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born in Rotterdam, The Netherlands

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright © 2021 Circuits and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “A Spiking Neural Network classification architecture for spatial-
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Abstract

A big catalyst of the AI revolution has been Artificial Neural Networks (ANN), abstract
computation models based on the biological neural networks in the brain. However,
they require an immense amount of computational resources and power to configure
and when deployed often are dependent on cloud resources to function. This makes
ANNs less suitable for edge computing devices where all these resources are scares.
Spiking Neural Networks (SNN) are a new generation of neural networks which pro-
cess information via sparse discrete time events, called ”spikes”. When mapped to
neuromorphic hardware, SNNs promise high energy efficiency and low computational
latency.

This work proposes a SNN classification architecture, using it to classify radar based
hand gesture signatures. Literature on this topic is limited, leading us to explore certain
ANN topologies to test our assumptions. By considering additional design limitations,
we aim to find a neuromorphic hardware compatible design. While the proposed archi-
tecture is still limited in terms of classification accuracy. Our experiments have exposed
interesting relationships between network sizes, accuracy and dimensionality reduction
in SNNs.
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Introduction 1
In recent decades huge steps have been made in the development of AI technology,
specifically Artificial Neural Networks (ANNs) due their ability to effectively solve
complex non-linear computing problems. These networks have benefited from the ad-
vancement of the classical Von Neumann computer architecture. Using accelerators
like GPUs to speed up training clears the way for even larger and complex networks.
The interest in solving these problems has sparked the development of popular ANN
software libraries like Tensorflow [1] and Pytorch [2], enabling for more widespread
adoption of this technology.

Spiking neural networks (SNNs) are a new emerging type of Neural Network, more
biologically focused and processes information using discrete events called “spikes”.
SNNs can be mapped onto specialized neuromorphic hardware, promising a significant
higher energy efficiency with respect to ANNs. Not many standard standard software
libraries for designing and simulating SNNs exist, but interest has been increasing in
recent years. This is mainly due to a rise in the amount of research done in non Von
Neumann hardware architectures, specifically designed for SNNs.

1.1 Thesis objective

Due to an increasing amount of electrical devices users are interfacing with, faster and
easier control of these devices is desired. Hand gestures is one of the most natural
way for humans to communicate, it does not require any understanding of language
interpretation or verbal commands. A recognition system is needed to convey the infor-
mation stored in a hand gesture to the respective computing platform. Such a system
often consists of a sensor and some computational logic. Hand gesture recognition can
be done with visual sensors like cameras, however this can raise concerns for privacy.
Also, light conditions and other environmental settings can affect the performance of
a visual based sensor. Radar(Figure 1.1) on the other hand does not suffer from these
problems and due to the increasingly scaling down of radar hardware, it becomes vi-
able in low power applications. These devices are often battery powered, which imposes
constraints on the power consumption of the computing hardware. SNNs can solve the
same complex non linear problems, normally solved by ANNs using only a fraction of
the energy. Making them excellent candidates for devices with strict power budgets.

Currently there exist little literature about SNN architectures which can classify
radar based hand gestures which takes into account hardware compatibility. This is
mainly due to the fact neuromorphic hardware development is still in it’s early stages
and not yet widespread available.

The goal of this thesis project will be to develop a SNN architecture which can
classify hand gestures using data from a radar, while taking into account.
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Figure 1.1: Hand gesture recognition using radar in Google’s Soli project[3]

1.2 Contributions

The contributions of this thesis project are:

• A Python tool for pre-processing the DopNet[4] Micro-Doppler dataset

• An ANN baseline network which can classify Micro-Doppler hand gesture signa-
tures implemented using Tensorflow

• Analysis of the DopNet dataset

• A SNN classifier based on the Tempotron [5] learning rule

• A SNN based feature reduction mechanism

• Guidelines on parameter selection for SNN and ANN networks.

• A Python tool to calculate dissimilarity metrics between spike encoded samples

• Made numerous contributions to an SNN simulator in order to support experi-
ments

1.3 Thesis outline

This thesis report is structured as follows. Chapter 2 discusses the state of the art
on radar-based hand gesture recognition and SNNs. In chapter 3 relevant background
information on methods and algorithms is presented. Chapter 4 discusses how the
proposed architecture and which design decisions were made. The simulation environ-
ment and the simulation results are discussed in chapter 5. Chapter 6 concludes on the
findings of the report. Recommendations on possible future improvements are given in
7.

2



Related Work 2
Only recently has there been published work on radar based hand gesture recognition
with Spiking Neural Networks. In [6] a hybrid SNN-ANN architecture is proposed able
to classify Range-Doppler images and Micro-Doppler signatures of hand gestures. A
Liquid State Machine(LSM) is employed to map the input spikes to a state within the
LSM. The state is readout by a ANN classifier that predicts the class of the input. The
proposed method achieves state-of-the-art results, with 98% on both types of data.

A recurrent SNN is proposed in [7] able to perform classification on ECG, audio and
Range-Doppler data. Multiple layers of recurrent connected spiking neurons are trained
by a novel surrogate-gradient descent method referred to as ”Multi-Gaussian”, based on
backpropogation-through-time (BPTT) algorithm. The authors show the effectiveness
of the proposed network, while providing a theoretical energy consumption estimations.

The classification of human actions is done by [8], with a Convolutional Spiking
Layer and a logistic regression classifier. Micro-Doppler frames are greyscale and bina-
rized as part of the preprocessing stage. Multiple layers of spiking neurons inspired by
Convolutional Neural Networks (CNNs) are used to extract the spatial features.

ANN based solutions have been a research topic for some years now. A common
approach is to view the radar data as an image problem and use CNNs as feature extrac-
tors in combination with a classifier network. The authors in [9, 10] split the processing
in a CNN feature extraction layer and temporal classification using Long Short Term
Memory (LSTM) on Range-Doppler frames. A similar approach is presented in [11],
who use a multilayer perceptron (MLP) in the classification layer instead, classifying
range-time data format.

A novel combination of CNN & Temporal CNN (TCN) is proposed in [12]. Capable
of reaching state-of-the-art in terms of accuracy, while also showing the network can run
on embedded hardware with an system-level power consumption of 120 mW. Another
work [13] has show based hand gesture recognition, running a CNN on a Raspberry Pi
and Intel’s Neural Compute Stick 2; a hardware accelerator for deep neural network
algorithms. While training is still dependent on cloud resources, their proposed network
achieves worst case scenario 97,50% on these embedded platforms.

Other solutions tend to focus on using a machine learning models trained on hand
picked features. Instead of focusing on tiny movements in hand gestures, [14] assumes
large periodic movements e.g. circular and repeated translational motions. From the
recorded radar signal the features;Doppler frequency, spectrum contrast, spatial dis-
persion and gesture validity are extracted to train a decision tree classifier. Tested
classification accuracy ranges from 95% to 99% and execution latency is ∼ 1 ms

3
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Background 3
3.1 Biological neuron

The biological neuron or nerve cell is seen as the fundamental biological unit in the
nervous system of almost all animals. Responsible for the processing and transmitting of
information throughout the nervous system. Neurons are interconnected via synapses to
neighbouring neurons forming large-scale brain network, performing specific cognitive
tasks e.g visual processing or motor control.

A biological neuron consists of three main parts; the cell body also referred to as
the soma, the dendrites and the axon. The dendrites can be seen as the input to
the cell body, receiving electrical signal from the neighbouring neurons. In the soma
these signals are processed determining the neuron’s state. It’s equivalent to an analog
memory element, as it contains information about the previous seen signals at the
dendrites. However this information will slowly leak away as the neuron will return to
it’s resting state. Depending on it’s state, the neuron can send out an electrical signal
across it’s axon to the other neurons.

Neurons can vary in shape and size based on their specific function. In this the-
sis, only multipolar neurons are assumed, with a single axon and multiple dendrites
illustrated in Figure 3.1.

Figure 3.1: Anatomy of a biological neuron [15]

The nucleus is enclosed by a plasma membrane also called the neuron membrane
for protection. Across the membrane a electrical potential(voltage) exists, which is
influenced by the electrochemical signals send out by neighbouring neurons, arriving at
the dendrites. If there’s sudden change in the membrane potential an action potential
or spike is send across the axon towards the synaptic terminals.

Figure 3.2 illustrates the different stages of the membrane potential. At first the
membrane is in its resting potential at -70 mV. Input stimuli start arriving at the
neuron’s dendrites, if the incoming stimuli don’t carry enough energy the membrane
potential will not reach its firing threshold(failed initiations) and over time the energy
will leak away and the potential will return to its resting voltage. If the membrane

5



Figure 3.2: Multiple stages of a neurons membrane potential [16]

does cross the firing threshold, an action potential which will be send the neighbouring
neurons.

After the action potential has been elicited, the neuron will enter a refractory period
where it’s membrane potential decreases below it’s resting voltage, leaving the neuron
unable to create a new action potential. Afterwards it will return to it’s resting voltage.

Figure 3.3: Signal transmission in the synapse [17]

Travelling along the axon, the action potential reaches the synaptic terminals. There
exists two different types of synapses. Electrical synapses connect the presynaptic and
postsynaptic membrane via gap junctions capable of carrying electrical current for
fast signal transmission. Chemical synapses converts the action potential into neuro-
transmitters and are released into the synaptic cleft, further illustrated in Figure 3.3.
Some neurotransmitters are bound to receptors on the postsynaptic side completing
the transmission.

6



3.2 Artificial Neural Networks

Artificial neural networks (ANNs) are abstract computational models inspired by bio-
logical neural networks. The widespread success of these networks is due to their ability
to perform non-linear tasks and adapt or learn on a large variety of data. These tasks
vary from data processing, regression and classification. For the context of this thesis
only classification will be discussed.

Classification is the process of assigning a class label to a set of new observations
based on previous seen data. A classifier can be seen as mapping function f :

ŷ = f(x; W) (3.1)

with ŷ, x and W, the predicted class label, the observation data and the tunable
parameters of the classifier. By tuning W in a process called “training”, a mapping
can be found. To test the quality of the mapping, validation data is used to asses the
performance based on one or more metrics.

A classical feedforward ANN is the multilayer perceptron (MLP), a network of per-
ceptrons [18] organized in different layers, illustrated in Figure 3.4. The network consist
of an input Layer, one or more hidden Layer(s) and a output layer. The terminology
hidden is used since these layers cannot be accessed by external systems or users.

