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Abstract—On important truck-dominated motorways, a large

share of traffic consists of trucks. Our hypothesis is that these

trucks do not always make optimal routing decisions which

cause inefficiencies in the traffic system. Therefore, route choice

of truck drivers is of interest to both transport planners and

traffic management authorities. The objectives of this paper are

two-fold. First, this paper models on-trip route choices of the

truck drivers. Second, we assess the inefficiencies of those routing

decisions. This paper utilizes Bluetooth data, loop detector data,

and variable message sign data to model the route choices of truck

drivers. To the best of our knowledge, this is the first time that

Bluetooth data have been used for the estimation of route choice

models of truck drivers. The trucks are inferred from Bluetooth

data by applying a Gaussian mixture model-based clustering

technique. We apply both a binary logit model and a mixed logit

model to derive the route choices of truck drivers on a case study

between the port of Rotterdam and hinterland in the Netherlands.

The predictive performance of the model is tested by conducting

out-of-sample validation. The model results indicate truck drivers

significantly value travel distance, instantaneous travel time and

lane closure information en-route. The estimate of travel distance

varies significantly among truck drivers. While 38% of truck

drivers do not take the shortest time path, 48% of truck drivers

do not choose the system-optimal path. These inefficiencies imply

that traffic management solutions have the potential to improve

the performance of truck-dominated motorways.

Index Terms—on-trip, en-route, route choice, truck driver, bi-

nary logit, mixed logit, bluetooth, loop detector, variable message

sign, truck-dominated motorways, freight corridors

I. INTRODUCTION

A large share of traffic consists of trucks on truck-dominated
motorways. Truck drivers navigate through the network by
making routing decisions. However, the routing behavior of
truck drivers may differ from their counterparts since logistics
companies may have provided them with a pre-trip route plan
to reach their destination. Although significant research efforts
are dedicated to understanding the route choices of passenger

The research presented in this paper is a part of the project “ToGRIP-Grip
on Freight Trips” supported by the Netherlands Organization for Scientific
Research (NWO), TKI Dinalog, Commit2data, Port of Rotterdam, SmartPort,
Portbase, TLN, Deltalinqs, Rijkswaterstaat, and TNO.

car drivers, little attention has been devoted to truck drivers
[1]. It is imperative for both transport planners and road
management authorities to understand the routing behavior of
truck drivers. A better understanding of the on-trip behavior
of truck drivers will support the design of appropriate traffic
management solutions to ensure consistent performance of the
truck-dominated motorways.

The studies on modeling route choice can be categorized
into one of two groups based on the availability of the
information to the road user and the instant at which the road
users make a decision about their routes: pre-trip route choice
and on-trip route choice. In pre-trip route choice models, the
road users are assumed to choose their routes before starting
the trip and they are assumed to have perfect information about
the traffic conditions. On the contrary, the on-trip route choice
models assume that the road users may deviate from their
pre-trip routes based on the current traffic conditions [2]. This
paper focuses on on-trip route choices of truck drivers. In this
paper, terms such as routes and path are used interchangeably.

On-trip routing decisions reflect the responses of drivers
towards current traffic information. This information can be
disseminated to the drivers through roadside panels, variable
message signs, or the navigation devices. Previous works
have either used stated-preference (SP) surveys ([3]–[9]) or
revealed-preference (RP) data ([1], [10]–[13]) to derive route
choices of truck drivers. The strengths and weaknesses of both
methods are widely known. SP data have limitations due to
a difference in claimed and observed routing decisions. On
the other hand, RP data can reveal the actual choices of the
truck drivers, generally contextual information is lacking. It
has been suggested by [14] to combine RP and SP data sources
to collect freight data. Until now, the impact of current traffic
information such as lane closures and driving experience based
notion of travel time reliability is only studied in SP studies
([3], [4], [6]). In this paper, we enrich an RP dataset with
contextual information by utilizing multiple data sources to
overcome the limitations of previous RP/SP studies. In the
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context of RP studies, GPS dataset is often used to model
route choices of truck drivers. With advances in technology,
Bluetooth is another cost-effective solution which is used as
an RP data source in this paper. Bluetooth data provide origin
and destination information of vehicles. Previously it has been
used to understand a vehicle’s diversion due to bridge closure
[15] and pedestrian’s route choices at the train station [16].
Besides, we utilize loop-detector data to derive the value of
travel time reliability and variable message sign data to retrieve
lane closure information on a path.

