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Abstract

Typically, people search images by text: users enter keywords and a search engine
returns relevant results. However, this pattern has limitations. An obvious drawback is
that when searching in one language, users may miss results labelled in other languages.
Moreover, sometimes people know little about the object in the image and thus would
not know what keywords could be used to search for more information. Driven by this
use case with many applications, content-based image retrieval (CBIR) has recently
been put under the spotlight, which aims to retrieve similar images in the database
solely by the content of the query image without relying on textual information.

To achieve this objective, an essential part is that the search engine should be able
to interpret images at a higher level instead of treating them simply as arrays of pixel
values. In practice, this is done by extracting distinguishable features. Many effective
algorithms have been proposed, from traditional handcrafted features to more recent
deep learning methods. Good features may lead to good retrieval performance, but the
problem is still not fully solved. To make the engine useful in real-world applications,
retrieval efficiency is also an important factor to consider while has not received as
much attention as feature extraction.

In this work, we focus on retrieval efficiency and provide a solution for real-time
CBIR in million-scale databases. The feature vectors of database images are extracted
and stored offline. During the online procedure, such feature vectors of query images
are also extracted and then compared with database vectors, finding the nearest neigh-
bours and returning the corresponding images as results. Since feature extraction only
performs once for each query, the main limiting factor of retrieval efficiency in large-
scale database is the time of finding nearest neighbours. Exact search has been shown
to be far from adequate, and thus approximate nearest neighbour (ANN) search meth-
ods have been proposed, which mainly fall into two categories: compression-based and
tree/graph-based. However, these two types of approaches are usually not discussed
and compared together. Also, the possibility of combining them has not been fully
studied. Our study (1) applies and compares methods in both categories, (2) reveals
the gap between toy examples and real applications, and (3) explores how to get the
best of both worlds. Moreover, a prototype of our image search engine with GUI is
available on https://github.com/YYao-42/ImgSearch.
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CBIR Content-Based Image Retrieval
CNN Convolutional Neural Network
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Introduction 1
Generally speaking, this project is about building a real-time image search engine that
is purely content-based, searches with an image as a query, and returns similar images
in the database. Despite there being various potential applications, we specifically care
about the use case in historical research. In fact, it is open-source and will hopefully
contribute to an ongoing research project Engineering Historical Memory (EHM) con-
ducted by Dr. Andrea Nanetti, which aims to aggregate and deliver historical knowl-
edge using emerging digital techniques such as artificial intelligence [63]. It is also worth
noting that the proposed system is not limited to a specific application, but is suitable
for all scenarios where people need to source or identify pictures and get more insights.
For example, it can also be useful in medical diagnosis, security applications, remote
sensing, etc.

More specifically, we break down the system into three main components: feature
extraction, nearest neighbour search, and reranking. The motivation for such decompo-
sition and the functions of each module are discussed in Section 1.1. The development
and improvement of each module are done by three students respectively, and my part
is nearest neighbour search. The importance of this module is discussed in Section
1.2, where the nearest neighbour search problem in the context of image retrieval is
properly defined as well. Moreover, the structure of the rest of this thesis is explained
in Section 1.3.

1.1 Pipeline

As mentioned before, in brief, the objective is to find similar images based on the content
of the query image. But to what extent can two images be regarded as ‘similar’? In
this project, following the convention of the CBIR research, images taken from different
angles, under different weather or light conditions are considered ‘similar’, as long as
the main part of the images depicts the same figure or object [54, 86, 20]. Therefore,
to retrieve similar images, the engine should be able to capture high-level information
from low-level pixel values, which is usually done by feature extraction. Naturally,
feature extraction is the first module in the pipeline, and the choice of specific methods
will significantly affect the follow-up procedures.

1.1.1 Features: Vectors or Matrices?

Traditional feature extraction methods like SIFT [55], GIST [66] and SURF [5] mainly
rely on hand-crafted features and have been proved to be insufficient for complex CBIR
problems. Recently the spotlight is on deep learning methods, which can be roughly
categorized into two classes: local feature extraction and global feature extraction.
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Local Feature Extraction Local features are higher-level representations of spe-
cific regions and thus preserve spatial information. They can be effectively extracted,
for example, by a convolutional neural network (CNN) [100]. However, a substantial
part of those local features is unimportant and tends to introduce clutters and occlu-
sions, so in practice, local feature extraction is usually followed by or performed together
with keypoint selection, e.g., DELF [64], Superpoint [16], D2-Net [21], and R2D2 [72].
A (sparse) feature matrix will be generated, where the locations of non-zero entries
indicate the locations of keypoints such as corners and blobs, and the values describe
the information of image patches around the keypoints.

Global Feature Extraction Global features are more abstract and compact
representations, but the spatial information is lost. Most common implementations are
also CNN-based, adding fully connected layers after the last convolutional layer and
regarding the outputs as global features [3], or aggregating local features extracted by
CNN using aggregation methods like BoW [70], R-MAC [84], CroW [41], and GeM
pooling [71]. Apart from CNN-based methods, methods using autoencoder [75], at-
tention network [81] and generative adversarial [78] have also been explored. Different
from local feature extraction, the output now is a feature vector.

Generally speaking, local features preserve more information and allow us to do
more delicate matching, with which we tend to get better performance on matching
tasks. However, image retrieval is very different from template matching: apart from
being accurate, it also imposes limitations on the matching time. Normally users would
expect that each query will take just a blink, which is almost unachievable for large-
scale datasets if we use local feature extraction. The matching is pairwise, performing
between two (usually large) matrices. Even if we manage to compress the matching
time of each pair, it is still a huge cost in, e.g., a million-scale dataset.

Global feature extraction, on the other hand, generates feature vectors. Different
from matching two matrices, the similarity measurement of vectors, e.g. Euclidean
distance, is much more intuitive and easier to calculate. Moreover, many efficient
methods have been proposed to accelerate the procedure of finding the closest vectors
in the database by data compression and non-exhaustive search.

Therefore, in consideration of the matching efficiency, we choose to extract feature
vectors instead of feature matrices.

1.1.2 What’s Next?

Since the features are extracted as vectors, we can forget about complex algorithms
like random sample consensus [24] suitable for keypoint matching and just consider the
rest as a nearest neighbour search problem. The idea is to find the nearest vectors of
the query’s feature vector in the database and retrieve their corresponding images. The
following steps will be shown in Section 1.2.

By now the goal of the image search engine can already be fulfilled. However,
instead of returning the results to users directly, we can consider the whole process so
far as an initial screening. Recall that in Section 1.1.1 the main constraint of using
local features is the matching time in large-scale datasets. Imagine that if we confine
the scope of the matching to be, e.g., 100 screened images, the matching time might be
acceptable. We can then exploit the advantage of local features to perform more delicate
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and hopefully, more accurate matching with a reasonable time overhead. Therefore, a
reranking module is appended after the nearest neighbour search.

1.1.3 The Whole Picture

Based on the discussion above, we propose the pipeline illustrated in Fig. 1.1. The
pipeline is used in two stages:

• Offline (development): In this stage the global features of database images are
extracted by a feature extractor and stored for subsequent queries. Depending on
the nearest neighbour search methods, the features may be encoded as compact
codes, or/and organized as a tree/graph (will be discussed in detail in Section 3).
The codes, codebook, tree and graph will also be stored if needed. If reranking is
required, local features will also be extracted and saved.

• Online (deployment): This stage starts after users input query images. The
global (and local) features for screening (and reranking) are also extracted, and
then compared with the features of database images stored beforehand.

Figure 1.1: Proposed pipeline. First, features are extracted from the query image. Similarly,
such features are also extracted from all images in the database. These features are extracted
only once, and are then stored for processing the image-based queries. The extracted fea-
tures of all database images and query image are then forwarded to an approximate nearest-
neighbour search module to produce the initial ranking results, which are next refined by a
re-ranking module, generating the final results.

The system is highly modular and therefore highly flexible, allowing for easier adap-
tation to requirements, striking a balance between speed and accuracy. Moreover, each
module does not impose additional restrictions on other modules. They can be tested,
improved independently and integrated into the system effortlessly.

1.2 Nearest Neighbour Search: From Exact to Approximate

The focus of this thesis is on the nearest neighbour search module, which basically
determines how long each query will take in a large-scale database since the feature
extraction is only performed once independently of the size of the database. Therefore,
the design of this module is crucial to real-time retrieval.

3



To make the discussion clearer, let us introduce some notations. Denote the query
vector, i.e., the feature vector of the query image as q ∈ RD. Similarly, features of
the images in the database can be represented by database vectors X = {xn}Nn=1,xn ∈
RD. The mathematical formulation for finding the relevant image is then finding the
database vector that has the ‘closest’ distance to the query vector, where the closeness
can be defined by any distance measure and a typical choice is ℓ2 norm (Euclidean
distance):

n∗ = argmin
n∈{1,··· ,N}

∥q− xn∥22, (1.1)

which can be generalized to K-nearest neighbour search problem easily.
A trivial way to solve this problem is brute-force linear scan, i.e., calculating the

distance between every database vector and the query vector to find the nearest one. For
each pair, it takes D calculations and there are N pairs. Therefore, the computational
complexity is O(ND), which might be unacceptable for real-time search when N is
very large. More efficient algorithms for exact nearest neighbour search have been
discovered in, e.g., [73, 51]. Unfortunately, they can only be efficient when the points
lie in a space of constant dimension and become less and less efficient as the dimension
increases [32]. In short, exact search suffers from the curse of dimensionality and does
not scale well.

