 0 and 0.002. In addition, τ865

a must
also be larger than 0.

0 <
(
ρTOA, 865
obsO3P

− ρ865
R

)
θs < 0.002 (2.33)

τ865
a > 0 (2.34)

To recap, through the determination of the aerosol optical thickness in the NIR band it is
possible to filter out the water-leaving reflectance from the top-of-atmosphere reflectance in
the visible domain. This atmospheric correction procedure requires the propagation of the

20In the calculation of τ865
R no pressure correction is applied (Hansen and Travis, 1974). In addition, the depo-

larization factor that is used here is δ = 0.029 (Young, 1981).
21Note that in Barker et al. (2014) this step is noted different; ρpath is replaced by ρTOAobs . This is notation is valid

because in the NIR domain, ρw ≈ 0 and thus, in accordance with equation 6 of Antoine and Morel (1999) in which
ρTOAobs = ρpath + ρw, ρTOAobs reduces to ρpath. However, this notation is not used here for purposes of clarity.
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aerosol optical thickness from the NIR domain to the visible domain. Consequentially, the
path reflectance in the visible domain can be acquired.

In DIMITRI a LUT is available that has 7 reference values for the aerosol optical thickness
at a wavelength of 550 nm. The propagation from τ865

a to τλa , is then simply acquired from
linear interpolation of those values in the LUT for a particular aerosol model and λ. Note that
the utilization of τ at 550 nm is due to its validity as a reference band in the remote sensing
community22.

2.2.4 Total transmittance

In order to perform the correction on ρTOAobs for gaseous absorption, transmission factors avail-
able in DIMITRI are used (see Equation 2.30). These transmission factors are also used for the
determination of the total downward and upward transmission. The procedure initiates by
calculating the air mass M using the θs and θv in the following relationship;

M =
1

cos θs
+

1

cos θv
(2.35)

The next step is to determine the optical thickness due to gaseous absorption, where O3, O2

and some trace gases are included. In DIMITRI, transmission factors, as a result of gaseous
absorption are available in LUTs. Using the gaseous transmission values retrieved from these
LUTs, the Ozone optical thickness denoted by τO3 is calculated using the following equation;

τO3 = −0.5 log
tO3

tOx
(2.36)

where tOx represents the upward and downward gaseous transmission due to H2O and O2.
After determination of the optical depth due to O3 absorption in the NIR band, the amount of
reflectance that is transferred through the atmosphere is calculated by applying Beer’s law23:

tgas = e−τO3
O3 M (2.37)

O3 concentration in the atmosphere is acquired from ECMWF, which provides the Total Colum-
nar Ozone (TCO) database. The data file is expressed in the units kgm−2 but is converted to
Dobson Units (DU) in DIMITRI, which is a division by the constant: 2.1415 × 10−5 kgm−2

24.The total downward and upward transmittance, td and tu respectively, are expressed as
follows:

(td, P tu, P ) = (td, Ps tu, Ps) e
− 1

2
τRM (1+∆P/Ps) (2.38)

where e−
1
2
τRM is the transmission due to Rayleigh scattering. The photons that are considered

in MYSTIC’s determination procedure for the transmission are those that have only been
reflected from the Lambertian bottom boundary (i.e.; ρw in Equation 2.62d has a Lambertian
BRDF25). This assumption introduces only minor errors and is valid for a diffuse reflectance
up to 0.1. Note that td is a function of θs and tu as a function of θv.

22It is also not an absorption band.
23According to Antoine et al. (2011) which address gaseous absorption for the MERIS instrument data, the

altitude at which the Ozone layer is present results in a weakness of coupling between Rayleigh scattering and
gaseous absorption. This means that the absorption and the scattering can be decoupled. Within this context,
Equation 2.37 is valid.

24http://sacs.aeronomie.be/info/dobson.php
25For more information please go to Appendix B.

http://sacs.aeronomie.be/info/dobson.php
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2.3 Wave propagation through water

The fundamentals of light propagation through the ocean, which will be addressed in sub-
section 2.3.1, are strongly related to Chlorophyll, as will become clear from the two following
sections. This is why it is crucial that the measurement process of Chlorophyll is addressed
in subsection 2.3.2. These two sections are the theoretical basis for the marine model in RCM
(subsection 2.3.3).

2.3.1 Fundamentals

The scattering of light does not only occur in the atmosphere but it also occurs in water. Water
contains small organic plants called phytoplankton (also referred to as microalgae) which are
produced under the process of photosynthesis in the presence of released deep sea nutrients
and sunlight. The concentration of these inorganic nutrients e.g.; nitrates, phosphates and
sulfur, increases with depth (Herring, 1999). On the contrary, the amount of light reduces
with increasing depth. Through various expeditions biologists and physicists came to the
understanding that the Inherent Optical Properties (IOPs) depend on the concentration of
phytoplankton present in oceanic water (Morel, 1988).

2.3.1.1 Water type classifications

Two classes of water have been distinguished which reflect the dependence of the IOPs on
the content of the water;

Case-I Waters: Waters whose IOPs mainly depend on phytoplankton and detrital products
(dead organic material)26, either particulate (i.e. distinct) or dissolved.

Case-II Waters: Waters whose IOPs mainly depend on sediments and dissolved yellow sub-
stance, which are dissolved organic matter of terrestrial origin in some stage of decay
(Barale and Schlittenhardt, 2012).

Morel (1988) explains that more than 98% of the oceans belong to the Case-I category. Morel
(1988) furthermore indicates that often the only available index that can quantify the organic
constituents of the Case-I waters is the Chlorophyll-a concentration (Chl-a)2728.

2.3.1.2 Diffuse attenuation coefficient for downwelling irradiance

As already mentioned, light attenuates as it propagates downwards through the water. The
downwelling irradiance, Ed, can be measured with a spectroradiometer directly giving the
energy of light (see Table 2.2). Another way Ed can be expressed is in terms of the amount of
Photosynthetically Available Radiation (PAR) per unit of area per unit of time, denoted as PAR
m−2 s−1. PAR is the amount of photons that are available at a particular depth within the
spectral range of 400 < λ < 700nm. These photons are present in higher numbers closer to
the surface and go all the way down until all light is completely attenuated. The layer that
is formed from the surface to where the PAR is reduced to 1% of its surface value is called
the euphotic layer and it is here that photosynthesis takes place. The in-situ measurements

26Detrital products are a by-product of phytoplankton.
27Chlorophyll are pigments that exist in the membrane of chloroplast with a green colour. The Chl-a is the

principal photosynthetic pigment and it has a blue greenish colour in its pure state. (MajorDifferences.com, 2013)
28Another element is the pheophytin-a (Pheo-a) concentration, which is similar to Chl-a but it does not have a

central Magnesium ion (Mg+2). Together with the Chl-a the Pheo-a represent the pigment (i.e. colour) concentra-
tion present in the water. However, the main source for the pigment present in the water is due to Chl-a.



22 Chapter 2. Reflectance model

that have been made of the vertical distribution or profile of PAR have been used to calculate
the euphotic or photic depth Ze, which is the thickness of the euphotic layer. The attenuation
coefficient for downwelling irradiance, denoted by Kd, is determined by measuring Ed at null
depth (i.e.; just below the water surface, indicated by the 0−); Ed,0− and at a depth close to Ze
(Ed,Z) and it is expressed as;

Kd (λ) = ln [Ed,0− (λ) /Ed,Z (λ)] /Z (2.39)

Ed is obtained through in-situ measurements from the deck of a ship. Morel (1988) has es-
timated that the Chl-a in the euphotic layer varies between 3 to more than 300mgm−2. A
mean pigment concentration variable has been defined as the sum of the Chl-a and the Pheo-
a concentrations inside the euphotic layer, independent of the vertical PAR profile, and is
designated C

[
mgm−3

]
. However, Morel and Maritorena, 2001 have pointed out that the

proportions in which Pheo-a was found in 1988 by Morel was often wrong. It is now ac-
knowledged that the presence of Chlorophyll-b29 led to an overestimate of Pheo-a (ambiguity
was inherent to the fluorimetric measurement technique30). Morel and Maritorena (2001) state
that Pheo-a exists in insignificant amounts compared to the Chl-a in the upper layers of the
ocean and when small amounts were found, say< 10%, it was included in the quantity Chl-a.

Another way in which Kd can be expressed is as follows;

Kd (λ) = Kw (λ) +Kbio (λ) (2.40)

whereKbio is a term that represents the collective contributions of biogenic components, that are
organic matter (e.g.; organic Carbon, Nitrates, Phosphates and other products of a biological
origin (Emelyanov, 2001)). Kw is the attenuation coefficient for pure water, which is water that
does not contain any suspended particles and thus their IOPs (i.e. scattering and absorption
coefficients) are solely determined by molecules or ions. Pure waters are found in the open
ocean and especially deep waters are those with high purity (Morel, 1974). Kw can be ex-
pressed as the summation of the absorption and Rayleigh scattering coefficients of optically
pure water, aw and bw respectively (Emelyanov, 2001):

Kfw
w (λ) ≥ afww (λ) +

1

2
bfww (λ) (2.41)

The inequality sign in Equation 2.41 can be set to an equality sign when it is assumed that the
absorption of freshwater (fw), e.g.; Crater Lake (in Oregon, USA) where Equation 2.41 is based
on, is similar to that of saltwater (sw)31.

Ksw
w (λ) = asww (λ) +

1

2
bsww (λ) (2.42)

aw and bw are obtained from previous scientific papers where maximum32 aw values have
been determined by Pope and Fry, 1997 and bw values have been acquired from Morel (1974).

Interestingly, Equation 2.42 underestimates Kw and it represents the lowest experimen-
tal value that can be expected to be encountered in natural freshwater, based on laboratory
measurements of the IOPs (Emelyanov, 2001). Morel and Maritorena (2001) argue that the

29Chl-b is the supplementary photosynthetic pigment and has an olive green colour in its pure state. (MajorDif-
ferences.com, 2013).

30A technique with which the fluorescence is obtained.
31The ‘sw‘ that is indicated in Equation 2.42 will hereafter be dropped for simplicity.
32The absorption coefficient for pure water has been selected where it has a maximum value, which occurs at

λ = 442nm (Morel and Maritorena, 2001).
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final result does not depend heavily on the adopted Kw and that Equation 2.42 results in
a deterioration of the goodness of the fit in the statistical relationship33, especially when the
water has low Chl-a values (called oligotrophic waters with Chl-a< 0.3mgm−3) whereKbio ap-
proaches zero and thus Kd approaches Kw. Given that Kd is derived from Ed measurements
and that Kw is approximated by aw and bw, Kbio is acquired from Kd − Kw as a function of
Chl-a (either acquired by measurements from filtered samples or values derived from contin-
uous calibrated fluorescence profiles (Morel, 1988)). A linear regression is performed on the
following log-transformed quantities:

y = log[Kd (λ)−Kw (λ)]

y = log[Chl-a]
(2.43)

This allows for Kbio to be expressed as34

Kbio (λ) = χ (λ) Chl-ae(λ) (2.44)

where χ and e are regression coefficients. This equation estimates Kbio as a function of Chl-a,
for every λ. Substituting Equation 2.42 and Equation 2.44 in Equation 2.40 yields the follow-
ing expression for Kd;

Kd (λ) = aw (λ) +
1

2
bw (λ) + χ (λ) Chl-ae(λ) (2.45)

To reiterate, Kd requires two quantities; the previously calculated Ed,z and the downwelling
irradiance at null-depth (i.e.; just beneath the water surface); Ed,0− . Ed,0− is derived from
measurements made above the surface and for every λ a transmittance factor (accounting for
reflection losses at water-air interface35) is applied to convert the above-surface value to a
beneath-surface value. The two quantities are processed to retrieve Kd. As a consequence of
the use of the two types of measurement devices, Ed, and thus also its derivative Kd, are only
valid for the range: Ed,Kd < 600nm36.

2.3.1.3 Water reflectance mode

The reflectance, denoted here by R, is also referred to as the irradiance reflectance or irradiance
ratio and is the ratio between the upwelling and downwelling irradiance; Eu and Ed respec-
tively, at null depth;

R (λ) = Eu,0− (λ) /Ed,0− (λ) (2.46)

R, in addition to being modelled is also measured at null-depth, denoted by R0, for a range
between 350 - 700 nm . Eu,0− is measured at a depth of∼ 1−2m. Similarly to Ed,0− , Ed is cal-
culated above water and is converted (by applying the transmittance factor) to just below the
sea surface, yielding Ed,0− . Both the irradiances are normalized using the incident solar flux.

33Within the spectral range of the PAR (400 < λ < 700nm) Morel (1988) performed a statistical analysis on the
log transformed data at 5nm steps. This yields a significant linear relationship for the log-log plot of K−Kw (see
figure 7a of Morel (1988) through regression) as a function of the the mean pigment concentration C.

34The regression coefficients values (χ and e) in Equation 2.44 are tabulated with 5nm increments in table 2 of
Morel and Maritorena (2001).

35This transmittance factor is applied for measurements for which the θs < 45◦ and is 0.965 (Morel and Mari-
torena, 2001).

36At shallow depths, downward irradiance values are characteristically noisy. The LICOR sensor and the cus-
tom built radiometer were only able to provide noise-free data at depths of 25− 30m and 15− 20m respectively.
Due to this limitation, Ed (λ) for λ > 590 − 600nm could not be obtained. For more information please refer to
Morel and Maritorena (2001).
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Depending on the illumination conditions of the incident light, according to computations
performed by Gordon et al. (1988), it was found that for θs ≥ 20◦, R can be directly related to
the absorption and backscattering coefficient, denoted by bb, of the water. R is then expressed
as37;

R (λ) = f

(
bb (λ)

a (λ) + bb (λ)

)
, if bb (λ)� a (λ) , then R (λ) = f

(
bb (λ)

a (λ)

)
(2.47)

f38 is a function of the illumination conditions at the surface39 and on the IOPs of the water40

and therefore also on Chl-a and λ but its value has been fixed at 0.3341 (Morel and Maritorena,
2001). R is then acquired by iteratively updating a and substituting the result in Equation 2.47
as follows:

ai (λ) = Kd (λ) ui (2.48a)

Ri (λ) = f
bb (λ)

Kd (λ) ui
(2.48b)

ui+1 = µd
1−Ri (λ)

1 + (µd/µu)Ri (λ)
(2.48c)

Ri+1 (λ) = f
bb (λ)

Kd (λ) ui+1
(2.48d)

µu and µd are the average cosine values of the zenith and nadir angle for all upward and
downward traveling photons (Kirk, 2011). Morel (1988) has pointed out that for a surface
layer µd mainly depends on the solar elevation for which an average value of 0.942 is adopted.
However, Morel and Maritorena (2001) introduce an alternative value for µd which takes into
account the variations of µd with λ and also with Chl-a43. Morel (1988) also mentions that µu
is approximately constant and is close to 0.4. Equation 2.4844 has an implicit assumption that
the reflection is independent of the depth, i.e. dρ/dZ ≈ 0. The iteration starts off by setting
ui = 0.75 and within 3 loops the iteration will converge. The first step of the iteration requires
a value for Kd and this can be found in Figure 2.6.

