
 
 

Delft University of Technology

LiD-CAT
A Lightweight Detector for Cache ATtacks
Reinbrecht, Cezar; Hamdioui, Said; Taouil, Mottaqiallah; Niazmand, Behrad; Ghasempouri, Tara; Raik,
Jaan; Sepulveda, Johanna
DOI
10.1109/ETS48528.2020.9131603
Publication date
2020
Document Version
Accepted author manuscript
Published in
2020 IEEE European Test Symposium (ETS)

Citation (APA)
Reinbrecht, C., Hamdioui, S., Taouil, M., Niazmand, B., Ghasempouri, T., Raik, J., & Sepulveda, J. (2020).
LiD-CAT: A Lightweight Detector for Cache ATtacks. In 2020 IEEE European Test Symposium (ETS):
Proceedings (pp. 1-6). Article 9131603 IEEE. https://doi.org/10.1109/ETS48528.2020.9131603

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ETS48528.2020.9131603
https://doi.org/10.1109/ETS48528.2020.9131603


LiD-CAT: A Lightweight Detector
for Cache ATtacks

Cezar Reinbrecht, Said Hamdioui, Mottaqiallah Taouil

Delft University of Technology
Faculty of EE, Mathematics and CS

m.taouil@tudelft.nl

Behrad Niazmand, Tara Ghasempouri, Jaan Raik

Tallinn University of Technology
Department of Computer Systems

jaan.raik@taltech.ee

Johanna Sepúlveda

Airbus Defense and Space
Munich, Germany

johanna.sepulveda@airbus.com

Abstract—Cache attacks are one of the most wide-spread and
dangerous threats to embedded computing systems’ security. A
promising approach to detect such attacks at runtime is to mon-
itor the System-on-Chip (SoC) behavior. However, designing a
secure SoC capable of detecting such attacks is very challenging:
the monitors should be lightweight in order to avoid excessive
power/energy and area costs and the attack behavior should
be clearly known upfront. In this work, we present LiD-CAT,
a lightweight and flexible hardware detector that is aware of
leakage patterns that can be used by attackers to perform cache
based attacks. LiD-CAT is a cache wrapper that implements a
set of leakage properties derived from cache attacks and cache
models using templates. These templates identify suspicious be-
havior that may lead to cache attacks. LiD-CAT is evaluated using
two different cache architectures, one with a secure cache and
one without. On each of them, SPEC2000 benchmarks are run
together with malicious applications that execute cache attacks
(i.e., Evict+Time, Prime+Probe, Flush+Reload and Flush+Flush).
Results show that our lightweight detector successfully detects
99.99% of the attacks with less than 1% false-positives, has no
timing penalties, and increases the area of a SoC with only 1.6%.

I. INTRODUCTION

Caches are small high-speed memory resources designed to
speed up the execution of applications, including the execution
of cryptographic operations [1]. Their shared nature turns
cache hierarchies into a common target of microarchitectural
attacks on Systems-on-Chips (SoCs), as the cache content is
affected by the mutual interference of processes from different
security domains. This is a major threat on SoCs where
malicious and sensitive processes are executed together [2].
In this scenario, an attacker can take advantage of the mutual
interference to affect the victim’s process execution. Informa-
tion leakage through the exploitation of cache side-channels
has serious consequences on the SoC security and therefore
early detection of cache attacks is critical for achieving a
secure SoC. However, this task is very challenging. As the
leakage is obtained solely from side-channels, the system’s
behavior from a security point of view is not violated. In
addition, it is not fully clear which information is required
to identify potential leakage and detect cache attacks. Usually
these attacks are identified only after the attacker has already
successfully extracted secret information or took over the
control.

Although cache monitoring has been widely studied in the
context of high performance SoC computation, its use for
detecting cache attacks has been almost completely neglected.
A limited number of publications have performed offline and
online cache monitoring [3–10] for security purposes. Offline
monitoring is based on the simulation of possible attack
scenarios [3–6]. This technique has a very low overhead, as no
additional hardware is required. However, the detection of an
attack strongly depends on the coverage of the possible attack

scenarios. On the other hand, online monitoring is usually
based on software performance counters as in [7–10]. Despite
having a higher efficiency in attack detection, the performance
and cost overheads may become a limiting factor for a broad
spectrum of devices.