Therefore, researchers tend to apply approximate nearest neighbour (ANN)
search, which does not aim to retrieve exact nearest neighbours, but approximate ones,
in trade of lower time or space cost. From the search complexity of linear scan, intu-
itively, we can quickly come up with ideas to reduce the computational cost from two
aspects:

1. By reducing the dimensionality of the data, which leads to compression-based
methods. The basic idea is to compress the feature vector or encode it into a much
more compact representation, and thus simplify the calculation of the distance.

2. By reducing the candidates to be compared, which leads to tree-based and graph-
based methods. They usually enable us to calculate and compare distances be-
tween only a small portion of the database vectors and the query vector.

If we think further, it is not difficult to realise the possibility of combining
compression-based and tree/graph-based methods. Compress the original vectors into
compact codes, and organize them in a way such that we can do a non-exhaustive
search.

1.3 Outline

The rest of the paper is organized as follows:

• Chapter 2 is a literature review of ANN methods. We review both compression-
based and tree/graph-based methods.

• Details of methods that have been tested and explored during the thesis project
are shown in Chapter 3. The motivation of why specific methods are selected
among various other options is also discussed.

4



• Chapter 4 gives an overview of our experimental results. The definitions of the
metrics used throughout this project will be introduced first. Before each method
is incorporated into the pipeline, a function verification experiment is performed
on a prototype. The results of different methods on the prototype are shown first,
followed by the results of valid methods when integrated into the system.

• Conclusions will be drawn in Chapter 5.
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Related Work 2
2.1 Compression-based Methods

When considering data compression or dimension reduction, one may immediately think
of principle component analysis, multi-layer perceptron or autoencoders. However,
they are not the focus of this section because in many cases they have already been
included as a step in feature extraction. For example, the convolutional layers are
usually followed by fully connected layers, which group into a multi-layer perceptron.
To avoid overlapping, here we only review compression-based methods that are specially
designed for accelerating nearest neighbour search.

2.1.1 Data-independent

The methods in this category are locality sensitive hashing (LSH) and its variants.
LSH was first introduced in [32], where a family of functions called LSH family H was
defined. For any hash function h in the LSH family, it satisfies two conditions:

• if D(v1,v2) ≤ R, then P [h(v1) = h(v2) ≥ P1],

• if D(v1,v2) ≥ cR, then P [h(v1) = h(v2) ≤ P2],

where c > 1, P1 > P2, v1,v2 are any two items, D(·) denotes a distance measurement,
and P [·] is the probability of a statement. h is then called (R, cR, P1, P2)-sensitive.
Intuitively, such h tends to map ‘close’ items in the original space to the same repre-
sentation in the new space, and map items that are far away from each other to different
representations, as illustrated in Fig. 2.1.

Figure 2.1: The red dot denotes v1. If v2 is within the blue circle (D(v1,v2) ≤ R), it tends
to be mapped to the same bucket as v1. If v2 is outside the black circle (D(v1,v2) ≥ cR), it
tends to be mapped to a different bucket.
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Various distance measurements lead to different algorithms. In the original paper,
the authors apply Hamming distance. Leech lattice LSH [1], however, works in the
Euclidean space. There are methods based on more complex, self-defined distance or
similarity measurements as well. For example, methods like Super-bit LSH [36] and
Kernel LSH [44] use angle-based distance. Algorithms derived from cosine similarity
[23], Jaccard similarity [35, 76], rank similarity [93] are also discovered.

Given a hash function h, any item x can be mapped into a bucket h(x). Mapping all
the items will give us a hash table. For a query q, it will also be assigned into a bucket
and we just return all the items in the same bucket as nearest neighbours according to
the hash table. To improve the recall, LSH forest proposes to build multiple tables and
represents them as trees [4], [34] proposes a relevance value to decide the most relevant
hash codes, and [56] proposes to probe multiple buckets. There are also studies about
fundamentally different search methods, e.g., [67].

No matter what distance measurements or search methods are used, methods in this
category is data-independent since the hash functions are already determined before
any data is fed. This, however, does not fully leverage the information in the dataset
and leads to inferior recall rate. In practice, data-dependent methods generally perform
better and are much more preferred.

2.1.2 Data-dependent

2.1.2.1 Learning to Hash (L2H)

The keyword for L2H is similarity preserving: similar items in the original space should
also be similar in the coding space. A compound hash function h is learned from data,
mapping inputs x to much more compact representations (hash codes) b, i.e.,

b =

b1...
bL

 =

h1(x)
...

hL(x)

 = h(x) (2.1)

where L is the length of the code, {bi}Li=1 are integers or binary values, and h(·) are
hash functions.

Given two items x1 and x2 and their corresponding hash codes b1 and b2, we can
define the similarity in the original input space soij(x1,x2) and the similarity in the

coding space shij(b1,b2). Preserving similarity means soij and shij should be close, which
can be achieved by choosing an appropriate loss function, formulating an optimization
problem (with constraints), and designing an algorithm to solve it. To simplify the
optimization problem or to provide an analytic result, sometimes the form of hash
functions is restricted. Therefore, essentially the methods in L2H are different on:

1. The form of hash functions. Frequently used choices are linear functions [80],
kernels [30], non-parametric functions [74]. Deep neural networks (DNN) become
more and more popular recently, and we will save the details for Section 2.1.2.2.

2. The definitions of soij and shij. Similarities are usually defined through distances.
For example, from the Euclidean distance in the original space doij and the Ham-
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ming distance in the coding space dhij, we can define soij = exp{−(doij)2/2σ2} and
shij = L− dhij. Cosine similarity is also a typical choice for soij.

3. The definitions of the loss function, which can be divided into many groups,
e.g., minimizing the similarity-distance product (

∑
soijd

h
ij or

∑
shijd

o
ij) [91, 79],

maximizing similarity-similarity product
∑

soijs
h
ij [88, 89], minimizing similarity-

similarity difference
∑

(soij − shij)
2 [19, 38].

4. The techniques to solve the optimization problem. The fact that codes are discrete
integers will introduce constraints, and the main difficulty lies in how to deal with
them. For example, if the codes are binary, then sgn(·) function will occur in the
objective function, or we can drop sgn(·) and introduce a constraint bi = {0, 1}.
Frequently used workarounds are relaxing the sgn function as a sigmoid function
or a tanh function, ignoring sgn during the optimization and bringing it back when
generating the final result, or applying the coordinate-descent approach [87].

The discussion above only includes pairwise similarity preserving, i.e., retaining the
similarity between a pair of items. Researchers also come up with multiwise similarity
preserving, which considers a tuple of items. A typical example is triplet loss hashing
[65, 14]. The triplet tuple has an anchor item x, a positive item x+ (that is similar
to the anchor), and a negative item x− (that is not similar to the anchor). The loss
function is designed to maximize the Hamming distance between (x,x−) and minimize
the Hamming distance between (x,x+).

Another type of method that follows a slightly different rationale is quantization-
based method, which aims to minimize the reconstruction error [40, 97, 98]. The
similarity between codes is not measured directly; instead, the codes will be first trans-
formed back to the original space via the codebook, and then compare the similarity
(symmetric distance computation). Alternatively, only the database vectors are en-
coded and then decoded to compare with the query vector (asymmetric distance com-
putation). This may seem inefficient, but the computation between the reconstructed
vectors or the reconstructed vector and the query will be simplified compared to the
direct computation using original vectors. A concrete example will be given in Section
3.1.

2.1.2.2 Deep Learning Methods

Due to the great potential of DNN to approximate more complex functions, they are
heavily studied to replace traditional linear hash functions in recent years. New meth-
ods in this area usually fall into this category, so a separate section is created to discuss
deep learning methods specifically.

Among them, supervised deep learning methods have been widely studied. Apart
from the definitions of similarity, they differ mainly on how the label information is
exploited, or say how the loss function is defined. Methods like SDH [22], DSH [53],
SHBDNN [18] and DDSH [37] only use labels to determine whether two images are
similar and thus no extra term is introduced in the loss function. In [10, 11, 46], a
classification layer is added to provide semantic supervision. If one-hot encoding is
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applied, the label information can also be included in a linear regression loss as in
[12, 47]. Quantization-based deep hashing methods like [96, 52, 42] are studied as well.

Supervised methods heavily rely on label information, which is not always desirable.
More and more research focus on deep unsupervised hashing, which is first proposed in
[43]. A simplest attempt is to drop the terms about similarity preserving and semantic
information in the loss function and instead aim to minimize the quantization error
only with, e.g., autoencoders [50]. Alternatively, generative models can also be used to
learn hash codes [31, 13, 17].

Generally speaking, methods in this category tend to have better performance than
LSH and L2H, but they have limitations as well. For example, as any other deep learn-
ing methods, they have high demand for data, otherwise are very likely to suffer from
overfitting. Besides, the tests are toy examples done in relatively simple datasets like
CIFAR10, so the performance in real-world image retrieval applications is unknown.
Moreover, in practice we would like to train our model end-to-end, meaning that the
DNN for generating good hash codes need to be incorporated into the DNN that ex-
tracts features, which is normally not a trivial task since the loss function may need to
be re-designed.

2.2 Tree/Graph-based Methods

Compression-based methods can make the distance calculation between two vectors
faster, and methods in this section focus on non-exhaustive search. To find the nearest
neighbours, checking all the candidates in the database is not really necessary. It can
be shown that, by properly organizing the database vectors, only a small portion of the
candidates is needed to be visited for finding desired results.