37R0 has been previously determined by Gordon and McCluney (1975), Prieur (1976), and Morel and Prieur
(1977) where it is assumed that bb � a. Morel and Maritorena (2001) state that this is usually true for Case-1
waters.

38f is a factor that combines the volume scattering function of the water and the above-water and in-water
radiance distribution.

39described in Kirk (1984) and Gordon (1989).
40described in Morel and Gentili (1991).
41Morel and Gentili (1996) have a slightly different definition, wherein f varies from 0.324 for θs = 0◦ to 0.369

for a uniform sky. They state that f varies with water optical properties such as the single scattering albedo and
with the illumiation conditions through θs. It also depends on the ratio of water molecular backscattering to
the total (molecules plus particles) backscattering coefficients, denoted as ηb (λ). vw and τa also influence this
parameter. For more information on the relationship of f on these parameters please refer to Morel and Gentili
(1996).

42Kirk (1984) has quantified this value to be equal to 0.856: ”An average downward cosine of 0.856 for incident
photons just after penetrating the surface would also be obtained with a direct solar beam at θs = 43.6◦”. It is furthermore
stated that µd decreases if photons travel through more oblique angles as opposed to angles closer to the outward
normal. This results in a higher absorption / scattering probability. Under the assumption of a constant absorp-
tion, an ever increasing scattering results in the radiance field to approach the isotropic distribution. Under these
circumstances, µd is equal to 0.5.

43These µd values are calculated for θs = 30◦ and can be found in Table 3 of Morel and Maritorena (2001).
44Note that this equation is a simplified version of Gershun’s exact relation for the divergence law for irradiance.
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FIGURE 2.6: Kd values as a function of Chl-a, to be used in Equation 2.48. The dashed lines correspond with
an old regression analysis performed by Morel (1988) and the straight lines correspond with a new analysis

performed by Morel and Maritorena (2001).

2.3.1.4 Backscattering coefficient

The bb coefficient in Equation 2.47 consists of two terms, one term representing the backscat-
tering coefficient of optically pure sea water; bw, and the other represents the particle backscatter-
ing; bbp;

bb (λ) =
1

2
bw (λ) + bbp (λ) (2.49)

The first term on the right-hand side of Equation 2.49 is calculated as follows;

bw =
3π

8
β(90)

2− δ
1 + δ

(2.50)

where δ is the depolarization ratio45 and is defined as δ = i2(θ = 90)/i1(θ = 90). Here θ is
the scattering angle relative to the incident light and i1(θ) and i2(θ) are the dimensionless
functions of intensity and the two polarized components in the perpendicular (i.e. vertical)
and parallel (i.e. horizontal) direction, respectively. Note that the θ = 90◦ indicates that light
is scattered 90◦, i.e.; it is perpendicular to the direction of propagation. i1 and i2 are computed
as follows; ∣∣∣∣i1(θ)

i2(θ)

∣∣∣∣ = k6p2

∣∣∣∣ I
cos2 θ

∣∣∣∣ (2.51)

where k is referred to as the wave number and is defined as;

k = 2π/λ (2.52)

45δ is the same quantity as ρ that is used in the calculation of the FK that is present in Equation 2.20b, however,
in order to stay consistent with literature the symbol δ is kept in Equation 2.50.
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p is defined as the polarizability of the particle, i.e.; the particle’s ability to become polarized
and this is defined as follows;

p =
n2 − 1

n2 + 2
r2 (2.53)

r is the spherical radius of the particle (Morel, 1974). β(90) in Equation 2.50 is referred to as
the volume scattering function at 90◦ or Rayleigh ratio and is defined as;

β(90) = N
I90 d

2

I0
=

1

2
Nk4p2 = N

8π4

λ4
p2 (2.54)

N in Equation 2.54 is the number of particles contained inside a unit of volume. Morel (1988)
has evaluated Equation 2.50 with δ = 0.09 (Morel, 1974).

Now, the second term on the right-hand side of Equation 2.49 is calculated using the fol-
lowing equation46;

bbp (λ) =

(
0.002 + 0.01 (0.50− 0.25 log10Chl-a)

(
λ

550

)ν)
· b550
p (2.55)

where ν is is dependent on the Chl-a concentration (Morel and Maritorena, 2001);{
ν = 0.5 (log10Chl-a− 0.3) 0.02 < Chl-a < 2mgm−3

ν = 0 Chl-a > 2mgm−3
(2.56)

b550
p is derived from an empirical relation between the particle backscattering at λ = 550nm

and the Chl-a and is expressed as follows (Morel and Maritorena, 2001)47;

b550
p = 0.416 Chl-a0.766 (2.57)

At this point a and bb have been quantified and their relation to the reflectance has been
addressed through the iterative procedure outlined in Equation 2.48. These IOPs have also
been expressed as a function of Chl-a, which makes it possible to directly relate the reflectance
to the Chl-a concentration present in Case-1 waters, for certain illumination conditions.

The empirical relationship that has been acquired for bbp and Chl-a (see Equation 2.57) is
established by Gordon and Morel (1983). bb is a difficult parameter to model because it is
poorly known. Therefore, Morel and Maritorena, 2001 have argued to include the size distri-
bution and the composition of the particulate matter in oceanic waters by adding a term that
varies depending on the amount of Chl present in the water. This is the reason for introduc-
ing ν as defined in Equation 2.56 and allows bbp to be calculated using Equation 2.55, whilst
taking the variations of bbp as a function of Chl-a into account.

2.3.2 Chlorophyll data

In order to have accurate aerosol retrieval sites that have very stable Chl-a concentrations
are chosen around the globe. This variable is critical to the RCM given that according to
Barker et al. (2014) and Hagolle et al. (1999) it depends heavily on Chl-a. Hagolle et al. (1999)
have selected 9 sites with a low Chl-a concentration and these are called oligotropic waters (see

46For more discussion on the derivation of this equation, please refer to Morel and Maritorena, 2001
47Note that this expression has been derived from a recent and large dataset specifically valid for the upper

oceanic layer and is described by Loisel and Morel (1998)
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Figure 2.7). Two extreme values of Chl-a have been derived from the ρw model developed by
Morel (1988); either 17mgm−3 or 0.035mgm−3.

The following sensors are used for Chl-a measurements; HPLC, which stands for High
Performance Liquid Chromatography, FL 3000 which is a fluorescence detector instrument
and finally a CTD sensor which is a conductivity, temperature and depth sensor. The pa-
rameter [Chl] is defined as the sum of monovinyl and divinyl Chl-a when both pigments are
present (and this is always the case in oligotrophic waters). Using the discrete pigment mea-
surements made by the HPLC, the vertical profiles of algal fluorescence are converted into an
equivalent [Chl] profile, as is illustrated by Figure 2.8. The mean [Chl] values are acquired
through the integration of the [Chl] profile. See the flowchart on page 32 for the steps taken
in order to compute mean Chl-a values.

FIGURE 2.7: 9 oligotrophic sites; sites that have
stable Chl-a concentration values (image taken from

Hagolle et al., 1999).

FIGURE 2.8: Vertical Chl profiles converted from
fluorescent profiles and 12 discrete HPLC data
points (image taken from Morel and Maritorena

(2001)).

In the RCM an updated algorithm with an improved model and improved characteriza-
tion of the IOPs of the oceanic constituents is implemented (Morel and Maritorena, 2001). A
default value for Chl-a is 0.035mgm−3, but it is also possible to use a different Chl-a value.
This value will then be extracted from a climatology database that has been developed by the
European node for Global Ocean Colour (globcolour) (Bouvet, 2013). Fougnie et al. (2002) and
Fougnie et al. (2010) have used SeaWiFS data, in combination with Aqua-MODIS and MERIS
data, in order to generate a climatology of Chl-a over the global oceans covering a time span
of 15 years (1998 - 2012). The climatology data is a merged dataset that is acquired through a
match-up analysis that looked for satellite observations on a pixel level that coincide or lie suf-
ficiently close to each other, and coalesced them into the merged dataset. Through the use of
the Garver - Siegel - Maritorena (GSM) (bio-optical) inversion model described by Maritorena,
Siegel, and Peterson (2002), which uses a non-linear fitting method to minimize the differ-
ence between the modelled and observed radiance, global Chl-a data have been retrieved.
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This model uses IOPs such as bw, aw or aph48 as input and they must be provided on a global
scale in order to retrieve global Chl-a data. This is principally the opposite of what happens
in the RCM, where these IOPs are given as input and the reflectance model simulates ρTOAobs .
The inverted (reflectance) model thus requires ρTOAobs as input in order to retrieve Chl-a, or
any other input parameter. One advantage of the merged dataset is the increase in coverage.
Compared to the individual missions of SeaWiFS, Aqua-MODIS and MERIS, the improved
coverage amounts to 73% − 114% − 225%, respectively.

The results that have been retrieved by the GSM inversion model, from using the merged
dataset as input, have been compared with the individual sensor dataset. Maritorena et al.
(2010), who performed a validation on the match-up analysis and the merged dataset, argue
that the data agree well with individual satellite data retrievals.

The GSM inversion model uses a slightly different water reflectance model than imple-
mented in the Rayleigh calibration methodology because the goal was to use the model glob-
ally. The main difference lies in how the IOPs and Apparent Optical Properties (AOPs) are
mathematically defined (e.g.; bb and Kd

49 Maritorena, Siegel, and Peterson (2002);

bb (λ) = bw (λ) + 0.252Chl-a0.635 (660/λ) (2.58a)

Kd (λ) =
(
a (443)2 + 0.256 a (443) b (443)

)0.5
(2.58b)

The ρw implemented in DIMITRI has been compared, together with other models of its kind,
with in-situ data in order to assess its quality. Brewin et al. (2013) have performed this com-
parison for semi-analytical and Chlorophyll models, which simulate IOPs (bb, a and Kd )
and Chl-a concentrations. This comparison proved to be inconclusive and did not identify
1 model as the best model. It turned out that each model had its own range in which it ac-
curately simulated the parameters. In case of the GSM inversion model, it was shown by
Morel and Maritorena (2001) and Maritorena, Siegel, and Peterson (2002) and reconfirmed by
Brewin et al. (2013), that it has a high performance for determining parameters (such as a, aph,
bb and Chl-a concentration) at longer λ (i.e.; in the range of λ > 560nm) and low performance
for the short λ (i.e.; in the range of 443 ≤ λ ≤ 489nm) due to the large amount of ρR present
at short λ.

2.3.3 Applications in DIMITRI

Now that the ρw model has been introduced its incorporation in the RCM can be explained.
Morel and Gentili (1996) have defined Lw(θ, φ) as follows;

Lw(θv, φ) = Lu,0−
(
θ′v, φ

) [1− ρ(θ′v, θv)]

n2
w

(2.59)

where Lu(θ′v, φ) is the upward radiance beneath the ocean surface at null depth50, ρ(θ′v, θv) is
the internal Fresnel reflectance for the directions θv, which is the viewing zenith angle in the
air and θ′v its corresponding refracted nadir angle in the water (see Figure 2.9). nw is the
refractive index for water. R has already been introduced (see Equation 2.46) but here a slight
modification is applied, which underlines its dependence on θs, and this is denoted as; Rθs .
Lu(θ′v, φ) is also a function of θs. In this case, a new function can be introduced that quantifies

48This is the absorption coefficient due to phytoplankton (Maritorena, Siegel, and Peterson, 2002).
49See equations 7 & 8 of Maritorena, Siegel, and Peterson (2002).
50Note that the symbol for null depth, 0−, is not shown here.
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FIGURE 2.9: A schematic drawing (from Morel and Gentili (1996)) of the geometry with the Sun under a zenith
angle of θ0 (note this is symbolized by θs throughout this report), an observer under θ (denoted by θv), with its
corresponding nadir angle refracted by the ocean of θ′ (denoted by θ′v). Also the relative azimuth angle is denoted

by ∆φ.

the ratio of irradiance to any radiance at null depth as follows;

Q(λ, θ′v, θs,∆φ) = Eu,0− (λ) /Lu,0−
(
λ, θ′v, θs,∆φ

)
(2.60)

This Q function, given in units of steradians, is in fact a bidirectional function, for a particular
angular dependence. If Lu is assumed to be isotropic then Q = π. Morel and Gentili (1996)
formulate a normalized water-leaving radiance, (Lw)N , which is the radiance that would be
measured if the Earth is at the mean distance from the Sun. Consider also a case with no
atmospheric extinction (i.e.; no absorption or scattering) and that the observer has a nadir-
viewing instrument. Furthermore, take the Sun at the zenith, i.e.; θs = 0, θ′v = 0, θs = 0
and finally; ∆φ = 0. Under these assumptions, the Q(λ, θ′v, θs,∆φ) function is reduced to
Q(λ, 0, 0, 0) = Q0 (λ). Similarly, since θs = 0, Rθ reduces to R0. The equation for (Lw)N can
now be formulated as follows:

(Lw)N (λ) =
F0R0

Q0 (λ)
R0 (λ) (2.61)

R0 is a term51 that merges all the reflection and refraction effects and depends on θv through
the internal Fresnel reflectance ρ (θ′v, θv) and also depends strongly on the wind speed (Barker
et al., 2014). Note that F0 is the extraterrestrial solar irradiance already defined in Equation 2.11.