In order to overcome such drawbacks, in this work we
propose an efficient, flexible and lightweight hardware cache
attack monitor for online cache attack detection. To the best
of the authors’ knowledge, this is the first online hardware
monitor for detecting cache attacks. The lightweight property
of our monitors was achieved by developing templates, which
are improved, simplified and smart models which character-
ize the information leakage from cache side channels. Such
templates exploit common cache attacks’ characteristics to
develop extended fingerprints capable of covering and detect-
ing families of attacks. Moreover, these templates can easily
be further customized for different cache architectures. The
evaluation results demonstrate the feasibility of our approach
by presenting detection results of different cache attacks,
namely Evict+Time [2], Prime+Probe [2], Flush+Reload [11]
and Flush+Flush [12]. In summary, the contributions of the
paper are:

● Generalization of cache attack models through templates
and their formal validation through assertions;

● Proposal of a new lightweight hardware monitor for
detecting cache attacks;

● Evaluation of the security efficiency and performance/cost
overheads of the detection mechanism for different attack
scenarios.

The remainder of the paper is organized as follows: Sec-
tion II presents the background concepts and the related
work on cache attacks and their formal modeling. Section III
describes the proposed method. Section IV presents the
lightweight hardware monitor for detecting cache attacks.
The experimental results are shown in Section V. Finally,
Section VI discusses the limitations and concludes the paper.

II. BACKGROUND

This section presents an overview of the state-of-the-art on
cache attacks and cache attack models.

A. Cache Attacks
Based on the side-channel information available to the

adversary, cache attacks are commonly categorized into three
types: i) trace-driven attacks [13] that focus on sequences of
cache operations such as hits and misses; ii) access-driven
attacks [2] which exploit cache access patterns; and iii) time-
driven attacks [14] which exploit the execution time. In trace-
driven attacks, an adversary generates traces of the cache

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. 



activity when running a victim‘s application. The traces can
be obtained by measuring physical properties like power [15]
or by retrieving information from system monitors [13]. An
attacker can evaluate the patterns and infer sensitive informa-
tion [15].

In the second attack type, access-driven, a spy process
(created by the attacker) monitors whether a specific address
is used by the victim’s application or not. To correctly guess
victim’s accesses, the attacker evaluates the time required
to read the target address. If the victim accesses the target
address, (parts of) the spy’s data is removed from the cache,
producing a corresponding number of cache misses. Thus, it
takes the spy longer to retrieve its data [1]. If the victim
accesses cache addresses that do not collide with the target
address, the spy’s access to its own data is faster as all accesses
result in cache hits. Using the information about the sensitive
addresses of the victim and its mapping on the cache (i.e.,
the location of the cryptography libraries in the cache), an
adversarial is able to extract secret information. Some of the
well-known access-driven cache attacks are Prime+Probe [16],
Flush+Reload [11] and Flush+Flush [12]. All these attacks
are based on three steps: i) the attacker prepares the cache
by evicting (or priming) cache sets; ii) the attacker awaits
the victim’s execution; and iii) the attacker re-accesses the
cache and guesses which addresses were used by the victim.
Prime+Probe performs the attack by reading cache addresses,
Flush+Reload and Flush+Flush achieve the same objective by
employing flush operations like CLFLUSH instruction from
the X86 architecture.

Finally, the third attack type relies on timing-driven tech-
niques, in which the source of leakage is the total execution
time of the victim’s process. Examples of time-driven attacks
are the Bernstein’s attack [14], Evict+Time [16] and cache-
collision timing attack [17]. Bernstein’s attack aims to cor-
relate the different execution times with a guessed key. In
Evict+Time, the attacker creates interference in the cache dur-
ing the victim‘s operation. If the execution time changes, the
attacker knows which address caused the different behavior.
In collision attacks, the attacker manipulates the inputs of the
victim to provoke a higher probability of cache hits. Then, the
attacker reduces the key search space by selecting only the
fastest encryption times.

