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SUMMARY

Topological insulators and topological superconductors are novel states of matter. These
unique states are distinguished from ordinary states by a nontrivial value of their topo-
logical invariants, hence the name: topological insulators. A phase transition between
the trivial and the topological phases is not characterized by a breaking of an underlying
symmetry and may occur only when the energy gap closes, effectively making the system
conducting.

One of the most characteristic properties of topological insulators are the topological
edge states. They emerge on the boundary between a material in the topological and
the trivial phase. While the bulk of the material stays insulating, the edge-state con-
ductance is quantized and topologically protected from backscattering. In topological
superconductors the edge states manifest themselves in the form of Majorana bound
states: zero energy states inside the superconducting gap that are located at the end of a
one-dimensional topological superconductor.

Despite the fact that the the study of topological materials is relatively new, it very
quickly attracted the interests from both experimental and theoretical physicists, and is
intensively studied from the perspective of fundamental research as well as the possible
application for building a quantum computer.

Chapter 2 of this thesis contains a detailed review and a discussion of k·p-theory. k·p-
theory allows one to go beyond commonly used effective models and obtain much more
detailed description of a semiconductor’s band structure around its gap. Topological insu-
lators are often semiconductor-based and topological superconductors can be realized in
a hybrid structure that consists of a semiconductor and a conventional superconductor.
Because of that, the k·p-theory based band structure calculations are one of the main
tools used in the research of topological materials. Chapter 3 covers implementation
details of the numerical methods used in this thesis.

The two-dimensional topological insulator (2D TI), also known as the quantum spin
Hall effect, is one example of a topological insulator. This effect has been theoretically
predicted and observed in semiconductor-based quantum wells: HgTe or InAs/GaSb.
As we change the thickness of the quantum well, we shift the conduction and valence
band edges, and effectively cause band inversion. This leads to a topological phase that is
characterized by topologically protected helical edge states which carry electric current
with a quantized conductance G = 2e2/h .

It was generally believed that in-plane magnetic field would break time reversal
symmetry, suppress the conductance due to backscattering and open an energy gap in
the edge-state dispersion. However, the experiment conducted by Du et al. reported
robust helical edge transport in InAs/GaSb persisting up to a magnetic fields of 12 T. This
discrepancy could not be explained with the commonly used BHZ model. In Chapter 4 of
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x SUMMARY

this thesis we show that the burying of a Dirac point in the valence band, a feature of the
system dispersion revealed only by the detailed k·p-simulation, explains this unexpected
observation.

Once an experimental sample, a Hall bar made of InAs/GaSb quantum well, is fabricated,
one can still tune the system between topological and trivial regimes by applying a gate
voltage. This effect was studied in detail by the experimental group of L. P. Kouwenhoven
in Delft. In a follow-up experiment, the details of spin-orbit interaction of this system
in both topological (two-carrier regime) and trivial (single-carrier regime) phases have
been investigated. In Chapter 5 we connect the results of this experiment with our band
structure calculations: in the two-carrier regime, a quenching of the spin-splitting is
observed and attributed to a crossing of spin bands, whereas in the single-carrier regime,
the Rashba coefficient α changes linearly with electric field and the linear Dresselhaus
coefficient β is constant.

We then take a look into the spin texture of the inverted InAs/GaSb system close to the
hybridization gap. Transport measurements conducted by the experimental group of C. M.
Marcus in Copenhagen revealed a giant spin-orbit splitting inherent to this system. This
leads to a unique situation in which the Fermi energy in InAs/GaSb crosses a single spin-
resolved band, resulting in a full spin-orbit polarization. We discuss this phenomenon in
detail in Chapter 6.

In the last chapter of this thesis we move away from two-dimensional topological insula-
tors and focus on topological superconductors. Semiconducting nanowires with induced
superconductivity, inherent spin-orbit, and applied magnetic field are considered to be
a promising platform for hosting Majorana bound states (MBS) with the first successful
experiments over the last few years.

As the creation of the MBS requires a large enough magnetic field, such that (gµB B)2 >
∆2 +µ2 , systems with large g -factors are of particular interest. In such a system this
condition can be met by using smaller magnetic fields, which is beneficial for the super-
conductivity. In collaboration with theoretical physicists from ETH Zürich, we show that
the orbital contribution to the electron g -factor in higher subbands of small-effective-
mass semiconducting nanowires can lead to the g -factors that are larger by an order of
magnitude or more than a bulk value g∗ .



SAMENVATTING

Topologische isolatoren en topologische supergeleiders zijn nieuwe materietoestanden.
Deze unieke toestanden onderscheiden zich van gewone toestanden door een niet-triviale
waarde van hun topologische invariant, vandaar de naam topologische isolator. Een
fasetransitie van de triviale naar de topologische toestand wordt niet gekenmerkt door de
opheffing van een onderliggende symmetrie, en kan alleen plaatsvinden als de bandkloof
sluit, waardoor het systeem geleidend wordt.

Eén van de meest karakteristieke eigenschappen van topologische isolatoren zijn
topologische randtoestanden. Zij ontstaan op de grens van topologische en triviale mate-
rie. Terwijl de bulk van de materie isolerend blijft is de geleiding door randtoestanden
gekwantiseerd en topologisch beschermd tegen terugverstrooiing. In topologische super-
geleiders manifesteren de randtoestanden zichzelf in de vorm van Majorana-toestanden:
toestanden van nul energie binnen de supergeleidende kloof, gelokaliseerd aan het einde
van een ééndimensionale topologische supergeleider.

Ondanks het feit dat de studie van topologische materialen relatief nieuw is heeft het
zeer snel de aandacht getrokken van zowel experimentele als theoretische fysici, en is het
intensief bestudeerd zowel vanuit het perspectief van fundamenteel onderzoek als vanuit
de mogelijke toepassing voor het bouwen van een kwantumcomputer.

Hoofdstuk 2 van deze thesis bevat een gedetailleerde bespreking van k·p-theorie. k·p-
theorie stelt in staat om verder te gaan dan de gewoonlijk gebruikte effectieve modellen
en om een veel gedetailleerdere beschrijving te verkrijgen van de bandenstructuur van
een halfgeleider rondom de bandkloof. Topologische isolatoren zijn vaak gebaseerd
op halfgeleiders en topologische supergeleiders kunnen worden gerealiseerd in een hy-
bride structuur bestaande uit een halfgeleider en een conventionele supergeleider. Daar-
door zijn k·p-theorie-gebaseerde bandenstructuurberekeningen één van de belangrijkste
gereedschappen die worden gebruikt in het onderzoek naar topologische materialen.
Hoofdstuk 3 bevat details van de implementatie van de numerieke methoden die in deze
thesis gebruikt worden.

De tweedimensionale topologische isolator (2D TI), ook bekend als het kwantum spin Hal-
leffect, is een voorbeeld van een topologische isolator. Dit effect is theoretisch voorspeld
en geobserveerd in op halfgeleiders gebaseerde kwantumputten: HgTe of InAs/GaSb.
Wanneer we de breedte van de kwantumput aanpassen, verschuiven we de geleidings-
en de valentiebandranden en veroorzaken daarmee effectief een bandinversie. Dit leidt
tot een topologische fase die wordt gekarakteriseerd door topologisch beschermde spi-
raalvormige randtoestanden die een elektrische stroom dragen met een gekwantiseerde
geleiding G = 2e2/h.

Algemeen werd aangenomen dat een in het vlak gericht magnetisch veld de tijdsom-
keringsymmetrie zou breken, de geleiding door terugverstrooiing zou onderdrukken en
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xii SAMENVATTING

een energiekloof zou openen in de randtoestanddispersie. Het experiment uitgevoerd
door Du et al. rapporteerde echter robuust schroefvorming randtransport in InAs/GaSb,
aanhoudend tot een magnetisch veld van 12 T. Deze tegenstrijdigheid kon niet worden
verklaard met het algemeen gebruikte BHZ-model. In Hoofdstuk 4 van deze thesis laten
we zien dat het begraven van een Diracpunt in de valentieband, een eigenschap van de
systeemdispersie die alleen onthuld wordt door een gedetailleerde k·p-simulatie, deze
onverwachte observatie verklaard.

Zodra een experimenteel sample, een Hallstaaf vervaardigd in een InAs/GaSb-kwantumput,
is gefabriceerd, kan men nog steeds het systeem afstellen tussen topologische en triviale
regimes door het aanbrengen van een gate-voltage. Dit effect is in detail bestudeerd door
de experimentele groep van L. P. Kouwenhoven in Delft. In een opvolgend experiment
zijn de details van de spin-baaninteractie van dit system bestudeerd in zowel de topologi-
sche fase (dubbele-ladingsdragerregime) als de triviale fase (enkele-ladingsdragerregime).
In Hoofdstuk 5 verbinden we de resultaten van dit experiment met onze bandenstruc-
tuurberekeningen: in het dubbele-ladingsdragerregime wordt een afnemende spinsplit-
sing geobserveerd en toegeschreven aan een kruising van spinbanden, terwijl in het
enkele-ladingsdragerregime de Rashba-coëfficiënt α lineair verandert als functie van het
elektrische veld en de lineaire Dresselhaus-coëfficiënt β constant is.

Daarna beschouwen we de spinstructuur van het geïnverteerde InAs/GaSb-systeem
dichtbij de hybridisatiekloof. Transportmetingen uitgevoerd door de experimentele groep
van C. M. Marcus in Copenhagen onthulden een gigantische spin-baansplitsing inherent
aan dit systeem. Dit leidt to een unieke situatie waarin de Fermi-energie in InAs/GaSb een
enkele spinband kruist, resulterend in een volledige spin-baanpolarisatie. We bespreken
dit fenomeen in detail in Hoofdstuk 6.

In het laatste hoofdstuk van deze thesis keren we ons af van twee-dimensionale topologi-
sche isolatoren en focussen we op topologische supergeleiders. Halfgeleidende draden
met geïnduceerde supergeleiding, inherente spin-baankoppeling en een aangebracht
magneetveld worden beschouwd als een veelbelovend platform voor gebonden Majorana-
toestanden, met de eerste succesvolle experimenten gedurende de afgelopen jaren. Aan-
gezien de creatie van gebonden Majorana-toestanden een groot genoeg magnetisch veld
vereist zodanig dat (gµB B)2 >∆2 +µ2 zijn systemen met grote g -factoren zeer gewild. In
zulke systemen kan aan deze conditie worden voldaan met kleinere magneetvelden, wat
gunstig is voor de supergeleiding. In samenwerking met theoretisch natuurkundigen van
de ETH Zürich laten we zien dat de orbitaalcontributie aan de elektron-g-factor in hogere
subbanden voor halfgeleidende nanodraden met kleine effectieve massa kan leiden tot
g-factoren die een ordegrootte groter zijn dan de g-factor in de bulk.
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2 1. INTRODUCTION

1.1. PREFACE
Imagine an apple and a doughnut or, to be more mathematically precise, a sphere and
a torus. Are these two the same? They are not. Add to them now a coffee cup and ask
yourself the same question, are any of these objects the same as the others? You may
think that the answer is the same and, in most situations, indeed it is. If you, however,
consider surfaces of these objects from the perspective of mathematical topology, then
this simple question gets a bit more complicated.

Mathematical topology characterizes equivalent surfaces by a topological invariant,
called the genus, which is in general the number of holes in their surfaces. In other words,
if we can smoothly transform one object into another, without cutting or piercing its
surface, these objects are considered equal. Bearing that in mind, both the torus and
the coffee mug are equivalent to each other but different from the sphere. This picture
will help us understand the idea behind the main subject of my research: topological
insulators.

Figure 1.1: Surfaces of a sphere (left), a torus (middle), and a coffee cup (right). Each of the surfaces is
characterized by the topological invariant g , called genus, that is in general equal to the number of holes in
the surface. Surfaces with the same genus are considered topologically equivalent to each other. This figure is
composed of materials distributed under the Creative Common licence, adapted from wikimedia.org.

In simple words, topological insulators are new electronic states of matter that are
characterized by an insulating bulk and a conducting surface. We classify them by the
topological invariants that define their key properties, e.g. conductance. Similarly, as with
mathematical surfaces, we can transform one topological insulator into another, and as
long as we don’t make it conducting during the process, it is still the same object—the
topological invariants that define its phase stay unchanged. This leads to a very interesting
property of topological insulators: a small perturbation does not change properties of the
topological phase.

1.2. TOPOLOGICAL PHASES OF MATTER
Before the 1980s, phases of matter were understood using the theory developed by Lev
Landau. This theory connects the phase transition with the breaking of some underly-
ing symmetry, e.g. the water-ice transition is connected to the breaking of continuous
translational symmetry when molecules of water organize themselves into a crystalline
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structure.
The situation changed drastically after the discovery of the quantum Hall effect (QHE)

in 1980 by von Klitzing [1]. When a two-dimensional electron gas (2DEG) is exposed to
a strong perpendicular magnetic field, a unique state emerges at its edge. This state is
characterized by quantized Hall conductivity, always in the form

G = N × e2

h
, (1.1)

where N is the number of filled Landau levels, e is the electron charge, and h is the Planck
constant. Quantization of the Hall conductivity has been confirmed in multiple exper-
iments which means that small differences in external conditions or usage of different
samples does not destroy properties of the QHE phase.

In 1982 Thouless, Kohomoto, Nightingale and den Nijs (TKNN) explained that this
unique property comes from the topology of the system’s band structure [2]. They showed
that the conduction G computed using the Kubo formula can be expressed in the same
form as Eq. (1.1), using the topological invariant n ∈ Z , called the Chern number [3],
instead of the number of filled Landau levels, i.e. n = N . Furthermore, this topological
invariant can change only when the gap closes and the system becomes conductive. This
illustrates why the quantization of the Hall conductance is robust to small changes in
external conditions, sample imperfections, or even the geometry of the sample itself.

insulatorinsulator

QHE

a) b)
phase

transition

Figure 1.2: (a) Edge states in a QHE system. A magnetic field causes electrons to move in cyclotron orbits. Close
to the interface with the ordinary insulator electrons bounce back from the edge and effectively travel along
it. (b) Schematic view of the bulk-edge correspondence: at the interface between two materials with different
topological invariants the energy gap vanishes. Therefore, there must be a low energy state bound to this region.

1.3. BULK-EDGE CORRESPONDENCE
Let us now discuss the origin of this unexpected edge state. In the case of QHE, it can be
understood with a very simple picture. Electrons in strong magnetic field move in small
cyclotron orbits—this leads us to the insulating bulk because there are simply no states
that can carry the electric current. On the edge, however, the situation is different, an
electron bounces back and effectively propagates along it, Fig. 1.2(a).

This quasi-classical picture gives us an intuition about one of the most important
properties of topological insulators, known as bulk-edge correspondence. If we have
an interface between a topological and an ordinary insulator, then as we go from one
material to the other, the topological invariant changes and energy gap must vanish
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somewhere on the way. Therefore there will be a low energy electronic state bound to the
region where a phase transition occurs [3], Fig. 1.2(b).

insulator

QSHE

a) b) c)

d) e) f)

QHE

insulatorinsulator

insulator

Figure 1.3: Edge states in two-dimensional topological insulators. (a, d) An interface between two normal insu-
lators does not show any extraordinary behaviour, and dispersion of such system consists only of a conduction
and a valence bands. (b) When we substitute one of the ordinary insulators with the quantum Hall system, a
single edge state appears at the edge. (e) This state appears in the dispersion inside the bulk gap, connecting
valence and conduction band, and propagates only in one direction. This edge state requires strong magnetic
field to exist. (c) If a quantum spin Hall system is used instead, two edge states are created at the interface. (f)
These edge states have opposite spins and propagate in opposite directions.

1.4. QUANTUM SPIN HALL EFFECT
The history of the quantum spin Hall effect (QSHE) starts with the pursuit of a topological
phase based on a spin-orbit interaction [3]. Without a magnetic field, this phase would
effectively be protected by time reversal symmetry (TRS), with topological properties
similar to, but distinct from, QHE. At the turn of 2005 and 2006, two group independently
proposed a realization of such a phase in graphene [4] and in semiconductor systems
with uniform strain gradient [5].

A quantum spin Hall phase is characterized by helical edge states, i.e. counter-
propagating states of opposite spin. In Fig. 1.3 I present differences in edge-state dis-
persion between QHE and QSHE. The crossing in the edge states in Fig. 1.3(c) is known
as the Dirac point. This crossing is protected by TRS—Kramers theorem requires that
every eigenstate at given energy E must be at least doubly degenerate. Unlike QHE, the
quantum spin Hall effect does not require a magnetic field—on the contrary, the presence
of a magnetic field would break the TRS and destroy the topological phase by opening a
gap in edge states, as they would no longer be protected by TRS.

Unfortunately, due to a small energy gap and weak spin-orbit, the effect was not
observed in proposed systems. A breakthrough moment came at the end of 2006 when
Bernevig, Hughes and Zhang [6] proposed an alternative realization in HgTe/(Hg,Cd)Te
quantum wells. The effective model that was used to predict the effect is now known as
the BHZ model, named after its authors. The experimental confirmation came in the
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following year with an experiment conducted by the group of Laurens Molenkamp [7].
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Figure 1.4: Dispersion of the edge states in BHZ model under an in-plane magnetic field. The magnetic field
breaks the time-reversal-symmetry allowing an energy gap to open in the edge-states dispersion.

The BHZ model is a 4×4 band Hamiltonian derived with first order perturbation
theory as

H eff
i j (kx ,ky ) =

∫ ∞

−∞
〈
Ψi

∣∣Hk·p(kx ,ky ,−i∂z )
∣∣Ψ j

〉
, (1.2)

where Hk·p is a six-band Kane model [8] andΨ1...4 = (|E1,+〉 , |H1,+〉 , |E1,−〉 , |H1,−〉) are
the spin up/down states of the lowest Γ6 conduction band and highest Γ8 valence band
in the HgTe/CdTe quantum well. Each of these states have a well defined symmetry in
respect to z—|E1,±〉 is even in z, whereas |H1,±〉 is odd. This puts a certain constraint
on the form of effective Hamiltonian that reads as

Heff =
(

H(k) 0
0 H∗(−k)

)
, (1.3)

H(k) = ε(k)+d (k) ·σ , (1.4)

where k = (kx ,ky ) is in-plane momentum,σ= (σ1,σ2,σ3) is vector of Pauli matrices, and

d1 + id2 = A(kx + iky ) , (1.5)

d3 = M −B(k2
x +k2

y ) , (1.6)

ε(k) =C −D(k2
x +k2

y ) , (1.7)

where A , B , C , and D are effective parameters that depend on the heterostructure ge-
ometry. The effect of a magnetic field is usually included through the Zeeman coupling
matrices Mx,y,z , whereas the breaking of bulk inversion asymmetry is taken into account
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through the HBIA term [9]:

Mx =


g∥

g∥

 , My =


−ig∥

ig∥

 ,

Mz =


gE⊥

gH⊥
−gE⊥

−gH⊥

 , HBIA =


−∆

∆

∆

−∆

 . (1.8)

Figure 1.4(a) shows the band structure of the edge states calculated with this model. As we
see on subfigures (b) and (c), magnetic field breaks TRS symmetry and opens an energy
gap in the edge-state dispersion.

Soon after the experimental confirmation of QSHE in HgTe/CdTe another realization
in InAs/GaSb quantum wells [10] was proposed and confirmed in experiments [11–13].
Gathered data [13] showed, however, an unexpected effect: an extraordinary robustness
to the magnetic field. This was a surprising observation as the in-plane magnetic field
should break TRS, open the gap in the edge states, distort the anti-parallel spin orientation
and effectively lead to a drop in the conductance. In Chapter 4 of this thesis we investigate
this issue further by going beyond the BHZ model.

Recent experiments conducted by the group of L. P. Kouwenhoven (Delft) and C. M.
Marcus (Copenhagen) revealed more details on the spin-orbit interaction in InAs/GaSb
based QSHE systems. These details were not captured by the BHZ model and were yet
another example of the BHZ limitations. In Chapter 5 and Chapter 6 we present both
results of these experiments and theoretical detailed analysis based on k·p-method.

1.5. MAJORANA BOUND STATES
Majorana bound states (MBS) [14–16] are an example of another topological edge state.
They are Andreev bound states inside the superconducting gap and are located at the
end of a one-dimensional superconductor. Due to particle-hole symmetry, if such a state
exists at finite energy E , it has a partner at energy −E and could be pushed out of the
gap. If we however have a single state at E = 0 then it cannot be pushed away—it is
topologically protected. Due to their exotic exchange statistics [17–19], that are neither
fermion nor boson like, and being robust to any local disorder, they are often considered
to be a good platform for building a topological quantum computer [20–22].

To create Majorana bound states certain physical conditions must be met. The
simplest theoretical model to describe them is the Kitaev chain [23] which is a one-
dimensional tight-binding system with p-wave superconductivity and spinless electrons.
Because of the exotic particle-hole coupling it is considered not to be a proposal of an
experimental realization but rather a minimal model that helps to better understand MBS.
However, the physics of the Kitaev chain can be realized with conventional materials if the
following three ingredients are present: superconductivity which couples electrons and
holes, magnetic field which breaks TRS and last but not least the spin-orbit interaction
that breaks spin conservation.
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Semiconducting nanowires with induced conventional superconductivity are consid-
ered to be one of most promising platforms for the realization of MBS [24–27]. Together
with the spin-orbit interaction inherent to semiconductors and the possibility to apply a
magnetic field along the wire, this proposal met all requirements for achieving MBS and
led to the first successful experiments [28–32].

