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Preface

I am pleased to present my Master’s Thesis, which is the final step in my Master’s degree in Robotics
at the Delft University of Technology. This thesis explores perceived comfort and safety in automated

driving and how those perceptions relate to physiological signals, specifically focusing on the Galvanic
Skin Response (GSR).

This study is based on experimental data provided by my host company, Siemens Digital Industries
Software. I first conducted an analysis to examine the relationship between passengers’ self-reported
comfort scores and their GSR. Based on the observed correlations, I then explored the potential of the
GSR for predicting passenger comfort using a deep learning approach.

I began with a literature review of similar research, focusing on how previous research addressed the
challenges of subjective comfort ratings and the use of the GSR. This was followed by a statistical
analysis to explore the patterns within the collected dataset. Finally, predictive models were developed
and evaluated to assess the extent to which the GSR, both on its own and augmented with vehicle
dynamics or perception data, can predict perceived passenger comfort.

I hope that the findings presented in this thesis contribute meaningfully to the growing research field
of comfort in automated driving and that fellow researchers can build on insights found in this thesis.

This Master’s Thesis is submitted as one of the requirements for the Master’s degree in Robotics at
the Mechanical Engineering faculty at Delft University of Technology. The presented research was
supervised by Prof. Dr. Ir. Riender Happee of Delft University of Technology, and Ir. Konstantinos
Gkentsidis and Ir. ing. Mathieu Sarrazin from Siemens Digital Industries Software in Leuven, Belgium.

J.A. Scharringa
Leuven, June 2025
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Summary

While the introduction of automated driving offers various potential benefits in terms of enhanced
road safety, improved traffic flow and allowing passengers to engage in non-driving-related tasks, these
advantages depend on public acceptance of the technology. To address this, research on automated
driving has extended from pure technical feasibility to include passenger comfort as an important factor,
as it has been identified as a key factor in improving public acceptance. This thesis contributes to this
research, as it combines the study of perceived comfort and safety in automated vehicles and proposes
predictive models for subjective passenger experience and objective measures.

This thesis draws on data from an experiment conducted by Siemens Digital Industries Software (SISW).
In this Wizard-of-Oz autonomous vehicle study, 32 participants participated as passengers in a ride
conducted by a professional driver through a proving ground track featuring five distinct scenarios: a
pedestrian crossing without visual obstruction, roadworks, a pedestrian crossing with visual obstruc-
tion, a cut-in and a car-following scenario. Each participant completed four laps, alternating between
a predefined calm and aggressive driving style to elicit varied responses. After each scenario, partici-
pants provided subjective ratings of perceived comfort, safety and overall ride comfort. The Galvanic
Skin Response was continuously measured throughout the experiment, alongside vehicle dynamics and
perception data, yielding a comprehensive dataset.

Initial correlation analyses indicated significant correlations between all three self-reported subjective
ratings and the GSR signal. However, when the data were stratified by style, thereby holding the driving
style constant, these associations largely disappeared. These findings suggest that while the GSR is
effective in capturing broad changes in passenger comfort, but fails to capture subtle differences.
Subjective ratings further revealed that participants felt more comfortable and safe around scenarios
involving a pedestrian than in scenarios involving another vehicle, a pattern supported by corresponding
physiological responses. No significant difference emerged between scenarios with versus without visual
obstruction, nor between scenarios in which a pedestrian crossed the road and those in which they
remained stationary.

A state-of-the-art deep learning model, fed with the phasic and tonic components of the GSR signal,
distinguished calm-driven scenarios from aggressive-driven scenarios with an accuracy of 88.61%, un-
derscoring the GSR’s potential as an objective physiological marker of comfort. However, predicting
subjective comfort and safety ratings proved more challenging. Incorporating vehicle dynamics and
perception data yielded marginal gains but failed to achieve satisfactory performance. This shortfall
stemmed from several key challenges: a highly imbalanced dataset biased toward positive responses, the
inherently subjective nature of perceived comfort and safety and the substantial inter-subject variability
of the GSR signal.

To counter these issues, this study combined synthetic oversampling of underrepresented responses with
participant-specific fine-tuning. The best-performing configuration relied solely on the phasic and tonic
components of the GSR and was fine-tuned for each test participant. Under an exact-match criterion,
this configuration reached 58.1% (perceived comfort), 58.4% (perceived safety) and 54.3% (overall ride
comfort); when adjacent classes were also accepted as true positives, these rose to 88.5%, 86.5% and
90.1%, respectively.

These results confirm that GSR is a reliable indicator of broad comfort levels but still struggles to resolve
finer distinctions. The substantial gain in accuracy through user-adapted training further underscores
the high inter-subject variability not only in the GSR signal but also in how individuals perceive comfort,
highlighting the deeply personal and subjective nature of comfort and safety assessment.

The key findings of this thesis research are summarized and submitted to the IEEE International Con-
ference on Intelligent Transportation Systems (ITSC) 2025 and await approval. The appendices provide
a more detailed account of the research process, including comprehensive explanations, conclusions and
visualizations of intermediate results, steps and figures that are not included in the main paper.
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Statement of Purpose

The purpose of this chapter is to frame the scientific paper that forms the core of this thesis around the
presented overarching research question:

How can physiological arousal, measured through Galvanic Skin Response, combined with
vehicle dynamics and perception data, be utilized to understand and predict passengers’
perceived comfort and safety in automated driving?

The presented paper builds upon an earlier version submitted to the IEEE International Conference on
Intelligent Transportation Systems (ITSC) 2025. It has since been revised to include updated findings
and a refined methodology. The paper presents the methodology, key findings and interpretation needed
to address the overarching research question in a self-contained and publishable format.

While the conference paper format required conciseness, this thesis provides comprehensive support-
ing analyses and detailed methodological considerations through its appendices. The supplementary
materials are structured as follows:

Appendix A presents a comprehensive overview of the experimental setup performed by Siemens Digital
Industries Software, including visual documentation. Furthermore, it outlines the data preprocessing
pipelines and presents initial data visualizations.

Appendix B focuses on the analytical part of the research question, specifically addressing how we can
understand perceived comfort and safety and their relationship to physiological arousal. Through a
systematic analysis of the collected data, this appendix examines multiple research sub-questions and
provides an expanded discussion of the findings presented in the main paper, incorporating additional
statistical tests and visualizations that complement the main results.

Appendix C addresses the predictive modeling aspect of the research question. It provides an exam-
ination of the deep learning architecture implemented, investigates various input configurations and
addresses challenges encountered during model employment. The analysis includes comprehensive eval-
uation metrics, presenting results through confusion matrices and Receiver Operating Characteristic
curves, extending beyond the core findings presented in the main paper.

Appendix D contains an acknowledgment statement regarding the use of artificial intelligence tools in
this research, detailing their specific applications.

Through this structure, the thesis combines the conciseness of a publishable scientific paper while
retaining a comprehensive coverage of the material. The main paper provides a focused presentation of
the core research, while the appendices offer methodological depth, detailed analyses and experimental
considerations, allowing readers to engage with the research at different levels of detail.
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Perceived Comfort and Safety in Automated
Driving based on Physiological Signals: Findings
from a Proving Ground Study

Jurjen Scharringa'?, Konstantinos Gkentsidis?>, Mathieu Sarrazin?, Riender Happee', Karl Janssens
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"Delft University of Technology, Netherlands
Siemens Digital Industries Software, Leuven, Belgium

Abstract—With the advancements in automated driving, there
is an increasing focus on passenger comfort and safety, fueled by
the desire to establish a unique user experience identity among
automotive companies. This study investigates the potential of
the Galvanic Skin Response (GSR) as a physiological marker
for assessing user experience. For this purpose, a test study of
32 participants was performed by collecting GSR measurements
and self-reported comfort and safety scores, using a Wizard-of-
Oz setup on a closed test-track over repeated laps, alternating
between distinct driving styles. Statistical analysis revealed the
phasic maximum amplitude and peak count as the features
most strongly correlating with both objective driving style and
perceived comfort and safety ratings. The GSR measurements
were also given as input for a predictive model for classifying
the driving style, yielding an accuracy of 88.61%. General
performance of the same model for perceived comfort and
safety prediction on a five-point Likert scale was, however,
notably lower, whereas participant-specific model calibration
yielded substantially higher performance. This indicates that
while the GSR consistently reflects physiological responses linked
to perceived comfort and safety, the signal exhibits a strong
inter-subject variability, highlighting the necessity of personalized
calibration for accurate passenger-experience assessment.

Index Terms—Galvanic Skin Response, Automated Driving,
Passenger, Perceived Comfort, Perceived Safety

I. INTRODUCTION

Significant progress has been made in the development of
automated driving (AD) over the past years, with AD offering
various benefits, such as improved road safety, optimized
traffic flow and improved mobility to those hindered from
driving, while raising new questions about passenger comfort
and safety [1], [2]. Specifically, with the role of the driver
shifting to that of the passenger in highly automated driving,
defining comfort becomes increasingly complex [3].

Prior to the introduction of autonomous vehicles, studies
on automotive comfort were predominantly focused on in-car
ergonomic factors such as vibration, noise, temperature and air
quality [4], which were largely quantifiable through objective
measures. Now, however, complex psychological cognitive and
emotional factors are introduced to comfort, such as trust,
perceived safety, anxiety and stress, as well as physiological
responses such as motion sickness [5]-[7]. While a well-
agreed-upon definition of comfort is lacking in the scientific
community, there is a broad consensus that comfort is an
inherently subjective measure [8], [9].

Therefore, to study this comfort induced by various sce-
narios, it is necessary to obtain passengers’ subjective feel-
ings, which are typically gathered through interviews and
scales. While these approaches are well-suited for long-term
assessments [10], they suffer from limitations such as low
efficiency, delayed feedback and inconsistent results across re-
peated measures [11]. To enable more consistent and scalable
assessments, recent efforts have been made to link subjective
perceptions of comfort to objective indicators. These include
both vehicle dynamics measures, such as accelerations and
jerks [9], as well as physiological signals that reflect emo-
tional and cognitive states [6]. Physiological signals such as
the Galvanic Skin Response (GSR), Heart Rate (HR), Heart
Rate Variability (HRV) and Electroencephalogram (EEG) offer
insights into passengers’ physiological state and have been
increasingly explored as potential markers for comfort in
automated driving context [11].

This study contributes to a more nuanced understanding of
comfort by investigating how physiological arousal, measured
via the GSR signal, together with vehicle dynamics and
perception data, can reflect and predict passenger comfort and
perceived safety.

The remainder of this paper has the following structure:
Section II provides a brief explanation of the GSR signal,
followed by a review of related works. Section III describes
the experiment, collected data and processing. Section IV
presents the results of both a statistical analysis and predictive
modeling. Finally, section V discusses these findings and their
limitations, and section VI concludes this research and outlines
future work.

II. RELATED WORK

GSR, or Electrodermal Activity (EDA), refers to the change
in skin conductance due to activation of sweat glands triggered
by the sympathetic nervous system in response to emotional
arousal or stress. The signal is measured in microSiemens (1S)
using electrodes on the skin, and can be decomposed into a
tonic and phasic component [12], [13].

The tonic component represents the baseline of the GSR and
is also referred to as the tonic Skin Conductance Level (SCL).
It changes slowly over time, varies widely over different
subjects and increases when stimulation is introduced and



gradually decreases in resting periods. The phasic component
captures rapid fluctuations, small waves superimposing the
tonic signal, known as Skin Conductance Responses (SCRs).
They can occur without an identifiable stimulus (non-specific
SCRs), occurring at a frequency of 3/min at rest and 20/min
during high arousal, or in response to a stimulus (event-related
SCRs) [13], [14].

Given the physiological basis of the GSR and its relation to
arousal and stress, researchers have explored its relationship
with perceived comfort and related states. Dillen et al. (2020)
identified GSR as a significant predictor of passenger comfort
and anxiety, using a comfort and anxiety rating scale [6].
Similarly, Meng et al. (2024) found two features derived
from the GSR signal to significantly correlate with comfort,
measured through a discomfort throttle [11]. Radhakrishnan
et al. (2020) also reported a significant positive correlation
between the frequency of discomfort button presses and the
number of SCRs per minute [15]. In the context of motion
sickness, Irmak, Pool and Happee (2020), Schneider et al.
(2022), Tan et al. (2022), Wagner-Dougles et al (2024) and
Xiang et al (2024) all found significant correlations between
GSR metrics and motion sickness, reported through scales [5],
[16]-[19]. However, a similar effect was not found by Henry
et al. (2023), who did not find a significant correlation with
GSR and subjective motion sickness [20]. Other subjective
states, such as trust, have also been linked to GSR activity.
Walker et al. (2019), Ajenaghughrure, da Costa Sousa, Lamas
(2020), and Miihl et al. (2019) reported significant correlations,
although Miihl et al. found this effect only in real-world
driving, not in driving simulators [2], [21], [22]. Despite these
promising outcomes, several studies report inconsistencies.
Beggiato et al. (2019) found no significant correlation between
GSR and discomfort [8]. Likewise, Niermann and Liidtke
(2020) and Smyth et al. (2021) reported a link between GSR
and their respective subjective measure, motion sickness and
stress, but questioned the reliability and suggested further
research [7], [23].

While many studies report significant correlations between
GSR and various subjective states, the findings remain in-
consistent across contexts, measures and setups. This paper
further investigates GSR as a physiological marker capturing
perceived comfort and safety in automated driving.

III. METHOD
A. Experiment

The experiment was performed on a closed test track at
the Griesheim proving ground of the TU Darmstadt, Germany
(Figure 1), employing a Wizard-of-Oz Autonomous Vehicle
(AV) approach with a human driver controlling the vehicle.
An expert human driver was recruited to perform all the
maneuvers of this experiment consistently with the assistance
of adaptive cruise control functionalities (ACC), ensuring
repeatability across all trials. The ego vehicle, i.e. the Vehicle
Under Test (VUT) in this experiment was a KIA EV6 car.
A second manual-driven vehicle, namely the Global Vehicle

Target (GVT) in this test, was also present, interacting with
the VUT among the different scenarios.

Following the preparation and the start, five distinct test sce-
narios were conducted. All scenarios were performed follow-
ing the specifications of the Euro NCAP test protocol for crash
avoidance systems [24]. The first scenario, Car-to-Pedestrian
Turning Adult (CPTA), featured a pedestrian crossing without
visual obstruction. This was followed by a roadwork sce-
nario, a pedestrian crossing with visual obstruction, Car-to-
Pedestrian Nearside Child Obstructed-50 (CPNCO-50), a cut-
in maneuver (ACC Cut-in CCR) and lastly a car-following
scenario (CCRB). Both pedestrian-related scenarios used a real
human as pedestrian, while the last two scenarios involved
the presence of the manually driving GVT. Each scenario was
confined to a 30-second window. After completing one lap,
the sequence was repeated three times, resulting in four total
laps driven. The first and third laps were driven calm, and the
second and fourth were driven aggressive. These two driving
styles, defined by parameters such as velocity, acceleration and
steering dynamics, were used to evoke different responses.
Their characteristics per scenario are summarized in Table
I. During the first and fourth laps, the pedestrian did not
cross in the CPNCO-50 scenario, introducing an element of
unpredictability.

B. Participant Data

For this experiment, 32 participants (17M, 15F) aged 18 to
82 years (M = 49.4,SD = 21.1) participated in the study.
During the experiment, both self-reported scores and physio-
logical responses were recorded. Each scenario was followed
by a complete stop of the VUT and a questionnaire with
three questions in which the participant evaluated the scenario
on perceived comfort and on a five-item Likert scale ranging
from “very uncomfortable/unsafe” to “very comfortable/safe”,
with the exception of scenario 4 and 5, which were presented
consecutively without intermediate stop. The following three
questions were asked:

1) How safe did you feel during the car ride?

2) How safe did you feel interacting with the [pedestrian,
roadworks, pedestrian, vehicle]'?

3) How comfortable did you find the movement of the
vehicle?

The first question measures general perceived comfort, focus-
ing on how the vehicle’s behavior around the encountered
object and scenario affects the passenger. The second question
targets object-specific perceived safety. The third question
measures the overall ride comfort related to the vehicle’s
motion. Before the experiment, participants completed a pre-
questionnaire assessing their trust in AV and susceptibility
to motion sickness. Upon completing the experiment, they
reported their willingness to adopt an AV featuring one or
both of the presented driving styles.

I'The specific object corresponds to the scenario as described: pedestrian
for the 1%t and 3" scenarios, roadworks for the 2", and vehicle for the 4th.



Preparation area

Start

Fig. 1. Overview of the five test scenarios, with Table I presenting the driving characteristics.

TABLE I
DRIVING CHARACTERISTICS PER DRIVING STYLE PER SCENARIO.

Scenario Ped. crossin Ped. crossin, . .
Parameter without obstrucgtion Roadworks with obstructi%)n Cut-in Car-following
Calm  Aggressive Calm  Aggressive | Calm  Aggressive | Calm  Aggressive | Calm  Aggressive
VUT Target velocity (km/h) 30 50 30 70 50 70 50 70 30 50
GVT Target velocity (km/h) - - - - - - 30 50 - -
Max. longitudinal acc. (m/s?) 1.5 5 1 4 2 6 3 4 0.5 1
Max. lateral acc. (m/s?) 2 7 1 5 2 8 4 8 0.5 0.5
Distance to obj. (m) - - 202 10> - - - - 40P 12P

2distance to road construction works, b distance to GVT.

The test-vehicle was equipped according to the AV mea-
surement framework developed by Devriendt et al. [25]. The
GSR was continuously recorded using a Mind Media Nexus |
10 MKII device via electrodes on the index and middle finger
at 32 Hz, while the vehicle dynamics were captured at 200
Hz. One participant’s GSR data was lost due to a technical
issue, and among the remaining 31 participants, six laps were
excluded due to measurement errors (e.g. values exceeding
200pS), resulting in 118 valid laps for analysis. These yielded
590 time series, each corresponding to an instance of one of
the five scenarios, used in the subsequent analysis.

C. Signal Processing

1) GSR: Preliminary analysis showed a systematic linear
increase in GSR values across consecutive laps for all partici-
pants, indicating either temporal sensitivity of the GSR signal,
cumulative influence of external factors, or a technical baseline
drift — a pattern also reported in prior GSR and comfort-related
studies [5], [8], [26]. To correct for this trend, a linear de-
trending procedure was applied by subtracting a least-squares
fitted straight line from the GSR signals, following the same
preprocessing approach used in prior work [6]. The signal
was then decomposed into its tonic and phasic components
using the cvxEDA algorithm implemented in Neurokit2 [27],
[28]. For later feature analysis, peak detection is applied to the
phasic component using a threshold of 0.03uS [12]. Figure 2
illustrates a decomposed GSR signal for a single participant
during two laps for both driving styles, with annotated regions
indicating the time intervals corresponding to each scenario,
showcasing differences in physiological responses between
the two driving styles. Table II shows the extracted features
from both the phasic and tonic components of the GSR

signal used in further analysis [13], [14]. These features were
selected by a lightweight screening by removing one from each
highly correlated pair, reducing dimensionality and improving
interpretability while preserving informative variance.

2) Vehicle Dynamics: To suppress the high-frequency noise
of the linear acceleration measurements, a Sth-order Butter-
worth low-pass filter with a cut-off frequency of 1 Hz was
applied. The jerk was computed via numerical differentiation
from the filtered acceleration data. Finally, all VD data were
down-sampled to a sampling rate of 32 Hz to match the
GSR signal and aligned with the GSR signal using the UNIX
timestamps.

3) Perception: Perception was recorded using a forward-
facing camera at 10 Hz and interpolated to 32 Hz to match the
GSR signal. Time-to-collision (TTC) was computed with the
distance to the detected object and the relative speed, while
time-headway (THW) was calculated as the distance to the
object divided by the VUT’s velocity. When no objects were
detected, high-threshold padding was applied to indicate no
immediate collision risk. Two additional signals were added
to the time series: one binary signal indicating whether data
points were padded or not, and another encoding the type of
detected object.

IV. EXPERIMENTAL ANALYSIS
A. Statistical Analysis

A correlation matrix based on Linear Mixed-Effects (LME)
models was built to obtain a comprehensive overview of the
relationships among all study variables. For this analysis, all
features listed in II were derived over 30-second periods for
each event, in each individual, along with the maximum veloc-
ity, accelerations, jerk and yaw rate, and minimum distance to
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Fig. 2. Time series plot of phasic and tonic components for a single participant during two laps for both driving styles, annotated with regions indicating the

time interval of each distinct test scenario.

TABLE II
DESCRIPTION OF GSR FEATURES DERIVED FOR EACH 30-SECOND
SCENARIO THAT ARE USED IN FURTHER ANALYSIS.

Features
Phasic
maximum The maximum value of the signal
minimum The minimum value of the signal
mean td. Mean time derivative of the signal
slope Linear trend of the signal
peak count Amount of phasic peaks in period
L The duration required for the signal
rise time

to increase from onset to peak
The duration required for the signal

fecovery time to decline from its peak towards its baseline

Tonic Description
mean The average value of the signal
standard dev. The variability of the signal
mean td. Mean time derivative of the signal
skewness Degree of asymmetry in the signal distribution
kurtosis Degree of flatness in the signal distribution

the detected object and time-to-collision. Qualitative variables
were numerically encoded: driving style was coded as “0” for
calm and “1” for aggressive, while questionnaire responses
were coded from “1” for “very uncomfortable/safe” to “5” for
“very comfortable/safe”.

This statistical analysis aims to assess the pairwise relation-
ship among all variables, including driving style, questionnaire
responses, GSR features and VD features. For this purpose,
LME models were specifically employed, as they are well-
suited to handling the repeated measures structure of this
experiment (i.e., four laps times five scenarios per participant).
Repeated measures within the same participant typically vio-
late the independence assumption, as one participant might
be more expressive by responding “very uncomfortable” and
“very comfortable” whereas another might be more nuanced

by responding “neutral” and “comfortable” on the same ques-
tion. Similarly, GSR responses are not independent within
individuals. Standard methods (e.g. ANOVA, Spearman’s cor-
relation) rely upon this assumption of independence and are
therefore inappropriate for this correlation test, as ignoring
this within-subject correlation inflates the Type I error rate.
LME models explicitly account for the non-independence of
data originating from the same participant by incorporating
random effects (e.g. random intercepts and/or slopes per
participant). This allows one to capture individual variation
in baseline responses while still estimating fixed effects of
interest, providing a more robust and accurate framework for
statistical analysis.

The results of this statistical analysis are shown in Table III
in a correlation matrix. Each cell in this matrix represents the
outcome of a separate LME model, fitted with one feature as
the dependent variable and the other feature as fixed effect,
while including a participant-specific random intercept and
slope to account for individual baseline and variability in
the strength of the relationship. Because the random effects
already capture the inter-subject differences in baseline and
sensitivity, no additional scaling of the GSR data was required.
To account for the cumulative inflation of Type I error rate due
to the multiplicity of the analysis, p-values were corrected us-
ing the Benjamini-Hochberg False Discovery Rate procedure,
which controls the expected proportion of false discoveries
among the rejected hypotheses.

Several strong and statistically significant correlations
emerge from the results of Table III. Driving style shows
a strong negative correlation with all three questionnaire
responses, indicating that participants generally reported lower
scores for the scenarios driven in the aggressive laps. The
positive correlations between driving style and VD features
confirm the expected physical differences in driving styles.



TABLE III
CORRELATION MATRIX OF ALL FEATURES (DRIVING STYLE, QUESTIONNAIRE RESPONSES, GSR, VD AND PERCEPTION). CORRELATIONS AND
REGRESSION COEFFICIENTS WERE DETERMINED USING LMES. UNDERLINED ENTRIES MARK NON-SIGNIFICANT CORRELATION (p > 0.05).

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.  11. 12, 13. 14. 15. 16. 17. 18.  19. 20. 2I. 22. 23, 24,
1. style . . . . . . . . . . . . . . . . . . . . . . . .
2. QI* -4 . . . . . . . . . . .
3. Q2° -.69 77 . . . . . . . . . .
4. Q3¢ =79 .79 .64 . . . . . . . . .
5. phasic_max .65 -36  -37  -43 . . . . . . . .
6. phasic_min 43 -31 36 -30 .50 . . . . . . .
7. phasic_mean_td .08 .00 -00 -06 .10 -09 . . . . . .
8. phasic_slope 21 -.08 -08 12 30 .03 .64 . . . . .
9. phasic_peak_count 59 47 51 -.46 .68 67 12 .18 . . . . .
10.  phasic_rise_time 35 -18  -15  -20 45 22 18 32 22 . . . .
11.  phasic_recovery_time 31 -16  -.14 19 33 22 12 28 .40 77 . . .
12.  tonic_mean 05 -14 -13 -07 .14 .29 28 -28 .17 -05 .03 . .
13.  tonic_std 30 -22 -26 25 45 38 .00 .17 33 21 16 19 . .
14, tonic_mean_td 30 -17  -24  -19 49 .38 17 .29 37 35 24 02 47 . .
15.  tonic_skewness 05 -05 .02 -03 -06 -15 22 35 -04 09 .03 20 -.05 -.09 .
16.  tonic_kurtosis 02 -04 .03 -02 -03 -07 .10 .03 -03 02 01 01 -24 -11 .39
17. vel_max 61 -42 47 44 56 46 .07 19 41 27 25 31 .50 46 -03  -04 .
18.  acc_lon_max 90 -56 -53 -61 .58 38 .10 24 38 3229 06 .28 30 .07 .02 67 .
19.  acc_lat_max 35 -25  -36 -26 37 350 .09 22 26 A7 15 06 46 43 -03 -10 .67 40 .
20.  jerk_lon_max 81 -49 -41 -54 53 36 .10 21 33 3122 -.04 19 .30 05 .02 47 83 .15 .
21.  jerk_lat_max 63 -41  -44 45 65 49 13 21 39 3125 12 46 S -07 -09 78 .60 .70 53 .
22,  yaw_rate_max 40 19 -13 25 45 24 21 26 24 29 18 1916 37 -02 -01 34 36 .13 .53 .59 .
23.  d_min 29 -32 -3 -27 .10 07 -10 -03 .0 .04 .08 .12 14 -02 .03 -00 21 30 .30 .08 .09 -27
24.  ttc_min 31 -34 -33 -26 -1 06 31 22 -.01 07 .01 21 -05 -24 01 05 -02 28 -06 .15 -27 -51 .91

“How safe did you feel during the car ride?
YHow safe did you feel interacting with the [pedestrian, roadworks, pedestrian, vehicle]?
¢How comfortable did you find the movement of the vehicle?

Both phasic and tonic features show a systematic correlation
with driving style and questionnaire scores, suggesting that
the physiological arousal tracks both the nature of driving and
the participants’ reported scores. The maximum longitudinal
acceleration and lateral jerk show the highest correlation
among VD features to the GSR features, hinting at the
physiological sensitivity of these specific dynamic aspects.
Finally, the perception features showed a correlation to the
subjective responses, but not to the physiological responses.

When the same analysis was conducted separately for each
driving style — thus eliminating any variance in driving style —
nearly all observed significant correlations largely disappeared.
These findings suggest that the driving style may be the
primary factor shaping perceived comfort and safety, with
participants showing relatively consistent GSR patterns and
comfort ratings within each driving style.

Further analysis using pairwise t-tests (averaging responses
per participant to ensure independence) revealed consistent
significant decreases in comfort and safety scores when transi-
tioning from calm to aggressive driving style (all p < 0.001),
with the roadwork scenario exhibiting the most pronounced
decrease. These subjective differences were reflected by in-
creased phasic activity across all scenarios, while an elevated
tonic activity was only observed in the pedestrian crossing
without obstruction and roadwork scenarios. Comparing sce-
nario types, participants reported significantly higher comfort
(p < 0.01) and safety (p < 0.001) scores in pedestrian
crossing scenarios compared to those involving the GVT. This
observation was only done when comparing these scenarios
in general to each other; cross-style comparisons showed
lower ratings for the aggressively-driven scenario, regardless
of whether it involved the pedestrian or the GVT. Visual ob-
struction or whether or not the pedestrian crossed the road did
not significantly affect subjective or physiological responses.
Age-related comparisons revealed that the youngest group (18-

34) reported the lowest perceived safety (p < 0.0001) and
had the highest phasic responses (p < 0.0001), potentially
reflecting their lower driving experience and a more reactive
sympathetic nervous system. No significant differences were
found for gender (p > 0.05). Lastly, participants who reported
a lower trust in AV and those who would only adopt an AV
with the calm driving style or would not adopt one at all
consistently gave lower subjective scores (all p < 0.0001),
suggesting a potential pre-existing bias.

B. Driving Style Modeling

Table III demonstrates a statistically significant correlation
between driving style and GSR signal. To further explore this
relationship, the next step is to assess the predictive power of
the GSR signal for the driving style classification. Whereas the
previous statistical analysis focused on the features extracted
from the 30-second time series of each event, the current
analysis considers the 30-second time series as a whole. For
this purpose, a deep learning (DL) approach was pursued
by using a modified version of the Time Evidence Fusion
Network (TEFN; Zhan et al., 2024), specifically adapted to
the requirements of the time series classification task. TEFN
matches or exceeds current state-of-the-art architectures in
forecasting accuracy, while relying on far fewer parameters
[29], making the model a well-suited choice for this use case,
as its parameter efficiency aligns with the constraints of the
limited dataset and with its demonstrated effectiveness on time
series.

For the binary classification task, the model used both
phasic and tonic components of the GSR signal as input
for each scenario, with each input channel having a fixed
sequence length of 960. Each GSR input channel was z-
standardized (¢ = 0,02 = 1) per participant to reduce inter-
subject variability, where the mean and standard deviation
were computed across all laps of that participant. Data from



21 participants were used for training, with an additional
5 participants reserved for validation during training and a
final 5 participants for testing. Training was conducted for a
maximum of 500 epochs with a learning rate of le — 4, using
a dropout of 0.3 to regularize learning and an early stopping
mechanism based on the validation loss with a patience of 50
epochs to prevent overfitting on the limited dataset.

