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Abstract. Algebraic theories with dependency between sorts form the
structural core of Martin-Löf type theory and similar systems. Their
denotational semantics are typically studied using categorical techniques;
many different categorical structures have been introduced to model
them (contextual categories, categories with families, display map cate-
gories, etc.) Comparisons of these models are scattered throughout the
literature, and a detailed, big-picture analysis of their relationships has
been lacking. We aim to provide a clear and comprehensive overview
of the relationships between as many such models as possible. Specifi-
cally, we take comprehension categories as a unifying language, and show
how almost all established notions of model embed as sub-2-categories
(usually full) of the 2-category of comprehension categories.

Keywords: dependent types · categorical semantics

1 Introduction

Algebraic theories with dependency between their sorts—that is, the generalised
algebraic theories of Cartmell [12], and similar frameworks—are of interest both
in their own right, and as the structural core of richer type theories such as
Martin-Löf type theory [30] and its many extensions, Makkai’s First Order Logic
with Dependent Sorts [29], and others.

The semantics of such systems are usually studied via categorical abstrac-
tions. A veritable zoo of these have been considered: contextual categories [11],
categories with attributes [11], display map categories [38], categories with fam-
ilies [15], type-categories [34], comprehension categories [23], C-systems [43],
B-systems [41], natural models [5], clans [25], and more. Comparisons between
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many of these have been given in the literature; more are well-known in folklore,
and some may be considered too obvious to need spelling out.

However, no accessible overview of this landscape exists. Here, we aim to
give a clear summary of the relationships between these different structures for
easy reference at a glance. What comparison functors connect different kinds of
structures? When are these comparisons equivalences? And when they are not,
how significant is the difference?

Summary of results We take the 2-category of comprehension categories [23]
and pseudo maps as a unified general setting; most other models considered in
the literature turn out to embed as certain sub-2-categories theoreof.

The bulk of this paper consists of laying out these embeddings, the com-
parisons between them, and their properties. The models fall naturally into
two groups: first (Sect. 3) those where types are represented as certain “dis-
play maps”, and second (Sect. 4) those where types are a primitive notion, such
as contextual categories and categories with families.

The resulting relationships are summarised in Figs. 1 and 2. The classes of
comprehension categories used are defined in Definition 7 below; most are to be
read as conditions either on the fibration of types (split, discrete, etc.) or on the
comprehension functor (fully faithful, injective on objects, etc.).

One flea throughout is whether a terminal object is assumed; many but not
all models assume this, often independently of more significant differences. In
the summary diagrams we suppress this point, but later we note its inclusion or
omission more carefully.

Fig. 1. Models with types as display maps (Sect. 3)
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Fig. 2. Models with types as a primitive (Sect. 4)

Prerequisites Any reader familiar with at least one of the notions of model
we survey (categories with families, display map categories, clans, etc.) should
be able to follow this paper. For background on several such models, and their
motivation for interpreting dependent type theories, we recommend Hofmann
[21] and Jacobs [23].

The 2-categorical language we rely on is minimal—mostly just 2-categories
themselves, and equivalences and adjunctions between them. All our 2-categories
and functors are strict; we sometimes view 1-categories as locally discrete 2-
categories. For a breezy introduction covering all these, see Power [35].

2 Comprehension Categories: A Broad Church

Comprehension categories were introduced by Jacobs [23] as a common general-
isation of earlier models of type dependency. As he intended, they form a good
common home in which to compare those notions and others introduced since.
In this section we set up the 2-categories of comprehension categories into which
we will later embed the other notions considered, along with key constructions
and properties of comprehension categories for later use.

2.1 2-Categories of Comprehension Categories

Definition 1. A comprehension category consists of (1) a category C (whose
objects we call contexts); (2) a fibration T Cp

(of types); and (3) a functor
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T C→χ
(comprehension); such that (4) χ lies strictly over C, in that

cod ◦χ = p, and is cartesian, i.e. sends p-cartesian maps to pullback squares.

T C→

C

χ

p cod

We write the comprehension χ(A) of a type A ∈ TΓ as Γ.A A (where TΓ

denotes the fiber p−1Γ ). We often refer to a comprehension category (C, T , p, χ)
just as C, and so on for other structures.

Definition 2.