2.2.1 Tree-based Methods

Tree-based methods are designed for efficient searching by partitioning space into mul-
tiple disjoint regions and organising the data points as a tree based on which region
they belong to. If two points reside in adjacent regions, then they will locate closely in
the tree as well. Therefore tree-based methods are also called partition-based methods.

Among all the methods in this category, kd-tree [26] is probably the best-known
one. For a balanced kd-tree with randomly distributed points, the search complexity
is O(logN) on average. The worst case, however, can be O(DN1−1/D) [45]. (To be
consistent with the rest of the thesis, the dimension of the vector is still denoted as D
instead of k as in literature about kd-tree.) Therefore, for high dimensional vectors,
the search complexity of kd-tree may be very comparable to the exact search, which is
the reason why it is rarely applied in image retrieval tasks, where the feature vectors
are usually high dimensional.

Many variations of kd-tree have been explored for better search performance or
faster search speed, e.g., PCA-trees [61], cover trees [8], ball trees [9] and NKD-tree
[77]. Empirically, kd-tree also shows good results after introducing randomization and
overlapping cells, based on which a library FLANN is built and widely used in nearest
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neighbour search problems [62]. Inspired by this, RPTree [15] has been proposed with
theoretical guarantees.

ANNOY [6], a method proposed by a practitioner, is also worth mentioning. It
partitions regions randomly without any operations like rotation or projection on data
points, but works surprisingly well empirically even with high dimensional data. In
fact, it is one of the best tree-based methods according to the experiments in [49].

2.2.2 Graph-based Methods

Intuitively, if point A is close to point B, then it is very likely that the neighbours of A
are also close to B. Given a query point, if we can exploit the neighbour relationship
between points, the searching of its closest point might be greatly simplified. How to
express the neighbour relationship? A natural thought is using graphs and Fig. 2.2
shows a simple example of how it looks like. The vertices are the data points in the

Figure 2.2: An illustration for general graph-based algorithms [90]. The nodes (vertices) are
the data points, neighbours of which are connected by edges. The search starts with a random
seed vertex and the next goes to its neighbour that is closest to the query. Do it iteratively
until the node itself is closer to the query than any of its neighbours.

original dataset, which will be connected by edges if they are close to each other. To
search the nearest neighbour of the query, we apply greedy search: first randomly assign
an entry point or say a seed vertex, of which the neighbours will be found by traveling
through its edges. We choose the neighbour that is closest to the query as the new seed
vertex and repeat the aforementioned procedure. It will terminate if the seed vertex is
closer to the query than all of its neighbours, then the seed vertex will be returned as
the nearest neighbour of the query.

Now a question remain is how to build the graph such that we can retrieve good re-
sults efficiently using greedy search. There is a kind of graph that ensures greedy search
returns precise results called Delaunay Graph (DG) [25]. However, it also suffers from
‘the curse of dimensionality’: in high-dimensional space, it is almost fully connected
and thus has little advantage over linear scan [29]. RNG [85] tackles this problem by
dropping the redundant neighbors and making the rest distribute omni-directionally.
However, a limitation is that the construction complexity is O(N3), making the time
of construction prohibitive even with moderate-scale datasets. Methods like NSW [58],
HNSW [57], DiskANN [33] have been proposed to alleviate this problem.

There are also K-Nearest Neighbour Grpaph (KNNG)-based methods, which need
extra operations to ensure global connectivity [99, 68]. Methods that based on both
DG (or RNG) and KNNG [49, 28, 27] are popular as well.
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Methods 3
As we can see from the literature review in Chapter 2, ANN is a field that has been
extensively studied and many different types of approaches have been proposed. For
algorithms that belong to the same category, it is not difficult to find literature that
conducts comparative studies, having a rough idea of which ones are better under what
circumstances. However, cross-disciplinary comparisons are very rare and do not pay
special attention to the image retrieval problem and its commonly used dataset and
metric [2, 49]. Therefore, we do not know which methods are the best of all. In fact,
from the results in [2, 49], it can be concluded that no method is always the best. The
performance depends very much on the specific dataset.

Considering the issues above, we decided to select and test methods from different
categories and incorporate the most suited ones into our final pipeline. The following
conditions were taken into account during selection:

• The methods must not impose any extra restrictions on other modules and the
structure of the pipeline.

• The methods should be the state-of-art in their corresponding category (at least
in some datasets).

• Methods that are not cutting-edge but have been widely applied in real-world
applications should also be considered.

• For supervised methods, they must not require label information other than
whether the two images are similar or not.

Based on the criteria above, we selected the following methods:

• Product Quantization (PQ) [40]. Its performance is one of the best in traditional
L2H. Although it has been surpassed by deep hashing, PQ is still the go-to method
in real-world applications.

• Product Quantization Network (PQN) [95], a deep neural network version of PQ.
A PQ layer is designed to be integrated into the feature extractor to generate
more compatible codes, leading to better performance.

• Greedy Hash (GH) [83]. It is also a deep hashing method, but different from PQN,
it generates binary codes and preserves similarity in the coding space. Both GH
and PQN do not impose restrictions on the structure of the feature extractor and
the loss function.

• ANNOY [6]. One of the best in tree-based methods. Although no theoretical
guarantee can be provided, it shows competitive results in [2, 49] and thus has
been highly preferred by many practitioners.
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• Hierarchical Navigable Small World (HNSW) [57]. State-of-the-art in graph-based
methods. Has a theoretical guarantee for logarithmic search complexity.

Some of the above methods (PQ, ANNOY, HNSW) have been widely used, while
PQN and GH have been proposed but, to the best of our knowledge, never applied in
practice. The details will be shown concisely one by one in the rest of this chapter.
Moreover, we propose two hybrid methods, PQ+HNSW and GH+ANNOY, which will
also be discussed, implemented, tested and compared. Therefore, in this study we
explore numerous methods for ANN.

3.1 Product Quantization (PQ)

Basic PQ was originally proposed in [40]. The idea is to split a vector into sub-vectors
and quantize each sub-vector. More specifically, given a database vector x ∈ RD, one
can view it as a concatenation of M sub-vectors:

x = [x1, x2, . . . , xD/M︸ ︷︷ ︸
x1T

, . . . , xD−D/M+1, . . . , xD︸ ︷︷ ︸
xMT

]T (3.1)

where xm ∈ RD/M ,m ∈ {1, ...,M}. If plenty of database vectors are available, we can
train a sub-codebook for each sub-vector by, for instance, K-means clustering. The
sub-codebook for each m ∈ {1, ...,M} is denoted as Cm = {cmk }Kk=1, where K is the
number of sub-codewords. The sub-vector can then be encoded as the index of the
nearest sub-codeword, i.e.,

im(xm) = argmin
k∈{1,...,K}

∥xm − cmk ∥22 (3.2)

where im : RD/M → {1, ..., K} is the sub-encoder for m-th sub-vector. The vector x
can then be encoded as the concatenation of the encoded sub-vectors:

i(x) = [i1(x1), ..., iM(xM)]T (3.3)

where i : RD → {1, ..., K}M . Apparently, the reconstruction will not be lossless. We
can obtain the approximation of x by

x̃ = i−1(i(x)) = i−1

 i1(x1)
...

iM(xM)

 =

 c1i1
...

cMiM

 . (3.4)

How can PQ simplify the calculation of distance? It can be illustrated by the
following decomposition:

d(q,x)2 ≈ d(q, x̃)2 =
M∑

m=1

d(qm, cmim)
2, (3.5)
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where qm are the sub-vectors of the query vector. Since each cmim only has K possible
values, we can compute every possible d(qm, cmim)

2 beforehand and save them into a
M ×K distance table A. Then calculating the distance only takes M table look-ups:

d(q,x)2 ≈
M∑

m=1

d(qm, cmim)
2 =

M∑
m=1

A(m, im). (3.6)

Therefore, with PQ, the computational complexity for each query can be reduced
from O(DN) to O(MN). Practically, M is a much smaller number like 2, 4, or 8, so
the reduction in computation is significant. Also, after encoding, each vector only takes
M log2K bits, which usually leads to huge memory savings.

Extension Denote Cm = [cm1 , · · · , cmK ]. We can write the encoding part of PQ more
compactly as:

min
{bm}Mm=1

∥∥∥∥∥∥∥∥

x1

x2

...
xM

−

C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · CM



b1

b2

...
bM


∥∥∥∥∥∥∥∥
2

2

≜ min
{bm}Mm=1

∥x−Cb∥22, (3.7)

where bm are indicator vectors with length equals to L/M . Following the notation in
(3.2), the im-th element of bm will be 1 and others will be 0. In PQ, C is not optimized
but settled beforehand by K-means clustering. What if we regard C as a variable that
also needs to be optimized? If we consider all the database vectors, then (3.7) should
be rewritten as:

min
C,{bn}Nn=1

N∑
n=1

∥xn −Cbn∥22, (3.8)

where xn are database vectors and bn are the corresponding (binary) codes. Ide-
ally solving (3.8) will give us a better result, at least in the context of minimizing
quantization error, but it is a more difficult problem. Different constraints on C and
optimization tools lead to different variants of classic PQ.

3.2 Product Quantization Network (PQN)

PQN [95] is an extension of PQ, whose sub-codewords are not determined beforehand.
What makes it unique is that it is a layer that can be easily integrated into standard
DNNs. By doing so, we may train the features and sub-codewords together to generate
more compatible codes and, hopefully, achieve better performance than classic PQ.