To assess the model’s robustness and generalization, despite
the limited dataset, a 10-fold cross-validation was employed,
ensuring that the performance metrics reflect the variability
across different participant groupings and reduce potential bias
from a single train-validation-test split.

Across all folds, the model achieves the following perfor-
mance metrics (M + SD): 88.61% =+ 3.77 accuracy, 87.73%
4 4.75 precision, 89.70% =+ 8.86 recall and 88.61% + 3.98
Fl-score. The aggregated Receiver Operating Characteristic
(ROC) curve yields an average Area Under the Curve (AUC)
of 0.938, indicating a strong discriminative ability to distin-
guish driving styles.

C. Subjective Score Modeling

The preceding section examined the predictive power of
the GSR signal for the driving style classification. Next,
the analysis is extended to predicting the perceived comfort
and safety responses, shifting the task from binary to multi-
class classification, with five classes corresponding to each
of the response options in the questionnaire. The same DL
approach with the same TEFN architecture is used as in the
preceding section, only changing the loss function to a Cross-
Entropy loss function fit for the multi-class classification task.
Each model is evaluated under varying input configurations,
consisting of one or a combination of the following data
sources:

1) GSR signal: Phasic and

standardized per participant).

2) Vehicle Dynamics (VD): Velocity, longitudinal and lat-

eral acceleration and jerk, and yaw rate.

3) Perception: distance to object, time-to-collision, time-

headway and type of object.

A key challenge in this task, however, arose from the skewed
distribution of predominantly positive questionnaire responses,
as illustrated in Figure 3. This class imbalance complicated
direct supervised training on the subjective labels due to the
limited exposure to the negative responses. Furthermore, it
is notable that various participants report feeling “very com-
fortable/safe” for some scenarios under the aggressive driving
style. This raises the concern of whether these responses were
genuine, potentially reflected by low physiological arousal, or
whether social desirability or other biases led the participants
to give more positive responses despite heightened arousal
levels.

To mitigate the class imbalance, a Synthetic Minority Over-
sampling Technique (SMOTE) approach was employed. By
generating synthetic samples of the minority classes by in-
terpolating between existing samples, SMOTE improves the
model’s performance on the imbalanced dataset [30]. In this

tonic components (z-
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Fig. 3. Distribution of all self-reported scores during the experiment.

Total count

study, SMOTE was applied with k = 5 nearest neighbors to
generate the synthetic samples.

To comprehensively evaluate model performance, a two-fold
approach is applied. First, performance metrics are reported
based on an exact match criterion (hard), considering only
predictions that perfectly match the true label class. Second, a
near-fit criterion (soft) is introduced, where predictions within
one class of the ground truth (e.g. predicting “comfortable” in-
stead of “very comfortable”) are also considered true positive.
This soft criterion addresses the inherent subjectivity of self-
reported scores, where fine-grained distinctions are difficult for
participants to make and less critical in practical applications.
Table IV presents the results for both evaluation strategies for
each questionnaire item using 10-fold cross-validation.

D. User-Adapted Subjective Score Modeling

The model effectively minimized training loss; however, its
relatively low evaluation scores in Table IV indicate limited
generalization to data from unseen participants. This outcome
is not surprising, considering the inherently subjective nature
of perceived comfort and safety and the inter-subject variabil-
ity in physiological responses.

To mitigate this, a user-adapted modeling approach was
subsequently explored. The model trained on the original
training set was used as a general model. For each test
participant, a copy of this model was created and fine-tuned.
During fine-tuning, each participant’s data was split into N
support scenario pairs (each with a calm and aggressive variant
of the same scenario) and 10 — N query pairs for evaluation.
Fine-tuning involved updating only the final projection layer of
the model,- while freezing the rest of the parameters, over 20
epochs at a learning rate of 1e — 4. This approach allowed the
model’s output mapping to adapt to participant-specific data
while preserving the shared feature representations learned
during pre-training.

Table V presents the performance results, showing both hard
accuracies and soft accuracies across all input configurations
for support set sizes ranging from N = 0 to N = 9 in the
fine-tuning process.



TABLE IV

MACRO PERFORMANCE METRICS (M % + SD%) OVER 10-FOLD CROSS VALIDATION IN THE SELF-REPORTED SCORE CLASSIFICATION ON

SELF-REPORTED SCORE FOR COMFORT (Q1, Q3) AND PERCEIVED SAFETY (Q2) MODEL BASED ON VARIOUS INPUT CONFIGURATIONS. RESULTS ARE

SHOWN AFTER APPLYING SMOTE TO ADDRESS CLASS IMBALANCE.

Hard Soft
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
QI: How safe did you feel during the car ride?
Baseline 387 £ 54 82+59 200+£00 11.7 £ 1.8 755 £94  49.1 £ 135 60.0+ 0.0 52.0+£ 134
GSR 303 £46 244+60 266+48 239+50 69.7 £ 6.5 61.7 £56 626+52 600+ 6.0
Ours VD 394 +63 352456 368+64 334+606 823 £ 5.1 749 £75 780+67 T746+74
GSR+VD 345 +45 334+44 372+£35 30429 80.5 £ 5.1 729 £76 764 + 8.1 72.5 £ 8.1
GSR+P 354 £ 8.1 330£75 343+£97 295+75 742 £ 8.6 694 £93 726 +9.7 68.1 £ 10.0
VD+P 422 £52 38056 387144 347+£52 81.0 £ 6.8 733 £87 769 +£69 734 +£87
GSR+VD+P | 412 +54 369+69 404+57 350+£65 79.3 £ 6.0 741 £90 775+ 8.1 73.6 £ 9.3
Q2: How safe did you feel interacting with the ...¢
Baseline 449 £105 9.1 £2.0 20.0 £0.0 125+ 1.8 69.9 + 8.8 367+ 77 600£00 396+ 77
GSR 351 £51  2524+44 252+£50 234142 67.5 £ 8.2 600 £59 6254+63 586+63
Ours VD 356 £34 292463 303+£56 258 +4.1 772 £ 8.2 710 £89 746+72 700+ 9.0
GSR+VD 373 £ 68 314 +42 327+£63 277 +43 753 £8.2 69.8 £89 7344+92 687+092
GSR+P 376 £ 84 265+55 273+£62 249+53 74.8 £ 3.1 674 £60 719455 67.1+39
VD+P 381 +77 261 +74 293+£87 240=+6.1 747 £102 734 +89 73.7+£89 69.7+9.6
GSR+VD+P | 3754+63 293 +65 305+56 266+46 76.0 £ 7.8 719 £82 742+ 84 706 + 89
Q3: How comfortable did you find the movement of the vehicle?
Baseline 353 + 34 73 £0.8 20.0 £0.0 107 £ 1.0 | 73.0 £ 13.0 452+ 136 600+ 00 481 + 132
GSR 28.8 £ 4.1 268 £58 255+46 226 +39 735 £ 438 67.0 £40 70.1 £ 6.1 654 £ 55
Ours VD 338+ 65 309+65 326+£72 27.6+£764 | 80.7+£65 739 £76 789 +88 728 £92
GSR+VD 333 £38 308+59 326+£72 27.6+43 815+ 74 76.8 £ 9.1 823+ 89 763+ 104
GSR+P 292 +£34 276 +30 269+44 238+3.0 73.6 £ 34 69.5£35 726+73 667 £ 4.0
VD+P 365 +45 3444+£52 333+£39 277445 79.6 £ 7.7 753 £65 788 + 8.1 727 £ 7.8
GSR+VD+P | 322 £+ 5.1 324+78 332+74 276+65 79.0 £ 5.7 755 +£78 819+55 735+£55
a: [pedestrian, roadworks, pedestrian, vehicle]

V. DISCUSSION

The purpose of this study was to explore the relationship
between perceived comfort and safety in highly automated
driving and physiological signals, specifically focusing on
the GSR, following the results from a proving ground study.
Table III presents a comprehensive correlation matrix based on
Linear Mixed-Effect (LME) models covering all key variables:
driving style, self-reported scores on perceived comfort and
safety, GSR features, vehicle dynamics (VD) and perception
features. This all-in-one approach revealed several significant
correlations across domains. Among the GSR features, the
phasic maximum amplitude and peak count emerged as the
most robust indicator, showing the strongest correlation with
both objective driving style and perceived comfort and safety.
GSR activity tends to increase as perceived comfort and
safety decrease, an outcome found in similar studies [6], [11],
[15]. Furthermore, a stronger observed link for the maximum
longitudinal acceleration and lateral jerk hints at a heightened
sensitivity of GSR to abrupt vehicle movement.

Comparative analysis of scenarios revealed that car-related
scenarios consistently exhibited lower comfort and safety
scores, accompanied by elevated GSR responses. Notably, the
roadwork scenario demonstrated the most dramatic shift, tran-
sitioning from the most comfortable and safe rated scenario
under the calm driving style to the least comfortable and
safe under the aggressive driving style. These scenarios are
characterized by significantly higher vehicle dynamics than the
pedestrian crossing scenarios (Table I). This pattern suggests
that decreased comfort and increased physiological arousal are

either primarily driven by elevated vehicle dynamics, by the
perceived risk associated with the presence of another vehicle,
or by a combination of both factors.

Building on these findings, a deep learning approach was
employed, in parallel with the statistical analysis, for testing
the predictive power of the GSR signal on different driving
styles. Using the entire time series data as input, the model
achieved 88.61% accuracy, indicating that the GSR demon-
strates potential as a non-invasive indicator for assessing driv-
ing style. To our knowledge, no previous study has leveraged
passenger GSR for a driving style classification, making our
88.61% accuracy a benchmark in this domain.

Before extending this framework to predict perceived com-
fort (Q1), perceived safety (Q2), and overall ride comfort (Q3)
on a five-point Likert scale, a previously introduced near-fit
criterion (soft) was applied to treat adjacent-class predictions
as correct, aligning with both participants uncertainty and
the practical aim of broadly distinguishing comfort from
discomfort.

Despite this soft criterion, general models using GSR alone
or augmented with vehicle dynamics (VD) or perception data
performed only modestly, slightly outperforming, and occa-
sionally underperforming, a majority-class baseline classifier
(Table IV). Introducing user-adapted models, fine-tuned using
a partition of the test scenarios, significantly enhanced the
results, with improvements of up to 25% in hard metric
performances and up to 20% in soft metric performances
compared to these general models.

The best configuration was found for a model using only
GSR as input and fine-tune training on a support set size of



TABLE V
HARD AND SOFT ACCURACY METRICS (M % 4 SD%) OVER 10-FOLD CROSS VALIDATION FOR SELF-REPORTED COMFORT (Q1, Q3) AND PERCEIVED
SAFETY (Q2) CLASSIFICATION USING VARIOUS INPUT CONFIGURATIONS AND SUPPORT SET SIZES (V). RESULTS ARE SHOWN FOR DIFFERENT SUPPORT
SET SIZES (N = 0 TO N = 9) USED IN FINE-TUNING THE MODEL. SMOTE WAS APPLIED TO ADDRESS CLASS IMBALANCE. BOLD VALUES INDICATE THE
BEST-PERFORMING CONFIGURATION FOR N < 5.

Support Pairs | Input config. Hard accuracy Soft accuracy
o1 027 03 01 07 03
Baseline 387 £ 54 449 + 10.5 353+ 34 755 +£94 69.9 + 8.8 73.0 £ 13.0
GSR 30.3 + 4.6 351 £ 5.1 28.8 + 4.1 69.7 + 6.5 67.5 + 8.2 735 + 4.8
VD 394 + 6.3 356 + 34 33.8 £ 6.5 823 + 5.1 772 £ 82 80.7 + 6.5
N=0 GSR+VD 345 + 45 373 + 6.8 333 + 3.8 80.5 + 5.1 753 + 8.2 815+ 74
GSR+P 354 + 8.1 37.6 £ 84 292 + 34 742 + 8.6 74.8 £ 3.1 73.0 £ 34
VD+P 422 +52 38.1 + 7.7 36.5 + 4.5 733+ 87 747 +102 79.6 +7.7
GSR+VD+P 412 £ 54 375 £ 6.3 322 £ 5.1 79.3 £ 6.0 76.0 £ 7.8 79.0 £ 5.7
GSR 476 £ 100 552 +77 433 + 89 85.8 + 4.1 83.7 + 5.1 84.1 £ 94
VD 47.0 £ 8.5 57.5 +£10.8 40.9 £+ 10.0 83.5 + 3.7 82.1 £ 8.5 794 + 8.3
N=1 GSR+VD 48.1 + 7.7 57.8 + 8.1 417 £+ 83 86.3 + 3.5 85.5 + 6.4 81.5 + 8.9
GSR+P 448 £ 9.5 464 £+ 9.6 445 + 84 81.9 + 4.6 77.1 £ 84 80.9 + 8.7
VD+P 484 + 9.4 50.5 + 8.6 434 +99 83.9 + 43 834+ 7.0 80.8 £ 7.8
GSR+VD+P 495 £+ 8.6 50.5 £ 8.6 438 £ 9.2 86.5 &+ 4.4 823 £ 6.7 80.3 + 8.9
GSR 522 + 63 56.5 + 7.0 4577 £ 5.0 847 £ 53 84.7 + 6.1 82.6 + 3.9
VD 548 £ 54 56.3 £+ 6.8 479 £ 9.2 85.5 + 3.3 842 + 6.2 853 + 4.5
N=2 GSR+VD 56.1 + 7.3 593+ 9.2 48.0 + 8.7 89.9 £+ 3.1 89.2 + 4.1 87.8 + 4.0
GSR+P 49.7 £ 13.1 572 £ 84 46.0 £ 84 86.6 + 4.1 81.9 + 9.7 81.8 + 8.7
VD+P 46.8 + 6.1 48.7 £+ 12.1 456 + 8.2 83.5 £ 5.1 85.7 £ 5.7 84.7 + 8.9
GSR+VD+P 476 £ 102 478 £ 11.6 44,6 + 8.3 84.4 + 3.9 864 + 4.5 83.7 + 7.8
GSR 56.1 £ 6.1 609 + 7.9 522 +62 86.3 + 3.9 86.1 5.2 86.1 = 7.0
VD 534 + 6.6 57.0 £ 8.1 50.0 £ 5.8 86.2 + 4.0 90.0 £+ 3.9 86.0 + 6.6
N=3 GSR+VD 525+ 108 585+ 7.6 50.8 + 5.8 88.4 4+ 4.0 90.1 + 4.2 87.0 &+ 4.1
GSR+P 50.1 £ 74 534 + 89 47.6 £ 6.1 842 + 5.2 82.3 + 10.0 844 + 55
VD+P 464 + 75 487+ 112 419+ 77 83.2 £+ 6.1 84.0 + 8.4 82.3 + 8.8
GSR+VD+P 475 £ 74 48.6 £ 12.1 422 £ 175 83.6 = 7.8 86.1 + 6.9 84.3 + 8.0
GSR 58.1 £ 5.3 58.4 + 8.9 54.3 + 84 88.5 + 4.1 86.5 + 4.7 90.1 £+ 6.1
VD 533 £ 438 56.8 + 12.8 492 +£ 5.8 86.9 + 4.3 889 + 54 87.2 + 4.8
N=4 GSR+VD 508 +83 575+ 108 483 +76 88.4 + 7.6 923 + 4.6 85.6 + 4.6
GSR+P 50.7 £+ 8.0 51.6 + 8.8 50.2 £ 8.3 823+ 173 855+ 175 858 + 7.8
VD+P 462 + 7.7 485 +£ 9.3 46.0 + 8.2 82.6 + 6.0 85.8 + 6.6 80.4 + 6.8
GSR+VD+P 46.5 + 8.8 49.7 £ 8.2 473 £ 83 854 + 6.9 84.1 + 6.1 842 + 6.3
GSR 562 + 7.1 587 + 8.4 542 + 83 88.1 54 879 + 6.1 89.8 + 6.2
VD 500+45 539+131 452+76 88.0 + 3.3 86.3 + 7.4 86.3 + 4.2
N=5 GSR+VD 467 £ 55 561 £ 140 465 + 4.8 88.1 + 4.7 87.0 + 6.6 87.6 + 3.6
GSR+P 474 £ 7.1 53.5 + 10.7 504 + 8.3 79.6 £ 8.9 874 + 52 86.8 + 7.1
VD+P 437+ 76 468 £ 11.2 450 + 6.8 81774 803+ 112 813+ 119
GSR+VD+P 45.1 £ 8.9 425+72 46.8 + 7.7 84.6 &+ 6.5 814 + 9.8 87.9 + 6.6
GSR 564+ 71 615+ 11.0 635+63 86.1 5.6 86.0 + 8.1 942 + 4.0
VD 475+ 64 530+ 11.0 442 +69 88.1 + 3.9 86.3 + 6.1 84.2 + 3.9
N=6 GSR+VD 39.7 £39 558 £ 12.8 479 + 4.7 87.7 +£59 832+ 79 87.8 + 4.3
GSR+P 482 + 8.6 57.7 + 10.2 48.3 £+ 8.1 83.8 + 8.1 86.9 + 4.8 86.6 + 6.1
VD+P 446 +£53 524+ 119 406 +£5.7 82.6 £ 5.3 81.3 + 8.6 79.4 + 8.9
GSR+VD+P 495 + 64 479 + 84 447 £ 6.1 829 + 7.2 834 + 114 859 + 7.7
GSR 577+ 84 616+ 103 575 +6.0 859 £ 7.0 849 £ 11.1 935+ 43
VD 409+ 75 488 +£120 461 £ 6.6 88.0+58 829+ 11.6 80.9 + 4.8
N=T GSR+VD 328 +£79 527 4+102 46.6 £ 7.5 852 + 6.5 875+ 175 82.6 + 5.7
GSR+P 427 £ 13.3 59.6 + 8.8 46.1 £ 12.7 80.8 + 6.7 86.5 + 7.3 86.1 + 7.2
VD+P 431 +95 523+145 394+90 793 + 7.7 80.7 =74 799 £+ 12.8
GSR+VD+P 469 + 10.6 495 + 109 358 +£9.2 81.6 = 104 80.0 £ 15.3 83.7 +£ 9.7
GSR 602 + 11.2 652 + 8.8 589 + 9.6 83.8 + 8.5 89.0 + 6.4 922 +52
VD 353+ 113 433 +149 38,6 £538 859 £ 6.8 80.0+10.1 782 £ 9.1
N=38 GSR+VD 330+79 493+ 168 463+ 109 | 832+ 120 773+ 112 852+ 64
GSR+P 473 £ 11.0 581+ 11.1 485+ 114 785+ 74 82.8 = 11.0 859 + 8.8
VD+P 502 + 11.0 428 £11.8 416 £9.2 78.1 +72 838 + 103 83.8 £ 102
GSR+VD+P 51.0 £ 12.6 49.0 + 144 373 £ 9.6 78.8 £ 9.6 855+ 9.8 80.9 + 6.8
GSR 587 + 129 - 579 +£9.2 | 822 £ 105 - 923 + 5.8
VD 37.8 + 123 - 40.6 £ 6.6 82.1 + 8.0 - 77.8 +£9.3
N=9 GSR+VD 34.5 4+ 8.7 - 472 £ 9.1 81.8 + 14.0 - 83.9 £ 5.6
GSR+P 453 £ 11.8 - 47.8 + 8.9 772 £ 8.5 - 84.8 + 9.2
VD+P 493 £+ 12.0 - 40.7 + 8.7 79.8 + 9.0 - 81.9 £ 8.9
GSR+VD+P 46.5 £+ 10.2 - 36.8 £ 10.2 754 £ 9.5 - 789 £ 9.3

: Support size to this question is limited to N = 8 as this question was not asked during laps 1, 4.



N = 4, achieving 58.1%, 58.4% and 54.3% hard accuracies
and 88.5%, 86.5% and 90.1% soft accuracies for Q1, Q2
and Q3, respectively (Table V). While results for N > 5
support pairs were computed, only configurations with N < 5
were considered for the final configuration selection to ensure
reliable performance assessment with the limited test set (10
scenario pairs). This configuration outperformed all general
models and other personalized configurations combining VD
and perception data, which tended to overfit when fine-tuned.
This demonstrates that, while a one-size-fits-all model has lim-
ited capacity, participant-specific calibration robustly unlocks
the GSR’s full predictive power. This need for personalization
aligns with the observed individual differences in subjective
and physiological responses, particularly among the younger
participants who reported lower perceived safety scores and
exhibited heightened phasic activity.

Contextualizing these results with existing literature, the
soft metric accuracy exceeds previous binary classification
approaches for trust (78.2%, [31]), motion sickness (77%,
[26]), comfort (71.9%, [32]) and stress (73%, [33]). In hard
metric accuracy, it outperforms a 4-class classification on
comfort (55.99%, [34]). The hard metric performance exceeds
that of existing 4-class comfort classification (55.99%, [34]),
but falls short of a 4-class motion sickness classifier (86%,
[17]) and a 10-class comfort classifier, with a similar soft
metric allowance (92.4%, [35]). Notably, these studies relied
on multiple physiological input modalities, whereas the pro-
posed configuration uses GSR as sole physiological marker.
Furthermore, the presented approach advances state-of-the-
art methodologies by introducing a participant-specific fine-
tuning, bridging the gap between general models [17], [26],
[31]-[35] and single-participant trained models [36].

Before pursuing the deep learning approach, a traditional
feature-based machine learning approach using the GSR fea-
turs from Table II was evaluated. Random Forests, XGBoost
and Support Vector Machines were applied to both driving
style and subjective comfort predictions. Driving style ac-
curacy ranged from 64% to 71%, while subjective ratings
reached 26% to 42%. Despite appearing comparable to Table
IV, these models largely defaulted to majority-class predic-
tions. Due to the underperformance on the more separable
driving style task, this approach was not further pursued.

The GSR preprocessing pipeline was systematically evalu-
ated across different approaches. While an initial baseline drift
correction explored tonic component z-standardization [16],
[37], this only addressed inter-lap drift. A linear detrending
approach [6] was ultimately adopted to correct both inter- and
intra-lap drift. For signal decomposition, cvxEDA [28] and
Braithwaite’s high-pass filtering [14] showed similar correla-
tion patterns, with cvxEDA finally selected for its stronger
physiological foundation compared to Braithwaite’s purely
numerical filtering approach. The scaling strategy evolved
through three iterations: per-lap min-max normalization, which
effectively removed relative differences between the calm and
aggressive driven laps; per-participant min-max normaliza-
tion, yielding 82.87% driving style classification accuracy;

and finally per-participant z-standardization, further improving
driving style classification accuracy to 88.61% and boosting
comfort and safety prediction accuracies by 3-8%.

Based on these findings, this study recommends a prepro-
cessing pipeline of (i) linear detrending of the raw GSR sig-
nal, (ii)) cvxEDA decomposition, and (iii) participant-wise z-
standardization. While this requires both low- and high-arousal
data per user, this aligns with the necessary user-adapted fine-
tuning for comfort and safety models. Alternatively, collecting
a brief low-arousal baseline could enable real-time driving
style classification, as deviations from this baseline indicate
elevated arousal or anomalous events.

Two additional limitations are worth noting. First, while
the exclusive use of the GSR as a physiological marker
demonstrates the ability of a minimalistic approach, future
work could benefit from incorporating additional physiological
signals to potentially enhance predictive capabilities. A second
limitation lies in the controlled proving ground environment,
which may not fully capture real-world uncertainties and trust
issues that passengers would experience, likely contributing
to the imbalanced dataset favoring positive responses and
potentially limiting generalizability.

Future research directions should focus on expanding the
experimental scope. This includes scenarios that isolate per-
ception and vehicle dynamics effects, specifically scenarios
with identical vehicle dynamics but varying perception con-
texts, could help understand the relative impact of perception
versus vehicle dynamics factors on passenger comfort. Addi-
tional valuable scenarios could include traffic jams, interaction
with cyclists, parking maneuvers, and roundabout interactions.
Furthermore, incorporating repeated measurements from the
same participants over multiple days could provide insights
into the temporal stability of GSR responses and individual
reaction patterns. Ultimately, collecting real-world data on
public roads would provide the most authentic insights into
passenger comfort, while simultaneously posing significant
challenges for analysis due to the unique nature of each
driving situation and the difficulty in establishing a comparable
baseline.

VI. CONCLUSION

Significant correlations emerged between GSR and all tar-
gets, including objective driving style, questionnaire responses
and vehicle dynamics features, confirming the signal’s broad
sensitivity. GSR cleanly separates the calm from the aggressive
driving style in our proving ground study, making it a reliable
trigger for real-time style adjustment. While general models
showed modest performance in predicting perceived comfort
and safety, the introduction of participant-specific calibration
substantially improved predictive accuracy. This highlights
that physiological responses to automated driving are inher-
ently individual, and accounting for these personal differences
through personalized fine-tuning significantly enhances the
GSR’s predictive power. Future research should focus on
implementing efficient personalization strategies in real-world
applications and exploring more diverse driving conditions.
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Method

This chapter contains a more in-depth description of the experiment conducted by Siemens Digital
Industries Software, which forms the basis of this experiment, along with details on the data collected
and its preprocessing steps.

A.1. Experiment

The experiment took place at the Griesheim proving ground of the Technical University of Darmstadt,
Germany. A Wizard-of-Oz autonomous vehicle (AV) methodology was employed, in which a human
driver, obscured behind a black panel, controlled the vehicle, while the participant, seated next to the
driver, perceived the vehicle as operating autonomously. An expert driver was recruited to perform all
maneuvers of this experiment consistently, aided by adaptive cruise control functionalities to enhance
repeatability.

The test vehicle, referred to as Vehicle Under Test (VUT), was a KIA EV6. A second vehicle, driven
manually and referred to as the Global Target Vehicle, interacted with the VUT in different scenarios.

After preparation and start, five distinct test scenarios were conducted per lap. An overview of the test
track and layout of the scenarios is illustrated in Figure A.1. All scenarios were performed following the
specifications of the Euro NCAP test protocol for crash avoidance systems, and will be further discussed
subsequently [9]. Each scenario was confined to a 30-second window.

After the five test scenarios, one lap was completed; this sequence was then repeated three more times,
yielding a total of four laps. The first lap and the third lap were driven in a “calm” driving style,
whereas the second lap and fourth lap were driven in an “aggressive” driving style. These two driving
styles, defined by parameters such as velocity, acceleration, steering dynamics or distance to an object,
were used to evoke different responses.

Preparation area

Start

Figure A.1: Overview of the five test scenarios present in the experiment.
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Pedestrian Crossing without obstruction (CPTA)

Figure A.2: Sequence of images illustrating the pedestrian crossing without obstruction (CPTA) scenario.

The first scenario involved the Pedestrian Crossing without obstruction — the Car-to-Pedestrian Turning
Adult (CPTA) scenario as defined by NCAP. A pedestrian crossed the road at a pedestrian crossing
without any visual obstruction. The driving style differences are summarized in Table A.1, where the
main variations are in the approach speed of the VUT and the intensity of the braking for the pedestrian.

Parameter Calm Aggressive
VUT Target velocity (km/h) 30 50
GVT Target velocity (km/h) - -
Max. lon. acc. (m/s?) 1.5 5
Max. lat. acc. (m/s?) 2 7
Distance to obj. (m) - -

Table A.1: Driving characteristics for the Pedestrian Crossing Without Obstruction scenario

Roadworks

Figure A.3: Sequence of images illustrating the roadworks scenario.

The second scenario was the Roadworks scenario, in which the VUT navigated past roadwork markers.
Table A.2 outlines the driving style characteristics. Here, the aggressive driving style was characterized
by significantly higher speeds and closer proximity to the markers, with a sharper lateral movement
when switching lanes.

Parameter Calm Aggressive
VUT Target velocity (km/h) 30 70
GVT Target velocity (km/h) - -
Max. lon. acc. (m/s?) 1 4
Max. lat. acc. (m/s?) 1 5
Distance to obj. (m) 20* 102

adistance to road construction works.

Table A.2: Driving characteristics for the Roadworks scenario
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Pedestrian Crossing with obstruction (CPNCO-50)

Figure A.4: Sequence of images illustrating the pedestrian crossing with obstruction (CPNCO-50) scenario.

The third scenario is the Pedestrian Crossing with obstruction, corresponding to the Car-to-Pedestrian
Nearside Child Obstructed (CPNCO-50) protocol by NCAP. Here, a parked van blocked the partici-
pant’s view of the pedestrian. In lap 1 and 4 the pedestrian did not cross, while in lap 2 and 3 they
did, adding unpredictability to the scenario. Table A.3 presents the driving characteristics, highlighting
that the aggressive style features a faster approach and more forceful braking.

Parameter Calm Aggressive
VUT Target velocity (km/h) 50 70
GVT Target velocity (km/h) - -
Max. lon. acc. (m/s?) 2 6
Max. lat. acc. (m/s?) 2 8
Distance to obj. (m) - -

Table A.3: Driving characteristics for the Pedestrian Crossing With Obstruction scenario

Cut-in (CCR)

Figure A.5: Sequence of images illustrating the cut-in (CCR) scenario.

The fourth scenario incorporated a Cut-in maneuver, where the GVT merged in front of the VUT,
forcing the VUT to perform a braking maneuver. Table A.4 shows that the primary difference between
the calm and aggressive driving style were the VUT’s target velocity and the magnitude of deceleration
during the maneuver.

Parameter Calm Aggressive
VUT Target velocity (km/h) 50 70
GVT Target velocity (km/h) 30 50
Max. lon. acc. (m/s?) 3 4
Max. lat. acc. (m/s?) 4 8
Distance to obj. (m) - -

Table A.4: Driving characteristics for the Cut-in scenario
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Car-following (CCRb)

Figure A.6: Images illustrating the car-following (CCRb) scenario under different driving styles (left: calm, right:
aggressive).
The final scenario was a Car-following scenario, in which the VUT followed the GVT along a straight
path. Table A.5 presents the driving style characteristics, showing that in the calm driving style, the
VUT maintained a significantly larger distance to the GVT compared to the aggressive driving style.
Accelerations remained relatively similar for both styles.