The effective Hamiltonian that describes the electrons in the first subband of semi-
conducting nanowires with spin-orbit coupling, magnetic field, and induced supercon-
ductivity is

H =−
(

p2
x

2m∗ +µ
)
τz +αpxσyτz + gµB Bσz +∆τx , (1.9)

where px is the momentum, m∗ is the effective mass, α the is strength of the spin-orbit
coupling, g is the Landé g -factor, B is the magnetic field along the wire, and τ and σ are
Pauli matrices acting in particle-hole and spin space, respectively. Both magnetic field
and induced superconductivity are important ingredients for Majorana bound states.
Unfortunately, these are competing effects because including strong magnetic fields
suppresses the superconductivity. At the same time, MBS only appear for large enough
magnetic field, so that

E 2
z >∆2 +µ2 , (1.10)

where Ez = gµB B . However, if the Landé g -factor of the electron is large one can use
smaller magnetic fields, which is beneficial for the superconductivity.

It is generally believed that the confinement leads to a reduced g -factor in semi-
conductor devices [33]. However, experiments in InAs [34, 35] and InSb [34, 35] found
g -factors exceeding the bulk value by 40%. In a recent experiment [30], g -factors more
than 3 times larger than the bulk value were measured. Furthermore, the g -factors in this
experiment strongly depended on the chemical potential µ—for low µ small g -factors
were found, whereas the anomalously large g -factors were found only for large µ . In
Chapter 7, we investigate this problem in detail and present a mechanism that could lead
to very large g -factors in higher subbands of semiconducting nanowires.

1.6. STRUCTURE OF THIS THESIS

1.6.1. CHAPTER 2 REVIEW OF k·p METHOD FOR SEMICONDUCTORS
In the first chapter of this thesis we review k·p-theory, a commonly used method in
semiconductor research. We start our discussion with the theoretical background of
k·p-theory quasi-degenerate perturbation theory, known as Löwdin partitioning. We
continue with the symmetry analysis of III-V and II-VI semiconductors. Finally we derive
an 8-band k·p-model, known as the Kane Hamiltonian. k·p-theory provides a more
detailed description of the system’s band structure compared to commonly used effective
models that are usually derived directly from it.

1.6.2. CHAPTER 3: NUMERICAL METHODS FOR SEMICONDUCTORS
In the research of topological insulators, we often deal with devices of complicated
geometry and structure, such as two-dimensional quantum wells or quantum nanowires.
This puts a significant limit on the analytical study of these materials. Great advances
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in computer hardware and popularity of reliable open-source scientific libraries made
numerical studies one of the most important tools that theoretical physicists can use.

Though computer simulations cannot replace an actual experiment, they often pro-
vide a valuable insight into the underlying physics. Thanks to this, we can investigate
the effect of different geometries, or usage of different materials, before fabricating ex-
perimental samples. This allow us to adjust the design of the sample in order to achieve
optimal physical properties, e.g. band gap or effective g -factors, before fabrication and
measurement process.

This chapter discusses implementation details of k·p-theory and Löwdin partitioning.

1.6.3. CHAPTER 4: ROBUST HELICAL EDGE TRANSPORT IN QUANTUM SPIN

HALL QUANTUM WELLS

We show that burying of the Dirac point in semiconductor-based quantum spin Hall
systems can generate unexpected robustness of edge states to magnetic fields. A detailed
k·p band-structure analysis reveals that InAs/GaSb and HgTe/CdTe quantum wells exhibit
such buried Dirac points. By simulating transport in a disordered system described within
an effective model, we further demonstrate that buried Dirac points yield nearly quantized
edge conduction even at large magnetic fields, consistent with recent experiments.

1.6.4. CHAPTER 5: SPIN-ORBIT INTERACTION IN A DUAL GATED InAs/GaSb
QUANTUM WELL

Spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an
electric field the quantum well can be tuned between a single carrier regime with exclu-
sively electrons as carriers and a two-carrier regime where electrons and holes coexist.
Spin-orbit interaction in both regimes manifests itself as a beating in the Shubnikov-de
Haas oscillations. In the single carrier regime the linear Dresselhaus strength is char-
acterized by β = 28.5 meVÅ and the Rashba coefficient α is tuned from 75 to 53 meVÅ
by changing the electric field. This behaviour is qualitatively consistent with the pa-
rameters extracted from k·p calculations. In the two-carriers regime a quenching of the
spin-splitting is observed and attributed to a crossing of spin bands.

1.6.5. CHAPTER 6: GIANT SPIN-ORBIT SPLITTING IN INVERTED InAs/GaSb
DOUBLE QUANTUM WELLS

Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit
splitting of the energy bands close to the hybridization gap. The splitting results from
the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hy-
bridization gap. We experimentally investigate the band splitting as a function of top
gate voltage for both electron-like and hole-like states. Unlike conventional, noninverted
two-dimensional electron gases, the Fermi energy in InAs/GaSb can cross a single spin-
resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we
observe exotic transport phenomena such as quantum Hall plateaus evolving in e2/h
steps and a non-trivial Berry phase.
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1.6.6. CHAPTER: 7: ORBITAL CONTRIBUTIONS TO THE ELECTRON g -FACTOR

IN SEMICONDUCTOR NANOWIRES
Recent experiments on Majorana fermions in semiconductor nanowires [Albrecht et
al., Nat. 531, 206 (2016)] revealed a surprisingly large electronic Landé g -factor, several
times larger than the bulk value—contrary to the expectation that confinement reduces
the g -factor. Here we assess the role of orbital contributions to the electron g -factor in
nanowires and quantum dots. We show that an L ·S coupling in higher subbands leads to
an enhancement of the g -factor by an order of magnitude or more for small effective mass
semiconductors. We validate our theoretical findings with simulations of InAs and InSb,
showing that the effect persists even if cylindrical symmetry is broken. A huge anisotropy
of the enhanced g -factors under magnetic field rotation allows for a straightforward
experimental test of this theory.
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In this section we discuss the theoretical background of a commonly used method
in the semiconductor research: k·p-theory [1–9]. This is an approximated method that
gives us an effective Hamiltonian. This effective Hamiltonian describes bulk dispersion
of a valence and a conduction band around high-symmetry points in the Brillouin zone.
All other bands, referred to as remote bands, are integrated out using a quasi-degenerate
perturbation theory.

By employing proper boundary conditions, these bulk models can be further used
to describe low-dimensional systems, such as two-dimensional quantum wells and one-
dimensional nanowires. Using the k·p-method gives more accurate results than simpler
models, like effective mass approximation for conduction band electrons, that can be
derived directly from the k·p Hamiltonian using perturbation theory.

The quasi-degenerate perturbation theory [10–13], known as Löwdin partitioning, is
an extension of the standard quantum mechanical perturbation theory to cases with the
quasi degenerate states. It is particularly helpful in finding effective low-energy models,
that give us more insight into the underlying physics or provide a simple and elegant
description of a considered physical system.

2.1. THEORETICAL BACKGROUND

2.1.1. k·p METHOD FOR SEMICONDUCTORS
We start our derivation with the Schrödinger equation(

p̂2

2mo
+V (x)

)
ϕn(x) = Enψn(x) , (2.1)

where V (x) is a periodic crystal potential and m0 is free electron mass. Because of the
potential periodicity we make use of the Bloch theorem

V (x +R) =V (x) ⇒ ψ(x) = e i k ·x un,k (x) , (2.2)

where R is a lattice vector, k is a crystal momentum and un,k (x) is a periodic Bloch
function. We then rewrite the Schrödinger equation as

e i k ·x
{

(p̂ +ħk)2

2mo
+V (x)

}
un,k (x) = Ene i k ·x un,k (x) . (2.3)

Now, we drop out the exponential factor, and obtain following eigenvalue problem

H(k) = p̂2

2mo
+ ħ2k2

2mo
+ ħ

mo
k · p̂ +V (x) , (2.4a)

H(k)un,k (x) = En(k)un,k (x) , (2.4b)

for the Bloch functions un,k (x). Note that the energies En(k) now depend on crystal
momentum k .

The remaining problem is to obtain the band structure En(k) by solving Eq. (2.4b).
There exist numerous methods designed for this task. Here, we use k·p approach that we
now explain in more detail.
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In semiconductors, the electrons that are responsible for the transport properties
usually occupy only a region of energies close to the semiconducting gap. We can therefore
limit our discussion to only these states that corresponds to the top of a valence band
and the bottom of a conduction band. The band structure of the remaining bands is
not relevant, and the effect of these remote bands can be included through a quasi-
degenerate perturbation theory, Furthermore, the precise knowledge of the dispersion in
whole Brillouin zone is not required, and it is sufficient to obtain the band structure En(k)
around its extremum point, that we denote as k0 .

We separate H (k) into a constant extremum part H (k0) and a remaining k dependent
part as

H(k) = H(k0)+ ħ2(k2 −k0
2)

2mo
+ ħ

mo
(k −k0) · p̂ , (2.5)

with
H(k0)un,k0 (x) = En(k0)un,k0 (x) , (2.6)

for which we treat energies En(k0) and wave functions un,k0 (x) as known. Because un,k0 (x)
form a complete and orthonormal basis we use them to expand un,k (x) as

un,k (x) =∑
µ

cn,µ(k) uµ,k0 (x)m , (2.7)

where cn,µ(k) are the expansion coefficients. We substitute Eq. (2.7) into Eq. (2.4b) and
integrate from the left hand side with u∗

ν,k0
(x). We then obtain the following matrix

equation ∑
µ

Hνµ(k)cn,µ(k) = En(k)cn,ν(k) , (2.8)

with matrix elements and interband momentum pνµ defined as follows

Hνµ(k) =
{

Eµ(k0)+ ħ2

2m0
(k2 −k0

2)

}
δµν+ ħ

m0
(k −k0) ·pνµ , (2.9a)

pνµ =
∫
Ω

d3x u∗
ν,k0

(x) p̂ uµ,k0 (x) . (2.9b)

Up to this point Eq. (2.9a) is exact and valid for all values of k in the Brillouin zone.
If all energies Eµ(k0) and interband couplings pνµ would be known then Eq. (2.8) could
be solved directly. Unfortunately the number of matrix elements that are known from
experiments is limited and including many band in calculation is numerically expensive.

We therefore treat the second term in Eq. (2.9a), ħ
m0

(k −k0) ·pνµ , as a perturbation
that couples states from different bands. This include states from both conduction and
valence band, that we include directly in our model, as well as the remote bands whose
effect we include only through quasi-degenerate perturbation theory.

2.1.2. QUASI-DEGENERATE PERTURBATION THEORY
Löwdin partitioning [10–13] allows us to obtain an effective model that describes selected
group of the quasi-degenerate states (group A), that are weakly coupled to all other
states (group B). This is an advance to the standard perturbation theory that gives us
only corrections to a single nondegenerate state or a group of exactly degenerate states.
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Figure 2.1: Visualisation of representation of H as H0 +H1 +H2. First part H0 is a diagonal matrix containing
the energies En of all states. Second part H1 is a block-diagonal matrix containing perturbation part of H
Hamiltonian that acts only on states from groups A and B separately. And last part H2 is non-block-diagonal
matrix that corresponds perturbationm that couples states from block A and B .

Since with this method we do not need to distinguish between the degenerate and the
nondegenerate states, this method is particularly useful in context of the k·p theory.

We will now discuss the foundations of the quasi-degenerate perturbation theory.1

We separate Hamiltonian H into two parts

H = H 0 +H ′ . (2.10)

The first part H 0 has known eigenstates

H 0 ∣∣ϕn
〉= En

∣∣ϕn
〉

, (2.11)

We treat the second part H ′ as a perturbation. Now, we split the eigenstates
{∣∣ϕn

〉}
into

two weakly interacting groups A and B . Group A contains all of the states that we want to
include explicitly in our model.

Figure 2.2: Visualisation of removal of off-diagonal elements. Hamiltonian H is transformed using unitary
operator e−S into Hamiltonian H̃ which blocks A and B are not coupled to each other.

We now split the perturbation H ′ into two parts H 1 and H 2. The first part corresponds
to perturbation that couples only states within each group, whereas the second part is
responsible for a coupling between states from groups A and B . Figure 2.1 visualizes this
separation. Hamiltonian (2.10) reads now

H = H 0 +H 1 +H 2 . (2.12)

Our goal now is to find a unitary operator2 e−S that gives us an effective Hamiltonian

H̃ = e−s H e s , (2.13)
1Similar discussion can be be found in R. Winkler’s book, Ref. [13].
2Because operator e−S is unitary operator S must by anti-Hermitian, i.e. S† =−S .
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built only from the block-diagonal parts corresponding to groups A and B separately.
Figure 2.2 visualizes this transformation. To find the operator S we expand eS into a Taylor
series

eS =
∞∑

n=0

1

n!
Sn , (2.14)

and substitute it into Eq. (2.13). The result is

H̃ =
∞∑

n=0

1

n!
[H , S](n) =

∞∑
n=0

1

n!
[H 0 +H 1, S](n) +

∞∑
n=0

1

n!
[H 2, S](n) , (2.15)

where the commutator [A,B ](n) is defined as

[A,B ](n) = [. . . [[A, B ], B ], . . . , B ]︸ ︷︷ ︸
n times

. (2.16)

This leads us to the following equations3 for block-diagonal and non-block-diagonal parts
H̃d and H̃n :

H̃d =
∞∑

n=0

1

(2n)!
[H 0 +H 1, S](2n) +

∞∑
n=0

1

(2n +1)!
[H 2, S](2n+1) , (2.17a)

H̃n =
∞∑

n=0

1

(2n +1)!
[H 0 +H 1, S](2n+1) +

∞∑
n=0

1

(2n)!
[H 2, S](2n) . (2.17b)

To find S we make use of the fact that the non-block-diagonal part of H̃ must vanish, i.e.
H̃n = 0. We assume that S is given as a series of successive approximations

S =
∞∑

k=1
S(k) , (2.18)

where we consider S(k) to be of order k. Note that from Eq. (2.17a) it follows that if we are
interested in the N -th order of the perturbation we need to calculate S(k) up to kN = N −1
order. By substituting this ansatz into Eq. (2.17b) and grouping terms of the same order
we get:

[H 0, S(1)] =−H 2 , (2.19a)

[H 0, S(2)] =−[H 1, S(1)] , (2.19b)

[H 0, S(3)] =−[H 1, S(2)]− 1

3
[[H 2, S(1)], S(1)] , (2.19c)

. . . = . . . .

To solve Eqs. (2.19) we multiply them with
〈
ϕm

∣∣ and
∣∣ϕl

〉
from left and right hand

side, respectively, and solve for Sml , starting with the the first order and use its result to

3 Crucial observation here is fact that product of even (odd) number of non-block-diagonal matrices is block-
diagonal (non-block-diagonal). In order to be able to remove non-block-diagonal parts of H2 operator S must
be non-block-diagonal as well.



2

18 2. REVIEW OF k·p METHOD FOR SEMICONDUCTORS

successively find the higher order terms. The first two orders of S are as follows:

S(1)
ml =− H ′

ml

Em −El
, (2.20a)

S(2)
ml =

1

Em −El

[∑
m′

H ′
mm′ H

′
m′l

Em′ −El
−∑

l ′

H ′
ml ′ H

′
l ′l

Em −El ′

]
, (2.20b)

. . . = . . . .

where m and m′ corresponds to states from group A, whereas l and l ′ corresponds to
states from group B .

We then put S =∑kN
0 S(k) into Eq. (2.17a) and group together terms of the same order.

Explicit formula for the first two order corrections to the effective Hamiltonian are:

H̃ (0)
mn = H 0

mn , (2.21a)

H̃ (1)
mn = H 1

mn , (2.21b)

H̃ (2)
mn = 1

2

∑
l∈B

H 2
ml H 2

l n

(
1

Em −El
+ 1

En −El

)
, (2.21c)

. . . = . . . . (2.21d)

In order to apply quasi-degenerate perturbation theory to the k-dependent Hamiltoni-
ans, e.g. Eq. (2.5), for which H 0 = H(k0) and H ′ = H(k)−H(k0) , we choose perturbation
basis as

H(k0)
∣∣ϕν〉= E(k0)

∣∣ϕν〉 . (2.22)

The second-order effective model can be then written as

H̃νµ(k) = Hνµ(k)+ 1

2

∑
β∈B

Hνβ(k)Hβµ(k)

(
1

Eν(k0)−Eβ(k0)
+ 1

Eµ(k0)−Eβ(k0)

)
, (2.23)

with
Hνµ(k) = 〈

ϕν
∣∣H(k)

∣∣ϕµ〉= 〈
ϕν

∣∣H 0 +H ′∣∣ϕµ〉
. (2.24)

2.2. SYMMETRY PROPERTIES OF THE ZINC-BLENDE CRYSTALS
In this section we discuss the symmetry properties of the highest valence and lowest
conduction bands of III-V and II-VI semiconductors [14]. These semiconductors have a
zinc-blende structure, which is built from two FCC sublattices shifted with respect to each
other by a quarter of a lattice constant along the (1,1,1) direction. The only difference
to the diamond crystal structure is the fact that here the two sublattices are built from
different kinds of atoms, whereas for the diamond structure all atoms are the same. We
show both crystal structures in Fig. 2.3.

Each atom in the crystal forms tetrahedral bonds with its nearest neighbours from
the other sublattice. We assume that the origin of the Cartesian coordinate system
is located at an atom with the axes x , y and z being oriented along the main crystal
directions. The point group of the zinc-blende crystal is isomorphic to the point group
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a) b)

Figure 2.3: Diamond (a) and zinc-blende (b) structure. The crystals are built from two FCC sublattices that are
shifted in respect to each other by a quarter of a lattice constant along (1,1,1) direction. Atoms form tetrahedral
bonding with their nearest neighbours. The diamond lattice is build from the atoms of the same kind. In the
zinc-blende structure we have two different families of atoms, marked by grey and orange colour. Examples of
semiconductors with a diamond structure are Si, Ge, and α−Sn, while InAs, GaSb, and HgTe have a zinc-blende
structure.

of the tetrahedron, denoted as Td , that has 24 symmetry operations. Grouped by their
classes, these symmetry operations are:

{E }: identity;
{3C2 }: rotation of 180° about the [100] , [010] , and [001] axes;
{8C3 }: clockwise and anticlockwise rotation of 120° about the [111] , [111] , [111] ,

and [111] axes;
{6S4 }: clockwise and anticlockwise rotation of 90° about the [100] , [010] , and

[001] axes, followed by a reflection on the plane perpendicular to the
rotation axis;

{6σ }: reflection with respect to the (110) , (110) , (101) , (101) , (011) , and (011)
planes;

With every symmetry operation T we can associate a matrix R(T ) that represents its
action on the real space position vector x :

x ′ = R(T )x . (2.25)

Similarly, P (T ) denotes the action of this operation on a scalar function

P (T )ϕ(x) =ϕ(R(T )−1x) . (2.26)

Let us consider now two sets of functions: {ϕ0 } = { x y z } and {ϕ1,ϕ2,ϕ3 } = {x, y, z } . The
first set contains a single function that stays unchanged under all symmetry operation of
Td , i.e.

P (T )ϕ0 =ϕ0 . (2.27)

Functions of the second set, each equal to one of the Cartesian coordinates, transform
under P (T ) as

P (T )ϕi =
∑

j
R(T )i jϕ j . (2.28)
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These two sets are examples of the basis functions of two irreducible representations
of the tetrahedral group, denoted as Γ1 and Γ4 . In general case, we can write

P (T ) |Γn , i 〉 =∑
j
Γn(T ) j i

∣∣Γn , j
〉

, (2.29)

where Γn is n-th irreducible representation of the group, Γn(T )i j are the matrix elements
of this representation for group element T , and

{ |Γn , i 〉} is a set of the basis functions of
this representation.

Irreducible representations of a group, whose number is equal to the number of
classes in the group, allow us to classify all functions based on how they transform under
symmetry operations. As the choice of basis functions is arbitrary—it is the symmetry
of the functions that actually matters—one could for example replace the two sets we
just presented with {s } and {px , py , pz } orbitals. All irreducible representations of the Td

group with their basis functions are presented in Table 2.1.

Koster notation BSW notation Dimension Basis functions
Γ1 Γ1 1 {1} or {x y z }
Γ2 Γ1 1 {x4(y2 − z2)+ y4(z2 −x2)+ z4(x2 − y2)}
Γ3 Γ12 2 {(x2 − y2) , z2 − 1

2 (x2 + y2)}
Γ4 Γ15 3 {x, y, z}
Γ5 Γ25 3 {x(y2 − z2), y(z2 −x2), z(x2 − y2) }

Table 2.1: Basis function of the Td group. Note that in Koster notation Γ4 and Γ5 are sometimes reversed in the
literature.

2.2.1. SYMMETRY OF THE VALENCE AND THE CONDUCTION BAND
To understand what the symmetry of the valence and the conduction band is in III-V and
II-VI semiconductors we will first look at a heteropolar molecule built from two different
atoms, e.g. from In and As. These atoms have in total 8 valence electrons that come from
s- and p-type orbitals of each atom. When the atoms are brought together, they form a
molecule and their wave functions start to overlap. The overlapping wave functions form
a symmetric or antisymmetric superpositions creating bonding or antibonding orbitals,
respectively, as shown in Fig. 2.4 (a, b, c). The energy of bonding (antibonding) orbitals is
decreased (increased) in respect to the initial energy.

The magnitude of the energy difference however depends strongly on the initial atoms
forming the molecule. In InAs and GaSb for example the shift is so strong that the p
bonding orbitals and s antibonding orbital switch order, Fig. 2.4 (d). Therefore in these
materials the highest valence band has p-type symmetry and lowest conduction band has
s-type symmetry. For HgTe, however, Fig. 2.4 (e), the energy shift of the bands is smaller
and they do not change order—in this case symmetries of the highest valence and lowest
conduction bands are changed compared to InAs or GaSb.