Figure 3.4: The Multilayer perceptron

The perceptrons are interconnected via weighted edges, similar to synapses in bi-
ological neurons. A perceptron (Figure 3.5) has a set of inputs x1, x2...xn, that are
mapped to an activation oj:

o = ϕ(wx + b) (3.2)

where w ε Rm is the perceptron’s weight vector, bj a bias term and activation
function ϕ. Common activation functions are the tanh and sigmoid function, but
recently the softmax and ReLu have gained in popularity in the deep learning field.

7



Figure 3.5: The Perceptron

A common algorithm used to train MLPs and ANNs in general is the Backprop-
agation [19] algorithm. Classical backpropagation minimizes the means squared error
(MSE) between the target class y and the predicted class ŷ:

E =
1

N

N∑
i=1

(ŷi − yi)2 (3.3)

Gradient descent is applied to the gradient of MSE error with respect to the weights of
the network (W). The gradient calculation start at the output layer and is backwards
propagated through the network, reusing the gradient calculation from the previous
layer.

A major challenge when training an ANN is the concept of overfitting. This occurs
when a model fits too much to its training data, effectively memorizing it. When
a model is trained to long or too complex for its target data it can learn irrelevant
information and relationships in the training data. When this happens, the model is
unable to generalise on unseen data. It can be detected by using a part of the dataset
as a separate test set. If performance on the training set will is high and the test set
has a very low performance, it’s likely due to overfitting. Various techniques exists to
lessen the amount of overfitting e.g. cross-validation, regularization, pruning, etc..
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3.3 Spiking Neural Networks

Spiking neural networks (SNNs) aims to solve the same task that are normally solved
with ANNs. Information is propagated through these networks via discrete time events
or spikes, equivalent to the action potentials discussed in section 3.1. Here we assume
the communication between neurons to be solely based on the presence or absence of
a spike. Meaning we don’t account for any dynamics caused by neurotransmitters or
receptors.

A typical SNN is a group of spiking neurons interconnected via synapses. In order
for such networks to perform tasks on numerical data, an encoding into sequences
of spikes via a spike encoder is required. On the other end, the output needs to be
decoded in an interpretable format. The general pipeline for a SNN classifier is shown
in Figure 3.6.

Figure 3.6: The SNN classifier pipeline

With the introduction of the time domain eq. (3.1) changes into:

ˆy(t) = f(x(t); W) (3.4)

where y(t) are the output spike trains, x(t) the input spike trains and W the
synaptic weights or efficacies given as units of electrical charge in Coulombs (C).

Whereas neurons in feedforward ANNs propagates information only during each
transmission cycle, a spiking neuron will transmit or fire whenever its electrical mem-
brane potential reaches a certain threshold.

Figure 3.7 shows a spiking neuron where X1(t), X2(t)...Xk(t), V (t) and S(t) are the
input spikes trains, membrane potential and output spike train respectively. The firing
dynamics can be written as:

I(t) =
n∑

i=1

xi(t)wi (3.5)

S(t+ 1) =

{
1, if ϕ(I(t)) + Vm(t) ≥ Vth.

0, if ϕ(I(t)) + Vm(t) < Vth.
(3.6)
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Figure 3.7: The spiking neuron

where I(t) is the total incoming electrical charge from the input spike trains, Vthr
the firing threshold and ϕ the model for inner dynamics of the neuron.

Previously in section 3.1, we discussed that the membrane potential basically acts as
an analog memory element, as it retained information about it’s previous inputs slowly
leaking away. This can also be observed in Equation (3.5), where the current value
of the membrane potential influences the firing behaviour. Each separate neuron can
memorize information from it’s recent input. This property is useful when processing
temporal data, where correlations often express themselves over time.

3.4 Spiking neuron models

The complex electrochemical behaviour of biological neurons has a very high computa-
tional cost to reproduce. However, approximations can be made to capture the desired
behaviour while keeping implementation cost within reasonable bounds. This does in-
troduces the discussion of biological plausibility against implementation cost. Common
neuron models often follow a trend, where higher biological plausibility comes at higher
implementation cost, illustrated in Figure 3.8. However, there are exceptions to this
trend.

Figure 3.8: Neuron models biological plausibility vs implementation cost [20]
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3.4.1 Hodgkin-Huxley Model

The Hodgkin-Huxley model [21] is the classical neuron model first described by Hodgkin
& Huxley in 1952. The model was found by examining the dynamics of action potentials
in the squid giant axon. The membrane is modelled as a capacitance CM , illustrated
in Figure 3.9. Current can flow through the membrane by charging CM or via the ionic
current channels in parallel with the capacity. This ionic current is divided into INa

and IK , which describe the sodium and potassium ions in the membrane and a leakage
current Il, describing other ions in the membrane.

Figure 3.9: The electrical circuit of the Hodgkin-Huxley model [21]

The total membrane current is given by:

I = CM
dV

dt
+ INa + IK + Il (3.7)

In their experiments Hodgkin and Huxley found that INa and IK are defined by a
set of non-linear differential equations. They can’t be solved analytically and require
a numerical approach. To simulate the dynamics of a single neuron will requires a
decent amount of computing power. When scaling up to network with hundreds or
even thousands of neurons, this becomes unmaintainable. Also from a hardware point
of view, this model requires multiple variable resistors and controllable voltage sources
for the equilibrium potentials ENa, Ex and El for a single neuron. Implementing this
is hardware for larger network wouldn’t be cost effective as it would require enormous
amount of resources. Therefore a simpler analytically solvable model is desired, with a
feasible hardware design even for larger networks.
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3.4.2 Leaky Integrate and Fire Model

The leaky integrate-and-fire model (LIF) adds a leaky term to the integrate-and-fire
model [22, 23] proposed by Louis Lapicque. This model is a electrical RC circuit, where
the membrane is modelled as a constant value capacitor CM with a leaky resistor Rleak,
illustrated inFigure 3.10.

Figure 3.10: The electrical circuit of the Leaky Integrate and Fire model [24]

The dynamics of this model can be described by:

CM
dVM(t)

dt
= I(t)− VM(t)

Rleak

(3.8)

VM(t+ 1) =

{
VM(t) + dt

CM
(I(t)− VM (t)

Rleak
) if VM(t) < Vth

Vrest if VM(t) ≥ Vth
(3.9)

where VM is the membrane voltage, Iinput is the input current, Rleak is the leaky
resistor and CM the membrane capacitance.

The membrane will keep accumulating electrical charge while current I is flowing,
at the same time charge is leaking away via Rleak. When Vm(t) reaches the threshold
voltage Vth, it will be set to it’s resting voltage Vrest.

The LIF has replaced the complex non-linear differential equations seen in the
Hodgkin-Huxley model with a solvable linear system. This reduces implementation
cost dramatically at the cost of biological plausibility. In the context of SNNs this is
an acceptable trade off. The goals isn’t to make a computing system which is identical
to the brain, rather is takes inspiration from biological neurons allowing for approxi-
mations.

Important to note that the models discussed until now don’t take into account the
actual morphology of a neuron. The biological neuron can have large wide spanning
dendritic trees. Here we assume the neuron to be a computational unit, without any
topology.
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3.5 Spike encoding

As discussed in section 3.3 the numerical input data needs to be encoded into spatial
temporal spike trains. Neurosciences has categorized in rate-based and temporal-based,
often also referred as spike-based. Rate-based system encode information into an av-
erage amount of spikes over time, higher values are translated into higher firing rates.
Temporal encoders on the other hand encode information in a sequence of spikes based
on the precise timing of single spikes. The differences is illustrated in Figure 3.11.
Temporal encoders are credited to be more energy efficient than rate encoders as they
need less spikes to represent the same information. However, they are more susceptible
to noise. Since a single noisy spike will carry more value in temporal encoder. Neural
coding is an ongoing debate among neuroscientists as there’s is no definitive answer
whether biological neurons use rate-based or temporal based encoding. A point can be
made that temporal encoding still contains rate information, this prompts the ques-
tion whether rate based system are sufficient or precise time information is needed, as
discussed in [25].

Figure 3.11: Rate based vs temporal based encoding [20]
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3.6 Training methods

Most ANNs use the backpropagation algorithm to tune their weights and minimize the
classification error. Unfortunately it’s not possible to apply backpropagation directly
to SNNs, because of two major differences with respect to ANNs. First, discrete spike
events are non differentiable, meaning the gradient of the error cannot be calculated
in the conventional way. Second, the temporal nature and leaky membrane potential
makes finding the contributor to the error very difficult. At the time the error has
been determined, neurons in earlier layers will already be in at their resting potential,
making it unclear if they contributed to the error.

To circumvent this problem, different learning methods have been developed. We
can categorize these learning methods in three different categories; ANN-SNN conver-
sion, supervised and unsupervised methods. Supervised training makes use of labeled
dataset. The label information is used to calculate the error of the prediction, which is
then used to update any weights. Unsupervised methods on the other hand don’t need
this label information and determine the weight update on something else besides the
prediction error. Each category will be discussed further with an example.

3.6.1 ANN-SNN conversion

A common method to create multi layered SNNs, is to train an ANN with backprop-
agation and then converting it into a SNN. According to [26], the basic principle of
the conversion revolves around matching the activations in the ANN to firing rates of
spiking neurons. The authors show that features from convolutional neural networks
(CNN), like max pooling, softmax activation and batch normalization are compatible
with SNNs.

3.6.2 Supervised training: Tempotron

The Tempotron [5] learning rule is a supervised method which allow neurons to learn
on timing based spike patterns. The original paper assumes that neurons are modelled
using the LIF neuron model driven by exponentially decaying synaptic currents:

V (t) =
∑
i

wi

∑
ti

K(t− ti) + Vrest (3.10)

Here Vrest is the resting voltage of the neuron, ti are the spiking times coming from
the ith input synapse and K(t− ti) is the incoming post synaptic spike. In our imple-
mentation V (t) will be the LIF model, not the neuron model proposed in the original
paper.

The incoming postsynaptic spikes are given by:

K(t− ti) =

{
V0(exp[−(t− ti)/τm]− exp[−(t− ti)/τs]) t ≤ ti

0 t < ti
(3.11)

Here V0 is a normalization factor, τm and τs the time decay constant for the mem-
brane voltage and synaptic currents respectively.
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Tempotron is a binary classifier, meaning it can only fire for a single class spike
pattern and will remain silent for the other classes. Weight updates using Tempotron
will only happen when an error occurs. If the neuron didn’t fire for it’s designated
class, it synaptic weights will be increased by ∆wi. If the neuron fired for another
class which isn’t it designated class, the synaptic weights will decrease by ∆wi.