Consequently, the objectives of this paper are two-fold.
First, we utilize Bluetooth data, loop detector data and variable
message sign data to model on-trip route choices of truck
drivers. Second, we evaluate the inefficiencies in their route
choices by presenting a data-driven approach. Since Bluetooth
data do not provide mode classification, a Gaussian mixture
model-based clustering method is applied to extract trucks.
Afterward, we apply both binary logit and mixed logit models
to model the on-trip routing behavior of truck drivers on a
case study between the port of Rotterdam and hinterland. An
out-of-sample validation is conducted to assess the predictive
power of the model. Lastly, we present data-driven metrics
to analyze the efficiencies of the routing decisions of truck
drivers from both user’s and system’s perspectives.

The contributions of this paper are as follows. First, we
present a method to extract trucks from Bluetooth data. Sec-
ond, we present Bluetooth as an RP data source to model the
route choices of truck drivers between the port of Rotterdam
and hinterland in the Netherlands. Third, we study the impact
of lane closures and travel time reliability on observed routing
decisions (i.e., RP setting) of truck drivers in contrast to
previous studies in the SP setting. Fourth, we present data-
driven metrics to assess the efficiency of truck driver’s routing
decisions.

This paper is structured as follows. Section II presents a
literature review. The study area is described in section III.
Section IV presents truck related data extraction method from
Bluetooth data. Section V presents the methodology, model
specification, and choice data. The results of the estimated
model are presented and discussed in section VI. Section
VII discusses the efficiency of on-trip routing decisions, and
section VIII concludes the paper.

II. LITERATURE REVIEW

This section presents a literature review for the key concepts
used in this paper: route choice modeling of truck drivers and
mode classification using Bluetooth data.

A. Route choice modeling of truck drivers

SP surveys and GPS data (RP) have been primarily used
to collect freight data. In [3], a logit model is developed
to analyze the impact of variable message signs on driver’s
diversion decisions. The data is collected via an on-site survey
in the form of a questionnaire. The study further explores
how the diversion behavior of truck drivers differs from non-
truck drivers. They note that the diversion behavior of truck

drivers may be restricted since they have less feasible routes to
follow. The familiarity with a route is found to be a significant
variable for truck drivers. In [4], the response of truck drivers
is investigated towards variable messages signs under incident
occurrence. They conduct a stated-preference survey of about
100 truck drivers operating in Athens, Greece. A random-
effects ordered probit model has been utilized to model the
truck driver’s response to diversion. Their results indicate that
the long delay, displayed through variable message signs and
the availability of an alternative route increase the probability
for truck driver diversion.

A stated choice experiment is conducted in [5] to analyze
the route choices of truck drivers. The questionnaire is filled by
truck drivers and a contact person from the trucking companies
located in the Eindhoven region, the Netherlands. Using a
mixed logit model, their results indicate that the truck drivers
and planners have a preference for the highways, shortest time
route and uncongested route. In [6], the route choices of truck
drivers are explored under variable risk situations. In their
experiments, the truck drivers prefer a risk-averse route while
choosing between a short and uncertain route and a longer but
more certain route. Their findings suggest that truck drivers
value reliability more than the shortest path.