B. Cache Attack Models

Security verification through attack simulation has been
used previously to check the SoC vulnerabilities [18]. It
creates a model of the system’s attack surface and runs
simulated attacks, which shows the SoC behavior under attack.
In addition, it can be used to measure the effectiveness
of protection mechanisms. However, it comes with several
challenges. First, this technique tends to be very expensive
due to the high hardware-software co-simulation complexity.
Second, it only offers a snapshot of the SoC defenses at a
particular point in time. When a SoC is updated or when new
attacks are discovered, there is no way to predict how the
changes will actually affect the SoC security. Third, it demands
a strong knowledge of the SoC architecture, attack process
and protection mechanisms. To circumvent these drawbacks,
recent works have used formal techniques to model different
types of cache attacks [3, 4]. These models can be used to
formally verify the occurrence of a cache attack in a target

SoC. The authors of [3] have introduced a three-step model to
describe 28 leakage patterns (of which 20 are exploited with
demonstrated attacks and 8 are not exploited yet). It includes
a sequence of actions, the initiator of the actions (victim or
attacker), and the information known by the attacker. These
leakage patterns were further refined in [4]. By including the
timing perception of each action (slow and fast cache re-
sponses) the authors were able to circumvent the adaptive time
behaviour of some secure caches. Despite the wide modeling
capabilities in the mentioned previous works, a straightforward
implementation of such properties for online monitoring is
prohibitive. In addition, these models are incomplete since
they do not consider the access behavior (hit or miss). In this
paper, we further refine and explore the cache leakage patterns
by creating templates that understand how the attack models
take advantage of target cache design. Hence, the templates
can be used to perform online monitoring of the system.

III. PROPOSED METHODOLOGY

In this section we propose a methodology to develop
lightweight online monitors based on templates of cache
leakage. It first describes the inputs that are needed for the
cache templates. Second, it describes how leakage properties
are derived. Finally, it discusses how the templates are created.

A. Required Inputs for Cache Template Development

To develop the templates, the first step is to understand the
impact of the following four inputs: i) threat model, which
represents the possible vulnerabilities of the system; ii) attack
model, which defines how the vulnerabilities can be exploited
to conduct a cache attack; iii) target memory organization,
which identifies the memory ranges where sensitive informa-
tion is allocated. It allows the identification of the actors of
the system (i.e., victim or attacker); and iv) cache design,
which allows further customization of the leakage properties
by taking the design of the cache into consideration (e.g., I/O
ports, signals, addresses). Each is described in more detail
below.
Threat Model: The target environment of this work is a
typical Von Neumann architecture, composed by a processor,
peripherals and memory hierarchy. In such a platform, an
operating system manages the resources, allowing multiple
processes to execute at the same time different applications.
As a result, some processes share the cache memory, thus
creating mutual interference. In this work we assume there are
two processes named attacker and victim and their executions
can lead to cache interference. We assume the following
assumptions regarding the threat model:
● The main memory does not have shared space for both

attacker and victim.
● The attacker has access to system’s timers, being able to

measure the timing of victim’s execution.
● The attacker knows the public libraries the victim uses.
● The attacker can call victim’s functions. For instance,

the attacker can request the victim to encrypt a certain
message.

Attack Model: The attack model used in this work is based
on the model proposed in [3]. It contains two main actors
(attacker and victim) that perform actions during three stages.
Five possible actions are defined in this model:



TABLE I: Leakage Database: 28 leakage patterns analyzed in
this work

ID attack formula * ID attack formula *
1 V x→ Ar → V x - 15 V x→ V x→ Ar d
2 V x→ V r → V x - 16 Ar → V x→ V r d
3 Ar → A1→ V x - 17 V r → V x→ V r d
4 V r → A1→ V x - 18 V x→ V x→ V r d
5 A1→ A1→ V x - 19 Ar → V x→ A1 e
6 V 1→ A1→ V x - 20 V r → V x→ A1 e
7 V x→ A1→ V x a 21 A1→ V x→ A1 f
8 V x→ A1→ V x b 22 V 1→ V x→ A1 -
9 V r → V 1→ V x b 23 V x→ V x→ A1 e

10 A1→ V 1→ V x b 24 Ar → V x→ V 1 b
11 V 1→ V 1→ V x b 25 V r → V x→ V 1 b
12 V x→ V 1→ V x c 26 A1→ V x→ V 1 -
13 Ar → V x→ Ar d 27 V 1→ V x→ V 1 c
14 V r → V x→ Ar d 28 V x→ V x→ V 1 b

*Published attacks: a) Evict+Time [2]; b) Cache Collision [17]; c) Berstein
[14]; d) Flush+Flush [12]; e) Flush+Reload [11]; f) Prime+Probe [2]

● V1: The victim accesses a cache line of which the address
is known to the attacker.