Note that in a zinc-blende crystals, the p-bonding and p-antibonding states will
be formed by some nontrivial superposition of all three orbitals—each atom has four
neighbours and tetrahedral bondings with them have more complicated structure than
Fig. 2.4 suggests. The general properties, however, stay the same and for the purpose of
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a) b) c)

d) f)

e)

Figure 2.4: (a) σ orbitals created from s-type orbitals. (b) p-orbitals that are orientated along shared axis form
σ orbitals. (c) π orbitals created for p-orbitals when they are oriented along perpendicular axis. (d) For most
semiconductors, e.g. InAs, GaSb, or AlSb, p bonding and s antibonding orbitals interchange. In these materials
the highest valence band has p-type symmetry and the lowest conduction band has s-type symmetry. (e) There
are a few known examples of semiconductors, like HgTe or α−Sn, for which these orbitals do not interchange—
symmetries of their highest valence and lowest conduction band are therefore invert. (f) Schematic band
structure, when s-type and p-type orbitals interchange, with bands classified by the irreducible representation
according to which they transform.

symmetry analysis it is enough to understand how a single orbital transforms under the
group operations.

As it was mentioned in previous chapter, group theory can be used to classify these
bands using irreducible representations of Td group, see Fig. 2.4 (f). The s-type states
transform according to irreducible representation Γ1 , while p-type states transform
according to irreducible representation Γ4 . It is important to note that momentum
operator p also transforms according to irreducible representation Γ4 . From now on we
will denote states from the first conduction band Γc

1 as |S〉 , whereas |X 〉 , |Y 〉 and |Z 〉 will
be a notation for the states from the highest valence band Γv

4 . The primed notation,
∣∣X ′〉 ,∣∣Y ′〉 and

∣∣Z ′〉, will be used for the states from the conduction band Γc
4 .

2.2.2. CONSEQUENCES OF MATRIX-ELEMENT THEOREM

As it was stated in Section 2.1.1, in k·p theory we need to calculate matrix elements of
the momentum operator pµν∝

〈
uµ

∣∣p
∣∣uν〉. This task can be significantly simplified by

using one of the tools provided by group theory, called matrix-element theorem [8, 14].
This theorem tells us which matrix elements pµν must be zero from the symmetry of the
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system.
Generalizing the notation, our task is to calculate matrix elements of the form〈

ψ(α)
i

∣∣∣P (β)
j

∣∣∣ψ(γ)
k

〉
, (2.30)

where ψ is a wave function and P is an operator. Both wave functions ψ and operator P
transform according to the irreducible representation indicated by the upper index: Γ(α) ,
Γ(β) or Γ(γ) . Matrix-element theorem stays that this product is nonzero if, and only if, the
irreducible representation Γ(α) appears in the reduction of the direct product Γ(β) ⊗Γ(γ) .
In Table 2.2 we show the direct products of Γ4 with all other irreducible representation of
the Td group.

Because p has Γ4 symmetry, this simple tool can drastically limit the number of matrix
elements pµν that one needs to compute. For example, states with Γ4 symmetry can only
be coupled to states that have Γ1 , Γ3 , Γ4 , or Γ5 symmetries, whereas Γ1 states are only
coupled to Γ4 states.

Direct product Direct sum
Γ4 ⊗Γ1 Γ4

Γ4 ⊗Γ2 Γ5

Γ4 ⊗Γ3 Γ4 ⊕Γ5

Γ4 ⊗Γ4 Γ1 ⊕Γ3 ⊕Γ4 ⊕Γ5

Γ4 ⊗Γ5 Γ2 ⊕Γ3 ⊕Γ4 ⊕Γ5

Table 2.2: Direct products of the Γ4 representation with all representations of the Td point group. Because p has
Γ4 symmetry this table gives direct information about which bands are coupled to each other, e.g. Γ1 states are
coupled only to Γ4 states in the k·p theory.

2.2.3. CONSEQUENCES OF WIGNER-ECKART THEOREM
The Wigner-Eckart theorem [8, 15]provide us with an additional tool to minimize the
number of matrix elements pµν that one needs to compute. In addition to the matrix-
element theorem, that only gave us information if a certain matrix element is nonzero,
the Wigner-Eckart theorem can give us information which matrix elements are equal to
each other.

Since point group operations leave inner products invariant, we can write〈
ψ(α)

i

∣∣∣P (β)
j

∣∣∣ψ(γ)
k

〉
=

〈
Γ(α)(T )l i ψ

(α)
l

∣∣∣Γ(β)(T )m j P (β)
m

∣∣∣Γ(γ)(T )nk ψ
(γ)
n

〉
, (2.31)

for some symmetry operation T of the point group Td , and Einstein summation conven-
tion is used. The usual output of this formula is either〈

ψ(α)
i

∣∣∣P (β)
j

∣∣∣ψ(γ)
k

〉
=−

〈
ψ(α)

i

∣∣∣P (β)
j

∣∣∣ψ(γ)
k

〉
, (2.32)

which simply means that the respective matrix element is zero, or〈
ψ(α)

i

∣∣∣P (β)
j

∣∣∣ψ(γ)
k

〉
=

〈
ψ(α)

u

∣∣∣P (β)
v

∣∣∣ψ(γ)
w

〉
, (2.33)
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which indicates equality of two matrix elements.

The most important couplings in the context of the k·p model describing the highest
valence and lowest conduction bands in a zinc-blende-type semiconductor are couplings
between Γ1 and Γ4 states. The only nonzero matrix elements allowed by the symmetry4

between these bands are summarized below.

〈
Γc

4

∣∣k·p ∣∣Γv
1

〉
nonzero matrix elements:

〈S |px |X 〉 = 〈S |py |Y 〉 = 〈S |pz |Z 〉 = im0

ħ P . (2.34)

〈
Γv

4

∣∣k·p ∣∣Γc
4

〉
nonzero matrix elements:

〈
X

∣∣py
∣∣Z ′〉= 〈

Y
∣∣pz

∣∣X ′〉= 〈
Z

∣∣px
∣∣Y ′〉= im0

ħ Q ,〈
X

∣∣pz
∣∣Y ′〉= 〈

Y
∣∣px

∣∣Z ′〉= 〈
Z

∣∣py
∣∣X ′〉= im0

ħ Q, (2.35)

where primed and non-primed indices corresponds to wave functions of Γc
4 and Γv

4 states,
respectively. Note that matrix elements between states from the same band are zero, e.g.
〈X |py |Z 〉 = 0.

2.3. k·p MODELS FOR CONDUCTION AND VALENCE BAND
Now that we understand the symmetry of the highest valence and the lowest conduction
band in the zinc-blende-type semiconductors, we write the Hamiltonian that describes
dispersion of these bands at the Γ point of the Brillouin zone, i.e. k0 = 0.

In Chapter 2.3.1, we start with a single band model that describes the |S〉 states of
the conduction band Γc

1 . In Chapter 2.3.2, we continue with a 3−band model, that
describes the dispersion of the valence band states |X 〉 , |Y 〉 , and |Z 〉 . In Chapter 2.3.3
and Chapter 2.3.4 we introduce spin-orbit coupling that partially removes degeneracy of
Γv

4 states and k·p-coupling between conduction and valence states, respectively. Finally,
in Chapter 2.3.5 we present the Burt-Foreman symmetrization that extends these models
to systems that are composed of more than one material. We conclude this section in
Chapter 2.3.6 where we present a full 8×8 band Kane Hamiltonian that describes the
dispersion of both Γc

1 electrons and Γv
4 holes.

4 As an example we consider in detail matrix elements of p between p-states. First, let us note that we can choose
wave functions to be real without loss of generality, therefore because p =−i∇ the matrix elements are purely
imaginary. Second, all p-type states must come from different bands. To see that let us consider symmetry
operation σ101 that changes x y z → z y x; one can immediately see that 〈X |py |Z 〉 = 〈Z |py |X 〉 = (〈X |py |Z 〉)∗ =
0, because matrix elements are purely imaginary. Now, all coordinate indices that are present must be unique.
It can be seen from analysing action of C2 symmetry operation that switches sign of two coordinates, e.g.
x y z → x y z , and

〈
X

∣∣pz
∣∣Z ′〉 = −〈

X
∣∣pz

∣∣Z ′〉 = 0. Finally, we observe that C3 symmetry operation cyclically
permutes all coordinates and therefore

〈
X

∣∣py
∣∣Z ′〉 = 〈

Y
∣∣pz

∣∣X ′〉 = 〈
Z

∣∣px
∣∣Y ′〉 , and from σ operations we

have e.g.
〈

X
∣∣py

∣∣Z ′〉= 〈
X

∣∣pz
∣∣Y ′〉 .
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The derivation of all models is based on Eq. (2.9a) and Eq. (2.9b), which we for conve-
nience repeat here

Hνµ =
{

Eµ(k0)+ ħ2

2m0
(k2 −k0

2)

}
δµν+ ħ

m0
(k −k0) ·pνµ , (2.9a)

pνµ =
∫
Ω

d3x u∗
ν,k0

(x) p̂ uµ,k0 (x) . (2.9b)

These equations describe the k·p Hamiltonian that couples an infinite amount of bands
through the matrix elements pνµ. The effective Hamiltonian for the bands of interest will
be obtained through the second-order quasi-degenerate perturbation theory, Eq. (2.23):

H̃νµ(k) = Hνµ(k)+ 1

2

∑
β∈B

Hνβ(k)Hβµ(k)

(
1

Eν(k0)−Eβ(k0)
+ 1

Eµ(k0)−Eβ(k0)

)
. (2.23)

Indices ν and µ correspond to states in group A—states that are explicitly present in
our model—whereas indices β correspond to states in group B—all other states which
influence we include only through perturbation theory.

2.3.1. EFFECTIVE MASS APPROXIMATION
We now consider the single band model for the |S〉 state of the Γc

1 band. From the matrix-
element theorem we know that the Γ1 band is coupled, through the k·p term, only with
the Γ4 states. From Eq. (2.23) we obtain

Ec (k) = Ec + ħ2k2

2m0
+ ħ2

m2
0

∑
β∈Γ4

∣∣〈S| k·p ∣∣uβ〉∣∣2

Ec −Eβ
, (2.36)

where 〈x |uβ〉 = uβ,k0 (x) and Ec is the band edge of the Γc
1 band. This relation can be

rewritten as

Ec (k) = Ec + ħ2k2

2mc
, (2.37a)

1

mc
= 1

m0
+ ∑
β∈Γ4

2
∣∣〈S

∣∣k·p ∣∣uβ〉∣∣2

m2
0k2(Ec −Eβ)

, (2.37b)

and is known as effective mass approximation.
Because the strength of the interband interaction is inversely proportional to the

energy difference Ec −Eβ, the most significant contribution comes from the nearest Γ4

bands from both conduction and valence band. In a diamond structure, due to the parity
selection rule, matrix elements with the Γc

4 states are exactly zero, but even in zinc-blende-
type semiconductors it is much smaller than matrix elements with the Γv

4 states. We can
therefore limit the sum in Eq. (2.37b) to β ∈ Γv

4 . By taking into account Eq. (2.34) we have

m0

mc
≈ 1+ Ep

E0
, (2.38)

where

Ep = 2m0P 2

ħ2 . (2.39)
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As it is pointed in Ref. [14], P is more or less constant for most group IV, III-V and II-VI
semiconductors, with Ep ≈ 20eV. In Table 2.3 we present theoretical values compared to
the experiment.

Ge GaN GaAs GaSb InP InAs ZnTe CdTe
E0 [eV] (exp) 0.89 3.44 1.55 0.81 1.34 0.45 2.39 1.59
mc /m0 (exp) 0.041 0.17 0.067 0.047 0.073 0.026 0.124 0.093
mc /m0 (theory) 0.04 0.17 0.078 0.04 0.067 0.023 0.12 0.08

Table 2.3: Γc
1 conduction band effective masses in chosen diamond and zinc-blende-type semiconductors.

Theoretical values are calculated with Eq. (2.38) using the values of E0 obtained from Ref. [16] compared with
experimental values. Adopted from Ref. [14]

2.3.2. THE DRESSELHAUS-KIP-KITTEL MODEL

Now we will take a look at the 3−band model, known as Dresselhaus-Kip-Kittel model [5,
17]. This model descibes holes in Γv

4 band. Neglecting spin, the basis for the Hamiltonian
is

{
|X 〉 , |Y 〉 , |Z 〉

}
. (2.40)

We neglect spin in order to preserve clarity of the discussion. We include it in the next
chapter, where we discuss consequences of spin-orbit coupling.

From Table 2.2, we know that this band couples through the k·p term only to Γ1 , Γ3 ,
Γ4 , and Γ5 bands. The nonzero matrix elements with the Γc

1 and the Γc
4 bands are given

by Eq. (2.34) and Eq. (2.35), and are equal to im
ħ P and im

ħ Q , respectively. Ignoring for a
moment interactions with Γ3 and Γ5, from Eq (2.9a), (2.9b) and Eq. (2.23) we obtain

H 3×3
v v (k) = Ev + ħ2k2

2m0
+

Lk2
x +M(k2

y +k2
z ) N kx ky N kx kz

N kx ky Lk2
y +M(k2

y +k2
z ) N ky kz

N kx kz N ky kz Lk2
z +M(k2

x +k2
y ) ,


(2.41)

where

L =− ħ2P 2

m2
0E0

, M =− ħ2Q2

m2
0E0

, N = L+M . (2.42)

When all interactions are taken into account the form of Eq. (2.41) remains unchanged
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and Dresselhaus-Kip-Kittel parameters L , M , and N are then defined as:

L = F +2G , (2.43a)

M = H1 +H2 , (2.43b)

N = N++N− , (2.43c)

N+ = F −G , (2.43d)

N− = H1 −H2 , (2.43e)

F = ħ2

m2
0

Γ1∑
β

∣∣〈X
∣∣px

∣∣uβ〉∣∣2

Ev −Eβ
, (2.43f)

G = 1

2

ħ2

m2
0

Γ3∑
β

∣∣〈X
∣∣px

∣∣uβ〉∣∣2

Ev −Eβ
, (2.43g)

H1 = ħ2

m2
0

Γ4∑
β

∣∣〈X
∣∣px

∣∣uβ〉∣∣2

Ev −Eβ
, (2.43h)

H2 = ħ2

m2
0

Γ5∑
β

∣∣〈X
∣∣px

∣∣uβ〉∣∣2

Ev −Eβ
. (2.43i)

Another set of parameters that are commonly used in k·p-theory are the Luttinger param-
eters [18] γ1 , γ2 , γ3 , and κ that are related to the Dresselhaus-Kip-Kittel parameters by
the following relations [5]:

L = (−γ1 −4γ2 −1)
ħ2

2m0
, (2.44a)

M = (2γ2 −γ1 −1)
ħ2

2m0
, (2.44b)

N+ = (−3γ3 − (3κ+1))
ħ2

2m0
, (2.44c)

N− = (−3γ3 + (3κ+1))
ħ2

2m0
. (2.44d)

2.3.3. SPIN-ORBIT COUPLING

After including spin, the basis (2.40) takes following form{
|X ↑〉 , |Y ↑〉 , |Z ↑〉 , |X ↓〉 , |Y ↓〉 , |Z ↓〉

}
. (2.45)

These six wave functions are degenerate at the Γ point of the Brillouin zone. This degen-
eracy will be partially removed if we now include the spin-orbit coupling. The spin-orbit
coupling is included in the Hamiltonian by adding the following term [5, 13]

Hso = ħ
4m2

0c2

(∇V0 ×p
) ·σ . (2.46)
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In the basis of (2.45), first order perturbation theory gives [5, 19]

H 6×6
so = ∆0

3



0 −i 0 0 0 1
i 0 0 0 0 −i
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

 , (2.47)

with matrix element ∆0 defined as

∆0 =−3i

(
h

4m2
0c2

)
〈X |(∇V0 ×p

)
y |Y 〉 . (2.48)

The total Hamiltonian for Γv
4 that includes spin and spin-orbit interaction takes following

form

H 6×6
v v =

(
H 3×3

v v 0
0 H 3×3

v v

)
+H 6x6

so . (2.49)

Because in atomic physics spin-orbit interaction can be expressed in terms of l and s
as

Hso =λl · s , (2.50)

one can choose a more appropriate basis for the Hamiltonian that diagonalizes the spin-
orbit interaction: ∣∣∣∣3

2
,

3

2

〉
= 1p

2

∣∣∣∣X + iY
0

〉
, (2.51a)∣∣∣∣3

2
,

1

2

〉
= 1p

6

∣∣∣∣ −2Z
X + iY

〉
, (2.51b)∣∣∣∣3

2
, −1

2

〉
=− 1p

6

∣∣∣∣X − iY
+2Z

〉
, (2.51c)∣∣∣∣3

2
, −3

2

〉
=− 1p

2

∣∣∣∣ 0
X − iY

〉
, (2.51d)∣∣∣∣1

2
,

1

2

〉
= 1p

3

∣∣∣∣ Z
X + iY

〉
, (2.51e)∣∣∣∣1

2
, −1

2

〉
= 1p

3

∣∣∣∣X − iY
−Z

〉
. (2.51f)

The spin-orbit part of the Hamiltonian, Eq. (2.47), reads now

H 6×6
so = ∆0

3



1
1

1
1

−2
−2

 . (2.52)
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Single group Double group

Figure 2.5: Bands of a single and double Td point group. When spin-orbit interaction is included Γ4 bands
split into Γ7 and Γ8 bands. These new bands are characterized by the total momentum, J = L+S, with s = 1/2
coming from the electron’s spin. Notation of irreducible representations of the Td point group follows the one
of Koster.

These are the eigenstates of total-momentum operator J = L+S, denoted as
∣∣ j ,m j

〉
.

The spin-orbit induced splitting∆0 = 3λ/2 partially removes the degeneracy in the valence
band states. Energy of the j = 3/2 states is increased to the new valence band edge
Ev +∆0/3, whereas energy of the j = 1/2 states is lowered to Ev − 2∆0

3 . It is however
customary to still denote the band gap between conduction and valence band as E0 and
treat energy of the j = 3/2 states as new band edge of the valence band states. After
including the spin, the symmetry character of these states changes and it is common to
classify them using a double group notation that we present in Fig. 2.5.

The j = 3/2 states with m j = ±3/2 and m j = ±1/2 are known as heavy-hole and
light-hole bands, respectively, because of the significant difference in their effective
masses around the Γ point of the Brillouin zone. The j = 1/2 states are known as split-
off-hole band. In Table 2.4 we give effective masses of these states in term of Luttinger
parameters [12, 20].

[001] [110] [111]
m0

mhh
γ1 −2γ2 γ1 − 1

2

(
γ2 +3γ3

)
γ1 −2γ3

m0
mlh

γ1 +2γ2 γ1 + 1
2

(
γ2 +3γ3

)
γ1 +2γ3

m0
msoh

γ1 − 1
3

Ep

E0

∆0
E0+∆0

Table 2.4: Effective mass of the heavy-hole, light-hole and split-off-hole states along crystallographic directions
[001], [110], and [111].

2.3.4. CONDUCTION-VALENCE BAND COUPLING

In many physical scenarios, a model that describes only conduction or valence band
dispersion is not sufficient, e.g. broken-gap system of a InAs/GaSb heterostructure. In
such situation we include explicitly both the conduction (2.36) and the valence band (2.41)
states in our model, and obtain effectively 8-band Hamiltonian. The conduction-valence
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band coupling, in basis {
|S〉 , |X 〉 , |Y 〉 , |Z 〉

}
, (2.53)

is obtained via second-order perturbation (2.23)

H4×4(k) =


Ec (k) iPkx +Bky kz iPky +Bkx kz iPkz +Bkx ky

−iPkx +Bky kz

−iPky +Bkx kz

−iPkz +Bkx ky

H 3x3
v v (k)

 . (2.54)

The B term comes from the interaction with the Γ4 bands

B = ħ2

2m2
0

∑
β∈Γ4

〈
s
∣∣px

∣∣uβ〉 〈
uβ

∣∣py
∣∣Z

〉(
1

E0 +Ev −Eβ(k0)
+ 1

Ev −Eβ(k0)

)
, (2.55)

and is known as the Dresselhaus term. It will be ignored in further discussion due to its
small impact on the analysed systems.

In a basis that includes spin{
|S ↑〉 , |S ↓〉 , |X ↑〉 , |Y ↑〉 , |Z ↑〉 , |X ↓〉 , |Y ↓〉 , |Z ↓〉

}
. (2.56)

the conduction-valence band coupling takes the following form

H8×8(k) =



H 2×2
cc (k)

iPkx iPky iPkz 0 0 0
0 0 0 iPkx iPky iPkz

−iPkx 0
−iPky 0
−iPkz 0

0 −iPkx

0 −iPky

0 −iPkz

H 6x6
v v (k)


, (2.57)

where H 2×2
cc = Ec (k)I2×2 and H 6x6

v v (k) are given by Eq. (2.37a) and Eq. (2.49), respectively.
Because the Γc

4 is now included explicitly, the Dresselhaus-Kip-Kittel parameters L , N ,
and F present in H 6x6

v v (k) must be modified

L′ → L+ P 2

E0
, N ′ → N + P 2

E0
, F ′ → F + P 2

E0
. (2.58)

To obtain the correct effective mass mc the Γv
4 band must be now excluded from the

sum (2.37b). However, the effective mass mc is usually known from the experiment, and
it is therefore more practical to modify its value, before inserting into Eq. (2.57), as

m0

m′
c
= m0

mc
− 2

3

EP

E0
− 1

3

Ep

E0 +∆0
, (2.59)

where Ep = 2m0P 2

ħ2 . The other parameters stay the same, i.e.

M ′ = M , G ′ =G , H ′
1 = H1 , H ′

2 = H2 . (2.60)
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2.3.5. BURT-FOREMAN SYMMETRIZATION

The material parameters in the Hamiltonian become position-dependent if the system
has a layered structure, like in two-dimensional quantum wells. The Bloch momentum
k is now considered as the differential operator k = −i∇x rather than a scalar. In this
situation, the Hamiltonian (2.57) is no longer Hermitian and great care has to be taken
to symmetrize it in order to treat the interface between different materials properly. In
this thesis we follow the approach put forward by Burt and Foreman [21, 22], that we
summarize in this chapter.