In [7], 252 truck drivers in the United States and Canada
are interviewed to understand their decision-making process.
[8] utilizes the same data and estimates a random effects logit
model. The findings suggest that there exists a wide variation
in truck driver’s route choices. Other factors such as driver
employment terms, bearer of toll costs, driver compensation
methods, shipment characteristics and magnitude of delays
affect their decisions. For example, the results reflect that the
truck drivers avoid the toll roads when they are responsible
for the cost but they become indifferent to the toll cost when
they are not responsible for the cost.

In [9], a survey is sent to the trucking companies, which
include shippers, carriers and receivers, in Washington (WA)
state, United States to understand their routing priorities. The
data is analyzed for three different latent classes. The results
indicate that the long-haul providers value travel distance, refu-
eling locations, parking availability, size and weight limits, and
hours of service limit as contributing factors in determining
their route choices.

GPS data have also been used by the researchers to under-
stand the diversity of the routes chosen by truck drivers and
to model their routing decisions. In [10], the GPS records of
the trucks, hosted at the American Transportation Research
Institute (ATRI), are analyzed for the routes chosen by truck
drivers between an origin-destination (OD) pair. The findings
can be valuable for choice set generation schemes. In [11],
the diversity of the route choices are analyzed both for short-
haul trucks and long-haul truck drivers. Their findings indicate
that the long-haul truck drivers, in contrast to short-haul truck
drivers, prefer alternative routes if there is high travel time
variability on the most used route. For both short and long-
haul truck drivers, OD pairs with a higher number of observed
trips lead to more number of unique routes. Observing the



route choices of the trucks can be applied to generating the
choice set for modeling purposes.

In [12], the route choices of long-haul truck drivers are
modeled using the GPS data set collected for the U.S. highway
network. In most of the cases considered in this study, the
truck drivers have to make a choice between the route going
through downtown and a bypass route. They develop a binary
logistic model by using travel distance and travel time as the
explanatory variables. Their findings suggest that the truck
drivers are primarily travel time minimizers since the time
parameter is significantly higher than the distance parameter.
In [1], an error component logit model is used to analyze the
route choices of the long-haul truck drivers in England using
GPS data. The results indicate that truck drivers prefer routes
with low travel cost and travel time. For urban freight truck
drivers, a route choice model has been developed in [13] by
utilizing the truck GPS data from the Tokyo metropolitan area.
The route choice model is based on the concept of maximum
route-overlapping ratio developed by [17]. The explanatory
variables are types of roads and their respective load limits.
The results indicate that truck drivers prefer the roads which
allow more load to be carried.

A summary of studies on route choice modeling of truck
drivers is presented in Table I. The RP based studies use travel
distance and travel time, type of roads, and load limits as
key explanatory variables. In contrast, SP-based studies look
further and use variable message signs, roadside amenities,
driving experiences, and the like as other explanatory vari-
ables. This paper, being an RP based study, tests the effect of
lane closures and travel time unreliability on on-trip routing
decisions of truck drivers by utilizing loop detector data and
variable message sign data.

B. Travel mode classification using Bluetooth data

Bluetooth data do not provide modal information. Previous
works have used both supervised and unsupervised learning
schemes for mode identification. In [18], a Bluetooth based
detection model is proposed to distinguish among three dif-
ferent modes (autos such as passenger cars, motorcycles, and
trucks; cyclists; and pedestrians) using a genetic algorithm and
neural network in a supervised learning setting. In [19], the
class of Bluetooth device and the strength of the signal are
utilized to distinguish between motor vehicles and bicycles.
This approach, however, requires information about the MAC
addresses which may not be available in general due to privacy
regulations. Based on the travel time observations between two
Bluetooth sensors, [20] utilize clustering methods to classify
the road users (car drivers and cyclists) into different user
classes. They report that Gaussian mixture models work better
than the k-means when tested over different road segments.
Above studies have used clustering to distinguish between
the modes with different mechanical properties. This paper
classifies passenger cars and trucks which share the same road
space and have similar mechanical properties.