An illustration of how does a typical PQN look like is shown in Fig. 3.1. The only
difference compared to the standard structure is that a PQ layer is inserted after the
feature extractor. If we would like to make minimal changes to the original training
procedure, then we can just replace the feature in the loss function with the quantized
version instead and keep all the rest parts the same. A more sophisticated alternative is
to output both original features and quantized features and design a new loss function.

15



Figure 3.1: A typical PQN. The original features are forwarded into a PQ layer, which
generates quantized features. Features and sub-codewords can be trained together end-to-
end.

Designing a quantization layer, unfortunately, is not so straightforward. For a layer
in a neural network, a requirement that must be satisfied is that the operations involved
in the layer must be differentiable so that parameter updates can be performed using
back propagation. However, when we encode the sub-vectors (see (3.2)), the argmin
function is non-differentiable. Therefore, researchers proposed ‘soft’ quantization in
[95]. Let us first represent the quantized sub-vectors x̃m in a slightly different way:

x̃m =
K∑
k=1

I(k = k∗)cmk , (3.9)

where k∗ = argmin
k∈{1,...,K}

∥xm − cmk ∥22.

I(·) is the indicator function, which is non-differentiable. An easy fix is to find its
differentiable approximation, e.g.,

I(k = k∗) = lim
α→+∞

e−α∥xm−cmk ∥22∑
k′ e

−α∥xm−cm
k′∥

2
2

. (3.10)

By plugging (3.10) into (3.9) with an appropriate α, the modified version of the quan-
tized sub-vectors is

x̃m =
K∑
k=1

e−α∥xm−cmk ∥22∑
k′ e

−α∥xm−cm
k′∥

2
2

cmk , (3.11)

which defines our PQ layer. The inputs are the original feature vectors, and the outputs
are quantized feature vectors. The layer is ready to be plugged into any neural network
and the sub-codewords cmk will be trained with features. Once the neural network has
been trained, we will get optimized sub-codewords, and other procedures are exactly
the same as in classic PQ.
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3.3 Greedy Hash (GH)

As mentioned in Section 2.1.2.1, quantization-based methods are not typical L2H meth-
ods: they do not aim to preserve similarity in the coding space; instead, the key point
is more about nicely reconstructing the original vectors based on the codes. The ℓ2
distance (if we work with i in (3.3)) or the Hamming distance (if we work with b in
(3.7)) between two codes indicates nothing if the codebook C is not given. It is a big
limitation if we want to combine PQ with tree-based methods (which will be discussed
later). Therefore, we would like to also keep a more L2H-like approach in the list and
GH is selected due to its flexibility and relatively good performance.

Essentially, L2H is about finding good hash functions that map the original feature
vector x to a compact code b given a loss function. Different from traditional methods,
GH regards a DNN as a hash function [83]. The powerful representation capabilities
of DNNs make it possible to approximate any complex hash functions. Also, as in the
case of PQN, hash codes can be learned together with features if we incorporate GH
into the neural network (Fig. 3.2).

Figure 3.2: Incorporating GH into the system. The pattern is almost the same as the case in
PQN (Fig. 3.1), except that the output now is hash code.

GH is designed to solve the following problem:

min
B
L(B),

s.t. B ∈ {−1,+1}N×L,
(3.12)

where L(·) can be any loss function and B are hash codes of N feature vectors. There
are no restrictions on the form of loss functions. If we simply ignore the discrete
constraint, (3.12) can be solved by gradient descent:

Bt+1 = Bt − η ∗ ∂L
∂Bt

, (3.13)

where η is the learning rate. Then we apply the greedy principle, taking the closest
discrete point to Bt+1 in (3.13) as the optimal solution:

Bt+1 = sgn(Bt − η ∗ ∂L
∂Bt

). (3.14)
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However, sgn(·) is a non-differentiable function. How to incorporate it into the neural
network?

Let us rewrite (3.14) into two parts:

Bt+1 = sgn(Ht+1), (3.15)

Ht+1 = Bt − η ∗ ∂L
∂Bt

, (3.16)

where H is an intermediate variable that can be interpreted as the output of the neural
network. Therefore, (3.15) shows the forward propagation and the question is what is
the backward propagation from Bt+1 to Ht+1 (or from Bt to Ht). We want to bypass
the non-differentiable problem and define the back propagation in such a way that the
update equation has the same form as in (3.16). This can be done by introducing a
penalty term ∥H − sgn(H)∥pp (entry wise matrix norm) into the loss function, which
will be made as close to zero as possible. By doing so, the update equation of H using
gradient descent can be written as

Ht+1 = Ht − η ∗ ∂L
∂Ht

= (Ht − sgn(Ht)) + sgn(Ht)− η ∗ ∂L
∂Ht

≈ Bt − η ∗ ∂L
∂Ht

. (3.17)

Comparing (3.17) to (3.16), our object can be achieved by setting

∂L
∂Ht

=
∂L
∂Bt

, (3.18)

that is, back transmitting the gradient of Bt to Ht intactly.
To summarize, the input of the GH layer is the output of the neural network H,

and the output of the GH layer is the hash code B. The forward propagation and the
backward propagation are defined as

Forward: B = sgn(H),

Backward:
∂L
∂Ht

=
∂L
∂Bt

.
(3.19)

3.4 ANNOY

Tree-based methods mainly differ on how the space is partitioned. For example, in
kd-tree, the partition plane is always perpendicular to an axis, passing through a pivot
element, which is usually the median of the sorted coordinates in the selected axis.
Each partition splits the original space into two subspaces, which will be partitioned
recursively until a certain condition, e.g., the maximum number of data points in a
region, is satisfied. Different from kd-tree, partitioning in ANNOY does not follow a
rigorous or mathematical way, but rather random [6]. Building the tree and searching
with the tree are almost the same among different methods.
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More specifically, in ANNOY, a tree can be built in parallel with space partitioning
following the steps below:

1. Select two data points arbitrarily. The hyperplane equidistant from the selected
two points splits the space into two subspaces.

2. Save the random split as a node and create two branches. The points on the left
sub-space go to the left branch, and the points in the right sub-space go to the
right branch. depth← depth + 1.

3. For each sub-space, repeat steps 1 and 2 recursively until there are at most K
items left in each area created by the splitting hyperplanes.

An example can be found in Fig. 3.3. The squares are the intermediate nodes reserving
the splitting hyperplanes and the circles denote the data points in subspaces with a
number indicating the number of points.

Figure 3.3: Building a binary tree in ANNOY [7]. The left part gives an example of the space
partition and the right part shows the corresponding tree structure.

To search the nearest neighbour of a given query, we start with the root and traverse
the tree following the same rule when we insert nodes: going to the left/right branch if
the query is on the left/right of the splitting plane. We stop until we reach a leaf node,
all the data points inside of which are regarded as nearest neighbours. An example is
given in Fig. 3.4. The red cross is the query and the colored route shows the procedure
of finding the shaded area where the query lies.

However, there are two more issues that need to be addressed. Firstly, as we can see
in Fig. 3.4, some neighbours of the query that are even closer are not selected because
they are divided into adjacent subspaces. Moreover, the number of data points in the
shaded region is very likely to be different from what is required. The trick for these
issues is called priority queue. Build a forest of trees, put the results of all trees into
a list, and sort them based on the distance to the query. Also, we can pretentiously
keep the wrong side of the tree if the points in that branch are not farther than a
predetermined threshold.

In practice, bumping up the number of trees is generally a good idea if memory is not
a concern. ANNOY is initially designed for vectors that are less than 100 dimensions,
but empirically it works well even when the dimensionality is around 1000. The search
complexity is close to O(logN). However, no theoretical guarantee is given.
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Figure 3.4: Searching with the binary tree in ANNOY [7]. The red cross denotes the query
and the points in the green area are the nearest neighbours found by ANNOY. The route is
colored.

3.5 Hierarchical Navigable Small World Graph (HNSW)

Before discussing the details of HNSW, it is necessary to first introduce its predecessor
that is proposed by the same author: Navigable Small World (NSW) [58]. Recall that in
Section 2.2.2 we mentioned that Delaunay Graph (DG) ensures greedy search always
returns precise results. The biggest drawback is that the graph will be almost fully
connected in high-dimensional space, offering little advantage over linear scan. NSW is
an approximate version of GD with a relatively simple construction. The elements in the
database are inserted sequentially: Given an element, find its nearest neighbours using
greedy search and associate them with edges, by which the connectivity is automatically
ensured. Long edges constructed in the early stage serve as ‘highways’, enabling us to
move from one side of the graph to the other efficiently in the searching phase. As
more and more data points are inserted, the edges will be shorter and shorter, which
ensures search accuracy. An example of the NSW graph is shown in Fig. 3.5. The red

Figure 3.5: Searching with NSW graphs [58]. The nodes denote the data points. Red lines
are constructed in the early stage, serving as ‘highways’, enabling fast moving from one side
to the other. Black lines are constructed in the later stage, making the search more accurate.
The path from the entry point to the nearest neighbour using greedy search is marked by
arrows.

edges are the ‘highways’. By following the directions indicated by arrows, we obtain the
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route from the entry point to the nearest neighbour of the query using greedy search.
Compared to GD, the average degree of the nodes scales logarithmically. i.e., O(logN),
which is far better than fully connected. The average number of visited nodes scales
also logarithmically, and thus the search complexity is polylogarithmic, i.e., O((logN)2)
[57]. Based on the construction procedure, we know that the construction complexity
is O(N · (logN)2).