51For a perfectly flat surface and a θv of 0◦, Morel and Gentili (1996) have quantified R0 to be equal to 0.5278.
Note that this term will not be derived here. For more information the reader is referred to page 4852 of Morel
and Gentili (1996).
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Equation 2.61 must be converted to a reflectance to take away its dependency on the varying
F0 and this is achieved by using Equation 2.12;

1. Substitute L = (Lw)N in Equation 2.12, (see Equation 2.62a).

2. Express E = Ed,0+ = F0 ε t(θs) cos(θs), where Ed,0+ is the downwelling irradiance
above the air-sea interface. ε is the ratio between the mean (r̄) and actual (r) Earth-
Sun distance, i.e.; ε = (r̄/r)2. t(θs) is the atmospheric diffuse transmittance (i.e. its
effectiveness of transmitting radiant energy), (see Equation 2.62b).

3. Notice that the assumption of no atmospheric extinction results in the transmittance be-
ing 100%, i.e. t(θs) = 1. Similarly, when the Earth is at its mean distance from the Sun;
d = d̄⇒ ε = (r̄/r̄)2 = 1. Furthermore, given that in Equation 2.11 r� is expressed in AU
and the Earth-Sun distance of 1 AU is the mean distance, the value of r� = 1. In addi-
tion, when both θs and θv are equal to zero, cos(θs) = cos(θv) = 1, (see Equation 2.62c).

4. Cancel out the F0 quantity and formulate the marine model implemented by DIMITRI,
(see Equation 2.62d).

ρ (λ) = ρw (λ) =
πr2
�

E′� cos θ

F0R0

Q0 (λ)
R0 (λ) (2.62a)

ρw (λ) =
πr2
�

F0 ε t(θs) cos θs cos θv

F0R0

Q0 (λ)
R0 (λ) (2.62b)

ρw (λ) =
π

F0

F0R0

Q0 (λ)
R0 (λ) (2.62c)

ρw (λ) = π
R0

Q0 (λ)
R0 (λ) (2.62d)

Morel and Gentili (1996) assume that oceans are homogeneous and the optical properties and
the Chl-a are assumed to be uniformly distributed with depth in the (upper) oceanic layer.
In addition, angular variations of Lw(λ) are ignored and compensated in terms of deviations
obtained in the Chl-a concentration.

The evaluation of Equation 2.62 in the RCM starts with the retrieval of aw and bw. aw
values are taken from Pope and Fry (1997) and are defined for a range between 380 - 700
nm, whereas bw values are taken from Smith and Baker (1981) and are defined for a range
between 200 - 800 nm. Both parameters are extracted from LUTs through linearly interpola-
tion of λ. The LUT is simulated using refractive indices of water and ice in the 0.65 - 2.5 µm
range and these originate from Kou, Labrie, and Chylek (1993). Then, for the evaluation of
Equation 2.44, the regression coefficients calculated by Morel and Maritorena (2001) can be ex-
tracted by linearly interpolating the LUT for λ. The µd variable in Equation 2.48 is retrieved by
linearly interpolating a LUT that contains simulated µd values as a function of λ, Chl-a and θs.

Now that all the necessary elements of Equation 2.1 have been explained, the calibration
coefficient, C, can be calculated. It should be noted that the RCM is only valid for particular
λ. Hagolle et al. (1999) underline this by stating that C is only determined for the blue spectral
bands because at these λ the Rayleigh scattering is well characterized by radiative transfer
models. In addition, because measurements in the glint are not included, Equation 2.1 re-
duces to the following expression;

ρTOAsim = tgas (ρpath + tdown tup ρw) (2.63)
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2.4 Conclusion

It should be reiterated that this tedious and quantitative dispensation of information serves
the purpose of identifying possible sources of systematic uncertainties that can be attributed
to the input variables and/or to the RCM algorithm. In addition, to depict the complexity
and breadth of this objective, a spreadsheet has been drawn and can be seen on the next
page. What becomes clear is that there are many steps that collectively define the RCM and
that there are many assumption that have been made that eventually lead to obtaining the
calibration coefficient.
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Chapter 3

DIMITRI
Now that the reflectance model in RCM is addressed, the DIMITRI tool itself will be very briefly introduced,
focusing on its general capabilities. Within this chapter, the user interface of DIMITRI is briefly described to
give the reader some handles on how the RCM for a sensor such as OLCI can be initiated and executed.

In the introduction to this thesis it was already explained why DIMITRI is used. In this
chapter some general introductions are given. Figure 3.11 shows a flowchart displaying the
different parts of the DIMITRI tool.

In DIMITRI a database is used to store Level 1B (L1B) radiometric data2, which are re-
flectances observed by instruments on board Earth observation satellites. The ‘L1B Ingestion‘
option of the tool allows the user to add new data to the existing database. The data is always
associated with a geographical area on the Earth. This region of interest (ROI) can be on land
(e.g. desert) but also on water (e.g. the South Pacific Gyre).

The new data is loaded and processed3 in a standardized manner by the tool before it is
stored in the database, ready for an inter-comparison procedure. For each band within the
optical sensor’s operational spectrum, an average and standard deviation of the reflectance
is computed. The data is also prepared on a pixel-by-pixel basis, containing reflectances for
all pixels within the ROI. Note that 1 file that contains all pixels within a ROI is colloquially
referred to as an acquisition.

There are two options available within the tool to perform an inter-comparison procedure;
the Rayleigh and the Glint4 calibration methodology. After choosing the procedure, inter-
comparison settings and aerosol model to be used in the reflectance model, the procedure can
be started. Note that for the execution of this step auxiliary data are required regarding the
atmospheric and oceanic constituents and spectral representation of the ROI (see large gray
box before the ‘Intercomparison Methodology‘ red box).

The calibration coefficient that is calculated on a pixel-by-pixel basis is stored in a database.
For each sensor band, an average of all pixels within the ROI is determined and stored in an
Excel output file, in addition with associated statistical data of those calibration coefficients

1Flow chart has been drawn using the following website: https://www.draw.io/
2See Appendix C for an explanation of the processing levels.
3The radiometric data are given as radiances and DIMITRI converts these to reflectances. In addition, a cloud

screening correction is performed for all pixels that contain clouds. Furthermore, the data are also corrected for
the smile effect and seasonal variations of the solar irradiance throughout Earth’s orbit around the Sun.

4Note that in this thesis the Glint calibration methodology is not taken into account but it is mentioned because
it is based on the same reflectance model that is described by Hagolle et al. (1999). In addition to the Rayleigh
and Glint calibration methodology, there exists also a third option; a desert calibration procedure. However, this
methodology is based on a different reflectance model.

https://www.draw.io/
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(standard deviation, mean and uncertainty of those coefficients). Besides these databases,
DIMITRI plots the average calibration coefficients and their temporal changes over 1 year.



FIGURE 3.1: DIMITRI’s Flowchart. The red highlighted boxes indicate the steps that take place in DIMITRI in order to execute an inter-comparison procedure. The
gray highlighted boxes show what input are required for the inter-comparison procedure. The green highlighted boxes show reflectance model settings and they can

be ‘tweaked‘ prior to the execution of the inter-comparison. The blue highlighted box shows the output files.
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Chapter 4

Uncertainty propagation theory
In this chapter, in accordance with the recommendations outlined by the Comitè International des Poids et
Mesures, in 1980 (called Recommendation INC-1) (BIPM et al., 2008), the fundamentals of uncertainty anal-
ysis and propagation are addressed section 4.1 & section 4.2. In section 4.3 the two types of uncertainties are
explained and some preliminary classification is attempted.

4.1 Uncertainty propagation methodologies

In this thesis the focus lies on two different propagation methodologies; the simulation-based
Monte Carlo (MC) method and the expansion-based Taylor series expansion (TS) method. The
MC method is a brute force approach where through many simulations the uncertainty com-
ponents are obtained. An alternative to this inefficient approach is the TS method, where
through the calculation of partial derivatives an analytical expression is obtained that directly
yields the uncertainty components in one evaluation.

Let f (x) denote the function (i.e. the RCM) and x be the input variable. In addition, let
the output of the function (i.e. the calibration coefficient) be denoted by C. Furthermore, let
the mean of C be denoted by µC and the standard deviation of C be denoted by σC . Mathe-
matically, if the ouput distribution is Gaussian, these two uncertainty components are defined
as follows;

µC =
1

n

n∑
i=1

Ci (4.1)

σ2
C =

1

n− 1

n∑
i=1

(Ci − µ (Ci))
2 (4.2)

where n is the number of samples within a population. If the output distribution is uniform,
the following equations hold;

µx =
Cmin + Cmax

2
(4.3)

σ2
x =

(Cmax − Cmin)2

12
(4.4)

4.1.1 Monte Carlo simulations

The MC method is a simulation-based method that does not require any simplification of
f (x) and the uncertainty components are simply obtained from the evaluation of the afore-
mentioned equations with respect to the output distribution.

In order to obtain a distribution of the output, the input variables must be changed before
each simulation. This change can be viewed as an error (denoted by ε) and can be derived
from the variability of the input variables, say σx. I hereby make the assumption that the
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input variables are uniformly distributed random variables. Under this assumption, each
variable can be written as the arithmetic mean of that variable plus an error;

x′ = µx + εx (4.5)

εx changes with every simulation which causes every evaluation of f (x) to yield a different
value for C. After many simulations, a distribution of C values is be obtained, from which
µC and σC are determined.

It should be noted that, for a Gaussian distribution, the true µ can never be known and that
Equation 4.1 will only yield an approximation of µC . Therefore, the mean will now be denoted
by C̄. Similarly, because the true σ is never known, a better term to describe the standard
deviation is the experimental standard deviation and this is denoted by S. The uncertainty u
associated with C̄ is called the standard deviation of the mean and the uncertainty associated
with S is called by the standard deviation of the standard deviation1. These two uncertainties are
quantified as follows (Taylor, 1997)2;

u (µC) =
σC√
n

(4.6)

u (σC) =
σC√

2 (n− 1)
(4.7)

From these two equations it becomes obvious that the number of simulations n has an impact
on the uncertainty. Some examples of this have been given in Table 4.1.

TABLE 4.1: Relative uncertainties due to the finite number of simulations in percentages.

n 2 10 50 100 1000 10000 100000
u (µC) 70.71% 31.62% 14.14% 10.00% 3.16% 1.00% 0.32%
u (σC) 70.71% 23.57% 10.10% 7.11% 2.24% 0.71% 0.22%

So far it has been assumed that the input variables follow a uniform distribution. Under
a linear transformation, such as the Taylor series expansion, the output will also have a Uni-
form distribution (Arras, 1998). With the MC method, no linearization is performed and thus
the output distribution need not be Uniform and can be Gaussian. In order to assess whether
this is the case, a χ2 test can be performed on the output. In this test, the output distribution
is assessed based on how well it compares with what would be an expected Gaussian distribu-
tion. A Gaussian distribution can be divided into 4 sections (denoted by s), each containing
an expected number of output samples which are denoted by Es. The expected number of
samples within a section are then compared with the actual number of samples (denoted by
Cs) that are obtained from the MC simulations using the following equation;

χ2 =
s∑
i

(Cs − Es)2

Es
(4.8)

χ2 is an indicator of the agreement between the observed and expected output distribution
and if χ2 ≤ s, the output distribution has an expected Gaussian distribution.

1Note that the expression given here is an approximation, the exact expression is σSC̄
/σC̄ , see BIPM et al.

(2008).
2Note that Equation 4.7 is also referred to as the Margin of Error (MoE).
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4.1.2 Taylor series expansion

The Taylor series expansion about x = x̄ of f (x) is defined as;

C ' f (x̄) +
∂f

∂x
|x=x̄ (x− x̄) (4.9)

Note that f (x) indicates that this is a multi-variate function because x is a vector. Arras (1998)
have derived C̄ and SC ;

C̄ ≈ f (x̄) (4.10)

S2
C ≈

n∑
i

(
∂f

∂xi

)2

u2
xi +

n−1∑
i

n∑
j

(
∂f

∂xi

)(
∂f

∂xj

)
uxi, xj (4.11)

If correlation between the input variables is disregarded then uxi, xj = 0 and a simpler term
can be obtained;

S2
C ≈

n∑
i

(
∂f

∂xi

)2

u2
xi (4.12)

Here we have arrived at the point where similar quantities are obtained from the analyti-
cal propagation of uncertainties as previously obtained from the MC simulations. However,
BIPM et al. (2008) define Equation 4.11 as ‘an estimated standard deviation that characterizes the
dispersion of values that could reasonably be attributed to the measurand’. It is important to re-
member that these two quantities are based on the linearization of f (x). Arras (1998) state a
condition for whether the statements in Equation 4.10 and Equation 4.11 are valid and it re-
quires f (x) not to be too non-linear within±SC . Only then will the TS method be a sufficient
approximation of the uncertainty components obtained through the MC method. Addition-
ally, the TS method implicitly ‘hopes‘ that x̄, which is an estimation of the actual value of x, lies
sufficiently close to the expectation of x such that C, lies sufficiently close to the expectation
of C. Depending on these two conditions, the approximation of e.g. SMC

C by STSC can be very
poor.

The extent of the nonlinearity of f (x) remains to be determined conclusively. For the
time being a more elaborate TS including higher-ordered terms will be introduced in case
the strong nonlinearity of f (x) is affirmed. In that case, SC is calculated using the following
expression;

S2
C =

n∑
i

(
∂f

∂xi

)2

u2
xi +

N∑
i

N∑
j

[
1

2

(
∂2f

∂xi∂xj

)2

+
∂f

∂xi

∂3f

∂xi∂x2
j

]
u2
xiu

2
xj (4.13)

The partial derivative elements of f with respect to the input quantities xi, e.g.; ∂f/∂xi, are
called sensitivity coefficients and describe how the behavior of the output estimate C varies
with changes in xi.