● Vx: The victim accesses a cache line of which the address
is not known to the attacker.

● Vr: The victim flushes a cache line of which the address
is not known to the attacker.

● A1: The attacker accesses a cache line.
● Ar: The attacker flushes a cache line.

Table I summarizes the patterns that leak information. There
are 28 of such patterns; 20 of them have been exploited
successfully with attacks and 8 are until now not exploited. To
exploit such leakages, attack models have to be created that
create leakage patterns. As an example, leakage pattern ID=7
is typically exploited by Evict+Time attack. An attack model
is defined by a sequence of three actions that describe different
cache accesses: i) attack preparation; ii) core of the attack; and
iii) observation/control. For the attack ID=7, the attack prepa-
ration (first action) requires that the victim accesses the cache.
However, the attacker does not need to know the victim’s
accessed addresses (Vx). Then, the core of the attack (second
action) requires that the attacker reads a specific memory
address (A1). The observation/control (third action) requires a
second victim’s cache access where the attacker does not need
to know the victim’s accessed addresses (Vx). As the attacker
is able to measure the victim’s execution time during the first
and second accesses, an increase of the execution time will
reveal that A1 is part of the victim’s accessed addresses. By
repeating this process multiple times, the attacker may obtain
enough information to retrieve the secret key value of table-
based implementation of a cryptographic algorithm [2].

The attacker does not need any information of the victim’s
accesses for the attacks that are based on the leakage patterns
with ID 2, 17 and 18 in Table I. That is, the actions are
only constituted by Vx and Vr events. Hence, the attacker
does not need to retrieve any information and in order to
execute such attacks, additional trace information regarding
the victim’s behavior is required. Since our attack templates
are based on the cache activity only, these attack types are out
of the scope of this paper.
Memory Organization: Fig. 1 shows the memory regions
set for the attacker’s and victim’s processes. As shown in
this figure, the attacker and victim processes access a separate

Fig. 1: Address map of the main memory.

area of the main memory while the fetched address by these
processes may map into the same block in the cache memory.
In order to identify the process ID of an access to the cache
(i.e., either the attacker or victim), information from the
Operating System (OS) can be used. The OS is aware of the
process id of each memory access and provides this to the
processor. This information is also accessible by the cache.
Target Cache Designs: Two target cache designs are used in
this paper. The first one is a baseline cache, which is an open-
source parameterizable hardware core [19]. The configuration
parameters of the cache include: i) associativity, either fully
associative, direct-mapped or set-associative; ii) number of
ways per cache set; iii) number of cache lines; and iv) other
parameters related to memory and processor address size [20].
The second architecture is a secure cache, a protected version
of [19] which was proposed in [20]. This architecture was
designed to prevent access-driven side channel attacks.

B. Derivation of Leakage Properties

Formal properties are used in this work to map the attack
models to a specific target cache design. To derive leakage
properties, it is important to understand how the target cache
design behaves during miss and hit states. The logic that
generates cache hits and misses is formally described as a
cache event. These events can be either cache miss or cache
hit.

The next step is to identify who the trigger of an event is,
i.e., the attacker or the victim. This can be realized by checking
to whom the address of the event belongs. Together, the events
for each of the three stages (see Table I) with their actors are
used to define the leakage properties. A leakage property is an
assertion that describes a leakage pattern (i.e., a combination
of three events with their aggressors that matches one of the
IDs in Table I) in terms of internal cache signals.

Listing 1 shows an illustrative example for the leakage
property of leakage pattern ID=7 (see also Table I). In the
first step, the property checks for the event miss or hit (i.e.,
don’t care) for a victim access. In the second step it looks for
a Miss event caused by the attacker. In the third step, it looks
for a Miss event from the victim. In the case the events with
their associated actors match in all the three stages, a potential
attacker is able to collect information from this leakage and
hence potentially might retrieve secret information. Note that
this property must be verified independently for each line of
the cache during the complete execution.