Parameter Calm Aggressive
VUT Target velocity (km/h) 30 50
GVT Target velocity (km/h) - -
Max. lon. acc. (m/s?) 0.5 1
Max. lat. acc. (m/s?) 0.5 0.5
Distance to obj. (m) 40P 12b

Pdistance to GVT.

Table A.5: Driving characteristics for the Car-following scenario

A.2. Participant Data
For the experiment, 32 participants (17M, 15F) aged 18 to 82 years (M = 49.2,SD = 21.1) were
involved. Figure A.7 summarizes the demographics of the participant group.

Count of Participants by gender and age

Gender Distribution Participant count by age and gender
5 Female
W Male

w

15

Count of Participants

-

18-34 35-50 51-69 70-87

Gender

Figure A.7: Demographic distribution of participants by gender and age.

A.2.1. Self-Reported Scores

As seen in Figure A.1, each scenario was followed by a complete stop of the VUT and a questionnaire
with three questions in which the participants evaluated the scenario on perceived comfort, safety and
overall ride comfort on a five-point Likert scale ranging from “very uncomfortable/unsafe” to “very
comfortable/safe”. For scenario 4 — Cut-in — and scenario 5 — Car-following — however, there was only
one combined questionnaire administered after both scenarios; these responses will be used for the data
analysis of both scenarios.

The following three questions were asked:

1. How safe did you feel during the car ride?
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2. How safe did you feel interacting with the [pedestrian, roadworks, pedestrian, vehicle]?
3. How comfortable did you find the movement of the vehicle?

The first question measures general perceived comfort in how the vehicle behaves around the encountered
object and in the scenario, and the second targets object-specific perceived safety and the third measures
overall ride comfort from the vehicle’s general motion.

The questionnaire was originally administered in German and translated into English for this research.
Although the English translation of the first question uses the term “safe”, the original German version
focuses on the comfort of how the vehicle interacts with its surroundings. Consequently, while the
phrasing in English may suggest a safety-related question, the actual responses reflect perceived comfort.

The distributions of the responses for the pedestrian crossing without obstruction, roadworks, pedestrian
crossing with obstruction and cut-in / car-following scenario are shown in Figure A.8.

Response count for scenario: Ped. crossing without occlusion

How safe did you feel during the car ride? oHow safe did you feel nteracting with the pedestrian? How comfortable did you find the movement of the vehicle?
u Aggressive
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How safe did you feel during the car ride?  How safe cid you feel iteracting with the road construction work7How comfortable id you find the movement of the vehicle?
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Response count for scenario: Ped. crossing with occlusion

How safe did you feel during the car ride? How safe did you feel interacting with the pedestrian?  How comfortable did you find the movement of the vehicle?
® Aggressive
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(c) Pedestrian crossing with obstruction

Response count for scenario: Cut-in / Car-following

How safe did you feel during the car ride? How safe did you feel interacting with the vehicle? How comfortable did you find the movement of the vehicle?
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Figure A.8: Distributions of subjective questionnaire responses for all scenarios, segmented by driving style (calm vs.
aggressive). Responses cover the three questions on perceived comfort (Q1), perceived safety (Q2) and overall ride
comfort (Q3).
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A.2.2. Galvanic Skin Response

The GSR was continuously recorded each lap using the Mind Media Nexus | MKII device, recording
skin conductivity in pS at 32 Hz. One participant’s GSR data was lost due to a technical issue, and
among the remaining 31 participants, six laps were excluded due to measurement errors (e.g., values
exceeding 200 ©S), resulting in 118 valid laps for analysis.

Preliminary data visualizations revealed an intriguing trend: the GSR increased progressively with
each lap for all participants, as illustrated in Figure A.9(a) for a single representative participant. This
trend either suggests that the GSR is highly susceptible to time-related effects or that external factors
influenced the measurements. A similar observation has been reported by Irmak, Pool, and Happee [15],
who found that the GSR correlates more strongly with elapsed time than motion sickness. Beggiato,
Hartwich, and Krems [2] and Shodipe and Allison [27] also made this observation and attributed this
trend to an increase in ambient temperature and shifts in electrode-skin interfaces over time, respec-
tively. Other possible explanations for this trend could involve factors such as the accumulation of
moisture between electrodes and skin or gradual changes in the conductive gel’s consistency over time.
This temporal trend poses a potential challenge for data interpretation. For instance, when analyzing
the correlation between driving style and GSR, the results might be biased. A significant correlation
would likely be found since laps 2 and 4, both driven aggressively, occurred later in the experiment.
However, this may not necessarily reflect a genuine relationship between driving style and GSR, but
rather an artefact of the GSR increase over time. To address this issue, a linear detrending procedure
was applied to the GSR on a per-lap basis. Figure A.9(b) shows the results of this procedure.

This approach has also been used by Dillen et al. [8]. A comparable outcome can be achieved through
baseline correction, a method employed by Smyth et al. [28], Gabrielli et al. [10], Morris, Erno, and
Pilcher [20] and Xiang et al. [34]. This involves recording approximately 2-5 minutes of baseline GSR
data prior to the experiment for each participant, which is then used to correct the subsequent mea-
surements. Alternative approaches include isolating only the phasic component of the GSR, done by
Henry et al. [12] and Perello-March et al. [23], and detrending the tonic component, as employed by
Niermann, Trende, and Luedtke [21] and Schneider et al. [25].

GSR Data - Participant 14, Laps 1, 2, 3, 4

Lap1
Lap 2
——Lap3
Lap 4

GSR (microSiemens)
>E

Time (seconds)

(a) Raw

GSR Data - Participant 14, Laps 1, 2, 3, 4

Lap 1
Lap 2
Lap3
Lap 4

GSR (microSiemens)

Time (seconds)

(b) Linearly detrended

Figure A.9: Time series plot of the raw and linearly detrended GSR for a single participant during all four laps.

The GSR data is processed using the Neurokit2 Python toolkit [18]. The GSR signal is decomposed
into the phasic and tonic components via the convex optimization-based cvxEDA algorithm [11]. In
cvxEDA, the observed skin conductance y, given an N-sample long signal, is modeled as:

y=r+t+e (A1)


https://neuropsychology.github.io/NeuroKit/functions/eda.html
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Where r is the phasic component representing a time series of Skin Conductance Responses (SCRs), ¢ is
the slowly-varying tonic baseline and € is an additive noise term. r, ¢t and € are N-long column vectors,
and € is an independent and identically distributed sequence of zero-average Gaussian random variables
with variance o2 that represent modeling and measuring errors.

The algorithm is built on the following four assumptions, reproduced from Greco et al. [11]:

1. SCRs are preceded by bursts from the sudomotor nerves controlling the sweat glands. These
bursts are temporally discrete episodes, i.e. SCRs are generated by a neural signal that is sparse
and non-negative because of the nature of a nerve activity.

2. The relationship between the number of sweat glands recruited and the amplitude of a firing burst
is linear. Moreover, the output response of the system depends only on the instant where the
nerve input is applied. Stated otherwise, the timecourse of a single SCR induced by a neural
burst is not influenced by previous ones, even when their SCRs overlap. In the light of these
considerations it is reasonable to characterize the system as linear time-invariant.

3. The sweat diffusion process has a subject-specific impulse response function (IRF) which is rela-
tively stable for all SCRs from the same subject.

4. The phasic activity is superimposed to a slowly varying tonic activity with spectrum below 0.05
Hz, i.e. whose information content can be represented by samples spaced every 10s (e.g., by 10-s
averages).

The following steps describe the decomposition algorithm as described by Greco et al. [11]. The tonic
component is modeled as the sum of cubic B-spline functions, an offset and a linear term:

t=DBl+Cd (A.2)

Where the cubic B-spline functions have equally spaced knots every 10s, as per assumption 4. B contains
the cubic B-spline basis functions, and ¢ is the vector of the spline weights. C' is a N x 2 matrix with
C;1=1and C;o =1i/N and d is a 2 x 1 vector with the offset and slope for the linear trend.
Under assumptions 2 and 3, the shape of a single SCR is modeled using the biexponential Bateman
impulse response function :

h(r) = (77 — "7 Yu(r) (A.3)

With 79 and 71 the slow and fast time constants and u(7) the step function. This Bateman function
models the diffusion of sweat through the gland ducts [11]. Greco et al. [11] then use Laplace to
transform the Bateman function to:

L{h(7)} = S T (A.4)

s—|—7'0_1 s+T

With 7 Land L ! being the poles of this second-order linear time-invariant system. To approximate the
continuous Laplace domain expression into a discrete-time domain, a bilinear transform using s = % i_ﬂ
is used with sampling interval ¢, resulting in the following Autoregressive Moving Average (ARMA)

model:

(1+271)2
Y4+ 0z71 + (22

H(z) = (A.5)

With the coefficients ¥, 6 and (:

(1726 +2) (15 19+ 2)

V= Tf1(52 — 76152
o0 — 2Tf152 -8
N Tf1(52 — 7'07152
¢ = (7'1_16 - 2)(70_15 —2)

—152 —152
T 02 —T15 0
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The authors represent the ARMA model in matrix form as:
g=A"tp, r=DMgq (A.6)

Where p represents the sudomotor nerve activity and ¢ is an auxiliary variable used to find p indirectly.
M and A both tridiagonal matrices with Mi,i = Mi,i72 = 17 Mi,ifl = 2, and Ai,i = w, Ai,ifl =6 and
Aji—o = for 3 <i < N. As a result, Equation A.1 is written as the following observation model:

y=Mqg+Bl+Cd+e (A7)

Given Equation A.7, Greco et al. [11] follows a probabilistic formulation using the Maximum a Posteriori
(MAP) estimation to estimate the parameters ¢, £ and d that represent the phasic driver, tonic spline
coefficients and drift for the measured signal y:

9. ¢, d] = argmax Plg, £, d|y] (A8)
q,%,

By assuming independence between ¢, £ and d and applying Bayes’ theorem, the following is obtained:

With Plylg, £, d] being the likelihood of observing a specific skin conductance given the model’s param-
eters and P[q], P[¢] and P[d] the prior probabilities of the parameters. P[y] is omitted by the authors
as it plays no role in the optimization. The authors emphasize that, since their model relies solely on
the definition of priors, no preprocessing of the GSR signal, such as filtering, is required.

To model the sudomotor nerve activity (p) that represents the input of the system, as per assumption
1, the authors use a Poisson distribution p; ~ Pois(Ad) where A is the average number of spikes per
time unit §. The Poisson distribution is replaced with an exponential distribution of the same mean to
relax the constraint p; € N to p; > 0, resulting in P[q] becoming:

N N
1w _
Plgl=]]| —e > x Hexp (—(A6) 1(Aq)z-) . (A.10)
LL G :
=1 i=1
Following assumption 4, the tonic component is then modeled under the assumption of a uniform
frequency spectrum in the band 0 — 0.05 Hz. With equally spaced spline knots at intervals of A = 10
seconds, the corresponding sampling frequency is exactly twice the upper frequency bound. Under this
setup, the spline coefficients ¢; can be assumed independent and identically distributed. At each knot,

the amplitude is then modeled as normally distributed, resulting in the following prior P[{]:

o 142
Pl = exp| —=—% |, A1l
-1l g, (“300) A
The authors assume for the drift coefficients d uninformative priors and thus drop P[d] from further

analysis.
The likelihood term P[y|q, ¢, d] follows directly from A.7 and € ~ N(0,0?) in:

((Mq+B£+Cdy)i)2>. (A12)

N
1
Ply|qt.d =[] ——exp |-
[y|q) ) ] 41 maexp( 20-2

By replacing the priors and taking the logarithm, the authors get:
N

N
1 1
InPlg, ¢,d|y] = —@Z((Mq-i-Bf-ﬁ-Cd—y)if BV
1=1 i=1

Q
1 2
(Aq); — @ ZE=1 £; + const. (A.13)

After multiplying by o2, substituting o = 02/(A\J) and v = 0?/07, Equation A.13 is rewritten as a
constrained minimization problem that the authors present as the core of their algorithm:

.1 Y
min *||MCI+B€+Cd—y||§+a||Aq||1+*H€||§
q,ld 2 2

subject to Ag > 0.

(A.14)
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The optimization problem is then rewritten into standard Quadratic Programming (QP) form and solved
using a publicly available sparse-QP solver. After finding the optimal [g, ¢, d] the tonic component can
be derived from Equation A.2, and the phasic component can be found with p = Agq.

Several other algorithms have been proposed to decompose the GSR into its phasic and tonic com-
ponents. Braithwaite’s frequency-filtering method applied high-pass and low-pass filters to roughly
partition fast SCRs from slow tonic baseline drifts. The filter filters forward and backwards to avoid
phase distortion, making it a non-causal filter [4]. Continuous Decomposition Analysis (CDA) uses a
parametric Batemun function as impulse response function and iterative deconvolution to continuously
estimate the phasic driver and tonic trend [3]. SparsEDA, however, performs a non-negative sparse
deconvolution of the GSR signal to jointly recover a highly sparse phasic driver and a smooth tonic
baseline. The tonic component is parameterized via a first-order Taylor series expansion, and both
signals are extracted through a convex ¢; regularized optimization [13].

While literature suggests that sparsEDA excels at isolating the phasic component, its tonic component
is overly flattened, obscuring meaningful shifts in baseline arousal [17]. Braithwaite’s frequency-filtering
methods are computationally efficient but fail to disentangle overlapping SCRs and can distort the true
SCR shape. Moreover, CDA is not yet available in Python, limiting its practical usability. For these
reasons, this study used cvxEDA for GSR decomposition. Its phasic component modeling is compara-
ble to that of SparsEDA, while the tonic component more reliably captures baseline fluctuations [13].
By explicitly modeling both phasic activity and baseline dynamics, cvxEDA offers a physiologically
grounded and accurate decomposition into phasic and tonic components.

Figure A.10 presents a decomposed GSR signal for a representative participant, captured during two
laps representing both driving styles. Annotated regions indicate the time intervals corresponding to
each scenario.
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Figure A.10: Time series plot of phasic and tonic components for a single participant during two laps for both driving
styles (top: calm, bottom: aggressive), annotated with regions indicating the time interval of each distinct test scenario.

Figures A.11 to A.16 depict the phasic and tonic components for every scenario and participant through-
out the experiment. To enhance visual clarity, each signal is z-standardized (1 = 0,02 = 1) on a
per-participant basis, allowing for visual comparison across conditions.
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Participant_11

roadwork. cutincer
Lap 1 4/ar4 Lap3 444 wap1 4/a/4 Lap3 a/s/4 wap1 a/-/4 wp3 s/ass wap1 4/a/4 Lap3 444 wap 1 a/ar4 wp3 444
& & & & & & & & & &
—— N
N T T~ %
L e NN
\/
Lap 2 4/4/4 Lap 4 4/4/4 Lap 2 4/3/4 Lap 4 4/3/4 Lap 2 3/3/3 Lap 4 4/-/2 Lap 2 3/4/2 Lap 4 3/3/2 Lap 2 3/4/2 Lap 4 3/3/2
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Participant_14
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Lap 1 5/5/4 la?3 5/5/5 Lap 5/5/5 Lap 3 5/5/5 5/-/5 12?3 5/5/5 Larl 5/5/5 Lap 3 5/5/5 Lap 1 5/5/5 LA?3 5/5/5
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Participant_15
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Figure A.11: Phasic (red) and tonic (blue) components of the GSR signal for all scenarios and all laps of participants
11-16. Signals were standardized on a per-participant basis. Lap number, driving style and Q1, Q2 and Q3 scores

(1 = very uncomfortable/unsafe, 5 = very comfortable/safe) are annotated.
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Participant_17
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Participant_22
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Figure A.12: Phasic (red) and tonic (blue) components of the GSR signal for all scenarios and all laps of participants
17-23. Signals were standardized on a per-participant basis. Lap number, driving style and Q1, Q2 and Q3 scores
(1 = very uncomfortable/unsafe, 5 = very comfortable/safe) are annotated.



A.2. Participant Data 24

Participant_24

roadwork i cutincer
Lap 1 Lap 3 2/4/2 Lap 1 Lap 3 4/4/4 Lap 1 IA?] 4/4/4 Lap 1 Lap 3 4/4/4 Lap 1 IA?Z 4/4/4
Caim Caim Calm Calm Calm Calm Calm Calm Calm Calm
\ __/
e NN I — VC T~
Lap 2 2/2/2 Lap 4 2/2/3 Lap 2 2/2/2 Lap 4 1/1/2 Lap 2 2/2/2 Lap 4 1/-/1 Lap 2 3/3/4 Lap 4 2/2/3 Lap 2 3/3/4 Lap 4 2/2/3
Aggressive Agaressive Agaressive Aggressive Aggressive Agaressive Agoressive Aggressive Aggressive Agoressive
Participant_25
roadwork i il cutincer
Lap 1 1/5/4 Lap 3 5/5/5 Lap 1 5/5/5 Lap 3 4/5/3 Lap 1 5/-15 Lap 3 4/5/4 Lap 1 4/5/4 Lap 3 4/5/3 Lap 1 4/5/4 Lap 3 4/5/3
Calm Calm Colim Calm Calm Calm Colm Calm Calm Calm
— —_—
I —— _/
I s N NN pa N S — S SN -
Lap 2 4/5/4 Lap 4 Lap 2 4/5/4 Lap 4 5/5/5 Lap 2 4/5/3 Lap 4 5/-/5 Lap 2 4/5/3 Lap 4 4/5/4 Lap 4 4/5/4
Aggressive Aggressive Aggressive % Aggressive Aggressive Aggressive Awus% Aggressive
Participant_26
roadwork il cutincer
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Agaressive Agaressive Agaressive Aggressive Aggressive Agaressive Agoressive Aggressive Aggressive Agaressive

Figure A.13: Phasic (red) and tonic (blue) components of the GSR signal for all scenarios and all laps of participants
24-29. Signals were standardized on a per-participant basis. Lap number, driving style and Q1, Q2 and Q3 scores
(1 = very uncomfortable/unsafe, 5 = very comfortable/safe) are annotated.
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Figure A.14: Phasic (red) and tonic (blue) components of the GSR signal for all scenarios and all laps of participants
31-36. Signals were standardized on a per-participant basis. Lap number, driving style and Q1, Q2 and Q3 scores

(1 = very uncomfortable/unsafe, 5 = very comfortable/safe) are annotated.
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Participant_37
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Figure A.15: Phasic (red) and tonic (blue) components of the GSR signal for all scenarios and all laps of participants
37-44. Signals were standardized on a per-participant basis. Lap number, driving style and Q1, Q2 and Q3 scores

(1 = very uncomfortable/unsafe, 5 = very comfortable/safe) are annotated.
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Figure A.16: Phasic (red) and tonic (blue) components of the GSR signal for all scenarios and all laps of participants
45. Signals were standardized on a per-participant basis. Lap number, driving style and Q1, Q2 and Q3 scores
(1 = very uncomfortable/unsafe, 5 = very comfortable/safe) are annotated.

A.2.3. Vehicle Dynamics

Vehicle dynamics are recorded at 200 Hz using accelerometers, with the AV measurement framework
established by Devriendt et al. [7]. Data included the vehicle’s velocity, longitudinal and lateral ac-
celeration and yaw rate. To reduce high-frequency noise in the linear acceleration data, a 5th-order
Butterworth low-pass filter with a cutoff frequency of 1 Hz was applied. Jerk was then calculated
through numerical differentiation of the filtered data. Finally, all vehicle dynamics data were downsam-
pled to 32 Hz to match the GSR signal and aligned using UNIX timestamps. This resulted in a time
series with 960 points and 6 signal features.

To visualize the vehicle dynamics across scenarios, Figures A.17 to A.21 present the mean and variance
of each signal, separated by driving style.
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Figure A.17: Mean and variance (shaded) of vehicle dynamics in the Pedestrian crossing without obstruction scenario,
highlighting differences between the calm (blue) and aggressive (red) driving style.
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Figure A.18: Mean and variance (shaded) of vehicle dynamics in the Roadworks scenario, highlighting differences
between the calm (blue) and aggressive (red) driving style.
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Figure A.19: Mean and variance (shaded) of vehicle dynamics in the Pedestrian crossing with obstruction scenario,
highlighting differences between the calm (blue) and aggressive (red) driving style.
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Figure A.20:

Cut-in (CCR)
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Mean and variance (shaded) of vehicle dynamics in the Cut-in scenario, highlighting differences between
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Car-following (CCRB)
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Figure A.21: Mean and variance (shaded) of vehicle dynamics in the Car-following scenario, highlighting differences
between the calm (blue) and aggressive (red) driving style.

A.2.4. Perception

Perception data were captured by a forward-facing camera mounted on the VUT’s roof rack. This data
was recorded at 10 Hz and upsampled to 32 Hz through interpolation to synchronize with the GSR
signal. Using the distance to detected objects and the relative velocity, the Time-to-Collision (TTC)
was calculated. The Time Headway (THW) was computed by dividing the distance to the object by
the vehicle’s velocity.

When no objects were detected at the beginning or end of the scenario, padding was applied: distance,
TTC, and THW values were set to high thresholds (80, 30, 10, respectively) to indicate no immediate
collision risk. Additionally, a binary signal was added to the time series to mark whether a data point
was padded or not, and a categorical signal was added to encode the type of detected object, with 0
for no object, 1 for pedestrians, 2 for cars, and 3 for roadwork markers. This yielded a time series with
960 points and 5 signal features.

In several scenarios, the perception pipeline did not produce any detections. Specifically, 185 out of 590
scenarios had no detected objects. In these cases, the perception data were populated with a constant
placeholder of -1 to prevent mismatching format errors.

Figures A.22 to A.26 present the perception signals, without the missing values, with the mean and
variance of each signal, separated by driving style.
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Figure A.22: Mean and variance (shaded) of perception signals in the Pedestrian crossing without obstruction
scenario, highlighting differences between the calm (blue) and aggressive (red) driving style.
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Roadworks
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Figure A.23: Mean and variance (shaded) of perception signals in the Roadworks scenario, highlighting differences
between the calm (blue) and aggressive (red) driving style.
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Figure A.24: Mean and variance (shaded) of perception signals in the Pedestrian crossing with obstruction scenario,
highlighting differences between the calm (blue) and aggressive (red) driving style.
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Figure A.25: Mean and variance (shaded) of perception signals in the Cut-in scenario, highlighting differences between
the calm (blue) and aggressive (red) driving style.
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Car-following (CCRB)
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Figure A.26: Mean and variance (shaded) of perception signals in the Car-following scenario, highlighting differences
between the calm (blue) and aggressive (red) driving style.

A.2.5. Dataset Size and Composition

In total, this study collected physiological recordings from 31 participants, alongside synchronized mea-
surements of vehicle dynamics and perception-related signals. Each participant completed four laps
with five scenarios per lap, resulting in 620 raw time series recordings (31 x 4 x 5). Due to technical
issues and measurement errors, six of these laps were excluded, yielding a final dataset of 590 valid
sequences. Fach sequence has a fixed duration of 30 seconds and was sampled at 32 Hz, resulting in
960 time steps per signal.



Data Analysis

This chapter addresses the understanding half of the central research question:

How can physiological arousal, measured through Galvanic Skin Response, combined with
vehicle dynamics and perception data, be utilized to understand and predict passengers’
perceived comfort and safety in automated driving?

A summary of these findings is included in the scientific paper presented in Chapter 1. While the
scientific paper provides a concise overview of the key findings, this chapter presents a detailed account
of how these key findings were found. Through feature extraction, correlation analyses, visualizations
and pairwise tests, this chapter examines how the GSR, vehicle dynamics and perception influence the
perceived comfort and safety scores.

To understand the interplay between comfort, safety, physiological arousal, vehicle dynamics and per-
ception, the following five subquestions were formulated:

1. Did the calm and aggressive driving style elicit distinct perceived comfort and safety scores and
physiological (GSR) reactions?

2. To what extent does the GSR signal reflect changes in perceived comfort, safety and overall ride
comfort?

3. Which of the three input modalities, GSR, vehicle dynamics or perception, explains the largest
share of variance in perceived comfort and safety?

4. Which of the objective signals exerts the strongest influence on the GSR signal?

5. In what ways do scenario characteristics (e.g., the presence of another vehicle versus a pedes-
trian or visibility) and passenger demographics (age, gender, trust in automation) influence the
relationships identified in the previous questions?

With these subquestions, this chapter not only aims to quantify statistical relationships among physio-
logical, vehicle dynamics and perception data, but also explores the underlying dynamics of perceived
comfort and safety. It examines how different scenarios and passenger characteristics shape these expe-
riences, and investigates the GSR signal itself and its key factors driving its variation.

To structure this analysis, the chapter first introduces the specific features extracted from the GSR
signal, vehicle dynamics and perception data. It then outlines the statistical methodology, including
correlation analyses and pairwise comparisons. The results section begins by presenting correlation
matrices and key visualizations that illustrate the relationship between GSR and perceived comfort and
safety. This is followed by comparisons across scenarios and participant demographics, revealing how
contextual and personal factors shape these comfort and safety scores and physiological responses. The
chapter concludes with a discussion that addresses each of the subquestions, followed by a conclusion
that integrates the findings and reflects on how to understand perceived comfort and safety.
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B.1. Feature Extraction and Selection

The statistical analysis was conducted on a feature basis. Each feature was computed over 30-second
windows for each scenario, lap and participant. From the physiological data, both the phasic and
tonic components were used to extract features. For vehicle dynamics, features were based on velocity,
longitudinal and lateral acceleration, jerk and yaw rate. For perception-related signals, features were
derived from the distance to the object, object type, time-to-collision (TTC) and time-headway (THW).
For the physiological and vehicle dynamics features, the mean, maximum, minimum and standard
deviation were calculated. For the perception features, the minimum values of distance, TTC and
THW were extracted, and the mean and maximum time derivatives were computed to capture the
dynamics of the scenario. Additional physiological features are listed in Table B.1.

Feature Description

Phasic features

peak count
mean peak ampl.
max. peak ampl.

Amount of SCRs in period.
Mean amplitude of present SCRs.
Maximum amplitude of present SCRs

rise time Time interval between SCR onset and peak.

recovery time Time interval between SCR peak and 50% recovery point.
mean td. Mean time derivative of the signal.

maximum td. Maximum time derivative of the signal.

slope Linear trend of the signal.

AUC Area Under the Curve of the signal.

Tonic features

mean td. Mean time derivative of the signal.

maximum td. Maximum time derivative of the signal.

range Range between the minimum and maximum of the signal.
slope Linear trend of the signal.

skewness Degree of asymmetry in the signal distribution.

kurtosis Degree of flatness in the signal distribution.

Table B.1

This, however, results in a total of 59 candidate features. Such a large set of features reduces the clarity
of the analysis and increases the risk of false positives, as each additional predictor adds to the number
of hypothesis tests. To improve interpretability and lower the Type I error rate, a pairwise Pearson
correlation filter (threshold |r > 0.8|) is applied for each separate signal. This lightweight screening
removes one feature from each highly correlated pair, thereby reducing dimensionality and improving
the interpretability without sacrificing informative variance. Figure B.1 to B.4 displays the resulting
correlation matrices for each signal.
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Figure B.1: Correlation matrix of phasic features. Values represent Pearson correlation coefficients between feature

pairs. Highly correlated pairs (|r > 0.8]) are flagged for redundancy removal.

The correlation matrix in Figure B.1 clearly shows that many features are highly correlated, indicating
a redundancy within the original set of features. The features retained after filtering are:

Phasic
Phasic
Phasic
Phasic
Phasic
Phasic
Phasic

peak count

recovery time

Discarding a total of 6 phasic features.
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Figure B.2: Correlation matrix of tonic features. Values represent Pearson correlation coeflicients between feature
pairs. Highly correlated pairs (|r > 0.8|) are flagged for redundancy removal.

This correlation matrix in B.2 reveals several strong linear relationships, specifically among those derived
from temporal dynamics. After filtering, the following features were retained:

Tonic mean
Tonic std.
Tonic mean td.
Tonic skewness
Tonic kurtosis

Discarding a total of 5 tonic features.
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Figure B.3: Correlation matrix of vehicle dynamics features. Values represent Pearson correlation coefficients between
feature pairs. Highly correlated pairs (|r > 0.8]) are flagged for redundancy removal.

Across all vehicle dynamics, there are various strong relationships. After applying the correlation-based

filter, the remaining features for each signal are:
e Velocity: mean, max., min.
e Lon. acc.: mean, max.
e Lat acc.: max., min.
e Lon. jerk:
e Lat. jerk:
e Yaw rate:

mean., max.
mean., max.
max., min.
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Discarding 11 vehicle dynamics-related features.
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Figure B.4: Correlation matrix of perception features. Values represent Pearson correlation coefficients between
feature pairs. Highly correlated pairs (|r > 0.8|) are flagged for redundancy removal.

The following features were kept after filtering for each signal:

e d: min., mean td., max. td.
e TTC: min., max. td.,
¢ THW: min., max. td.,

Discarding 2 perception-related features.

The total number of features has now been reduced from 59 to 35 for the subsequent statistical analysis.