Diagonal terms in H 6×6
v v and H 2×2

cc : The diagonal terms, e.g. Mk2
x , are symmetrized

according to usual principle

Mk2
x → kx Mkx , (2.61)

for both valence and conduction bands.

Off-diagonal terms in H 6×6
v v : The off-diagonal terms, e.g. HX Y = HY X = N ′kx ky , are

symmetrized in following way

HX Y → kx N ′
+ky +ky N−kx , (2.62a)

HY X → ky N ′
+kx +kx N−ky . (2.62b)

Here N ′+ = F ′−G is the contribution to N ′ from Γ1 and Γ3 , while N− = H1 −H2 is that
from Γ4 and Γ5 .

Conduction-valence band coupling: The conduction valence band couplings, e.g. iPkx ,
is symmetrized in the following way

(
iPkx

−iPkx

)
→

(
iPkx

−ikx P

)
. (2.63)

2.3.6. 8×8 KANE HAMILTONIAN

We now give form of a full 8-band k·p Hamiltonian for a two-dimensional heterostruc-
ture with the [001] growth direction. We make use of the Burt-Foreman symmetriza-
tion and use basis that diagonalize the spin-orbit interaction (2.51). The Hamiltonian
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reads [23, 24]:

H 8×8
k·p =



T 0 − 1p
2

Pk+
√

2
3 Pkz

1p
6

Pk− 0 − 1p
3

Pkz − 1p
3

Pk− ,

0 T 0 − 1p
6

Pk+
√

2
3 Pkz

1p
2

Pk− − 1p
3

Pk+ 1p
3

Pkz ,

− 1p
2

k−P 0 U +V −S− R 0 1p
2

S− −p2R ,

√
2
3 kz P − 1p

6
k−P −S

†
− U −V C R

p
2V −

√
3
2 S̃− ,

1p
6

k+P
√

2
3 kz P R† C † U −V S

†
+ −

√
3
2 S̃+ −p2V ,

0 1p
2

k+P 0 R† S+ U +V
p

2R† 1p
2

S+ ,

− 1p
3

kz P − 1p
3

k−P 1p
2

S
†
−

p
2V −

√
3
2 S̃†

+
p

2R U −∆0 C ,

− 1p
3

k+P 1p
3

kz P −p2R† −
√

3
2 S̃†− −p2V 1p

2
S

†
+ C † U −∆0 ,



,

(2.64)
where

k2
∥ = k2

x +k2
y , k± = kx ± i ky , kz =−i∂/∂z ,

T = E0 +Ev + ħ2

2m0

(
γ′0k2

∥ +kzγ
′
0kz

)
,

U = Ev − ħ2

2m0

(
γ′1k2

∥ +kzγ
′
1kz

)
,

V =− ħ2

2m0

(
γ′2k2

∥ −2kzγ
′
2kz

)
,

R =− ħ2

2m0

p
3

2

[
(γ′3 −γ′2)k2

+− (γ′3 +γ′2)k2
−
]

,

S± =− ħ2

2m0

p
3k±

(
{γ′3,kz }+ [κ′,kz ]

)
,

S̃± =− ħ2

2m0

p
3k±

(
{γ′3,kz }− 1

3
[κ′,kz ]

)
,

C = ħ2

m0
k−

[
κ′,kz

]
.

Here [A,B ] = AB −B A is the commutator and {A,B} = AB +B A is the anticommutator for
the operators A and B, Ev is the valence band offset, ∆0 is the spin-orbit induced splitting
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] 8-band Kane Hamiltonian

Effective mass approximation

Dresselhaus-Kip-Kittel model

Figure 2.6: Band structure of bulk InAs calculated using three different models: (blue) the effective mass
approximation for the conduction band Γ6c, (green) the Dresselhaus-Kip-Kittel model for heavy- light- and
split-of-holes of Γ8v and Γ7v bands, and (orange) the 8-band Kane Hamiltonian for all bands.

in the valence band states, and E0 is the band gap between conduction and valence
band states. γ′0, γ′1, γ′2, γ′3 and κ′ are the bare parameters entering the 8×8 Hamiltonian.
They are related to the effective mass of the conduction band (mc ) and the Luttinger
parameters of the hole bands (γ1,2,3 and κ) through

γ′0 = γ0 − EP

E0

E0 + 2
3∆0

E0 +∆0
, (2.65a)

γ′1 = γ1 − 1

3

EP

E0
, (2.65b)

γ′2 = γ2 − 1

6

EP

E0
, (2.65c)

γ′3 = γ3 − 1

6

EP

E0
, (2.65d)

κ′ = κ− 1

6

EP

E0
, (2.65e)

where

EP = 2m0P 2

ħ2 , γ0 = m0

mc
, γ′0 =

m0

m′
c

, (2.66)

and E0 is the band gap. All of these parameters are material dependent and hence a
function of the z-coordinate. The order of operators in Eq. (2.64) follow the one pre-
sented in Section. 2.3.5 and guarantee that Hamiltonian is indeed Hermitian and properly
symmetrized.

As an example, we show in Fig. 2.6 the band structure bulk InAs calculated using three
different models: the effective mass approximation for the conduction band Γ6c, the
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Dresselhaus-Kip-Kittel model for heavy- light- and split-of-holes of Γ8v and Γ7v bands,
and the 8-band Kane Hamiltonian for all bands.

Magnetic field is included through the Zeeman and the orbital effect. The k·p Zeeman
term [13] is

H z
6c 6c =

1

2
g ′µB σ ·B , (2.67)

H z
8v 8v =−2µB κ

′ J ·B ,

H z
7v 7v =−2µB κ

′σ ·B ,

H z
8v 7v =−3µB κ

′U ·B ,

where σ is a vector of Pauli matrices, U = T †, and

Tx = 1

3
p

2

(−p3 0 1 0
0 −1 0

p
3

)
, (2.68a)

Ty = −i

3
p

2

(p
3 0 1 0

0 1 0
p

3

)
, (2.68b)

Tz =
p

2

3

(
0 1 0 0
0 0 1 0

)
, (2.68c)

Jx = 1

2


0

p
3 0 0p

3 0 2 0
0 2 0

p
3

0 0
p

3 0

 , (2.68d)

Jy = i

2


0 −p3 0 0p
3 0 −2 0

0 2 0 −p3
0 0

p
3 0

 , (2.68e)

Jz = 1

2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 . (2.68f)

We include the orbital effect by making a following substitution in the Hamiltonian

k → k + 2π

φ0
A , (2.69)

where A is the vector potential and φ0 = h
e is the flux quantum. This method gives

the same results as using Peierl’s substitution on the tight-binding level in the regime
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of simulation parameters used this thesis. For the in-plane magnetic fields the vector
potential reads

A = (
By (z − z0) ,−Bx (z − z0) ,0

)
. (2.70)

In simulation included in this thesis we adopt parameters from [23–26], presented in
Table 2.5 and Table 2.6. We calculate the parameters for the alloy Hg0.3Cd0.7Te by linear
interpolation of all Hamiltonian parameters except the band gap for which we use [24]

Eg (eV) =−0.303(1−x)+1.606x −0.132x(1−x). (2.71)

The valence band offsets for InAs/GaSb/AlSb system are 0.56 eV for GaSb-InAs, 0.18 eV
for AlSb-InAs, and −0.38 eV for AlSb-GaSb [25], whereas for HgTe/CdTe for HgTe-CdTe it
is 0.570 eV [23, 24].

Table 2.5: Band structure parameters for InAs, GaSb, and AlSb [25, 26]. These parameters are the bare parameters
and need to be renormalized before using them in simulation. All parameters are for T = 0 K.

Eg [eV] ∆ [eV] EP [eV] mc /m0 gc γ1 γ2 γ3 κ

InAs 0.41 0.38 22.2 0.024 -14.8 19.67 8.37 9.29 7.68
GaSb 0.8128 0.752 22.4 0.042 -7.12 11.80 4.03 5.26 3.18
AlSb 2.32 0.75 18.7 0.18 0.52 4.15 1.01 1.75 0.31

Table 2.6: Band structure parameters for HgTe and CdTe [23, 24]. These parameters are already in renormalized
form and can be used directly in the simulation. Alloy parameters parameters for Hg0.3Cd0.7Te are obtained
using interpolation scheme from [24]. All parameters are for T = 0 K.

Eg [eV] ∆ [eV] EP [eV] m′
c /m0 g ′

c γ′1 γ′2 γ′3 κ′

HgTe -0.303 1.08 18.8 1 2 4.1 0.5 1.3 -0.4
CdTe 1.606 0.91 18.8 1.22 2 1.47 -0.28 0.03 -1.31

HgCdTe 1.006 0.961 18.8 1.445 2 2.259 -0.046 0.411 -1.037

2.3.7. SPURIOUS SOLUTIONS

The Hamiltonian (2.57) exhibits unphysical solutions inside the band gap if m′
c < 0. These

spurious solutions appear at large momenta, beyond the validity of the k ·p model. We
apply the method put forward in Ref. [22] to avoid these unphysical states: we renormalize
P in a way that m0/m′

c is equal to either 0 or 1 (our choice). From (2.59) we thus obtain

P 2 =
(

m0

mc
− m0

m′
c

)
E0(E0 +∆0)

E0 + 2
3∆0

ħ2

2m0
, (2.72)

which we then use to modify all other parameters, as required in Eq. (2.65). With this
renormalization, the spurious solutions at large k are pushed away from the band gap,
whilst preserving the band structure around k = 0. In Chapter 3.1.3 we discuss the
procedure of removing spurious solutions in tight-binding approach.
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NUMERICAL METHODS FOR

SEMICONDUCTORS

There is a computer disease that anybody who works with computers knows
about. It’s a very serious disease and it interferes completely with the

work. The trouble with computers is that you ’play’ with them!

Richard Feynman
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In the previous chapter we have discussed a theoretical background of k·p theory and
Löwdin partitioning, two important theoretical methods for semiconductor research. In
this chapter we take a look on two numerical projects that simplify working with these
methods.

The first of them aims on automatizing the discretization process—derivation of a
tight-binding approximation of a given continuous Hamiltonian—that allows one to do
numerical calculations of a system’s band structure or transport properties.

The second project is an implementation of a Löwdin’s quasi-degenerate perturbation
theory. Our approach allows one to obtain in principle effective models of any order. The
perturbation Hamiltonian is represented using free parameters, e.g. in-plane momenta or
magnetic field, and the obtained effective model is a polynomial in these free parameters.

3.1. TIGHT-BINDING APPROACH
Physical devices, such as two-dimensional heterostructures or quantum nanowires, are
often characterized by the complicated geometry. Together with a nontrivial structure of
the Hamiltonian (2.64) this make solving the Schrödinger equation

H
∣∣ψ〉= E

∣∣ψ〉
(3.1)

analytically very difficult, if not even impossible, in most cases. For this reason the
numerical calculation, that uses the approximated method, is often the only possible
solution.

3.1.1. GENERAL CONSIDERATIONS

I will present a method that, due to similarity of the mathematical formalism, is called
tight-binding approach.1 In this method we do not longer consider the Hamiltonian
as defined in a continuum space but rather as defined on a discrete lattice. We assume
that the lattice is build from N sites with positions x i for i ∈ {1 . . . N } . The eigenstate of
position operator at site x i is |i 〉 and value of the wave function is

〈
i
∣∣ψ〉=ψ(i ). In this

notation, the Hamiltonian and the wave function take following forms

H =∑
i , j

ti j
∣∣i〉〈 j

∣∣ , (3.2a)∣∣ψ〉=∑
j
ψ( j )

∣∣ j
〉

. (3.2b)

Substituting Eqs. (3.2) into Eq. (3.1) and multiplying by 〈x | from the left-hand side we
obtain

Hψ(x) = 〈
x
∣∣H

∣∣ψ〉=∑
j

tx jψ( j ) = Eψ(x) . (3.3)

The discretization procedure is based on approximating the differential operator on

1In mathematics this approach is known as finite difference method.



3.1. TIGHT-BINDING APPROACH

3

39

the discrete lattice. First, we do a Taylor expansion of f (x):

f (x +a) = f (x)+ f ′(x)a + 1

2
f ′′(x)a2 +O(a3) , (3.4a)

f (x −a) = f (x)− f ′(x)a + 1

2
f ′′(x)a2 +O(a3) . (3.4b)

This leads us to a central derivatie scheme:

f ′(x) = 1

2a

[
f (x +a)− f (x −a)

]+O(a2) , (3.5a)

f ′′(x) = 1

a2

[
f (x +a)+ f (x −a)−2 f (x)

]+O(a) . (3.5b)

As an example let us consider a one-dimensional Hamiltonian of a single particle with
mass m that moves in potential V (x):

Hψ(x) =
{
− ħ2

2m
∂2

x +V (x)

}
ψ(x) , (3.6a)

Hψ(x) =− ħ2

2ma2

{
ψ(x +a)+ψ(x −a)−2ψ(x)

}+V (x)ψ(x) . (3.6b)

From Eq. (3.3) we immediately read

tx,x−a =−t , tx,x+a =−t , tx,x = 2t +V (x) , (3.7)

where t = ħ2

2ma2 . For a finite system of N sites the Schrödinger equation can be written in
a matrix form

2t +V (x) −t

−t
. . .

. . .
. . .

. . . −t
−t 2t +V (x)




ψ(0)
ψ(1)

...
ψ(N −1)

= E


ψ(0)
ψ(1)

...
ψ(N −1)

 , (3.8)

and diagonalized numerically.

3.1.2. AUTOMATING THE PROCESS: THE DISCRETIZER
The discretization procedure is usually a simple process. However, its complexity increase
rapidly when we include more degrees of freedom, such as spin and space dependent pa-
rameters. To save time and reduce possibility of human-caused errors we wrote, together
with S.H.P Rubbert, an automated tool called the Discretizer. The reference implementa-
tion has been released with version 1.3 of a Python simulation package Kwant [1].

Our algorithm is based on Eq. (3.5a). We decide to use tight-binding approximation of
a first-order derivative, instead of a general formula, in order to handle Hamiltonian with
space dependent parameters, e.g.

H =−ħ2

2
∂x

1

m(x)
∂x . (3.9)
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Figure 3.1: Overview of the discretizer algorithm. The initial continuum Hamiltonian is first multiplied by a
trial wave function and split into separate summands. Each summand is then discretized independently and
tight-binding approximation of the continuum Hamiltonian is returned.

When we apply Eq. (3.5a) to each derivative operator, one at a time,

Hψ(x) ≈−∂x
1

m(x)
∂xψ(x) , (3.10a)

Hψ(x) ≈− 1

2a
∂x

1

m(x)

(
ψ(x +a)−ψ(x −a)

)
, (3.10b)

Hψ(x) ≈− 1

4a2

(
ψ(x +2a)

m(x +a)
+ ψ(x −2a)

m(x −a)
−

(
1

m(x +a)
+ 1

m(x −a)

)
ψ(x)

)
, (3.10c)

the result is a tight-binding Hamiltonian with an onsite term and next-nearest-neighbour
hoppings. Because nearest-neighbour hoppings are absent, this Hamiltonian is equiva-
lent to two disconnected sublattices which is clearly wrong. To workaround this problem
one can substitute a → a/2:

Hψ(x) ≈− 1

a2

(
ψ(x +a)

m(x + a
2 )

+ ψ(x −a)

m(x − a
2 )

−
(

1

m(x + a
2 )

+ 1

m(x − a
2 )

)
ψ(x)

)
. (3.11)

For the general situation the solution is to find a greatest-common-divisor (GCD) of
all hopping lengths coming from one summand of initial Hamiltonian and substitute
a → a/GC D. For the multi-dimensional systems this procedure must be done along
each axis separately. For the purpose of our algorithm, we call this procedure a hopping
shortening.

Figure 3.1 contains a flowchart of the algorithm. Initial Hamiltonian may contain
terms with differential operators of different order, e.g. H = ak2

x +bk4
x , where kx =−i∂x .

Therefore, it is necessary to conduct a discretization procedure on each of the summands
separately. We present details of the discretization procedure on Fig. 3.2. We start with the

Figure 3.2: Details of discretization procedure.



3.1. TIGHT-BINDING APPROACH

3

41

most right differential operator and use Eq. (3.5a) to apply it to its right hand side (RHS).
We repeat the procedure for all differential operators present in the summand. Finally we
calculate the GCD of hoppings’ lengths and conduct the shortening procedure.

Simple example: Rashba Hamiltonian As an example we now consider a simple Hamil-
tonian of a spin-full electron with a spin-orbit coupling α :

H = k2
x +αkxσy . (3.12)

Making use of the reference implementation in Kwant, we obtain a following tight-binding
Hamiltonian

tx,x =
( 2

a2 0
0 2

a2

)
, (3.13)

tx,x+a =
(− 1

a2 − α
2a

α
2a − 1

a2

)
. (3.14)

We can then make further use of Kwant to calculate, in example, the band structure of
this model, Fig. 3.3.
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Figure 3.3: Tight-binding simulation of a spin-full electron with spin-orbit orbit coupling α : H = k2
x +αkxσy .

We can clearly see strong dependence on the chosen grid spacing a . First, the range of
momenta is limited by the Brillouin zone that extends from −π/a to π/a . Second, we see
that the smaller grid spacing a is, the better the continuous dispersion is approximated
by the tight-binding model. The rule-of-thumb is that the tight-binding dispersion gives
good approximation for states which have energy smaller than the magnitude of the
hopping. For this example it means that

E < |t | = 1

a2 .
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3.1.3. SIMULATION EXAMPLE: InAs/GaSb QUANTUM WELL
We now take a look on a tight-binding simulation for the k·p-Hamiltonian. As an example
we will consider a two-dimensional InAs/GaSb quantum well, tuned into non-inverted
regime: LInAs = LGaSb = 5nm. We choose discretization grid spacing to be a = 0.5 nm,
which value approximates continuum band structure properly for a relevant range of
energies.

0 1 2 3 4 5 6

kx [1/nm]

−1.0

−0.5

0.0

0.5

1.0
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2.0

E
[e

V
]

a) Pure parameters

continuum

tight-binding

tight-binding (P = 0)

0 1 2 3 4 5 6

kx [1/nm]

E
[e

V
]

b) Modified parameters

continuum

tight-binding

tight-binding (P = 0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

kx [1/nm]

E
[e

V
]

c) Difference in continuum

continuum (pure)

continuum (modified)

Figure 3.4: Dispersion of bulk InAs. (a-b) Removing of spurious solution. (black) Continuum dispersion.
(orange) Tight-binding dispersion. (dashed blue) Tight-binding dispersion without the conduction-valence
band interaction (P = 0). (a) Tight-binding dispersion shows spurious solution when effective mass is negative,
γ′0 < 0, because the k·p interaction vanish at the edge of the Brillouin zone. (b) Spurious solution are removed
by modification of the interband momentum P in a way that γ′0 = 1. (c) Difference in continuum dispersion
caused by modification of interband momentum P is negligible.

Elimination of spurious solutions In the beginning of every k·p-simulation, we must
make sure that our model does not exhibit spurious solutions in its bulk dispersion.
As it was mentioned in Chapter 2.3.5, the k·p-Hamiltonian in tight-binding approach
exhibits unphysical solution in the band gap if γ′0 < 0. In the continuum model, the k·p
interaction between conduction and valence band repulses the conduction band and
despite negative γ′0 dispersion of the conduction band is correct. In the tight-binding
approach, k-linear terms behave as

k → 2

a
sinka , (3.15)

and therefore the k·p interaction vanishes at the edge of the Brillouin zone, leading to the
unphysical solutions in the band gap, see Fig. 3.4 (a). In order to eliminate this unphysical
solutions, we apply the method that we described in Chapter 2.3.5. By setting γ′0 = 1 we
push spurious solution out of the band gap, see Fig. 3.4 (b). Furthermore the change in P
yields no significant change in bulk dispersion, see Fig. 3.4 (c), and is typically smaller
than 10%. Though in Figure 3.4 we show only elimination of spurious solution for InAs,
the same procedure must be repeated for all materials present in the system.

Tight-binding simulation of InAs/GaSb quantum well Now that we modified inter-
band momentum P in a way that eliminates the spurious solutions, we perform a k·p-
simulation of the system. Derivation of a proper tight-binding model from the continuum
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Figure 3.5: InAs/GaSb quantum well system. (a) Schematic structure of the InAs/GaSb heterostructure, that
shows variation of the conduction (blue) and valence (orange) band along the growth direction z . (b) Numeri-
cally calculated k·p-dispersion of quantum well. LInAs = LGaSb = 5 nm.

k·p-Hamiltonian is greatly simplified by the kwant.continuum module,2 which contains
a reference implementation of the discretization alogirthm discussed in Chapter 3.1.2.
Once the 8×8 Kane Hamiltonian, Eq. (2.64), is defined in SymPy,3 the tight-binding model
is obtained using the Discretizer. We then use Kwant to build a finite system. We choose
z to be the growth direction, thus all material parameters are z-dependent. Figure 3.5
(a) show the evolution of conduction and valence band edges in function of z along the
system.

Band structure calculation Once the system is built we obtain the Bloch Hamiltonian
H (kx ,ky ) that we use to compute the dispersion, see Fig. 3.5 (b). The InAs/GaSb quantum
well is tuned into the trivial regime. Due to the strong structure inversion asymmetry, the
band structure exhibits relatively strong Rashba spin-orbit effect without a presence of
an external electric field. In Chapters 4 and 6 we investigate properties of this system in
topological regime.