C. Creation of Cache Attack Templates

The last part of the methodology is the creation of the attack
templates. To achieve this objective, two tasks are required:



Listing 1: Security property for attack type ID 7.
property Leakage_property_ID_7;

@(posedge clk)
((Miss_or_Hit && (cpu_addr inside{VICTIM_addr_range}),address_Vx = cpu_addr)
##[CACHE_HIT_DELAY : CACHE_MISS_DELAY]
(Miss && (cpu_addr inside {ATTACKER_addr_range}), address_A1 = cpu_addr) && (address_Vx == address_A1)
##CACHE_MISS_DELAY
(Miss && (cpu_addr inside {VICTIM_addr_range}) && (addr_A1$_{set}$ == cpu_addr$_{set}$)))

endproperty

i) verification of the efficiency of the leakage properties; and
ii) creation of a single Finite State Machine (FSM) that merges
all leakage properties.
Verification of the Leakage Properties: To determine the
effectiveness of the proposed leakage properties, we simulate
all the leakage patterns identified in Table I for the two target
cache designs, i.e. baseline and secure. A testbench is created
that simulated all possible accesses that trigger a leakage
property. For instance, for attack ID=7, the testbench creates
a scenario where the accesses are performed by the victim,
followed by the attacker and then the victim again. However,
to successfully trigger the property, these consecutive accesses
must result in don’t care/miss/miss. Considering a specific
cache line, there are multiple addresses in the main memory
that could lead to such a behavior. The testbench simulates a
sequence of addresses that mimic this behaviour per cache line.
Finally, we evaluate how often each leakage property has been
triggered when the specific scenario was applied. Depending
on the property evaluated, different amount of accesses were
tested, varying from 640 to 11136 combinations. Table II
shows for each leakage property how often (in percentage)
it has been triggered.

The baseline and secure caches are configured with a direct-
mapped cache containing 64 cache lines with a 128 bit (16-
byte) cache line size. For the baseline processor all leakage
patterns were observed, indicating that they could be exploited
by attacks. On the other hand, in the secure cache some
leakage patterns were not triggered at all or with a lower
activity. For instance, in case 7 (security property 7) only
50% of the leakage patterns was observed. This is due to the
protection technique based on address randomization, which
obfuscates the relation between the address in the cache line
and main memory from the attacker. For two cases, i.e. case 1
and case 21 (Prime+Probe attack), the leakage properties did
not occur, which means that the countermeasure functioned
properly and mitigated such leakage patterns. For the other
cases, i.e. the leakage patterns that are not related to access-
driven attacks, the secure cache resulted in the same amount
of triggers as the baseline cache. This implies that there is no
protection against these leakage patterns.
Creation of the Finite State Machine: The leakage properties
are combined to create a single finite state machine. To
represent the states, we employ the actions from the leakage
patterns of Table I, namely V1, Vx, Vr, A1 and Ar. All
these five actions can be used by an attacker as the first
step of an attack. This means that the first stage has five
states. Thereafter, each state may lead again to five states
in the second stage. However, not all the combinations are
possible. The leakage properties determine which sequence of
actions can be exploited. The resulting cache template FSM
is presented in Fig. 2. Note that the state machine contains at
each stage both the actors and the cache event.

TABLE II: Evaluation of triggered leakage properties.

Cache Configuration Cache Configuration
64/1/16 64/1/16 64/1/16 64/1/16Leakage prop. (baseline) (secure) Leakage prop. (baseline) (secure)

Case_1 100% 0% Case_15 100% 100%
Case_2 N/A N/A Case_16 100% 100%
Case_3 100% 100% Case_17 N/A N/A
Case_4 100% 82.7% Case_18 N/A N/A
Case_5 100% 100% Case_19 100% 91.6%
Case_6 100% 94.2% Case_20 100% 100%
Case_7 100% 50% Case_21 100% 0%
Case_8 100% 100% Case_22 100% 100%
Case_9 100% 100% Case_23 100% 100%
Case_10 100% 100% Case_24 100% 100%
Case_11 100% 100% Case_25 100% 100%
Case_12 100% 100% Case_26 100% 100%
Case_13 100% 50% Case_27 100% 100%
Case_14 100% 100% Case_28 100% 100%

Fig. 2: Final leakage template.