III. STUDY AREA

The study area is selected based on the locations of Blue-
tooth sensors and their ability to detect the passing traf-
fic. Moreover, it is located near the port of Rotterdam and
witnesses high truck percentages. The study area comprises
the motorway ring (A20, A15, A16, and A4) surrounding
Rotterdam in the Netherlands (see Figure 1). We consider the
traffic going towards the port of Rotterdam (node B) from
the hinterland (node A). Two route choices, marked by path 1
and 2, are considered. Each path is divided into two segments.
Segment 1 runs from Bluetooth station 1 to 3, segment 2 from
Bluetooth station 3 to 2, segment 3 from Bluetooth station 1
to 4 and segment 4 from Bluetooth station 4 to 2.

Fig. 1: Map showing the origin, destination and location of
four Bluetooth stations

IV. IDENTIFYING TRUCKS FROM BLUETOOTH DATA

This section describes the data sources and the pre-
processing steps so that the data can be utilized for
route choice modeling. The Bluetooth data is ana-
lyzed with python 3.6 and the code is available at
https://github.com/salilrsharma/Bluetooth.

A. Description of Bluetooth data

ToGRIP-Bluetooth service provides the Bluetooth data col-
lected by the port of Rotterdam. When queried, the service
returns data in a json format. The real MAC address is con-
verted to an 11 digit vehicle ID using hashing thus the privacy
is retained at the user level. The Bluetooth sensor records the
time stamp and the strength of the vehicle identification for
every MAC address associated with a passing vehicle. The
travel time between two Bluetooth sensors can be estimated
from the time stamps of the corresponding MAC address.
Bluetooth data retrieved from ToGRIP-Bluetooth service are
coded with UTC time zone; therefore, it is necessary to convert
UTC time to CET/CEST depending on the time of the year.

1) Preliminary analysis: The study area comprises 4 Blue-
tooth stations. Each path is divided into two segments (see
Figure 1) marked by the locations of Bluetooth stations. For
segments 2 and 4, clusters of travel times can be observed (see



TABLE I: Summary of route choice modeling of truck drivers

Research Design

Studies Data Study focus Model Variables
[1] GPS data Motorway, A Road, B

Road in England
Error component logit model Travel cost (function of free flow travel time and

type of roadway) and travel time
[12] GPS data Highway in USA Binary logistic model Travel distance and travel time
[13] GPS data Tokyo Metropolitan

area, Japan
Maximum route overlapping
ratio model

Type of roads and load limit

[3] Survey Borman expressway
in USA

Binary logit model Gender, familiarity with the route, driving expe-
rience on Borman expressway, content of vari-
able message sign, and trust in that information

[4] Survey Athens metropolitan
area, Greece

Random-effects ordered probit
model

Source of information, driving experience in
congested conditions, professional driving expe-
rience, provision of alternative route, content of
variable message sign, vehicle ownership, and
perceived utility from variable message sign

[5] Survey Trucking companies
located in Eindhovan
region, Netherlands

Mixed logit model Travel time, congestion, road category, road
pricing, roadside amenities, area surrounding the
roadway

[8] Survey Highways in USA
and Canada

Random effects logit model Travel time, toll, delay, route passing through
downtown, and entity responsible for paying
tolls

[9] Survey Washington State
(WA) freight
companies in USA

Item response theory and la-
tent class analysis

Travel distance, stops, tolls, roadside amenities,
hazardous material, load limits, driver availabil-
ity, and driving hours restrictions.