1. A pseudo map (F, F̄ , ϕ) : (C, T , p, χ) → (C′, T ′, p′, χ′) of comprehension cate-
gories consists of a functor F : C → C′; a functor F̄ : T → T ′ lying (strictly)
over F , and sending p-cartesian maps to p′-cartesian maps; and a natural
isomorphism ϕ : χ′F̄ ∼= F→χ lying (strictly) over the identity natural trans-
formation on F (so ϕ witnesses that F preserves context extension up to
isomorphism):

2. A strict map is a pseudo map which preserves context extension on the nose;
that is, χ′F̄ = F→χ, and ϕ is the identity.

Remark 3. Strict maps of comprehension categories are considered by Blanco
[9]. The earliest source for pseudo maps we know is Curien–Garner–Hofmann
([14], §5.1).1 We agree with the latter authors that maps of comprehension cat-
egories should mean “pseudo map” by default; but in the present paper, we will
generally explicitly specify whether maps are pseudo or strict.

Definition 4. A transformation of pseudo maps (F, F̄ , ϕ) (G, Ḡ, γ) consists
of a natural transformation α : F G, and another ᾱ : F̄ Ḡ lying
(strictly) over α, such that for each A ∈ TΓ we have γAχ′(ᾱA) = αΓ.AϕA.

Definition 5. We write CompCatps (or just CompCat) for the 2-category of
comprehension categories, pseudo maps, and transformations; CompCatstr2 for
the 2-category of comprehension categories, strict maps, and transformations;
and CompCatstr1 for the 1-category of comprehension categories and strict
maps.

1 Note however that their strict maps are stronger than ours, strictly preserving chosen
cleavings on the fibration of types.
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Definition 6. Let (C, T , p, χ) be a comprehension category, and Γ ∈ C any
object. The contextual slice C Γ is the comprehension category in which:

1. objects of C Γ are finite sequences (A0, . . . , An−1) in which Ak ∈ TΓ.A0...Ak−1 ,
for each 0 ≤ k < n;

2. maps (A0, . . . , An−1) → (B0, . . . , Bm−1) are maps

Γ.A0 . . . An−1 → Γ.B0 . . . Bm−1

in the slice C/Γ ;
3. the new fibration of types is the pullback of T along the functor C Γ → C

sending (A0, . . . , An−1) to the context extension Γ.A0, . . . , An−1;
4. the new comprehension is given by (A0, . . . , An−1).B := (A0, . . . , An−1, B),

with the evident projection χ(B).

This construction is given for display map categories by Taylor ([39], Def. 8.3.8),
and for categories with attributes by Kapulkin and Lumsdaine ([26], Def. 2.4).

We can now delineate various important subclasses of comprehension cate-
gories, and notation for the resulting full sub-2-categories of CompCat:

Definition 7. A comprehension category (C, T , p, χ) is called:

1. full if χ is fully faithful (with the 2-category of these denoted CompCatfull);
2. subcategorical if χ is a full subcategory inclusion, i.e. full, faithful, and injec-

tive on objects (CompCatsub);
3. replete (assuming it is subcategorical) if T is a replete subcategory of C→

(CompCatrepl);
4. composition-closed (assuming subcategorical) if T is closed under composition

and includes identities (CompCatsub,compcl);
5. trivial if χ is an identity (CompCattriv);
6. discrete if p is a discrete fibration (CompCatdisc);
7. split if p is a split fibration (CompCatspl).

These subscripts combine in the obvious ways: for instance, CompCatfull,spl
is the 2-category of full comprehension categories with a subcategory inclusion.

We also sometimes restrict the maps in the split case: we say a map of split
comprehension categories is split if it preserves the chosen splitting on the nose,
and denote the resulting sub-2-category CompCatsplspl.

Lastly we consider some notions which also add restrictions on the maps:

Definition 8. A pointed comprehension category CompCat is one equipped
with a distinguished object � ∈ C; a map is pointed (resp. strictly pointed) if
it preserves � up to specified isomorphism (resp. on the nose); a transformation
is pointed if its value at � commutes with the given isomorphism. We write
CompCatps� , CompCatstr2� for the resulting 2-categories.

A pointed comprehension category is rooted if its distinguished object is
terminal (so written 1) and the map C 1 → C is essentially surjective (that
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is, every object is isomorphic to some context extension of 1); and contextual if
C 1 → C is moreover bijective on objects (and hence an isomorphism) (so every
object is uniquely expressible as an extension of 1). We write CompCatrtd,
CompCatcxl for the resulting full sub-2-categories of CompCat�.

Remark 9. Many of these conditions are not invariant under equivalence of
categories, as they involve on-the-nose equality of objects. In each case, one
can of course generalise them to a property closed under equivalence; we work
with the present versions since they correspond most naturally and tightly to
the other structures we are comparing—display map categories, categories with
attributes, and so on.