The FSM of Figure 2 can be optimized by grouping together
common states to create a lightweight implementation. For
example, V1 and Vx can be grouped as the hardware is not
aware if the accessed address is known to the attacker or not.
Our optimization reduces the number of states to only eight
states, as shown in Fig. 3. Hence, each cache line requires
three state bits.



Start

V

A

VV

VA

AV

AA

Attack

Step3Step2Step1

V && MISS

V && HIT

A && MISS

V && MISS

A && HIT
V && MISS

V && MISS

V && HIT

A && MISS

A && MISS

V && HIT

Fig. 3: Optimized FSM implemented in LiD-CAT.

Fig. 4: LiD-CAT architecture.

IV. THE LID-CAT ARCHITECTURE

In this section we introduce the LiD-CAT architecture and
its integration within the cache design.

A. Design
Fig. 4 shows the architecture of LiD-CAT. It consists of

four components: i) state memory, a dedicated memory (e.g.,
a register file) to store the FSM states of each cache line; ii)
next state logic, which defines the FSM transitions of Fig. 3;
iii) hit and miss monitors, to track events inside the cache; and
iv) checker, that verifies whether the access patterns match the
FSM states, hence it checks whether leakage takes place or
not.

LiD-CAT operation is composed of several steps. First, the
detector awaits for a memory request from the processor.
Thereafter, the detector fetches from the state register file the
state related to the accessed cache line. LiD-CAT uses the
cache status information (i.e., hit or miss given by the hit and
miss monitors), the address, and the current state to determine
the next state. If the current request matches a step from the
leakage pattern, the FSM will traverse to next state. When all
states match a certain leakage pattern, the checker triggers an
interruption flag (i.e., IRQ). Otherwise, the FSM jumps to one
of the states at Step 1 (see Fig. 3) based on the cache access’
actor (victim or attacker). Finally, the output of the next state
logic is updated in the state memory.

The LiD-CAT detector identifies the behavior of all leakage
patterns defined by the final leakage template (see Fig. 2).
They are comprised of a sequence of events that may affect
any cache line. To build a LiD-CAT detector, two tasks are
required: i) to analyze the correct sequence of accesses; and
ii) to evaluate each cache line independently. To accomplish
these tasks, the LiD-CAT architecture is based on multiple
FSMs (see Figure 2), each evaluating a single cache line.

B. Integration
To integrate LiD-CAT into a cache, cache hit and miss

monitors are required. These monitors can be integrated in
an invasive or non-invasive (without modifying the cache
architecture) way. The target cache architectures described in
[19] and [20] allow access of the internal signals of the cache,
as shown in Fig. 4. The monitors of LiD-CAT compare through

an AND gate two internal signals of the target cache design:
i) request from the CPU; and ii) hit flag from the cache. The
miss signal is generated by inverting the hit signal. Note that
the monitoring hardware overhead is not significant. However,
the designer must ensure the meeting of the timing constraints,
since depending on the way the monitors are integrated, the
critical path may be affected.

The current LiD-CAT architecture uses registers to store the
states. However, the cache memory itself can be used. In that
particular case each cache line would be extended with three
extra state bits.

V. EXPERIMENTAL RESULTS

In this section, we present the performance, cost and secu-
rity results of LiD-CAT.

A. Setup
LiD-CAT is modelled in Verilog and integrated into two

cache designs: i) a baseline cache [19]; and ii) a secure
cache, which is the protected version of [19] against access-
based cache attack [20]. The goal is to evaluate its detection
accuracy (i.e., both false and true positives) and hardware
overhead. To realize this, our experiments contain both non-
malicious and malicious applications. The non-malicious ap-
plications are selected from SPEC2000 CPU Benchmark; they
are Swim, Gzip, Gcc and Mcf [21]. As malicious applications
popular attacks have been used; they are the Evict+Time
(E+T) [2], Prime+Probe (P+P) [2], Flush+Reload (F+R) [11]
and Flush+Flush (F+F) [12]. All attacks are performed on the
transformation table (T-table) implementation of the Advanced
Encryption System (AES) with a 128-bit key. In all experi-
ments 10000 memory accesses per application are evaluated.