The synaptic weight update is defined as:

∆wi = λ
∑

ti<tmax

K(tmax − ti) (3.12)

Here tmax is the time when the membrane voltage reaches it threshold voltage and λ is
a constant which determines the maximum size of the weight update.

3.6.3 Unsupervised training: Spike Timing Dependent Plasticity & Triplet
Spike Timing Dependent Plasticity

Spike Timing Dependent Plasticity (STDP)[27] is a unsupervised learning method
which changes the synaptic weights based on the difference between the precise timing
of pre-synaptic and postsynaptic spikes. The synaptic update rules are given by:

∆wi = A+ exp

(
−∆t

τ+

)
tpre < tpost (3.13)

∆wi = −A− exp

(
−∆t

τ−

)
tpre > tpost (3.14)

Here ∆t is the difference between the pre-synaptic and postsynaptic spike, τ+ and τ−
are the STDP learning windows and A+ and A− are the maximum potentiation and
depression amplitudes. The synaptic weight will thus be increased when a pre-synaptic
spike arrives before the postsynaptic spike and will decrease when it arrives after the
postsynaptic spike.

There has been enormous amount of interest in STDP, due to it’s relation to the
biological neuron as found in [28]. However STDP suffers from instabilities when the
two or more spikes arrive within the same learning window. This results in potentiation
an depression in the same learning window. Triplet Spike Timing Dependent Plasticity
(TSTDP) [29] can help alleviate this issue by adding an extra spike pair. The spike
pairs used in TSTDP are illustrated in Figure 3.12.

Figure 3.12: The long term depression(LTD) and long term potentiation(LTP) pairs [29]
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This extra spike pair changes the synaptic update rules shown in eqs. (3.15)
and (3.16).

∆wi = A2+ exp

(
−∆t1
τ+

)
+ A3+ exp

(
−∆t2
τy

)
tpre < tpost (3.15)

∆wi = −A2− exp

(
−∆t1
τ−

)
+ A3− exp

(
−∆t3
τx

)
tpre > tpost (3.16)

STDP and TSTDP both have a very large design space with a lot of parameters,
four for STDP and TSTDP has eight parameters this makes it quite difficult to find
the right set of parameters to make sure training goes correct.

Another issue with STDP and TSTDP is the inherently instability of the methods.
Synapse with high weights are more likely to spike and thus more likely to be strengthen
than synapses with small weights, causing them to keep increasing until they reach their
limit.
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3.7 Self Organizing Map

The Self Organizing Map (SOM) [30, 31] invented by Theo Kohonen is an unsuper-
vised ANN architecture capable of creating a low dimensional spatial representation of
higher dimensional data in the form of spatial clusters. The SOM consists of a grid
of nodes(seeFigure 3.13) and a input layer. The grid can have different topologies e.g.
square or hexagonal. Each node in the grid contains a n-dimensional euclidean model
vector mj. Where j denotes the spatial index of the grid node associated with that
vector

Figure 3.13: The Self Organizing Map [32]

Instead of using backpropagation for training, the SOM employs a competitive learn-
ing method. During each training step a vector x is presented at the input layer. The
node whose model vector has the smallest euclidean distance to x is the ”winner” or
”Best Matching Unit”(BMU), denoted as c:

c = argmin
j
{‖x−mj‖} (3.17)

with x, mj ε Rn. After finding the BMU, it’s model vector and that of the local
neighbours need to be updated to better match the input data. By also updating the
neighbouring nodes, spatial clusters will be created within the grid. The model vector
update is given by:

mj(t + 1) = mj(t) + hcj(t)[x−mj(t)] (3.18)

with hcj(t) and t, the neighbourhood function centering around the BMU and the
current training step respectively. A common neighbourhood function to use is:

hcj(t) = α(t) exp

(
−‖c− j‖
σ2(t)

)
(3.19)

with α(t) the learning rate, j the index of a node in the grid, σ(t) a scalar function
determining the fall-off of hcj(t). The neighbourhood function dictates which nodes in
the grid will receive an update to its model vector, bringing it closer to the BMU. Note
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that α(t) and σ(t) are dependent on the training steps. These monotonically decreasing
functions, shrinking the neighbourhood function as training progresses.

After training unseen data can be presented to the SOM, creating clusters of data
samples as shown in Figure 3.14. A SOM effectively maps a n-dimensional input vector
to an output space y ε RMN , with M , N the length and width of the SOM. When MN
< n, a dimensionality reduction on the input data has been applied.

Figure 3.14: Clustering example: MNIST images in a 25x25 grid [33]
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3.8 Spiking Self Organizing Map

The Spiking Self Organizing Map (SSOM) is a SNN structure, that tries to emulated the
behaviour of the SOM using spikes. It has been a topic of various works [34, 35, 33, 24].
A common SSOM topology is illustrated in Figure 3.15. A grid of neurons, where each
neuron is fully connected to the input layer and all-to-all connected within the grid.
Due to a mix of inhibitory and excitatory connections between neurons, competition
within the grid occurs.

Figure 3.15: A spiking self organizing map structure

The assignment of the wining node in a conventional SOM, where the distance is
calculated between the node’s model vector and the input vector, has been replaced by
learning on spike timings. When the SSOM has been trained, often by a unsupervised
learning method, it can map spatial spike trains to lower dimensional spike train similar
to the dimensionality reduction in the conventional SOM. The general behaviour of the
SSOM is as follows. First, a spike pattern is presented at the input layer. These spikes
will contribute to the neurons membrane voltage according synaptic weights, which
were previously trained. Second, the neuron that has accumulated enough potential
will elicit a spike, because it trained to fire for the incoming combinations of spikes.
Lastly, the spiking neuron will excite any neurons within its close neighbourhood and
inhibit the neurons which are spatially further away. This allows for certain groups of
neurons to fire together based on specific input spike patterns.
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3.9 Radar & The Doppler effect

Radar is a sensing system used for measuring the distance, velocity and location of
objects, illustrated in Figure 3.16. An electromagnetic wave (EM) is transmitted via
an antenna towards a target. This EM-wave will be partly reflected back to the antenna,
entering the receiver.

Figure 3.16: A basic radar system [36]

If the target moves with a certain velocity, the frequency of the EM-wave that is
reflected back will have changed slightly due to the Doppler effect. This phenomena
occurs when the source of a wave moves relative to the observer. This effect can be seen
in any type of waves be it water, sound or electromagnetic. The observed frequency
can be described as:

f =

(
c± vr
c± vs

)
f0 (3.20)

with c, vr, vs f0, the wave propagation speed in the medium (e.g speed of light), ve-
locity of the receiver, velocity of the source and the transmitted frequency respectively.
By measuring f , eq. (3.20) can be solved for the velocity of the target vs.

The range of the target can be found by measuring the time-of-flight(TOF):

R =
ct

2
(3.21)

with R the range to the target and t the TOF time. Note that we need to divide by
two since wave travels to the target and back.
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3.10 Micro-Doppler effect

As discussed in the previous section, the Doppler effect in radar occurs when a tar-
get moves through a medium and reflects back an EM-wave. However, an object
often vibrate and rotates when moving, causing additional frequency modulation on
the returning signal will appear as extra frequencies around the signal’s Doppler fre-
quency, known as the Micro-Doppler effect. First describe by Chen et al [37, 38] for
radar, based on [39] Chen describes in detail the effect of rotation, vibration, tum-
bling(rotation, translation and acceleration) and coning(rotation around axis) on the
Doppler frequency.

This effect is illustrated in Figure 3.17 . It shows a Micro-Doppler signature of
a simulated helicopter with four rotor blades. The four blades rotate with a fixed
period, showing sinusoidal behaviour around the Doppler shifted observed frequency
at ∼-2 kHz. These Micro-Doppler signatures reveal additional information about the
dynamics of the target instead of just range and velocity information.

Fres = 326.9739 Hz, Tres = 7.85 ms
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Figure 3.17: The Micro-Doppler signature of a simulated helicopter with four rotor blades
[40]
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Methods 4
4.1 Radar dataset

Radar data can be structured into several formats: time-amplitude, range-amplitude,
time-range, time-Doppler, range-Doppler and time-frequency [41]. This leaves a broad
range of the data format to choose from. However since recording and creating a
radar dataset is out of the scope of this thesis project and thus a existing dataset is
needed. Unfortunately few public available datasets exist. Two datasets were found
as possible candidates. First, a dataset recorded with Google’s Soli [3] radar sensor by
[9] containing 2D range-Doppler frames over time. Second, the DopNet dataset [4, 42]
containing Micro-Doppler spectrograms in the time-Doppler format.

It was decided to use the DopNet dataset instead of the Soli dataset. Mainly due to
format of the data, since the Soli dataset has dimensionality Doppler x range x time,
while DopNet has the dimensionality Doppler x time, dropping the range information.
This reduction in dimensionality is useful when moving to a hardware constraint design
where computing resources are limited. Since we’re not using any range information,
gestures that move away or towards the sensor will be hard to recognize.

DopNet contains four different hand gestures recorded from six individuals. The
gestures classes in the dataset are illustrated in Figure 4.1.

Figure 4.1: The handgestures in DopNet from l.t.r Wave, Click, Pinch & Swipe [42]

The Micro-Doppler signatures for each of the hand gestures are shown in fig. 4.2.
Each hand gesture has an distinct signature, however there are similarities between
the gestures. For example the Pinch and Swipe gesture, both spatial flat. The time
duration of each performed gesture also differs between classes, a wave gesture takes a
significant large time to perform then e.g. the click gesture. The spectrograms have a
frequency range of -400 Hz to 400 Hz around the observed frequency.
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Figure 4.2: The Micro-Doppler signatures of the four gestures; Wave, Click, Pinch and Swipe

DopNet already comes partly pre-processed, the steps performed are described in
[4]. The final preprocessing step done here is feature scaling (min-max normalization)
to normalize the value to [0,1] :

x′ =
x−min(x)

max(x)−min(x)
(4.1)
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4.2 SNN classifier

Since our aim is to design a architecture intended for low power applications we’ll
limit ourself to a temporal encoding scheme. Simply because rate-based encoding uses
significantly more power than a temporal-based scheme. This has a major influence
on the decision for the learning method and effectively the resulting network topology.
Methods using a rate-based approach e.g. ANN-SNN conversion are not desired.

The training method that will be used for the SNN classifier is the Tempotron
learning method(see Section 3.6). Tempotron is a simple training method with only 3
parameters to set. This makes the design space small and workable.

Using Tempotron limits us to single layer networks due to the nature of this learning
rule. Since DopNet contains 4 different classes the classifier will be a single layer SNN
with 4 neurons for each class one neuron.