3.2. EFFECTIVE MODELS

In Section 2.1.2 we discussed the quasi-degenerate perturbation theory, called Löwdin
partitioning. In this section we discuss a possible numerical implementation, that allows
one to calculate effective models of an arbitrary order. We base our implementation on

2 We would like to draw attention to the ongoing effort that is made to provide an open-source Python package
that aim to help in performing k·p-simulations. Goal of the package is to provide research-ready implementa-
tion of the common k·p-models and all necessary tools for making k·p-simulations with Kwant. Early stage of
the code can be find at the following link: https://gitlab.kwant-project.org/semicon/semicon.

3 The syntax that is used to defined Hamiltonian in SymPy resembles that of LATEX. Furthermore, the Hamiltonian
defined in this way can be easily rendered using LaTeX in order to simplify proof reading of the implementation.

https://gitlab.kwant-project.org/semicon/semicon
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equations (2.17a) and (2.17b), which we repeat here:

H̃d =
∞∑

n=0

1

(2n)!
[H 0 +H 1, S](2n) +

∞∑
n=0

1

(2n +1)!
[H 2, S](2n+1) , (2.17a)

H̃n =
∞∑

n=0

1

(2n +1)!
[H 0 +H 1, S](2n+1) +

∞∑
n=0

1

(2n)!
[H 2, S](2n) . (2.17b)

We assume that the goal is to obtain effective model of the N -th order.

3.2.1. CALCULATION OF S( j )

Similarly as in in Section 2.1.2, we start with computing the operator S . We perform this
task using SymPy [2], a Python module for symbolic calculations. We use the fact that
for the N -th order we only need to know S(k) up to the kN = N −1 order. Equation (2.18)
reads now

S =
kN∑

k=1
S(k) (3.16)

We then substitute Eq. (3.16) into Eq. (2.17b) and evaluate all commutator relations. We
group all terms of the same order. Each group of the i -th order terms always contains[
H 0, S(i )

]
, e.g.

1-st order: [H 0, S(1)]+H 2 = 0, (3.17a)

2-st order: [H 0, S(2)]+ [H 1, S(1)] = 0, (3.17b)

3-st order: [H 0, S(3)]+ . . . = 0, (3.17c)

. . . . . . .

We then obtain automatically generated expressions for Yi =
[
H 0, S(i )

]
, that we present

below up to the 5-th order:4

4 Please note that in Eqs. (3.18), and only there, order of a term is denotes by a lower index. We have generated
Yi functions up to the 8-th order.
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Y1 = −H2 , (3.18a)

Y2 = −H1S1 +S1H1 , (3.18b)

Y3 = −H1S2 +S1H2S1 +S2H1 − 1

2
H2S2

1 +
1

2
S1H0S2

1 −
1

2
S2

1H0S1 − 1

2
S2

1H2 − 1

6
H0S3

1

+ 1

6
S3

1H0 , (3.18c)

Y4 = −H1S3 +S1H2S2 +S2H2S1 +S3H1 − 1

2
H2S1S2 − 1

2
H2S2S1 + 1

2
S1H0S1S2

+ 1
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To calculate Y j we need to know the matrix form of H 0 , H 1 , H 2 in basis that diago-
nalizes H 0, Eq. (2.11), and all S(k) for k < j . We then make use of the fact that

〈
ϕm

∣∣[H 0, S(i )]
∣∣ϕl

〉= (Em −El )S(i )
ml , (3.19)

to calculate S( j ) as

S( j )
ml =

1

Em −El
(Y j )ml . (3.20)
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3.2.2. CALCULATION OF H̃
So far we considered H 0 , H 1 , H 2 to be SymPy symbols, and discussed how one can
obtain S( j ) knowing the matrix form of these quantities. The main goal however is to
obtain effective models that contain one or more free parameters, e.g. momentum or
magnetic field. Let assume that we have following Hamiltonian for a two-dimensional
quantum well

H = H(kx ,ky ,kz ) , (3.21)

where kx and ky are the in-plane momenta, z is the growth direction and kz =−i∂z . In
addition we will assume that our Hamiltonian has Nb orbitals, e.g. Nb = 8 for the k·p
Hamiltonian. When discretized along the z-direction on the grid with N points we have
8N bands. Obtaining an effective model for this system allows us to have model with only
a couple of bands that we choose in context of specified physical scenario.

We therefore divide our Hamiltonian into two parts as

H = H 0 +H ′ , (3.22a)

H 0 = H(kx = ky = 0,kz =−i∂z ) , (3.22b)

H ′ = H −H 0 . (3.22c)

We discretize H 0 and diagonalize it to obtain eigenstates
{∣∣ϕn

〉}
with energies En . We

then express perturbation H ′ as a polynomial

H ′ = ∑
α ,β

Hαβ(kz =−i∂z )kαx kβy , (3.23)

where we treat kx , ky as the free parameters. We discretize Hαβ on the same grid as
H 0 and transform them to

{∣∣ϕn
〉}

basis. We obtain H 0 , H 1 , and H 2 , which we use then
to calculate S(i ). Finally we calculate the effective Hamiltonian using Eq. (2.17a) and
truncate all terms that have higher powers of kx and ky than desired order of perturbation.

3.2.3. SIMULATION EXAMPLE: EFFECTIVE MODEL FOR InAs/GaSb QUANTUM

WELL
We now come back to the example of InAs/GaSb, that we discussed in Chapter 3.1.3.
Following the implementation described in previous chapter, we obtain an effective
model for first electron band:

H̃ =
[

0.710k2
x +0.710k2

y +0.672 −0.0261i kx +0.0261ky

0.0261i kx +0.0261ky 0.710k2
x +0.710k2

y +0.6721

]
. (3.24)

In Figure 3.6 we compare the exact k·p-dispersion obtained in Chapter 3.1.3 with the
dispersion obtained from the effective model. Around kx = 0.2/nm, these two dispersions
start to diverge due to increasing strength of the perturbation. From the effective model
we read Rashba coefficient to be |α| = 26meV ·nm.
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is compared to the exact one obtained from the k·p-simulation. LInAs = LGaSb = 5 nm.
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4.1. INTRODUCTION

Topological insulators (TIs) are materials that exhibit a gapped bulk yet enjoy metallic sur-
face or edge states protected by time-reversal symmetry. In particular, two-dimensional
(2D) TIs host helical edge modes—i.e., counter-propagating states composed of Kramers
partners—that underlie quantized edge conductance [1–3]. Consequently, 2D TIs are
often referred to as quantum spin Hall (QSH) systems. The experimentally most studied
QSH systems are now based on semiconductor quantum wells. Following the proposal of
Bernevig, Hughes, and Zhang [4], the QSH effect was first observed in HgTe/(Hg,Cd)Te
quantum wells [5]; various QSH signatures, including quantized edge transport, have by
now been identified in this material [6–9].

In HgTe, the QSH effect originates from an inversion of electron and hole bands that is
intrinsic to HgTe. This inversion can also be engineered in a multilayer quantum well. In
particular, InAs/GaSb quantum wells were also predicted to be QSH systems [10], as they
exhibit a so-called broken gap alignment where the conduction band edge of electrons
is energetically below the valence band edge of holes. Quantized edge conductance has
also been observed in InAs/GaSb [11–13], and the properties of the band inversion and
edge-state transport have since been investigated by several experimental groups [14–20].

The hallmark quantized edge conductance in QSH systems originates from time-
reversal symmetry, which prevents the helical edge states from elastically backscattering
in the presence of non-magnetic disorder. A magnetic field B breaks time-reversal sym-
metry, and common expectation dictates that quantized conductance must break down
in this case. For example, a magnetic field applied to semiconductor-based QSH systems
can directly couple the counter-propagating edge modes, opening up a Zeeman gap in the
edge spectrum. It thus came as a surprise that Ref. [13] measured edge conductances that
remained quantized with in-plane magnetic fields up to 12T—sharply defying theoretical
expectations.

Here we show that, contrary to naive expectations, edge-state transport in semiconductor-
based QSH systems (HgTe and InAs/GaSb) typically exhibits a very weak dependence on
in-plane magnetic fields. We have identified three mechanisms for such robustness: (i)
The effective edge-state g -factor is strongly suppressed compared to the bulk electron g -
factor due to significant heavy-hole contribution in the edge-state wavefunction. (ii) The
Dirac point of the edge states typically resides not in the bulk energy gap, but is hidden in
a bulk band. A Zeeman gap opened by the magnetic field appears only at the Dirac point
and is thus invisible to transport (see Fig. 4.1). (iii) Although the combination of disorder
and a magnetic field generically permits backscattering, it is strongly suppressed away
from the Dirac point due to the nearly anti-aligned spins of the counter-propagating edge
states [see Figs. 4.1(b) and (d)]. This alignment increases for energies away from the Dirac
point. When the Dirac point is buried, one then obtains near-perfect quantization of edge
conductance in a disordered system out to large magnetic fields of order 10T as observed
experimentally.

We note that buried Dirac points have been predicted and observed in several three-
dimensional TIs [21–23]. Our findings suggest that Dirac-point burying is a common
feature also in 2D QSH quantum-well platforms.
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Figure 4.1: Schematic depiction of edge-state dispersions: in the absence of a magnetic field, the edge-state
crossing is topologically protected, but may (a) reside in the gap or (b) be hidden in a bulk band. In a finite
magnetic field, a Zeeman gap opens and the edge-state spins become canted—permitting backscattering as in
(c) However, when the edge-state crossing is hidden in a bulk band, spins within the gap are further away from
the Zeeman gap and nearly anti-align, greatly suppressing backscattering as in (d).

4.2. SUPPRESSION OF g -FACTOR
We first flesh out the suppression of the edge-state g -factor, which is already accessible
from the canonical Bernevig-Hughes-Zhang (BHZ) model [4] written as:

[M −B+(k2
x −∂2

y )]ψ1 + A(kx −∂y )ψ2 = Eψ1; (4.1)

A(kx +∂y )ψ1 − [M −B−(k2
x −∂2

y )]ψ2 = Eψ2. (4.2)

Here A, M , and B± = B ±D are BHZ model parameters, x is the propagation direction,
y is the direction into the QSH bulk, and ψ1,2 respectively denote the electron and hole
part of the wavefunction within one spin sector. The derivation of the effective g -factor is
based on computing the wavefunctionsψ1,2 with a hard-wall boundary condition, similar
to Ref. [24], and is presented in the Appendix. The result is simple and is based on the
relative contributions of electrons and holes in the edge wavefunctions:

geff =
ge B−+ ghB+

B++B−
. (4.3)

Here ge and gh are electron and hole g -factors, respectively. Equation (4.3) shows that the
effective g -factor of the edge states is the weighted sum of the electron and hole g -factors
with their corresponding inverse masses as pre-factors.



4

52 4. ROBUST HELICAL EDGE TRANSPORT IN QUANTUM SPIN HALL QUANTUM WELLS

Typically, gh is much smaller than ge ; in fact gh = 0 by symmetry in [001] quantum
wells [25]. Moreover, the hole mass usually far exceeds that of electrons, i.e., B− ¿
B+. Together these properties suppress the effective edge-state g -factor considerably
compared to bulk values.

We have performed k·p simulations (see Appendix for details) to obtain numerical
values for the g -factor in experimentally relevant geometries. For InAs/GaSb we find an
edge-state g -factor geff ∼ 2, whereas for HgTe we find geff ∼ 8−10 (in our conventions
the Zeeman gap is geffµB B , with µB the Bohr magneton). In contrast, the bulk electron
g -factors are g ∼ 6−8 in InAs/GaSb and g ∼ 30−60 in HgTe.

4.3. DIRAC-POINT BURYING FROM k·p MODELS
In the ‘pure’ BHZ model given above, the edge-state Dirac point always resides in the
gap [24]. Recovering the burying of the Dirac point requires going beyond this minimal
model. To this end we now simulate the full semiconductor heterostructure for the
experimentally relevant InAs/GaSb and HgTe/CdTe quantum wells. In the numerical
analysis we use the 8×8 Kane Hamiltonian [26–28]. Details of the model and material
parameters appear in the Appendix. Using a finite-difference method with grid spacing a,
we convert the continuous Kane Hamiltonian into a tight-binding model. The resulting
energy dispersion are then computed using Kwant [29].

We investigate [001]-grown quantum wells sketched in Figs. 4.2(a) and (b). In par-
ticular, we consider InAs/GaSb with AlSb barrier (layer thicknesses 12.5nm/5nm as in
Ref. [15]), and HgTe with HgCdTe barriers (thickness 7.5nm as in Refs. [6, 9]). Figure 4.2
shows the dispersion for these heterostructures along the [100] direction. We compare
the dispersion for an infinite 2D quantum well without edges (blue lines) to systems of
finite width W (black lines) modeled using hard-wall boundary conditions.

Figures 4.2(c) and (d) respectively illustrate the energy dispersions for InAs/GaSb and
HgTe in the absence of a magnetic field. In both quantum wells we observe that the
edge-state crossing is shifted out of the topological gap and buried in the valence band.
Note that while the crossing itself is topologically protected, its position inside the gap is
not.

The k·p results diverge from the BHZ model due to the presence of additional hole
states that are close in energy to the electron and heavy-hole (HH) bands forming the
inverted band structure. For InAs/GaSb, those states lead to a significant deviation of
the band structure at the topological gap from the BHZ model, which only contains
momentum up to second order. Those states are energetically much further away from
the gap than the size of the gap itself [no additional hole states are visible in Fig. 4.2(c)];
nevertheless, they strongly influence the gap edges at finite momentum, as the coupling
between bands increases with momentum (see Appendix for models that take into ac-
count this interaction). In the case of HgTe a second HH band crosses with the topological
gap. Since it only weakly interacts with the edge state, the Dirac point is deeply hidden in
this additional band.

Figures 4.2(e) and (f) show the energy dispersions in a finite magnetic field. For both
quantum wells, the Zeeman splitting of the edge states remains well-hidden in the valence
band. Note that while the InAs/GaSb bulk band structure and bulk transport therein is
affected by an in-plane field due to orbital effects on the tunneling between the two
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Figure 4.2: (a,b) system geometries used for k·p simulations. (c-f) Band structures for InAs/GaSb (c,e) and
HgTe/CdTe (d,f). For both materials we observe Dirac points buried in a valence band, which obscures the
opening of a Zeeman gap under applied in-plane magnetic fields as in (e) and (f).
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layers [15, 30], this modification neither removes the edge states [31] nor the position of
the edge-state crossing.1
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Figure 4.3: (a) Topological gap of InAs/GaSb as a function of InAs and GaSb well thicknesses. A red dot indicates
a buried Dirac point. (b) Subband edges at the Γ-point of HgTe as a function of HgTe well thickness. The Dirac
point is buried for thickness LH g Te ≥ 7.25nm.

Figure 4.3 summarizes our simulations for different quantum-well thicknesses: Fig. 4.3(a)
shows the topological phase diagram of InAs/GaSb as a function of layer thicknesses (a
non-monotonic behaviour of the topological gap was also previously found in Ref. [32]),
while Fig. 4.3(b) shows the HgTe band edges as a function of layer thickness (here we
only have one parameter). In both cases we indicate when the edge-state Dirac point is
buried—which occurs for most of the topological phase space as expected from our gen-
eral arguments. The edge-state crossing remains in the gap only close to the topological
phase transition; here only two bands interact in a small range of momentum and can be
well-described by the BHZ model.

4.4. MODELLING DIRAC-POINT BURYING VIA EDGE POTENTIALS
So far we have considered the edge of the 2D QSH systems simply as a hard wall. However,
several semiconducting surfaces additionally exhibit a band bending at the interface. A
prominent example is InAs where the band bending can be of the order of 100meV [33,
34]. In fact, band bending has been shown to have significant effects also in InAs/GaSb
quantum wells [35, 36]. Apart from band bending due to details of the semiconductor
surface, gating can also lead to a non-uniform electrostatic potential near the surface,
e.g., due to the change of dielectric constant at the semiconductor/vacuum interface.

A position-dependent potential V (y) that changes only close to the surface (edge
potential) has a strong effect on the edge-state dispersion: within first-order perturbation
theory it leads to a shift ∆E(kx ) = 〈ψ(kx )

∣∣V
∣∣ψ(kx )〉. In particular, since bulk states are

affected little by the edge potential, the edge-state crossing is shifted by ∆E(kx = 0) with

1One can see from Fig. 4.2(e) that the parallel field generates indirect gapless bulk excitations. These bulk states
are, however, expected to be more susceptible to localization compared to the edge states.
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respect to the bulk bands. Thus, if the edge potential is much larger than the topological
gap, it also leads to a burying of the Dirac point. (The edge potential may also give rise to
trivial edge states that are also expected to be insensitive to a magnetic field. In contrast
to topological edge states these are not expected to be protected from scattering, leading
to a length dependence of the edge conductance [35].)

Figure 4.4 shows the burying of the edge-state Dirac point obtained from a finite-width
BHZ model supplemented by an edge potential. We use the BHZ parameters for HgTe
of Ref. [37] and a finite-difference tight-binding model, with an extra potential Vedge at
the outermost lattice point. For Vedge = 0 (red lines) we find the usual dispersion with the
edge-state crossing in the band gap. A finite Vedge 6= 0 (blue lines) leaves the bulk states
nearly unchanged, but indeed moves the edge-state crossing into the bulk.

Apart from potentially being physically present in semiconductor devices, we can also
use the edge potential purely as a tool that leads to a Dirac-point burying within the BHZ
model. This is particularly advantageous for numerical calculations, which are far more
costly for a 3D k·p model.

4.5. QUANTIZED CONDUCTANCE IN STRONG IN-PLANE MAGNETIC

FIELDS
So far we have emphasized generic mechanisms for hiding the edge-state Zeeman gap
within a bulk band. In such cases, observing a clear field-induced edge-state gap through
transport would certainly be challenging. Yet, time-reversal symmetry is broken by an
in-plane magnetic field, and backscattering from disorder is allowed also outside the
edge-state Zeeman gap. Naively, a magnetic field should thus lead to an appreciable
breakdown of the conductance quantization.

We will now argue that, in practice, conductance may stay nearly quantized even in
very strong magnetic fields (B ≥ 10T): from Fermi’s golden rule we find that the mean free
path of edge states in a disordered potential is given as [38]

ltr = cħ2vF

V 2
disξ

(
δµ

geffB

)2

. (4.4)

Here, vF is the edge-state velocity, c is a numerical factor ∼ 1, δµ is the energy with re-
spect to the edge-state crossing, and we assumed uncorrelated disorder 〈V (x)V (x ′)〉 =
V 2

disξδ(x −x ′). In the bulk-insulating regime, burying of the edge-state crossing implies
that δµ must be of order or larger than the gap size. Together with the strong suppression
of the edge-state g -factor geff discussed earlier, (δµ/geffB)2 then is a large factor. Physi-
cally, this suppression of backscattering away from Dirac point originates from the fact
that kinetic energy efficiently anti-aligns spins of the edge state away from the Zeeman
gap even in presence of magnetic field; recall Fig. 4.1(d). In practice, the suppression of
scattering presented here may rival that arising from bona fide topological protection at
zero magnetic field.

To further quantify the suppression of backscattering, we have performed conduc-
tance calculations for a disordered BHZ model, with and without edge potential, i.e., with
and without burying of the Dirac point. As for the results sketched in Fig. 4.4(a), we use the
HgTe parameters from Ref. [37], and compute transport through a rectangular region of
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Figure 4.4: (a) Band structure and (b-d) transport calculations for the BHZ model with (blue) and without
(red) an additional edge potential Vedge. Transport calculations were performed for a disordered system at
(b) zero field and (c) with an in-plane field Bx = 8T. (d) Transport calculation at fixed µ= 3 meV. All transport
calculations are averaged over 50 different disorder realizations, with parameters Vedge =−0.14eV, U0 = 0.05eV,
L = 4000nm, W = 1000nm, and finite difference grid spacing a = 4nm.

length L and width W . We use a random disorder potential drawn independently for every
lattice point from the uniform distribution [−U0/2,U0/2], and compute the conductance
using Kwant [29]. At zero magnetic field [Fig. 4.4(b)] both models show almost identical
transport properties. In particular, the conductance in the gap is perfectly quantized
due to topological protection. This behavior changes drastically once a strong in-plane
magnetic field is applied [Fig. 4.4(c)]: Without edge potential, the conductance drops well
below the quantized value of 2e2/h. Disorder leads to backscattering within the complete
range of energies in the topological gap (not only the small Zeeman gap opened in the
edge-state spectrum). When the edge-state crossing is buried, by contrast, conductance
inside the gap stays almost perfectly quantized. This stark contrast can also be seen in
Fig. 4.4(d) where we plot conductance as a function of magnetic field for a fixed chemical
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potential residing in the bulk gap.

4.6. CONCLUSIONS
In contrast to common expectation, we have shown that the edge-state conductance
quantization in semiconductor QSH systems can be surprisingly robust against in-plane
magnetic fields. This may be a possible explanation for the surprising findings of Ref. [13],
and we could expect to find similar robustness in HgTe. Our findings also highlight a
challenge for proposals to use QSH edges as a Majorana platform [39, 40]: Localizing
Majorana zero modes requires the ability to align the chemical potential within the edge-
state Zeeman gap, which could require exceedingly large fields if the Dirac point is buried
in a bulk band. A good strategy to overcome this obstacle is to operate in a regime closer
to the topological phase transition where the edge-state crossing remains in the gap
(if edge potentials are unimportant). Alternative, a side-gate might be used to apply an
electrostatic potential to move the Dirac point back in the topological gap. These strategies
may also allow one to finally observe a strong in-plane magnetic field dependence that
would distinguish topological from trivial edge states—the latter naturally exhibiting little
field dependence.

While finishing this work, we became aware of a related preprint [41] that found a
hidden Dirac point in the band structure of InAs/GaSb within an effective 6-band model,
in qualitative agreement with our full k·p calculations.