B.2. Method

Linear Mixed-Effect (LME) models were employed to perform the statistical analysis aimed at finding
significant correlations between features. LMEs were chosen for their ability to account for repeated
measures within participants. Each participant experiences every scenario four times, once during each
lap, resulting in repeated observations for both the subjective responses and the physiological responses.
These repeated measures tend to correlate within the same participant, as individuals often have a con-
sistent response style. For example, one individual might consistently give extreme responses, such
as‘“very uncomfortable” and “very comfortable”, whereas another might respond more moderately with
ratings like “neutral” and “comfortable”. Similarly, GSR responses are not independent within indi-
viduals either. This consistency reflects each individual’s baseline or personality, and thus creates a
within-subject correlation. Therefore, the data violates the assumption of independent observations.
Standard statistical tests, such as ANOVA or Spearman’s Rank Correlation test, however, rely on this
independence. By assuming independence, these tests ignore the fact that observations from the same
subject are more likely to be similar. This underestimation leads to an increased likelihood of declaring
a result as significant, and thus inflating the Type I error rate. LME models explicitly account for
the non-independence of observations from the same participant by incorporating random intercepts
and /or slopes per participant.

For this analysis, LME models were implemented in Python using statsmodels’ mixed linear model
(smf .mixedlm). This model assumes a linear relationship between variables while accounting for the
repeated measures structure with the formula:

Yij = Po + B1®ij + uoi + u1iTi5 + €5

With y;; representing the 4t outcome feature for participant 1, x;j the predictor feature, 8y and 3 the
fixed effects, up; and u;; the random intercept and slope for participant ¢ and finally €;; the error term.
The random intercept ug; allows each participant to have their own baseline, while the random slope
u1; accounts for individual differences in how strongly the predictor z;; influences outcome y;;. By


https://www.statsmodels.org/stable/mixed_linear.html
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incorporating these participant-specific random intercepts, the model explicitly accounts for within-
subject correlation in the repeated measures. This eliminates the need for per-participant scaling of
the GSR signal and enhances analysis on subjective ratings by capturing participants’ variability via
random effects.

Qualitative variables such as driving style and questionnaire responses were numerically encoded to be
included in the LME. The driving style was encoded as “0” for “calm” and “1” for “aggressive”, while
the questionnaire responses were encoded from “1” for “very uncomfortable/unsafe” to “5” for “very
comfortable/safe”.

To interpret each individual feature contribution, one LME model is generated for each predictor feature
and each outcome feature. All predictor and outcome values are standardized across the population,
allowing a direct comparison of outcome correlation coefficients. However, when performing multiple
statistical tests, the probability of obtaining false-positive results increases with each test. As each test
has a chance of incorrectly rejecting the null-hypothesis, many tests cumulatively inflate the overall Type
I error rate. To address this multiple comparison problem, the Benjamini-Hochberg False Discovery
Rate (FDR) was applied to correct the computed p-values. The Benjamini-Hochberg procedure ranks
all p-values and selects a threshold that controls the expected proportion of false positives among the
rejected hypotheses. This procedure is less conservative, and therefore more powerful, compared to the
alternative Bonferroni correction when conducting a large number of tests.

To explore the effects of specific experimental settings, a complementary statistical analysis was con-
ducted. This analysis assessed whether significant differences existed between events by evaluating
selected features. Features measured twice for each participant under identical conditions were first
averaged to ensure independence of data and meet the test assumptions. Pairwise comparisons were
then performed using a paired t-test after confirming normality with the Shapiro-Wilk test, both im-
plemented in the Python SciPy package. For within-subject comparisons across all five scenarios, a
repeated-measures ANOVA was applied from the statsmodels package and for between-subject mea-
sures, such as age group or self-reported trust towards automated driving, a one-way ANOVA was used
from SciPy. These tests help determine if significant differences exist and which condition produces the
highest average values.

During analysis, data from several participants were excluded for the following reasons:

e Participant 19: All data were excluded due to a near-flat GSR signal, indicating either a lack
of physiological responsiveness or potential measurement error, while showing clear variability in
subjective responses. Such non-responsiveness is consistent with the phenomenon of electrodermal
non-responding [33].

e Participants 23 and 29: Data from both participants were excluded entirely as data from one of
the two driving styles, either calm or aggressive, was missing due to measurement errors. The lack
of comparative data obstructs the analysis, as the analysis involves a within-subject comparison
across driving styles.

o Participant 34: All subjective responses were excluded. This participant rated every scenario as
“very comfortable” or “very safe” while showing clear GSR variability, suggesting either a potential
misunderstanding of the questionnaire or biased response behavior. GSR and driving style data,
however, were retained.

B.3. Results
B.3.1. Correlation Analysis

The correlation test is done in eight stages. First, all extracted features are analyzed together across
both driving styles in the experiment; these results are shown in Table B.2. Next, the same analysis was
performed separately for the calm driving style and the aggressive driving style, with results presented
in Tables B.3 and B.4, respectively. Finally, each scenario is analyzed separately across both driving
styles. The corresponding results are presented in Tables B.5 to B.9.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://www.statsmodels.org/stable/generated/statsmodels.stats.anova.AnovaRM.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html
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yaw_rate_max .40 -19 -13 -25 .45 .24 .21 .26 .33 .30 .22 -.19 -.84 .53 -.00 .59 .
yaw__rate_min -.30 .22 .33 .22 -33 -34 -04 -17 -30 -10 -.14 -07 .31 -.09 .16 -.64 -04 .
d_min 29 -.32 -.35 -.27 .0 .07 -10 -03 .3 .03 .0 .12 08 08 08 .09 -.27 -.27
d_mean_td -18 .09 .05 .10 S02 -02 .04 -09 -14 -12 .00 14 -19 .09 -03 -39 -18 -10 -
d_max_ td -05 -.05 -01 -.05 Jd7 01 -01 11 .04 .00 .12 -.27 .01 -03 .17 .07 .09 -19 .34 .
ttc_min .31 -.34 -.33 -.26 -06 -.31 -22 -04 -11 -03 .21 .45 A5 -00 -27 -51 .05 .91 -32 -.22 .
tte_max_td -14 .10 .11 .09 .03 13 02 -.03  -.07 -.06 -10 .14 -01 .15 .05 -.63 -01 .01 -.72 .
thw_min 22 -.23 -.23 -22 -08 -08 -.18 -.16 -05 03 .09 31 04 00 -.21 - 08 .75 -.40 -.28 .58 -.23 -
thw_max_ td .0 -00 .05 -03 .07 .03 .2 10 .07 .04 -.05 -.16 .14 03 05 18 .16 -23 .18 .86 -.16 .02 -.25

*How safe did you feel during the car ride?
YHow safe did you feel interacting with the [pedestrian, roadworks, pedestrian, vehicle]?
“How comfortable did you find the movement of the vehicle?

Table B.2: Correlation matrix of all features (driving style, questionnaire responses, GSR, VD, and Perception). Correlation and regression coefficients were determined using
separate LMEs for each feature pair. Bold values denote a significant correlation (p < 0.05) and underlined values denote non-significant correlations (p > 0.05).
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Following Table B.2, the following observations can be made with regard to the driving style:

1. Driving style vs. questionnaire responses: A strong correlation between driving style and
all three questionnaire responses can be found (8 = —0.69 to — 0.79). This shows that the
“aggressive” driving style consistently made the participants feel less comfortable and less safe
during the various scenarios.

2. Driving style vs. phasic component: The driving style also shows a strong correlation with
sympathetic burst-related phasic features such as the maximum and amount of SCRs. As these
are related to physiological arousal, this suggests that the “aggressive” driving style does increase
arousal consistently over all participants.

3. Driving style vs tonic component: Baseline arousal, as represented by the tonic component,
shows more variability with the “aggressive” driving style, as can be seen by the significant cor-
relation with the standard deviation and mean time derivative. Despite being significant, these
features show a lower regression coefficient than those from the phasic component, indicating that
the phasic component is more responsive to rapid and high-intensity movements, making it the
primary physiological marker for moment-to-moment observations.

4. Driving style vs vehicle dynamics & perception: As the vehicle dynamics and perception
features are inherently embedded in the driving style, these strong correlations simply confirm
that the “aggressive” driving style is indeed driven very differently than the “calm” driving style.

Turning to the participants’ self-reported scores on perceived comfort and safety, the following becomes
apparent:

1. Questionnaire responses vs. phasic: Lower comfort/safety scores align with larger, more fre-
quent sympathetic bursts, reflected in the phasic maximum amplitude (5 = —0.36 to —0.43) and
peak count (8 = —0.37 to —0.40). The phasic signal, therefore, provides a sensitive, physiological
marker for moment-to-moment discomfort.

2. Questionnaire responses vs. tonic: Baseline arousal, measured b tonic std., and mean td., also
rises as comfort and perceived safety decrease, though the effect is weaker (5 = —0.22 to — 0.26,
B = —0.17 to —0.24). The tonic component captures a slower background tension, rather than
the acute responses as captured by the phasic component.

3. Questionnaire response vs vehicle dynamics & perception: Almost every motion or percep-
tion metric correlates with the scores, yet the strongest correlations come from longitudinal-related
motions, particularly the maximum acceleration and maximum jerk, while distance-keeping re-
lated features (TTC, THW) contribute less. This suggests that the participants assess comfort
and perceived safety primarily based on how the vehicle moves rather than its proximity to other
objects.

Many of these same features show an even stronger correlation with the driving style. Since driving
style also has the highest correlation to the questionnaire responses, this raises the concern that the
correlations may reflect the differences in driving style, rather than being directly linked to the ques-
tionnaire responses. To address this concern, the same correlation analysis is done for data recorded
only during the “calm” or “aggressive” driving style, these results are listed in Tables B.3 and B.4,
respectively, and will be discussed later.

Focusing on the phasic component highlights the following:

1. Phasic component vs. vehicle dynamics: All phasic features, especially phasic max. and
peak count, are responsive to motion minima and maxima. Only the mean td. fails occasionally
in finding a significant correlation to these extremes. This pattern reinforces that abrupt, high-
intensity maneuvers are primary triggers of sympathetic bursts.

2. Phasic component vs. perception: The phasic mean td. and slope are significantly correlated
to the minimum TTC and THW. The phasic rise time is significantly correlated to the mean td.
of the distance to the object.

Finally, regarding the tonic component, the following observations can be made:



B.3. Results 41

1. Tonic component vs. vehicle dynamics: Baseline arousal also rises with motion extremes,
mirroring the phasic results. Shape metrics like skewness and kurtosis remain non-informative,
however. The slightly larger coefficient for the tonic std. and mean td. suggest that the sustained
motion load shapes the tonic level more than isolated bursts.

2. Tonic component vs. perception: Except for a modest correlation between tonic mean td.
and both TTC and THW, perception metrics show no influence to the tonic activity. Therefore,
baseline arousal is only marginally sensitive to environmental cues.

Among all physiological features, the phasic maximum amplitude and peak count show the strongest
correlation to the subjective comfort metrics Q1, Q2, and Q3, making them the most indicative GSR-
based features. As these correlations are statistically significant, they can be meaningfully interpreted
with perceived comfort and safety.

Furthermore, both phasic and tonic features prioritize motion intensity and extremes over direction or
environmental cues: longitudinal and lateral extremes elicit comparable correlation coefficients, while
perception features contribute minimally. Correlations among vehicle dynamics and perception features
mainly confirm that the “calm” and “aggressive” driving styles differ as intended; a pairwise comparison
between them adds little explanatory power for passenger state.
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1. style -
2. Q17 - .
3. Q2° - .47
4. Q3° - .47 27
5. phasic_max - =02 -.09 -.02 .
6.  phasic_min - -08 -06 -.07 .58 .
7. phasic_mean_ td - .02 -02 .01 -21 -31
8.  phasic_slope - -0l -05 .04 -21 -.19
9.  phasic_peak count - .03 -10 .03 .61 .64
10. phasic _time - A1 .02 .07 39 .24 .
11. phasic_recovery_time - .12 -01 .06 .37 .24 .85
12. tonic_mean - .33 34 .05 .
13.  tonic_std - A7 33 .18 .32
14. tonic_mean_ td - . 06 .34 33 .23 .07 .19 .
15.  tonic_skewness - -12 -02 -12 -16 -.18 .01 -.08 -.02 -.08 .
16. tonic_ kurtosis - -11 -.04 -07 .01 .06 .03 13 -.09 -.07 .22 .
17. vel mean - -01 -08 -04 .22 .22 .06 42 .28 .21 -.05 .02
18.  vel max - -07 -06 -.06 .32 .33 14 .41 .33 .32 -.06 .11
19.  vel_min - .08 -.01 -.00 .06 .05 -.03 .05 .09 A1 -120 -0
20. acc_lon_mean - .03 .04 .03 -32 -39 -.15 -16 -.27 -42 .18 -04 .
21. acc_lon_max - -09 -07 -05 .23 .24 13 33 .19 .14 .00 .02 .05 .
22. - .09 .02 .05 -19 -.22 =17 -.33 -17 -22 -.04 -11 .10 -.55
23. ce_lat min - .06 .00 .01 -.33 -.37 =17 -13 -.26 -40 .14 -14 .60 -.11 .42 .
24. jerk lon mean - 7 .01 .06 -08 -.06 -.10 .07 -05 -.18 .00 -.07 .08 .08 .11 .50
25.  jerk lon_max - 25 .35 L1 18 .17 .36 -.11 .07 -54 .41 -34 -74 -23 .
26. jerk_lat_mean - -21 -.24 -.04 -27 -16 -23 .01 -.05 42 -60 .48 .56 .09 -.57
27.  jerk lat max - .37 .39 .16 .21 .32 47 -16 .13 -67 .17 -43 -91 -37 .61 -14 .
28. yaw_rate max - 13 .16 13 -.10 6 .12 -.19 -30 -81 -60 .41 -.18 .58 .
29. yaw_rate min - -1l A3 .7 13 .20 .15 -.03 -89 -47 -19 .35 -29 .37 .50 .
30. d_min - .01 -09 -.09 -07 - -.05 -.02 .12 -07 .14 -50 -14 -00 -.16 .66 .15 .
31. d_mean_td - .05 =17 -4 -24 -21 .02 -.18 .12 . .35 .71 .51 -33 .35 -.47 -85 -.49 -.13 .
32, d_max_td - -.03 .06 .08 14 .03 13 .14 -.02 -55 .07 -1 -07 .08 .01 .07 .17 -.29 -01 -08 .34 .
33.  ttc_min - =12 -18 -15 . -09 -08 -09 -04 -18 .06 -.03 27 .06 -12 .07 -12 -07 -00 -17 41 .23 .57 -26 -.18 .
34, tte_max_td - -08 .04 05 -03 .00 -06 .0 -03 -06 -01 .04 .08 -07 -08 -04 02 -02 .01 .02 .10 -05 .09 .05 -31 -04 -05 -.80
35.  thw_min - =01 -l -.13 -08 -22 .05 .02 -10 .02 -05 -33 -19 -22 .08 .19 54 -06 -08 -06 -.72 -17 -06 -16 .96 .16 .67 -.96 -22 .76 -.11 .
36.  thw_max td -1 -12 -02 04 .10 .03 .02 .12 .15 .03 .09 .06 .06 .02 -.01 =31 08 -15 08 .01 -01 .08 .14 -21 -06 -08 .29 .91 -17 -03 -.18

*How safe did you feel during the car ride?
YHow safe did you feel interacting with the [pedestrian, roadworks, pedestrian, vehicle]?
“How comfortable did you find the movement of the vehicle?

Table B.3: Correlation matrix of all features recorded during the “calm” driving style (questionnaire responses, GSR, VD, and Perception). Correlation and regression coefficients
were determined using separate LMEs for each feature pair. Bold values denote a significant correlation (p < 0.05) and underlined values denote non-significant correlations (p > 0.05).
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style -
Q1* - :
Q2v - .58
Q3° - .59 41 -
phasic_max - A1 .04 .01 .
phasic_min - -.04 -06 .01 .30 .
phasic_mean__td - .03 08 .01 .14 -.14 .
phasic_slope - 10 .06 .01 .36 -.08 .63 .
phasic_peak count - -.04 -16 -.02 .26 .46 .09 .14 .
phasic_rise_time - .03 .10 .03 .29 .03 .21 .41 .02 .
phasic_recovery_time - .05 .09 .02 .16 .07 .10 .29 .18 .40
tonic_ mean - -.06 -.08 .01 .40 -34 -40 .21 -.32
tonic_std - =07 . .34 .28 -.06 A1
tonic_ mean__ td - .05 -09 -01 .47 .29 .18 28
tonic_ skewness - .01 .10 .05 -11 -.28 .22 14 .
tonic_ kurtosis - .01 .08 .01 -11 -10 .13 -.00 .48
vel mean - =24 -31 .01 25 -.22 -.18 -.15 -.10 .
vel _max - =07 .06 -.01 -11 -.15 .56
vel min - =14 -.18 .04 -16 -09 .33 -.07
acc__lon__mean - 12 .15 -.08 16 12 -37 .09 -.73
acc_lon_max - .05 .08 -.03 A1 .00 -13 28 -.47 57 .
acc__lat__max - -.06 -.05 . . .06 .06 -10 -11 .40 .84 -.21 .19 .27 .
acc_lat__min - -.09 -04 -01 -51 -.22 -.22 -.27 12 .18 .14 -38 -06 .27 .01 -.26 .
jerk_lon_mean - -00 -03 .02 .15 .03 .07 .19 -05 -09 .06 .22 .20 .05 -04 .44 -.36
jerk lon max - A3 .19 .06 .04 -02 .09 .07 .08 00 -.46 -17 -10 .16 .41 -.23 -.28
jerk_lat_mean - .37 1 10 -35 -.58 .35 .08 33 24 -76 -81 -80 .78 47 -77 18
jerk lat_max - -02 -16 -04 .46 .35 .11 .14 -17 -20 .29 .73 -04 -17 11 .68 -.77
yaw_ rate_max - .16 .15 .03 .42 09 .28 .27 -.03 -12 -44 .17 .03 -07 .05 .01 -.89 .
yaw_rate_min - 07 .24 05 -25 -.29 -01 -.05 12 11 -.44 -85 .19 -15 -.24 -99 .25 .00 .
d_min - =17 -14 -05 -12 -.04 -16 -16 .04 -.07 .04 01 41 07 -08 .12 .05 .22 .45 -.59 -.24
d_mean_td - -.10 19 -.07 .07 .22 A7 -10 -.19 .24 .29 37 -44 -22 28 -44 .28 -.27 -.01 .
d_max_td - -.08 .25 -.02 -06 .15 .08 -10 -10 .12 -01 .58 -.71 -.33 -.23 -.46 39 16 -.32 .35 .
ttc_min - .16 S17 -.33 -47 -20 -30 -03 .07 27 -37 -07 .19 -01 -17 .73 -87 .16 .23 -61 -.42 -
ttec_max_td - .09 A5 12 .04 12 .09 -11 -13 -23 .07 .17 -19 -05 .01 -.64 .54 -01 -87 .09 .14 -.95
thw_min - =12 -4 -.22 -24 -31 -20 -.20 .04 .11 .21 -34 -18 .21 .02 -.21 .82 -.83 .17 .67 -.54 -.43 .54 -.26
thw max_td - 10 .22 .03 .15 .03 .16 .09 -02 .27 .06 .00 -46 -16 .15 -31 .01 -28 -.54 .87 35 -68 .08 .92 -22 .14 -72

“How safe did you feel during the car ride?
YHow safe did you feel interacting with the [pedestrian, roadworks, pedestrian, vehicle]?
“How comfortable did you find the movement of the vehicle?

Table B.4: Correlation matrix of all features recorded during the “aggressive” driving style (questionnaire responses, GSR, VD, and Perception). Correlation and regression
coefficients were determined using separate LMEs for each feature pair. Bold values denote a significant correlation (p < 0.05) and underlined values denote non-significant
correlations (p > 0.05).
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Tables B.3 and B.4 present the correlation matrices after statistically hiding the driving style constant.
With the driving style variance removed, virtually all phasic and tonic features fall to non-significance
when compared to the questionnaire responses, except for the peak count and tonic standard deviation
for Q2. A similar effect can be seen for the vehicle dynamics and perception features, except for a few
correlating ones in the “aggressive” analysis.

This pattern underscores that the differences in perceived comfort and safety are primarily caused by
the driving style itself. While physiological, vehicle dynamics and perception features can distinguish
between broadly different comfort levels, such as those between the calm and aggressive driving style,
they are largely insensitive to more subtle variations. An interesting trend emerges from Table B.4:
The negative correlations between the velocity-related features and Q1/Q2 suggest that scenarios with
higher driving speeds were perceived as less comfortable and safe. In contrast, the positive correlation
with lateral jerk indicates that scenarios involving more lateral movement were rated more positively.
Additionally, a negative correlation with lateral jerk can be found with GSR-related features, suggest-
ing that more lateral movement corresponds to a calmer physiological state, implying that participants
experienced these scenarios subjectively differently but also physiologically. The significant correlations
observed under the “aggressive” driving style between vehicle dynamics and GSR-related features in-
dicate that participants’ physiological responses varied across scenarios, reflecting variations in how
scenarios are perceived and processed on a physiological level.

The correlation analyses done in Table B.2 to B.4 are repeated for each of the five scenarios separately.
Tables B.5 to B.9 represent these results.
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style .
Q1* -.57 .
Q20 -41 .64
Q3¢ -.65 .67 .52 -
phasic_max .88 -.43 -35 -.53 .
phasic_ min .56 -17 -19 -.31 .65 .
phasic_mean_ td 35 -19 -19 -29 .23 -.09 .
phasic_slope .59 =31 -20 -.34 42 -.02 .64 .
phasic_peak_count 39 .01 -19 -24 .40 . .19 .
phasic_rise_time .47 -05 -10 -23 .40 23 .19
phasic_recovery time .33 .00 -04 -07 .30 16 .46 79 .
tonic__mean -.30 .24 .29 .18 -.03 -25 .03 -20 -.14
tonic_std 45 -.04 -.04 -27 .42 .08 .26 .16 .09 .32 .
tonic__mean__td 71 -36 -.26 -.44 .45 .36 .30 .24 23 -.33 .23 .
tonic_skewness 13 -15 .04 -13 .10 44 01 -00 -03 .00 -11 .04 .
tonic_ kurtosis 10 -16 -03 -14 .19 16 .07 -02 -08 -02 -15 -01 .28 .
vel _mean 99 -51 -43 -.64 .66 .46 .36 .45 .32 -24 .32 .52 .11 .10 .
vel _max 99 -50 -43 -.65 .66 45 .35 .46 32 -24 .33 .53 .10 .08 .98 .
vel_min -5 .25 .16 .37 -.33 -09 -21 -28 -21 .15 -04 -34 -06 .2 -39 -51
acc_lon_ mean .98 -.55 -.46 -.66 .64 43 .35 42 .29 -25 .31 49 .09 09 .97 98 -.50 .
acc_lon_max 98 -.50 -.43 -.66 .65 .46 .36 .44 .32 -21 .33 .56 .10 .10 .99 .95 -45 .87 .
acc_lat_max 7 -.41 -37 -56 .47 .39 .30 .33 .26 -18 .30 .42 .07 .06 .14 .75 -40 .65 .78 .
acc_lat_min -.94 .48 .50 .69 -.68 -.46 -39 -49 -36 .18 -34 -53 -11 -09 -.93 -97 .52 -91 -97 -.82 .
jerk_lon_mean -08 -05 -04 .08 .03 .08 -01 -06 -12 -11 -01 -08 .13 .18 .08 -05 .80 .06 -.02 -15 .05 .
jerk_lon_max 98 -54 -.52 -7T4 .56 39 .35 .35 .24 -19 .31 50 .09 .0 .94 .93 -45 .92 .97 .79 -98 .05 -
jerk_lat_mean Jd20029 .02 -11 -.00 -.02 -8 -03 -3 .17 .96 .08 -07 -08 -07 .13 -02 -36 .09 .10 -18 .28 -.09
jerk lat max 94 -.47 -47 -69 .66 48 .37 .46 34 -16 .32 .50 .14 11 .95 .95 -50 .90 .95 .86 -.98 .00 88 .08 .
yaw_ rate_max 750 -22 -.21 -47 .59 .38 .39 .43 .38 -06 .31 .40 .17 .10 .8 .76 -59 .77 .68 .59 -90 .07 .78 .06 .91 .
yaw_rate_min -38 .45 .41 .43 -.23 -13 -13 -16 -09 .19 -14 -22 -10 -02 -37 -39 .22 -39 -40 -30 .36 -08 -.47 .14 -.31 -.30 .
d_min -36 .35 .37 .25 -.23 -23 -23 -03 -04 18 -09 -14 -11 -12 -45 -39 -27 -46 -35 -19 24 -28 -33 .15 -25 -15 .02
d_mean_ td .60 -.45 -40 -.50 .22 .22 16 23 20 -27 .06 .23 .03 -10 .58 .58 -25 .63 .54 .40 -41 .18 .61 -01 .40 .19 -21 -.57 .
d_max_td 64 -31 -22 -34 .31 .04 I3 .27 23 .39 .22 -25 20 .45 .03 .04 .66 .63 -32 .61 .67 .59 -57 .19 .61 -09 .68 .52 -.48 -37 .49 -
ttc_min -.64 .37 .38 .53 -39 -10 -.27 -.32 -35 .30 -.40 -.15 5 -67 25 -67 -65 -51 .63 -29 -63 .2 -65 -61 .21 .57 -33 -.55 .
ttc_max_ td -20 .08 .07 .03 -13 .03 -.02 -. 5 .13 -.23 .11 -22 49 -34 -20 -14 .17 -16 -30 .20 -16 -18 .18 -.03 -11 -24 17
thw_min -58 .39 .36 .43 -28 -09 -.21 -.28 -.28 -19 -12 .25 -10 -.07 60 -09 -72 -58 -40 A48 -.30 -.61 .13 -47 -34 .16 .91 -.68 -56 .77 .06 -
thw_max_ td .82 -44 -35 -55 .38 16 .25 .32 .22 .47 .32 -.26 .05 -02 .88 .89 -40 .78 .82 .72 -80 .13 79 -09 .88 .75 -31 -39 .37 .79 -56 -206 -.54

“How safe did you feel during the car ride?
PHow safe did you feel interacting with the pedestrian?
“How comfortable did you find the movement of the vehicle?

Table B.5: Correlation matrix of all features recorded during the pedestrian crossing without obstruction scenario (driving style, questionnaire responses, GSR, VD, and
Perception). Correlation and regression coefficients were determined using separate LMEs for each feature pair. Bold values denote a significant correlation (p < 0.05) and underlined
values denote non-significant correlations (p > 0.05).
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1. style .
2. QI* -1
3. Q2° -79 .86
4. Q3° -.69 .90 80 .
5. phasic_max .96 -.66 -.70 -.71 .
6.  phasic_min .85 -.58 -.68 -.61 .72 .
7. phasic_mean td 25 -14 -11 -19 .16 -.05 .
8. phasic_slope 53 -32 -35 -.28 .44 .27 41 .
9.  phasic_peak_ count .83 -75 -80 -.68 .67 .60 .16 .35 .
10. phasic_rise_time 58 -42 -44 -37 .52 36 .23 46 .35 .
11.  phasic_recovery time 52 -.35 -.35 -.37 .48 40 21 .35 .58 .98 .
12.  tonic_mean 54 -34 -35 -36 .39 45 -24 -09 .45 .01 .14
13.  tonic_std .95 -.67 -61 -68 .79 .67 .24 .43 .66 .58 .56
14. tonic_mean_td 93 -.67 -69 -.63 .70 .58 .33 .60 .67 .60 .49
15.  tonic_skewness .01 -07 -02 -04 .01 -18 .43 .44 -05 .11 .07
16.  tonic_kurtosis -1 16 a1 .12 -08 .01 .17 .05 .01 -0l -.05
17. vel _mean 98 -T2 -72 -69 .72 .64 .18 .40
18.  vel max 95 -.73 -72 -70 .72 .64 .19 41 .
19.  vel min -95 .71 .70 .68 -71 -63 -19 -.41 -.98 .
20. acc_lon__mean 97 -73 -.72 -.69 .71 .62 .18 .40 99 -.93
21. acc_lon_max 99 -72 -72 -68 .71 .60 .18 .44 99 -.99 98 .
22.  acc_lat_max 96 -73 -T2 -71 .71 .64 .19 41 97 -95 .95 .95 .
23. acc_lat_min -98 .73 .71 .69 -72 -64 -18 -.40 -99 .99 -99 -96 -.97 .
24.  jerk_lon_mean -.76 .61 .58 .59 -.55 -43 -07 -.35 =75 7T =79 74 -73 .75 .
25.  jerk lon max .94 -81 -75 -74 .69 .53 .17 .44 95 -94 .99 98 .99 -96 -.62 .
26. jerk_lat_mean -96 .70 .71 .68 -.68 -.61 -19 -.40 -96 .96 -96 -93 -93 .96 .68 -.83 .
27.  jerk_lat_max 98 -72 -73 -70 67 .64 .18 .38 99 -97 97 92 .97 -99 -69 .85 -.93
28. yaw_rate_max 96 -.72 -71 -69 .72 .64 .19 .40 99 -99 .99 96 .97 -98 -72 .84 -.95
29. yaw_rate min -98 .74 72 72 =70 -64 -19 -.40 -99 .99 -99 -94 -98 .95 71 -.86 .95 .
30. d_min .53 -.56 -.58 -49 .39 .34 .36 .34 b5 =53 52 .52 .56 -5H4 -.34 .51 -.50 -.56 .
31. d_mean_td -91 .64 .69 .57 -.65 -.54 -.30 -.41 -89 .90 -91 -88 -89 .90 .56 -.77 .85 .88 -.43 .
32, d_max_td -64 .45 .51 45 -.46 -.33 -06 -.21 -64 .65 -.64 -62 -.63 .64 .47 -.53 .63 63 -.40 59 -
33.  ttc_min .72 -.59 -67 -.60 .52 .47 .36 .46 73 =72 .74 70 .74 -75 -.50 7T -.67 -.76 .81 -.67 -.53 .
34, ttc_max_td -96 .95 .97 .94 -96 -96 -96 -.95 -96 .98 -99 -99 -98 .98 .94 -96 .96 94 -95 .95 .96 -.94 .
35. thw_min 43 -40 -42 -.38 .32 27 31 .29 45 -.43 42 .43 46 -.44 -.26 44 -.42 B -47 .96 -35 -.29 .95 -.17 .
36. thw_max_td -67 .47 .60 .46 -50 -.36 -02 -.19 -65 .66 -.66 -.62 -.64 .67 .43 -50 .62 -60 -.67 .67 -34 .57 .98 -42 33 -34

“How safe did you feel during the car ride?
PHow safe did you feel interacting with the roadworks?