The complete pipeline of the proposed SNN classifier is illustrated in Figure 4.3

Figure 4.3: The SNN classifier

The universal approximation theorem states that ANNs can approximate a wide
range of functions. Often complex problems require multiple hidden layers to achieve
proper approximation of the desired function. This also holds for SNN architectures
and the lack of gradient based learning in SNN is often the reason why SNNs generally
lack behind in terms of accuracy.

Since we cannot make the approximation more complex, we need to make the prob-
lem to be solved simpler. One way of doing this is by reducing the dimensionality of the
input data, also called dimensionality reduction or feature reduction. Dimensionality
reduction for ANNs have been a popular research topic for many years and numerous
methods exists e.g. principal component analysis (PCA) & UMAP. As the goals is
to implement a complete SNN architecture mappable to hardware, a dimensionality
reduction using spiking neurons is desired. A proposed solution will be discussed in the
next section.
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4.3 Proposed architecture

In Section 3.7 we discussed the network known as the Self Organizing Map, an unsu-
pervised clustering method capable of transforming an input sample to a lower spatial
dimension. A spiking variant exists as we saw in Section 3.8. The Spiking Self Orga-
nizing Map (SSOM) is a good candidate for the feature reduction we’re seeking, as it
uses spikes. As long as the amount of neurons in the grid does not exceed any hard-
ware constraints and the hardware platform supports a grid structure with all-to-all
connections within the layer, it can be mapped to hardware.

Figure 4.4: The complete architecture with SSOM extention

By extending the SNN classifier with the SSOM, the complete pipeline becomes
as shown in Figure 4.4. As the spectrogram enters the network, it will go into the
input encoder to be encoded into spike trains. After encoding the spike trains will be
presented to the SSOM where they are transformed to the lower dimensional space.
The final layer trained by Tempotron will receive the transformed spike trains and try
to perform the classification. At the last stage of the pipeline the decoder will interpret
the final layer’s output spike as a prediction.

The implementation of the SSOM is based on [24] as it was already part of the
SNN simulator used for the experiments. The synaptic weights between the input
encoder and the SSOM are trained using the Spike Timing Dependent algorithm (see
Section 3.6) to emulate the unsupervised nature seen in a normal SOM.

The synaptic weights in the grid are scaled using a neighbourhood function called
the ”Mexican hat” function. This is to ensure competition between the grid neurons,
as one neuron fires it needs to inhibit the other neurons preventing them from firing.
The neighbourhood function is defined as:

h(d) = (1 + α) exp

(
−d2

2r2

)
− α exp

(
−d2

2(βr)2

)
(4.2)

with α, β, r, d, the inhibitory magnitude, the inhibitory spread, radius of the neigh-
bourhood and distance to other neurons receptively.
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Note that the radius of the neighbourhood function does not change over time, which
is different from the neighbourhood function of the SOM, see Equation (3.19). This
difference could influence the way the SSOM creates it’s clusters, as it’s implemented
in the SOM to ensure that during the final training steps only the winning neuron gets
updated. It was possible to make the neighbourhood decrease over time, however this
required alterations to be made on the core codebase of the SNN simulator and this
was deemed out of scope for the project.
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4.4 Encoder

As we know from Section 3.5, rate based encoders elicit a lot more spikes w.r.t temporal
encoders. This makes rate encoder more power consuming as they need more spikes to
represent a certain value. However, temporal encoders are more susceptible to noisy
data as a single spike holds more value in sparse precise spike trains than in rate encoded
spike trains. Energy consumption needs to be minimal when designing for hardware,
so a temporal-based encoder is required.

For the encoder, the population threshold encoding (PTE) algorithm is used. Pan
et al [43] have shown the effectiveness of PTE on spatial temporal audio data. The
algorithm employs two neuron populations, called onset and offset neurons. Each
one of these neurons have their own firing threshold from a set of equally distributed
thresholds, illustrated in Figure 4.5. Here the onset neurons are given in rend, the
offset neurons in blue and the dashed lines denote the threshold levels.

(a) (b)

Figure 4.5: The Population Threshold encoding (a) a signal encoded with 10 thresholds (b)
the resulting spike trains with 20 encoding neurons.[43]

When the signal crosses a threshold, the neuron related to this threshold will spike.
If the signal crosses a threshold from a lower to a higher value, a neuron in the onset
population (red) will elicit a spike, when the signal crosses a threshold from a higher
value to a lower value that will elicit a spike in the offset population (blue). The pseudo
code for the PTE algorithm is given in Algorithm 1. Figure 4.6 illustrates the encoding
of two spectrograms of gestures wave and swipe into spike trains, with five thresholds.
The spike trains conserve the spatial features shown in the spectrograms. Note that
the spectrograms shown here don’t range from 400 Hz to -400 Hz, instead ranging from
100 Hz to -100 Hz. This is also visible from the amount of encoding neurons, which is
2000 since 200 frequencies x 5 thresholds x 2 neurons per threshold(onset & offset).

The PTE algorithm is a simple encoding scheme, but comes at the cost of increas-
ingly hardware cost for higher dimensional data as the amount of encoding neurons
increase with 2N for each signal value you want to encode, with N the number of
thresholds. In [43] audio spectrograms with only 20 frequency bins, while DopNet has
800 frequency bins. This creates a trade off between the amount of resources and the
spatial resolution created by the number of thresholds, which will be discussed further
in Section 5.4.
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Figure 4.6: The gesture wave and swipe encoded with PTE using 5 thresholds. Here a subset
of the data was taken from 100 Hz to-100 Hz

Algorithm 1: Population Threshold encoding (PTE)

Data: S, a 1xN vector containing the signal values
T, a 1xM vector containing the thresholds

Result: onset spikes, a NxM matrix containing onset neuron spikes
offset spikes, a NxM matrix containing onset neuron spikes

onset spikes ← zeros(N,M)
offset spikes ← zeros(N,M)
foreach n ε N do

foreach m ε M do
if S(n-1) < T(m) AND S(n) > T(m) then

onset spikes(n,m) = 1;
end
if S(n-1) > T(m) AND S(n) < T(m) then

offset spikes(n,m) = 1;
end

end

end
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4.5 Decoder

Due to the nature of the Tempotron learning method, when we present a gesture to our
architecture only one neuron in the output layer should fire. This makes decoding the
output of the final layer very simple, since each neuron is associated with a class label.
The Time-to-first-spike decoder, shown Figure 4.7 would be a good fit for our decoder.
It will make a prediction on the class who’s neuron has fired first. In Figure 4.7 there
are four neurons, neuron two fired first, therefore it predicts that the spike train belongs
to class two. Note that the decoder assumes a correlation between the spatial location
of the neuron and the classes.

Figure 4.7: An output layer with four neurons and a First-time-to-spike decoder

Since this decoder only needs one spike to make a prediction, makes it very suscep-
tible to noise. A single noisy spike can trigger a wrong prediction. However we assume
that in combination with a layer trained by Tempotron, this will not major impact on
the overall classification accuracy.
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4.6 Baseline architectures

Little literature [42, 4] was available on the classification performance using DopNet
during the early stages of the project. At the early stages the known state of the art
was as given in Table 4.1.

Table 4.1: State of the art accuracies for DopNet at the early stages of the project

Algorithm Accuracy Reference

SVM Quadratic 74.2 % Ritchie et al (2019) [42]
K Nearest Neighbor 87.0 % Ritchie et al (2020) [4]

All these methods are machine learning techniques and don’t use any ANNs. It was
not guaranteed that a SNN based solution would achieve the same levels of accuracy,
mainly because machine learning methods approach the problem in a whole different
way. Therefore, it was decided that a baseline network was needed using ANNs. Be-
cause it would give a better estimation of the maximum achievable accuracy with a
SNN, since ANNs an SNNs are more relatable then any machine learning approach.

There are multiple ways to classify the DopNet dataset with ANNs. One approach is
to view the spectrograms as images and ignore any temporal information. Then classify
them using Convolutional Neural Networks (CNNs), large networks primarily used for
image recognition. A second approach is to use Recurrent Neural Networks (RNNs),
used to classify or predict time series data. These network use memory elements and
recurrent connections to learn temporal relation in the data.
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Figure 4.8: A LSTM cell [45]
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One of the main benefits of a SNN are its inherent temporal dynamics. Thus ignor-
ing any temporal information might give the wrong impression on actual classification
performance. Using a RNN is therefore desirable. Long Short Term Memory (LSTM)
[44] is a popular RNN architecture, used for the prediction of time series data and
natural language processing. They consists of computational nodes called cells, illus-
trated in Figure 4.8. Each cell has a memory, called the cell state Ct for holding any
relevant information. This cell state is altered by the a series of gates. First the forget
gate decides to what extent we need to delete information from the previous time step.
Second, the input gate determines what information is written to Ct based on the cells
input xt and the hidden state of the previous cell ht−1. Finally the output gate gen-
erates the output ht based on the cell’s current state, xt and ht−1. The cell’s current
state ct and hidden state ht are passed to the next cell for processing.

The LSTM classifier consists of series of cascaded LSTM cell, who’s output is con-
nected to a fully connected output layer. The LSTM classifier which will used to
classify the DopNet dataset is illustrated in Figure 4.9. The output layer consists of
four neurons, since there are four classes, with activation function softmax.

Figure 4.9: The baseline classifier using Long Term Short Memory cells
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SOM-LSTM architecture

Little was known about the effects of mapping the DopNet dataset to a lower di-
mensional space using a SOM or spiking SOM, literature was effectively non-existent.
Therefore a Self Organizing Map was implemented to test the expected behaviour early
on as a means to verify any assumptions before moving on to a spiking version of the
SOM. By extending the LSTM classifier with a SOM, we can test if the LSTM benefits
from a smaller data dimensionality and in turn make an estimation if this would also be
the case when used in combination with our SNN classifier. The extended architecture
is illustrated in Figure 4.10. Note that between the SOM and LSTM cells a new stage
has been added, the Embedding matrix. A concept often used in natural language
processing (NLP), maps the output of the SOM which are locations of the neuron to
vectors of real values.

Figure 4.10: The extension of the baseline classifier with a Self Organizing Map
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Experiments & Results 5
5.1 Spiking Neural Network Simulator

The lack of a neuromorphic hardware platform to test the proposed designs, limits us to
a simulation environment. Various open source simulating environments already exist
and actively maintained [46, 47, 48, 49].