This paper Bluetooth data, loop de-
tector data, and variable
message sign data

Motorway (A-type) in
the Netherlands

Binary logit model, random
coefficient mixed logit model
with panel effects

Instantaneous travel time, travel distance, travel
time unreliability, and lane closures

Figure 2). The clusters could be attributed by the differential
speed limits observed in the Netherlands. The truck drivers
weighing more than 3.5 metric tonnes have a speed limit of
80 km/h on motorways. However, the clusters are not observed
for the segments 1 and 3. It can be inferred that the clusters
in travel time plots are observed over short segments of the
motorways with restricted route choice possibilities.
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Fig. 2: Bluetooth travel time observations on 24 Nov. 2017

2) Outlier removal from Bluetooth field observations:

Before applying a clustering algorithm, it is necessary to
remove the outliers. Tukey’s method [21] has been employed
to detect and remove the outliers because of its resistance to
extreme values as it uses quartiles. Tukey’s method utilizes the

inter-quartile range (IQR) to detect outliers. IQR is the distance
between the lower (Q1) and upper (Q3) quartiles. The points
lying outside the interval [Q1-1.5 ⇥ IQR, Q3 + 1.5 ⇥ IQR]
are marked as possible outliers.

B. Clustering Bluetooth data based on travel time

Based on preliminary analysis, it has been observed that
the travel time clusters are formed for certain segments of the
motorways. However, the separation may not be clear for all
segments. For instance, Figure 2 shows that the clusters are
fuzzy for segment 2. Therefore, a Gaussian mixture model-
based clustering technique [22] has been employed in this
paper. The purpose of clustering the travel time observations
is to place them into two groups: fast and slow vehicles. An
example of clustering is shown in Figure 3. For congested
conditions, we observe more vehicles in the slow vehicles’
group. Next, we present a method which uses speed over the
full path to extract trucks from the slow vehicles’ group.

C. Truck-related data extraction

A general methodology is presented here based on the
learnings from the preliminary analysis. The methodology
consists of the following steps.

1) For the said time period, i.e., four weeks, find all
the vehicles that have passed through a path. Remove
outliers and store the vehicle Ids in a master list.

2) Identify a short stretch of the path where vehicles can
be clustered based on travel times. Find the common
vehicle Ids that belong to the slow vehicle cluster and
master list from step 1.

3) From the common vehicle Ids, select the vehicles which
have traversed the path with a maximum speed of 80
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km/h. This speed threshold refers to the speed limit for
trucks on motorways in the Netherlands. The vehicle
Ids thus extracted can be classified as trucks and used
for route choice model estimation. Since outliers are
removed in step 1, the trucks extracted from this method
will be the ones that have reached their destination from
the origin without making a stop in between.

V. ROUTE CHOICE MODEL

This section describes a binary logit and a mixed logit model
and their model specifications to derive on-trip route choices of
truck drivers. The statistics of the data collected for modeling
purposes is also discussed. Table II presents the notations that
are used throughout this paper.

TABLE II: Notations used in this paper

Variable Description

ITT Instantaneous travel time (min)
TD Travel distance (km)
LC Lane closures
TTUR Travel time unreliability
SD Standard Deviation
Min Minimum
Max Maximum
ITTP1, TDP1, TTURP1, LCP1 P1 denotes path 1
ITTP2, TDP2, TTURP2, LCP2 P2 denotes path 2
L(�0) Initial log likelihood
L(�̂) Final log likelihood
⇢̄2 Adjusted McFadden’s rho-squared

A. Theoretical background

For route choice modeling, a multinomial logit (MNL)
model (used as binary logit in this paper) and a mixed
logit model with panel effects are used. The MNL model
is a discrete choice model based on random utility theory
which assumes that the individual is perfectly rational and
selects the alternative with the highest utility. However, the
analyst is assumed to have incomplete information; therefore,
uncertainty has to be taken into account. Therefore, the utility
is modeled as a random variable so as to reflect the uncertainty

[24]. The utility Uin that an individual n receives from
choosing alternative i from the choice set Cn is described
by the following equation.

Uin = Vin + ✏in (1)

where Vin is the deterministic part of the utility and ✏in is
the error term which is independent and identically Gumbel
distributed.