Remark 10. Why do we insist on 2-categories? 1-categories are technically sim-
pler, and are used in much of the literature on these structures; e.g., Blanco [9]
compares 1-categories of categories with attributes, contextual categories, and
comprehension categories. Abstractly, experience from category theory suggests
that categorical structures should always be analysed 2-categorically. But, as
they should be, these abstract considerations are justified by applications.

A comprehensive analysis must include pseudo maps, since maps between
non-syntactic comprehension categories are often not strict; and even when they
are (usually in the cases where strict maps are equivalent to pseudo maps,
because the source is contextual or the target replete, cf. Corollary 47, The-
orem 16), the strictness may be lost if for instance we pass to strictifications to
interpret syntax as done by Hofmann [20].

Once we admit pseudo maps, however, we must also admit some 2-cells to
keep the resulting (1- or 2-) category well-behaved. For instance, the syntactic
contextual category of a type theory is typically 1-categorically initial in a 1-
category of models with strict maps [10,36], and bicategorically initial in a 2-
category of pseudo maps, but not initial in either sense in a 1-category of pseudo
maps.

3 Frameworks with Types as Certain Maps

In this section, we consider frameworks where types are represented as certain
maps of a category—display maps.

These first appear in work of the Cambridge group (Hyland, Pitts, and Tay-
lor) from the late eighties [22,38], with some variation in details and terminology.
We primarily follow recent literature in our terminology, but note historical dif-
ferences in usage.

We consider three main notions, successively broadening the franchise of
display maps by imposing stronger closure conditions:

1. display map categories (and their structured variant), assuming just closure
under pullback;

2. clans, adding closure under composition and identities;
3. finite-limit categories, the limiting case in which all maps are display.
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3.1 Display Map Categories

Definition 11 (Hyland–Pitts ([22], §2.2), Taylor ([39], Def. 8.3.2)). A
display map category2 is a category C together with a replete (i.e. isomorphism-
invariant) subclass D ⊆ mor(C) of maps (called display maps and written ),
such that display maps pull back along arbitrary maps; that is, for any display
map d and map f into its target, there is some display map f∗d that is a pullback
of d along f :

(1)

We call such a D a class of display maps in C.

Example 12. ([39] Ex. 8.3.6e) A map is called carrable if it admits pullbacks
along arbitrary maps, as in Diagram (1). Given any class D of carrable maps in
a category C, its closure under pullbacks D gives a class of display maps in C.

Example 13. (Awodey–Warren [6]) Important natural examples are given by
weak factorization systems and their algebraic variants. Given a category with a
(possibly algebraic) weak factorisation system, we take the display maps to be
the right maps of the wfs (often called fibrations), which are always stable under
pullback. In particular, in any Quillen model category, the fibrations form a class
of display maps, yielding as instances Kan fibrations in the category of simplicial
sets, or Hurewicz or Serre fibrations in the category of topological spaces.

Lemma 14. Any display map category (C,D) gives a comprehension category
(C,D, cod ◦ι, ι) where ι : D C→ is the inclusion of D viewed as a full subcat-
egory of C→.

Proof. The assumed pullbacks ensure that D → C is a fibration, and ι cartesian.

Definition 15. A map of display map categories is a functor preserving dis-
play maps and pullbacks thereof; a transformation of these is simply a natural
transformation between functors. Write DMC for the resulting 2-category.

Theorem 16. Lemma 14 lifts to give an isomorphism and an equivalence

DMC ∼= CompCatstr2repl ≡ CompCatrepl

where these denote the 2-categories of comprehension categories whose compre-
hension is a replete subcategory inclusion, with strict and pseudo maps respec-
tively (but with all 2-cells in both cases).

2 These appear in Hyland–Pitts ([22], §2.2) as classes satisfying “stability”, and in
Taylor ([39], Def. 8.3.2) as classes of displays.
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Proof. It is clear that Lemma 14 underlies a 2-functor DMC → CompCat,
whose image consists of precisely the replete subcategorical comprehension cat-
egories. It remains to show that it is 2-fully-faithful, and its image on 1-cells
consists precisely of the strict maps.