The sensitivity coefficients can also be obtained through simulations. Although the RCM
is a multi-variate function it is possible to perform simulations where one of the input vari-
ables is perturbed and the others are kept constant. After many simulations, C̄ and SC , give
an estimation of the sensitivity of the output due to changes in one of the input variables.
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4.1.3 Pros and cons

The advantage of the MC method is that no assumptions/simplifications are applied to the
function that is being analyzed. In the TS method, a non-linear function is linearized and
approximated by a finite number of expansion terms. However, the major advantage of the
TS method is that an analytical expression is obtained for the propagation of uncertainties,
allowing more insight in the sensitivity of the function with respect to its input variable(s).
The MC method simply allows for a measure of total uncertainty, say the variance. In this way,
the user has no (direct) knowledge of the contribution of the individual variables to this total
uncertainty, whereas with the TS method, the sensitivity components do provide that insight.
The MC method has a higher accuracy because no linearization is performed, although this
comes with high computational costs. Finally, the sensitivity of RCM to its input can also be
analyzed if a MC is applied where 1 variable is perturbed and the others are kept constant,
but this then requires many MC simulations.

4.2 Propagation methodology initialization

The TS method requires the definition of uxi . Once these are defined, they can be directly
given as input to Equation 4.11. Similarly for the MC method, the term εx of Equation 4.5 is
required.

εx is derived from an ECMWF meteorology prediction model, which models meteorolog-
ical quantities such as pressure or the Ozone concentration. The difference between modelled
and measured output is taken to be the uncertainty associated with the input variables, i.e.;
εx. For Ozone and pressure, the following uncertainty values are selected;

uO3 = 10DU (4.14a)
uP = 5hPa (4.14b)

The Chlorophyll-a concentration is assumed to be constant throughout an entire acquisition
and thus its mean value is simply the value of itself. Its uncertainty is provided through the
summation of two elements, the relative uncertainty and its standard deviation. The relative
uncertainty is defined as the average of the error3 associated with the Globcolour climatology
monthly Chl-a maps;

urel =

∑15
y=1 εChl(m,y)√

15
(4.15)

The standard deviation associated with the monthly climatology is computed as

SChl =

√∑15
y=1

(
Chl(m, y)− C̄hl(m)

)
√

15
(4.16)

C̄hl =

∑15
y=1Chl (m, y)

15
(4.17)

Recall that the denominator represents the number of years which cover the climatology data.

In this thesis, the error term will be viewed as an uncertainty, more specifically, it will be

3It is not clear if the monthly climatology is obtained through weighted average on pixel level or not. Be-
side this, it is not clear whether the relative uncertainty term comes from the averaging or from the bio-optical
inversion.
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viewed as the standard deviation associated with the input variables, i.e.;

εx = ux = σx (4.18)

The randomness is guaranteed by generating a uniform distribution with values between -1
and 1, and retrieving from this distribution a value denoted by α, and to multiply this value
with ±σx. Following this procedure, as an update of Equation 4.5, the input parameters are
perturbed as follows;

x = x̄+ ασx (4.19)

In the RCM, this perturbation is obtained through multiplication of the input variables with
a perturbation factor that is defined as follows4;

x′ = xFp

where Fp = 1 + α
σx
x

(4.20)

4.3 Classification evaluated uncertainties

According to BIPM et al. (2008) the classification of uncertainties into random and system-
atic, or in Type-A and Type-B uncertainties, can be ambiguous and confusing. They indicate
that a classification could be included for convenience of discussion only but that there is no
difference in the nature of the uncertainties. They are both based on probability distributions
and their uncertainty components are quantified by the mean and standard deviation. It is
mentioned, however, that categorizing the method of uncertainty evaluation rather than the
component themselves, can avoid ambiguity between the two classes of uncertainties.

4.3.1 Random & Systematic uncertainties

Random uncertainties are those uncertainties that occur due to unpredictable variations in
time or space. Examples of random uncertainties can be our reaction time when a stopwatch
is used to time the duration of some process or the accuracy if we read a ruler when the length
of some object is measured. Generally speaking an over- or under-estimation is evenly likely
in these cases (hence the term random) which means that after repeating the process many
times, the expectation of these uncertainties, goes to zero (Taylor, 1997; BIPM et al., 2008). On
the other hand, if the device that is used in the timing or measurement process has an offset in
any arbitrary direction, our measurements will always have that same offset. If this offset is
unknown, it is referred to as a systematic uncertainty. Contrary to random effects, increasing
the number of measurements does not provide any insight regarding the systematic uncer-
tainties. Figure 4.1 shows very clearly examples of how systematic and random effects can be
visualized.

4.3.2 Type A & Type B uncertainties

In the scenario that the experimental standard deviation S is based on independent repeated
observations on a random input quantity xi, uxi is referred to as a Type A standard uncer-
tainty. If independent repeated observations on an input variable xi are not possible or if the
xi is not random, uxi must be evaluated based on the following available information on the
variability of xi (BIPM et al., 2008):

4In DIMITRI, the mean values, i.e. x̄, are not available and thus the value itself is simply used.
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FIGURE 4.1: These four targets with different shots display random and systematic errors (Taylor, 1997). The
objective is to hit the center of the target as many times as possible. The upper left and lower right are opposites.
The upper right shows a case where shots are fired somewhat accurately, but they all have a constant offset. The

lower left target does not display a constant offset but the scattered shots indicate large random errors.

• previous measurement data;

• experience with or general knowledge of the behavior and properties of relevant mate-
rials and instruments;

• manufacturer’s specifications;

• data provided in calibration and other certificates; and

• uncertainties assigned to reference data taken from handbooks.

The proper use of the available data for a Type B evaluation requires insight based on ex-
perience and general knowledge and is not necessarily less reliable as a Type A evaluation
method. In the case that there are few independent repeatable observations, for example,
a Type B evaluation is more reliable than a Type A one. When uxi is evaluated using any
or a combination of all of the aforementioned points, it is referred to as a Type B standard
uncertainty.

4.3.3 Classification

It should be noted that uxi in Equation 4.11 should in fact be the standard deviation associ-
ated with the input σxi . However, in this thesis the quantity εx will be viewed as the σxi (see
Equation 4.18). εx seems to be a Type A component as through many iterations the collective
difference between modelled and measured variables εx are obtained. Yet the measurement



4.4. Conclusion 43

/ modelling process through which ECMWF obtains the variables and their uncertainties can
also be attributed to Type B evaluation methods. The reason for this is that the instrument
which measures and the model which predicts values, are both subject to biases such as in-
strument calibration uncertainties or model simplifications / inaccuracies. This means that it
the existence of systematic uncertainties, either associated with the input value or their esti-
mated uncertainties, is very likely.

Using the HPLC, FL3000 and CTD sensor, Morel and Maritorena (2001) determined a Chl-
a profile, converted from an algal fluorescence profile using 12 discrete HPLC data points in
Case-1 waters. Although the number of discrete data points measured is given, no informa-
tion is provided on the measurement frequency. Furthermore, the performance of FL3000,
which measures the continuous algal fluorescence profile, is not given and neither are the
conversion details which result in the continuous Chl profile (see Figure 2.8). The application
of the HPLC implies that the Chl-a is measured through observations, though 12 data points
seems on the low side compared to the expected number of observations for the ECMWF
input variables. On the other hand, the conversion from the fluorescence to the Chl-a pro-
file seems to require some form of relation between Chl and its corresponding fluorescence,
which may be established through previous measurement data. It appears that the deter-
mination of the Chl-a input quantity, as described by Morel and Maritorena (2001), includes
both evaluation methods, i.e. Type A and Type B. The Globcolour climatology database is coa-
lesced from satellite data and the distribution associated with it is based on a large numbers of
observations, classifying it as a Type A evaluation. Yet, the use of a non-linear fitting method
and the bio-optical inversion model to retrieve global Chlorophyll-a values also seems to in-
dicate that systematic uncertainties cannot be avoided. Therefore, data that is obtained from
the Globcolour database can also be attributed to the Type B evaluation method.

Recall that the inversion model also provides uncertainty estimates (see Equation 4.15 and
Equation 4.16). However, the error associated with the Globcolour climatology monthly Chl-
a maps εChl(m, y), is not defined in this thesis because its origins could not be established.
Moreover, the least-squares minimization function that is used for the match-up analysis es-
timates the following uncertainties;

1. uncertainty associated with the normalized water-leaving radiance, LwN , per sensor
band, denoted as σsensor.

2. uncertainty due to the bio-optical inversion model per sensor band, denoted as σGSM

3. uncertainty associated with the difference between Lwsensor and LwGSM , denoted as,
σproduct.

Maritorena et al. (2010) emphasize that systematic uncertainties may be present that are not
taken into account during the uncertainty estimation of the match-up analysis. This means
that any of these listed uncertainties may influence the accuracy of the Chl-a input variable
and its estimated uncertainty.

4.4 Conclusion

In this chapter uncertainty classification theory has been addressed for the purpose of dis-
tinguishing different types of uncertainties associated with the input variables that are used
in the RCM. In order to avoid ambiguity and confusion, the evaluation method of the input
variables was attempted to be classified. What becomes clear when reviewing the evaluation
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methods, or when looking at the flowchart at page 32, is that there are many assumptions
and simplifications that have been made in order to obtain the meteorological input variables,
similarly for the Chl-a variable. This makes the classification of uncertainties associated with
the input variables, or the classification of their evaluation methods, very difficult. It became
clear that the evaluation method of the input variables could be attributed to both types of
uncertainties. In fact, there is no reason why the uncertainties associated with these input
variables, are any different. It is painfully apparent that at this point, it is not straight forward
to conclusively classify any of the input variables or their estimated uncertainties. A retro-
spect will be given with respect to the evaluated uncertainties at the end of the next chapter.

At this point all necessary theories are addressed and the uncertainty analysis and propa-
gation can begin. The approach will be to propagate the previously defined uncertainties and
then to perform an analysis on the results. It will be very efficient if the TS method proves to
be an appropriate propagation method because it only requires 1 run to produce the uncer-
tainties. The MC method will be used to validate whether the uncertainties are sufficiently
accurate. The criteria for this requires the TS uncertainties to deviate less than 1% compared
to MC uncertainties.

It becomes obvious that a very complex expression will be obtained when all relevant
terms are substituted in Equation 2.63 . For this reason it is suggested to introduce simpli-
fications to allow for a less complex expression to be obtained. The TS method can then be
applied to this simpler model. The simplifications that are introduced and the validation of
its accuracy are addressed in the next chapter.
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Chapter 5

Modified Model
The objective of this chapter is to introduce simplifications to the RCM reflectance model such that a TS un-
certainty propagation method can be applied without too much complexity. This simplified model is called the
Modified Model (MM) and is described in section 5.1. The MM configuration will be validated with the un-
modified reflectance model (UM) using a data analysis in section 5.2. The criteria for this validation is that the
calibration coefficients obtained with the MM configuration should deviate no more than 5% from the calibration
coefficients obtained in the UM configuration. In order to better understand the RCM and its dependence on its
input variables a sensitivity analysis is performed in section 5.3. Finally, an uncertainty analysis is performed
in section 5.4 to assess whether the propagated uncertainties of MM approximate those obtained from the UM
configuration with a deviation of less than 1%.

5.1 Model description

There are 2 modifications applied to Equation 2.63 and these regard ρa and ρw. The most
significant modification applied to the UM configuration is that MM assumes an aerosol-free
atmosphere which reduces Equation 2.63 to the following;

ρTOA = tgas (ρR + tdown tup ρw) (5.1)

where ρpath is replaced by only ρR, as is defined in Equation 2.25. If multiple scattering is ig-
nored, no reflective surface is present and one is dealing with a homogeneous atmosphere, which
is defined to be an atmosphere where the scattering phase matrix and single scattering albedo
are independent of the optical depth, ρR can be obtained through the following equation (De
Haan, Bosma, and Hovenier, 1987);

R (µd, µu,∆φ) =
a

4 (µd + µu)

(
1− e−b/µd−b/µu

)
× Z (−µd, µu,∆φ) (5.2)

R, in an aerosol-free atmosphere, is ρR, a is the single scattering albedo, µd and µu are the
cosine of the zenith angles in the downward (θs) and upward (θv) direction respectively, b is
the Rayleigh optical thickness (τR) and finally Z is the scattering phase matrix. If the sensor
bands coincide with an absorption band, the single scattering albedo is equal to 1. The phase
matrix is taken from Hansen and Travis (1974), where only the first element of the matrix is
taken because polarization is ignored;

Z = �
{

3

4

(
1 + cos2 α

)}
+ (1− �) {1} (5.3)

where � = (1− δ) / (1 + δ/2). Recall that δ is the depolarization factor and is quantified to
be 0.029 (Young, 1981). α is the scattering angle, which is the angle between the propagation
path of light and the reflected path towards the sensor. When θs and θv are both smaller than
90◦, the scattering angle can be determined from the sum of these two. Consequentially, ρR is
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calculated as follows;

ρR =
a

4 (µd + µu)

(
1− e−b/µd−b/µu

)
·
(
�3

4

(
1 + cos2 α

)
+ (1− �)

)
(5.4)

The pressure correction that was applied to ρpath (see Equation 2.27) will in stead be applied
to ρR, resulting in an explicit dependence on the pressure. Note that η is a function of τa (see
Equation 2.28) but for the MM configuration it is assumed that τa → 0 thus;

lim
τa→0

(η) = lim
τa→0

(
τR

τR + τa

)
= 1 (5.5)

Then the pressure correction is applied as follows;

lim
τa→0

(ρR,P ) = lim
τa→0

(
ρR,Ps

(
1 +

P − Ps
Ps

η

))
= ρR,Ps

(
1 +

P − Ps
Ps

)
(5.6)

Another effect of ignoring the aerosol scattering regards the transmittance as seen in Equa-
tion 2.38. Recall that the total transmittance consists out of aerosol and Rayleigh transmit-
tance. The latter is denoted by tR which is defined as;

(td, P tu, P ) = tR,P = e−
1
2
τRM (1+∆P/Ps) (5.7)

The last element that must be addressed is the simplification that is applied to the calculation
of irradiance reflectance R0. It is assumed that the iterative procedure which determines this
parameter (see Equation 2.48) can be replaced by a single evaluation in the simplified model,
that is, only by evaluating Equation 2.48b.