The alternative with the highest utility is chosen. The
probability that alternative i is chosen by the individual n
from choice set Cn is given by:

Pin = Pr(Uin � Ujn, 8j 2 Cn) (2)

Vin involves the explanatory variables while distributional
assumptions are made on the joint distribution of error terms
✏in = (✏1n, ..., ✏jn). Therefore, the probability that a given
individual n chooses alternative i from the choice set Cn is:

Pin =
eVin

X

j2Cn

eVjn
(3)

The MNL model falls shorts in explaining the taste het-
erogeneity among the individuals in a population; besides,
it cannot capture the panel effects induced by the repetitive
decision making of the individuals. The mixed logit (ML)
model obviates these limitations of the MNL model. Following
[25], the ML model can be expressed as follows.

Pin =

Z
Lin(�)f(�)d� (4)

where Lin(�) is the logit probability evaluated at parameters
�. f(�) is a density function which denotes that estimates vary
over individuals or decision makers.

To account for repeated choices made by each individual,
logit probability can be expressed as follows.

Lin(�) =
TY

t=1

Litn (5)

which involves a product of logit probabilities, one for each
time period, i = {i1, ..., iT }.

B. Model specification

Following attributes are considered for the paths and utility
is specified as a linear sum of these attributes: total distance
of a path, instantaneous travel time of a path, travel time
unreliability of a path, and the maximum number of lanes
closed along a path. Road pricing is not implemented in the
Netherlands thus it is not considered.

It is assumed that truck drivers take into account the current
traffic conditions as well as their own experience in the past
to make routing decisions on-trip. Current traffic conditions
may be disseminated to truck drivers through roadside panels,
navigation devices, or logistic companies. For the ML model,
we consider that these attributes are normally distributed
around a mean and with a standard deviation.



C. Choice data

For data preparation, a period of four consecutive weeks,
excluding the weekends, from 30-10-2017 to 24-11-2017 has
been selected which contains 20 workdays. Out of 1671
observations, 1293 truck drivers choose path 2 and 378 choose
path 1. While travel distance is a fixed variable, other variables
are computed at the instant a truck driver reaches the decision
node (i.e., node A in Figure 1).

1) Instantaneous travel time of a path: Loop detector data,
provided by Regiolab-Delft service, is used to compute instan-
taneous travel times. MATLAB version R2018a is used to call
Regiolab-Delft service. Loop detectors are installed at every
500 m of motorways in the Netherlands. It is assumed that
the traffic conditions do not change for every section between
the detector locations. Aggregated speed values for every
detector location are retrieved every minute. Then for every
such section, the instantaneous travel times are calculated from
the speed data. For every path, the travel times of individual
sections are added.

2) Travel time unreliability of a path: �skew is selected to
measure the travel time unreliability of a path. This indicator
captures the skewness of the day-to-day travel time variabil-
ities. In contrast to other measures of unreliability which are
sensitive to extreme events or outliers, �skew can be interpreted
as the likeliness of incurring a very bad travel time (relative
to the median) [26]. Mathematically, it is defined as the ratio
of the distance between the 90th and 50th percentile and the
distance between the 50th and 10th percentile.

�skew is estimated for different time periods of a day. For
each time period of a day, the previous 10 days of travel
times are used to arrive at the value of �skew, which thrusts
upon the value individuals associated with their recent driving
experiences. Four time periods are considered: morning peak
(06:30-09:30), day (09:30-16:00), evening peak (16:00-19:00),
and late evening to early morning (19:00-06:30).

3) Maximum number of lanes closed along a path: The
lane closures are retrieved from VMS data provided by the
Regiolab-Delft service. The lane closures denote a reduction
in capacity which could be a proxy for the incidents. This
variable is added to test if truck drivers change their routes
in response to an incident downstream. At the instant truck
drivers reaches the decision node, we select a maximum
number of lanes closed along a path in our analysis.