It’s important to note that the simulations done in this work try to approximate
the behaviour of the neuromorphic hardware as close as possible. However, the design
cannot be directly mapped to hardware. Since moving from a software simulation to a
design running on hardware requires a lot of extra steps, deemed out of scope for this
project.
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5.2 Experiment setup

Balanced dataset

DopNet is an imbalanced dataset as shown in Figure 5.1a. Using the dataset like this to
train and validate the models, might increase the chance of overfitting on the Click or
Pinch class. To make the dataset balanced, either samples need to be delete (sampling)
or the dataset can be expanded with the use of data augmentation. It was decided to
apply data deletion instead of expanding the dataset with augmented samples. Mainly
due to the unknown effects of these augmented samples on the ability to generalize.

Also augmenting radar spectrogram data is not a simple task. According to [50],
“traditional augmentation techniques, like translating and resizing cannot be applied
for radar data”. In our case, the Doppler information would be transformed in such a
way it’s no longer representable of the original data.

Random sampling is applied on DopNet, while enforcing an equal distribution across
the classes. Resulting in the class distribution shown in Figure 5.1b.
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Figure 5.1: The class distribution in the DopNet dataset, (a) original (b) after random sam-
pling

Stratified k-fold cross-validation

To validate how the proposed models generalize on unseen data an independent test
data set is needed. Therefore, we’ll be using the validation technique called stratified
K-fold cross-validation. It splits the entire dataset into k folds of equal size. One of
these folds will be selected as the independent test set and the remaining folds will
be used as training data, then the model is trained and validated. This process is
repeated k times until each of the folds has been used as the test set at least once, this
is illustrated in fig. 5.2 for 5 folds. Stratified cross validation also makes sure that the
class distributions inside the training set and test set are equal in all the folds, in order
to prevent class imbalances. K-fold cross validation is often employed to optimize a
model’s hyperparameters across all the folds. In this work cross validation is only used
to produce performance metrics, no optimization of hyperparameters is done here.
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5.3 Baseline architectures experiments

LSTM classifier

As discussed in Section 4.6, a LSTM classifier was implemented to get a initial impres-
sion of the capabilities of the DopNet dataset. Tensorflow[1] a deep learning python
toolbox with GPU support is used to implement, train and test this classifier. The
parameters for this classifier are presented in Table 5.1.

Table 5.1: Parameters for the LSTM classifier

Parameter Value

Output layer size 4 neurons
Epochs 50

Activation function LSTM tanh
Activation function output layer softmax

Cross validation was done for varying number of LSTM cells, illustrated in Fig-
ure 5.3. Smaller LSTM layers tend to perform worse as they has there’s a smaller
collective memory present in the network. This particular clear for a LSTM layer with
a single LSTM cell, it cannot train on the hidden state from previous cells, only on the
input data. With two cells, the accuracy shows significant improvement to v 60 % ,
this is expected as now the second cell can make use of the information in the hidden
state of the first cell. However as the mean classification accuracy has increased, the
standard deviation is still quite significant. Showing that two cells are not enough
to make a model which can generalize enough on the data. As the LSTM layer gets
larger the mean accuracy converges v 73 %, with an average standard deviation v 3%.
Note that after an LSTM layer size of 12, adding additional cells doesn’t lead to any
significant gain in performance.
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Figure 5.3: 10-fold stratified cross validation classification accuracy for varying LSTM sizes.
For an numerical overview of the results see Table A.1.
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With multi-class classification a single accuracy metric can give the wrong impres-
sion. As overfitting may cause the overall accuracy to be high, other classes might be
misclassified. Figure 5.4 shows the confusion matrices of 3 different configuration (2,
12 & 32 LSTM cells) using fold 4 as the testing set. Overfitting on the Swipe and Click
class when using 2 cells can be observed. Interestingly enough, a correlation exists
between the Wave and Swipe class and the Pinch and click class respectively. This
makes sense as these sets of gestures due contain similar motions and the model with 2
cells has problems distinguishing these correlations. This partly solved by adding more
cells to the LSTM layer as can be seen from the other confusion matrices. However,
the correlation is still apparent as the amount of samples of the class Wave getting
miss classified as Swipe(v 13 samples) remains constant. Same for the Pinch-Click
combination, where a constant amount of v 8 samples are misclassified. This might be
solved by making the LSTM layer even larger. The constant misclassification of these
samples might be caused by the spectral signature being to similar to a sample of an-
other class. This correlation is already an interesting find and important to remember
when evaluating the results of the SNN architecture.
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Figure 5.4: Confusion matrices using fold 4 as test set with LSTM sizes (a) 2 cells (b) 12 cells
(c) 32 cells
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SOM-LSTM architecture

We’re interested to see if the addition of the Self Organizing Map to the SNN classifier
has a positive effect on the classification accuracy thus if transforming the input features
to a smaller feature space is useful. To get a rough estimate on this behaviour, we
performed some experiments on the baseline LSTM classifier extended with a SOM.

The network shown in Figure 4.10 was tested with the parameters presented in
Table 5.2. Here it was chosen to keep the size of the LSTM fixed to 32 cell. Which
is an acceptable size, as it’s not the goal to find the most optimized network in terms
of size, but rather explore the effect of adding the SOM to the pipeline. By testing
against various sizes of the SOM grid, we can see the influence of the size of the grid
on the classification accuracy, illustrated in Figure 5.5.

Table 5.2: Parameters for the SOM-LSTM architecture

Parameter Value

Output layer size 4 neurons
LSTM cells 32

Epochs LSTM 50
Activation function LSTM tanh

Activation function output layer softmax
Epochs SOM 50

Learning rate SOM 0.1

For smaller grid sizes the classifier seems to perform worse, a trend previously seen
with the LSTM classifier. Here it’s likely caused due to a too small dimensionality,
spatial information is lost due compression on a too small output space. Not enough
neurons are present to create spatially separated clusters. As the grid neurons keep
increasing as does the classification accuracy and when using 100 grid neurons the accu-
racy is at the same level as the LSTM classifier. Strangely when using a 12x12 grid(144
neurons) a decline is observed. This was unexpected, as we would expect a increasing
or stagnate trend and not declining based on the trends we’ve seen earlier. However
when using a 14x14 grid (196 neurons) or larger we observe a gain of v 10 % compared
to the LSTM classifier. This seems to be the most significant accuracy improvement
with respect to the LSTM. Note that the standard deviation of the accuracy is quite
high especially for the smaller grid size, it does decrease for the larger grids.
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SOM-LSTM architecture 10-fold cross-validation

Figure 5.5: 10-fold stratified cross validation classification accuracy for varying amount of
neurons in the SOM, with LSTM size 32. For an numerical overview of the results see
Table A.2

Once again let’s investigate the confusion matrices for different grid sizes, shown in
Figure 5.6. For the 4x4 grid a clear overfitting on the Pinch class is shown as major
part of samples belonging to other classes are predicted as Pinch. Increasing the grid
to a 10x10 seems to improve things and increasing the size of the grid even further
achieves the best accuracy seen until now. The correlation between the two sets of
classes we saw in Figure 5.4 is still present but the amount of classes that are getting
misclassified has been reduced.
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Figure 5.6: Confusion matrices using fold 4 as test set with SOM grid sizes (a) 4x4 grid (b)
10x10 grid (c) 16x16 grid

43



5.4 SNN classifier

The learning parameters in Table 5.3 are assumed for the SNN classifier. As the SNN
simulator currently doesn’t support any mechanism for early stopping, the Tempotron
algorithm will run for the complete amount of epochs. During training only one output
neuron will have the chance to spike, because Tempotron will interrupt the incoming
spikes and perform a weight update at the first output spike. Therefore, tref has been
set to 0 s as it does not contribute to the assumed behaviour in Tempotron.

Table 5.3: Parameters for the Tempotron learning method. The synaptic weights are initial-
ized following a uniform distribution between -1 fC and 1 fC, here the uniform distribution
is denoted as U. Also, τs is set close to zero as the simulator assumes spikes are modelled as
instantaneous events

Parameter Value

Initial synaptic weights U (-1e-15, 1e15) C
Epochs 100

learning rate 5e-17
τm 0.1 ms
τs 0.33 µs
Tref 0 s

We know that the number of thresholds in the encoder, partly determines the
amount of neurons in the input layer. Adding more thresholds allows the encoder
to be more sensitive to small changes in the signal at the cost of more neurons. Some
encoder thresholds with their respective spacing ,the resulting input neurons and the
10 fold classification accuracy are presented in Table 5.4. Each additional threshold
we add, results in an increase of 2 x 800 = 1600 input neurons. The design choice
for the encoder thresholds has a big impact on the required hardware resources, we’re
interested in finding the relation between encoder thresholds and the classification ac-
curacy. Smaller thresholds where not investigated further as the spacing was too large
to capture any features.

A positive trend can be observed for the increasing thresholds. This is somewhat
expected as adding more thresholds allows more information to be converted into the
spikes trains. However, for 12 thresholds there appears to be a decrease in accuracy.
This could be caused by an oversensitive encoder, where small changes in the signal
caused by noise result in more noisy spikes.

Table 5.4: Amount of input neurons for thresholds

Encoder thresholds Threshold spacing Input neurons Accuracy

4 0.250 6400 56.06 ± 3.23 %
6 0.167 9600 56.72 ± 3.25 %
8 0.125 12.8k 57.63 ± 3.47 %
10 0.100 16k 58.81 ± 2.60 %
12 0.083 19.2k 53.66 ± 7.54 %
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From a hardware perspective the size of the required input layer is hard to realize
especially when targeting an edge computing platform. Fortunately, feature selection
can be applied to our data,which will reduce the size of the input layer. The Micro-
Doppler signatures in Figure 4.2 show that the majority of the energy is confined to
a specific frequency range. While a majority of the frequency bins are filled with
background noise. This means a subset of the data can be selected without losing
important features. Four different feature selection scenarios are explored , shown in
Figure 5.7.
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Figure 5.7: The four feature selection scenarios (a) -200 Hz to 200 Hz (b) -100 Hz to 100 Hz
(c) -50 Hz to 50 Hz (d) -25 Hz to 25 Hz

We expect the accuracy to remain on the same level as in the previous experiments
for the scenarios in Figure 5.7a & 5.7b, but the smaller selections (Figure 5.7a & 5.7b)
are likely to show a decrease in performance as spatial features are being discarded.
The previous experiments are repeated for these four different scenarios, giving the
results presented in Table 5.5 & 5.6
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Table 5.5: The 10-fold classification accuracy and input layer sizes when performing feature
selection from -200 Hz to 200 Hz and -100 Hz to 100 Hz