Given display map categories (C,D), (C′,D′), a map of comprehension cat-
egories (C,D, cod ◦ι, ι) → (C′,D′, cod ◦ι′, ι′) amounts to a functor F : C → C′

together with a functor F̄ : D → D′, preserving cartesian morphisms (i.e. pull-
back squares as in Diagram (1)) together with natural isomorphisms ϕd : F̄ d ∼= d.
Such data F̄ , ϕ certainly implies (by repleteness of D) that F preserves display
maps and their pullbacks, hence is a map in DMC. Conversely, given that F
is such a map, suitable F̄ , ϕ are given by F→|D and the identity isomorphism
(yielding a strict map of comprehension categories), and any other such (F̄ , ϕ)
are uniquely isomorphic to these.

Finally, 2-cells in CompCat are pairs (α, ᾱ) : (F, F̄ , ϕ) → (G, Ḡ, γ); but
since the comprehension of (C′,D′) is fully faithful, any such α uniquely deter-
mines a suitable ᾱ.

This theorem justifies regarding display map categories precisely as replete
subcategorical comprehension categories.

Theorem 17. The following inclusions of subcategories of comprehension cat-
egories have left adjoints or are equivalences, as shown below.

CompCatrepl CompCatsub CompCatfull CompCat� � ⊥

Proof. Starting on the right with the inclusion CompCatfull CompCat,
the left adjoint “fullification” sends a comprehension category (C, T , p, χ) to
(C, Tχ, p′, χ′) where T → Tχ → [χ′]C→ is the factorisation of χ as identity-on-
objects followed by fully faithful; concretely Tχ has the objects of T , but arrows
induced by χ from C→. Isomorphisms of hom-categories making this a (strict 2-
)adjunction follow formally from the fact that (bijective-on-objects, fully faithful)
forms an orthogonal factorization system on Cat ([28], §4(a))]:

CompCatfull((C1, (T1)χ, p′
1, χ

′
1),(C2, T2, p2, χ2))
∼=CompCat((C1, T1, p1, χ1), (C2, T2, p2, χ2))

The middle inclusion CompCatsub CompCatfull has a left adjoint given
by factoring a fully faithful comprehension functor χ : T → C→ by its image
subcategory im χ; this again gives a strict 2-adjunction, but now moreover a
biequivalence, since the unit map (C, T , p, χ) → (C, im χ, ι, cod) is an equivalence
in CompCat.

Finally, CompCatsub CompCatrepl has a left adjoint sending a sub-
category inclusion T C→ to its repletion repl T C. Again, the unit maps
are equivalences, and we have an isomorphism of hom-categories giving a strict
2-adjunction:
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CompCatrepl((C1, repl T1,p
′
1, χ

′
1), (C2, T2, p2, χ2))

≡ CompCatsub((C1, T1, p1, χ1), (C2, T2, p2, χ2))

Structured Display Map Categories The repleteness condition on display
maps is occasionally dropped. The resulting notion is relatively little-used, and
seems to enjoy few advantages, perhaps because (as we argue below) their natural
maps are “wrong”.

Definition 18 (Taylor ([39], Def. 8.3.2)). A display structure on a category
C is a class of maps D ⊆ mor(C), again called display maps, such that display
maps admit all pullbacks as in Diagram (1) above. A structured display map
category (sDMC) is a category equipped with a display structure.

Remark 19. Taylor ([39], Def. 8.3.2) couples repleteness with the question of
chosen pullbacks versus existence. The latter point matters mainly under a more
fine-grained constructive analysis than we aim for; see also Remark 24 below.

Example 20. The category of sets with subset inclusions as display maps forms
an sDMC.

The obvious notion of maps is the same as for DMC’s.

Definition 21. Let sDMC denote the 2-category whose objects are structured
display map categories, 1-cells are functors preserving display maps and pull-
backs of display maps, and 2-cells are natural transformations.

Like DMC’s, sDMC’s may be regarded as certain comprehension categories.

Theorem 22. There is an isomorphism sDMC ∼= CompCatstr2sub where the lat-
ter 2-category consists of full comprehension categories where χ is a subcategory
inclusion, and with strict maps as 1-cells.

In contrast to Theorem 16, pseudo and strict maps do not agree for sDMC’s:

Example 23. Take C to be the full subcategory of FinSet on {0, 1, 2}, with
injections as display maps. With any choice of pullbacks, this gives an sDMC.

Take C′ to be similar but with two isomorphic copies of 1, so with objects
{0, 1, 1′, 2}. As displays, take all injections, except for maps 1 → 2, where we
make the left point l : 1 → 2 a display map, and the right point r′ : 1′ → 2, but
not r : 1 → 2 or l′ : 1′ → 2. Pullbacks for a display structure can still be chosen:
whenever a pullback yields a point-inclusion into 2, either l or r′ will suffice.