“How comfortable did

you find the movement of the vehicle?

Table B.6: Correlation matrix of all features recorded during the roadworks scenario (driving style, questionnaire responses, GSR, VD, and Perception). Correlation and regression
coefficients were determined using separate LMEs for each feature pair. Bold values denote a significant correlation (p < 0.05) and underlined values denote non-significant

correlations (p > 0.05).
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1. -
2. -.58
3. -.51
4. -.66 .
5. phasic_max .89 -.61 .
6. min .82 -.59 .70
7. mean_td .25 -21 .33
8. phasic_slope .37 -.27 .37
9. phasic_peak count .41 -.58 .43
10. phasic_rise_time .29 -.26 33
11.  phasic_recovery time .27 -.28 30 .
12, tonic_mean 20 -23 .19 .10
13. tonic_std .15 -.14 .26 -.02 -.19 .
14. tonic_mean_td 42 -.29 .42 29 .08 -.05 .
15.  tonic_skewness -.00 A1 05 13 -07 -04 .07 .
16.  tonic_kurtosis -.00 .09 .04 12 -04 .08 -08 .53 .
17. vel mean .92 -.66 66 25 .15 .13 .30 -.02 -.01
18.  vel max 91 -.66 .68 27 160 12 30 -.01 .00 .99 .
19.  vel _min -.37 .16 -.28 .01 -18 -20 -13 -09 -12 -36 -.35 .
20. acc_lon_mean .86 -.65 .60 27 .18 11 28 -.03 .01 .90 .98 -.26 .
21. acc_lon_max .98 -.67 66 .26 .14 .14 31 .01 -03 .97 .95 -.25 .86 .
22,  ac At max .75 -.58 .52 .10 -00 .21 29 -04 -03 .78 .77 -18 .79 .71
23. acc_lat_min -.84 .68 -.59 -21 -12 -18 -26 .06 .02 -8 -82 .24 -83 -80 -.76
24. jerk lon_ mean -17 .01 -2 -.08 -14 -02 -04 -08 -08 -16 -17 .62 -39 -15 -.23
25.  jerk_lon_max -.66 .65 22 .13 .16 32 .02 .06 .98 .97 -27 .88 .97 .67
26. jerk_lat__mean -31 .28 20 .14 -01 .12 -04 -01 .53 .60 -07 .90 .30 .29
27.  jerk lat max -70 .59 .22 .10 .18 .30 -04 -02 .82 .79 -.23 81 T 75 .
28. yaw_rate max -.64 .59 .23 .12 18 .28 -07 -03 .84 .82 -18 .84 .77 .73 91
29. yaw_rate_min .04 -.22 .06 .00 -17 -16 -01 .01 -31 -29 .24 -28 -26 ~-.99 -.98
30. d_min 30 -24 -32 -11 .00 -11 .08 -01 -.41 -44 .04 -.47 -37 -27 -.40
31. d_mean_td -.33 .15 A7 .08 6 -15 -03 .16 .36 .40 -18 .56 .29 .41 .
32, d _max td -28 .29 .03 12 .18 -00 -09 .38 .37 -15 .36 . .35 .43 .03
33.  ttc_min 10 -35 =27 -11 -15 -15 -09 -22 -29 .02 -16 -25 -30 -.28 -.32 -.46 .
34.  ttc_max_td -46 .80 56 12 .16 4 05 37 b3 -06 .55 .24 .57 90 55 -04 -8 .65 .71 -.94 -
35.  thw_min 55 -.38 -42  -.23 -16 .13 .01 -81 -88 .03 -84 -73 -70 -.86 -.79 .00 .95 -60 -.42 42 .04 .
36.  thw_max_td .41 -53 -52 -40 .35 A7 .04 25 .06 -02 .78 .46 -13 62 .63 .31 39 .88 -10 -17 -14 .76 -17 .54 -.63

*How safe did you feel during the car ride?

PHow safe did you feel interacting with the pedestrian?
“How comfortable did you find the movement of the vehicle?

Table B.7: Correlation matrix of all features recorded during the pedestrian crossing with obstruction scenario (driving style, questionnaire responses, GSR, VD, and Perception).
Correlation and regression coefficients were determined using separate LMEs for each feature pair. Bold values denote a significant correlation (p < 0.05) and underlined values
denote non-significant correlations (p > 0.05).
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1. style .
2. QI° -7 -
3. Q2° -.58 .82 .
4. Q3° -66 .83 .75 .
5. phasic_max .76  -51 -.45 -.49 .
6.  phasic_min 44 -36 -.35 -.33 .41 .
7. phasic_mean td .09 -11 -15 -16 .01 .01
8. phasic_slope -.02 -03 -12 -04 -08 .20 .53 .
phasic__peak__count .25 -30 -29 -16 .21 .32 .12 .13
pha se_time 21 -10 -10 -07 .30 .25 .11 .19 -.08 .
phasic very__time A4 .03 .03 .02 .27 .20 -.03 .02 .04 .77 .
tonic__mean =12 -.03 .07 .14 .10 19 -20 -24 .20 .14 .14
tonic_std 18 -15 -15 -09 .31 .17 -0l -00 .24 .17 .31 .09 -
tonic_mean_td 02 -09 -06 .04 .12 18 .14 08 .31 .19 .17 .12 .65 .
tonic_ skewness A4 -17 -21 -24 -00 .08 .03 .36 .02 .04 -09 -.36 .10 .09
tonic_kurtosis -.28 .12 12 .07 -33 -09 -04 -02 -05 -.12 -19 .14 -30 -24 -.04
vel _mean .90 -.63 -57 -.60 .50 .26 .04 .00 .21 .23 .15 -11 .18 .
vel max 42 -36 -.41 -39 .30 .22 -0l .02 .2 .4 .06 -13 .8 45 -
vel min .66 .52 .49 .55 -.48 -20 .01 .06 -10 -07 -15 .03 -14 -70  -.64
acc_lon_mean -94 .67 .62 .68 -.44 -27 00 .03 -17 -1l -15 .08 -15 -8 -.59 .92 -
acc_lon_max .80 -.58 -54 -60 .47 .29 -08 -10 .20 .17 .17 -.08 .16 .69 .49 -64 -.74
at_max 93 -7 -89 -90 .75 .35 .06 -07 .19 .3 .33 -08 .20 93 .89 -94 -96 .91
at_min -.82 .66 .64 .63 -53 -25 -05 .04 -20 -14 -15 -00 -.12 76 -.48 .85 .87 -70 -56 -
jerk_lon_mean -25 .13 .13 .19 -20 -10 .02 .01 .07 -06 -17 .04 .01 -09 -22 .46 .31 -21 -26 .38 .
jerk_lon_max .85 -50 -61 .50 .28 -10 -10 .19 .8 .14 -06 .15 77 45 -.65 -.82 .89 .43 -.82 -21 -
jerk lat__mean -43 33 .35 .38 -45 -18 -00 .01 -11 -02 .09 .04 -24 -56 -52 .79 49 -40 -.61 .47 .04 -.37
jerk_lat_max 73 -57 -.65 -.57 .50 .26 .06 -05 .7 .4 .18 -01 .10 68 .54 -.87 -81 .68 .59 -85 -.43 .66 -50 -
yaw_rate_max .84 -.65 -.63 -.62 .52 .27 07 -02 .20 .14 .13 -01 .15 .78 .47 -.82 -86 .68 .58 -97 -31 .68 -59 .86 .
yaw_rate_min _96 26 .93 .4 -52 -39 -0l -05 -06 -45 -39 -10 -.01 _96 -24 52 .59 -55 -.96 .84 .26 -.68 .8 -.93 -53 -
d_min 61 -.41 -30 -22 .33 .4 .3 .08 .27 .4 .23 .06 .19 61 -00 -.48 -53 .37 .57 -.61 -05 .52 -18 .78 .50 -49
d_mean_td 67 -.60 -.40 -.53 .46 .8 -10 -05 .27 .33 .24 .04 .17 45 23 -.40 -.46 .72 .19 -53 -28 .65 -08 .46 .52 -05 .30 -
d_max_td 45 -32 -21 -27 27 A8 17 .13 .07 .30 .24 -09 .08 17 09 -31 -33 35 .18 -.38 -41 .35 -0l .37 .31 -05 .0 .33 -
ttc_min 40 -30 -18 -21 .28 .8 .07 .00 .07 .18 24 .02 17 58 28 -50 -.48 .39 .24 -51 -17 .49 -37 .54 .49 -09 .67 .38 .06 -
ttc_max_td 22 -21 -34 -28 .19 20 -01 -03 .08 .07 .14 .00 -01 06 -24 18 07 -04 .00 -03 .03 .25 .03 .03 -02 .08 .63 -02 -07 -09 @
thw_min .60 -37 -22 -16 33 .13 .09 .03 .25 .12 .19 .02 .17 59 -02 -39 -46 34 .52 -56 -04 .51 -17 .72 .45 -32 .88 20 -03 .55 -07 -
thw_max_td 04 -12 -04 10 .09 .09 .06 .01 .24 .16 -07 -.01 =24 -09 -01 03 06 -10 -04 -32 .01 31 .08 -00 .06 -18 .18 .97 -24 .18 -.27

2How safe did you feel during the car ride?
PHow safe did you feel interacting with the vehicle?
“How comfortable did you find the movement of the vehicle?

Table B.8: Correlation matrix of all features recorded during the cut-in scenario (driving style, questionnaire responses, GSR, VD, and Perception). Correlation and regression
coefficients were determined used separate LMEs for each feature pair. Bold values denote a significant correlation (p < 0.05) and underlined values denote non-significant
correlations (p > 0.05).
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style .
Q1* =71 .
Q2° -.58 .82
Q3¢ -.66 .83 75 .
phasic_max .53 -.38 -.38 -.39
phasic_ min .54  -.43 -.42 -.29 .32
phasic_mean_ td -26 .18 .16 .19 -.37
ic_slope -.44 31 33 32 -.49
sic_peak count 31 -33 -36 -10 .24
phasic_1 i 15 -.03 -01 .07 .26
phasic_reco 21 -17 -.06 -.00 .15 .
tonic_ mean -.15 .01 .01 .16 .06 -.05 .
tonic_std .06 -11 -12 -07 .16 -20 -.05 .
tonic__mean__td -17 .18 A1 12 .02 -.03 .15 -.48 .
tonic_ skewness -.07 20 -18 .03 -19 .18 -31 .
tonic_ kurtosis 15 .04  -10 .01 .04 -21 -01 .23
vel _mean .64 : .27 12 -01 .01 -03 -19 -.01 .
vel _max .76 37 12 -.01 -.00 12 .65
vel _min -.74 -.33 =11 .13 .04 -.01 -.57 -.66
acc__lon__mean .99 .30 A7 -.09 .01 .12 .66 .69
acc_lon_max 91 .35 26 -.10 .03 .05 .49 61 .
acc__lat__max .08 -.03 .06 -10 -.03 -.05 .06 -.00 05
acc_lat_ min -10 . . . .08 -0l -03 .12 .07 -12  -.08 -.06 -.02
jerk _lon_mean -.83 .57 .56 .62 -.28 -17 .10 -.05 -.10 -.37 -.44 -87 -.01 .03
jerk lon_ max .82 -.61 -.51 -.58 .29 27 -11 .02 01 .50 51 91 .16 -.01 -.64
jerk_lat_mean -.41 .36 .31 .28 -19 .07 .02 -.07 -.04 -19 -18 -34 .01 .02 .25 -.31
jerk lat max 16 -13  -16 -15 .04 10 -.06 .02 01 .24 .20 12 42 -24 -06 .12 -.05
yaw__rate_max .29 -11 -15 -22 .30 . -02 .02 -.00 .02 .25 28 36 -15 .02 -.30 25 -.06 -.02 .
yaw_rate_min -.50 .32 .36 .37 -.34 .26 . -29 .18 -.03 .06 -39 -.24 -53 -26 .08 .35 -.55 21 -1 -.35 .
d_min .57 -.62 -.63 -54 .28 .16 -22 04 11 .15 -17 .03 02 .46 .36 70 .06 16 -.49 .03 -.44
d_mean_td -.82 .67 .54 .63 -41 -35 27 .10 -.28 -.33 -00 .06 -45  -.49 -78 -06 .20 .61 -24 .41 -51 -
d_max_td -38 .12 .03 .13 -11 -12 .09 -17 -18 -27 -04 .01 -.34 -13 -.32 -20 -.02 .15 -10 .27 -26 .45 .
tte_min .98 -.81 -.90 -75 .53 .34 -38 .17 .12 .18 -18 .04 .83 57 98 .10 -17 -.92 07 -.69 097 -68 -40 -
tte_max_ td -74 38 30 .50 -.32 -22 21 -0 -00 -15 -.05 -.03 -.82 -.29 -91 -03 .11 .25 .03 65 -94 43 39 -.94 .
thw_min 97 -76 -.69 -77 .44 31 -38 .07 .09 21 -13 .03 .37 .58 88 .06 -.17 -.69 17 -.46 .76 -91 -31 .54 -.37
thw__max_ td -38 .19 .08 .15 -11 -11 09 -10 -13 -21 .02 .04 -.36  -.12 -.33 -23 .01 .16 -10 .25 -30 .46 .78 -23 .09 -.37

*How safe did you feel during the car ride?
PHow safe did you feel interacting with the vehicle?
“How comfortable did you find the movement of the vehicle?

Table B.9: Correlation matrix of all features recorded during the car-following scenario (driving style, questionnaire responses, GSR, VD, and Perception). Correlation and
regression coefficients were determined used separate LMEs for each feature pair. Bold values denote a significant correlation (p < 0.05) and underlined values denote non-significant
correlations (p > 0.05).
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Tables B.5 to B.9 reveal how the different scenarios evoke different responses, both subjective and
physiological:

1. For all scenarios, a significant negative correlation can be found between style and questionnaire
response, indicating that for each scenario, the aggressive driving style was rated more negatively.
The effect is largest in the roadwork scenario (8 = —0.69 to — 0.79) and smallest in the ped.
crossing without obstruction (8 = —0.41 to —0.65). This underscores that the same style change
is felt with varying intensity across scenarios.

2. Similarly, GSR-related features show different correlation coefficients between scenarios. The
roadwork scenario shows the highest correlation coefficients and the car-following the lowest.

3. The phasic maximum amplitude remains the most robust indicator among GSR features of both
driving style and subjective responses across all scenarios. In contrast, phasic peak count loses
significance in several scenarios.

4. The tonic component shows very high correlation coefficients with both the driving style and
subjective scores in the roadwork scenario, but becomes insignificant in the ped. crossing with
obstruction, cut-in, and car-following and marginally significant in the ped. crossing with obstruc-
tion.

5. The correlation coefficients between driving style and vehicle dynamics approach |3| =~ 1.00 as
these vehicle dynamics are intrinsic to the definition of aggressive versus calm driving.

6. Similarly, in those scenarios where the perception characteristics are salient (roadworks and car-
following), a high correlation coefficient can be found.

7. Furthermore, a strong correlation (|3] > 0.5) exists between vehicle dynamics and GSR in the
ped. crossing with and without obstruction and the roadwork scenario, suggesting larger motion
differences provoke stronger physiological responses.

Note:
For the roadworks scenario in Table B.6, the maximum time derivative of the TTC correlates
at |f] = 0.95 — 0.99 with almost every variable. This near-unity inflation is most likely a
numerical artefact: when the VUT passes the roadwork cones, the TTC jumps from = 5
seconds to = 25 seconds, creating identical extreme slopes across trials. Therefore, this
observation should be treated with caution or omitted from analysis.

This scenario-specific analysis indicates that the different scenarios elicit distinct subjective and phys-
iological responses. While the aggressive driving consistently lowers perceived comfort and safety,
the magnitude of both the subjective and physiological responses varies considerably across scenarios.
Scenarios involving higher vehicle dynamics tend to provoke stronger reactions, hinting that motion
intensity plays a key role in shaping both perceived and physiological discomfort.

To complement the statistical correlation analysis, a series of visualizations was created to illustrate
further and interpret the observed relationships. These visualizations focus on three key physiological
features, phasic maximum, peak count and tonic standard deviation, selected based on their strong
correlation with both driving style and subjective responses (see Table B.2). The resulting plots aim to
provide intuitive insights into the strength, direction and patterns behind the correlations, helping to
better understand how the GSR relates across participants and conditions.

Figures B.5, B.6, and B.7 visualize a scatter of the average subjective response (Q1, Q2, Q3) and
the average phasic maximum, peak count and tonic standard deviation per scenario per driving style
condition. The dashed lines link each scenario’s calm and aggressive points, highlighting the magnitude
of change between driving styles. Scenario averages reveal scenario-specific patterns, and the overall
trend represents the average relationship across all scenarios and participants.



B.3. Results 51

Q1 vs. phasic_max per scenario

1
%)
]
x 0.5
©
€
J
e
® 0
Q
c
©
(1)
=
-0.5
~
®
1 1.5 2 2.5 3 3.5 4 4.5 5
Mean Q1
@® pedestriancrossingwithoutobstruction @ roadwork @ pedestriancrossingwithobstruction @ cutinccr @ carfollowingccrb
® calm 4 aggressive == overall trend
(a) Q1
Q2 vs. phasic_max per scenario
1 SO *~
~
@ o~
2
x 0.5
©
€
J
a
= 0
[=%
f=4
§ >
=
-0.5
1 1.5 2 2.5 3 3.5 4 4.5 5
Mean Q2
@ pedestriancrossingwithoutobstruction @ roadwork @ pedestriancrossingwithobstruction @ cutinccr @ carfollowingccrb
® calm 4 aggressive === overall trend
(b) Q2
Q3 vs. phasic_max per scenario
1
o
2
x 0.5
©
€
J
D
= 0
Q
f=4
©
()
=
-0.5
1 1.5 2 2.5 3 3.5 4 4.5 5

Mean Q3
® pedestriancrossingwithoutobstruction @ roadwork @ pedestriancrossingwithobstruction @ cutinccr @ carfollowingccrb

® calm 4 aggressive === overall trend

(c) Q3

Figure B.5: Scatter of mean phasic maximum and mean subjective responses (Q1, Q2, Q3) per scenario and driving
style. Calm (circle) and aggressive (diamonds) are joined by dashed lines; the solid black line shows the overall trend.
The phasic maximum is standardized participant-wise.
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Q1 vs. phasic_peak_count per scenario
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Figure B.6: Scatter of mean phasic peak count and mean subjective responses (Q1, Q2, Q3) per scenario and driving
style. Calm (circle) and aggressive (diamonds) are joined by dashed lines; the solid black line shows the overall trend.

The phasic peak count is standardized participant-wise.
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Q1 vs. tonic_std per scenario
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Figure B.7: Scatter of mean tonic standard deviation and mean subjective responses (Q1, Q2, Q3) per scenario and
driving style. Calm (circle) and aggressive (diamonds) are joined by dashed lines; the solid black line shows the overall
trend. The tonic standard deviation is standardized participant-wise.

Analysis of Figures B.5, B.6 and B.7 shows that across all participants and scenarios, there is a negative
linear relationship between the key features and comfort scores. This indicates that when GSR increases,
the participants generally felt less comfortable, although individual results may vary.

When comparing the figures, it is clear that the phasic component has a stronger connection to feelings
of discomfort than the tonic component.
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Several other interesting patterns emerge from the figures:

1. The roadwork scenario shows dramatic contrasts: during calm driving, it is rated on average as
the most comfortable and safe scenario, but during aggressive driving, it is perceived as one of
the most uncomfortable and unsafe.

2. Pedestrian crossings, both with and without obstruction, are seen as the most comfortable and
safe during aggressive driving, with especially little difference in how safe participants felt between
driving conditions (Q2).

3. When it comes to overall ride comfort, all scenarios receive similar ratings on average.

The roadwork scenario also stands out with the steepest slope across key features, suggesting that both
physiological and subjective responses changed substantially between calm and aggressive driving styles.

Figure B.8 further visualizes the relationship between the key GSR features, phasic maximum, peak
count and tonic standard deviation, and the participants’ self-reported comfort and safety scores. Each
jittered black dot is a single observation, colored dashed lines trace the scenario-specific mean response
at each comfort/safety level, and the solid black line depicts the overall mean trend across all scenarios
and participants.

Consistent with Figures B.5-B.7, there is a clear negative association: as self-reported comfort and safety
scores decrease, GSR activity increases. Moreover, the phasic features exhibit steeper slopes than the
tonic feature, indicating once again a stronger link to self-reported moment-to-moment discomfort.

Several scenario-specific patterns emerge:

1. The roadwork scenario elicits the highest overall physiological arousal and the most pronounced
slopes, indicating large shifts in both physiological and subjective responses.

2. The cut-in scenario produces the next greatest GSR response and moderately steep trends.

3. Contrary, the pedestrian crossing scenarios and car-following scenario show relatively flat slopes,
reflecting only modest variations in GSR across comfort and safety levels.

Taken together, these results reaffirm that, on average, GSR increases with decreased comfort and safety
scores reported by the participants. Both physiological and subjective responses vary systematically
per scenario. In particular, the roadwork scenario is associated with lower comfort and safety scores
and the highest overall GSR arousal.

These observations of Figure B.5 to B.8 are consistent with the statistical results obtained from the
LME models, which confirm the same patterns in both subjective as physiological responses across all
scenarios and per scenario.
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Figure B.8: Phasic maximum (a), peak count (b) and tonic standard deviation (c) jittered as a function of the
subjective responses (Q1, Q2, Q3). Individual data points (jittered transparent black dots), scenario-specific mean
trends (colored dashed lines), and the overall mean trend (black line) are shown for each questionnaire item.

With the phasic maximum amplitude and peak count identified as the most indicative features of
passenger state, Figure B.9 visualizes all recorded data points, plotting these two GSR-based indicators
against each other and coloring each point by the participants’ corresponding subjective score.

A Support Vector Machine (SVM) is fitted to outline in the feature space where each subjective score
(Q1, Q2, Q3) predominates. Overall, lower comfort and safety scores are generally associated with
stronger phasic responses, despite some local exceptions.
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Figure B.9: Scatter cross plot of phasic maximum amplitude and peak count, colored by subjective ratings (Q1, Q2,
Q3). Background shading represents SVM-derived decision regions for each subjective rating. Both phasic features are
z-standardized on a per-participant basis.

B.3.2. Comparative Analysis

The dataset obtained by the diverse experiment allows for a wide range of pairwise comparisons between
subjective responses and physiological measures across scenarios, different obstructions, demographic
variables and pre-questionnaire responses related to trust in automated driving, willingness to adapt
automated driving and likelihood of motion sickness.

The three questionnaire responses are compared and three physiological-related features. The three
features chosen to represent the physiological responses are the phasic maximum, peak count and tonic
mean time derivative. The two phasic features showed the highest correlations with the subjective
scores and vehicle dynamics data. The tonic mean time derivative was the only physiological-related
feature to show a correlation with perception data.

Scenarios
Figure B.10 presents the comparisons between each scenario.
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Figure B.10: Boxplots comparing subjective and physiological responses across all scenarios. Statistical significance
was assessed by using a repeated-measures ANOVA. Test statistics and p-values are indicated in each subplot title.
Sample size per group (n) reflects the number of unique participants in this grouping.

This figure shows statistically significant differences across scenarios for perceived comfort (Q1) and
safety (Q2), but not for overall ride comfort (Q3), suggesting that environmental elements influence
perceived comfort and safety, but not overall ride comfort. The carfollowingcerb/cutincer scenario was
rated as least comfortable, and the roadwork scenario as least safe. Physiologically, significant differ-
ences were also observed. The cutincer scenario consistently triggered the highest sympathetic arousal,
followed by roadwork. Notably, an inconsistency emerged; despite being perceived as the least com-
fortable, carfollowingccrb showed the lowest phasic response. Furthermore, pedestrian-related scenarios
were generally perceived as more comfortable and safe, which is also reflected in the physiological data.

Object-related

With various different obstruction settings in the experiment, pairwise comparisons can be performed
to gain insights into how different objects or settings influence passenger state. Figure B.11 shows the
boxplot of the differences between scenarios that involve a car (the cut-in and car-following scenarios)
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and a pedestrian (pedestrian crossing without and with visual obstruction scenarios).
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Figure B.11: Boxplots comparing subjective and physiological responses between scenarios involving a car or a
pedestrian. Statistical significance was assessed using paired t-tests. Test statistics and p-values are indicated in each
subplot title. Sample size per group (n) reflects the number of unique participants in this grouping.

This figure reveals strong, significant differences for perceived comfort (Q1) and perceived safety (Q2)
between scenarios involving cars and pedestrians, with higher comfort and safety scores reported in the
pedestrian-related scenarios. No significant difference was observed in overall ride comfort (Q3).

On the physiological side, a significant increase in phasic peak count and tonic standard deviation
indicates greater sympathetic nervous system activation during car-related scenarios. However, no sig-
nificant difference was found for the phasic maximum.

This suggests that car-related scenarios are perceived more uncomfortable, as evidenced by both sub-
jective and physiological responses. A likely explanation lies in the higher speeds typically associated
with these scenarios or the increased risk they pose, since collisions, especially at such speeds, tend to
have more severe consequences for passengers. Consequently, participants may have exhibited stronger
responses under these conditions.

Q1 Q2 Q3 Phasic max. | Phasic peak count Tonic std.
Configuration t-stat p-value | t-stat p-value | t-stat p-value | t-stat p-value | t-stat p-value t-stat  p-value
Car, calm vs. Ped., calm 0.24 =0.81 -1.72 =0.09 -0.93 =0.35 1.64 =0.11 2.82 <0.05 4.44 <0.05
Car, aggressive vs. Ped., aggressive | -4.00 <0.05 | -3.64 <0.05 | -1.40 =0.15 | -1.01  =0.32 0.23 =0.82 2.25 <0.05
Car, calm vs. Ped., aggressive 6.11 <0.05 3.25 <0.05 6.91 <0.05 | -5.79  <0.05 -5.4 <0.05 1.35 =0.29
Car, aggressive vs. Ped., calm -7.12  <0.05 | -6.37 <0.05 | -8.04 <0.05 3.78 <0.05 7.57 <0.05 4.88 <0.05

Table B.10: Comparison of subjective and physiological responses between scenarios involving a car or a pedestrian for
each driving style configuration. Paired t-tests were done for statistical analysis.

According to Table B.10, during the calm driving there were no significant differences in participants’
comfort and safety ratings between the car- and pedestrian-related scenarios. Under aggressive driving,
however, participants reported higher comfort and perceived safety around the pedestrian.

As expected, comparisons involving different driving styles, regardless of the object, generally resulted
in significant differences, highlighting the strong influence of the driving style on passenger perception
and state.

The second comparison, shown in Figure B.12, shows the differences between the pedestrian without
obstruction and with visual obstruction.
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Figure B.12: Boxplots comparing subjective and physiological responses between the pedestrian crossing scenarios with
and without visual obstruction. Statistical significance was assessed using paired t-tests. Test statistics and p-values are
indicated in each subplot title. Sample size per group (n) reflects the number of unique participants in this grouping.

This figure shows no statistically significant difference between scenarios with and without visual ob-
struction for the pedestrian crossing across all subjective and physiological responses. This indicates
that the presence of a visual obstruction in the pedestrian-related scenarios did not meaningfully alter
the passenger’s state.

Table B.11 presents the result of the same comparison with the driving style as an extra factor to
distinguish between configurations.

Q1 Q2 Q3 Phasic max. | Phasic peak count Tonic std.
Configuration t-stat p-value | t-stat p-value | t-stat p-value | t-stat p-value | t-stat p-value t-stat  p-value
No obs., calm vs. Obs. calm -0.38 =0.70 | -096 =0.34 | -0.14 =089 | -0.69 =0.49 0.60 =0.55 -0.84 =0.41
No obs., aggressive vs Obs. aggressive | 0.75 =0.46 0.78 =0.44 1.02 =0.32 1.39 =0.17 | -1.91 =0.07 3.27 <0.05
No obs., calm vs. Obs. aggressive 3.80 <0.05 3.86 <0.05 6.50 <0.05 | -5.50 <0.05 | -5.39 <0.05 -1.68  =0.10
No obs., aggressive vs. Obs. calm -6.29  <0.05 | -3.61 <005 | -7.84 <0.05 3.71 <0.05 6.24 <0.05 3.58 <0.05

Table B.11: Comparison of subjective and physiological responses between the pedestrian crossing scenarios with and
without visual obstruction (Obs.) for each driving style configuration. Paired t-tests were done for statistical analysis.

This table indicates that the presence or absence of a visual obstruction in the pedestrian crossing did
not significantly affect participants’ perceived comfort or safety, regardless of driving style. Similarly,
no significant differences were observed in the physiological features, except for the tonic standard
deviation.

Contrary, comparisons involving different driving styles generally yielded significant differences across
both subjective and physiological measures. Reinforcing the finding that driving style plays a dominant
role in shaping the passengers’ state.

Thirdly, in the pedestrian crossing without obstruction, the pedestrian did not cross the road in laps 1
and 4 but did so in laps 2 and 3. Figure B.13 shows the different responses in this setting.
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Figure B.13: Boxplots comparing subjective and physiological responses between pedestrian crossing with visual
obstruction, where the pedestrian either crossed or did not. Statistical significance was assessed using paired t-tests.
Test statistics and p-values are indicated in each subplot title. Sample size per group (n) reflects the number of unique
participants in this grouping.