-200 Hz/200 Hz -100 Hz/100 Hz

Encoder thresholds Input neurons Accuracy Input neurons Accuracy

4 3200 53.38 ± 3.57 % 1600 48.72 ± 2.80 %
6 4800 60.97 ± 2.51 % 2400 57.00 ± 4.92 %
8 6400 61.19 ± 5.13 % 3200 58.94 ± 4.71 %
10 8000 62.69 ± 4.02 % 4000 60.38 ± 2.57 %
12 9600 59.31 ± 6.13 % 4800 58.88 ± 3.48 %

Table 5.6: The 10-fold classification accuracy and input layer sizes when performing feature
selection from -50 Hz to 50 Hz and -25 Hz to 25 Hz

-50 Hz/50 Hz -25 Hz/25 Hz

Encoder thresholds Input neurons Accuracy Input neurons Accuracy

4 800 40.75 ± 4.09 % 400 39.09 ± 4.43 %
6 1200 50.22 ± 3.71 % 600 45.44 ± 3.49 %
8 1600 51.13 ± 3.64 % 800 46.50 ± 3.29 %
10 2000 51.56 ± 5.29 % 1000 45.16 ± 4.93 %
12 2400 53.75 ± 3.88 % 1200 49.63 ± 4.27 %

As expected the feature selection scenarios where no significant drop in performance
can be observed is are between -200 Hz and 200 Hz and between -100 Hz and 100
Hz. Surprisingly, when features are selected between -200 Hz and 200 Hz, the overall
performance seems to slightly increase with respect to using all the features. For the
other scenarios dropping significant feature directly translates to a deterioration of the
classification accuracy. Depending on which aspect of the accuracy-hardware resources
trade off is given more weight, determines the “optimal” configuration. If the highest
possible accuracy is desired, 10 thresholds with feature selected between -200 Hz and 200
Hz, seems to be the best . If hardware resources need to be limited, 6 thresholds with
features selected between -100 Hz and 100 Hz will be a good fit. As this configuration
is still within reasonable bounds of the highest possible accuracy, while reducing the
amount of input neurons significant. However, optimal is a subjective term as it depends
on the target hardware platform and the constraint imposed by the engineer.

Let’s further investigate the impact of the feature reduction by looking at the con-
fusion matrices of two configurations, shown in Tables 5.7 and 5.8. There doesn’t seem
to be huge difference between the two, but there are some shifts in the amount of
misclassification. However, overall quite some samples seem to elicit no response. Pos-
sible explanations could be that the training hasn’t completely converged yet and more
epochs are required or Tempotron can’t find a combination of weights to map these
samples to the correct prediction. To see if more epochs are required, we repeat the
experiment.
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Table 5.7: The confusion matrix of 6 thresholds with all features of fold 4. Here the X column
denotes a no response

T
ru

e
cl

as
s

Predicted class
Wave Pinch Swipe Click X

Wave 29 0 6 1 11
Pinch 0 22 2 1 22
Swipe 1 2 32 2 9
Click 0 1 1 30 14

Table 5.8: The confusion matrix of 6 thresholds with features between -100Hz and 100Hz of
fold 4. Here the X column denotes a no response
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Predicted class
Wave Pinch Swipe Click X

Wave 30 3 4 2 8
Pinch 1 25 6 1 14
Swipe 4 1 34 1 6
Click 0 6 3 23 15

The results of the additional experiments are presented in Table 5.9. It seems that
running the training longer doesn’t show any improvement. Meaning it seems that the
results we have found now is the maximal achievable performance of the classifier.

Table 5.9: The experiment results for fold 4 running for longer epochs, with features selected
between -100 Hz and 100 Hz and using 6 thresholds

Epochs Accuracy

150 55.67 ± 5.97 %
200 55.69 ± 5.15 %
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5.5 Self Organizing Map & SNN classifier

In the previous section we saw the performance limits of the SNN classifier. In the
experiments with the SOM-LSTM architecture we saw an increase in accuracy when
reducing the data dimensionality with a SOM. Wondering if this effect would also be
observed in the SNN classifier, we trained the SNN classifier on the output spikes coming
from a trained SOM mapping. The parameters shown in Table 5.10 are assumed for
the networks.

Table 5.10: Parameters for the SOM-SNN architecture. The synaptic weights are initialized
following a uniform distribution between -1 fC and 1 fC, here the uniform distribution is
denoted as U

Parameter Value

Tempotron layer size 4 neurons
Initial synaptic weights U (-1e-15, 1e15) C

Epochs Tempotron 100
Learning rate Tempotron 5e-17

Epochs SOM 50
Learning rate SOM 0.1

Figure 5.8, shows the 10-fold good unique classification accuracy of the Tempotron
classifier for varying SOM grid sizes. A similar trend we’ve seen for the SOM-LSTM
architecture, increasing grid size comes with an increase in classification accuracy. For
even larger grid sizes this gain seems to diminish and stabilize. Interestingly, the
standard deviation seems to be lower for all grid sizes w.r.t SOM-LSTM. No other
SOM grid sizes were explored as memory requirements were too large for the computing
platform. It’s expected that the performance will increase more, but eventually will
converge.

The confusion matrix in Table 5.11 shows the classification results for fold 4 with
a 18x18 SOM grid. It seems that performs reasonable on the classes, except for the
Pinch class which seems to have quite some no responses. Compared to the classification
results of the Tempotron classifier (Table 5.7), the amount of correct classifications has
remained stable. While the SOM-SNN architecture shows more miss classifications and
less non-responses, particularly for the Wave and Click class.

Table 5.11: The confusion matrix of a 18x18 SOM grid for fold 4. Here the X column denotes
a no response
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Predicted class
Wave Pinch Swipe Click X

Wave 30 3 8 4 2
Pinch 1 19 2 4 21
Swipe 2 4 34 1 5
Click 1 6 3 30 6
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Figure 5.8: SNN 10-fold stratified cross validation classification accuracy for varying SOM
grid sizes.For an numerical overview of the results see Table A.3

Compared to the accuracy achieved by the Tempotron classifier, the SOM-SNN ar-
chitecture seems to achieve the same level of performance at v 64 %. This is somewhat
unexpected as the SOM-LSTM improved on the LSTM classifier with 10 %. This raises
the question whether this is the highest possible accuracy of the Tempotron classifier on
DopNet. Another possibility could be that the current learned SOM mapping doesn’t
sufficiently separate the samples in the lower dimensional space. If that’s the case,
further study in the quality of the mapping is required.

It’s worth to note that the same level of accuracy has been achieved at a lower
spiking neuron cost w.r.t the Tempotron classifier. However, since this is an ANN-SNN
hybrid system it could come at the cost of a higher overall power consumption.

We experimented with feature selection on the Tempotron classifier, to combat the
increasing amount of neurons in the input layer. This isn’t necessary an issue for
the SOM-SNN as the input neurons are now determined by the size of the SOM grid.
However,it would be interesting to see the effect of feature selection on the SOM’s ability
to separate observations in the output space. The same feature selection scenarios are
assumed, see Figure 5.7. It’s likely that a similar trend can be observed to the feature
selection experiments in the Tempotron classifier. The 10 fold cross validation accuracy
for varying SOM sizes and the feature selection scenarios is shown in Figure 5.9.

As expected the scenarios where no important features were omitted exhibit the
same level of accuracy w.r.t using all features. This confirms the same trend seen
earlier in the Tempotron classifier.
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Figure 5.9: SNN feature selected 10-fold stratified cross validation classification accuracy
for varying SOM grid sizes. The error bars are omitted for visualization purposes. For an
numerical overview of the results see Tables A.3 to A.7

50



5.6 Spiking Self Organizing Map & SNN classifier

The introduction of the spiking Self Organizing Map (SSOM) opens up a large design
space which needs to be explored. By using the Spike Timing Dependent Plasticity
(STDP) learning method an additional four parameters are added. A grid search
approach will be employed to try to find a point in our design space that can perform
the classification we desire. To limit the search space, we will assume the configuration
of the encoder to be as presented in Table 5.12 and will not be part of the design
exploration. Also, no cross validation will be performed in the experiments presented
here, as it was deemed too time consuming to do it effectively. Therefore training and
testing is done with fold 4 of our cross validation split, see Section 5.2

Table 5.12: Assumed parameters of the input encoder

Parameter Value

Encoder thresholds 6
Features selected -100 Hz/100 Hz
Input layer size 2400 neurons

In all previous experiments the classification accuracy was the metric dictating the
performance of our model. Since the SSOM transforms the input data to a lower di-
mensionality space, the quality of this transformation needs to be assessed. Otherwise,
low quality mappings can create misleading accuracy metrics at the SNN classifier due
to overfitting.

Metric multidimensional scaling [51, 52] is a technique that maps points from a high
dimensional space to a lower dimensional space, such that the distance between each
pair of points in the space matches as close as possible given by a set of dissimilarities.
A mapping is found that minimizes the error:

EMDS =
∑
i=1

∑
j<i

(F (i, j)−G(M(i),M(j)))2 (5.1)

where F and G are the dissimilarity matrix in the higher dimensional space and
the dissimilarity matrix after mapping M respectively. For a perfect mapping this
error should be zero, as (dis)similar samples in the original space should have the same
(dis)similarity in the mapped space.

Common distance metrics used for spike trains are the Victor-Purpura [53] and the
van Rossum [54] distance. However, it’s been debated by [55], if these metrics are able
to asses timing information for higher spike rates. The authors advises against the use
of the previously mentioned metrics and instead proposes their own metrics. One of
them is the SPIKE-distance, it has the advantages of being parameter free, time scale
adaptive and a Python implementation already exists [56]. These advantages have lead
to the choice of using this metric in the calculation of EMDS.
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We’ll be sweeping across values for the initial weights, the STDP parameters and the
neighbourhood function as we expect those parameters will have the biggest influence
on how the SSOM responses to its input spikes. Sweeping across any parameter is a
time intensive task. A single simulation run of the complete SSOM-SNN architecture
can take up to an hour to finish. Making it impossible to sweep over all possible values.
Therefore, exploratory simulations were performed in order to find the acceptable bound
of the parameters. Within those bounds our parameter sweep will take place, the results
of which will be discussed here.

We assume the baseline configuration for the SSOM shown in Table 5.14 and the
parameters for the SNN classifier as presented in Table 5.13. Recall from Section 4.3
that the all-to-all connections in the SSOM grid are scaled using the Mexican hat func-
tion, which has the function call; mexicanhat(α,β, r). With the inhibitory magnitude
(α), the inhibitory spread (β), radius of the neighbourhood (r).