C and C′ have equivalent repletions, so are equivalent via pseudo maps.
However, no equivalence F : C → C′ can strictly preserve display maps, since
Fl, Fr : F1 → F2 would give distinct parallel display maps from either 1 or 1′

to 2. So not every pseudo map C → C′ is isomorphic to a strict one.
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Remark 24. If we take sDMC’s to include chosen pullbacks, and additionally
require maps of sDMC’s to preserve these on the nose (the definition of interpre-
tations in Taylor ([39], Def. 8.3.2) is unclear on this point), then these correspond
to maps of cloven comprehension categories strictly preserving the cleaving, and
so diverge even further from the pseudo maps.

Theorem 25. The inclusion DMC sDMC, or equivalently CompCatstr2repl

CompCatstr2sub , has a left adjoint.

Proof. The left adjoint is given by repletion, as in Theorem 17.

Rooted Display Map Categories Relatively little changes when we add
roots.

Definition 26. ([39], Rem. 8.3.9) A (possibly structured) display map cat-
egory is rooted if C has a terminal object, and all morphisms to the terminal
object are composites of display maps and isomorphisms. (In the non-structured
case, repleteness renders the isomorphisms redundant.)

Let DMCrtd be the (non-1-full) sub-2-category of DMC consisting of rooted
display map categories, maps additionally preserving terminal objects, and all
transformations.

Example 27. Weak factorisation systems, considered as display map categories
following Example 13, are often rooted: for instance, those coming from model
categories with all objects fibrant, such as Top with either Serre or Hurewicz
fibrations. When this fails, such as the Kan model structure on simplicial sets,
we may still restrict to the full subcategory of fibrant objects (Kan complexes)
to recover rootedness.

This notion of rootedness agrees with rootedness for comprehension cate-
gories as given in Definition 8:

Theorem 28. Theorems 16, 17, 22 and 25 remain true with rootedness added,
with one caveat: the “strict” 2-categories should take maps that are strict on
comprehension categories, but not necessarily strictly rooted.

We do not restate them in full here; they are summarised in Fig. 4 below.

3.2 Clans

Definition 29 (Taylor ([38], §4.3.2)). A clan3 is a rooted display map cat-
egory (C,D) where D is closed under composition and contains all identities.

3 This name is due to Joyal ([25], Def. 1.1.1); in fact these are the original classes of
display maps of Taylor ([38], §4.3.2).
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Example 30. Display map categories arising from weak factorization systems
as in Examples 13 and 27 are always closed under composition and identities, so
are clans whenever they are rooted, i.e. when all objects are fibrant.

Write Clan for the 2-category of clans, as a full sub-2-category of DMCrtd.

Theorem 31. Clan ∼= CompCatstr2rtd,repl,compcl 
 CompCatrtd,repl,compcl.

Proof. Immediate by restriction of

DMCrtd
∼= CompCatstr2rtd,repl ≡ CompCatrtd,repl

from Theorem 28 (so again, “strict” maps here preserve comprehension strictly,
but not necessarily the root).

Theorem 32. The inclusions

CompCatstr22(rtd,)repl,compcl CompCatstr22(rtd,)repl

have a left adjoint (in four versions: rooted and unrooted, strict and unstrict);
hence so does the inclusion Clan DMCrtd.

Proof. We take first the least restrictive case,

CompCatrepl,compcl CompCatrepl ∼= DMC.

The left adjoint sends a display map category (C,D) to (C,D), where D is the
closure of D under composition. It is straightforward to check this gives a (strict
2-)adjoint, and does not interact with either rootedness or strictness of maps, so
restricts to give the other adjoints desired.

3.3 Finite-Limit Categories

Finite limit categories (also called left exact or lex categories) are longest-
established notion we consider, predating dependent sorts, and with a literature
too deep and wide to comprehensively survey. Logically they model essentially
algebraic theories, which may be presented syntactically in several ways (see,
for instance, [17], ([2], 3.D), [33]) or categorically by sketches [27]. They cor-
respond under Gabriel–Ulmer duality [1,18] to locally finitely presentable cate-
gories. Good surveys are given by Adámek and Rosický [2] and Johnstone ([24]
D1–2).

Definition 33. We write Lex for the 2-category of categories with finite limits,
functors preserving finite limits, and natural transformations.

Definition 34. A finite-limit category C determines a clan (C,mor(C)), with all
morphisms taken as display maps.