To evaluate the hardware overhead of LiD-CAT, it is inte-
grated in an SoC and synthesized on a Cyclone IV GX FPGA
from Intel. The target SoC comprises a NIOS II processor [22],
a cache design, flash memory controller, DRAM memory
controller, UART serial interface, JTAG interface, Direct-
Memory Access (DMA), timer, Ethernet with MAC, and a
bus interconnection. The SoC was synthesized for both the
baseline cache and secure cache.

B. Detectors Accuracy
The top part of Table III shows the detection accuracy of

LiD-CAT. The false positives results correspond to the ratio
of triggers of leakage properties that LiD-CAT detects for
non-malicious applications. The table shows that the highest
amount of false positives occurs for the baseline cache which
goes up to 14% for gzip. Gzip reads the same memory
addresses periodically and hence LiD-CAT identifies such
behavior as a possible timing leakage (see Table I ID=8 to
ID=12). For the secure cache, the false positive results are
typically lower and the worst case reaches 11% for mcf.
The main reason is due to the protection mechanism of the
secure cache of [20]. It masks the accesses in the cache by
using random addresses, thus changing the access behavior
of Gzip. False-positives are not desired in a system as the
false alarms can create several performance drawbacks due
to interruption handling. Therefore, to reduce the amount of
false-positives, we added a threshold trigger to LiD-CAT that
creates an alert (Interupt Request in Fig. 4) when a certain
amount of triggers are accumulated. The threshold should be



TABLE III: Experimental results of LiD-CAT.

False-Positive Results - SPEC2000 Benchmarks
Cache Design swim gzip gcc mcf

Baseline 4.97% 14.08% 5.87% 10.18%
Secure 7.87% 7.79% 7.2% 11.24%

With threshold of 100 triggers
Baseline 0.04% 0.14% 0.05% 0.10%
Secure 0.07% 0.07% 0.07% 0.11%

True-Positive Results - Cache Attacks
Cache Design E+T P+P F+R F+F

Baseline 100% 100% 100% 100%
Secure 100% 100% 100% 100%

With threshold of 100 triggers
Baseline 99.99% 99.99% 99.99% 99.99%
Secure 99.99% 99.99% 99.99% 99.99%

Synthesis Results - Area Overhead
Cache Design LC Comb LC Reg Memory % of SoC

Baseline 21.5% 19.6% 0% 1.58%
Secure 10.1% 11.4% 0% 1.46%

With threshold of 100 triggers
Baseline 22.4% 20.3% 0% 1.65%
Secure 10.5% 12.8% 0% 1.52%

high enough to minimize false positives but low enough to
still detect the leakage patterns effectively. As T-Table based
AES encryption requires 160 cache memory accesses [14],
a threshold of 100 triggers is selected. With this threshold,
the amount of false-positives decreases below 0.14%. The
true positives correspond to the amount of triggered LiD-
CAT detection (possible attack) for malicious applications.
Without the trigger, all attempts of the attacker to create
one of the leakage patterns used in E+T, P+P, F+R and
F+F were detected. With the threshold enabled, the detection
accuracy only reduced with 0.01%. Considering the benefits
of significantly reducing the false-positives while almost not
affecting the detection of true-positives, we can conclude that
the use of a threshold is an effective strategy.

C. Hardware Overhead
The synthesis results of the cache designs, LiD-CAT (LC)

and the SoC are presented in the bottom part of Table III. The
cache designs include an SRAM memory array together with
additional logic to manage hits and miss behaviors. The area
of this logic is typically very small compared to the complete
SoC. Hence, we compare the area overhead of LID-CAT to
the complete SoC. For both the baseline and secure cache,
LiD-CAT without the threshold trigger has an area overhead
of 1.52%. With the threshold trigger, it increase to 1.65%, due
to the need of an additional 7-bit counters that counts to 100.