Researchers did not stop here and found a variant of NSW, which is so-called HNSW
[57], aiming to further reduce the search complexity to logarithmic. The idea is to
introduce layers, separating the edges based on the length scale into different layers, as
is shown in Fig. 3.6. There is a non-negative integer l indicating the maximum layer

Figure 3.6: The hierarchical structure [57] of HNSW. Data points become sparser and sparser
from the bottom to the top. The scaling of the expected number of layers is logarithmic and
there is a maximum number of connections for all layers. Searching is from the top to the
bottom. For each layer, we use greedy search to find the nearest neighbour, which is the entry
point for the next layer.

each data point belongs to. For example, if l = 2, the element can exist in layer 0, 1,
and 2. By setting an exponentially decaying probability of l, the scaling of the expected
number of layers will be logarithmic. In layer 0, all data points will be included. In
higher layers, the data points will be sparser and sparser, and the edges will serve as
‘highways’.

Similar to NSW, we construct HNSW by sequentially inserting elements in the
database. Given a new element, we generate an integer l and start from the top layer
Lmax. For layer i, i ∈ {l + 1, ..., Lmax}, we find the nearest neighbour in the current
layer using greedy search, which will then be the entry point of layer i + 1. For layer
i, i ∈ {0, ..., l}, we find theK-nearest neighbour of the element and establish connections
between the neighbours and the element. Suppose that the graph has been constructed,
the search phase also starts from the top layer. Same as before, the nearest neighbour
of layer i will be the entry point of layer i+1. We will maintain a dynamic list of found
nearest neighbours, and the search will stop if the list is not updating.

Different from NSW, there is a limit on the maximum number of connections per
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layer, and thus the search complexity can be O(logN). Following the same rationale,
we can see that the construction complexity can also be reduced from O(N · (logN)2)
to O(N · logN).

3.6 Hybrid Methods

As we mentioned before, compression-based methods simplify the calculation of dis-
tance between a query-candidate pair, and tree/graph-based methods reduce the
number of candidates. To get the best of both worlds, we can consider combining
compression-based methods and tree/graph-based methods together.

Generally speaking, PQ can be combined with any graph-based method if the graph
is built based on Euclidean distances between nodes. If the D-dimensional database
vectors xn are compressed intoM -dimensional codes i(xn) using PQ, the approximation
of xn can be reconstructed with (3.4), from which a graph can be constructed as usual.
In the search phase, the approximation of distance between the query q and xn can
be calculated by table look-ups as in (3.6). During the whole process, we work with
N M -dimensional codes and a codebook instead of N D-dimensional database vectors.
However, it is not trivial to combine PQ with tree-based methods. The trees are
generally constructed based on the space partition. But the points that are close in the
original space are not necessarily close in the code space when using PQ. Therefore,
the partition in the code space does not make much sense and the tree based on which
will lead to poor performance.

For GH, however, it can be naturally combined with tree-based methods because
the similarity in the original space will be preserved in the code space. So the partition
in the code space still makes sense. Recall that tree-based methods suffer from the
‘curse of dimensionality’, which can also be alleviated if we use compact hash codes.
It can be combined with graph-based methods as well, but in this case the graphs will
be constructed based on the Hamming distance instead of the euclidean distance. A
concern in GH is that the Hamming distance is much less expressive than the euclidean
distance.

3.6.1 PQ+HNSW

The first combination we have tried is PQ+HNSW. The sub-codewords can be gener-
ated by either PQ or PQN. To construct the HNSW graph of the encoded database
vectors, we take the following steps:

1. Following the procedure discussed in Section 3.1 (Eq. (3.3)), encode database
vectors {xn}Nn=1,xn ∈ RD to PQ codes {in}Nn=1, in ∈ {1, · · · , K}M .

2. Select unique PQ codes in {in}Nn=1 to form {iu}Uu=1. Save the mapping from the
current indices to the original indices as a dictionary.

3. Construct a HNSW graph of {iu}Uu=1 as described in Section 3.5. For any two PQ
codes ia and ib, denoteM as the set of m where ima ̸= imb ,m ∈ {1, · · · ,M}. The
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distance between ia and ib is calculated as

d(ia, ib)
2 =

∑
m∈M

d(cmima , c
m
imb
)2. (3.20)

Searching with the constructed HNSW graph of PQ codes is similar to searching
with normal HNSW graph of original vectors, except that the distance calculations
will be performed by table look-ups as in Eq. (3.6). Note that the obtained indices
should be mapped back to the original indices using the dictionary saved during the
construction. The final list may be longer than desired since there could be one to
multiple mapping. We can simply discard the last several elements.

3.6.2 GH+ANNOY

We can also consider combining GH with ANNOY and the procedure is simpler than
PQ+HNSW. First generate compact hash codes then organize them according to AN-
NOY (Section 3.4). The advantage is that ANNOY can now work with much shorter
vectors, which not only boosts the efficiency, but also prevents memory overhead, es-
pecially when we build a forest of trees to improve the retrieval performance.
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Experimental Results 4
In this chapter, we summarize the results of our experiments, which can be divided
into two stages:

• Toy examples for function verification using a simple prototype (Section
4.3). Although extensive tests have been done in the original papers proposing
PQ, HNSW and ANNOY, they are not in the context of image retrieval but more
about purely solving the nearest neighbour search problem. The datasets consist
of extracted feature vectors and the metric is recall. In PQN and GH (and also
many research studies on deep hashing methods), however, the authors define and
solve image retrieval problems and report mean average precision (which will be
introduced in Section 4.1). Therefore, it is necessary to build a prototype and
test various methods in a consistent scenario. After this round of testing, some
unsuitable methods will be discarded.

• Real-world examples with a more advanced pipeline and complex
datasets (Section 4.4). The methods selected in the previous phase will be
integrated into the system together with an improved feature extractor, after
which the pipeline will be able to tackle complex datasets. The results obtained
in this part have more realistic implications.

Apart from giving numerical results, a web-based GUI is built to provide intuitive
visualizations, which will be introduced in Section 4.4.3. But first, we review important
metrics used throughout this chapter.

4.1 Metrics

4.1.1 Mean Average Precision (mAP)

mAP is the most frequently used criterion in image retrieval, but its definition can
be difficult to understand if given directly. So let us first consider the more intuitive
criteria: precision and recall:

Precision =
|{relevant images} ∩ {retrieved images}|

|{retrieved images}|
, (4.1)

Recall =
|{relevant images} ∩ {retrieved images}|

|{relevant images}|
, (4.2)

where | · | denotes the cardinality of a set. However, they have a drawback. For retrieval
tasks, we would expect that the most relevant items should occur on the top of the
results, i.e., the ranking is also important. But both precision and recall do not indicate
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if the ranking is reasonable since various rankings lead to the same values as long as
the number of retrieved relevant images is fixed according to the definitions.

A single value of precision (or recall) can not preserve ranking information. How
about a list of precision values? A concept called precision-at-k Pre(k) is useful. Given
a list of ranked images, we collect the first k results and calculate the precision-at-k as:

Pre(k) =
|{relevant images} ∩ {top-k results}|

k
. (4.3)

With a list of Pre(k), we can inverse the ranking information. An example is given in
Fig. 4.1.

Figure 4.1: Two cases of five ranked images. Correct results and wrong results are marked
as green and red, respectively. For each case, the corresponding Pre(1), ...,Pre(5) are listed
below. Different rankings lead to different lists of Pre(k) values. On the other hand, the
locations of correct results can be identified from the changes of the numerators. Therefore,
we can inverse the ranking information.

Similarly, recall-at-k Rec(k) can also be defined. We can draw a precision-recall
curve based on the values of Pre(k) and Rec(k). Building upon these definitions, the
average precision AP is defined as the coverage area under the precision-recall curve,
which can be approximated as:

AP =
1

R

N∑
k=1

Pre(k)rel(k), (4.4)

where R is the number of relevant images (ground truths), N is the size of the database,
and rel(k) is an indicator that equals 1 if k-th retrieved image is relevant and 0 other-
wise. Here the summation is from k = 1 to k = N , meaning that all the images in the
database are ranked and took into consideration. This is not necessary for real appli-
cations, where we usually retrieve only a small part of the database images. Assume
the number of images to be retrieved is K, with K ≪ N . We also have a definition of
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average-precision-at-K AP@K:

AP@K =
1

min{K,R}

min{K,R}∑
k=1

Pre(k)rel(k). (4.5)

The denominator now is min{K,R}, making sure that in the best case AP@K = 1.
During the tests there will not be only one query but multiple query images, which

is why we need to define mean average precision mAP or mAP@K:

mAP =
1

Q

Q∑
q=1

AP(q), (4.6)

mAP@K =
1

Q

Q∑
q=1

AP@K(q), (4.7)

where Q is the number of query images.

4.1.2 Relative Mean Average Precision (rmAP)

It is worth noting that, in this thesis, the absolute value of mAP is not very important
since it is determined by both the quality of features and the error introduced by ANN
algorithms. Instead, we care more about how much the mAP degrades after applying
ANN algorithms compared to linear scan. To show this clearly, we introduce relative
mAP (rmAP), which is the original mAP minus the mAP of linear scan. E.g., if the
mAP of linear scan is 63.2% and the mAP of PQ is 60.4%, then the rmAP of PQ is
−2.8%.

4.1.3 Matching Time and Speedup

Another important aspect is of course the matching efficiency, which can be shown most
intuitively in terms of the matching time. However, due to differences in hardware, the
runtime may vary significantly on different devices. So in this thesis, we also report
the speedup over linear scan, a number followed by ×. For instance, if the matching
time of linear scan and PQ is 1 ms and 0.1 ms, respectively, then the speedup is 10×.
Throughout this thesis, the speedup is calculated based on the time of retrieving top
100 results.