5.2 Data analysis

The previously introduced modifications applied to the UM configuration have an effect on
C values that are obtained with the MM configuration (conveniently denoted CUM &CMM ).
Here a data analysis is performed and particular attention is given to assess whether CMM

sufficiently approximates CUM . 4 physical quantities will be examined using data analysis;
the ρR, ρpath, ρw and also t.

However, before commencing with the data analysis, the relation between the number of sim-
ulations in the MC method versus the accuracy of obtained results will be quantified. Recall
that due to (among others) the finite number of simulations, the mean of C and its associated
standard deviation, C̄ and SC respectively, exhibit a deviation with the true mean (µC) and
standard deviation (σC).

In Table 5.1 two cases of C̄MM and SCMM
are shown to illustrate that by increasing the

number of simulations the approximation of these central moments improves1. The two cases
correspond with a MoE of 10% (equivalent to 100 iterations) and 1% (equivalent to 10000
iterations). From εC̄ and εSC values it becomes obvious that by choosing 100 iterations results
in a loss of accuracy of only 0.056% for C̄MM and 0.074% for SC . From these results it can

1Note that input perturbations are taken into account as defined in Equation 4.14. For Chl-a the value for the
total uncertainty is 0.0154 mgm−3, which is obtained from the Chl-a climatology of the South Indian Ocean at
January.
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TABLE 5.1: The mean and standard deviation of the calibration coefficient (C̄ , SC) computed with the MM
configuration, for 100 (MoE:10%) and 10000 (MoE:1%) iterations respectively. ε gives the loss when 100

iterations are performed in stead of 10000.

λ 412 443 490 510 560 620 665

C̄MoE:10% 1.10480 1.11532 1.09425 1.07452 1.05879 1.05553 1.06597
C̄MoE:1% 1.10541 1.11588 1.09447 1.07458 1.05877 1.05556 1.06602

εC̄ -0.0555% -0.0507% -0.0207% -0.0048% 0.0017% -0.0035% -0.0052%

SCMoE:10%
1.3968% 1.2762% 0.4867% 0.2641% 0.3809% 0.3259% 0.3042%

SCMoE:1%
1.3232% 1.2067% 0.4434% 0.2681% 0.3965% 0.3322% 0.3087%

εSC 0.0736% 0.0695% 0.0433% -0.0040% -0.0156% -0.0063% -0.0045%

be concluded that a MC simulation with only 100 iterations is sufficient and thus the general
setting for the data analysis of CUM and CMM will be performed with a MoE of 10%.

5.2.1 Rayleigh reflectance

The data analysis is started by looking at ρR obtained from the UM and MM configurations.
The comparison between UM and MM is made by comparing the relative deviation (in per-
centages) of MM values compared with UM values. The results (obtained for a Chl-a value of
0.035mgm−3) are presented in Table 5.2 for the first and last optical sensor band, i.e.; at 412
and 665 nm. Let us review why ρR is significantly under-represented in the MM configura-
tion at short λ and slightly over-represented at long λ and consequentially, how this deviation
distorts other parameters.

TABLE 5.2: Validation of the MM configuration versus the UM configuration - ρR parameter.

ρR ρpathp ρTOA
sim C

412
UM 0.14027 0.14206 0.17770 1.05496
MM 0.10194 0.10224 0.13031 1.43864

ε[%] -27.32375 -28.03420 -26.66994 36.36915

665
UM 0.02008 0.02146 0.02178 1.04640
MM 0.02033 0.02039 0.02076 1.09775

ε[%] 1.27435 -4.99829 -4.67747 4.90730

Scattering, and thus also multiple scattering, occurs more frequently at shorter λ, rather
than at longer λ (see Equation 2.22), which is also the case for ρR. The deviation in ρR be-
tween UM and MM comes from the application of Equation 5.2, as it attempts to estimate
the single scattering ρR at short λ, whereas single scattering occurs more frequently at long
λ. By excluding multiple scattering for the estimation of ρR, which is effectively done by
approximating the ρR through Equation 5.2, much less reflectance is taken into account and
thus the under-representation of ρR with MM can be explained. Equation 5.2 would be better
suited to approximate the single scattering ρR at long λ because single scattering occurs more
frequently. This explains why the deviation drops significantly to 1.3% at 665 nm.

One further assumption is that there is no reflective surface, which means that only re-
flectance by the atmosphere is taken into account. In other words, all light that hits the sur-
face is absorbed.This assumption directly contradicts the theoretical premise on which the
reflectance model incorporated in RCM is based, where e.g. ρw are used to determine ρTOAsim .
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The deviations in ρR propagate to ρpathp , ρTOAsim and CMM . Without addressing any of
the other parameters, it is evident from the maximum deviation for CMM at 412 nm, that
further improvements are needed to the MM configuration in order to sufficiently (i.e., within
5%) approximate CUM . Noticing that at long λ a more accurate approximation of ρR can be
obtained, as is seen from the approximation at 665 nm, it is proposed to use Equation 5.2 to
compute ρR at 865 nm and to propagate this value to lower sensor bands using the following
scaling factor:

ρR = ρ865
R

(
865

λ

)4

(5.8)

The results of applying this scaling factor to the MM configuration are shown in Table 5.3.

TABLE 5.3: Validation of the MM configuration versus the UM configuration - with revised ρR values using
Equation 5.8.

ρR ρpathp ρTOA
sim C

412
UM 0.14027 0.14206 0.17770 1.05496
MM 0.14210 0.14252 0.17059 1.09893

ε[%] 1.31019 0.31983 -4.00165 4.16793

665
UM 0.02008 0.02146 0.02178 1.04640
MM 0.02094 0.02100 0.02137 1.06658

ε[%] 4.28734 -2.17192 -1.89214 1.92852

Due to improvements in ρR all other parameters are also improved. What is noticeable
is that the deviations between MM and UM increase with increasing λ. The improvement in
ρpathp due to improvements in ρR result in a significant improvement of CMM , some 32% at
short λ and 4% at long λ. This provides support for the conclusion that due to the application
of a scaling factor to ρR, CMM approximates CUM with sufficient accuracy.

5.2.2 Atmospheric path reflectance

The second parameter that is analyzed is ρpath, starting with the UM configuration2. The re-
sults are seen in Table 5.4. All parameters required to calculate ρpathp have also been included.

TABLE 5.4: Generated results acquired with the UM configuration where the perturbed input parameters are
taken into account.

λ 412 443 490 510 560 620 665

τR 0.316853 0.234807 0.155151 0.131711 0.089911 0.059433 0.044729
τa 0.025305 0.024293 0.022740 0.022187 0.020941 0.019656 0.018819
ρR 0.140267 0.106241 0.070477 0.059960 0.040822 0.026752 0.020076
XC 1.010157 1.013845 1.021398 1.024140 1.035001 1.051487 1.067347

ρpath 0.141692 0.107712 0.071986 0.061407 0.042251 0.028129 0.021428
ρpathp 0.141866 0.107842 0.072069 0.061477 0.042296 0.028157 0.021448

It can be noticed that ρpathp decreases for increasing λ. Note that ρpathp consists of ρR
and ρa. Molecular scattering decreases significantly with increasing λ, the reason for this can

2The same configuration is used for the input variables and their uncertainties as in the previous section.
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be explained through the quantification of the scattering cross section (see Equation 2.20a),
which states that the scattering cross section is inversely related to λ4. τa reduces as well,
however, much less rapidly than ρR. The combination of these two causes ρpathp to reduce al-
most as rapid as ρR reduces, which seems to indicate that reductions in ρR drive the reduction
in ρpathp .

In the MM configuration the atmosphere is assumed to be free of aerosols, which makes
it is interesting to analyze the effect of setting τa to zero and investigate how that influences
ρpathp . The results of this step have been shown in Table 5.5. The reverse case, where τa
is selected to have the maximum value is also interesting and these results are shown in
Table 5.63.

TABLE 5.5: ρpathp obtained from the UM configuration where minimum τa values are selected.

λ 412 443 490 510 560 620 665

τR 0.316853 0.234807 0.155151 0.131711 0.089911 0.059433 0.044729
τa 0 0 0 0 0 0 0
ρR 0.140267 0.106241 0.070477 0.059960 0.040822 0.026752 0.020076
XC 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

ρpath 0.140267 0.106241 0.070477 0.059960 0.040822 0.026752 0.020076
ρpathp 0.140454 0.106382 0.070571 0.060040 0.040876 0.026788 0.020103

TABLE 5.6: ρpathp
obtained from the UM configuration where maximum τa values are selected.

λ 412 443 490 510 560 620 665

τR 0.316853 0.234807 0.155151 0.131711 0.089911 0.059433 0.044729
τa 0.870104 0.860359 0.845263 0.839872 0.827839 0.816024 0.808833
ρR 0.140267 0.106241 0.070477 0.059960 0.040822 0.026752 0.020076
XC 1.345841 1.478144 1.750450 1.899188 2.332921 3.089391 3.791675

ρpath 0.188778 0.157040 0.123367 0.113875 0.095234 0.082647 0.076122
ρpathp 0.188845 0.157084 0.123393 0.113896 0.095247 0.082655 0.076127

Comparing the results from these two tables with results in Table 5.4 indicates that ρpathp
are lower when τa = 0 and higher when the maximum τa values are chosen. Antoine and
Morel (1998) have performed an analysis on the dependence of ρpath on τa. They have shown
that ρpath increases approximately linearly with τa, where at long λ the rate of increase with
τa is slightly lower than at short λ (because ρa is larger at short λ). This analysis was per-
formed under viewing conditions where θs = 40◦, θv = 30◦, ∆φ = 90◦. Even though the
UM configuration utilizes different viewing conditions, Antoine and Morel explain that due
to the weak anisotropy of the Rayleigh scattering phase function, the ρR and ρR, a multiple
scattering are not strongly dependent on varying θs and θv. What can be concluded is that the
results generated by the UM configurations are consistent with the theory and expectations.

3I want to briefly address how the value for τa is adjusted to the minimum or maximum value. Recall that the
NIR band at 865 nm is used to extract information regarding τa (basis for the two-band method). In atmospheric
physics, τa at 550 nm is used as a reference. In MYSTIC, 7 reference values for τ550

a are defined (see Table 2.4) and
these are propagated to other sensor bands, yielding 7 values for τ412

a and other bands. In RCM, τ865
a (which is

obtained from Equation 2.26) is propagated to shorter bands using weighted linear interpolation between any of
the two reference values within which τ865

a is contained, for a particular λ. For minimum τλa values, the interpo-
lation is simply avoided by assuming that τλa is equal zero. Reversely, for maximum τλa values, the propagated
τ550
a for its max reference value is selected.
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For the MM configuration we observe that ρpathp in Table 5.7 yields higher values than those
in Table 5.4. Note that this should not be the case because in the MM configuration an aerosol-
free atmosphere is assumed, and as previously established, this would yield lower ρpathp re-
sults. This phenomena can be explained due to the approximations of ρR using Equation 5.8
which over-estimates ρR. In order to assess how well MM approximates UM, ρR values in
MM have been replaced with ρR values of UM, and the results of the new ρpathp values are
tabulated in Table 5.8.

TABLE 5.7: ρpathp
values obtained with the MM configuration with scaled ρR values.

λ 412 443 490 510 560 620 665

τray 0.316853 0.234807 0.155151 0.131711 0.089911 0.059433 0.044729
τaer - - - - - - -
ρray 0.142105 0.106312 0.071025 0.060522 0.041634 0.027710 0.020937
XC - - - - - - -
ρpath - - - - - - -
ρpathp 0.142293 0.106453 0.071120 0.060603 0.041689 0.027746 0.020965

TABLE 5.8: ρpathp
values obtained with the MM configuratio, where ρR values of the UM configuration are

used instead of using those acquired through Equation 5.8.

λ 412 443 490 510 560 620 665

τray 0.316853 0.234807 0.155151 0.131711 0.089911 0.059433 0.044729
τaer - - - - - - -
ρray 0.140267 0.106241 0.070477 0.059960 0.040822 0.026752 0.020076
XC - - - - - - -
ρpath - - - - - - -
ρpathp 0.140454 0.106382 0.070571 0.060040 0.040876 0.026788 0.020103

The revised ρpathp values with the MM configuration are identical to those obtained from
the UM configuration where τa is zero (see Table 5.5). This result is what you would expect,
given the aerosol-free atmosphere assumption is made for the MM configuration. In con-
clusion, the higher values for ρpathp in MM are due to an over-estimation of ρR through the
scaling factor approximation.

5.2.3 Water-leaving reflectance

Now the ρw parameter can be analyzed and its values as a function of λ are found in Table 5.9.
What becomes visible is that ρw reduces with increasing λ. Let us decompose why this is the
case by reviewing every element that ρw depends on. For convenience, they have been listed
in Table 5.10 as a function of λ.

TABLE 5.9: ρw results acquired with the UM configuration.

λ 412 443 490 510 560 620 665

ρw 0.040691 0.030824 0.018235 0.009278 0.003988 0.000702 0.000376

ρw depends on 4 elements (see Equation 2.48) out of which 1 is constant (i.e. f ).
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Starting with the total backscattering bb, which reduces with increasing λ because the
backscattering for optically pure water, bw, and the particulate backscattering coefficient, bbp,
reduce with increasing λ. The diffuse attenuation for downwelling irradiance, kd, increases
with increasing λ because the attenuation coefficient for pure water, kw, increases for increas-
ing λ. The attenuation coefficient for biogenic components, kbio, is highest for short λ and
decreases with increasing λ, and increases again at long λ. However, the contribution of kbio
is smaller than the contribution of kw, which is why kd increases with λ somewhat similarly as
how kw increases. Because the absorption coefficient for optically pure water, aw, as opposed
to bw, increases with increasing λ. Therefore, eventually, the reason why kd increases is due to
the increase in aw and the reduction in bb.

Finally, the last element that ρw depends on is the element U , which on its own depends
on the reflectance R0, and some constants. R0 (see Equation 2.48b) depends on the ratio of
bb to the product of kd and U . So, it was established that the numerator decreases and the
denominator, as a consequence of the product of kd and U , increases. This results in a rapid
decrease of R0 and consequentially, a rapid decrease of ρw.

TABLE 5.10: Dependent variables of ρw as a function of λ.