Note: Q2 was omitted in laps where the pedestrian did not cross, as this question was not applicable. As a result, no
statistical test could be performed, and the plot is excluded.

No significant differences were found across any of the subjective or physiological measures, suggesting
that whether the participant crossed or not had little to no impact on the passengers’ state. However, the
tonic standard deviation approached statistical significance (p = 0.07), potentially indicating a subtle
increase in baseline arousal when the pedestrian did not cross, possibly due to heightened attention or
anticipation. This effect, however, remains marginal and not significant.

Results of the same comparison, now extended to include driving style as an additional factor to
distinguish the conditions, are shown in Table B.12.

Q1 Q2 Q3 Phasic max. | Phasic peak count Tonic std.
Configuration t-stat p-value | t-stat p-value | t-stat p-value | t-stat p-value | t-stat p-value t-stat  p-value
Not crossed, calm vs. Crossed calm -0.62  =0.54 - - -0.44  =0.66 | -0.76 =0.45 | -1.22 =0.23 -1.07  =0.29
Not crossed aggressive vs. Crossed aggressive | -0.12  =0.90 - - -0.21 =083 | -0.31  =0.76 0.46 =0.64 3.00 <0.05
Not crossed, calm vs. Crossed aggressive 3.68  <0.05 - - 739 <0.05 | -249  <0.05 | -3.74 <0.05 028  =0.78
Not crossed, aggressive vs. Crossed calm -4.51  <0.05 - - -5.93  <0.05 | 2.88  <0.05 | 2.20 <0.05 2.00 =0.05

Table B.12: Comparison of subjective and physiological responses between the pedestrian crossing with visual
obstruction scenario, where the pedestrian either crossed or did not for each driving style configuration. Paired t-tests
were done for statistical analysis.

This table again shows that when driving style is held constant, no significant differences emerge between
the configurations where the pedestrian crossed or did not cross. This indicates that the environmental
variation has minimal impact on the participant’s subjective and physiological responses.
Comparisons across different driving styles consistently result in significant differences again, further
reinforcing the conclusion that driving style is the dominant factor influencing passenger perception and
physiological state.

Demographics

With a wide range of ages and a balanced gender distribution, pairwise comparison across demographic
groups may offer additional insights into how different segments of the population respond to automated
driving. Figure B.14 shows the pairwise comparison between genders.
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Figure B.14: Boxplots comparing subjective and physiological responses between genders for all scenarios. Statistical
significance was assessed using paired t-tests. Test statistics and p-values are indicated in each subplot title. Sample size
per group (n) reflects the number of unique participants in this grouping.

In this figure, no significant differences can be observed between genders, suggesting that gender did
not meaningfully influence how participants perceived or physiologically responded to the automated
driving experiment.

Figure B.15 shows the comparisons across age groups.
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Figure B.15: Boxplots comparing subjective and physiological responses across age groups. Statistical significance was
assessed by using a one-way ANOVA. Test statistics and p-values are indicated in each subplot title. Sample size per
group (n) reflects the number of unique participants in this grouping.

This figure shows that, among the self-reported scores, only perceived safety (Q2) differs significantly
between age groups, with the youngest participants rating scenarios as least safe. This could reflect
their limited driving experience, leading to a heightened perception of risk. The physiological responses
also vary significantly by age. The two younger groups exhibit increased phasic activity, suggesting a
more reactive sympathetic nervous system, possibly indicating a quicker or more intense response to
stimuli.

However, given the small group sizes (n = 6 — 10), the reliability of these statistical differences should
be interpret with caution. While p-values fall below 0.05, the limited sample size reduces the statistical
power.

Pre-Questionnaire and Post-Questionnaire
Figures B.16, B.17 and B.18 show the comparisons between the pre- and post-questionnaire questions
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related to likeliness to motion sickness, trust in automated driving and willingness to adopt a self-driving
car.

How likely are you to experience motion sickness in the following situations? [As a passenger]
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Figure B.16: Boxplots comparing subjective and physiological responses across pre-questionnaire responses. Statistical
significance was assessed by using a one-way ANOVA. Test statistics and p-values are indicated in each subplot title.
Sample size per group (n) reflects the number of unique participants in this grouping.

In this figure there are significant differences across all measurements; however, no consistent inter-
pretable pattern emerges. Notably, participants who responded “Very unlikely” showed the highest
phasic activity, contrary to expectations, as greater physiological arousal might be expected in those
more prone to motion sickness.

This unexpected trend, along with the overall lack of a clear pattern, may be due to the small and un-
even group sizes. As such, these results should be interpreted with caution as they may reflect random
variation rather than meaningfully differences.
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Figure B.17: Boxplots comparing subjective and physiological responses across pre-questionnaire responses. Statistical
significance was assessed by using a one-way ANOVA. Test statistics and p-values are indicated in each subplot title.
Sample size per group (n) reflects the number of unique participants in this grouping.

This figure shows that participants who disagreed with the presented statement consistently reported
lower subjective scores. This may reflect a form of bias or scepticism towards automated vehicles, which
could have shaped their overall experience during the experiment.

Physiologically, this group also exhibit higher feature values, suggesting they may have been more
stressed or alert, potentially because of their negative bias to automated driving.
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Would you adopt an autonomous vehicle with any of the driving styles presented?
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Figure B.18: Boxplots comparing subjective and physiological responses across pre-questionnaire responses. Statistical
significance was assessed by using a one-way ANOVA. Test statistics and p-values are indicated in each subplot title.
Sample size per group (n) reflects the number of unique participants in this grouping.

This figure reveals that participants who indicated they would adopt autonomous vehicles only with a
calm driving style, or not at all, reported lower comfort and perceived safety scores. These lower rating
may have influenced their post-questionnaire response, reflecting critique towards automated driving.
No clear pattern is observed in the phasic component and no significant differences were found in baseline
arousal, suggesting that these subjective perceptions were not strongly mirrored in the sympathetic
nervous system activity.

To the post-questionnaire question: How would you describe your driving style? out of four options,
only two options were chosen:

o Defensive driving style: "I prioritize safety, keep my distance and follow traffic rules diligently.”
e Confident driving style: "I feel safe behind the wheel, make quick decisions and am in control.”

Figure B.19 shows a pairwise comparison between the segments of participants who choose either the
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first or the second response.

How would you describe your driving style?
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Figure B.19: Boxplots comparing subjective and physiological responses between participants’ self-reported, own
driving styles. Statistical significance was assessed using paired t-tests. Test statistics and p-values are indicated in each
subplot title. Sample size per group (n) reflects the number of unique participants in this grouping.

No statistically significant differences were observed across any of the measures. Although participants
identifying as “confident” driving tended to report slightly lower overall ride comfort scores (Q3), this
trend was not significant.

These findings suggest that individuals’ self-reported own driving style does not meaningfully influence
their perceived comfort, safety or physiological arousal as passengers.

B.4. Discussion

This chapter aimed to understand passengers’ perceived comfort and safety in automated driving using
the Galvanic Skin Response, combined with vehicle dynamics and perception data. In doing so, five
subquestions will be answered in this section using the data gathered for this study:

1. Did the calm and aggressive driving style elicit distinct perceived comfort and safety
scores and physiological (GSR) responses?

To answer this question, the following observations were made:
o Significant correlations emerged between all three subjective score metrics and the driving
style, where the aggressive driving style consistently resulted in lower scores in perceived

comfort, safety and overall ride comfort (Table B.2: 1-4).

o Significant correlations emerged between the majority of the GSR-related features and the
driving style, where the aggressive driving style consistently led to increased GSR activity.
The best features found to indicate the driving style in the GSR signal are (Table B.2: 1,
5-16):

— Phasic maximum amplitude
— Phasic peak count

e The effect of driving style on subjective responses and GSR-related features is illustrated in
Figures B.5, B.6 and B.7.

Together, these findings confirm that the two driving styles elicited distinct subjective and physi-
ological responses in this experiment.

2. To what extent does the GSR signal reflect changes in perceived comfort, safety and
overall ride comfort?

The following observations were made regarding this question:
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¢ Significant correlations emerged between all three subjective score metrics and various GSR-
related features, where lower comfort and safety scores were reflected by an elevated GSR
activity (Table B.2 2-16).

e Stronger correlations were found for phasic features than tonic features, indicating that the
short-term fluctuations driven by the sympathetic nervous system more accurately reflect
passengers’ emotional state. The strongest correlations were found for:

— Phasic maximum amplitude
— Phasic peak count

o This effect is observable in Figure B.8, which shows an average increase in GSR feature value
for a decrease in comfort and safety scores.

o This relationship is further illustrated in Figure B.9 in which a clear trend emerges: lower
subjective ratings tend to cluster in regions of increased phasic activity, reinforcing the link
between the GSR and perceived discomfort.

o However, the significant correlations largely disappear when the analysis is isolated per driv-
ing style configuration (Tables B.3, B.4 5-16).

These findings illustrate that the GSR broadly reflects changes in perceived comfort and safety,
particularly when comparing the distinct driving styles in this experiment. However, within
a single driving style configuration, where the subjective differences are more subtle, the GSR
signal does not capture these finer nuances.
These findings are consistent with prior studies: one demonstrated that the GSR is a significant
predictor of passenger comfort and anxiety, measured through comfort and anxiety rating [8]; one
that identified the phasic maximum amplitude as a key indicator of discomfort measured through
a continuous discomfort throttle [19]; and one that highlighted the phasic peak count as a key
indicator of discomfort measured through the amount of discomfort button presses per minute
[24].

3. Which of the three input modalities, GSR, vehicle dynamics or perception, explains
the largest share of variance in perceived comfort and safety?

Table B.2 reveals the following order magnitude of correlation for input modalities:
1. Longitudinal movement (maximum acceleration, jerk)

Velocity features (maximum)

Lateral movement (maximum acceleration, jerk)

Phasic component features (maximum, peak count)

Perception features (minimum distance to object, TTC)

Tonic component features (standard deviation)

S v Lo b

7. Directional movement (yaw rate minimum, maximum)

4. Which of the objective signals exerts the strongest influence on the GSR signal?

Using the phasic maximum amplitude and peak count as key features of the GSR, the following
order of magnitude of correlation to the GSR signal emerges from Table B.2:

1. Lateral movement (minimum acceleration, maximum jerk)

2. Longitudinal movement (maximum acceleration, maximum jerk)

3. Velocity (maximum)

4. Directional movement (yaw rate minimum, maximum)

5. Perception cues (non-significant)

These results suggest that GSR is particularly sensitive to abrupt vehicle motion, with the
strongest responses linked to extreme values in lateral and longitudinal movements. It also sug-
gests that the GSR is negligibly influenced by perception-related cues; however, this outcome
should be interpreted with caution, as it is unclear whether it reflects true insensitivity or simply
stems from the incomplete perception data.

A similar study reported that GSR increased proportionally with the magnitude of longitudinal
acceleration and jerk. However, it also found an elevated GSR in the presence of a lead vehicle and
proximity, which was not observed in this experiment [8]. Furthermore, a significant correlation
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between phasic component features and lateral acceleration was found [12], and a quick reaction
of GSR to strong braking [29].

5. In what ways do scenario characteristics (e.g., VUT target velocity, the presence of
another vehicle versus a pedestrian or visibility) and passenger demographics (age,
gender, trust in automation) influence the relationships identified in the previous
questions?

Comparing subjective and physiological responses across scenarios reveals the following:
¢ Comparing the scenarios in general reveals:

— The cut-in/car-following scenario received a significantly lower perceived comfort (Q1)
score (both scenarios were evaluated using the same questionnaire), closely followed by
the roadwork scenario.

— The roadwork scenario received a significantly lower perceived safety score (Q2), followed
by the cut-in/car-following.

— Both pedestrian crossing scenarios received the highest perceived comfort (Q1) and safety
(Q2) scores.

— No significant differences in subjective ratings emerged in the overall ride comfort (Q3)
between scenarios.

— These patterns in perceived comfort and safety were mirrored by the physiologic re-
sponses, with the highest physiological arousal measured in the roadwork scenario, fol-
lowed by the cut-in scenario, while the lowest was observed in the car-following and
pedestrian crossing scenarios.

o Exploring more in-depth the differences between driving styles reveals:

— The largest differences in subjective and physiological scores between driving styles were
found for the roadwork scenario. This scenario featured the most pronounced variation
in driving behavior, with target velocity increasing from 30 km/h (calm) to 70 km/h
(aggressive), alongside up to fourfold higher longitudinal acceleration and fivefold higher
lateral acceleration.

— The cut-in scenario showed the second-largest difference in physiological arousal between
driving styles. Despite only modest acceleration differences, the aggressive condition
again involved a higher target velocity of 70 km/h, likely contributing to the observed
increase in GSR activity

— The car-following scenario showed the smallest difference in physiological response be-
tween driving styles. In this scenario, the main variation was the reduced distance to the
lead vehicle, suggesting that changes in vehicle dynamics, rather than proximity alone,
play a more decisive role in passenger arousal.

— The pedestrian crossing scenarios showed a clear increase in physiological arousal under
aggressive driving, though subjective ratings remained relatively stable across driving
styles. This may reflect more subtle differences in vehicle dynamics in these scenarios.

Pairwise comparison in scenario-specific environmental cues reveals the following observations:

e Scenarios involving the GVT scored significantly lower in perceived comfort (Q1) and safety
(Q2) scores than scenarios involving a pedestrian. This effect is also observable in physiolog-
ical responses, with higher physiological arousal for the scenarios involving the GVT (Figure
B.11).

o No significant differences emerged in subjective and physiological responses between the
pedestrian without visual obstruction and with visual obstruction (Figure B.12).

e No significant differences emerged in subjective and physiological responses in the pedestrian
crossing with visual obstruction in the laps where the pedestrian crossed the road or not
(Figure B.13).

e Regardless of whether the environmental context produced a significant effect, in pairwise
comparison the scenario driven aggressively was consistently rated less comfortable and safe,
and showed higher physiological arousal, hinting that vehicle dynamics outweigh perception
cues in shaping passenger responses (Table B.10, B.11, B.12).
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Summarizing these findings, the data suggest that passengers’ perceived comfort and safety in
this experiment are primarily influenced by vehicle dynamics. This effect is consistently mirrored
in the physiological responses, with higher GSR activity observed in scenarios characterized by
more intense acceleration or speed. Similarly, a prior study found significantly more discomfort
in rural driving environments compared to urban settings, possibly due to the higher average
velocities typically encountered in rural areas [24]. Moreover, another study found that bad
weather conditions, such as rain, correlated with an increase in phasic peaks [26]. These prior
studies, taken together with the present findings, further underscore the situational nature of both
subjective comfort and physiological arousal.

Exploring passenger demographics reveals:

o No significant differences emerged in subjective and physiological responses between male
and female participants (Figure B.14).

o Significant differences emerged in subjective and physiological responses between age groups;
the youngest participants reported lower perceived safety, possibly reflecting a lack of driving
experience. This group also exhibited higher phasic activity, suggesting a more reactive
sympathetic nervous system (Figure B.15).

o No consistent pattern of significant differences was found between groups split by likelihood
of motion sickness (Figure B.16).

o Participants reporting low trust in AVs in the pre-questionnaire gave significantly lower
comfort and safety ratings, potentially reflecting a pre-existing bias. This was accompanied
by higher physiological arousal (Figure B.17).

o Participants who stated they would only adopt AVs with the calm driving style, or not at
all, gave significantly lower comfort and safety ratings, possibly reflecting a negative overall
evaluation of the experience. No clear pattern emerged in the physiological response, however,
as different features peaked in opposing groups (Figure B.18).

o No significant differences emerged in subjective and physiological responses between partici-
pants who described their driving style as defensive versus confident (Figure B.19).

Taken together, these demographic findings highlight substantial inter-individual variability in
both subjective and physiological responses. Factors such as age and pre-existing attitude towards
AV influenced not only self-reported comfort and safety scores, but also GSR patterns. This
underscores a key challenge in using the GSR for comfort and safety assessment: both GSR and
subjective ratings are highly sensitive to inter-subject differences, making it difficult to generalize
findings across diverse populations.

Further research could strengthen the findings of this analysis. While this work showed that GSR is
particularly responsive to vehicle dynamics and less so to perception-related cues, this, however, may
partly reflect the structure of the scenarios used. Specifically, scenarios involving the GVT typically
featured more intense vehicle dynamics than those with the pedestrian.

To disentangle the effects of vehicle dynamics from perception, a future experiment should include
scenario pairs that match in vehicle dynamic profiles, but vary in perceptual content. For example, a
road crossing that is approached with a consistent target velocity, but is varied by the type of road user
crossing the path, such as a pedestrian, cyclist, car or truck.

Furthermore, expanding the scenario set to cover a broader range of driving contexts, such as round-
abouts, traffic jams, urban streets or parking maneuvers, as well as incorporating different weather
conditions like clear skies, rain, or fog, could provide deeper insights into how comfort and physiological
arousal vary across real-world scenarios.

Lastly, increasing the overall participant sample size would enhance the statistical power of the demo-
graphic analyses and support more robust conclusions. As all participants in this study were German,
expanding the sample to include individuals from different nationalities could also provide insights into
how cultural background influences the experience of automated driving.
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B.5. Conclusion

This chapter showed that the GSR can be a useful signal for assessing passenger comfort and perceived
safety in automated driving. Clear differences emerged in GSR signals between calm and aggressive
driving styles, with aggressive driving consistently linked to higher GSR activity and lower subjective
ratings. The GSR signal, especially the phasic component’s maximum amplitude and peak count,
captures broad comfort differences, but it struggles to detect more subtle within-style variations.

Still, the GSR can be used to assess comfort when interpreted alongside self-reported scores: strong
agreement between high GSR activity and low comfort ratings strengthens the evidence that a scenario,
or driving style, truly undermines passenger comfort. In contrast, when the two diverge, the GSR can be
used as an objective cross-check, helping to identify inattentive, biased or inconsistent self-reports. This
use makes the GSR a valuable tool for understanding passenger comfort beyond subjective feedback
alone.

Leveraging this cross-validation, the analysis pinpointed the scenario features that most consistently
provoked discomfort. The strongest subjective and GSR responses occurred in scenarios with intense
vehicle dynamics, namely high acceleration, jerk, and speed, while perception-related cues such as the
presence of a pedestrian or visual obstruction had minimal effect. This suggests that the perceived
comfort and safety, and the GSR are most sensitive to dynamic driving inputs from this experiment.

Scenario and demographic analyses further underline the influence of both contextual and individual
factors. This variability poses a challenge for generalizing GSR-based comfort and safety assessment
across diverse scenarios and passenger groups.



Predictive Modeling

This chapter focuses on the predictive component of the research question in this study:

How can physiological arousal, measured through Galvanic Skin Response, combined with
vehicle dynamics and perception data, be utilized to understand and predict passengers’
perceived comfort and safety in automated driving?

While the scientific paper written in Chapter 1 presents a concise summary of the results, this chapter
offers a more detailed account of the intermediate steps and performance evaluations.

Building on the correlation analyses in Appendix B, which showed that the GSR correlates with both
objective driving characteristics and subjective comfort ratings, this chapter now evaluates how well
this signal can predict those outcomes. On that basis, the following subquestions were derived:

1. How accurately can the GSR alone predict objective driving style (calm vs. aggressive)?

2. How accurately can the GSR alone predict perceived comfort, perceived safety and overall ride
comfort?

3. To what extent do vehicle dynamics and/or perception data improve GSR-based models for sub-
jective comfort metrics?

4. What challenges arise when predicting subjective ratings, and how can these challenges be ad-
dressed to improve model performance?

Contrary to Appendix B, which relied on extracted features per scenario, this chapter adopts a Deep
Learning (DL) approach by retaining the full 30-second time series signals and applying models directly
to the signals.

The chapter is structured as follows: first, the chosen model architecture is presented, followed by
evaluations of GSR-based models for driving style classification and subjective comfort predictions.
Through this evaluation, the challenges that emerge are explicitly identified, together with mitigation
techniques. Finally, in a discussion, each subquestion is addressed, and a conclusion is drawn that
integrates the findings of this chapter.

71
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C.1. Proposed Architecture

The proposed architecture, outlined in this chapter, is the Time Evidence Fusion Network (TEFN),
developed by Zhan et al. [35]. The TEFN model, originally designed for multivariate time series
forecasting, is adapted in this work to perform a classification task. A novel backbone is proposed that
achieves comparable performance to state-of-the-art methods while maintaining a significantly lower
complexity and reduced training time [35]. Figure C.1 presents the original overall structure of the
TEFN architecture.
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Figure C.1: The overall structure of TEFN for a time series forecasting task. Adapted from Time Evidence Fusion
Network: Multi-source View in Long-Term Time Series Forecasting by Zhan et al. [35].

Input time series goes through the following modules and the following processes for the classification
task: [35]

1. Normalization: The input is first normalized by calculating the mean p and variance o2. These
p and o2 values are then passed to the final de-normalization to transform the output back to
its original map. This normalization reduces the impact of outliers, promotes faster convergence,
and enhances stability during training.

2. Time Dimension Projection: Next, a basic linear projection layer is typically used to transform
the normalized time series &y oprm of length Ly, into a sequence &’ with length L;y, + Lyreq. However,
this step is omitted for classification tasks, as no prediction of future values is required.
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3. Basic Probability Assignment: TEFN represents the uncertainty and ambiguity of time series
through Evidence Theory. FEach dimension of the time series is described by a mass function
defined on the power set of 2° of a finite sample space S, where the choice of S depends on the
task at hand. For classification, .S is the set of class labels, so S equals the number of classes.

This representation allows TEFN to capture so-called fuzzy characteristics of the input by assign-
ing a belief distribution, rather than a single point, to each observation. The belief masses are
generated with a learnable fuzzy membership function:

MDp,i,jk = METNorm,ij) = WD,jk * TNorm,i,j + 0D, jk (C.1)

Where:
o D e {T,C} selects the evidence source-time axis T' or channel axis C}
¢ ¢ indexes the time-step and j the channel;
o k indexes the F in 2°, i.e., an individual class label in classification.

The parameters wp ;x and bp j;r. which represent the slope and intercept, respectively, are
learned during training.

The resulting vector mp;; contains non-negative entries that sum to one, forming the Basic
Probability Assignment (BPA) for that data point.

4. Expectation Fusion: TEFN handles multivariate time series data by generating separate BPAs
for the time dimension (T") and the channel dimension (C). This results in two parallel mass
distributions: my and mc.

These are fused using an expectation fusion approach, which involves multiplying each mass
distribution by a learned weight y and summing the results, yielding a single fused mass function.

The TEFN applies this method of expectation fusion and deliberately avoids the Dempster-Shafer
Rule (DSR) as its computational complexity is significantly higher, and the DSR is sensitive to
extreme distributions, which can cause a single distribution to dominate the fused result.

5. Classification: Unlike the original mode, which uses de-normalization to map the output back
to its original values (C.1), the classification variant does not require this step. Instead, the tensor
produced by the Expectation Fusion, shaped L x C with L the input sequence length and C' the
number of channels, is first passed through a sigmoid activation. The result then flattened into a
vector of length L C and fed into a fully connected layer mapping REC — Rnetasses |

The TEFN architecture was selected as it matches or exceeds current state-of-the-art architectures,
while relying on far fewer parameters [35]. This makes the model a well-suited choice for this study, as
its parameter efficiency aligns with the constraints of a limited dataset and as it has demonstrated to be
effective with time series. TEFN explicitly models both intra-channel and inter-channel dependencies
by applying its BPA modules separately along the time axis and the channel axis, followed by a fusion
step. This structure allows the TEFN to learn interactions between signals, which can be especially
beneficial for GSR data where the phasic and tonic components often interplay.

To mitigate the risk of overfitting, given the dataset size, a dropout was introduced after the Expectation
Fusion block. In addition, an early stopping mechanism was implemented during training to further
regularize the learning process and avoid overfitting.

C.2. Driving Style

For this task, driving style classification was formulated as a binary classification problem. The Time
Evidence Fusion Network (TEFN) was trained using the Galvanic Skin Response (GSR) data as input,
consisting of two input features: the phasic and tonic components. Both phasic and tonic components
are standardized within each participant before being used as input, ensuring that the mode can robustly
account for the inter-subject variability in these components. The model was configured with the
hyperparameters listed in Table C.1.
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Hyperparameter Value

Input sequence length 960
Dropout 0.3

Batch size 64
Optimizer AdamW

Loss function Binary Cross-Entropy
Learning rate le — 4
Epochs 500
Patience 50

Table C.1: Hyperparameters used for training the TEFN [35] model in the driving style classification task.

To ensure subject-independent evaluation, the dataset was split participant-wise into 21 participants
for training, 5 for validation and 5 for final testing. Additionally, to assess the model’s robustness and
generalization capabilities given the limited dataset size, a 10-fold cross-validation was performed.
Model performance was evaluated using accuracy, precision, recall and F1 score. Table C.2 reports the
mean, maximum, minimum and standard deviations of these metrics across the 10 folds.

Metric  Mean (%) Max. (%) Min. (%) Std. (%)
Accuracy 88.61 94.74 81.18 3.77
Precision 87.73 95.45 77.27 4.75
Recall 89.70 97.77 68.89 8.86
F1 score 88.61 94.62 80.95 3.98

Table C.2: Performance metrics over 10-fold cross-validation in the driving style classification model based on GSR
data (phasic and tonic components).

Figure C.2 and C.3 present an aggregated confusion matrix and ROC-curve plot, respectively.
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Figure C.2: Aggregated confusion matrix over 10-fold Figure C.3: Aggregated Receiver Operating
cross-validation for the driving style classification using Characteristic (ROC) curve for the driving style
GSR data (phasic and tonic components). classification model using GSR data (phasic and tonic

components), averaged over 10-fold cross-validation. Area
Under Curve (AUC) = 0.879

To further explore the predictive power of the GSR signal, the training, validation, and testing processes
were repeated using the following three input configurations: the raw, undecomposed GSR signal, the
phasic component, and the tonic component. Tables C.3, C.4 and C.5 present the performance metrics
for each configuration across a 10-fold cross-validation, respectively.
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Metric  Mean (%) Max. (%) Min. (%) Std. (%)
Accuracy 82.42 93.00 74.74 5.73
Precision 83.05 92.16 72.34 6.90
Recall 81.54 96.00 68.89 8.86
F1 score 81.99 93.07 73.91 6.26

Table C.3: Performance metrics over 10-fold cross-validation in the driving style classification model based on GSR
data (undecomposed, raw GSR signal).

Metric  Mean (%) Max. (%) Min. (%) Std. (%)
Accuracy 86.31 91.58 77.65 4.64
Precision 85.48 93.47 72.22 6.52
Recall 87.6 94.00 80.00 4.95
F1 score 86.38 91.30 77.11 4.70

Table C.4: Performance metrics over 10-fold cross-validation in the driving style classification model based on GSR
data (phasic component).

Metric  Mean (%) Max. (%) Min. (%) Std. (%)
Accuracy 81.14 90.00 70.00 7.21
Precision 82.99 91.11 69.23 7.64
Recall 77.82 94.00 62.00 9.67
F1 score 80.17 90.00 67.39 8.08

Table C.5: Performance metrics over 10-fold cross-validation in the driving style classification model based on GSR

data (tonic component).

The results of the driving style classification task reveal the following noteworthy observations:

1.

The model’s solid performance (Table C.2) highlights the discriminative potential of the GSR
signal for distinguishing driving style, offering evidence that physiological responses can capture
meaningful behavioral patterns.

. Precision (87.73%) and recall (89.70%) are fairly balanced, suggesting the model performs reason-

ably well in identifying both calm and aggressive driving styles without significant bias toward
one class. However, the aggregated confusion matrix shows a slightly higher false positive rate for
aggressive predictions compared to calm predictions, suggesting that some data recorded under
the aggressive driving style may resemble data from calmer states.

The high AUC value of 0.938 from the ROC curve indicates that the model has strong discrimi-
native power.

. However, the relatively high standard deviations and wide ranges between minimum and maximum

scores indicate that performance varies substantially across participant splits, suggesting that
certain splits are more favorable than others, likely due to the inter-subject variability.

. Combining the phasic and tonic components as input results in the highest performance (Table

C.2), closely followed by only using the phasic component (Table C.4). Only using the tonic
component, or directly using the raw, undecomposed GSR signal, performs slightly worse (Tables
C.5, C.3, respectively). These results indicate that the phasic component provides the strongest
predictive power, with the tonic component further enhancing its effectiveness.

C.3. Perceived Comfort and Safety

The preceding task employed a binary classification setup; however, the current formulation requires a
5-class multiclass classification problem. The objective is to predict self-reported scores on comfort and
safety, given in a 5-point Likert scale. Model training, validation and testing are conducted separately
for each questionnaire item to account for the item-specific response characteristics.
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The TEFN model architecture remains unchanged, but is evaluated under varying input configurations,
consisting of one or a combination of the following data sources:

e GSR signal: Phasic and tonic components.

o Vehicle Dynamics (VD): Velocity, longitudinal and lateral acceleration, jerk and yaw rate.

e Perception: distance to object, time-to-collision, time-headway and type of object.

Both phasic and tonic components are z-standardized per participant to enable the model to handle
the inter-subject variability of the signal effectively.

To comprehensively evaluate each model’s performance, a two-fold evaluation approach is applied. First,
performance metrics are reported on an ezact match criterion (hard), considering predictions that
perfectly match the true label class as true positives. Second, a near match criterion (soft) is introduced,
where predictions within one class of the ground truth (e.g predicting “comfortable” instead of “very
comfortable”) are also considered as true positives. The soft metrics account for the difficulty that
participants face in making fine-grained distinctions between adjacent comfort levels, especially those
without prior experience in such experiments. They also better reflect the needs of practical applications,
where capturing broad differences between comfort and discomfort is more valuable than distinguishing
subtle variations.