4.2 Implementation

For methods like PQ and HNSW, there are existing functions in the widely-used nearest
neighbour search library Faiss [39], which is written in C++ with Python bindings. But
implementing the hybrid method PQ+HNSW can not be done without modifying the
source codes, which is challenging considering the original programming language is
C++. Therefore, we modify the codes of PQ and HNSW from open source projects
on GitHub written in Python without special optimization, and we build the hybrid
method PQ+HNSW upon them [59, 48].
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ANNOY is proposed by a practitioner, so we stick with the official library that is
also written in C++ with Python bindings [6]. It applies single instruction multiple
data (SIMD) instruction, so the comparison between ANNOY and other methods in
this thesis is not very fair.

We implement PQN based on the description in the paper and we modify GH from
the official codes provided by the authors [82]. The combination of GH+ANNOY is
relatively simple and does not require changing the source code of ANNOY.

The repository for this thesis project is available on https://github.com/YYa

o-42/ImgSearch.

4.3 Function Verification on Prototype

4.3.1 Prototype

The prototype is a minimum implementation of the pipeline shown in Fig. 1.1. The
reranking module is left out for simplicity. The feature extractor is a Resnet18 followed
by a fully connected (FC) layer with 256 neurons and an ℓ2 normalization layer. The
simplified pipeline of the prototype is shown in Fig. 4.2.

Figure 4.2: The pipeline of the prototype. Compared to Fig. 1.1, the reranking model is
omitted. And the feature extraction module is specified as a Resnet18 followed by a FC layer
and an ℓ2 normalization.

The model can be trained end-to-end with a triplet loss, which is illustrated in
Fig. 4.3. To simplify the drawing, the FC and ℓ2 normalization are absorbed into the
Resnet18 block. The input is a tuple of images, containing an anchor image, a positive
image that is similar to the anchor, and a negative image that is not similar to the
anchor. The features of anchor, positive and negative image are denoted as xa,xp,xn,
respectively. We choose the commonly used ℓ2 distance as the distance measurement
and the triplet loss is defined as

LTriplet−ℓ2(xa,xp,xn) = max{0,Marginℓ2 + ∥xa − xp∥22 − ∥xa − xn∥22}, (4.8)

where Marginℓ2 is a hyperparameter. To minimize the triplet loss, the ideal case is
that the distance between xn and xa is farther than the distance between xp and xa

by at least a certain margin. Therefore, after training, we can expect that the distance
between feature vectors will be a good indication of the degree of similarity of the
original image.
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Figure 4.3: Training the prototype end-to-end with a triplet loss. The FC and ℓ2 normalization
are absorbed into the Resnet18 block for simplicity. The features of the anchor, positive and
negative images are extracted respectively with the same Resnet18, from which the triplet
loss is calculated.

If the nearest neighbour search module is PQN or GH, then we need to jointly
consider the training of the features and the codes. For PQN, the features of positive
and negative images xp and xn are quantized as x̃p and x̃n. The triplet loss is calculated
based on the quantized features:

LTriplet−ℓ2(xa, x̃p, x̃n) = max{0,Marginℓ2 + ∥xa − x̃p∥22 − ∥xa − x̃n∥22}, (4.9)

and an illustration can be found in Fig. 4.4. The feature of the anchor image xa is
not quantized during the training since we apply asymmetric distance calculation as in
(3.6). All the database vectors will be quantized, but the query will not. We would like
to maximize (minimize) the distance between quantized features of dissimilar (similar)
images and the unquantized feature of the query image.

For GH, the training scheme becomes more complicated, as is shown in Fig. 4.5.
Different from PQ, database vectors and the query vector will all be encoded as hash
codes. Therefore a GH layer is inserted after feature extractor for anchor, positive and
negative images to generate hash codes ha,hp,hn, respectively. The distance measure-
ment in triplet loss now becomes Hamming distance. Since in GH the element of a
hash code is +1 or -1, the Hamming distance given two hash codes hi and hj is

Dh(hi,hj) = (L− hT
i hj)/2, (4.10)

where L is the length of the codes. Therefore the triplet loss is

LTriplet-H(ha,hp,hn) = max{0,MarginH + (L− hT
ahp)/2− (L− hT

ahn)/2}. (4.11)

Theoretically, we can work with LTriplet-H only to train the model, but the performance
is not so good in practice. The main reason is that hash codes are not very expressive
and much information is lost after passing through the GH layer, making the training
very difficult. Therefore, the original features are also output to calculate LTriplet−ℓ2
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Figure 4.4: Jointly training the feature extractor and the PQ layer. Compared to Fig. 4.3,
the features of positive and negative images are quantized and then forwarded to the loss
function.

using (4.8). The overall loss function is the weighted sum of LTriplet−ℓ2 and LTriplet-H:

L = LTriplet−ℓ2(xa,xp,xn) + λLTriplet-H(ha,hp,hn), (4.12)

where λ is a hyperparameter.

4.3.2 Datasets

The datasets used in this part are not specially designed for image retrieval problems
but general classification problems. The images from the same class are considered
similar and otherwise dissimilar. This is slightly in conflict with the scope of ‘similar’
discussed in Chapter 1, where we claimed that similar images should depict the same
object. But since similarity is relative, it is reasonable to regard items of the same class
as similar when there is no same item. Moreover, such datasets are frequently used for
tests in deep hashing methods, so we use them as well in this simple experiment on the
prototype.

CIFAR-10 CIFAR-10 is used in almost every paper of deep hashing methods. It
contains 50000 images for training and 10000 images for testing. The size of images is
32× 32 and the number of channels is 3. For both the training set and test set, there
are 10 classes with the same number of images. In our setting, the training set is the
database and the images in the test set are query images.

CIFAR-100 CIFAR-100 is very similar to CIFAR-10, except that there are 100 classes
instead of 10. The total number of images is still 60000. It is rarely used in papers but
we believe doing tests with CIFAR-100 can reveal some hidden issues and provide more
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Figure 4.5: Jointly training the feature extractor and the GH layer. The outputs are features
and hash codes, from which triplet losses measured by ℓ2 and Hamming distance can be
calculated. A hyperparameter λ controls the relative contribution of two losses to formulate
the overall loss.

insights. For instance, the feature vectors in CIFAR-10 can be nicely clustered into 10
groups, hence PQ is inherently suitable. In real applications, however, the database
vectors are much more scattered. How would PQ perform then? With CIFAR-100 we
can mimic this situation since there are 100 classes and the feature vectors will be more
scattered.

4.3.3 Results

4.3.3.1 CIFAR-10

The rmAP and speedup of selected ANN methods are listed in Table 4.1. The bench-
mark is linear scan, of which the mAP@100 = 74.00%. To find top matches in a
database with 50000 256-dimensional vectors using linear scan, the time cost is around
42 ms (varies from machine to machine). Indeed, accelerating matching in CIFAR-10
may seem unnecessary, but it still gives us an idea of what kind of improvement ANN
methods can bring.

The results in the table basically show that ANN methods trade search efficiency
with minor performance loss. But there are some interesting numbers in the table that
need further explanation:

• Why the mAP can even be higher in some cases? The short answer
is that Euclidean distance may not be the best metric to find neighbours. Using
ANN methods may give us results that are not nearest in ℓ2 space, but they can be

31



Compression-based Tree/Graph-based Hybrid

Metric PQ PQN GH ANNOY HNSW
PQ+
HNSW

PQN+
HNSW

GH+
ANNOY

rmAP(%) −1.03 +0.86 −1.15 +0.32 +0.74 +0.54 +2.80 −2.12
Speedup 15.34× 14.97× 11.43× 201.43× 12.62× 22.26× 23.54× 631.34×

Table 4.1: rmAP(%) and speedup of ANN algorithms in CIFAR-10. For compression-based
methods, the feature vectors are compressed to 32-bit codes.

desired neighbours as well. In CIFAR-10, features are not randomly and uniformly
scattered in space. We can apply a dimension reduction tool UMAP [60] to
visualize the high-dimensional feature vectors in 2D space (Fig. 4.6). At the border
of different classes, it is obvious that ℓ2 distance is not an appropriate criterion to
determine whether two items are similar. We may also need to consider topology
properties. In fact, there are methods that take topology into consideration and
boost the performance of image retrieval, e.g., diffusion [94], but this is beyond
the scope of this thesis.

Figure 4.6: Visualizing 50000 256-dimensional feature vectors in 2D space using UMAP.
Different colors indicate features of images from different classes. The distribution is not
uniform but has a certain structure.

• Why is ANNOY so good? Empirically ANNOY can achieve logarithmic search
complexity if vectors are relatively low dimensional (less than 100D). From the
literature, HNSW also has logarithmic search complexity, so their performance
should be close. However, in the table ANNOY is almost 10 times faster than
HNSW. Recall that in Section 4.2, we mentioned that the comparison of ANNOY
and other methods is not fair since ANNOY is written in C++ and uses SIMD
instructions. Therefore, the performance gain does not come entirely from the
algorithm itself.
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4.3.3.2 CIFAR-100

CIFAR-100 is more challenging than CIFAR-10 since it has 100 classes. To be more
expressive, the length of codes is increased to 128 bits to prevent significant performance
loss. Naturally, we can expect that the matching efficiency will drop since the codes are
less compact and the computation cost is higher. For tree/graph-based methods, the
speedup should be comparable to the case in CIFAR-10 since the size of the database
and the dimension of vectors are unchanged. The results can be found in Table 4.2.