Recall that a comprehension category is called trivial if its fibration of types
is precisely its codomain fibration.
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Lemma 35. Lex ∼= CompCatstr2rtd,triv ≡ CompCatrtd,triv.

Proof. The construction of Definition 34 evidently underlies a 2-functor
Lex Clan; this is 2-fully faithful, since preserving pullbacks and the terminal
object implies preserving all finite limits. Then composing with the isomorphism
Clan ∼= CompCatstr2rtd,repl,compcl, the image is precisely CompCatrtd,triv.

Theorem 36. The inclusion Lex Clan, or, equivalently, the inclusion
CompCatrtd,triv CompCatrtd,repl,compcl, has a right adjoint.

Proof. The right adjoint sends a clan (C,D) to the full category Csep ⊆ C of
objects whose diagonal is a display map (“separated objects”).

All maps in Csep are display in C (if Y is separated, any f : X → Y is the
composite of (f ×Y )∗ΔY : X X ×Y and π2 : X ×Y Y ), and finite prod-
ucts and equalisers in Csep are direct to construct; so Csep is lex and the inclusion
(Csep, Csep

→) → (C,D) is a map of clans; and any other map from a trivial clan
to (C,D) certainly factors uniquely through Csep. The higher-dimensional parts
of the adjunction follow essentially formally.

4 Frameworks with Types as Primitive

We turn our attention now to frameworks in which types are not merely certain
maps, but a primitive notion. Compared to the models of Sect. 3, those of this
section reflect the syntax of type theory more precisely, but are correspondingly
further from the natural organisation of more “mathematical” models.

The main group consists of several very closely related notions, essentially
reformulations of each other with slightly different emphasis and permitting dif-
ferent generalisations: categories with attributes [11,31], (split) type-categories
[7,34], categories with families [15], and natural models [5].4 These models may
be (and have been) viewed either as discrete or as full split comprehension cat-
egories.

Finally, we reach a venerable and authoritative notion: the contextual cat-
egories of Cartmell [11]. This too has enjoyed several later reformulations as
C-systems [43] and B-systems [3,41].

4.1 Categories with Families, and Equivalents

We first consider categories with attributes, since they make the comparison
with comprehension categories most straightforward.

Definition 37 (Cartmell ([11], §3.2), Moggi ([31], Def. 6.2)). A category
with attributes (CwA)5 consists of a category C; a presheaf Ty : Cop → Set;
4 As the Swedish saying goes, kärt barn har m̊anga namn.
5 The original CwA’s of Cartmell ([11], §3.2) also included further structure corre-

sponding to type-constructors. This was stripped down to the present definition by
Pitts ([34], Def. 6.9) (there called type-categories) and Moggi ([31], Def. 6.2), and
most subsequent literature has followed suit.
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a functor (−.−) :
∫

C Ty → C; and a natural transformation p : (−.−) → π1,
cartesian in that its naturality squares are pullbacks.

A (strict) map of CwA’s is a homomorphism of them considered as essentially
algebraic structures in the evident way; equivalently, a functor F : C → C′ and
natural transformation F̄ : Ty → Ty′ · F , commuting on the nose with (−.−)
and p.

A pseudo map consists of F and F̄ as in a homomorphism and a natural
isomorphism ϕ : F−.− ∼= F−.F̄−, commuting with p in that pF AϕΓ,A = FpA

for all Γ , A. A transformation of pseudo maps α : (F, F̄ , ϕ) → (G, Ḡ, ψ) is a
natural transformation α : F → G, such that for each Γ , A, (αΓ )∗(ḠA) = F̄A
and αGΓ.AψΓ,A = ϕΓ,AαΓ .F̄A.

We write CwAstr1 for the 1-category of CwA’s with strict maps, and CwAps

for their 2-category with pseudo maps and transformations.

Most literature considers just the 1-category of strict maps; we know no
source presenting pseudo maps for CwA’s, though they must be intended in for
instance the “suitable 2-category” of ([7], Rem. 2.2.2).

It is clear, as noted from the beginning by Jacobs ([23], Ex. 4.10), that cate-
gories with attributes simply “are” discrete comprehension categories; precisely,
we have:

Proposition 38. CwAstr1 ≡ CompCatstr1disc, and CwAps ≡ CompCatpsdisc.

Proof. This comes down to the classical equivalence between presheaves
and discrete fibrations. The 1-categorical version is presented in Blanco ([9],
Thm. 2.3); the 2-categorical version is similarly direct.