λ 412 443 490 510 560 620 665

bbp 0.000533 0.000508 0.000475 0.000463 0.000436 0.000409 0.000392
bw 0.006650 0.004872 0.003165 0.002667 0.001789 0.001160 0.000861
bb 0.003858 0.002944 0.002058 0.001797 0.001331 0.000989 0.000822

kw 0.007876 0.009505 0.016582 0.033834 0.062795 0.276080 0.429430
kbio 0.017820 0.014654 0.009436 0.007833 0.005883 0.005773 0.006433
kd 0.025696 0.024160 0.026019 0.041667 0.068678 0.281853 0.435863
aw 0.004551 0.007069 0.015000 0.032500 0.061900 0.275500 0.429000

χ 0.122858 0.107212 0.072420 0.059430 0.039000 0.038500 0.049000
e 0.653270 0.673358 0.689550 0.685670 0.640000 0.642000 0.687000
µd 0.800418 0.818162 0.840598 0.856633 0.868410 0.876208 0.877833

U1 0.75 0.75 0.75 0.75 0.75 0.75 0.75
U2 0.660268 0.697774 0.756058 0.807561 0.845353 0.871906 0.875509
U3 0.643708 0.689713 0.756690 0.810932 0.847912 0.872506 0.875842

Ro1 0.066057 0.053616 0.034798 0.018975 0.008528 0.001544 0.000830
Ro2 0.075034 0.057629 0.034519 0.017623 0.007566 0.001328 0.000711
Ro3 0.076965 0.058302 0.034490 0.017550 0.007543 0.001327 0.000711

It should be noted that, in the UM configuration, R0 and U are iteratively evaluated and
obtain convergent results after three iterations. Furthermore, it should be noted that the suc-
cessive values of R0 are higher than their predecessors for s λ ≤ 443nm but lower than their
predecessors for λ > 443nm. For U the opposition holds, its value decreases with each itera-
tion for λ < 490nm and increases for λ > 443nm. U also increases with λ.

Now, in the MM configuration, it is assumed that ρw can be evaluated with the first iteration
of R0 and U only. This causes an under-estimation of ρw at short λ and an over-estimation at
long λ (see Table 5.11), precisely following the R01 values compared to R03 values.

The smaller the chlorophyll-a concentration, the more significant the difference between
the UM and MM configuration at λ ≤ 443nm. At longer λ there is no significant variability of
the deviation between the UM and MM configuration as a function of λ. This effect has been
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TABLE 5.11: ρw results acquired with the MM configuration.

λ 412 443 490 510 560 620 665

ρw 0.034924 0.028347 0.018398 0.010032 0.004509 0.000816 0.000439

illustrated in Figure 5.1 and here the under-estimation at short λ and the over-estimation at
long λ is clearly visible.

FIGURE 5.1: The relative difference of ρw as obtained from the UM and MM configurations for various Chl-a
concentrations, as a function of λ.
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5.2.4 Transmittance

Here the last parameter is analyzed, namely the total transmittance, tt and its values as a
function of λ in the UM configuration are preseted in Table 5.12. What is immediately notice-
able is that tt increases as λ increases. This is because as λ increases, τa decreases. Note that
tt is the ratio of outgoing intensity to incoming intensity. The more aerosols present in the
atmosphere, the higher the likelihood that intensity becomes extinct, either due to absorption
or scattering, and thus reducing the outgoing intensity. This explains the reduction of tt as a
function of increasing τa and thus also (by default) with decreasing λ.

In DIMITRI, another LUT is available that stores the downward and upward transmit-
tance values corresponding with the 7 reference values associated with τ550

aer . Additionally,
these values are simulated for different values of the viewing zenith angle θv. tt is dependent
on the angle of light that is observed because of the relation between the propagation path
and θv. The longer the propagation path, the more likely it is that extinction occurs. So, tt un-
der an angle close to zero yields the highest values and as θv grows towards 90◦, tt will reduce
to its minimum value, which can be less than half its value under θv = 0 (see Table 5.13).
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TABLE 5.12: Generated results acquired with the UM configuration.

λ 412 443 490 510 560 620 665

τaer 0.025305 0.024293 0.022740 0.022187 0.020941 0.019656 0.018819
tt 0.724915 0.782516 0.846640 0.866819 0.904414 0.933647 0.948156
ttp 0.724569 0.782239 0.846441 0.866647 0.904291 0.933563 0.948092

TABLE 5.13: The dependence of downward transmittance on θv , for values at 412 nm.

θv 0 10.2229 21.348 32.479 43.6114 54.7444 65.8776 77.011 85
tt 0.871934 0.870237 0.863174 0.850211 0.828651 0.792048 0.728573 0.604227 0.447029

So, in a similar way to the ρpathp , tt is analyzed under minimum and maximum τ550
a values.

There are two ways available to to analyze this; 1) simply choose the minimum and maximum
τa value as was done with ρpathp or 2) choose simulated tt (obtained through MYSTIC) values
that correspond with the minimum and maximum τa value. Both cases should yield the same
results, and they have been shown in Table 5.14 and Table 5.15.

TABLE 5.14: tt values obtained with the UM configurations - τa is set to its minimum and maximum value.

λ 412 443 490 510 560 620 665

τa 0 0 0 0 0 0 0
tt 0.732005 0.789649 0.853747 0.873802 0.911438 0.940159 0.954579
ttp 0.731655 0.789370 0.853547 0.873628 0.911314 0.940075 0.954514

τa 0.870104 0.860359 0.845263 0.839872 0.827839 0.816024 0.808833
tt 0.639535 0.691319 0.749569 0.769579 0.803843 0.830580 0.842721
ttp 0.639229 0.691074 0.749394 0.769426 0.803734 0.830506 0.842665

TABLE 5.15: tt values obtained with the UM configuration - τa is not modified but in stead tt values are
extracted from the LUT that correspond with the minimum and maximum τa values.

λ 412 443 490 510 560 620 665

τa 0.025305 0.024293 0.022740 0.022187 0.020941 0.019656 0.018819

tt (τa = 0) 0.732005 0.789649 0.853747 0.873802 0.911438 0.940159 0.954579
ttp (τa = 0) 0.731655 0.789370 0.853547 0.873628 0.911314 0.940075 0.954514

tt (τa =max) 0.639535 0.691319 0.749569 0.769579 0.803843 0.830580 0.842721
ttp (τa =max) 0.639229 0.691074 0.749394 0.769426 0.803734 0.830506 0.842665

The results from these two tables are indeed identical for the scenario when τa = 0 and
when τa =max. In addition, from the results where a minimum τa is selected, tt values are
higher than for the nominal case, which is exactly as expected (compared with values in Ta-
ble 5.12). Reversely, for maximum τa, tt values are lower than the nominal values. In conclu-
sion, it has been established that tt in the UM configuration generates results consistent with
the theory for high τa low tt values are obtained and vice versa. The dependence of tt on θv
has also been explained

Moving on with tt values acquired in the MM configuration (see Table 5.16), it can be re-
ported that the values are lower compared to those in Table 5.12.
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TABLE 5.16: tt values obtained with the MM configuration.

λ 412 443 490 510 560 620 665

τa - - - - - - -
tt 0.697620 0.765795 0.838351 0.860984 0.902870 0.934690 0.950439
ttp 0.697287 0.765524 0.838155 0.860813 0.902747 0.934606 0.950375

This indicates that the approximation of tt in the UM configuration yields in an under-
representation. It would be expected to have higher tt values in an aerosol-free atmosphere.
Let’s review why this is not the case for the MM configuration.

Interestingly, for the scenario where in the UM configuration tt values associated with
a minimum τa value (which is zero) are extracted, those tt values are equal to the Rayleigh
transmittance, tR. This means that tR acquired from the UM configuration can be compared
with tR acquired with the MM configuration. If this comparison is made, we find that the
under-representation of tR acquired from the MM configuration amounts to approximately
5% at short λ and a tenth of this at long λ. The reason for this is that in the UM configuration,
tR values account for both diffuse and direct transmittance, the MM configuration, where tR
is computed using Equation 5.7, only accounts for direct transmittance. Of course, neglecting
diffuse transmittance is the cause for this under-representation. Also, the reason why at long
λ the approximation is much better is because the approximation of single scattering is much
better at long λ, given that multiple scattering decreases with ∼ λ−4. It is also interesting
to note that the under-representation of tt in the MM configuration is almost as low as the
under-representation of tR.

What has been established is that the Rayleigh contribution to tt, quantified by Equation 5.7,
yields an under-representation of tR when it is acquired through MYSTIC simulations be-
cause it does not account for diffuse transmittance. Now that the entire data analysis has
been performed, it can be concluded that the MM configuration ‘armed‘ with the scaling fac-
tor approximation of ρR provides CMM values that sufficiently approximate CUM .

5.3 Sensitivity analysis

The sensitivity of the RCM on the input variables using the MC method, in the MM config-
uration, has been illustrated in Figure 5.2. The legend in the figure shows which variable or
variables are perturbed. Let us review the relative deviations from the case where no pertur-
bations are applied to the input values.

There are two categories, one where the input variables are individually observed and one
where they are observed in combination with another input variable. From Figure 5.2 it be-
comes clear that once input perturbations are introduced deviations occur between CMM and
C̄MM . Even more obvious is that these deviations can largely be attributed to Chl-a, individ-
ually or in combination with the other two parameters. Perturbations in O3 seem to almost
have no effect, except for a very slight increase at medium-long λ. The purple dashed line
reaches a maximum (though negative) deviation at 620 nm and then reduces again. Perturba-
tions in P result in a somewhat constant deviation with λ. The Chl-a perturbations are most
active at short wavelengths (λ < 510nm) and levels off at a slightly positive deviation. This is
not surprising as from Figure 5.1 we deduce that Chl-a is mostly active at short wavelengths.
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It can be concluded that at short λ, the RCM is most sensitive to changes in the Chl-a
input. It should be reiterated that the perturbation in Chl-a is approximately 39% while for
O3 and P it is only 3.3% and 0.5% respectively.

FIGURE 5.2: Relative deviation of the Rayleigh calibration coefficients when input perturbations are applied in
comparison with the ‘no-error‘ case. The legend indicates which variable(s) is perturbed in the MC configuration.
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5.4 Uncertainty analysis

Before moving on with the uncertainty propagation and analysis, it should be noted that the
input variable vw, which is used in the calculation of the ρR, ρpathp and tt, will not be a part of
the equations for the analytical uncertainty propagation. In the MM configuration no LUTs
are used and in combination with the previous assumptions, the dependency on vw drops out
and thus is no longer a part of the analysis.

In this section the MC method is first addressed in subsection 5.4.1 and then the analytical
uncertainty propagation section is discussed in subsection 5.4.2.

5.4.1 MC procedure output

The results of the MC propagation method can best be described through statistical charac-
teristics of the output values. The distribution of the output is described by the mean (C̄) and
the standard deviation (SC).

For each configuration, RCM is run once where perturbed input parameters are not taken
into account and this run yields CUM and CMM . The RCM is also run where input variables
are perturbed and these yield C̄UM and C̄MM . The results are displayed in Table 5.17. In
the uncertainty analysis CUM and CMM values are viewed as the true values which will be
compared with C̄UM and C̄MM , respectively. A deviation from this true value, then, can be
viewed as an error, which is denoted by βC .
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The approximation of the UM configuration by the MM configuration, is quantified by ∆C
and ∆C̄. What can be seen is that the relative difference betweenC and C̄ values is within 5%,
which we had previously defined as the benchmark for a sufficient approximation. Recall that
for the uncertainty corresponding with C̄ values, which is quantified by SC , the requirement
was to approximate it within 1%, which as can be seen in Table 5.17, has been accomplished.

TABLE 5.17: CUM and CMM coefficients generated by the RCM for the UM and MM configuration.

λ CUM C̄UM βCUM SCUM

412 1.067582 1.063937 -0.341% 0.023532
443 1.079962 1.077431 -0.234% 0.018436
490 1.082345 1.081841 -0.047% 0.005412
510 1.070526 1.070582 0.005% 0.002267
560 1.055458 1.055623 0.016% 0.003365
620 1.044814 1.044863 0.005% 0.002342
665 1.045898 1.045927 0.003% 0.001748

λ CMM C̄MM βCMM
SCMM

412 1.106995 1.104797 -0.199% 0.015432
443 1.117163 1.115317 -0.165% 0.014233
490 1.094717 1.094246 -0.043% 0.005325
510 1.074479 1.074525 0.004% 0.002838
560 1.058622 1.058788 0.016% 0.004033
620 1.055496 1.055525 0.003% 0.003440
665 1.065971 1.065968 0.000% 0.003243

λ ∆C ∆C̄ ∆βC ∆SC

412 3.692% 3.840% 0.143% 0.008100
443 3.445% 3.516% 0.069% 0.004203
490 1.143% 1.147% 0.004% 0.000086
510 0.369% 0.368% 0.001% 0.000570
560 0.300% 0.300% 0.000% 0.000667
620 1.022% 1.020% 0.002% 0.001098
665 1.919% 1.916% 0.003% 0.001495

5.4.2 Analytical uncertainty propagation

The analytical uncertainty propagation method is based on the Taylor-series (TS) expansion4

about the mean of the variable whose uncertainty is being propagated, i.e. C. Without de-
riving the equation, the formulation of the analytical uncertainty propagation has been given
in subsection 4.1.2. Using the same input as for the MC method, Equation 4.12 is evaluated
for each λ and the results are presented in Table 5.18. Recall that the uncertainty components
obtained from this analytical propagation are assumed to be an approximation to the SCMM

values in Table 5.17.
What can be seen from the data is that these uncertainty components are lower than SCMM

values. Using the MM configuration with the MC propagation method, an uncertainty of ap-
proximately 1.54% was found for the first sensor band. Using the analytical propagation, the
uncertainty that is computed is about 0.37 - 0.48%, depending on the expansion order. This

4See Appendix A for the equations of the TS expansion.
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TABLE 5.18: Analytical uncertainty components determined with the 1st-order up to 4th order Taylor series
expansion.