Compression-based Tree/Graph-based Hybrid

Metric PQ PQN GH ANNOY HNSW
PQ+
HNSW

PQN+
HNSW

GH+
ANNOY

rmAP(%) −1.50 −13.50 −10.17 +0.97 +0.92 +0.41 −13.27 −9.88
Speedup 5.69× 6.05× 3.84× 212.68× 11.91× 15.75× 16.01× 334.21×

Table 4.2: rmAP(%) and Speedup of ANN algorithms in CIFAR-100. For compression-based
methods, the feature vectors are compressed to 128-bit codes.

The biggest difference in CIFAR-100 compared to the case in CIFAR-10 is that
we observe significant performance loss in deep hashing methods PQN and
GH. The main challenge for PQN and GH is that, as the code length is longer, there
are more parameters to train. A model with more parameters generally requires more
training data, but the scale of the training set is the same in CIFAR-10 and CIFAR-
100. During the training, we consistently met the overfitting problem, albeit multiple
groups of parameters have been tried. People can argue that with more data available
the methods may still work, but data is expensive in real-world applications.

4.3.4 Discussion

In this section, we decide the list of methods that will be integrated into the system
based on the results of the experiments on the prototype.

In short, we discard PQN, GH and the hybrid methods that are built upon them.
Although recent research in compression-based methods heavily focuses on deep hashing
methods, they are difficult to train and may lead to significant performance loss in more
complex datasets. Besides, in the final system, we would prefer that the model can
generalize well across different datasets such that retraining is unnecessary. But with
PQN and GH, we always need to retain the model if the length of codes is changed,
which frequently happens.

ANNOY is kept due to its particularly high efficiency. As a method that is widely
used by practitioners, it ensures our system has attractive matching performance. Dur-
ing the preliminary tests, the proposed hybrid method outperforms PQ or HNSW alone
in search efficiency. We would like to investigate how it performs in real applications.
For comparison purposes, PQ and HNSW will also be incorporated into the system.
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4.4 System Performance

4.4.1 System

The prototype described in Section 4.3.1 can handle relatively simple datasets, but does
not perform well with more challenging datasets since the feature extractor is too simple
and does not extract high-quality features. Apart from dragging mAP down, a more
serious problem is that mAP may not be a good indication of the performance of ANN
methods anymore. If features of different objects mix together, finding neighbours of
the query vector more accurately will not necessarily lead to a higher mAP. In extreme
cases, it is possible that the mAP does not change much even ANN algorithms perform
badly, or drop a lot when they perform well.

Therefore, introducing a more delicate feature extractor is necessary. In this thesis,
we directly apply the model proposed in [71] and its corresponding pretrained param-
eters provided by the authors. Instead of using the output of a FC layer as the global
feature, a pooling method called Gem pooling is proposed to embed local feature ma-
trices and generate 2048D feature vectors. We display an illustration of the pipeline in
Fig. 4.7.

Figure 4.7: The pipeline of the search engine. As in the prototype, the reranking model is
not considered since it is a post-processing procedure of nearest neighbour search. The CNN
backbone of the feature extractor is ResNet101 and Gem Pooling is applied to embed local
features [71].

4.4.2 Datasets

Using datasets that are initially designed for classification can be reasonable if we relax
the condition of ‘similar’, as objects depicted by two images belong to the same class.
But a more common and challenging use case would be the search for an object in a
database of images, e.g., a specific type of car. For instance, a historian may want to
learn more about a particular building that is depicted in a painting. To train and test a
model that is able to achieve such needs, people collect images from different viewpoints
and under different light conditions of a set of objects to create a dataset. A ground file
is usually provided, indicating the true matches of each query. In this research, we test
our model on various commonly used datasets in image retrieval for benchmarking.
Since we attach extra attention to the application in the field of historical research,
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we have also created a dataset containing images of ancient relics, manuscripts, and
paintings.

Retrieval-SfM-120k The extractor we adapted from [71] is trained on retrieval-SfM-
120k introduced in [70]. The dataset contains 551 reconstructed 3D models (133,659
images), 10% of which are training queries. The images are mainly about famous
architecture all over the world. Since we use parameters provided by the authors
directly, we do not need to download and process this dataset.

Oxford5k It contains 5062 images of 11 Oxford landmarks. For each landmark, 5
possible queries are given, which makes 55 queries in total. The label of an image can
be ‘Good’, ‘OK’, ‘Bad’, or ‘Junk’, where the first two indicate that at least 25% of
the object is clearly visible, and the last two mean that less than 25% of the object is
visible or the image is highly distorted.

Paris6k Paris6k contains 6412 images of 12 Paris landmarks. Still, each landmark
has 5 queries so there are 60 queries we can test. The labels have the same meaning
as in Oxford5k. Oxford5k and Paris6k were created in 2008 and have been used for a
long time to test the performance of image retrieval systems. Despite their small scale,
almost all the research in image retrieval reports the results on Oxford5k and Paris6k.

Revisited Oxford5k (ROxford5k) In [69], researchers argued that there are some
annotation errors in the standard Oxford5k and Paris6k. They revisited annotations
as ‘Easy’, ‘Hard’, ‘Unclear’, and ‘Negative’, introduced 15 new queries, and defined
three different evaluation protocols ‘Easy’, ‘Medium’ and ‘Hard’ based on the scope of
images that should be retrieved.

Revisited Paris6k (RParis6k) Similar operations have been done in Paris6k. The
label information of a dataset is indeed extremely important. If there are errors in
the annotations, mAP will be meaningless and be unable to indicate the performance
of algorithms. From this perspective, revisited datasets are of higher quality and are
gradually being used in more and more studies.

100k Distractors Apart from annotation errors, the limited number of images in
Oxford5k and Paris6k still is a problem. As discussed before, retrieval efficiency is also a
critical factor for an image retrieval system, but results on (R)Oxford5k and (R)Paris6k
tell little about efficiency differences of each method: even linear scan can perform
well. Therefore, 100k distractors downloaded from Flickr using 145 popular tags are
added into (R)Oxford5k and (R)Paris6k to generate (R)Oxford105k and (R)Paris106k.
Except for expanding datasets, another function of those 100k distractors is to enrich
the variety of the datasets and make feature vectors more scattered.
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Google Landmarks (GLM) As a more challenging assessment, we also test on GLM
version 2 introduced in [92], which is a million-scale dataset. It has 762k index images
of 101k landmarks, which serve as our database, and 118k query images, 1% of which
provide the IDs of matching images. GLM is by now one of the most realistic datasets,
containing a wide range of landmarks and having large intra-class variability. From the
official ground truth file, we can see that among 762k database images, there are usually
less than 10 matches. Considering all the factors above, GLM is a very challenging
dataset and even the most advanced algorithms can only achieve a mAP around 20%.

Custom For most datasets in image retrieval, the images are about architectures
or landmarks. In historical research, however, the scope of the query can be much
larger. Therefore, we create a custom dataset that contains 30 query images and 1236
database images including landmarks, manuscripts, sculptures, paintings, etc. As in
(R)Oxford5k and (R)Paris6k, we add 100k distractors to expand the custom dataset.

4.4.3 Graphical User Interface (GUI)

The final objective is to build a working image search engine, which means that only
reporting numbers is not enough. There should be an easy-to-use user interface that
accepts query images and displays retrieved images. Considering this, a simple web
application is built using Flask, a micro web framework written in Python. The initial
interface before inputting anything is shown in Fig. 4.8. There are buttons to choose
and submit query images. When the searching is completed, the query image and
the retrieved images will be displayed under ‘Query’ and ‘Results’, respectively. An
example is shown in Fig. 4.9.

Figure 4.8: The graphical user interface of the image search engine. Click ‘Choose File’ to
select intended query images, then click ‘Submit’ to upload. The uploaded query image and
its corresponding matching images will be displayed after the retrieval procedure is finished.

4.4.4 Results

4.4.4.1 (R)Oxford and (R)Paris

We summarize the results of rmAP(%) and speedup in (R)Oxford5k, (R)Paris6k,
(R)Oxford105k and (R)Paris106k in Table 4.3. Revised datasets, as mentioned be-
fore, have three evaluation protocols: ‘Easy’, ‘Medium’ and ‘Hard’, denoted by ‘E’,
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Figure 4.9: An example of the interface is when a search is finished. The relevant paths of
matches are shown below the images. Since the naming of images of each dataset follows
certain rules, we can roughly know the performance of retrieval.

‘M’, and ‘H’, respectively. Since in revised datasets, only the labels have been changed
and the database images are the same, the matching time of original datasets and re-
vised datasets should be similar (if not the same). Therefore the speedups of original
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and revised datasets are regarded as the same and calculated using the average of their
matching time.