4.7. SUPPLEMENTARY INFORMATION

4.7.1. k·p SIMULATIONS
We use the standard 8×8 Kane Hamiltonian [26–28] for semiconductors in our numerical
band structure calculations, that we discussed in Section 2.3. The material parameters in
this Hamiltonian are position-dependent due to the layered structure, and care has to be
taken to symmetrize the Hamiltonian. Following the approach put forward by Burt and
Foreman [42, 43], as described in Section 2.3.5.

The band parameters for InAs/GaSb and HgTe quantum wells are given in Table 2.5
and Tabe 2.6, respectively.

We perform all k·p simulations by discretizing the Hamiltonian (2.64) using a grid
spacing of a = 0.5nm. For 2D bulk dispersion we only discretize z-direction, when
calculating the edge dispersion we discretize both y- and z-directions. We calculate all
band structures by treating momentum kx as number, which we simple denote as k in
the figures.

In all simulations we consider magnetic field B = B ŷ along y-direction. We include
magnetic field through Zeeman and orbital effect. We add the orbital effect through a
vector potential

Ax = B(z − z0) , (4.5)

where z0 is a coordinate offset which will be of relevance for finding effective models. We
include the vector potential in Hamiltonian by making the substitution

kx → kx + 2π

φ0
Ax , (4.6)
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where φ0 = h
e is the flux quantum. In the regime of parameters used in simulation this

method gives the same results as using Peierl’s substitution on the tight-binding level. We
decided to use for this route due to its advantages for obtaining effective models that we
describe in next section.

4.7.2. HIGHER-ORDER EFFECTIVE MODELS FOR InAs/GaSb
We obtain effective models using quasi-degenerate perturbation theory, also known
as Löwdin partitioning [25, 44–46], that we discussed in detail in Section 2.1.2. We use
implementation discussed in Section 3.2. We have derived effective models for InAs/GaSb
quantum well with layer thickness 12.5nm/5nm in Fig. 4.5.

In Fig. 4.5(a) we show the bulk k·p band structure of this quantum well on a larger
energy range. As for the BHZ model, we choose the electron-like state E1 and the heavy-
hole state HH1 as the basis of our perturbation theory. Other hole states such as LH1 and
HH2 are close, but still further away in energy than the inversion gap. Still, as we will see,
they have a significant influence.

We have numerically derived 4× 4 effective models with momenta up to second
order (this is equivalent to the BHZ model including linear and quadratic spin-orbit
terms similar to [47]) and third order. The comparison of the full k·p band structure with
the second order model in Fig. 4.5(b) shows the limits of this approximation clearly: in
particular, the hybridization gap is far too small. Only after including third order terms
(Fig. 4.5(c)) do we find a satisfactory agreement. These third-order terms are (at least
partially) due to interactions with hole states that are further away in energy. These still
have a significant influence on the band structure at finite momentum.

In Fig. 4.5(d) we show the dispersion in a strip of finite width W (black lines), with
edges along the [100] direction. We observe that the Dirac point of the edge states is
clearly buried in the bulk valence band. In particular, we observe that this burying is due
to the anisotropy of the hole band structure: the hybridization gap in [110] direction is
very different from the hybridization gap in [100] direction. As seen above, to describe
this anisotropy faithfully, we needed to take into account the further-away hole bands in
the form of higher-order momentum terms.

4.7.3. DERIVATION OF THE SUPPRESSION OF THE EDGE-STATE g -FACTOR

To derive the edge-state wavefunction we start from the BHZ model (4.1), (4.2). In this
section we re-derive the results of [24], on which we build our g -factor derivation. The
wavefunctions for the edge states decay into the bulk and can be written as

Ψ1,2 =Ψ±λ1,2 y
e , (4.7)

where:

λ2
1,2 = kx +F ±

√
F 2 − (M 2 −E 2)/B+B−, (4.8)

F = A2 −2(MB +ED)

2B+B−
. (4.9)
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Figure 4.5: Effective models for InAs/GaSb quantum well with layer thickness 12.5nm/5nm. (a) k·p dispersion
of 2D system with labelled bands. We compare 2nd order (b) and 3rd (c) continuous dispersions of effective
models with exact k·p dispersion from plot (a). We see that 2nd order effective model underestimates the
topological gap, and therefore does not describe properly investigated system. (d) Tight-binding dispersion of
bulk (blue) and edge (black) system made from 3rd order effective model. We observe that Dirac point is buried
in the valence band. We discretized effective model with grid spacing a = 2nm. Width of the system used to
simulate edge states is W = 800nm.

Plugging this back into the BHZ model (4.1) and (4.2):

[M −B+(k2
x −λ2

1,2)]ψ1 + A(kx ∓λ1,2)ψ2 = Eψ1; (4.10)

A(kx ±λ1,2)ψ1 − [M −B−(k2
x −λ2

1,2)]ψ2 = Eψ2. (4.11)

The two spin sectors are different by the sign of A, therefore the decay length is the same
for the opposite spins.

Let us now solve for the decaying solutions in half-space y > 0 with hard-wall bound-
ary conditions at y = 0. The condition that the wavefunction can vanish at the hard wall
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is the same as requiring linear dependence of the decaying solutions at y = 0:

(ψ1/ψ2)1 = (ψ1/ψ2)2, (4.12)

where outer index is enumerating the decaying solutionsΨ1,2. Therefore:

M +E −B−(k2
x −λ2

1)

A(kx −λ1)
= M +E −B−(k2

x −λ2
2)

A(kx −λ2)
. (4.13)

Let us solve the equation for the crossing point of the edge dispersion, where due to
time-reversal symmetry kx = 0, therefore:

λ2(M +E +B0λ
2
1) =λ1(M +E +B0λ

2
2). (4.14)

Then we use that λ1λ2 =
√

M 2−E 2

B+B− , and get:

(E +M)λ2 +B−λ1

√
M 2 −E 2

B+B−

= (E +M)λ1 +B−λ2

√
M 2 −E 2

B+B−
. (4.15)

This equation has a solution if:

E +M −
√

B−/B+
√

M 2 −E 2 = 0. (4.16)

Therefore, the crossing is at E =−M D
B . Note that the result has correct limit E = 0 when

the bandstructure is symmetric, D = 0.
We now proceed with the solution by computing the matrix element of the Zeeman

energy between the two edge states at the crossing point, where the gap is opened. Let
us denote ψ2/ψ1 = r . For opposite spin the ratio is ψ′

2/ψ′
1 = r∗, therefore if we use the ge

and gh (electron and hole bulk in-plane g -factors), the effective edge g -factor is:

ge f f =
ge + gh |r |2

1+|r |2 . (4.17)

For the parameters of the crossing point (E = −MD/B , kx = 0) we get from (4.13) and
(4.16):

|r |2 =
∣∣∣∣∣ MB++BB+λ2

1

MB−+BB−λ2
1

∣∣∣∣∣= B+
B−

. (4.18)

This gives simply (4.3) from the main text.

4.7.4. NUMERICAL VALUES FOR g -FACTORS IN InAs/GaSb AND HgTe/CdTe
QUANTUM WELLS

Using Löwdin partitioning, we compute the g -factor of the electron states in the 4×4
model, by doing perturbation in By instead of momenta. This is a gauge-invariant quantity
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in the HgTe quantum wells due to inversion symmetry. However, it becomes gauge-
dependent in InAs/GaSb due to the linear spin-orbit terms that are essential in this
strongly asymmetric structure. We fix the gauge z0 by demanding that the off-diagonal
matrix elements between E1 and HH1 do not depend on B . This is the same gauge as
used in [32].

In Fig. 4.6 we show the bulk g -factors as a function of quantum well width for both
types of quantum wells, together with the value of the effective edge g -factor obtained
from (4.3) using parameters B and D from the derived effective model. As discussed in
the main text we observe a strong suppression of the effective edge g -factor compared to
the bulk value.
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Figure 4.6: bulk and effective edge-state g -factors for (a) InAs/GaSb and (b) HgTe/CdTe quantum wells.
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5.1. INTRODUCTION
The semiconductors InAs and GaSb have small band gaps together with a crystal inver-
sion asymmetry resulting from their zincblende structure. These materials are therefore
predicted to have strong spin-orbit interaction (SOI) [1, 2] which has been measured
experimentally [3]. Moreover, tuning of the Rashba strength by electrostatic gating has
been shown for InAs quantum wells [4, 5]. Strong and in-situ control over SOI is a promis-
ing route towards novel spintronic devices [2, 6, 7], and strong SOI together with a large
g-factor and induced superconductivity are ingredients for a topological superconducting
phase [8].

Combining InAs and GaSb in a quantum well gained much interest because of the
type-II broken-gap band alignment [9]. As a result, the GaSb valence band maximum is
higher in energy than the InAs conduction band minimum, opening a range of energies
where electrons in the InAs coexist with holes in the GaSb. The spatial separation of
these electron and hole gases allows for tunability of the band alignment using an electric
field. Therefore, a rich phase diagram can be mapped out using dual gated devices
[10, 11]. Although spatially separated, strong coupling between the materials allows for
electron-hole hybridization which opens a gap in the energy spectrum when the density of
electrons equals that of holes [12, 13], driving the band structure topologically non-trivial
[10].

Interestingly, the magnitude of this hybridization gap is spin dependent due to SOI
[14–16]. Therefore, a spin polarized state is seen at energies close to the hybridization
gap [17] and at higher energies a dip in the spin-splitting is expected [18]. The latter
has yet to be observed and indicates a competition between electron-hole hybridization
and spin-orbit interaction. Here, we experimentally study SOI through the difference
in density of the spin-orbit split bands of an InAs/GaSb quantum well. This zero-field
density difference (∆nZF) is extracted from magnetoresistance measurements. First, SOI
is investigated in the regime where the GaSb is depleted from carriers. Rashba and
Dresselhaus SOI strengths can be extracted from measurements of ∆nZF . Second, SOI
is investigated just above the hybridization gap where ∆nZF almost vanishes, consistent
with band structure calculations.

5.2. EXPERIMENT DETAILS

5.2.1. MATERIAL
A 20 µm wide and 80 µm long Hall bar device is defined using chemical wet etching
techniques. A top gate is separated from the mesa by a 80 nm thick SiNx dielectric layer.
The Hall bar is fabricated from the same wafer used in Ref. [11, 19]. The quantum well
consists of 12.5 nm InAs and 5 nm GaSb between 50 nm AlSb barriers. The doped GaSb
substrate acts as a back gate. All measurements are done at 300 mK using standard lock-in
techniques with an excitation current of 50 nA.

5.2.2. PHASE DIAGRAM
Figure 5.1 presents the longitudinal resistance of the Hall bar device as a function of
top gate voltage Vtg and back gate voltage Vbg. The measurement is performed in 2 T
perpendicular magnetic field and therefore shows quantum oscillations resulting from
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Figure 5.1: Longitudinal resistance of the Hall bar device (see bottom right inset) as a function of top gate voltage
(Vt g ) and back gate voltage (Vbg ) at 2 T out of plane magnetic field. Oscillations in resistance originate from
Landau levels and denote lines of constant electron density. The dashed green and white lines indicate regions
with the Fermi level located inside an energy gap. The solid green line separates the region with electrons as
carriers (right) from a region where electrons and holes coexist (left). Line I is situated in the electron regime
and Line II in the two-carrier regime. The insets show the schematic band alignment for both cases.

the changing electron density. Quantum oscillations corresponding to holes are less
pronounced as the mobility of holes in this system is much lower than the mobility of
electrons [11]. For lines parallel to these oscillations, such as line I in Fig. 1a, the electron
density is constant while the electric field changes. Regions of high resistance, indicated
by the dashed white and green lines, correspond to having the Fermi level inside an energy
gap. A detailed description of the phase diagram obtained from measurements on the
same wafer was reported by Qu et al. [11].

The green solid line in Fig. 5.1 divides the phase diagram in two regimes. Right of this
line is the electron-only regime, where the GaSb is depleted. The system effectively is an
asymmetric InAs quantum well with a trivial band alignment and a Fermi level residing in
the conduction band (see inset of Fig. 1a). In this regime we investigate ∆nZF along line I,
where the electron mobility is highest while only the lowest subband remains occupied.
The regime at the left of the green line is the two-carriers regime where electrons and holes
coexist. Line II is chosen to evaluate ∆nZF close to the hybridization gap (highlighted by
the dashed green line). Before discussing the spin-orbit interaction in the two-carriers
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regime (along line II) we first study the electron-only regime (line I).

Figure 5.2: (a) Measured magnetoresistance traces (blue) for points 1-10 along line I together with the simulated
traces (gray). The simulated traces are offset 40 a.u. from the measured traces; the measured traces are offset
by 150 a.u. from each other. The value of Rashba spin-orbit interaction strength α is linearly changed from 73
to 53 mVÅ going from trace 1 to 10. The linear and cubic Dresselhaus interaction strength are kept constant
at β = 28.5 mVÅ and γ = 0 mVÅ3. (b) Corresponding Fourier transforms of the measured traces (blue) and
simulated traces (gray), i.e. a reproduction of Fig. 3c.
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5.3. ELECTRON REGIME

Figure 5.2 (a) shows magnetoresistance traces for 10 points along line I. The density of
electrons is fixed, while the electric field is changed. We first consider trace 1. Clear
oscillations in the longitudinal resistance Rxx are observed as a function of perpendicular
magnetic field B modulated by a beat pattern. These Shubnikov-de Haas (SdH) oscil-
lations appear for each single spin band and are periodic in 1/B with a frequency that
relates to the carrier density via n = e/h · f [3, 20]. The beat modulation observed in trace
1 is caused by two slightly different SdH frequencies f1 and f2 . This is also evident from
the fast Fourier transform (FFT) of the magnetoresistance trace F [Rxx (1/B)] presented in
the first curve of Fig. 5.2 (b). These two SdH frequencies indicate two distinct densities n1

and n2 , that corresponds to different spin species.

Upon moving from point 1 to 10 along line I, two trends are observed. First, an extra
frequency peak emerges in the FFTs at ( f1 + f2)/2. This originates from the asymmetry
between adjacent beats in the SdH oscillations, visible both in amplitude and number of
oscillations of beats A and B in Fig. 5.2 (a). Second, the spacing between the outer peaks
in the FFT spectrum decreases, evident from decreasing ∆nZF over line I in Fig. 5.2 (c).
This arises from an increasing number of oscillations in both beats A and B, which also
pushes the beat nodes to lower magnetic fields. Before we extract the actual SOI strengths
and show its electric field dependence, we first elucidate the origin of the emerging center
frequency peak.

The center frequency, interestingly, does not correspond to an actual density. The
sum of the densities n1 and n2 (corresponding to the outer peaks in the FFT) still equals
the Hall density. There are, however, mechanisms involving scattering between Fermi-
surfaces that can result in extra frequency components. Such mechanisms are magnetic
inter subband scattering (MIS) [21, 22], magnetophonon resonances (MPR) [23, 24] and
magnetic breakdown (MB) [25–27].

We exclude MIS and MPR. By changing electron density all the frequency peak po-
sitions shift with equal strength. However, the oscillation frequency of MIS and MPR is
determined by the subband spacing and a specific phonon frequency, respectively. Both
do not depend on the electron density. In contrast, for MB the spurious peak always
appears in between f1 and f2. Magnetic breakdown explains this spurious central peak
as carriers tunneling between spin polarized Fermi-surfaces at spin-degeneracy points.
The interplay of Dresselhaus and Rashba SOI in our heterostructure could lead to such an
anisotropic Fermi surface [25, 28]. As the ratio of Rashba and Dresselhaus SOI strengths
approaches 1 magnetic breakdown is enhanced and a central peak is expected [25]. In
order to confirm this hypothesis, we extract the individual Rashba and Dresselhaus con-
tributions by comparing our data to quantum mechanical Landau level simulations that
include the MB mechanism.

5.3.1. LANDAU LEVEL SIMULATION

The quantum well in this electron-only regime is modeled by a Hamiltonian with spin-
orbit interaction in 2D electron systems subject to a perpendicular magnetic field B , as
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given by [1, 2]:

H = ħ2

2m∗ (k2
x +k2

y )σ0 +α(kyσx −kxσy )+β(kxσx −kyσy )

+ γ(ky kx kyσx −kx ky kxσy )+ 1

2
gµB Bzσz , (5.1)

where ki → ki + (e/ħ)Ai is the canonical momentum, σi Pauli spin matrices, α,β,γ the
Rashba, linear Dresselhaus and cubic Dresselhaus coefficients, respectively, ħ the reduced
Planck’s constant, µB the Bohr magneton. An electron effective mass of m∗ = 0.04m0

is measured from the temperature dependence of the SdH oscillations and a g-factor
of −11.5 is used in the calculations [29].1 We solve for the Landau level energies in a
perpendicular magnetic field Bz and extract the resistivity as a function of magnetic field.
For calculations used to simulate the magnetoresistance traces to extract the Rashba and
Dresselhaus coefficients as shown in Fig. 5.2, we closely follow the method present in
Ref. [30] and Chapter 4 of Ref. [1].

For the perpendicular magnetic field B = (0,0,Bz ), the symmetric gauge A(x, y) =
Bz
2 (−y, x,0) is used. The canonical momentum can be written as

ki =−i∂i + (e/ħ)Ai . (5.2)

Raising and lowering operators are defined as

a† = λcp
2

(
kx + i ky

)
,

a = λcp
2

(
kx − i ky

)
,

(5.3)

where λc =
pħ/eB is the magnetic length. The raising operators act on the Landau levels,

i.e. a†|n,↑〉 =p
n +1 |n +1,↑〉. The momentum operators are rewritten in the raising and

lowering operators, which are then substituted into the Hamiltonian. We take a basis of
N = 400 Landau levels in order to capture magnetic fields & 0.1 T for the electron density
ns ' 17.6 ·1015 m−2. Solving the Hamiltonian results in the Landau level energies at a
particular magnetic field E(n,Bz ).

Following Luo et al. [30] the conductance is written as:

σxx = e2

π2ħ
∑

n,↑↓

(
n ± 1

2

)
exp

(
− (E f −En,↑↓)2

Γ2

)
. (5.4)

We assume a fixed Fermi energy at E f = (πħ2ns )/m∗. To obtain the resistivity we use the

approximation that for quantizing magnetic fields
(
σ2

x y Àσ2
xx

)
the transverse resistivity

ρxx is given as [30]:

ρxx =σxx /(σ2
x y +σ2

xx ) ≈σxx /σ2
x y ≈σxx (Bz /ens )2 (5.5)

1Note that this g-factor value of -11.5 is measured on a slightly different stack with an InAs layer of 11.0 nm thick.
We have checked in the simulations that changing the g-factor to -5 or -15 has negligible influence on the SdH
oscillations.
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The parameters α,β,γ in the model are estimated and fine tuned to match the node
positions and the number of oscillations in a beat of the measured SdH traces. Figure 5.2
(a, b) shows the measured SdH data together with the simulated data for traces 1 and 10.
Trace 1 is fitted with α1 = 75 meVÅ, β1 = 28.5 meVÅ, γ1 = 0 meVÅ3 and trace 10 is fitted
with α10 = 53 meVÅ , β10 = 28.5 meVÅ ,γ10 = 0 meVÅ3. The node positions and amplitude
modulation of the simulated data agrees well with the measured SdH oscillations.

Curiously, only good fits are obtained when setting the cubic Dresselhaus term γ to
zero. In 2D systems, β is related to γ via β= 〈k2

z 〉γ , where 〈k2
z 〉 ≈ (π/d)2 is the expectation

value of the transverse momentum [1, 2] in a quantum well of thickness d . So γ should
be non-zero. Currently we do not understand this discrepancy. A recent experimental
study on a similar material system also found that the cubic Dresselhaus term could be
neglected [31].

Now we consider all traces (1-10) and show that the two trends of Fig. 5.2 (emerging
center FFT peak and approaching outer FFT peaks) are reproduced by changing only the
Rashba SOI strength. Figure 5.2 (c) shows the FFTs of the simulated traces where α is
linearly interpolated between α1 and α10 while fixing β= 28.5 meVÅ and γ= 0 meVÅ3.
Linear interpolation is used because the electric field changes linearly along line I, and
Rashba SOI strength depends linearly on electric field [1, 32, 33]. All simulated FFTs and
the SdH traces match the measured data very well, clearly reproducing the emerging
central peak and the approaching outer peaks.

5.3.2. k·p SIMULATION

We now model the system using k·p-method, that we discussed in Section 2.3, adding to
the Hamiltonian previously omitted Dresselhaus term [1]. The system consists of 12.5/5
nm InAs/GaSb quantum well, surrounded by 5 nm of AlSb. We tune the system into the
single carrier regime by applying a constant electric field along the growth direction.

In Figure 5.3 (a) and (b) we show band structure of the system far and close to phase
transition, respectively. We read the spin-orbit coefficients α and β from the effective
models obtained using quasi-degenerate perturbation theory with method described
in Section 3.2. The k·p-simulation stands in qualitative agreement with the results of
the Landau level simulation—the Rashba coefficient α can be tuned by the electric field,
whereas effect on the linear Dresselhaus coefficient β is neglectable.

5.4. TWO-CARRIERS REGIME
In the remainder of this paper we switch to the two-carriers regime, located left of the
solid green line in Fig. 5.1. Electrons in InAs are present alongside with holes in GaSb
(n+p). Here we study the influence of the hybridization of electrons with holes on ∆nZF

by investigating magnetoresistance traces on the points 1-13 along line II.