λ 412 443 490 510 560 620 665

uc1 0.37463 0.26388 0.06504 0.03135 0.02986 0.01561 0.01110
uc2 0.45954 0.31715 0.07218 0.03304 0.03163 0.01604 0.01138
uc3 0.48181 0.32995 0.07345 0.03335 0.03203 0.01625 0.01143
uc4 0.48808 0.33330 0.07373 0.03342 0.03209 0.01627 0.01143

difference is larger than 1% and thus an analysis is performed to identify the origin of this
difference.

The analytical propagation is initially based on the first-order of the TS expansion. Arras
(1998) states that the validity of Equation 4.10 and Equation 4.11 depends entirely on whether
or not the first-order TS is a good approximation of the evaluated function (i.e. the RCM
algorithm). In Figure 5.3 this approximation has been plotted.

FIGURE 5.3: ρTOAsim and the error ε between ρTOAsim and the first-order Taylor-series approximation.
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What can be noticed is that the error, which is the difference between ρTOAsim and the first-
order Taylor-series approximation, is very large, almost as large as the value of ρTOAsim itself!
This fact clearly refutes the use of the TS method as an approximation to the MC method.

According to Arras (1998), if the function is ”not too far from linear within the region that
is within 1 (or 2) standard deviation of the mean”, the TS method obtains reasonable approxi-
mations. Throughout this analysis it was noticed that CMC

MM values behave, through visual in-
spection, quite linearly with the input variables. For example, in Figure 5.4CMM as a function
of Chl-a perturbations (for 100 iterations) is plotted for different λ, and it can be seen that the
lines approximate straight lines. This would mean that the condition is fulfilled where Equa-
tion 4.10 and Equation 4.11 are valid. Input perturbations result in an output distribution
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FIGURE 5.4: CMM values for different values of λ, as a function for Chl-a input variations, for 100 MC
iterations.
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that displays a linear dependence on the input in the neighborhood close to C at a particular
λ. It should be reiterated that the MM configuration is not linear as clearly shown through
Equation A.1, but close to the values of C it displays a linear dependence on input variables.
Despite the linearity close to C induced by input perturbations, the TS approximation of C is
very poor and the applicability of the TS method is questionable.

Remembering that the input has a uniform distribution, let us assess how the output
distribution can be classified. Using Equation 4.8 a test has been performed and the result
suggests that the output has indeed a normal distribution. It is also possible to attempt to vi-
sually classify the output distribution through its cumulative distribution function (CDF). In
Figure 5.5 the CDF of C412

MM has been plotted, along side a CDF corresponding with a normal
distribution and also a CDF of C412

MM if it would be perfectly uniformly distributed5. It can be
noted that the blue line neither coincides entirely with the Normal CDF or the uniform one.

What if at this point it is simply assumed to view the output as if it is linearly distributed,
which would correspond with the assumption of viewing the MM configuration as if it is a
linear algorithm. Then, the uncertainty propagation can be significantly simplified. In order
to propagate uncertainties through a linear function, the following steps are performed;

y1 = f (x + ∆x) (5.9)
y2 = f (x−∆x) (5.10)

where the uncertainty in y is then quantified as

∆y = |y1 − y2| (5.11)

5Here the minimum number of the set of CMM values is taken, and the difference with the maximum is added
cumulatively and linearly with each step, to represent an actual linear function.
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FIGURE 5.5: The CDF of C412
MM compared with a CDF associated with a uniform and normally distributed data

set.
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Note that ∆x is the uncertainty associated with the input variables x (see Equation 4.14). Prac-
tically, the evaluation of y1 and y2 means that the RCM must be run twice and the difference
between the two runs constitutes the propagated uncertainty in y due to uncertainties in x.
The result of this run has been shown in Table 5.19.

TABLE 5.19: Propagation of total uncertainty when the MM configuration of the RCM is viewed as if it is
linear and the output distribution is uniform.

λ C C̄ (x−∆x) C̄ (x + ∆x) ∆C̄ SC σC

412 1.10698 1.08017 1.12257 0.0424 0.01224 1.106% 0.01543 1.394%
443 1.11714 1.09343 1.1317 0.03827 0.01105 0.989% 0.01423 1.274%
490 1.09468 1.09031 1.09716 0.00685 0.00198 0.181% 0.00533 0.486%
510 1.07442 1.08031 1.06915 -0.01116 0.00322 0.300% 0.00284 0.264%
590 1.05849 1.06677 1.05127 -0.0155 0.00447 0.423% 0.00403 0.381%
620 1.05536 1.06084 1.05031 -0.01053 0.00304 0.288% 0.00344 0.326%
665 1.06589 1.07234 1.05982 -0.01252 0.00361 0.339% 0.00324 0.304%

SC is the standard deviation of the uniform output distribution and is evaluated with
Equation 4.4. Here Cmin corresponds with (x−∆x) and Cmax corresponds with (x + ∆x).
Now, when comparing SC and σC , the results are more than sufficiently accurate. Note that
here all input parameters are perturbed. It is also possible to assess the effect of perturbing
input variables individually and to combine their respective uncertainties to yield the total
uncertainty value. The combined total uncertainty is given in Table 5.21. From these results
it can be seen that by propagating the uncertainties individually, the combined uncertainty
approximates σC even more accurately, but it comes with a price of 7 iterations rather than 3.
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TABLE 5.20: Propagation of individual uncertainty values when the MM configuration of the RCM is viewed
as if it is linear and the output distribution is uniform.

λ C̄ (x−∆x) C̄ (x + ∆x) ∆C̄ SC σC

Chl-a

412 1.12703 1.07616 -0.05087 0.01468 1.327% 0.01479 1.336%
443 1.13604 1.08946 -0.04658 0.01345 1.204% 0.01358 1.216%
490 1.10103 1.08653 -0.0145 0.00419 0.382% 0.00426 0.389%
510 1.07281 1.07659 0.00378 0.00109 0.102% 0.00111 0.103%
590 1.05377 1.06417 0.0104 0.00300 0.284% 0.00306 0.289%
620 1.05303 1.05804 0.00501 0.00145 0.137% 0.00147 0.140%
665 1.06386 1.06823 0.00437 0.00126 0.118% 0.00129 0.121%

O3

412 1.10698 1.10698 0 0.00000 0.000% 0.00000 0.000%
443 1.1172 1.11708 -0.00012 0.00003 0.003% 0.00003 0.003%
490 1.09509 1.09427 -0.00082 0.00024 0.022% 0.00024 0.022%
510 1.07528 1.07356 -0.00172 0.00050 0.046% 0.00049 0.046%
590 1.06068 1.0563 -0.00438 0.00126 0.119% 0.00126 0.119%
620 1.05767 1.05305 -0.00462 0.00133 0.126% 0.00133 0.126%
665 1.06698 1.0648 -0.00218 0.00063 0.059% 0.00063 0.059%

P

412 1.10271 1.11128 0.00857 0.00247 0.223% 0.00260 0.235%
443 1.1129 1.12141 0.00851 0.00246 0.220% 0.00258 0.231%
490 1.09045 1.09894 0.00849 0.00245 0.224% 0.00258 0.236%
510 1.06989 1.07898 0.00909 0.00262 0.244% 0.00276 0.257%
590 1.05378 1.06324 0.00946 0.00273 0.258% 0.00287 0.272%
620 1.05031 1.06045 0.01014 0.00293 0.277% 0.00308 0.292%
665 1.06076 1.07108 0.01032 0.00298 0.279% 0.00314 0.294%

TABLE 5.21: Combined total uncertainty value from the individual uncertainty values obtained in Table 5.20.

λ SCT σCT

412 0.01489 1.345% 0.01502 1.357%
443 0.01367 1.224% 0.01383 1.238%
490 0.00486 0.444% 0.00498 0.455%
510 0.00288 0.269% 0.00302 0.281%
590 0.00425 0.402% 0.00438 0.414%
620 0.00353 0.334% 0.00366 0.347%
665 0.00330 0.309% 0.00345 0.324%
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5.4.3 Conclusion

So far, two aspects have been reviewed of the MM configuration; 1) the approximation of
CMM values within 5% of CUM values and 2) the approximation of SCMM

within 1% of σCUM .
It has been established that the MM configuration is able to obtain desirable output values if
the Rayleigh scattering is estimated from the NIR band at 865 nm, and then a scaling factor is
used to propagate this value to shorter λ.

With respect to uncertainty propagation, it was initially established that the MM configu-
rations exhibits nonlinearities but on the other hand, by assuming the algorithm as linear, the
propagated uncertainties yield satisfying results.

Due to nonlinearities the possible advantage of adding higher-order terms has been ad-
dressed in Table 5.18. However, the relative gain as more higher-order terms are added be-
comes less with each added term. By noting that SCUM in Table 5.17 has a maximum un-
certainty of 2.2%6, it becomes clear that much more terms must be added before a desirable
accuracy is obtained and this is very impractical. Additionally, it was shown that the TS ap-
proximation exhibits large deviations, which refutes the use of the TS method. On the other
hand, it was also shown that the input perturbations result in a distribution of CMM that is
somewhat linear in the neighborhood close to C. However, the reason for this lies in noticing
that ∆C̄ in Table 5.19 has a maximum deviation of 3.8% whereas the deviation by the TS ap-
proximation varies between 71.8− 95.6% (see Figure 5.3). This means that the approximation
of C is much more accurate by treating the RCM as linear and then propagate uncertainties
than by using Equation 5.11. Therefore, regardless of the fact that within 1 or 2 σ the output of
the RCM is nearly linear, the TS method is rejected on the basis that it does not approximate
the RCM output sufficiently7.

6Note that the percentage is obtained by dividing SCUM by C̄UM .
7Another aspect of using the TS expansion is that the variability of the data influences the validity of using

the Taylor-series approximation. This means that the perturbed input values that were assumed may introduce
a variability that is larger than the region within which the analytical uncertainty propagation method can pro-
duce accurate results, due to nonlinearities. Physically, this implies that the uncertainty associated with the input
variables must be reduced before the analytical uncertainty components sufficiently approximate the MC compo-
nents.
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Conclusion

In this thesis the main objective was to shed light on the uncertainties that influence the accu-
racy with which the calibration coefficient (C) is simulated using DIMITRI’s Rayleigh calibra-
tion methodology (RCM), and, to attempt to classify the individual uncertainty components
that collectively form the total uncertainty.

A data and sensitivity analysis has been performed to assess how C depends on variations
in the input. Before beginning with the uncertainty propagation analysis, it was argued to
simplify the reflectance model to avoid complex equations required for the analytical prop-
agation (TS) model. This would have benefits compared to the Monte Carlo (MC) method
because the TS method requires 1 iteration. The MC model has still been used to validate
the TS model and it proved that the uncertainty components evaluated with the TS model,
could not approximate uncertainty components obtained with the MC model within the 1%
benchmark, even when the fourth order TS was implemented. Increasing the order further
is possible with programmes such as Maple, but given the lower yield with each added term
makes me question the practicality and effectiveness of adding a large number of such terms.
The reason for rejecting the TS method is because the TS approximation of ρTOAsim is very poor
with deviations larger than 70%. The level of approximation is a condition for the validity of
using the TS method and this is not met for the RCM algorithm.

An alternative approach has been reviewed where use is made of the nearly linear rela-
tionship between C and the input variables, especially for λ > 443nm. It was established
that if the output distribution is approximately uniform SMM

C approximates SUMC to within
sufficient levels. Recall that the output distribution also passed the χ2 test, indicating that
the output distribution can also be viewed as Gaussian. I have not been successful to give
an explanation for the fact that it seems to have both a Gaussian and uniform distribution at
the same time. Nonetheless, satisfying results in the uncertainty propagation are obtained by
viewing the RCM as linear.

The second objective was to attempt a classification of the individual uncertainty compo-
nents that contribute to the total uncertainty into random and systematic uncertainties. To
this end, an attempt has been made in this thesis to fully map all assumptions and simpli-
fications related to the measurement and modelling of the input variables and, also of the
RCM (see flowchart on page 45). It has been argued that both types of uncertainties can be
attributed to O3, P , Chl-a and C. Throughout this thesis it became clear that a classification
is not only complicated but also somewhat ambiguous, as confirmed by BIPM et al. (2008).
Furthermore, it was argued to merely classify the uncertainty evaluation method to avoid
ambiguity. Therefore, this thesis focused on clearly explaining the modelling and measur-
ing procedures required to evaluate the input variables and also, the calibration coefficient.
However, given the breadth of the RCM, this research was only able to outline the measure-
ment and modelling procedure and was not able to assess uncertainty values related to those
procedures, or to quantify or assign uncertainties to these processes.
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Future works

For this thesis it was desired to classify the individual uncertainty components that contribute
to the total uncertainty into random and systematic uncertainties. Because systematic uncer-
tainties cannot be identified through any iterative procedure, a lot of attention was given
to describing the entire measurement/modelling process of all input variables and to com-
pletely explain how the reflectance model in the RCM is designed. This explains the in-depth
‘literature study‘ that is performed in chapter 2.

In my opinion the error associated with the Globcolour climatology monthly Chl-a maps,
εChl should be decomposed and its origin established. In this way it may be possible to clas-
sify this variable to some degree. More importantly, up to this point, the relative uncertainty
and the standard deviation associated with the monthly climatology data, have been added
to yield the total uncertainty. In addition, more information is required regarding the predic-
tion model that ECMWF uses where the uncertainties associated with O3 and P are obtained
from. Similarly, by having an understanding of this prediction model and all that it entails, it
may be possible to classify the uncertainties associated with these input variables.

It may be possible to analyze the effects of ‘systematic‘ uncertainties on the RCM, even in
the absence of identified sources. Up until this point, the input variables have been modified
randomly but I propose to augment the procedure to include a constant deviation, to mimic
a scenario where a constant systematic uncertainty is present. Even though the actual value
assigned to this systematic uncertainty may be inaccurate but by performing this analysis
it becomes possible to see how RCM behaves under such input perturbations. The results of
this analysis can be compared with those obtained in this thesis and a distinction may indicate
the sensitivity of RCM due to the presence of such a systematic uncertainty. This procedure
could be performed for each input variable individually, allowing to obtain (partially) dis-
tinctive values for the propagated random and systematic uncertainty components. It should
be underlined that it is not a priori clear whether a systematic uncertainty is constant. Only if
it is concluded that for some portion of the algorithm it can be viewed constant, the proposed
analysis could be meaningful.