Metric Dataset PQ ANNOY HNSW
PQ+
HNSW

rmAP(%)

Oxford5k −2.29 0.00 −0.28 −2.28

Paris6k +1.32 +0.02 −0.15 +1.30

Oxford105k −22.32 0.00 −2.12 −22.17

Paris106k +0.02 +0.12 −0.14 +0.07

ROxford5k
E:−1.01
M:−7.34
H:−7.43

E:0.00
M:0.00
H:0.00

E:−0.53
M:−0.35
H:−0.14

E:−1.00
M:−7.43
H:−7.69

RParis6k
E:−0.36
M:+2.40
H:+5.85

E:0.00
M:0.00
H:0.00

E:−0.16
M:−0.29
H:−0.28

E:−0.57
M:+2.29
H:+5.79

ROxford105k
E:−25.88
M:−18.99
H:−13.41

E:0.00
M:0.00
H:0.00

E:−0.04
M:+2.06
H:+0.06

E:−25.82
M:−18.98
H:−13.45

RParis106k
E:−5.48
M:−0.45
H:+2.52

E:0.00
M:0.00
H:0.00

E:−0.36
M:−0.13
H:+0.09

E:−5.53
M:−0.69
H:+2.54

Speedup

(R)Oxford5k 9.59× 20.90× 3.92× 4.43×

(R)Paris6k 9.80× 16.82× 4.14× 5.98×

(R)Oxford105k 14.69× 250.04× 32.44× 64.40×

(R)Paris106k 13.88× 222.99× 33.98× 65.69×

Table 4.3: rmAP(%) and speedup of ANN algorithms in (R)Oxford and (R)Paris. ‘E’, ‘M’,
and ‘H’ stand for ‘Easy’, ‘Medium’, and ‘Hard’ mode in revisited datasets, respectively. Since
revised datasets and original datasets have the same amount of database images, their speedup
should be the same. For PQ, the length of codes is 128 bits. Cases with significant (more
than 10%) performance loss are bolded.

From Table 4.3, several facts can be observed:

• PQ introduces significant performance loss in (R)Oxford105k, while still perform-
ing well in (R)Paris106k. This may be because features of each landmark aggre-
gate better in Paris5k, leading to less quantization error with the same number
of bits. If more bits can be assigned, we should be able to see performance im-
provements in Oxford datasets, which is verified in Table 4.4. However, although
improved, the performance is still not satisfactory. Moreover, continuing to in-
crease the number of bits will not make it any better.

• Tree/graph-based methods have very comparable performance to linear scan.
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Metric Method Oxford5k Oxford105k ROxford5k ROxford105k

rmAP(%)

PQ(128 bits) −2.29 −22.32
E:−1.01
M:−7.34
H:−7.43

E:−25.88
M:−18.99
H:−13.41

PQ(192 bits) +0.46 −15.16
E:+0.64
M:+0.64
H:+0.90

E:−20.06
M:−15.25
H:−13.40

Table 4.4: rmAP(%) of PQ with 128-bit codes and 192-bit codes in Oxford datasets. Perfor-
mance of the latter is consistently better, but still not satisfactory.

They are able to retrieve neighbours in the context of ℓ2 distance efficiently and
accurately. But the speedup of them in small-scale datasets is not so significant
as in large-scale datasets.

• The performance of PQ+HNSW highly depends on the performance of PQ. Its
speed advantage over PQ or HNSW alone becomes significant only in large-scale
datasets.

4.4.4.2 GLM

GLM is a million-scale dataset. If no ANN algorithm is applied, i.e., if we search by
linear scan, the waiting time is about 2 seconds. The ideal situation is to reduce it to
several milliseconds, allowing more budget for feature extraction and reranking. From
Table 4.5, we can see that HNSW and ANNOY can help us fulfil this requirement
without much performance loss.

Metric PQ ANNOY HNSW
PQ+
HNSW

rmAP@100(%) −3.66 −1.07 −0.08 −3.69
Speedup 12.58× 313.50× 110.17× 35.45×

Table 4.5: rmAP@100(%) and speedup of ANN algorithms in Google Landmarks. For PQ, the
2048D feature vectors are divided into 16 sub-vectors, each of which has 213 sub-codewords.
The mAP@100 of linear scan is 10.70, and the matching time is around 2 seconds. With
HNSW or ANNOY, the search can be finished in several milliseconds with a small mAP loss.

An unexpected fact is that PQ+HNSW is slower than HNSW, which is contrary to
previous results. This is the cost of too many sub-codewords. To make the mAP of
PQ acceptable, we assign 213 sub-codewords to each sub-vector. Normally it is a much
smaller number, e.g., 28. Recall that for PQ-based methods, we need to construct a
distance table during each query. It turns out that the time of constructing the distance
table is already longer than the total matching time of HNSW.

Despite the longer matching time and inferior retrieval performance, PQ+HNSW is
still a good choice when memory is a concern. ANNOY is particularly unsuitable for
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this situation since a forest of trees needs to be built to ensure high mAP. For example,
in GLM, we construct 100 trees to reach this level of rmAP.

4.4.4.3 Custom Dataset

The results in Table 4.6 are obtained with 100k distractors included, otherwise it is
unnecessary to use ANN methods since there are only 1236 images in the custom
dataset and the values of speedup would be unrepresentative. To keep the performance
loss within reasonable limits, the feature vectors are compressed to 192-bit codes in
PQ-based methods, and the number of trees in ANNOY is 100.

Metric PQ ANNOY HNSW
PQ +
HNSW

rmAP@100(%) −3.98 −3.66 +0.23 −3.97
Speedup 11.60× 47.24× 13.15× 19.71×

Table 4.6: rmAP@100(%) and speedup of ANN algorithms in the custom dataset. For PQ,
the feature vectors are compressed into 192-bit codes. The mAP of linear scan is 77.11% and
the matching time is around 260 milliseconds.

Increasing the number of trees in ANNOY leads to better performance but slower
searching speed. Recall that in (R)Oxford105k and (R)Oxford106k, the speedup of
ANNOY is greater than 200×. Nevertheless, ANNOY still leads to a performance loss
of around 3.66%. In comparison, HNSW is also efficient and has no performance loss.

For this dataset, apart from reporting quantitative results, it is also illustrative
to show some visualizations since the images in this dataset are more relevant to our
application. They can be found in Appendix A.

4.4.5 Discussion

The experimental results above reveal that no method is the best for all datasets.
However, we can wisely select suitable solutions for specific use cases:

• For small-scale datasets (which have less than 10k images), linear scan is sufficient
and super easy to apply.

• If memory is not a concern, use tree/graph-based methods like ANNOY and
HNSW.

– For higher retrieval efficiency, use ANNOY. (Theoretically their matching
time should be comparable, but ANNOY is written in C++ with other opti-
mizations.)

– For better retrieval performance in large-scale datasets, use HNSW.

• If memory is limited, try the hybrid method PQ+HNSW.

We can make it clearer by drawing a decision tree, as is shown in Fig. 4.10.
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Figure 4.10: A road map to a suitable solution.
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Concluding Remarks 5
5.1 Conclusion

This work proposed a pipeline for real-time image retrieval in million-scale datasets,
with a focus on the nearest-neighbour search module that is essential for efficient re-
trieval. Existing ANNmethods from two categories, compression-based and tree/graph-
based, were explored and implemented, including the widely used methods PQ, AN-
NOY and HNSW, and the more recent methods PQN and GH. In addition, we proposed
a set of hybrid methods to get the best of both worlds, compressing high dimensional
feature vectors into compact codes and organizing them as a tree or a graph to enable
non-exhaustive search. The experimental setting of different methods in the original
papers was inconsistent. Therefore, a prototype with a simple feature extractor was
built to conduct comparisons between ANN methods under the same conditions. De-
spite the good results obtained in the papers, our tests on the prototype revealed the
impracticality of deep hashing methods (PQN and GH) on more challenging datasets.
Eventually, we narrowed down the scope of candidate methods to the following meth-
ods: PQ, ANNOY, HNSW, and PQ+HNSW.

To deal with real-world problems, a more advanced feature extractor was incorpo-
rated into the system and extensive tests on various datasets were done using ANN
methods listed above. The results proved that the matching time of a million-scale
dataset can be reduced from several seconds using brute force linear scan to several
milliseconds using ANN methods. Meanwhile, the performance loss can be limited to
an acceptable range. The results also showed that no method is the best under all cir-
cumstances. A roadmap for finding suitable solutions was created, helping practitioners
to make the right decision.

This work contributes to the design of efficient and reliable image-based search
engines. However, both for this module and the whole system, there is room for im-
provement.

5.2 Future Work

Here we list possible directions for future improvements:

• For compression-based methods, recent research focuses on deep methods, trying
to train the features and codewords together to produce more compatible codes.
However, as is discussed in this thesis, their performance in simple datasets like
CIFAR10 is not a good indication of how they will perform in real problems. In
practice, they tend to run into overfitting problems, which limits their usefulness.
Therefore, there is still plenty of work to be done to make them practical.
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• For graph-based methods, a challenge is that the construction of the graph gen-
erally takes very long for large-scale datasets. For example, constructing HNSW
for the Google Landmark dataset takes approximately 1 day. The time cost of
our newly proposed method, PQ+HNSW, is around 12 hours. It is shorter than
HNSW but still a considerably long period. The graph construction can be done
offline in our system so long building time is not constrained. But it brings incon-
venience for parameter tuning and difficulty to scale to larger datasets. Attempts
to reduce the complexity of the building might be highly beneficial.

• For hybrid methods, we have only studied the combination of PQ and HNSW
carefully in this work. But in theory, PQ can be combined with any graph-based
methods that construct graphs based on ℓ2 distance. Moreover, hashing methods
that preserve similarity in the original space and the coding space can be combined
with any tree-based methods. Many other options are worth exploring.
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Visualization: Examples A
Figure A.1: Map of the World by Venetian monk Fra Mauro (1450)
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Figure A.2: Code of Hammurabi
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Figure A.3: Great Colonnade at Apamea
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Figure A.4: Church of Holy Wisdom
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Figure A.5: The Night Watch by Rembrandt van Rijn (1642)
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