VI. DISCUSSION AND CONCLUSION

This paper presented LiD-CAT, a lightweight online detector
of cache attacks. From the paper we conclude:
Threat Response: After the identification of a leakage pattern,
the system has to make a decision on how to mitigate the
threat. This action may impact the performance. One option is
to flush the cache entirely to erase the access history. Another
option would be to block other processes until the victim
finishes. A third option would be to randomize the memory
mapping to confuse the attacker.
Multi-port Caches: In the case the cache has multi-port
access, LID-CAT can be easily modified. It requires to have
next stage logic and checkers for each port, and to have a
multi-port state memory (see Fig. 4)

Threshold Limitation: Reducing the threshold trigger has
limitations for sensitive applications. For example, T-Table
AES requires 160 accesses for one encryption. This means
that the threshold trigger must be set below 160 triggers. If
the value is set higher, an attacker can observe the whole
encryption, and after that, restart the system and perform the
attack again with different inputs. Hence, the false-positives
cannot be completely removed.
Multiple Thresholds: LiD-CAT uses only one counter to
implement the threshold trigger, as only one leakage pattern
can be exploited at a time. However, an attacker might still
be able to create sophisticated attacks to bypass the LiD-CAT
detector. In such a scenario, a different counter should be used
for each leakage pattern. Due to the limited number of leakage
patterns, it comes with a marginal overhead.
Design Verification: Our experiments show that the secure
cache, compared to the baseline, avoided up to 60% of all leak-
age patterns in general and 100% of leakage patterns belonging
to access-based cache attacks. Hence, our methodology can
also be used statically at design time to evaluate the severeness
of the information leakage of caches and verify the design
from a security point of view.

ACKNOWLEDGMENTS

The work has been supported by Estonian Research Council
grant IUT19-1 and Estonian centre of excellence EXCITE.

REFERENCES

[1] J. Sepulveda et al., “Exploiting bus communication to improve cache
attacks on systems-on-chips,” in ISVLSI, 2017.

[2] D. A. Osvik et al., Cache Attacks and Countermeasures: The Case of
AES. Springer Berlin Heidelberg, 2006.

[3] S. Deng et al., “Cache timing side-channel vulnerability checking with
computation tree logic,” in HASP ’18, 2018.

[4] S. Deng et al., “Analysis of secure caches using a three-step model for
timing-based attacks,” HaSS, 2019.

[5] Z. He and R. B. Lee, “How secure is your cache against side-channel
attacks?” in MICRO, 2017.

[6] T. Ghasempouri et al., “Security verification template to assess cache
architecture vulnerabilities,” in DDECS, 2020.

[7] M. Chiappetta et al., “Real time detection of cache-based side-channel
attacks using hardware performance counters,” ASC, 2016.

[8] S. Briongos et al., “Cacheshield: Protecting legacy processes against
cache attacks,” CoRR, 2017.

[9] M. Mushtaq et al., “Nights-watch: A cache-based side-channel intrusion
detector using hardware performance counters,” in HASP, 2018.

[10] T. Zhang et al., “Cloudradar: A real-time side-channel attack detection
system in clouds,” 2016.

[11] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in 23rd USENIX, 2014.

[12] D. Gruss et al., “Flush+flush: A fast and stealthy cache attack,” in
DIMVA, 2016.

[13] O. Acıiçmez and Çetin K. Koç, “Trace-driven cache attacks on aes,” in
ICICS, 2006.

[14] D. J. Bernstein, “Cache-timing attacks on aes,” Tech. Rep., 2005.
[15] J.-F. Gallais et al., “Improved trace-driven cache-collision attacks against

embedded aes implementations,” in WISA, 2011.
[16] E. Tromer et al., “Efficient cache attacks on aes, and countermeasures,”

Journal of Cryptology, 2010.
[17] A. Bogdanov et al., “Differential cache-collision timing attacks on aes

with applications to embedded cpus,” in CT-RSA 2010.
[18] S. Chattopadhyay and A. Roychoudhury, “Symbolic verification of cache

side-channel freedom,” TCAD, 2018.
[19] Chair of VLSI Design, Diagnostics and Architecture. (2016) PoC -

Pile of Cores. Technische Universität Dresden. [Online]. Available:
https://github.com/VLSI-EDA/PoC

[20] B. Niazmand et al., “Design and verification of secure cache wrapper
against access-driven side-channel attacks,” in DSD, 2019.

[21] S. Sair and M. Charney, “Memory behavior of the spec2000 benchmark
suite,” Technical report, Tech. Rep., 2000.

[22] I. F. Altera, “Nios ii classic processor reference guide,” Available at:
https://www.altera.com/, note = Accessed at 2017-10-07„ 2015.