This baseline configuration is based on a series of assumptions and exploration
experiments. A 20x20 grid is assumed, mainly due to observation from the experiments
with the SOM, that larger grids tend to result in higher classification accuracy, likely due
to a better spatial separability in the grid. The initial weights and maximum allowed
weight size were found by testing various combinations of weights in the exploration
experiments. This also true for the STDP learning amplitudes. To limit the chance of
overfitting the amount of epochs was set at two. Since STDP can update the weight
during cycle of incoming spikes, only a small amount repetitions are needed. The STDP
learning windows need to be smaller than the rate at which spikes are entering our
classifier. Otherwise, multiple presynaptic spikes can be present in the same learning
window. Leading to multiple potentiations and depressions during a single training
window, causing instability in the learning process. Since spikes are entering each 8 µs
, the learning windows were set at 6 µs. The neighbourhood function was found in [57],
where the SSOM we use was first introduced. Lastly, Tref was set at 20 µs in order to
prevent neurons in the SSOM from being greedy and fire each time input spikes enter
at the input.

Table 5.13: Parameters for the SNN classifier trained by Tempotron, identical to the one used
in section 5.4

Parameter Value

Initial synaptic weights U (-1e-15, 1e15) C
Epochs 100

learning rate 5e-17
τm 0.1 ms
τs 0.33 µs
Tref 0 s
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Table 5.14: The baseline parameters for the SSOM at the start of the grid search.

Parameter Value

Grid size 400 neurons (20x20)
Initial weights SSOM input layer U (2e-16, 6e-16) C

Max weight 3 fC
Epochs SSOM 2

STDP A2+ 1.5e-17
STDP A2− 3e-17
STDP τ+ 6 µs
STDP τ− 6 µs

neighbourhood function mexicanhat(4,3,2.5)
Tref 20 µs

STDP changes the synaptic weights based on the timing between the pre-and post-
synaptic spikes. It can only update the weights if a postsynaptic spike has been elicited.
Also, due to it’s unsupervised nature, STDP will continue to perform weight updates
until all epochs have finished. Extra care should be taken when choosing the initial
synaptic weights. If they are too low, not a single neuron will spike. The network will
forever be silent as it will never receive any weight updates. If they are too high, all
neurons will always fire and no sensible mapping is achieved.
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First, we sweep over various values for the lower and upper bound of the uniform
distribution that set the initial weights. The sweeps values and their corresponding
metrics are shown in Figure 5.10. Here the metrics are presented in a coloured matrix,
where the colour is linked to the performance metrics. A good model (low EMDS and
high accuracy) will be coloured in green, a bad model (high EMDS and low accuracy)
will be coloured red. Models that perform in between these two extremes will have
shaded red or green colours.

The overall performance of this subspace is not yet on the same level as seen earlier
with the SNN classifier in Section 5.4. However, it seems that for higher values of the
maximum initial weight the accuracy improves as does EMDS. Also, a smaller interval
of the distribution performs better. It seems as though the values in this subspace are
too low, since the best metrics are at the boundaries of this space. For now we’ll move
to explore another parameter, however it might be worthwhile to revisit the initial
weight parameters at some point.

We increase the initial weight distribution from U (2e-16, 6e-16) C to U (4e-16, 25e-
16) C for the next sweeps.
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Figure 5.10: The classification accuracy and EMDS for sweeps of the lower(Umin) and
upper(Umax) bound of the initial weights
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Next, the potentiation (A2−) and depression (A2+) STDP amplitudes are explored.
The resulting metrics are shown in Figure 5.11. It shows that A2− needs to be larger
than A2+, otherwise the potentiations will overshadow the depression resulting in con-
stant firing of neurons. On the other end, A2− should not be too large, as this would
result in too much depression, silencing the network. Thus, the amplitudes should be
relative close to each other. Two configuration in this subspace stand out, one achiev-
ing 28,49 % , the other 29,03 %. One might argue that the one achieving 28,49 %,
performs better as its EMDS decreases more than the loss in accuracy with respect
to the other one. However, we choose to change A2+ to 0.035fC and A2− to 0.04fC
regardless. Because the overall performance is still low, we choose to go for the higher
accuracy. Since the difference in EMDS is marginal, this choice seems acceptable.
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Figure 5.11: The classification accuracy and EMDS for sweeps of A2− and A2+
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The sweep results for smaller and larger STDP learning windows are shown in
Figure 5.12. A clear relation can been seen between τ+ and τ−. Keeping the windows
equal seems to make the most difference. Interestingly, a larger τ+ with respect to τ−
seems to exhibit very low accuracies. We don’t update the values for τ+ and τ− as no
significant improvement on the current values was found.
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Figure 5.12: The classification accuracy and EMDS for sweeps of τ+ and τ−
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At the start of the exploration we tested various uniform distributions for the initial
weights. Recall that the sweeped values were estimated to be too low. Therefore,
another exploration was done for the initial weight distribution with higher weight
values. Also, we increased the maximum weight limit from 3 fC to 4 fC. The results
from this sweep is illustrated in Figure 5.13. As expected, the weights we explored
earlier were on the low side as the metrics in this subspace score overall better with
respect to Figure 5.10. The best model in this space achieves an accuracy of 31.72 %
and a EMDS of 0.129. We update the initial weight distribution from the earlier found
U (4e-16, 25e-16) C to U (8e-16, 15e-16).
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Figure 5.13: The classification accuracy and EMDS for sweeps of the lower(Umin) and
upper(Umax) bound of the initial weights, now with higher weight values
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As the neighbourhood function has a major role in determining the mapping, it will
be the final parameter we’ll explore. We’ll gradually increase each parameter of the
mexican hat function to explore the behaviour of the neighbourhood function. The
sweep results are presented in Figure 5.14. Using a larger radius (r) slightly decreases
the classification accuracy but doesn’t seem to affect EMDS. Increasing the inhibitory
spread (β), negatively affects both the accuracy and EMDS. Interestingly, at β = 5.0 the
accuracy drops with respect to the baseline value. But for larger spreads the accuracy
start increasing, while EMDS starts deteriorating. This could be a sign of overfitting
taking place. Similar behaviour can be observed for the inhibitory magnitude (α).

Within this subspace no improvement with respect to the baseline values for the
neighbourhood function were found. It appears that increasing β and α results in
overfitting. This is somewhat expected as neighbouring neuron are inhibited more
allowing for the winner neuron to spike more often and become more greedy.

It’s important to note that we only explored taking higher values for β, α and r.
Therefore, it’s quite likely that a better fit for the neighbourhood function could exist,
as there are a lot of different untested neighbourhood shapes.
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Figure 5.14: The classification accuracy and EMDS for sweeps of neighbourhood function
shapes
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After the grid search, the SSOM configuration presented in Table 5.15 was found.
The configuration we found still lacks in terms of classification accuracy with respect
to the SNN classifier. Currently th SSOM makes the input data less spatial separable,
effectively making it harder for the classifier to classify the samples. This is the complete
opposite what we aimed to achieve by extending the SNN classifier with the SSOM.
We could have explored more in the design space to possibly find a better fit for the
SSOM, but it wasn’t possible due to time constraints on the project.

By inspecting the confusion matrix of the final configuration we can try to explain
the lack in performance, it’s presented in Table 5.16. Clearly the architecture overfits
on the Click class. To some extent it’s able to distinguish the Wave and Swipe class.
However the Pinch class is the hardest to classify, often being misclassified or no re-
sponses at all. The amount of no responses is somewhat high but it’s at similar level to
the no responses shown in Table 5.7. This effectively tells us the mapping in the SSOM
does not separate the spike trains in the lower dimensional space enough. Sparking
a lot of misclassification and no responses in the SNN classifier. This is can have a
variety of causes, most likely due to combination of the initial weights distribution and
the neighbourhood function we’ve chosen. As they have a significant influence on how
the mapping is structured in the SSOM. More exploration is required to determine if
a better configuration exists in the design space or that the SSOM just isn’t able to
make create a lower dimensional space where spike trains are spatial separable.

Table 5.15: The final configuration for the SSOM found after the grid search

Parameter Value

Grid size 400 neurons (20x20)
Initial weights SSOM input layer U (8e-16, 15e-16) C

Max weight 4 fC
Epochs SSOM 2

STDP A2+ 3.5e-17
STDP A2− 4e-17
STDP τ+ 6 µs
STDP τ− 6 µs

neighbourhood function mexicanhat(4,3,2.5)
Tref 20 µs

Table 5.16: The confusion matrix of the SSOM-SNN architecture after the grid search and
using fold 4 as the test set. Here the X column denotes a no response
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Predicted class
Wave Pinch Swipe Click X

Wave 17 1 8 10 12
Pinch 4 9 2 11 22
Swipe 7 4 14 8 13
Click 4 1 3 22 18
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Conclusion 6
This work presents a SNN classifier for hand gesture recognition on Micro-Doppler
signatures from the DopNet dataset. To train the synaptic weights of the SNN we
employed the Tempotron learning method. This supervised learning method limits
the network to a singular layer. Since single layer networks tend to perform worse in
terms of classification accuracy, as they aren’t able to make complex approximations
of the desired mapping function. In order to improve the accuracy, an extension to
the classifier was proposed. A spiking version of the Self Organizing Map, capable of
transform spike trains from high dimensional space to a lower dimensional space.

Because there was no literature on SNN based solutions for hand gesture recogni-
tion, it was unclear if the proposed networks would result in state of the art accuracies.
Therefore, two baseline architectures were implemented to estimate the behaviour and
limitations of the proposed architectures. First, a LSTM classifier was used during
the initial exploration of the DopNet dataset. Testing for varying sizes of the LSTM
layer, the maximal achievable accuracy was ∼ 74 %. Second, the LSTM classifier was
extended with a non spiking SOM to test if dimensionality reduction would increase
the performance of the LSTM classifier. An increase in classification accuracy of ∼ 10
% could be observed for sufficiently large SOM grids. This confirmed that dimension-
ality reduction for the LSTM network has a positive effect on the networks ability to
generalize on the data.

The SNN classifier was tested for a varying amount of encoder thresholds. We
found that the 10 thresholds achieved the highest accuracy at 58.81 %. However, the
input encoder had a big impact on the amount of input neurons. Leaving us to explore
four feature selection scenarios in order ot limit the input layer size. As expected two
of the scenarios achieved similar levels of maximal accuracy at 62.69 % and 60.38 %.
The other two showed lower levels of accuracy, because important spatial features were
discarded. This showed the trade off between accuracy and network size.