Before continuing with the measured magnetoresistance traces, it is insightful to
examine the expected band structures at points 1 and 13, as illustrated in Fig. 5.4 (b).
The first point of line II is located near the boundary between the two-carrier and single
carrier regimes. A small amount of holes with a large amount of electrons is present. At
point 13, close to the hybridization gap, the electron and hole densities are roughly equal,
hence the Fermi level E f is close to the hybridization gap. Note also that kcross decreases
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Figure 5.3: Numerical calculation of the spin-orbit interaction in InAs/GaSb quantum well. Applied electric
field tunes system into the single-carrier regime (non inverted band structure). (a, b) Band structure along the
[100] direction. (c) Strength of the Spin-orbit interaction in function of applied electric field. Rashba coefficient
α (blue) reacts strongly to applied electric field, whereas effect on linear Dresselhaus coefficient β (yellow) is
almost neglectable.

from 1 to 13, since the electric field changes.
Figure 5.4 (a) shows the magnetoresistance traces 1-13 along line II. Starting from

trace 1 towards trace 13 we find series of traces with or without beating, depicted in
blue and red respectively. For traces 1 to 3, at large electron density, beating is observed
from which we extract ∆nZF = 1.7 ·1014 m−2 .2 Remarkably trace 4 and 5 do not show any
beating, therefore no zero-field density difference can be extracted. For traces 6 to 10, the
beating revives showing strong beating. Finally, traces 11-13 show no beating. Figure 5.4
(c) depicts the extracted ∆nZF along line II, which shows a non-monotonic behaviour as a
function of gate voltage along line II.

In order to understand this non-monotonic ∆nZF near the hybridization gap (points
1-10) we performed band structure calculations of our InAs/GaSb quantum well. The
∆n extracted from these calculations is plotted in Fig. 5.4 (d), which qualitatively agree
with the observed dip in ∆nZF at points 4 and 5, Fig. 5.4 (c). In order to understand the
simulated ∆n, the band structure near the hybridization gap is depicted in the inset of
Fig. 5.4 (d) (zoom-in in Fig. 5.4 (b) indicated by the red box). The blue and red lines repre-

2We cannot directly extract the spin-orbit strength from this ∆n by comparing to the single-carrier case, since
the effective mass in this region is unknown.
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Figure 5.4: Spin-splitting in the two-carrier regime. (a) Magnetoresistance traces for points 1 to 13 along line II
indicated in Fig. 1. For each trace the Rxx (B = 0) background resistance is subtracted and afterwards the traces
are offset by 100Ω. Beating is (not) observed for (red) blue colored traces. (b) Schematic band structure tuning
when moving from point 1 to 13. (c) ∆nZF extracted from the Fourier transform of magnetoresistance traces of
(a). Error bars are indicated by the light blue bar. (d) ∆nZF extracted from band structure calculation for our
InAs/GaSb quantum well at zero electric field. The inset shows the corresponding band structure in the [100]
direction.

sent different spin bands. The bands cross at the black arrow, indicating the vanishing of
∆n, such as observed in the experiment. We found this feature to be robust for different
electric fields and crystal directions. Interestingly, the crossing of spin bands implies a
sign change in SOI strength. Opposite signs of SOI can thus be reached by adjusting the
chemical potential. Usually, electric fields are applied to reach such a sign change [34].

Note that only qualitative comparison between experiment and calculations is pos-
sible as only the Fermi-energy is varied in the simulation, while in the experiment the
band structure (kcross) and Fermi-energy are expected to change. The fact that ∆nZF in
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Fig. 5.4 (d) does not completely vanish is because the crossing of the spin bands in the
[110] occurs at a slightly different energy than in the [100] direction.

The lack of beating of traces 11-13 is not captured with the simulation. There are two
possible reasons for this deviation. First, a strong asymmetry in SdH amplitudes of the
two spin species (Aup À Adown) determines the visibility of the beating pattern. The single
spin band SdH oscillation amplitude depends on effective mass m∗ and scattering time
according to ASdH ∼ (eB/m∗)3 exp(−π/ωcτ) [30]. Both effective mass and scattering time
for the two spin bands become very dissimilar when approaching the hybridization gap,
as a result that the beating visibility is reduced to below the experimentally detectable
visibility. Second, Nichele et al. [17] shows there is an energy window with only one single
spin band present. In such spin polarized state no beating can occur. Here, we cannot
discriminate between these two reasons that explain the lack of beating in traces 11-13.

5.5. CONCLUSIONS
In conclusion, we presented a study of the spin-orbit interaction in an InAs/GaSb double
quantum well. The Fermi-level and band structure are altered by top and bottom gates. In
the electron-only regime we find a electric field tunable spin-orbit interaction, and extract
the individual Rashba and Dresselhaus terms. In the two-carriers regime we observe a
non-monotonic behavior of the spin splitting which we trace back to the crossing of the
spin bands due to the hybridization of electrons and holes.

5.6. SUPPLEMENTARY INFORMATION

5.6.1. FOURIER TRANSFORMS
The Fourier transforms in this manuscript are obtained using the method described here.
Starting from a magnetoresistance curve, first a magnetic field range is chosen. The lower
bound is fixed at 0.15 T. The upper bound is chosen such that the interval ends at 40% of a
beat maximum. Truncating the signal in this way causes minimal deviation from the true
frequency components. Next, the background resistance is estimated using a 6th order
polynomial fit, which subsequently is subtracted from the signal. The remaining signal
is interpolated on a uniform grid in 1/B and padded with zeros on both sides. No extra
window function is applied. A fast Fourier transform converts the signal to the frequency
domain R(ω) and the power spectrum is obtained using P (ω) = R(ω)×R∗(ω). All Fourier
transforms are normalized such that the maximum is 0.8 a.u.
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5.6.2. BAND STRUCTURE CALCULATIONS FOR MULTIPLE ELECTRIC FIELDS

Figure 5.5: (a-c). Result of band structure calculations along [100] for electric fields ~E =−4 mV/nm, 0 mV/nm
and +4 mV/nm respectively. The spin-split bands of the conduction band are colored red and blue for clarity.
(d) The ZFSS extracted from these band structures. For all electric fiels a minimum in spin-splitting is found,
making this a robust feature of an inverted band structure.
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6.1. INTRODUCTION
The InAs/GaSb double quantum well (QW) shows a peculiar band alignment, with the
InAs conduction band and the GaSb valence band residing very close in energy. Shifting
the bands by tuning the QW thickness or applying perpendicular electric field yields a
rich electronic phase diagram [1–4]. When the InAs conduction band resides higher than
the GaSb valence band, the band structure of a trivial insulator is obtained. By lowering
the InAs conduction band below the GaSb valence band, a small hybridization gap opens
at finite k-vectors [1]. Beyond topological-insulator behavior, expected to emerge in the
hybridization gap [2, 5–9], the impact of the inverted band structure on transport remains
largely unexplored.

Here, we investigate experimentally and numerically how the combination of spin-
orbit coupling (SOC) and electron-hole mixing results in a giant band splitting in InAs/GaSb
heterostructures close to the hybridization gap. The two resulting subbands, with op-
posite spin-orbit eigenvalue and different carrier densities, contribute to transport in
parallel, and can be detected via magnetotransport measurements. These results are
of potential value to semiconductor spintronics, where two-dimensional electron gases
(2DEGs) with sizable spin-orbit splittings at low density are desirable [10].

To quantify SOC directly from experimental data, without relying on any particular
model, we use the spin-orbit polarization (n1−n2)/(n1+n2), with n1,2 the carrier densities
of the split spin-orbit subbands1. In Rashba systems, the larger the SOC parameter α,
the larger the density difference of the subbands at the Fermi energy, with α typically
increasing with density [11]. However, the spin-orbit polarization is usually smaller than
15%, even for 2DEGs with large SOC such as InAs, InSb or HgTe [12–17], while values
up to 40% are reached in GaAs or HgTe hole gases [18–21]. In contrast, we find that the
hybridized band structure of InAs/GaSb results in two striking peculiarities. First, the
spin-orbit polarization increases approaching the charge neutrality point (CNP); second,
the spin-orbit polarization reaches 100%.

6.2. EXPERIMENTAL DETAILS
Experiments were performed on a 12.5 nm InAs, 5 nm GaSb structure patterned in a
100×50 µm2 Hall bar geometry oriented along the [110] crystallographic direction and
covered with a global top gate. Magnetotransport measurements used conventional
low-frequency lock-in techniques at a temperature of 50 mK. Additional information on
the wafer structure, sample fabrication and measurement techniques are provided in
Chapter 6.7.1.

6.3. THEORY DISCUSSION ON THE BAND STRUCTURE
To realistically model our device, we first determine the band alignment as a function of
top gate voltage, VTG, using a parallel plate capacitor model [3] discussed in Chapter 6.7.2.
The model predicts the density dependence for electrons (n) and holes (p) shown in
Fig. 6.1(a). For VTG > −0.2 V only electrons are present in the system, with the kink in
n at VTG =−0.2 V coinciding with the onset of hole accumulation. Once the hole layer

1We use the same subband definition as in Sec. 6.3.1 of Ref. [11].
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CNP

Splitting

Figure 6.1: (a) Expected electron and hole densities dependence on VTG. (b) Numerical band structure calcula-
tion for VTG =−0.4 V. The color indicates the wavefunction main character, solid and dotted lines distinguish
two spin-orbit split subbands. (c) Fermi contours and spin-texture of electron-like states for the Fermi energies
II and III indicated in (b). The axis divisions are 0.2 nm−1, with the black dot indicating the origin. Fermi pockets
at large k-vector are ignored, but further discussed in Chapter 6.7.4.

is populated, it partially screens the electrons from being further depleted via the top
gate. The hybridization gap is expected at CNP, when n = p. The calculated electrostatic
potential is then used for a VTG dependent band structure simulation using standard k ·p
theory, Chapter 6.7.3. In particular, we are interested in the band structure of our system
close to CNP.

The band structure for VTG = −0.4 V is presented in Fig. 6.1(b). The band coloring
represents the calculated wavefunction character (blue for electron-like and pink for
hole-like states, also recognizable from the band curvature) while solid and dotted lines
distinguish the spin-orbit species. In this configuration electron and hole bands are
inverted and hybridized, with a small gap at finite k-vectors. Results for different gate
voltages, shown on Fig. 6.6 in Chapter 6.7.4, are qualitatively similar but with a varying
band overlap. Remarkably, SOC vertically splits the hybridized bands by a sizable amount
resulting in a spin dependent hybridization gap. In this unique band structure, the Fermi
energy can cross a single branch of the spin split bands, as indicated by the energy levels II
and III in Fig. 6.1(b). In these situations the system contains both electron- and hole-like
carriers, and the carriers of the same kind are fully spin-orbit polarized. This effect is
prominent close to the band crossing and negligible far from the hybridization gap [see I
and IV in Fig. 6.1(b)], as expected for individual InAs and GaSb QWs. While the gap size
and the bands overlap depend on VTG, the giant splitting at the CNP is a generic feature
of the model. Qualitatively similar results were also obtained in previous calculations
[2, 22–24]. The simulation is consistent with our experiments, where we measure no clear



6

82 6. GIANT SPIN-ORBIT SPLITTING IN INVERTED InAs/GaSb DOUBLE QUANTUM WELLS

gapped region at the CNP, but a giant spin-orbit splitting of electron- and hole-like states.
Fermi contours for energy levels II and III are shown in Fig. 6.1(c), together with the

calculated spin texture of electron-like states. The model indicates Rashba-like spin
orientation with spins nearly perpendicular to the momentum direction, with small
deviations due to the absence of axial symmetry. This situation is reminiscent of Dirac
materials such as graphene or three-dimensional topological insulators, and signatures
of Berry phase effects can be expected. Hole-like states are instead highly anisotropic.

6.4. MAGNETOTRANSPORT MEASUREMENTS

6.4.1. LOW FIELD Rxx AND Rx y DATA

Magnetotransport measurements, shown in Fig. 6.2, confirm the sample has an inverted
band structure, and is tunable from a pure electron regime to a mixed electron-hole
regime. Typical for high mobility structures [3, 25], the longitudinal resistivity ρxx exhibits
a series of peaks and dips as a function of VTG, as shown in Fig. 6.2(a). The resistance
peaks at VTG =−0.60 V and VTG =−0.35 V are interpreted with the Fermi energy crossing
the CNP and the valence band top respectively [3], as discussed in reference to Fig. 6.3(c).
In Ref. [25] a resistance dip in the hole-dominated region, similar to what we observe at
VTG =−0.75 V, was identified as a van Hove singularity at the bottom of the hybridization
gap.

Figure 6.2(b) shows the transverse resistivity ρx y as a function of perpendicular field
B⊥ for different values of VTG. For VTG > −0.4 V, ρx y has a positive slope, indicative of
exclusively electron-like transport. For VTG ≤ −0.75 V, the ρx y slope reverses at finite
B⊥, a hallmark of the simultaneous presence of electrons and holes in the system. This
behavior persists down to VTG =−1.2 V, indicating a pure hole state is not reached in the
gate range of operation, consistent with the calculation of Fig. 6.1(a).

6.4.2. HIGH FIELD Rxx DATA

The ambipolar behavior discussed above in terms of ρx y also becomes apparent in ρxx

in large perpendicular magnetic fields, where Shubnikov-de Haas (SdH) oscillations and
quantum Hall states develop in the entire gate range [Fig. 6.2(c)]. For VTG ≥−0.2 V we
observe regular electron-like Landau levels (LLs) with Zeeman splitting at high field, as
indicated by the numbering in Fig. 6.2(c), obtained from ρx y . The large resistance increase
as a function of B⊥ for VTG ≈−0.6 V is consistent with an identical number of electron
and hole LLs at the CNP [26, 27].

For VTG ≤−0.5 V electron-like and hole-like LLs coexist, as also evident from the non-
monotonic ρx y [see Fig. 6.2(b)]. In this regime, signatures of electron-hole hybridization
are visible as avoided-crossings between LLs, as previously observed via cyclotron reso-
nances [28, 29]. Based on the analysis presented in Fig. 6.3(c), we assign to the hole-like
LLs the filling factors indicated with negative numbering. Approaching the CNP from
the electron regime, a peculiar closing and reopening of spin-split levels takes place, as
marked with primed numbers. This is associated with the spin-orbit splitting becom-
ing larger than the LL separation. An additional evolution of the LLs takes places for
VTG ≈−0.4 V as indicated with double-primed numbering. As discussed in the following,
this is associated with the depopulation of one split subband. Filling factors assigned to
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CNP

CNP

Figure 6.2: (a) Longitudinal resistivity ρxx as a function of top gate voltage for B⊥ = 0, with the position of the
charge neutrality point indicated. (b) Transverse resistivity ρx y as a function of B⊥ for different values of VTG,
as also indicated by the markers in (a) and (c). (c) ρxx as a function of VT G and B⊥, with positive (negative)
numbering indicating electron-like (hole-like) LLs. Pink dots denotes h-like filling factors and are used to extract
the hole density shown in Fig. 6.3(c).

primed and double primed LLs are confirmed by ρx y measurements.

6.5. ANALYSIS

6.5.1. ELECTRON REGIME
We now address the electron-like states close to the hybridization gap. Low-field SdH oscil-
lations are a powerful tool to study properties at the Fermi surface such as electron density
and effective mass [30, 31]. In systems where two subbands contribute to transport in
parallel, as 2DEGs with strong SOC, the SdH oscillations manifest a beating pattern given
by the superposition of two sets of oscillations with different 1/B⊥ periodicity [12–17, 32].
The power spectrum of ρxx (1/B⊥) then allows one to extract the density components ni

from the peak frequencies fi as ni = e fi /h [11]. The SdH analysis gives the densities of
the individual subbands and the Hall slope gives the net free charge of the system nHall.
For two spin-split electron-like subbands we expect nHall = n1 +n2.

Figure 6.3(a) shows a zoom-in of Fig. 6.2(c) for the electron regime with the vertical
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CNP

Splitting

Figure 6.3: (a) Longitudinal resistivity ρxx as in Fig. 6.2(c) for VTG ≥−0.5 V as a function of 1/B⊥. The arrows
indicate a beating in the SdH oscillations, visible as aπ phase shift. (b) Normalized power spectrum of ρxx (1/B⊥)
for various gate voltages (data offset for clarity). The frequency axis has been multiplied by e/h to directly show
the subband densities. (c) Color map of the power spectrum as in (b) as a function of VTG. The amplitude of
the power spectrum has been normalized, column by column, to the n1 peak. The solid blue line indicates the
density obtained from the Hall slope, the dashed line marks the n1 peak and the dotted line gives the difference
between the two. Dots indicate the hole density obtained from hole-like LLs in Fig. 6.2(c) with the dashed-dotted
line being a guide to the eye.

axis scaled as 1/B⊥ to make the SdH oscillations periodic. A beating, visible as a π phase
slip, is indicated with arrows. Figure 6.3(b) shows the power spectrum of the data in
Fig. 6.3(a) for five gate voltage values. The frequency axis f has been multiplied by e/h to
directly show the subband densities. At positive VTG, the power spectrum reveals a single
oscillation frequency. Decreasing VTG, the peak moves to lower electron densities and
gradually splits into two components. The amplitude of the low-density peak decreases
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with respect to its high density counterpart (n1) until it disappears in the background
for VTG <−0.25 V. The quench of the n2 peak at finite density is compatible with a k 6= 0
minimum in the dispersion relation of the high energy split band, as just above energy II
in Fig. 6.1(a).

Additional insight into the data is gained by comparing the peak positions with the
Hall density. The same analysis as in Fig. 6.3(b) is shown in the color plot of Fig. 6.3(c) as a
function of VTG. The solid blue line indicates the density nHall, extracted from ρx y . The
dashed line tracks the position of the n1 peak in the power spectrum while the dotted
line shows the quantity nHall −n1. For VTG > 0 a single peak is visible in the spectrum
with f e/h = nHall/2. This is consistent with two spin degenerate bands with n1 = n2,
as in scenario I in Fig. 6.1(a). Once the splitting develops, as highlighted in Fig. 6.3(c),
nHall −n1 matches the position of the measured n2 peak. The analysis is extended down
to VTG =−0.46 V, where ρx y does not show indication of hole transport yet. The density
difference between the two subbands gradually increases until nHall = n1 at VTG ≈−0.4 V,
i.e. all mobile charge resides in a single band with n1 = 1.4×1015 m−2. This is compatible
with situation II in Fig. 6.1(a).

6.5.2. ELECTRON-HOLE REGIME

Below the CNP, the electron-like n1 peak coexists with a hole-like state, highlighted with a
dotted-dashed line in Fig. 6.3(c). We confirmed that its position matches the periodicity
of the hole-like LLs [cf. dots in Figs. 6.2(c) and Figs. 6.3(c)]. The hole signature in the
spectrum can either be interpreted as two degenerate subbands p1 = p2, or one spin-orbit
polarized subband p1. Extracting the total density from the Hall slope is less accurate in
this regime due to the non-linearity of ρx y (B), preventing further analysis. Nevertheless,
assuming a single subband p1, as predicted by our model for situation III in Fig. 6.1(b), the
top gate capacitance in the hole regime (−∂p1/∂VTG) matches that in the electron regime
(∂nHall/∂VTG), as expected from the electrostatic model of Fig. 6.1(a). Furthermore, the
absence of Zeeman splitting in the hole-like LL up to high field supports the interpretation
that holes are also fully spin-orbit polarized. Assuming a single hole-like band, the filling
factors indicated in Fig. 6.3(c) with negative numbering are calculated for the hole-like LLs,
consistent with identical filling factor for electron- and hole-like LL (1 and −1 respectively)
being populated at the CNP [26, 27]. From these observation we conclude that a single
and fully spin-orbit polarized hole band p1 is occupied below the CNP, consistent with
scenario III in Fig. 6.1(b).

The intersection between p1 and n1 at VTG ≈−0.6 V determines the CNP, consistent
with Fig. 6.2(b). The crossing of the Fermi energy with the top of the valence band is
inferred to be at VTG =−0.35 V. This matches the peak in ρxx , as seen in Fig. 6.2(a), and
the kink in nHall visible in Fig. 6.3(c) marking a change in gate capacitance as a screening
layer is populated.

6.5.3. NON-DEGENERATE 2DEG
After demonstrating the large splitting at the CNP, we investigate how the large spin-orbit
polarization affects transport phenomena. The zero field polarization of electron-like
states, quantified as (n1 −n2)/(n1 +n2), saturates at 100% for VTG =−0.4 V [Fig. 6.4(a)].
Despite expecting hole-like states in this regime, hole conduction is not experimentally
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Figure 6.4: (a) Spin-orbit polarization of electron-like states as a function of VTG, with markers defined as in (b).
(b) Inverse transverse resistivity, ρ−1

x y , for different top gate voltages, VTG. Inset: Inverse magnetic field positions
of the filling factors ν for different VTG values. Solid lines are linear fits to the data. (c) Phase offset γ of the data
in the inset of (b) extrapolated for 1/B → 0.

detected, either by a slope reversal in ρx y [Fig. 6.2(b)] or additional LLs in ρxx [Fig. 6.2(c)].
This behavior is presumably due to the low mobility of holes in GaSb which, for densities
lower than 5×1014 m−2 may localize. As only electron-like states contribute to transport,
this situation effectively realizes a helical 2DEG. Such a system is reminiscent of the
surface of three-dimensional topological insulators, where the Fermi energy crosses a
single spin resolved band, and might have potential interest for studying topological
states of matter.

The full spin-orbit polarization for VTG ≈ −0.4 V is further confirmed by the quan-
tum Hall plateaus of ρ−1

x y , shown in Fig. 6.4(b). At high electron density (orange line,

VTG = 0.25 V) the plateaus evolve in steps of 2e2/h, as expected for a conventional 2DEG.
For B⊥ > 3 T, Zeeman splitting lifts spin degeneracy resulting in e2/h plateaus. In the
fully polarized regime (red line, VTG =−0.4 V) the plateaus exquisitely evolve as integer
multiples of e2/h from the first visible steps at B⊥ ≈ 400 mT. This is further evidence of
the helical nature of electron-like states, extending also to small magnetic fields. The
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oscillations in the low density plateaus [also visible in Fig. 6.2(b)] are attributed to disor-
der, resulting in a broadening of LLs and an eventual mixing between ρxx and ρx y [33].
We note that the overshoots in ρ−1

x y or an eventual presence of hole-like states do not
compromise the analysis. In fact the density of the system for VTG =−0.4 V is confirmed
within 5% by three independent checks: (i) The slope of ρx y , constant up to B⊥ = 5 T, (ii)
The periodicity of the low-field SdH oscillations, (iii) The magnetic field position Bν of
the νe2/h plateaus in ρ−1

x y , satisfying n1 = νeBν/h.