The soft metrics addressed the inherent subjectivity of the self-reported scores, where making fine-
grained distinctions is difficult for participants to make and less critical in practical application.

Table C.6 lists the hyperparameters used in this task. These are identical to the ones listed in Table
C.1, with the exception of the loss function. Here, a Cross-Entropy loss function is applied, as it is
well-suited for the model’s multi-class classification task.

Hyperparameter Value
Input sequence length 960
Dropout 0.3
Batch size 64
Optimizer AdamW
Loss function Cross-Entropy
Learning rate le—14
Epochs 500
Patience 50

Table C.6: Hyperparameters used for training the TEFN [35] model in the perceived comfort and safety classification
task.

As illustrated in Figure A.8, the distribution of the self-reported scores is highly skewed toward positive
responses. This presents a key challenge for classification due to two primary factors.

First, the class imbalance can hinder the model’s ability to learn meaningful patterns for the minority
classes. A model directly trained on this data is likely to converge on predicting the dominant classes,
as doing so minimize the loss while effectively ignoring underrepresented cases. This imbalance reduces
the model’s discrimination power, particularly for detecting discomfort and feeling unsafe, as these re-
sponses are the underrepresented responses.

Secondly, the validity of certain responses may be questionable. Various participants reported feeling
“very comfortable” even during scenarios driven under the aggressive driving configuration. This incon-
sistency raises concerns about whether these participants were genuine, potentially reflected in their
low physiological arousal, or whether their answers were influenced by social desirability bias or misun-
derstanding. These biases distort the ground truth labels used for supervised learning, which misleads
the model and degrades its performance.

C.3.1. Baseline Learning

Despite these challenges, a first training trial is conducted. The results are presented in Table C.7.
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Hard Soft
Accuracy Precision Recall F1 score | Accuracy Precision Recall F1 score
Q1: How safe did you feel during the car ride?
Baseline 38754 82+59 200+£00 11.7£18 ]| 755£94 491 =£13.5 60.0=£0.0 52.0=+ 134
GSR 33054 29675 274+£54 2444+£84 | T71E£56 73.4+£78 67972 66.5=£92
Ours VD 412 £33 343+£54 376+52 33.0+£49| 81.7+45 81970 T796+£71 T81ETS5
GSR+VD 370+ 63 30.7+66 33773 287+59| 80.1+46 T7T6+74 T742+79 726=+380
GSR+P 371 +£52 298+£91 305+£66 269+80| 77.8+£64 76.7+13.0 71.6=+9.0 70.5+£10.7
VD+P 419+43 401+£80 393+£46 351+59| 79.0+£36 788+62 T50%x57 T736+7.0
GSR+VD+P | 39.6 +42 350+£81 33.7£70 31.6+7.1| 80.8+24 775 +81 752467 T746+£72
Q2: How safe did you feel interacting with the ...*
Baseline 449 +£ 105 9.1+£20 20.0+£0.0 125+18 | 699+88 36.7+£7.7 60.0+£0.0 39.6=£7.7
GSR 415 +6.0 23.8+42 251+17 21.8+25| 716+ 7.7 656+ 11.2 553+81 54.1+10.2
Ours VD 403 +£68 220+£59 264+49 21.7+50| 73.8+£68 737105 61.0%56 60.9=*55
GSR+VD 418 +59 234+£32 25.7+19 221+£26| 741+£87 762+11.1 63878 64.5+99
GSR+P 41.8+6.8 249+90 251+46 21.3+42| 743+48 66.0+10.0 59.7+49 579 +57
VD+P 41378 23.8+63 254+£39 224438 | 746=E29 70.6 £82 626 53 61.9+£64
GSR+VD+P | 40.7+£79 223+46 243+£37 21.5+£34 | 745+£5.1 72.7+92 626 +64 624+£6.7
Q3: How comfortable did you find the movement of the vehicle?
Baseline 35.3 £ 34 7.3 +£08 20.0 £0.0 10.7£1.0 | 73.0 £ 13.0 45.2+13.6 60.0 £ 0.0 48.1 £ 13.2
GSR 308 £48 223+£34 280+55 222+37| 781+35 789+68 T753+74 T743+68
Ours VD 36.8+48 31.6+45 309+38 288+45| 825+38 819+66 8l4+57 787+64
GSR+VD 33244 27647 287+x£51 252446 | 81.0=£4.0 82737 T99x£74 782£7.0
GSR+P 324+25 248+35 268+43 229+26| 77.0=£6.1 79.7+£58 T73.6+84 T71.7+£97
VD+P 36.5+58 30.6+58 314+52 28.6+55| 80.7=+6.0 81.5+58 T795+£71 759+74
GSR+VD+P | 345+43 283£56 290£39 258+£37| 792£50 79.1+£93 T77.7£9.0 751+£98

3[pedestrian, roadworks, pedestrian, vehicle]

Table C.7: Macro performance metrics (M% £ SD%) over 10-fold cross validation in the self-reported score
classification on self-reported score for comfort (Q1, Q3) and perceived safety (Q2) model based on various input

configurations.

Across all three subjective scores for both hard and soft metrics, the models only marginally exceed or
fail to exceed the baseline accuracy. This shortfall is almost certainly driven by the severe class im-
balance in the self-reported scores, since the baseline classifier can achieve deceptively high accuracies
by always predicting the majority class. Nevertheless, certain multimodal input configurations yield
clear improvements in precision and F1 score over the baseline, suggesting that while overall accuracies
remain constrained, the multimodal input improves the model’s ability to distinguish under-represented
classes.

This pattern holds for both hard and soft metrics, indicating that combining GSR with vehicle dynamics
or perception data can sharpen the model’s performance. Yet, the three-modality input configuration
does not consistently outperform the dual-modality models, which may indicate that the added complex-
ity makes the underlying patterns harder to learn or leads to overfitting. No single input configuration
dominates across all three questions; augmenting GSR data with vehicle dynamics or perception data
does yield better results than GSR alone, but only by a few percentages.

These results motivate the need for targeted strategies to address the class imbalance.

C.3.2. Balanced Training

To tackle the class imbalance problem, a Synthetic Minority Oversampling Technique (SMOTE) ap-
proach, developed by Chawla et al. [5], can be employed. This approach generates synthetic samples
of minority classes by interpolating between existing samples, improving the model’s performance on
the imbalanced dataset [5]. This oversampling is applied exclusively to the training set to ensure that
the model learns to distinguish minority classes, while the validation and test sets remain untouched.
Results of the second training trial with the SMOTE approach are listed in Table C.8.
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Hard Soft
Accuracy Precision Recall F1 score | Accuracy Precision Recall F1 score
Q1: How safe did you feel during the car ride?
Baseline 38754 82+59 200+£00 11.7£18 ]| 755£94 491 =£13.5 60.0=£0.0 52.0=+ 134
GSR 303 +46 244+£60 266=£48 239+50]| 69.7£65 61756 626+52 60.0=%6.0
Ours VD 394+63 352+56 368+64 334+66| 823£5.1 749+75 T780+67 T746+74
GSR+VD 345+45 334+44 372+£35 304+29| 80.5+£51 729+76 764+81 725+81
GSR+P 354+81 33.0£75 343+£97 295+75| 742+£86 694+93 726=+97 681=£10.0
VD+P 422 +52 380+£56 387+44 347+52| 81.0+£68 T733+87 769+69 734+87
GSR+VD+P | 41.2+54 369 +69 404 £57 35.0+6.5| 79.3£6.0 74.1+90 T775+81 73.6+093
Q2: How safe did you feel interacting with the ...*
Baseline 449 +£ 105 9.1+£20 20.0+£0.0 125+18 | 699+88 36.7+£7.7 60.0+£0.0 39.6=£7.7
GSR 351 +£51 25.24+44 252+50 234442 | 67.5£82 60.0 £ 59 625 +£6.3 58.6=+6.3
Ours VD 356 34 292+63 303x£56 25.8+41 | 77.2£82 71.0£89 74672 70.0=£9.0
GSR+VD 373+£68 314+42 327+63 27.7+43| 75.3+£82 69.8+89 T734+£92 68.7+92
GSR+P 376 £84 265+55 273+6.2 2494+53| 748 +3.1 674 +6.0 719+£55 67.1+39
VD+P 381+77 261+£74 293+£87 240461 | 747+102 734+89 73789 69.7+9.6
GSR+VD+P | 375+63 293+65 305+56 266+46| 76078 71.9+82 742+84 70.6+89
Q3: How comfortable did you find the movement of the vehicle?
Baseline 35.3 £ 34 7.3 +£08 20.0 £0.0 10.7£1.0 | 73.0 £ 13.0 45.2+13.6 60.0 £ 0.0 48.1 £ 13.2
GSR 288 £4.1 26.8+58 255+46 226+39| 73.5+48 67.0 £40 70.1+6.1 654=+55
Ours VD 338+65 309+65 32672 27.6+64| 80.7£65 739+76 789+88 728+92
GSR+VD 33338 30859 326x72 27.6+43| 81574 76.8 £9.1 82389 76.3+104
GSR+P 292 +£34 276+30 269+44 238+3.0]| 73.6+34 69.5+35 T26+£73 66.7+4.0
VD+P 365 £45 344+52 333+£39 27.7+45| 79677 753+65 788+81 T72.7+78
GSR+VD+P | 322+5.1 324+£78 332+74 276+£65| 79057 75578 819+£55 T73.5+£5.5

3[pedestrian, roadworks, pedestrian, vehicle]

Table C.8: Macro performance metrics (M% £ SD%) over 10-fold cross validation in the self-reported score
classification on self-reported score for comfort (Q1, Q3) and perceived safety (Q2) model based on various input
configurations. Results are shown after applying SMOTE to address class imbalance.

The introduction of SMOTE leaves the overall accuracies largely unchanged, and in some cases, slightly
reduced, but yields substantial gains in precision, recall and F1 score across nearly all input configura-
tions. This confirms that synthetic oversampling effectively mitigates the class imbalance and enables
the model to improve on identifying minority classes, rather than defaulting to the majority class. This
holds true for both the hard and soft metrics.

Notably, the accuracies across Q2 drop under SMOTE, yet precision, recall and F1 improve a lot versus
the results from Table C.7. This suggests that the non-SMOTE models were mostly learning to predict
the dominant classes.

GSR-only models remain the weakest performers in both Table C.8 and C.7, whereas vehicle dynamics
consistently outperforms GSR alone and shows even stronger performances when combined with the
perception input. This pattern emerges both in the hard and soft metrics.

A second strategy to address class imbalance involves incorporating class weights into the loss function.
Weights were calculated as follows:
D i1 M

C - n.

We =

(C.2)

With:
e w.: the weight for class c.
e n;: the number of samples in class i.
o (' the total number of classes (= 5).
e n.: the number of samples in class c.

Table C.9 presents the results of the third training trial, where the Cross-Entropy loss function was
modified to include these weights.
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Hard Soft
Accuracy Precision Recall F1 score | Accuracy Precision Recall F1 score
Q1: How safe did you feel during the car ride?
Baseline 38754 82+59 200+£00 11.7£18 ]| 755£94 491 =£13.5 60.0=£0.0 52.0=+ 134
GSR 31253 27.0+£49 287+46 243+32| 7T1.3E£54 648 £53 65.3£59 62.7£58
Ours VD 39.1+£42 373+£36 393+46 343+32| 798+7.1 74.1+78 T756+96 724+093
GSR+VD 334+61 290+£63 329+69 269+71]| 75.6+66 71.8+82 708+85 67.5+85
GSR+P 351 +77 320+£91 347+£92 293+89| 739+£86 67.5+82 709+99 66.5+98
VD+P 409+63 372+£56 391+£67 345+59| 782+£78 721+87 75.0£91 709 +10.2
GSR+VD+P | 382+58 344+6.1 378+£31 328+51]| 788 +£6.7 726 +£9.0 T75.7+84 T71.1+£09.1
Q2: How safe did you feel interacting with the ...*
Baseline 449 +£ 105 9.1+£20 20.0+£0.0 125+18 | 699+88 36.7+£7.7 60.0+£0.0 39.6=£7.7
GSR 33077 2444+34 267+42 223+32| 679=£6.1 64.7+ 72 678 £95 624+8.0
Ours VD 32556 283+£51 313+£54 247+36| 745+£93 703+74 735+93 685+93
GSR+VD 372+£81 281+£79 323+42 256+£55 | 70.2+105 67.7£98 720+9.5 657+11.6
GSR+P 352+78 259+63 278+55 243+54| 733+£72 663+86 694+6.7 643+8.1
VD+P 33.8 85 294+83 309+x41 255+6.1| 7T46=£87 69.1+105 722+85 67.1x85
GSR+VD+P | 342+83 287+75 316+58 252+69 | 745+81 69.0+95 726+80 662+9.1
Q3: How comfortable did you find the movement of the vehicle?
Baseline 35.3 £ 34 7.3 +£08 20.0 £0.0 10.7£1.0 | 73.0 £ 13.0 45.2+13.6 60.0 £ 0.0 48.1 £ 13.2
GSR 30054 253+£49 280+6.2 21.6+39| 744+£9.0 720+69 741496 688+ 10.0
Ours VD 345+56 31.9+£82 339+65 282+50]80.0+100 759+88 805+71 73.5+11.3
GSR+VD 33556 288+44 335+£54 267+47| 80.0£87 753+£80.0 798+64 73.4+101
GSR+P 320+£66 316+45 31070 271+6.2| 73.9+88 726 +£6.5 T73.5+84 68.5+096
VD+P 358+ 64 347+48 351+63 304+61]| 80.5+£81 757+73 8l0+56 735+88
GSR+VD+P | 351 +6.0 288+6.1 304+44 268+44| 77.5+£81 740+102 76.1+95 69.9+11.7

3[pedestrian, roadworks, pedestrian, vehicle]

Table C.9: Macro performance metrics (M% £ SD%) over 10-fold cross validation in the self-reported score
classification on self-reported score for comfort (Q1, Q3) and perceived safety (Q2) model based on various input
configurations. Results are shown with weights added in the loss function for class imbalance.

Comparing the two approaches for mitigating class imbalance, the SMOTE-based approach (Table C.8)
yields comparable performances in the hard metrics across all evaluation criteria. However, it shows
slightly higher scores in the soft performance metrics. More importantly, the SMOTE-based approach
results in substantially lower standard deviations in the soft metrics, indicating greater robustness and
consistency.

Because the GSR contributes little on its own and sometimes fails to boost performance when fused with
other signals, despite the expectation that physiological arousal should align with subjective reports
grounded by the correlations found in B.2, the validity of the data should be checked.

C.3.3. Validity-Screened Training
To address the issue of potential data invalidity, a similar analytical approach is employed as introduced
in Appendix B, utilizing Linear Mixed-Effect (LME) models. In this case, however, each analysis is
applied on a per-participant basis to identify inconsistencies between self-reported scores and physio-
logical responses.
Participants are flagged as invalid for further analysis based on the following two criteria:
o If there is no significant correlation between driving and their self-reported scores, yet a correlation
between driving style and GSR features exists, the participant will be considered unreliable. This
suggests that the participant experienced heightened physiological arousal but failed to reflect this

in their questionnaire responses.
o The reverse scenario is also considered: if a participant shows a significant correlation between

driving style and self-reported scores, but no corresponding correlation with GSR. features, this
may indicate a true lack of measurable physiological response, so-called non-responders [33], or a
potential issue in data acquisition, and is thus flagged as invalid data.

Additionally, as mentioned in section A.2.2, several recorded laps were discarded due to data acquisition
errors. Participants affected by this are reviewed. If a participant only has usable data from a single
driving configuration (e.g., only calm or aggressive), they are excluded from further analysis. Without
exposure to both driving styles, it becomes impossible to capture within-subject differences in response,
which are essential for learning meaningful patterns between input features and outcomes.

Table C.10 shows which participants were excluded from further analysis and for which reasons.
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Participant | Justification
No significant correlation between driving style and subjective ratings but clear
14, 25, 26, 42 . . . . . . .
physiological responses to driving behavior, suggesting unreliable self-reporting.
19 Minimal GSR response across all conditions, indicating non-responsiveness [33].
23 Missing data for the aggressive driving style; prevents comparison across driving styles.
29 Missing data for the calm driving style; prevents comparison across driving styles.
34 Uniform self-reports (always “very comfortable/safe”), no within-subject variability.

Table C.10: Participants excluded from further analysis with justification based on participant-level validation of
subjective and physiological responses.

Following the participant-level data validation, 23 participants remain eligible for further analysis. Of
these, 15 are used for training, 4 for validation, and 4 are reserved for final training. As the class
distribution remains skewed toward positive responses, the SMOTE approach is again employed to
mitigate the class imbalance. Results from this fourth training trial, combining SMOTE with the
participant screening procedure, are presented in Table C.11.

Hard Soft
Accuracy Precision Recall F1 score | Accuracy Precision Recall F1 score
Q1: How safe did you feel during the car ride?
Baseline 412+28 83+£06 200+00 11.7+06 | 726 £4.0 320+1.0 60.0+0.0 350=+0.8
GSR 29.7+26 26.1+32 262+33 232+28|644+36 562+26 59.6+52 551442
Ours VD 36.5+20 316+26 33.7+23 302+22 | 71.9+25 643+38 674+46 63.0+48

GSR+VD 346 £32 300£27 320£31 285+£25 | 704+28 631+36 66753 61.8=+47
GSR+P 333+36 302+£40 306+42 281+£33|683+36 599+36 646+63 59.4=£50
VD+P 36.6 £22 314+29 332+£30 298+£23|733£29 641+42 68.6=E56 64.0=*54

GSR+VD+P | 326 £3.5 288+41 31.6+47 269+34| 71733 638+34 69.0+57 63.2=£52
Q2: How safe did you feel interacting with the ...°

Baseline 51.9+£39 109+15 200£00 143=+17 | 724+48 348+40 40.0+0.0 376 =*4.1
GSR 32725 2274+17 235+£59 207£25|61.1+51 541+£47 56.6+89 51475
Ours VD 329+41 240+19 273+£57 224+£30 | 681+£38 586+30 64.6=+71 579 %44

GSR+VD 345+£63 242+30 261+£55 21.7£21|681£30 589+36 633E£81 57.3%56
GSR+P 343+£39 242423 265+£55 229+£28 | 67.0£45 59.6+45 624£99 57.3=£6.9
VD+P 342+54 273+25 285+£61 241+£25|692+55 61.1+£59 666+71 59865

GSR+VD+P | 356.6 44 259+£39 288+60 237+34]|696+35 61.2+£36 351476 59.5+46

Q3: How comfortable did you find the movement of the vehicle?

Baseline 37.7+£20 75+£04 200£00 109+£04 | 654+30 304%£07 40.0+£00 33.7=£0.5
GSR 276 £25 245£29 231£30 21.7£23 | 685+55 618%£55 62.7+65 60.1=£6.5
Ours VD 364 £37 319+41 334+£41 297£46 | 773+22 703+£33 T780%£37 71332

GSR+VD 324 +21 285+£27 297+32 26.7+19 | 76.5+26 692+39 753+45 69.5+38
GSR+P 326 +33 280+34 270+£31 255+30 | 71.0+34 639+43 669+44 63.5+5.0
VD+P 373+23 344+26 354+£33 31.1+£26 | 77.0+£24 7T714+38 79.1+£37 T1L.7+43

GSR+VD+P | 339+22 315+45 314+35 270+28 | 749+£39 695+39 77.2+£50 69.6+54
a[pedestrian, roadworks, pedestrian, vehicle]

Table C.11: Macro performance metrics (M % £ SD%) over 10-fold cross validation in the self-reported score
classification on self-reported score for comfort (Q1, Q3) and perceived safety (Q2) model based on various input
configurations. Results are shown after applying SMOTE to address class imbalance and excluding invalid participant
data.

A comparison between the results from Table C.8, after applying only SMOTE, and those obtained after
both SMOTE and participant screening reveals a clear overall decline in performance. For most input
configurations and performance metrics, a better score was obtained by only applying SMOTE than by
applying SMOTE and the screening procedure. Notably, the accuracy of the baseline classifier has also
improved in Table C.11, particularly for Q2, where it increased significantly (~ 15%), suggesting an
even stronger class imbalance within the test sets. In contrast, the model’s accuracy has not improved
proportionally, and while it still outperforms the baseline in terms of precision, recall and F1 score, the
margin is smaller than in the previous configuration with SMOTE only (C.11). Similar for Q1 and Q3,
no improvement can be observed; in fact, various metrics show a decline of up to 5% for hard metrics
and 10% for soft metrics compared to the SMOTE-only approach.

These findings may indicate that the model previously benefited from patterns in participant data that
were excluded, potentially due to false correlations or overfitting to unreliable labels. Alternatively, the
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reduction in available training, validation and test data resulting from the participant screening may
also have significantly compromised the model’s performance. An interesting trend that emerged in
Table C.11 is, however, the substantially smaller standard deviations of the results compared to those
in Table C.8. This suggests that the removal of the data did contribute to a more uniform dataset.

To summarize the key insights across all four tables (C.7, C.8, C.9, C.11), several consistent findings
emerge:

1. The high standard deviations across all performance metrics and input configurations in the 10-fold
cross-validation indicate that performance is dependent on the specific participant split, similar to
the driving style classification task. This suggests that some folds yield much better predictions
than others.

2. Across Q1 (perceived comfort), Q2 (perceived safety), and Q3 (overall ride comfort), performance
metrics remain largely consistent across all input and training configurations. While minor dif-
ferences of a few percentages exist, no single subjective measure stands out as easier or harder to
predict. Suggesting that the model performs similarly across all subjective dimensions.

3. Most model configurations are outperformed by the baseline classifier in terms of accuracy. How-
ever, this baseline simply predicts the majority class, inflating its accuracy due to the class imbal-
ance. This underscores the importance of evaluating the models using other informative metrics
as well, such as precision, recall and F1 score, that better reflect true performance, especially on
minority classes.

4. The SMOTE-only training configuration emerges as the most effective, consistently outperforming
the baseline training (i.e., no resampling or participant screening) in terms of precision, recall
and F1 score, highlighting its strength in handling class imbalance. It also outperforms the
SMOTE-with-screening approach across all metrics, suggesting that the reduced dataset size from
participant exclusion may have negatively impacted performance.

5. Incorporating vehicle dynamics (VD) or perception (P) data consistently improves performance,
supporting the idea that driving characteristics play a significant role in perceived comfort and
safety, and that GSR alone is insufficient for robust predictions.

6. In some cases, input configurations excluding GSR, using vehicle dynamics and perception or only
vehicle dynamics, outperformed those that included it. This suggests that the GSR may introduce
participant-specific signals that hinder the model’s ability to generalize to unseen participants. In
contrast, objective inputs like the vehicle dynamics may provide more consistent patterns for
predicting specific comfort levels across participants.

7. Combining GSR, vehicle dynamics, and perception does not always yield the best result, possibly
due to increased model complexity or faulty perception data.

8. The use of soft metrics provides valuable insights, capturing cases where the model’s predictions
closely align with the participant’s reported scores. This approach acknowledges the blurry bound-
aries in self-reported comfort and perceived safety levels and emphasizes practical relevance over
strict categorical correctness.

C.3.4. User-Adapted Training

Following the preceding section, where a general model was trained, validated and tested across partic-
ipants, the results, while informative, revealed limited performance consistency. Although the model
successfully reduced training loss, its relatively low evaluation scores suggest poor generalization to data
from unseen participants. This, however, is not entirely unexpected, given the inherently subjective
nature of comfort and safety ratings and the inter-subject variability in physiological responses.

To address these limitations, this section explores a personalized modeling approach. A copy of the
trained general model from the preceding section is fine-tuned separately for each participant. Fine-
tuning is performed by splitting the data from one test participant into /N support scenario pairs, where
each pair consists of one calm and one aggressive variant of the same scenario (e.g., calm-roadwork,
aggressive-roadwork) and 10 — N query scenario pairs. Thus, for N = 1, the model is fine-tuned on one
such support scenario pair, and for N = 3 on three support pairs. The remaining 10 — N query pairs
are used for evaluation.



C.3. Perceived Comfort and Safety 82

In this case, fine-tuning can be considered as a form of targeted, participant-specific training. Essentially,
a short, secondary training phase that adapts the model to a single participants’ data. In this process,
the model is updated over a limited number of epochs (Egupport = 20) only using the selected support
pairs for this training. The same learning rate (LRsuypport = le — 4) as used for the general model
training is applied during fine-tuning.

The following fine-tuning strategy is explored: the entire body of the model is frozen, effectively disabling
the learning capabilities of shared feature representation. Only the last fully connected layer remains
trainable, allowing the model to adapt its output mapping to participant-specific characteristics while
maintaining the general features learned during pre-training.

These design strategies aim to capture participant-specific patterns in how physiological, vehicle dy-
namics and perception data relate to perceived comfort and safety, with the goal to improve prediction
accuracy on unseen conditions for that participant.

Fine-tuning is performed using the general models previously trained with the SMOTE-only approach.
For each of the 10 cross-validation folds, the same five participants held out for testing before, are now
each assigned a personal model. This model is fine-tuned individually using varying numbers of support
scenario pairs (N =0 to N =9). N = 0 corresponds to the unadapted general model, and N = 9 is
the maximum allowed support size, as at least one query pair is required for evaluation. For Q2, the
maximum support size is limited to N = 8, as this question was not asked during laps 1 and 4 of the
pedestrian crossing with obstruction scenario of the experiment, resulting in fewer available scenario
pairs.

Each personalized model is evaluated using both the hard (exact match) and soft (one-off match) cri-
teria. Within each fold, performance metrics are averaged across the five test participants to obtain
a fold-level score. Table C.12 presents the hard and soft accuracies across all input configurations
for N = 0 (general model) to N = 9. The results presented are obtained using the fine-tuning strat-
egy in which only the model’s final projection layer is updated, while all other parameters remain frozen.



C.3. Perceived Comfort and Safety 83

Support Pairs | Input config. Hard accuracy Soft accuracy
Q1 Q2" Q3 Q1 Q2" Q3
Baseline 387+54 4494105 353+34 | 755+£94 699 +88 73.0+13.0
GSR 303+46 35.1+£51 288+41 | 69.7£6.5 67.5+£82 735+438
VD 39.4+63 356+34 338+65 | 823+£51 77.2+£82 80.7+6.5
N—o0 GSR+VD 345+45 373+£68 333+£38 | 805+£51 753+£82 8l5+E74
GSR+P 354 £ 8.1 37.6 £ 8.4 29.2 £ 34 74.2 + 8.6 74.8 £ 3.1 73.0 £ 34
VD+P 422 +52 38177 365+45 | 7T33+£87 T747+102 796=£7.7
GSR+VD+P | 41.2+54 375+63 322+5.1 793+60 76.0+78 79.0+ 5.7
GSR 476 £ 100 552+ 77 433 +89 | 8.8+41 83.7+51 84.1+94
VD 47.0 £85 575+ 108 40.9+10.0 | 83.5+3.7 82.1+85 794 +83
N1 GSR+VD 481+ 77 578 +£81 41.7+83 | 86.3+35 8.5+64 81.5+89
GSR+P 448 +9.5 464 +96 445+84 | 81.9+46 77.1+84 80.9+87
VD+P 484 +94 505 +£86 434+99 | 839+43 834+70 80.8+7.8
GSR+VD+P | 495+£86 50.5+86 438+92 | 8.5+44 823+6.7 80.3+389
GSR 522+£63 565+£70 45750 | 84.7£53 847£6.1 826 %39
VD 548 +£54 563+£68 479+92 | 8.5+£33 842£62 8.3+£45
N=2 GSR+VD 56.1+£73 593+£92 480+87 | 899+31 892+41 87.8+4.0
GSR+P 49.7+ 131 572+84 460+84 | 8.6 +41 81.9+97 81.8+87
VD+P 46.8 £ 6.1 487 +121 456+82 | 8.5+t51 8.7+57 84.7+89
GSR+VD+P | 47.6 + 10.2 478 £ 11.6 446 +83 | 84.4+39 864+45 83.7+738
GSR 56.1+6.1 609+79 522+62 | 863+39 86.1£52 86.1=£7.0
VD 53.4+66 570+£81 500+£58 | 86.2+4.0 90.0=£39 86.0+£6.6
N=3 GSR+VD 525 £10.8 585+ 76 50.8+58 | 88.4+40 90.1 42 87.0+4.1
GSR+P 50.1 £ 7.4 53.4 £ 8.9 47.6 + 6.1 84.2 £5.2 823 +10.0 844 %55
VD+P 464 +£75 487+ 11.2 419+ 7.7 83.2 £6.1 84.0 £ 8.4 82.3 £ 8.8
GSR+VD+P 475+ 74 48.6 £ 12.1 422+ 75 83.6 £ 7.8 86.1 £ 6.9 84.3 £ 8.0
GSR 58.1 + 5.3 584 + 89 54.3 +8.4 |88.5+t4.1 86.5+47 90.1+6.1
VD 53.3+4.8 56.8+ 128 492+58 | 869 +43 89+54 87.2+438
N4 GSR+VD 50.8 +£83 57.5+10.8 483 +7.6 | 84+7.6 923 +46 856+ 4.6
GSR+P 50.7+80 51.6+88 502+83 | 823+73 85+75 85.8+78
VD+P 462+ 7.7 485+93 46.0+82 | 82.6+6.0 8.8+6.6 80.4+6.8
GSR+VD+P | 465 £88 49.7+82 473 +83 | 84+69 84.1+6.1 842+6.3
GSR 56.2+£71 587+84 542+83 | 81£54 879+£61 89.8+£6.2
VD 50.0£45 539+131 452+76 | 8.0£33 863£74 863 +£42
N=5 GSR+VD 46.7 £ 5.5 56.1 £ 140 465 +48 | 8.1+47 87.0+6.6 87.6=% 3.6
GSR+P 474+71 535+107 504£83 | 79.6+89 874+52 86.8%7.1
VD+P 43.7+76 468+ 112 450+6.8 | 81.7+74 803 +11.2 81.3+11.9
GSR+VD+P | 451 +£89 425+72 468+ 7.7 | 84.6+65 81.4+98 87.9+6.6
GSR 56.4+71 61.5+11.0 635+63 | 86.1+56 86.0=£81 942 +£4.0
VD 475+ 64 53.0+11.0 442+69 | 8.1 +39 86.3+6.1 84.2+39
N—6 GSR+VD 39.7+£39 558+ 128 479+47 | 87.7£59 832+£79 87.8+43
GSR+P 482 +£86 57.7+102 483 +£81 | 83.8+81 86.9+48 86.6+6.1
VD+P 446 £53 524+ 119 406 £5.7 | 82.6+53 81.3+86 794+389
GSR+VD+P 49.5 + 6.4 47.9 £ 8.4 44.7 £ 6.1 829+£72 834+114 859+77
GSR 57.7+84 61.6+103 575+6.0 | 89+70 849+ 11.1 935 +4.3
VD 409 +75 488+ 120 46.1+6.6 | 88.0+58 829+11.6 809 +4.8
N=7 GSR+VD 328 +79 527+102 46675 | 8.2+6.5 875+75 82.6+£5.7
GSR+P 42.7 +£ 133 59.6 £88 46.1 £12.7 | 808 6.7 86.5+73 86172
VD+P 43.1+95 523+145 394+9.0 | 79377 80.7+74 799+ 128
GSR+VD+P | 469 +10.6 49.5 £+ 109 358 +9.2 | 81.6 +£10.4 80.0+ 153 83.7+9.7
GSR 60.2 £11.2 652+88 589+9.6 | 83.8+85 89.0+64 922%52
VD 353 +£11.3 433 +£149 386=+58 | 8.9+68 80.0=£10.1 782+09.1
N=3% GSR+VD 33.0+79 493+ 16.8 46.3 £109 | 832+ 120 77.3+11.2 85.2+6.4
GSR+P 473 +11.0 581 +11.1 485+11.4 | 785+74 828+ 11.0 859+ 838
VD+P 50.2 £ 11.0 428 £11.8 41.6+£9.2 781+£72 838103 83.8=£10.2
GSR+VD+P | 51.0 £ 126 49.0+ 144 373+9.6 | 788+96 85.5+98 80.9+ 6.8
GSR 58.7 £ 12.9 - 579 £9.2 | 822+ 105 - 92.3 + 5.8
VD 37.8 +12.3 - 40.6 £6.6 | 82.1 8.0 - 77.8 £ 9.3
N=9 GSR+VD 34.5 £ 8.7 - 472+ 9.1 | 81.8 £ 14.0 - 83.9 £ 5.6
GSR+P 45.3 £ 11.8 - 478 £8.9 | 77.2+ 8.5 - 84.8 £9.2
VD+P 49.3 £ 12.0 - 40.7 £ 8.7 | 79.8 £ 9.0 - 81.9 £ 89
GSR+VD+P | 46.5 + 10.2 - 36.8+£10.2 | 75.4+95 - 78.9 £ 9.3

2: Support size to this question is limited to N = 8 as this question was not asked during laps 1, 4.