The SNN classifier was also extended with a non spiking SOM to test the dimension
reduction hypothesis on the SNN classifier before implementing a spiking SOM. The
SOM-SNN architecture showed a marginal improvement on the SNN classifier. A some-
what surprising find, as this not in line with the improvement seen in the SOM-LSTM
architecture. Either 64 % is the highest achievable accuracy for the SNN classifier or
the SOM mapping’s quality isn’t sufficient, which would require further study.

With the introduction of the spiking SOM (SSOM) opened up a large design space.
Due to the unsupervised nature of the STDP learning methods, searching in this space
can be tricky. Therefore, a grid search approach was used to find a functional operating
point in the design space. However, during our search it was not possible to solely use
classification accuracy as our performance metric. Because this would mask configu-
rations that exhibit overfitting. By adding an additional metric, which assessed the
quality of the SSOM mapping we gained additional insights into the behaviour of the
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SSOM. Which helped understand how it contributed to the performance of the whole
architecture.

Parameters sweeps were performed on the initial weight distribution, STDP learning
windows, STDP potentiation and depression amplitudes and different shapes for the
neighbourhood function. Each exploration of the subspaces showed us relations between
pairs of parameters and their effect on the performance of the SSOM-SNN architecture.
With each sweep a marginal improvement on the performance metrics was achieved.
Resulting in a configuration with a classification accuracy of 31.72 % and a EMDS of
0.1292. The found model performed worse than the SNN classifier and shows signs of
overfitting on the Click class. Because we were unable to explore more of the design
space it’s unclear if there exists another point in the design space that would outperform
the current found model. Or that the SSOM implementation used in this work is unable
to effectively transform the DopNet data to a lower dimensional space while keeping
the data spatially separate. Further study involving the SSOM in this whole pipeline
is required.
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Future Work 7
The fact that there was no published literature on hand gesture recognition using Spik-
ing Neural Networks at the start of the project shows the novelty of the problem. As-
sumption were made, based on works that solve similar problems but gave no guarantee
it would produce the desired result. For example the choice for the encoding algorithm
was based on the assumption audio spectrogram data could be interchangeable with
radar spectrogram data. This assumption was correct, but at the cost of more hard-
ware resources compared to the audio application in the literature. This work should
therefore be seen as a stepping stone for future work in hand gesture recognition using
Spiking Neural Networks, as there is still a lot to gain in terms of classification accuracy
and knowledge how these systems operate. Due the time constraint imposed by project
not all ideas could be explored, but can be worth pursuing in future works.

The ANN networks main purpose was to provide a first insight in the capabilities of
DopNet. For both the LSTM and the SOM training is performed for 50 epochs without
any early stop criterion. This could lead to overfitting if training is done for longer then
it’s actually needed. Even though the results achieved by these networks don’t show
constant overfitting, implementing an early stopping criterion based on a validation set
could be beneficial in lowering the chance of overfitting and achieving higher accuracy.
This also holds for the training with Tempotron, as currently the SNN simulator does
not support this functionality.

When using a clustering or mapping method, a validation of the clustering or map-
ping is required. Otherwise, how do you know the effectiveness of the mapping? Nor-
mally SOMs are validated via a visual representation, due to added time dimension
in our data this becomes more difficult. A numerical validation would be a better
solution similar to the approach used in the SSOM design space exploration with the
multidimensional scaling error. Currently no such validation is done for the SOM. The
performance of the SOM-LSTM and a visually inspection of SOM’s output was used
as validation, which is not a robust validation method. Implementing the multidimen-
sional scaling error for the SOM would be a meaningful improvement.

Due to size DopNet, going through each individual sample to verify it’s quality was
deemed too time consuming. Any noisy sample or mislabelled might be part of the
training set, affecting the systems performance. Doing any quality test on DopNet
either visually or metric based would be useful as it will be quite likely it will improve
the classification accuracy.

According to [58], Tempotron does not guarantee to converge to a solution for multi-
class problems, due to the discontinuous nature of the cost function. This work assumes
this solution can be found. In the same literature a solution is also proposed to solve for
this issue, it would be worthwhile to compared the proposed solution with the original
Tempotron on a multi-class problems. Also recently, [59] proposed a hardware compati-
ble multi-layer SNN trained with an extended version of Tempotron called;DeepTempo.
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As this method might solve the single layer limitation imposed by Tempotron while
remaining hardware friendly, might be worthwhile to investigate.

The motivation to use the spiking SOM implementation by [24], was mainly due
to it’s availability in the SNN simulator to avoid intensive implementation and testing
process. As discussed early in Section 4.3, the synaptic weights of the synapses con-
necting the grid neurons are scaled using a neighbourhood function referred to as the
”Mexican Hat” function. This scaling is done during initialization and does not change
over time. For a normal SOM the neighbourhood function shrinks over time, to ensure
a converges of the clusters. Since the neighbourhood function has a central role in
the self organization process, looking into the behaviour more different functions might
help in understanding the organization behaviour of the spiking SOM. Also, due to the
nature of the grid search approach and the long simulation times limited us to explore
only a certain part of the whole design space. Applying a different hyperparameter
optimization method might be useful in further optimizing the SSOM. Preferably an
automated process, perhaps a gradient-based method could help in exploring the design
space faster.

Furthermore, as neuromorphic hardware platforms mature, the hardware param-
eters assumed in this work might no longer hold. Understanding how the proposed
system acts with different hardware parameters is essential if it’s to be used in real
world application. This is not explored in depth as we only assume specific hardware
parameters.

The synapse model in the SNN simulator assumes spikes are instantaneous events.
Therefore, it was required to set the time constant τs ≈ 0s for the Tempotron learning
method. This could have had an impact on the final performance of the SNN classifier.
Implementing a different synapse model that can produce more complex postsynaptic
potentials might be worth pursuing as it might have a positive effect on the performance
of the Tempotron trained classifier.

The simulations done in this work don’t take into account any noise generated by
the radar sensor or the hardware. In a real world application, the model needs to
operated when exposed to certain levels of noisy conditions. Therefore a more in depth
examination of the models robustness to noise seems necessary when deploying the
model in a real world environment.
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Appendix A
A.1 Experiment results LSTM classifier

Table A.1: 10-fold cross validation classification accuracy of the LSTM classifier for varying
LSTM sizes

LSTM cells Accuracy

1 45.07 ± 7.26 %
2 62.07 ± 9.28 %
4 66.25 ± 5.42 %
8 69.52 ± 3.42 %
12 71.83 ± 4.55 %
16 71.19 ± 4.66 %
20 72.74 ± 4.68 %
24 73.39 ± 4.37 %
28 72.81 ± 3.38 %
32 72.25 ± 2.34 %
36 73.82 ± 3.33 %
40 74.14 ± 4.26 %
44 74.52 ± 3.30 %
48 75.32 ± 4.39 %
52 76.28 ± 3.53 %
56 73.12 ± 3.38 %
60 73.40 ± 4.28 %
64 73.11 ± 2.67 %
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A.2 Experiment results SOM-LSTM architecture

Table A.2: 10-fold cross validation classification accuracy of the SOM-LSTM architecture for
varying SOM grid sizes

SOM dimensions Grid neurons Accuracy

2x2 4 53.29 ± 14.72 %
4x4 16 61.00 ± 8.64 %
6x6 36 64.26 ± 7.15 %
8x8 64 67.48 ± 14.05 %

10x10 100 70.24 ± 10.2 %
12x12 144 65.46 ± 10.86 %
14x14 196 82.14 ± 6.41 %
16x16 256 83.21 ± 2.84 %
18x18 324 80.86 ± 5.33 %

A.3 Experiments results SOM-SNN architecture

Table A.3: 10-fold cross validation classification accuracy of the SOM-SNN architecture for
varying SOM grid sizes and using all features

SOM dimensions SNN input layer size Accuracy

2x2 4 20.49 ± 4.74 %
4x4 16 35.11 ± 3.09 %
6x6 36 44.41 ± 5.26 %
8x8 64 52.53 ± 2.73 %

10x10 100 56.67 ± 3.09 %
12x12 144 58.71 ± 3.72 %
14x14 196 61.29 ± 3.52 %
16x16 256 62.88 ± 3.21 %
18x18 324 63.98 ± 2.76 %

Table A.4: 10-fold cross validation classification accuracy of the SOM-SNN architecture for
varying SOM grid sizes and using features between -200 Hz and 200 Hz

SOM dimensions SNN input layer size Accuracy

2x2 4 12.15 ± 4.32%
4x4 16 32.47 ± 5.70 %
6x6 36 43.65 ± 4.96 %
8x8 64 52.26 ± 4.22 %

10x10 100 58.01 ± 4.38 %
12x12 144 60.81 ± 3.87 %
14x14 196 63.28 ± 3.42 %
16x16 256 64.89 ± 2.99 %
18x18 324 64.52 ± 4.49 %
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Table A.5: 10-fold cross validation classification accuracy of the SOM-SNN architecture for
varying SOM grid sizes and using features between -100 Hz and 100 Hz

SOM dimensions SNN input layer size Accuracy

2x2 4 19.30 ± 5.89 %
4x4 16 35.81 ± 4.57 %
6x6 36 45.75 ± 6.00 %
8x8 64 52.90 ± 4.81 %

10x10 100 57.64 ± 4.86 %
12x12 144 59.62 ± 3.19 %
14x14 196 60.48 ± 3.80 %
16x16 256 58.39 ± 3.33 %
18x18 324 64.68 ± 2.34 %

Table A.6: 10-fold cross validation classification accuracy of the SOM-SNN architecture for
varying SOM grid sizes and using features between -50 Hz and 50 Hz

SOM dimensions SNN input layer size Accuracy

2x2 4 14.68 ± 5.94 %
4x4 16 34.89 ± 3.73 %
6x6 36 44.95 ± 4.41 %
8x8 64 51.88 ± 4.76 %

10x10 100 53.66 ± 4.27 %
12x12 144 55.59 ± 3.01 %
14x14 196 56.56 ± 2.66 %
16x16 256 57.56 ± 2.85 %
18x18 324 57.74 ± 2.43 %

Table A.7: 10-fold cross validation classification accuracy of the SOM-SNN architecture for
varying SOM grid sizes and using features between -25 Hz and 25 Hz

SOM dimensions SNN input layer size Accuracy

2x2 4 20.00 ± 5.36 %
4x4 16 36.56 ± 5.43 %
6x6 36 43.82 ± 4.25 %
8x8 64 46.24 ± 2.33 %

10x10 100 47.80 ± 4.07 %
12x12 144 47.96 ± 2.98 %
14x14 196 49.57 ± 1.89 %
16x16 256 49.41 ± 4.26 %
18x18 324 51.18 ± 2.80 %
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