To finalize, I believe the focus of a subsequential uncertainty analysis should not really be
on how to classify uncertainties as random or systematic. The objective of such a classifica-
tion is to obtain more information regarding the type of the uncertainty and to understand
how sensitive it is with respect to changes in the input or the RCM algorithm. The objective
can still be obtained by explaining as much as possible regarding the origin (performed in this
thesis), magnitude and sensitivity of the uncertainty. Then, the uncertainties that have been
defined for each step can be combined to yield a total uncertainty as an alternative to the 4%
that Hagolle et al. (1999) have defined.
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Equations for uncertainty propagation

When Equation 5.1 is substituted with all relevant expression, the total equation for ρTOAsim can be expressed as follows:

ρTOA = e−τO3
M O3/O3ref

f R
(

0.5 bw +

(
0.002 + 0.01 (0.50− 0.25 log10Chl-a)

(
λ

550

)0.5(log10Chl-a−0.3)
)

0.416 Chl-a0.766
)
tRe
−0.5τRM (P−Ps)/Ps

U (aw + 0.5bw + χChlechi)
+ ρ865R

(
λ865

λ

)4(
1 +

P − Ps
Ps

)
(A.1)

Here below the equations for analytical uncertainty propagation are given. Equation A.2 up to Equation A.5 are the Taylor series
expansion terms from the first up to the fourth order that have been used for the values that can be found in Table 5.18. The symbol D
notifies the derivative of the function and the number that is associated with it, e.g. D1223, means that the first input variable must be
derived once, the second input variable must be derived twice and the last input variable must be derived once. Using this method, all these
D derivatives have been computed in Maple1.

T1 = f (0, 0, 0) +D1 (f) (0, 0, 0)x+D2 (f) (0, 0, 0) y +D3 (f) (0, 0, 0) z (A.2)

T2 =1/2 (D1,1) (f) (0, 0, 0)x2 + (D1,2) (f) (0, 0, 0)xy + (D1,3) (f) (0, 0, 0)xz+

1/2 (D2,2) (f) (0, 0, 0) y2 + (D2,3) (f) (0, 0, 0) yz + 1/2 (D3,3) (f) (0, 0, 0) z2
(A.3)

1Because the derivatives are very large expressions, I thought it best to simply give the equation with which they will be evaluated. There is no particular knowledge
required with the evaluation of these derivatives since after giving the function to maple you are able to simply indicate which derivative you want it to compute. This
will save valuable number of pages.



T3 =1/6 (D1,1,1) (f) (0, 0, 0)x3 + 1/2 (D1,1,2) (f) (0, 0, 0)x2y + 1/2 (D1,1,3) (f) (0, 0, 0)x2z + 1/2 (D1,2,2) (f) (0, 0, 0)xy2 + (D1,2,3) (f) (0, 0, 0)xyz+

1/2 (D1,3,3) (f) (0, 0, 0)xz2 + 1/6 (D2,2,2) (f) (0, 0, 0) y3 + 1/2 (D2,2,3) (f) (0, 0, 0) y2z + 1/2 (D2,3,3) (f) (0, 0, 0) yz2 + 1/6 (D3,3,3) (f) (0, 0, 0) z3

(A.4)

T4 =1/24 (D1,1,1,1) (f) (0, 0, 0)x4 + 1/6 (D1,1,1,2) (f) (0, 0, 0)x3y + 1/6 (D1,1,1,3) (f) (0, 0, 0)x3z + 1/4 (D1,1,2,2) (f) (0, 0, 0)x2y2+

1/2 (D1,1,2,3) (f) (0, 0, 0)x2yz + 1/4 (D1,1,3,3) (f) (0, 0, 0)x2z2 + 1/6 (D1,2,2,2) (f) (0, 0, 0)xy3 + 1/2 (D1,2,2,3) (f) (0, 0, 0)xy2z+

1/2 (D1,2,3,3) (f) (0, 0, 0)xyz2 + 1/6 (D1,3,3,3) (f) (0, 0, 0)xz3 + 1/24 (D2,2,2,2) (f) (0, 0, 0) y4 + 1/6 (D2,2,2,3) (f) (0, 0, 0) y3z+

1/4 (D2,2,3,3) (f) (0, 0, 0) y2z2 + 1/6 (D2,3,3,3) (f) (0, 0, 0) yz3 + 1/24 (D3,3,3,3) (f) (0, 0, 0) z4

(A.5)
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BRDF

(Wynn, 2000; Slater, 1985) Light that is incident on the space-borne instrument has been re-
flected by the atmosphere or off the Earth’s surface. When light is reflected by the surface,
it may be reflected in various directions, with different intensities, depending on the surface
characteristics and the wavelength of the light. There are two important parameters that
describe the orientation of reflected light; the zenith and the azimuth angle (θ, φ), both for
incoming and outgoing waves. In addition, light is reflected differently depending on its
location on Earth’s surface, given that Earth’s surface is not constant and changes with geo-
graphic position (x, y).

The ratio of reflected radiance, Lr, with a particular orientation to incident radiance, Li, with
a particular orientation, given a particular geographic position and for a particular wave-
length, is defined as the Bidirectional Reflectance Distribution Function (BRDF):

BRDF (λ, θi, φi, θr, φr, x, y) =
Lr
Li

[
sr−1

]
(B.1)

The quantification of the incident light can be realized by the following. Consider light travel-
ing from the Sun and passing through the hemisphere to the Earth’s surface. The hemisphere
can be divided into small surface areas through which light propagates and that area is re-
ferred to as the differential solid angle (dwi), which is a function of (θi, φi). Assuming that the
differential angle is small, it can be approximated by a flat line, thus the amount of light pass-
ing through it is proportional to L0 · dwi, where L0 is the radiance of the Sun emitted on the
hemisphere. The light passing through the hemisphere is ’projected’ on Earth’s surface, and
that projection can be acquired as follows;

Li = L0 · dwi · cos(θi) (B.2)

The reason why BRDF is so useful is because it can be used to predict the radiance or re-
flectance that is expected to be reflected by a particular surface. The incorporation of BRDF
functions in atmospheric models, then, can provide estimates on LTOA. Naturally, an im-
portant factor in the accuracy of the predicted LTOA is the accuracy with which the BRDF is
determined. There are two ways to derive the BRDF for a given surface area;

• Mathematical approximation of BRDF; using analytical/numerical models which try to
fit the actual measured reflected radiances of a surface for a given incident radiance
(which are the input to the analytical model).

• Direct measurement of the BRDF; through the use of a goniometer (or gonioreflectome-
ter) the BRDF of a surface can be calculated. This instrument measures where the re-
flected signal originates from.

There are two important conditions implicated while using BRDF;
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• There exists conservation of energy; reflected radiances can never exceed incidence radi-
ance, i.e.; Lr =

∑
BRDFLi cos (θi) ≤ 1 (Note that the reflected radiance can be written in

terms of the incident radiance and the BRDF. In addition, in stead of a continuous space,
a discrete space is assumed, hence the summation in stead of the integration sign.).

• The property of reciprocity holds; meaning that if the direction of incident and reflected
light is swapped, the BRDF remains the same, i.e.; BRDF (i, r) = BRDF (r, i).

BRDFs can be classified into those with isotropic or anisotropic surfaces. These classes deal with
the rotational reflectance variability of the incident/reflected radiance relative to the surface
normal vector. This concludes the theoretical foundation of BRDF1.

1Maignan, Breon, and Lacaze, 2004 make an interesting comparison of the properties for BRDF in the VIS and
NIR domain. Even though the signal to noise ratio is higher in the NIR, the RMSE in the VIS is lower, resulting
in better BRDF models. It is interesting to see that sand has a higher BRDF than grass (dry more so than green)
and that in the NIR the BRDF is higher than for in the VIS. Increasing the reflected zenith angle slightly increases
the BRDF function value and increasing the azimuth angle reduces the BRDF value. There are two types of
models; Numerical and analytical. The former uses ray tracing and Monte Carlo simulations to approximate
surface characteristics/geometry. The latter model can be built in two ways; theoretical and empirical models.
Theoretical models use physics to approximate the BRDF phenomenon, through the use of geometrical optics
for geometrical models or radiative transfer theory for RT models or a combination of both, a hybrid model.
Empirical models develop the BRDF on a vectorial base and semi empirical models combine a theoretical model
with empiric parameters.
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Processing levels input data

The radiometric data that DIMITRI operates with is the L1B data. The processing of data
occurs in sequential steps starting with the L0 processing and goes up to L2. A short descrip-
tion of what these steps entail is included here below (Sentinel-3 User Handbook)1. It should be
noted that here the processing levels and algorithms of the OLCI instrument are specifically
mentioned but they are fundamentally the same type of processing required for the SLSTR
instrument.

Level-0

The L0 data processing algorithm generates L0 products in two steps by first converting the
raw data, acquired from the instrument source packet (ISP), from instrument engineering
units to international system of units (SI) and secondly correcting the acquisition date and the
time according to the satellite’s position and its corresponding measurement location2.

The algorithm receives the ISP and extracts therefrom the necessary raw data and per-
forms quality checks (e.g.; information regarding nominal processing, satellite maneuvering,
contingency processing and degraded processing), sorts them according to time and adds an-
notations (e.g.; leap second management). Communication headers that are included in the
ISP are removed, as well as duplicated and invalid data3.

An example of a L0 product output for OLCI, in its Earth Observation (EO) mode, is
a package that accumulates data every 44ms for all 21 spectral bands. This information is
provided in two types of processing times (Near Real-Time and Non Time Critical) with an
accompanying spatial resolution of 300m (Full Resolution (FR) mode) at the Sub Satellite
Point4.

Level-1

The L1 data processing algorithm generates L1B products in three steps, starting with EO pro-
cessing by conducting;

• data extraction and quality checks of the ISP products (e.g.; transmission, format or
sequence errors)5;

1https://sentinel.esa.int/documents/247904/685236/Sentinel-3_User_Handbook
2https://earth.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/

processing
3https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/

processing
4https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/

earth-observation-mode
5https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/

data-extraction-and-quality-checks

https://sentinel.esa.int/documents/247904/685236/Sentinel-3_User_Handbook
https://earth.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/processing
https://earth.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/processing
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/processing
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/processing
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/earth-observation-mode
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-0/earth-observation-mode
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/data-extraction-and-quality-checks
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/data-extraction-and-quality-checks
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• radiometric scaling6 which includes initialization, correction (non-linearity, dark signal
and smear), absolute gain calibration and cosmetic pixel filing;

• stray light correction7;

• geo-referencing8 by assigning geo-coordinates for every pixel, with the Earth modeled
by the World Geodetic System 1984 (WGS84) Reference Ellipsoid9 completed by a Digi-
tal Elevation Model10, using ocean bathymetry and land topography;

• pixel classification,11 enabling characterization of types of terrain and includes further
information regarding possible contamination by clouds and sunglint;

• spatial re-sampling,12 whereby the FR and Reduced Resolution (RR) grids are ‘filled‘
with the radiometric data; and finally

• product formatting where the final products (i.e.; acquisitions) of the sensor are pro-
duced.

The next step, the so-called radiometric calibration processing, aims to generate a set of calibra-
tion LUTs using the same input as the EO processing by following these steps;

• acquiring the geometry;

• determining the radiance at the entrance of the instrument using the acquired geometry,
sun flux and diffuser bidirectional reflectance;

• computing the stray light; and

• computing the radiometric data and storing these in a LUT.

The third step determines the central wavelengths of specific rows of the detector arrays,
which is a contribution to the accuracy and reliability of the instrument spectral model used
in the EO and radiometric calibration13. All the aforementioned steps describe the data pro-
cessing with which top-of-atmosphere radiances are acquired14.

6https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/
radiometric-scaling

7https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/
stray-light-correction

8https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/
georeferencing

9This is an Earth-centered, Earth-fixed terrestrial reference system used for the Global Positioning System
(GPS). It describes the Earth’s size, shape, gravity and geomagnatic fields. http://www.unoosa.org/pdf/
icg/2012/template/WGS_84.pdf.

10This is a model of terrain elevation and the WGS84 is referenced to it, in this case.
11https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/

pixel-classification-functions
12https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/

spatial-re-sampling
13https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/

radiometric-calibration-mode
14https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/

fr-or-rr-toa-radiances

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/radiometric-scaling
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/radiometric-scaling
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/stray-light-correction
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/stray-light-correction
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/georeferencing
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/georeferencing
http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf
http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/pixel-classification-functions
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/pixel-classification-functions
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/spatial-re-sampling
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/spatial-re-sampling
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/radiometric-calibration-mode
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/radiometric-calibration-mode
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/fr-or-rr-toa-radiances
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/fr-or-rr-toa-radiances
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Level-2

The L2 data processing algorithm generates L2 land and ocean products in six steps that are
applicable to both the land and ocean products. These are;

• conversion from L to ρ;

• pixel classification based on four criteria; cloud, land, water and invalid pixels;

• correction for gaseous absorption due to O2, H2O and O3;

• estimation of ρg;

• smile correction of ρTOAobs due to small scale variations in non-constant central wave-
length of a band across the field of view15; and

• retrieval of atmospheric water vapor from cloud free pixels (i.e.; clear sky pixels).

Tie-point grid

It is worth mentioning that the product grid of the instruments is defined by the spatial res-
olution of the instrument. This grid coincides with the reference ellipsoid of the Earth and
is evenly spaced in the across and quasi evenly in the along track direction of the satellite.
There are two modes in which data can be collected, a FR mode and a RR mode. On top of
this product grid containing radiometric data, lies another grid that is more sparse that con-
tains auxiliary data such as meteorological data, a so-called tie-point grid. In the FR mode,
auxiliary data must be interpolated to provide the required information for the RCM in DIM-
ITRI. In the RR mode the product grid and tie-point grid coincide and there is no interpolation
required.

For the OLCI instrument, the FR grid is defined by 16 pixels (corresponding with 300m)
in the across-track direction and the RR grid is 4 times sparser, i.e.; 64 pixels (corresponding
with 1200m) across (Sentinel-3 User Handbook).

15https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/
processing-levels/level-2

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/processing-levels/level-2
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/processing-levels/level-2
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