Table C.12: Hard and soft accuracy metrics (M% 4+ SD%) over 10-fold cross validation for self-reported comfort (Q1,
Q3) and perceived safety (Q2) classification using various input configurations and support set sizes (V). Results are
shown for different support set sizes (N =0 to N = 9) used in fine-tuning the model. SMOTE was applied to address

class imbalance. Bold values indicate the best-performing configuration for N < 5.

Figure C.4(a) displays the hard accuracy performance for Q1 across all 10 folds, for each input signal
configuration and support set size. A triangle marks the mean accuracy, and the vertical lines show the
standard deviation across folds. This setup allows for assessment of how the number of personalized
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samples (Ngypport) and input signal configuration affect model performance. Results for soft accuracies
for Q1 are shown in figure C.4(b), and hard and soft accuracies for Q2 and Q3 are shown in Figure
C.5(a), C.5(b), C.6(a) and C.6(b), respectively.

Q1 (hard criterion)

100
Input config.
—4— GSR
4— GSR+P
4~ GSR+VD
—A— GSR+VD+P
4— VD
—4&— VD+P

80

60

20

Accuracy (%)

N_support

(a) Hard accuracy (Q1)
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(b) Soft accuracy (Q1)

Figure C.4: Mean and standard deviation of the accuracies for Q1 for N =0 to N = 9 support pairs across all input
configurations, evaluated over the 10-fold cross validation. The shaded region and dashed line represent the baseline
classifier’s mean and standard deviation accuracies.

Figure C.4(a) demonstrates a clear improvement in hard accuracy with participant-specific fine-tuning
for all input configurations. Across all configurations, accuracy rises sharply as the number of support
pairs (V) rises from 0 to roughly 4-5, confirming the practicality of user-adapted training. Beyond this
point, however, the trajectories diverge.
e GSR-only continues to improve and remains marginally above the majority-class baseline.
» Configurations that incorporate vehicle-dynamics or perception features (VD, P) peak around
N = 4,5 and then decline, often dropping below the majority-class baseline for N > 6.

The most plausible explanation is over-fitting: scenario-specific VD and P signals may lead the model
to rely too heavily on scenario-specific patterns present in the fine-tuning data, which do not generalize
well to new scenarios. In contrast, the GSR signal appears more participant-specific and less dependent
on the scenario itself, allowing the model to generalize more effectively when applied to unseen scenarios.
Standard deviations increase substantially for larger N across all configurations, reflecting the small
residual test set per participant; with few samples, performance can swing from exceptionally high to
very poor, inflating the variance.

Figure C.4(b) shows a similar pattern to the hard accuracy results. Across all input configurations, ac-
curacy improves as N increases between N = 0 and N = 3,4, after which most configurations plateau
or show a slight decline.
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Again, the GSR-only configuration remains relatively stable across all values of IV and avoids a perfor-
mance decline as seen in the multimodal configurations. Similarly, increased standard deviations are
observed for high values of N.

Considering both hard and soft accuracy metrics, the GSR-only configuration at N = 4 presents a
practical optimum for this task. At this support size, the model achieves strong performance with a
relatively low standard deviation across cross-validation folds, while still maintaining a sufficiently large
query set for reliable evaluation. In summary, while combining input modalities was beneficial in the
general models (Table C.8), Figure C.4(a) indicates that the GSR, when calibrated to the individual,
offers more gains.
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100

Input config.
—A— GSR
—A— GSR+P
80 —4— GSR+VD
A— GSR+VD+P
T _ 4 VD
= —A—VD+P
s i L+ — — Baseline
5 _L_i__._ S == =
5] T
o]
<
20
0 0 1 2 3 4 5 6 7 8
N_support
(a) Hard accuracy (Q2)
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(b) Soft accuracy (Q2)

Figure C.5: Mean and standard deviation of the accuracies for Q2 for N = 0 to N = 8 support pairs across all input
configurations, evaluated over the 10-fold cross validation. The shaded region and dashed line represent the baseline
classifier’s mean and standard deviation accuracies.

Figures C.5(a) and C.5(b) mirror the trends observed for Q1. A single participant-specific support pair
(N = 1) yields the largest accuracy gain for every configuration, confirming how perceived safety is
highly individual. Performance then climbs until roughly N = 3,4, after which performance flattens or
declines for most configurations.

Under the soft criterion, configurations that include vehicle dynamics (GSR4VD, VD) briefly surpass
GSR-only at N = 3,4 but lose ground as N increases further, suggesting overfitting. GSR-only either
continues to improve or remains stable across the entire support range and never drops below the
majority baseline. This robustness indicates again that the GSR is less entangled with scenario-specific
patterns and therefore generalizes better to unseen data.

The expanding vertical bars at larger N are a direct consequence of the shrinking query set, which
limits the reliability of the performance estimates.
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Balancing accuracy, variance and evaluation set size, N = 4 emerges as the most defensible support size
for perceived safety models. Although vehicle dynamics-related configurations outperform the GSR~only
in soft accuracy, the GSR-only configuration remains the favorable configuration as it still outperforms
other configurations in hard metrics its greater stability.
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Figure C.6: Mean and standard deviation of the accuracies for Q3 for N = 0 to N = 9 support pairs across all input
configurations, evaluated over the 10-fold cross validation. The shaded region and dashed line represent the baseline
classifier’s mean and standard deviation accuracies.

Figures C.6(a) and C.6(b) show that predicting overall ride comfort follows the same general patterns ob-
served for Q1 and Q2. Accuracy improves consistently from N = 0 to N = 3,4 across all configurations,
after which most plateau or decline. The GSR-only configuration remains the only configuration that re-
mains stable beyond N = 4, while other configurations tend to drop toward or below the majority-class
baseline. This pattern again suggests overfitting driven by scenario-specific features.

As in previous results, the vertical variance bars increase with higher N, reflecting greater variance
across cross-validation folds due to the reduced size of the query set.

Taken together, the results in Figure C.6 further support earlier conclusions: A support size of N =4
and the GSR~only configuration remain the most robust and defensible choice for predicting subjective
comfort ratings.

C.3.5. Final Model Evaluation
The final model for comfort and safety prediction adopts the following optimal configuration over all
three comfort metrics (Q1, Q2, Q3):

e Input channels: GSR

e Class imbalance handling: SMOTE-only oversampling

e Fine-tuning: Support pair set size N =4
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With this setup, hard accuracies of 58.1%, 58.4% and 54.3% and soft accuracies of 88.5%, 86.5% and
90.1% for perceived comfort, safety and overall ride comfort, respectively, are achieved.

The following paragraphs evaluate the final model more in-depth across perceived comfort, safety and
overall ride comfort.

Perceived Comfort

Table C.13 reports the mean, maximum, minimum and standard deviations of the performance metrics
across the 10-fold cross-validation. Each personalized model is evaluated on the test participant it was
fine-tuned on; each performance metric of a fold is the average performance over all test participants in
that fold.

Hard Soft
Metric | Mean (%) Max. (%) Min. (%) Std. (%) | Mean (%) Max. (%) Min. (%) Std. (%)
Accuracy 58.1 68.8 50.0 5.3 88.5 83.3 96.7 4.1
Precision 34.2 49.8 26.0 6.8 77.1 92.0 64.7 7.2
Recall 42.3 52.9 36.2 5.0 77.3 90.8 68.1 5.8
F1 score 36.0 49.9 28.2 6.2 76.1 91.0 65.7 6.6

Table C.13: Performance metrics over 10-fold cross-validation in the perceived comfort (Q1) classification model based
on GSR data (phasic and tonic components) with a support set size N = 4.

Figures C.7 and C.8 present the aggregated confusion matrix and ROC analysis for perceived comfort
(Q1), respectively. The ROC analysis includes class-wise curves (left) and micro- and macro-averaged
curves (right), providing a comprehensive view of model performance across and within classes.

The micro-average combines all predictions across classes and reflects the model’s global ability to dis-
tinguish correct from incorrect predictions, while the macro-average calculates the average performance
per class, treating each class equally regardless of its frequency. A close alignment between micro-
and macro-average indicates a uniform model performance across classes, while a substantially higher
micro-average may signal a bias towards majority classes.

In addition to this, Cohen’s & is reported to quantify the agreement between predicted and true labels,
while accounting for the agreement expected by chance. It is defined as:

_ Po — Pe
K= b (C.3)

Where py denotes the observed agreement (i.e., raw accuracy) and p. the expected agreement, which
is the probability that the prediction and truth match by chance, given the distribution of labels.
Given the strong imbalance in the dataset, accuracy can be misleading, as it may largely reflect correct
majority-class predictions rather than meaningful learning. Cohen’s x corrects for this by discounting
agreement that could occur purely by chance.

The value of k ranges from —1, indicating complete disagreement where predictions consistently mis-
match the true labels, to 0, which reflects chance-level agreement where the model’s accuracy can be
attributed entirely to random chance rather than true predictive ability, up to 1, representing perfect
agreement where predictions exactly match the true labels across all classes.

According to interpretation guidelines, proposed by Landis and Koch [16], x values between 0.01 to
0.20 indicate slight agreement, 0.21 to 0.40 fair agreement, 0.41 to 0.60 moderate agreement, 0.61 to
0.80 substantial agreement and 0.81 to 1.00 almost perfect agreement. Higher values reflect increasingly
consistent predictions that go beyond chance and thus strong evidence of effective learning. Including
Cohen'’s k in evaluations ensures performance gains reflect true robust learning rather than exploitation
of the data imbalance.

For perceived comfort, Cohen’s k reached 0.409 under hard metric evaluation and 0.643 under soft
metric evaluation under this final model configuration. In contrast, the general model with GSR-only
input achieved substantially lower values of 0.077 and 0.312, respectively.
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Figure C.7: Aggregated confusion matrix over 10-fold cross-validation for the perceived comfort (Q1) classification
using GSR data (phasic and tonic components) with a support set size N = 4.
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Figure C.8: Aggregated Receiver Operating Characteristic (ROC) curve over 10-fold cross-validation for the perceived
comfort (Q1) classification using GSR data (phasic and tonic components) with a support set size N = 4. Both
class-wise ROC curves (left) and micro-, macro-averaged ROC curves (right) have corresponding Area Under Curve
(AUC) values indicated in the legend.

Perceived Safety
Table C.14 summarizes the 10-fold cross-validation results for the perceived safety (Q2) model.

Hard Soft
Metric | Mean (%) Max. (%) Min. (%) Std. (%) | Mean (%) Max. (%) Min. (%) Std. (%)
Accuracy 58.4 75.0 46.7 8.9 86.5 93.3 7T 4.7
Precision 33.4 56.7 21.3 9.8 75.1 85.6 64.9 6.6
Recall 44.7 67.1 34.2 9.8 78.4 89.3 67.9 6.7
F1 score 35.8 60.0 22.3 10.7 75.5 86.5 64.7 6.7

Table C.14: Performance metrics over 10-fold cross-validation in the perceived safety (Q2) classification model based
on GSR data (phasic and tonic components) with a support set size N = 4.

Figures C.9 and C.10 illustrate the aggregated confusion matrix and ROC curves for the perceived
safety (Q2) scores, respectively.
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Figure C.9: Aggregated confusion matrix over 10-fold cross-validation for the perceived safety (Q2) classification using

GSR data (phasic and tonic components) with a support set size N = 4.
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Figure C.10: Aggregated Receiver Operating Characteristic (ROC) curve over 10-fold cross-validation for the
perceived safety (Q2) classification using GSR data (phasic and tonic components) with a support set size N = 4. Both
class-wise ROC curves (left) and micro-, macro-averaged ROC curves (right) have corresponding Area Under Curve
(AUC) values indicated in the legend.

In perceived safety, the final model yielded a Cohen’s k of 0.376 under hard metrics and 0.652 under
soft metrics, markedly surpassing the general model’s scores of 0.048 and 0.178.

Overall Ride Comfort
Table C.15 presents the cross-validated performance metrics for the overall ride comfort (Q3) model.

Hard Soft
Metric Mean (%) Max. (%) Min. (%) Std. (%) | Mean (%) Max. (%) Min. (%) Std. (%)
Accuracy 54.3 65.0 36.1 8.3 90.1 98.3 77.8 6.1
Precision 30.6 38.9 23.7 4.6 84.0 98.9 56.0 11.6
Recall 41.1 54.3 26.0 7.1 83.5 97.7 61.7 10.1
F1 score 33.3 44.0 18.9 6.5 82.5 98.6 57.9 10.9

Table C.15: Performance metrics over 10-fold cross-validation in the overall ride comfort (Q3) classification model
based on GSR data (phasic and tonic components) with a support set size N = 4.

Figures C.11 and C.12 show the aggregated confusion matrix and ROC curves for the overall ride
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comfort (Q3) classification task.
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Figure C.11: Aggregated confusion matrix over 10-fold cross-validation for the overall ride comfort (Q3) classification
using GSR data (phasic and tonic components) with a support set size N = 4.
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Figure C.12: Aggregated Receiver Operating Characteristic (ROC) curve over 10-fold cross-validation for the overall
ride comfort (Q3) classification using GSR data (phasic and tonic components) with a support set size N = 4. Both
class-wise ROC curves (left) and micro-, macro-averaged ROC curves (right) have corresponding Area Under Curve

(AUC) values indicated in the legend.

For overall ride comfort predictions, the final model attained a Cohen’s x of 0.397 and 0.748 under hard
and soft evaluation metrics, respectively. In comparison, the general model reached considerably lower
values of 0.126 and 0.371

C.4. Discussion
The focus of this chapter was on predicting passengers’ perceived comfort and safety in automated
driving. Four subquestions were derived for this purpose and will be answered here:

1. How accurately can the GSR alone predict objective driving style (calm vs. aggres-
sive)?

The GSR demonstrates strong performance in the prediction of objective driving style with an
accuracy of 88.61% (£ 3.77%) over a 10-fold cross validation, with 87.73% (£ 4.75%) precision,
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97.70% (£ 8.86%) recall, 88.61% (+ 3.98%) F1 score and an Area Under the Curve of the ROC
of 0.938 (Table C.2, Figure C.3). These results show a strong discriminative capacity of GSR in
distinguishing between calm and aggressive driving styles.

The predictive power of the GSR is maximized when it is decomposed and both phasic and tonic
components are used as input (Tables C.3, C.4, C.5).

2. How accurately can the GSR alone predict perceived comfort, perceived safety and
overall ride comfort?

The GSR demonstrates poor performance in the prediction of subjective comfort ratings with
33.0% (£ 5.4%), 41.5% (& 6.0%), 30.8% (£ 4.8%) accuracies for Q1, Q2 and Q3, respectively
(Table C.7). These results fall short of the majority-class baseline accuracies of 38.7% (% 5.4%),
44.9% (£ 10.5%), 35.3% (£ 3.4%), indicating that the model fails to provide meaningful predictive
value.

3. To what extent do vehicle dynamics and/or perception data improve GSR-based
models for subjective comfort metrics?

Multimodal fusion with vehicle dynamics and perception improved performance by only 4-8% in
accuracy across all three subjective comfort measures. For Q1 and Q3, models based on objective
driving features (vehicle dynamics and perception) achieved the best performance, whereas for
Q2, the fusion of GSR with one of the objective driving features achieved the best performance.
However, these models only marginally outperformed the majority-class baseline for some input
configurations, while in others they failed to surpass it altogether.

A three-way fusion (GSR, vehicle dynamics and perception) did not show consistent benefits,
likely due to the increased model complexity or missing perception entries.

4. What challenges arise when predicting subjective ratings, and how can these chal-
lenges be addressed to improve model performance?

During this study, the following challenges arose:

1. Class imbalance: A strongly skewed distribution of questionnaire responses toward positive
responses (Figure A.8), mirroring patterns seen in other comfort-related studies [14], [32].
This imbalance biases the model toward “(very) comfortable/safe” responses and impairs its
ability to learn patterns associated with “(very) uncomfortable/unsafe”.

2. Questionable response validity: Various participants responded feeling “very comfort-
able/safe” for scenarios driven under the aggressive driving style, raising concerns whether
this response was genuine, influenced by social desirability bias, or misunderstanding. Invalid
or noisy subjective labels assigned to each time series can mislead the model during training
and significantly degrade its predictive accuracy.

3. Ambiguous score thresholds: Without clear reference points, participants may have strug-
gled to discriminate between adjacent comfort levels, leading to inconsistent or coarse ratings
that mask fine-grained variations in perceived comfort. This label ambiguity introduces more
label noise that weakens the model’s ability to learn and degrades performance.

4. Inter-participant variability: Both GSR and subjective comfort scores vary substantially
across participants, challenging the model’s generalization performances.

To address each challenge, the following approaches were employed:

1. A Synthetic Minority Oversampling Technique (SMOTE) approach was applied to the train-
ing set to address the class imbalance. Although this did not substantially increase overall
accuracy, it improved precision, recall and F1 score, surpassing the majority-class baseline
on these metrics and enhancing the model’s ability to predict minority classes (Table C.8).

2. Excluding participants from the data addressed the questionable response validity (Table
C.10). However, this led to a decline in model performance, indicating that the loss of
training data outweighed the benefits of removing potentially unreliable labels (Table C.11.
Consequently, this approach is not further pursued.

3. To address ambiguous score thresholds, a near-fit criterion (soft) was introduced: predictions
within one class of the ground-truth were counted as true positive. This soft evaluation metric
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accounts for participants’ difficulty in making fine-grained comfort judgments and aligns
better with the practical goal of broadly distinguishing between comfort and discomfort,
rather than capturing subtle variations.

4. The final challenge, high inter-participant variability, was addressed through user-adapted
fine-tuning. For each participant, the final projection layer of the model was fine-tuned using
N support pairs (i.e., the same scenario under the calm and aggressive driving style) and
evaluated on the remaining 10 — N (or 8 — N) query pairs. Using N = 3 or 4 yielded the
best trade-off between accuracy and stability across cross-validation folds, while preserving
sufficient data for test evaluation. This approach improved hard accuracies by 15 —20% and
soft accuracies by 10 — 20% across input configurations (Table C.12, Figures C.4-C.6).

A stratified 10-fold cross-validation was adopted during this study to test for robustness in place
of a leave-one-out cross-validation (LOOCYV). This design choice was originally chosen to mitigate
the risk that a single participant with atypical GSR or comfort dynamics would disproportion-
ately influence the evaluation metrics, thereby providing a more stable estimate of generalization
performance. Nevertheless, future work could consider LOOCYV to examine its potential impact
on the reported results.

A final model configuration is presented, which applies SMOTE to the training set and user-adapted
fine-tuning with N = 4 as the optimal configuration to address the challenges that arose with this
subjective comfort prediction task. Under hard metric evaluation, it yields 58.1%, 58.4% and 54.3%
accuracy for perceived comfort, safety and overall ride comfort, respectively. Soft metric evaluation
raises these scores to 88.5%, 86.5% and 90.1%, respectively (Tables C.13, C.14, C.15).

Cohen’s k values further support the improvements over the general model, rising from 0.077 to 0.409
for perceived comfort, from 0.048 to 0.376 for perceived safety, and from 0.126 to 0.397 for overall
ride comfort under hard evaluation. Under soft evaluation, they increase from 0.312 to 0.643, 0.178
to 0.652, and 0.371 to 0.748, respectively. These substantial gains demonstrate that the user-adapted
models effectively learn meaningful patterns in the GSR data, in constrast to the general model whose
performance, particularly under hard evaluation, is largely driven by chance.

Confusion matrices across all three comfort metrics (Figures C.7, C.9, C.11) reveal a strong performance
at the extremes: the model shows relatively higher accuracies at the “very uncomfortable/unsafe” and
“very comfortable/safe” instances, while most misclassifications occur between adjacent responses such
as “uncomfortable/unsafe”, “neutral” and “comfortable/safe”.

Class-wise ROC curves (Figures C.8(a), C.10(a), C.12(a)) confirm this pattern with AUC values sub-
stantially higher for the extreme responses, indicating that the models are better at distinguishing
these extremes. Together, these results suggest that the configuration is already reliable for a binary

comfort-alert application that only triggers when passengers approach extreme discomfort.

These soft metric results exceed prior binary classifiers in accuracy for trust (78.2%, [1]), motion sickness
(77%, [27]), comfort (71.9%, [30]) and stress (73%, [36]). In hard accuracy, the model surpasses a 4-class
comfort classifier (55.99%, [22]) but falls short of a 4-class motion sickness classifier (86% [31]) and a
10-class comfort classifier that also employs a similar soft metric allowance (92.4% [6]). Notably, these
studies relied on multiple physiological input modalities, whereas the proposed configuration solely relies
on the GSR signal.

A key limitation of the current approach lies in the way the GSR input is standardized. To preserve
the physiological contrast between calm and aggressive driving, the GSR signal was z-standardized
on a per-participant. While this scaling method yielded the highest model performance, it inherently
requires prior GSR recordings from each participant in both low- and high-arousal conditions. As such,
the models are not directly deployable in a plug-and-play fashion for new users. This limitation poses
minimal concern for the subjective comfort and safety models, as those already rely on participant-
specific fine-tuning. However, it significantly limits the deployability of the driving style classification
model, which can be operated independently of prior user data. A workaround could involve recording a
short baseline GSR under low-arousal conditions, for example, calm driving or a stationary rest, before
deployment. This baseline could then serve as a reference to scale the measured GSR, or to detect
deviations that could indicate elevated arousal or anomalous events.

A second limitation lies in the event-based nature of the dataset and modeling approach. In this study,
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each scenario was annotated with three comfort-related ratings, collected post-hoc. As a result, the
model is restricted to generating three comfort-related predictions per scenario and is limited to offline
evaluation. While the driving style classifier could, in principle, be implemented for online use, the
experiment involved stopping the Vehicle Under Test after each scenario to collect subjective ratings.
These stationary periods would also need to be annotated either as a distinct stationary class or as
the existing “calm” class. Moreover, a real-time classification would still require a sliding window of
approximately 30 seconds to enable reliable phasic and tonic decomposition of the GSR, as the cvxEDA
algorithm is not designed for online use.

Consequently, real-time comfort predictions remain an open challenge, requiring further research into
both online-capable signal decomposition and a solution for the scaling limitation.

Chapter B already highlights the importance of expanding the dataset with additional participants and
a broader range of driving scenarios. The predictive modeling framework presented in this chapter
would also benefit from such expansion. A larger and more diverse dataset would improve model
generalizability and open the door to training a more complex deep learning architecture.

As previously mentioned, it is recommended to record a short baseline GSR segment for each participant
and research how this is best used to enable and facilitate real-time models that no longer require both
low- and high-arousal data for scaling.

Lastly, while collecting continuous comfort ratings throughout a whole lap could in theory be used
to develop a real-time comfort classifier, this approach was deemed impractical by Siemens Digital
Industries Software in earlier experiments. Continuous feedback introduced confusion and distraction
for participants, ultimately compromising the quality of the data. For this reason, the current post-hoc
comfort evaluation remains the most feasible option.

The current dataset, despite its event-based structure, could still lend itself to the development of a real-
time anomaly detection framework. One possible approach would be to use a sliding window across the
full time series of one lap and assign the scenario’s comfort score to a surrounding time interval. In cases
where the reported comfort scores are particularly low, these intervals could be labelled as anomalous.
An anomaly detection model trained on such segments could then learn to identify deviations from
typical physiological patterns that occur during moments of comfort. This approach could allow for a
real-time flagging model of discomfort episodes, despite the absence of continuous comfort ratings.

C.5. Conclusion

This chapter has demonstrated that the Galvanic Skin Response holds substantial promise as an ob-
jective indicator of passenger comfort in automated driving. A subject-independent model reliably
distinguishes the calm driving style from the aggressive driving style configuration of this experiment
with an accuracy of 88.61%.

When calibrated onto individual participants, GSR-based models predicted subjective comfort ratings
with hard accuracies of 58.1%, 58.4% and 54.3% for perceived comfort, safety and overall ride comfort,
respectively. Applying a soft criterion increases these accuracies to 88.5%, 86.5% and 90.1%, respectively.
The elevated soft accuracy scores confirm the GSR’s ability to capture broad fluctuations in passenger
comfort, even though the strict classification of finer comfort nuances remains challenging.

The findings in this study emphasize the importance of user-adapted calibration. Without it, model
performance remains limited and largely driven by chance due to dataset imbalance. Personalized
calibration, however, allows the GSR to become a highly informative and responsive signal for passenger
comfort assessment.



Generative AI Acknowledgment

For this study, Generative Al, primarily Large Language Models (LLMs), were employed for the follow-
ing purposes:

Light-editing:

To improve both writing quality and efficiency, LLMs were occasionally used to refine sentences or

paragraphs or to suggest better wording. This was applied to both the scientific paper, within the
boundaries of the IEEE guidelines, and the final report. Typical prompts for this purpose were:

[sentence/paragraph]

1. Read this text (optional: I don’t like [last part]); can you help me improve readability?
Remember, the text is for a scientific paper/report, so maintain an appropriate academic
tone. Do not change the structure or content.

2. Read this text; I don’t like this [word] in this sentence. Can you give me 5 alternatives
that fit here?

The outcomes were never directly copied and pasted into the paper or report. Instead, selected phrases
or words were integrated into the original text to preserve my own writing style in the paper and report
and the tone I wanted for the final work.

Debugging:

LMMs were used for debugging purposes if the debugging issues in question were relatively common
problems For more specific or package niche issues, however, these models often failed to provide a
solution. In those cases, solutions were found by inspecting the source code, looking into forums or
searching elsewhere online. A common prompt for debugging was:

[code snippet]

This code above gives the following error:

[error message]

Why does this code give me this error, and how can I fix it?

Sometimes, these suggestions were applied directly. If they did not give the same error, I always double-
checked that the code still produced the intended outcome. Most of the time, however, the suggestions
required adaptation to be fit in the specific context and logic of the existing codebase.

Prototyping Plots:
The final use of LLMs was for quickly prototyping plots and figures. This typical prompt looked like:

I need your help visualizing [subject] in Python using [matplotlib/plotly].

Write me a function that takes [input] and makes a plot that:
- [list of requirements]
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While the generated code significantly improved efficiency, it consistently required manual adjustments
to correct minor flaws or to better align with my preferences.

For text refinement, OpenAl’s GPT-40 model was primarily used, and Grammarly was employed to
catch spelling mistakes, whereas Anthropic’s Claude models, integrated in SiemensGPT, supported
debugging and plotting.

Generative Al was never used as a source for information, interpretation of results, or methodological
decision making; it purely served as a practical aid during this study and the writing of this report.
Its use significantly streamlined the workflow and improved productivity; for example, generating ex-
ploratory plots through Generative Al support often reduced time by a factor of five compared to doing
it from scratch manually.
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