They may be alternatively viewed as full split comprehension categories:

Proposition 39. CwAstr1 ≡ CompCatstr1,spl
full,spl and CwAps ≡ CompCatps,splfull,spl.

Note that even in the pseudo version we restrict to split maps, i.e. strictly
preserving chosen lifts.

Proof. Both equivalences are direct, using fullification in one direction (as in
Theorem 17), and taking the discrete core of a split fibration in the other. The
1-categorical equivalence is presented by Blanco ([9], Thm. 2.4).

CwA’s were reformulated by Dybjer to make terms, a core component of the
syntax of type theory, equally primitive in the semantics:

Definition 40 (Dybjer ([15], Def. 1)). A category with families (CwF) con-
sists of a category C; a presheaf Ty on C; a presheaf Tm on

∫
C Ty; and for each

Γ ∈ C and A ∈ Ty(Γ ), an object Γ.A and map pA : Γ.A → Γ representing
Tm(A,Γ ) in the sense of a certain universal property.
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A strict map of CwF’s consists of a functor and suitable natural transforma-
tions on Ty and Tm, preserving the chosen extensions Γ.A, pA on the nose. These
are the only maps considered by Dybjer [15] and most literature; we denote their
1-category by CwFstr1.

A weak map6 of CwF’s ([8], Def. 14) consists of the same data, but preserv-
ing context extensions in the weaker sense that their images satisfy the same
universal property in the target CwF. With a suitable notion of transformation,
we denote their 2-category CwFwk.

A pseudo map of CwF’s ([13], Def. 9) is weaker still, preserving reindexing
of types and terms only up to coherent isomorphism. With transformations as
defined there, we denote the 2-category of these by CwFps.

Proposition 41.

1. CwFstr1 ≡ CwAstr1;
2. CwFwk ≡ CwAps;
3. CwFps ≡ CompCatpsfull,spl. (Note we use split comprehension categories

here, but do not restrict to split maps.)

Proof. The core comparison between CwF’s and CwA’s is given by Hofmann
([21], §3.2) (and formalised by Ahrens, Lumsdaine, and Voevodsky [4]); checking
this extends to the claimed equivalences is routine.

Natural models [5,16] are a further reformulation of categories with families,
especially fruitful in paving the way for the massive generalisation by Uemura
[40].

Definition 42. A natural model consists of a category C, and a pair of objects in
Ĉ connected by a map p : Tm → Ty, which is representable in that the pullback
of any representable along it is a representable, and structured if it is equipped
with a choice of such pullbacks.

A pseudo map of these is a functor F : C → C′, and a commutative square
from p to F ∗p′ in Ĉ, such that F sends the representing pullbacks of p to rep-
resenting pullbacks of F ; a transformation of these is a natural transformation
α : F → F ′ commuting with the given squares to F ∗p′, G∗p′. A map of struc-
tured natural models is strict if it preserves the chosen representations on the
nose.

We write NatModps for the 2-category of natural models with pseudo maps
and transformations, and NatModstr1 for the 1-category of structured natural
models and strict maps.

These maps are defined by Newstead ([32], §2.3) (with the strict as default);
it is direct that the comparisons between natural models and CwFs given by
Awodey ([5], Prop. 2) extend to equivalences:

Proposition 43. NatModstr1 ≡ CwFstr1, and NatModps ≡ CwFwk.
6 We would call these pseudo, but it would clash with both ([8], Def. 14) and ([13],

Def. 9).
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Finally, Van den Berg and Garner ([7], Def. 2.2.1) borrow the “type-category”
terminology for CwA’s from Pitts ([34], Def. 6.9) but call them split type-
categories, and use type-categories for a slightly weaker, non-split notion. Type-
categories in this sense, with the right natural definitions of maps and 2-cells,
are straightforwardly shown equivalent to full comprehension categories.

4.2 Contextual Categories, and Equivalents

Contextual categories are introduced in Cartmell’s dissertation ([11], §2). The
definition is rather lengthy; we recall it roughly, and quickly replace it with a
much simpler reformulation.

Definition 44 (Cartmell ([11], §2.2)). A contextual category consists of (1) a
category C equipped with a distinguished terminal object 1; (2) a tree structure
on ob C with root 1; (3) for each non-root object A, a “projection” map pA

from A to its parent; (4) and pullbacks of projections along arbitrary maps to
projections f∗pA = pf∗A, strictly functorial in that 1∗A = A, (fg)∗A = g∗f∗A.

A homomorphism of contextual categories is a functor commuting on the
nose with all the given structure.