4) Descriptive statistics of choice data: Descriptive statis-
tics of choice data along with the correlation matrix and
variance inflation factor (VIF) are reported in Table III. The
cells for variables TDP1 and TDP2 are empty in the correlation
table since these values do not vary across the dataset. Since
the value of VIF is less than 5, the effect of multicollinearity
on the parameter estimates can be ruled out [23].

VI. MODEL ESTIMATION AND VALIDATION

The route choice models are estimated using PythonBio-
geme version 2.6 [27]. We report and compare the results
obtained from both binary logit and mixed logit model.

A. Binary logit model

Table IV presents the estimates of the route choice model.
The signs for travel time, travel distance, travel time unre-
liability, and lane closures are all negative as expected. The
alternative specific constant is found to be insignificant and
its effect is observed to be subsumed by the travel distance
parameter.

For out-of-sample validation, the size of the validation set
is chosen as 20%. We randomly divide the whole dataset
into estimation and validation dataset. For every estimation
and validation dataset, we estimate the model parameters
and calculate model fit, i.e., average log-likelihood, on the
validation dataset. This procedure is repeated 500 times. Figure
4 shows the distribution of the parameter’s estimates computed
from 500 different estimation dataset. The mean of parameter
estimate is represented by the black dashed line. The expected
value of the average log-likelihood is -0.520 after analyzing
the model fit based on 500 samples (see Figure 4). The model
fit is within -0.69 (equal-probability model) and zero which
shows the good predictive power of the binary logit model.
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Fig. 4: Distribution of parameter estimates and average log-
likelihood for binary logit model

B. Mixed logit model

A simulation was performed using 500 random draws.
Table IV reports the results obtained from the mixed logit
model. The ML model assumes that truck drivers have a taste
sensitivity towards path attributes, and it also accounts for
panel effects. The signs for travel time, travel distance, travel
time unreliability, and lane closures are negative as expected.

The ML model is compared with the binary logit model.
The likelihood ratio test is: -2(-867.758 + 848.337) = 38.842.
The number of degrees of freedom for this test is equal to the
difference in a number of parameters of both binary logit and
ML model, i.e., 8-4=4. The threshold for the test at 5% level is
therefore �2

4,0.05 = 9.488. Since 38.842>9.488, we can reject
the hypothesis that the two models are equivalent at 5% level.
Therefore, the ML model outperforms the binary logit model.

The estimate of travel distance varies significantly in the
population. About 81% of the distribution is below zero and



TABLE III: Descriptive statistics of dataset and correlation between variables

Descriptive statistics Correlation matrix

Variable Mean SD Min Max ITTP1 TTURP1 LCP1 TDP1 ITTP2 TTURP2 LCP2 TDP2 VIF

ITTP1 22.36 0.42 15.00 68.06 1.000 2.245
TTURP1 3.92 7.47 0.18 40.58 -0.184 1.000 1.151

LCP1 0.26 0.49 0.00 3.00 -0.207 0.175 1.000 1.085
TDP1 27.60 0.00 27.60 27.60 – – – – 1.983
ITTP2 21.19 6.19 14.55 57.12 0.559 -0.217 -0.061 – 1.000 1.616

TTURP2 4.56 7.76 0.37 50.72 -0.168 0.178 0.135 – -0.221 1.000 1.121
LCP2 0.18 0.49 0.00 3.00 0.483 0.144 -0.056 – 0.066 0.128 1.000 1.558
TDP2 23.10 0.00 23.10 23.10 – – – – – – – – 1.998

19% above. This implies that four out of five truck drivers
prefer the shortest distance path. For one out of five truck
drivers, utility increases with the longer route.