The comparison with categories with attributes is direct, and implicit already
in Cartmell’s work ([11], §3.2). Call a category with attributes contextual if it is
so in the sense of Definition 7, when viewed as a discrete comprehension category:
that is, each object is uniquely expressible as a context extension of the terminal
object.

Proposition 45. The 1-category CxlCat of contextual categories and homo-
morphisms is equivalent to the 1-category CwAstr1

cxl of contextual CwA’s and
strict maps, and hence to the 1-category CompCatstr1disc,cxl of discrete, contextual
comprehension categories and strict maps.

The reader may have wondered why for contextual categories, unlike all other
notions, we have only introduced strict maps and a 1-category thereof. This is
because in the contextual case, it genuinely makes no difference:

Proposition 46. If C,D are pointed comprehension categories, C is contex-
tual, and the point of D is terminal, then the inclusion CompCatstr1� (C,D) →
CompCatps� (C,D) is an equivalence; in particular, CompCatps� (C,D) is essen-
tially discrete.

Proof. Any pseudo map F : C → D may be modified to an isomorphic strict
map F ′, by induction on the contextual “length” of objects of C; likewise by
induction, any (pointed) transformation of pseudo maps α : F → G is uniquely
determined by F and G.

This implies that for contextual categories, unlike CwA’s and similar models,
the 1-category of strict maps agrees with the 2-category of pseudo maps, so there
is no need to consider pseudo maps or transformations explicitly.
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Corollary 47. CxlCat ≡ CompCatpsdisc,cxl ≡ CompCatstr1disc,cxl.

In this case we drop the superscripts and write just CompCatdisc,cxl. It is
straightforward moreover to check:

Proposition 48. The “contextual core” construction C �→ C � gives right (1-
and strict 2-)adjoints to the subcategory inclusions CxlCat CompCatpsdisc,�,
CxlCat CompCatstr1disc,�.

Later reformulations of contextual categories include the C-systems of
Voevodsky ([42], Def. 2.1) (emphasising them as set-level rather than categorical
structures); the B-systems of Voevodsky [41] (an alternative organisation of the
dependency between sorts); and the {w, p, s}-GATs of Garner [19] (elucidating
their combinatorial structure). In each case, the key parts of an equivalence of
1-categories with CxlCat are sketched in the cited works introducing them; an
equivalence of 1-categories of C- and B-systems is presented explicitly by Ahrens,
Emmenegger, North, and Rijke ([3], Thm. 4.1).

5 Conclusion

Summary of results We can now recapitulate the summary diagrams from
the introduction more precisely. Figures 3 and 4 summarise the notions where
types are certain maps, in the rooted and unrooted versions respectively; Fig. 5
similarly summarises the notions with primitive types.

Fig. 3. Notions with types as maps, unrooted

Related work This is not the first article to compare these sorts of structures.
An important early survey is Blanco [9], very comparable to the present

work but purely 1-categorical and narrower in scope: Blanco relates categories
with attributes, contextual categories, and a version of display map categories
by embedding them into the (1-)category of comprehension categories and strict
maps.

Similarly, Subramaniam ([37], §1.4) compares 1-categories of various categor-
ical structures including Lawvere theories and contextual categories.
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Fig. 4. Notions with types as maps, rooted

Fig. 5. Notions with types primitive

Ahrens, Lumsdaine, and Voevodsky [4] compare (split) type categories, cat-
egories with families, and relative universe categories, working in univalent type
theory and (enabled by this) comparing the types of these structures, without
considering morphisms.

Open questions Firstly, we have deliberately avoided distinguishing between
structure and property, in several places. One could refine our analysis to take
these choices into account.
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Secondly, we have been agnostic about the foundations we work in. How-
ever, the 1-categorical analysis given in Sect. 4 relies on a setting where equality
of objects of a category is available, e.g., a set-theoretic setting, or using set-
based categories in univalent foundations. It would be interesting to analyse
the relationship between these structures using univalent categories in univalent
foundations, where equality of objects is not available.

There is an interesting interplay between the first and second question. Work-
ing with univalent categories would, in many cases, make the previous question
of structure vs. property moot: since essentially unique structure is actually
unique (up to identity) in univalent categories, such structure is property. For
instance, for univalent categories, cloven fibrations coincide with fibrations, cho-
sen pullbacks coincide with pullbacks merely existing, etc. That is, in univalent
categories, the choices mentioned in the first open question, and glossed over in
this paper, do not arise.
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