TABLE IV: On-trip route choice model for truck drivers

Mixed logit with

Binary logit panel effects

Robust Robust

Parameters Value t-test Value t-test

ITT Mean -0.0866 -6.39 -0.152 -4.89
SD 0.0197 0.21

TD Mean -0.262 -19.54 -0.463 -6.33
SD 0.512 4.40

TTUR Mean -0.00594 -1.10 -0.00899 -0.98
SD -0.00125 -0.53

LC Mean -0.229 -2.36 -0.414 -2.35
SD -0.493 -1.03

Number of observations 1671 1671
Number of individuals 1419 1419
L(�0) -1158.249 -1158.249
L(�̂) -867.758 -848.337
⇢̄2 0.247 0.261

The estimate of travel time unreliability is found to be
insignificant even after taking into account the panel effects.
The choice data reveal that few truck drivers make the journey
between the same origin and destination more than once within
a month. Since the notion of travel time unreliability builds
upon experiences, the dataset does not have that many truck
drivers traveling between the same OD pair more often.

VII. COMPUTING EFFICIENCY OF TRUCK DRIVERS’
ROUTING DECISIONS

The previous section has reported key attributes which truck
drivers consider while making on-trip routing decisions. In this
section, we assess the efficiency of those routing decisions
from both the user’s and system’s perspectives.

A. User-centric routing efficiency

In this paper, an user-centric decision can be defined as the
one where truck drivers arrive at a decision node and choose a
path with least instantaneous travel time. Figure 5 shows that
62% of truck drivers choose the shortest time path and this
proportion increases when the time difference between paths
increases. The dataset is further divided into regular conditions
(no lane closures on any path) and lane closures on any path.
It is observed that truck drivers make more conscious choices

when they are informed about the lane closures. Moreover,
truck drivers have bounded rationality as they are more likely
to choose the shortest time path if the time difference between
the two paths is more than 10 minutes.
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Fig. 5: Efficiency of truck drivers’ routing decisions

B. System-optimal routing efficiency

In [28], the vehicles are assigned to the minimum time-
dependent marginal travel time paths to achieve a system-
optimal state. However, it requires other data such as an
OD matrix and link cost functions. In this paper, a system
optimal routing decision is approximated as the one where
truck drivers arrive at a decision node and choose a path
which satisfies two criteria simultaneously: the path should
have enough spare capacity and the instantaneous travel time
on it should not be worse than that of shortest time path.
The least instantaneous travel time condition guarantees that
such routing decisions do not increase system-wide travel
time. We use density as an indicator to interpret the spare
capacity of a path. To compute density, we first divide a
path into smaller segments bounded by the loop-detectors.
Then we utilize flow and speed data retrieved from Regiolab-
Delft service to compute section-specific density values. If the
maximum of all such density values is less than a nominal
value of critical density, i.e., 25 veh/km/lane, then that path is
assumed to have spare capacity. The nominal value of critical
density used in this paper aligns with the field-measured value
on a real expressway [29]. Figure 5 shows that 52% of truck
drivers make system-optimal route choices; this proportion



increases when the time difference between paths increases.
If the travel time difference between the two paths is more
than 10 minutes, truck drivers are inclined to make system-
optimal routing decisions.

VIII. CONCLUSION

This paper presents an on-trip route choice model for truck
drivers by utilizing Bluetooth data, loop detector data, and
variable message sign data. This analysis is useful for truck-
dominated motorways where a large share of traffic consists of
trucks. We present a method to extract truck related data from
Bluetooth data by applying a Gaussian-mixture model based
technique. The case study for truck-dominated motorways be-
tween the port of Rotterdam and hinterland in the Netherlands
shows that truck drivers value significantly travel time, travel
distance and lane closures en-route. The mixed logit model
shows that the estimate of travel distance varies significantly
in the population. Three out of five truck drivers choose the
shortest time path, and this proportion increases if they could
distinguish easily the time difference between the alternatives.
Only 52% of truck drivers choose a path with enough spare
capacity or make system-optimal routing decisions. Routing
efficiency can be improved by utilizing traffic management
solutions. We can guide truck drivers effectively at the decision
node. Moreover, dynamic road pricing schemes can be utilized
to alter the route choices of truck drivers.
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