6.5.4. BERRY PHASE
The unique Fermi level crossing present in our system, together with strong SOC, can
result in a non-trivial Berry phase acquired by electrons on a closed cyclotron orbit, such
as in Fig. 6.1(c). To check this eventuality, we measured the phase offset ϕ of the SdH
oscillations for 1/B → 0, similar to earlier work on graphene [34, 35] and 3D topological
insulators [36, 37]. While conventional 2DEGs have ϕ= 0, materials with a symmetric
Dirac cone exhibit ϕ = 1/2. In a complex band structure as in the present case, the
Berry phase is not expected to be quantized but to vary depending on the details of the
dispersion relation [38]. The inset of Figure 6.4(b) shows the 1/Bν positions of the ν filling
factors for various top gate voltages (markers) together with linear fits (lines) extrapolating
to 1/B → 0. The result of the extrapolation is shown in Fig. 6.4(c). For VTG ≥−0.2 V, all
the curves consistently give ϕ≈ 0, as expected for normal fermions. For VTG =−0.4 V the
extrapolation leads a phase shift ϕ=−0.33±0.05, consistent with a non-zero Berry phase.

6.6. CONCLUSIONS
In conclusion, we studied the band structure of inverted InAs/GaSb QWs via magneto-
transport measurements. Consistent with simulations, electron-like and hole-like states
are fully spin-orbit polarized in proximity of the CNP. We identify a regime where a single
electron-like band with helical spin texture contributes to transport. The 100% spin-orbit
polarization of the system is confirmed by quantum Hall plateaus evolving in e2/h steps
and a non-trivial Berry phase.

6.7. SUPPLEMENTARY INFORMATION

6.7.1. MATERIAL AND METHODS
The wafer structure was grown by molecular beam epitaxy on a [001] oriented GaSb
substrate. From top to bottom it consists of a 3 nm GaSb capping layer, a 50 nm AlSb
insulating barrier, a 5 nm GaSb QW grown on top of a 12.5 nm InAs QW, a second AlSb
barrier and a thick GaSb buffer layer. More information on wafer growth are reported in
Ref. [3, 4, 39].

A 100×50 µm2 Hall bar structure was patterned with conventional electron beam
lithography techniques and wet etching. The Hall bar structure was oriented along
the [110] crystallographic direction. For wet etching we used a general III-V etching
solution consisting of H2O : C6H8O7 : H3PO4 : H2O2 in concentration 220 : 55 : 3 : 3. The
solution was kept at room temperature and well stirred, resulting in an etching rate of
approximately 1 nm s−1. Ohmic contacts were defined by etching the wafer down to the
InAs quantum well and depositing Ti/Au electrodes, without any annealing. The sample
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was covered with a 40 nm HfO2 insulating layer grown by atomic layer deposition and a
global Ti/Au top gate.

Transport measurements were performed in a dilution refrigerator with a base tem-
perature of 50 mK using low frequency (< 100 Hz) lock-in techniques. The amplitude of
the AC currents was always kept small enough (≤ 20 nA) to prevent sample heating. Due
to the onset of leakage currents at finite bias, the device was operated at zero back gate
voltage, where the resistance between the 2DEG and the back gate was in excess of 10 GΩ.
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Figure 6.5: (a) Schematic of the capacitor model for InAs/GaSb quantum wells. (b) Electron (n) and hole (p)
densities obtained from the capacitor model as a function of the top-gate voltage VTG

6.7.2. CAPACITOR MODEL
To estimate the electric fields in the quantum well we use the capacitor model introduced
in Ref. [3] (see Fig. 6.5(a). With the material parameters from Ref. [3] and assuming the
dielectric constant of HfO2 as εHfO2 = 25 we find the geometric capacitances for our
quantum well structure as CT = 135 nF/cm2, CM = 1.6µF/cm2, and CB = 177 nF/cm2. The
quantities Ce and Ch are quantum capacitances [40] that are non-zero only if there is a
finite carrier density. The capacitor model neglects the intrinsic inversion of electron and
hole bands in the InAs/GaSb quantum well, but assumes that the Fermi energy is aligned
with the electron and hole band bottom when the potential in the respective layer is 0V.
Hence, Ce = 2.7µF/cm2 if Ve > 0 and zero else, whereas Ce = 6µF/cm2 if Vh < 0 and zero
else. Ve and Vh are the potential values in the middle of the InAs and GaSb layers.

In our experiments, the back gate is always kept at VBG = 0V. The assumptions of the
capacitor model then imply that for VTG = 0V both electron and hole density are zero. In
the experiment, we however find a nonzero electron density in this case, due to in-built
electric fields. We approximate these electric fields by a finite fictitious back gate voltage
VBG that we fix such that we recover the experimentally measured electron density of
n ≈ 4.5×1015m−2 for VTG = 0V (see Fig. 3 in the main text).
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Even with its simplifications, the capacitor model captures essential features of the
experiment: Fig. 6.5(b) shows electron and hole densities as a function of top gate voltage.
Equal densities of electrons and holes are found around VTG =−0.6V which agrees with
the voltage where the charge neutrality point is found experimentally. Additionally, we
observe that the gate-tunability of the electron density is strongly reduced when holes are
occupied. The finite density of charge carriers in the GaSb (hole) layer lieing between top
gate and (electron) InAs layer screens the electric field. A similar feature is seen in Fig. 3
of the main text. The screening by the hole layer also explains why experimentally the
second electron Fermi surface is never recovered within our gate voltage range.

We note that the capacitor model assumes constant density of states of the electron
and hole layer, and no electron-hole mixing. For this reason, the quantitative results of
Fig. 6.5 are valid in the high density limit, but should be taken with care close to the CNP,
where the density of states shows gaps and singularities.

6.7.3. k·p SIMULATIONS

The numerical band structure simulations use the standard semiconductor k ·p model [41,
42], that we discussed in Section 2.3.

For our simulations, we take the band structure parameters from [43, 44] (summarized
in Table 6.1). The valence band offsets [43] are 0.56 eV for GaSb-InAs, 0.18 eV for AlSb-InAs
and −0.38 eV for AlSb-GaSb.

Table 6.1: Band structure parameters for InAs, GaSb and AlSb at T = 0 K. (Ref. [43, 44])

Eg [eV] ∆ [eV] EP [eV] mc /m0 γ1 γ2 γ3 κ

InAs 0.41 0.38 22.2 0.024 19.67 8.37 9.29 7.68
GaSb 0.8128 0.752 22.4 0.042 11.8 4.03 5.26 3.18
AlSb 2.32 0.75 18.7 0.18 4.15 1.01 1.75 0.31

6.7.4. GATE DEPENDENCE OF THE BAND STRUCTURE

Computing the gate dependence of the band structure of InAs/GaSb quantum wells
quantitatively requires a self-consistent solution of the 8×8 Kane Hamiltonian and the
Poisson equation. This problem involves both electron and hole densities, and while some
approximate approaches have been discussed [45], it has not yet been solved satisfactorily.
For this reason we choose to only take into account the electrostatics due to gating on the
level of the capacitor model. We extract a electrostatic potential V (z), approximating the
voltage drop between the nodes of the capacitor model as linear (this is justified as the
dielectric constants of the different materials differ by at most a factor of 2). This potential
enters the Kane Hamiltonian (2.64) as an additional term on the diagonal. Finally, the
spin texture shown in Fig. 1(c) of the main text are calculated as the expectation value of
the electron spin Pauli matrices σx,y at a constant energy.

The use of the capacitor model is justified in that we only strive to capture the qualita-
tive aspects of the band structure. Further, as we see below, the spin-orbit features depend
little on gating, as they are dominated by the intrinsic inversion symmetry breaking in the
quantum well structure.
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Figure 6.6: Numerical band structure calculation of InAs/GaSb for two crystallographic directions at different
top gate voltages. The band coloring represents the wavefunction character (blue for electron-like sates, red
for hole-like states) while solid and dotted lines distinguish the two spin-orbit split bands. (a) VT G =−0.4 V,
strong band splitting for the two lower bands and significant splitting in the two upper bands. (b) VTG = 0 (only
built in electric field). Still strong spin-orbit splitting in the lower bands, still visible split in the upper bands. (c)
VT G = 0.4 V, significant split in the two lower bands, vanishing split in the upper bands.

We present result of the band structure calculation for different top gate voltage in
Fig. 6.6. We show results for the [110] crystallographic direction on the left hand side of
each plot, and results for the [100] direction of the right hand side. The colors of the band
indicate the wavefunction character (blue for electron-like and red for hole-like states)
while solid and dashed lines distinguish the two spin-orbit split bands. We describe
the proceude used to calculate the colors in Sec. 6.7.5. The biggest effect of the gate
voltage is an change of the k = 0 gap between the hole and the electron bands due to the
electric field. As a consequence, the hybridization gap occurs at larger momenta for more
negative top-gate voltages. At the same time, the hybridization gap becomes smaller and
eventually vanishes. This is consistent with the experiment that finds still a significant
residual conductance at the charge neutrality point.

The spin splitting in the band above the hybridization gap is gate-voltage dependent
(from well visible at VTG = −0.4 V) to nearly vanishing at VTG = 0.4 V)). On the other
hand, the large spin-orbit splitting in the bands below the hybridization gap is largely
independent of gate voltage. Therefore at every gate voltage we can choose a Fermi
level that corresponds to a system characterized by a single electron spin species. The
hybridization gap also changes with gate voltage. For example a large positive gap is
obtained for VT G = 0.4 V). In that situation, and with the Fermi energy placed in the gap
with the help of a back gate voltage, the system would reach the topological insulator
regime. As the top gate voltage is made more negative, the bands overlap increases and
the hybridization gap reduces. In particular, already at VTG = −0.4 V close inspection
reveals the gap is anisotropic and vanishes along the [110] direction. As a result, at the
energy level II of Fig. 1(b) of the main text, four Fermi pockets centered along the [110]
direction could be present. In the present work we believe disorder potential could largely
smear these features, if actually present in our samples. Furthermore their large effective
mass would make negligible their contribution in transport. For this reason their presence
is ignored in the left hand side of Fig. 1(c) of the main text.
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6.7.5. ESTIMATION OF ELECTRON-HOLE MIXING IN MOMENTUM STATES
The wave functions of momentum states that we present in Fig. 1(b) of the main text and
in Fig. 6.6 contain both electron and hole components. Assuming the order of different
wave function components is in agreement with the Hamiltonian of Eq. 2.64, we define

|ψe |2 =
n=2∑
n=1

∫
|ψn(x)|2 d x; (6.1)

|ψh |2 =
n=8∑
n=3

∫
|ψn(x)|2 d x, (6.2)

where

|ψe |2 +|ψh |2 = 1. (6.3)

The blue color on the band structure plots corresponds to pure electron state ,|ψe |2 = 1,
and the pink color corresponds to pure hole state, |ψh |2 = 1. The smooth color variation
from blue to red indicates the mixing of electron and holes states along the energy bands.
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7.1. INTRODUCTION
Early electron spin resonance experiments in the 2D electron gas (2DEG) formed in
AlGaAs/GaAs heterostructures found a reduced Landé g -factor of electrons [1], which
was later theoretically explained to arise due to the electronic confinement [2–4]. It is
by now well established that confinement in a nanostructure leads to a reduction in the
g -factor1 [6]—the subband confinement increases the energy gap, which is inversely
proportional to g∗− g0, where g∗ is the effective and g0 the free electron g -factor [6, 7].
Surprisingly, experiments in InAs [8, 9] and InSb [10, 11] nanowires found g -factors
surpassing the corresponding bulk g -factors by up to 40%.

Recently, this discrepancy has attracted interest due to the experimental discovery
of a zero bias conductance peak in semiconductor nanowires proximity coupled to an s-
wave superconductor [12–17], which is believed to be a signature of the Majorana bound
state [18–20] having possible applications in topological quantum computation [21, 22].
The electron g -factor of the semiconductor nanowire determines the strength of magnetic
field required to trigger the topological phase transition in these systems. It is desirable to
keep the magnetic field low since it also suppresses superconductivity, and thus a large
g -factor semiconductor is desired. Furthermore, Majorana proposals based on magnetic
textures [23–25] and various spintronic devices [26] require large g -factors. Small band-
gap semiconductors like InAs and InSb are therefore the materials of choice for Majorana
nanowires, having large g -factors and strong spin-orbit coupling (SOC).

In a recent experiment with InAs nanowires g -factors2 more than three times larger
than the bulk g -factor (g∗

InAs =−14.9 [6, 27]) were measured [15]. Moreover, it was found
that the g -factor depends very strongly on the chemical potential µ tuned by the gate
potential [28]. For low µ small g -factors where found which can be explained by the
bulk g -factor of InAs. The anomalously large g -factors have been only detected at high
chemical potential µ.

In this work, we present a mechanism that can lead to very large g -factors in higher
subbands of nanowires and similarly shaped nanostructures. With this we can explain
both the large g -factors observed in Refs. [8–10, 15], and the chemical potential depen-
dence [28]. In particular, we find that the orbital angular momentum in the confined
nanostructure plays a crucial role. The lowest conduction subband/state is character-
ized by no or only small orbital angular momentum. In this case the usual reasoning
applies and confinement does lead to a reduction of the g -factor. Higher subbands/states,
however, can have nonzero orbital angular momentum in an approximately cylindrical
structure. Due to strong SOC in small band-gap semiconductors one finds an L ·S-type
spin alignment if the orbital angular momentum L is nonzero. Kramers pairs of opposite
orbital angular momentum form at B = 0, and thus the g -factor obtains an additional
contribution resulting from the coupling of the orbital angular momentum to the mag-
netic field. A similar orbital enhancement of the g-factor is known from the theory of the
hydrogen atom [29] and has also been observed in carbon nanotubes [30, 31]. However,
due to the small effective mass the g -factor enhancement can be orders of magnitude
larger in the semiconducting structures investigated here.

1With the exception of the exchange enhancement of g -factors [5].
2We measure the g -factors in units of the Bohr-magneton µB = eħ

2m0
and use the sign convention where the free

electron g -factor is g0 ≈+2.
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We start by considering cylindrical nanowires and estimate the maximally achievable
g -factor for subbands as a function of their orbital angular momentum. Initially, we
assume independent SU(2) spin rotation symmetry (no SOC) and time-reversal (TR)
invariance without magnetic field. We then introduce magnetic field parallel to the wire,
thus preserving the rotational invariance (both in real space and spin) around the axis of
the wire (z direction in the following).

As the wire is translationally invariant in the z direction, and the conduction band min-
imum is at kz = 0, we restrict to kz = 0 in the following and investigate the wavefunction in
the x y plane only. As a consequence of separate real space and spin rotation symmetries,
the states can be classified by their orbital angular momentum Lz = 0,±ħ,±2ħ, etc. and
spin Sz = ±ħ

2 (for brevity we drop the z subscript in the following and use the lower
case letters for angular momentum in units of ħ). The lowest subband is twofold spin
degenerate

∣∣l = 0, s =± 1
2

〉
, higher subbands with l 6= 0 being fourfold

∣∣±|l |,± 1
2

〉
.

In a simple quadratic band with an effective mass m∗, the momentum and electrical
current are related as J = e

m∗ p . Using the orbital angular momentum L = r×p the orbital
magnetic moment is expressible as

Mo = 1

2
r× J =− e

2m∗ L =−m0

m∗µB l ez . (7.1)

We see that the orbital magnetic moment is enhanced by the low effective mass of the
bands. Because of the fourfold degeneracy, we cannot unambiguously calculate g -factors
and thus next include spin-orbit coupling.

With SOC the orbital and spin angular momentum is no longer separately conserved,
but the total angular momentum fz = lz+sz is still conserved and takes half-integer values.
Without magnetic field the system is TR invariant. As angular momentum is odd under
TR, the degenerate Kramers-pairs have opposite f . Turning on SOC splits the fourfold
degeneracy of the l 6= 0 subbands into two degenerate pairs:

∣∣+|l |,+ 1
2

〉
and

∣∣−|l |,− 1
2

〉
stay

degenerate ( f =±(|l |+ 1
2 )) and so do

∣∣+|l |,− 1
2

〉
and

∣∣−|l |,+ 1
2

〉
( f =±(|l |− 1

2 )), as shown in
Fig. 7.1 (a). Even though the orbital and local angular momenta are no longer separately
conserved their expectation values remain similar for realistic SOC strengths.

The magnetic field B couples to the total magnetic moment M = Mo − g∗ e
2m0

S [4].

Using Eq. (7.1), the Zeeman splitting of a Kramer’s pair
∣∣±|l |,+ 1

2

〉
and

∣∣∓|l |,− 1
2

〉
for a

magnetic field in z-direction is given by ∆EZeeman =µB (g∗±2 m0
m∗ |l |) Bz

2 and the resulting
effective g -factor can be read off

g |l |± 1
2
= g∗±2

m0

m∗ |l | . (7.2)

Below we will see from numerical simulation that this is a good approximation even in a
less ideal case.

This result is analogous to the well known Landé g -factor of the Hydrogen atom when
taking relativistic SOC into account: the splitting induced by weak external magnetic field
has contributions from both the orbital and spin angular momentum [29]. This effect is
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(a)

(c)

(b)
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2
)
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} �El

Figure 7.1: (a) Evolution of the energy levels at kz = 0 in cylindrical symmetry when SOC is turned on. (b) Energy
levels of a cylindrical InSb wire with 40 nm diameter in an axial magnetic field. (c) Zoom in on the |l | = 1 states
marked by the gray rectangle in (b). Dashed lines are l =+1, and solid lines l =−1, states. The spin alignments
are marked by the small arrows and the vertical dashed red line marks Bcrit.

amplified in semiconductor nanostructures because the small effective mass increases
both the orbital magnetic moment and the bulk g -factor g∗ .

7.3. NUMERICAL CALCULATIONS
We next validate our theoretical findings with simulations of nanowires using an eight-
band k·p-model for zincblende semiconductors [6, 32, 33]. At first, we assume perfect
cylindrical symmetry of a nanowire, grown in 001 direction, and employ the axial approxi-
mation [34–36], that we discuss further in Chapter 7.6.1. In this case, the wavefunctions
can be written as [37]

ψ(ρ,φ, z) =∑
n

gn(ρ, z)e i lnφ|un〉 , (7.3)

where |un〉 are the basis states of the 8-band k·p Hamiltonian with local angular momen-
tum jn .3 Since the Hamiltonian conserves the total angular momentum f one obtains
the orbital part of each component as ln = f − jn . If we furthermore focus on an infinite
wire in the z-direction the problem is reduced to a 1D boundary value problem in ρ which
we solve using the finite difference method, Chapter 7.6.2.

Figure 7.1 (b) shows the subband edges of an InSb nanowire of 40 nm diameter. At
B = 0 one generically finds the lowest conduction subband to originate from the |l | = 0
state without SOC. At higher energy there are the |l | = 1 and |l | = 2 states and then another
|l | = 0 state with a higher radial quantum number (not shown). This order of states is
generic as long as the conduction band is approximately quadratic [38]. Figure 7.1 (c)

3Here j takes the role of s in the previous argument, as in these materials the p-type orbitals have nonzero local
orbital angular momentum and are treated as spin-3/2 degrees of freedom.
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Figure 7.2: (a) Diameter dependence of the SOC splitting ∆E1 and ∆E2 for InSb and InAs wires. (b) Diameter
dependence of the critical magnetic field Bcrit defined in Fig. 7.1 (b). (c)((d)) Effective g -factors at infinitesimal
magnetic field of the first five subbands of an InSb (InAs) wire: l = 0, | f | = 1

2 (blue), |l | = 1, | f | = 1
2 (green),

|l | = 1, | f | = 3
2 (red), |l | = 2, | f | = 3

2 (cyan) and |l | = 2, | f | = 5
2 (magenta). The dashed lines in the corresponding

colors are the prediction of Eq. (7.2) where we substituted bulk values.

zooms in on the |l | = 1 subbands. Due to SOC the | f | = 3
2 and | f | = 1

2 states are split at
B = 0 by ∆E1 ≈ 2meV. If a magnetic field B < Bcrit (see Fig. 7.1 (c)) is turned on a splitting
between states of opposite orbital angular momentum l is observed and thus, enhanced
g -factors according to Eq. (7.2). However, when the magnetic field is large, B > Bcrit, states
of the same orbital angular momentum bundle together and their relative slope with
respect to B corresponds to the normal g -factor without orbital contributions. Thus a
splitting ∆El is a crucial ingredient for enhanced g -factors.

Figure 7.2 shows the dependence on the diameter of the nanowire. From the ∆El

dependence it is evident that the wire cannot be made too thick to experimentally observe
the effect with a detectable energy scale, e.g. to distinguish the split energy levels using
Coulomb oscillations [39]. Figures 7.2 (c) and (d) show that at large wire diameters Eq. (7.2)
is reproduced perfectly by numerics, but for small diameters the g -factor enhancement is
reduced by the confinement. Thus, the optimal diameter range where enhancement of the
g -factor is strong and at the same time∆El and Bcrit are large enough is in between 10 and
100 nm. We see that the g -factors of higher subbands can be very large—enhancements
of an order of magnitude compared to the bulk g -factor are possible.

The splitting ∆El is generic if SOC is present, since in a typical semiconductor wire
with SOC there is no symmetry that would protect the degeneracy between states of dif-
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ferent total angular momentum. The conduction band of zincblende semiconductors has
a purely s-orbital character at the Γ-point of the Brillouin zone (BZ), which is insensitive
to SOC. Thus, also the conduction subbands of a zincblende nanowire are mostly derived
from s-orbitals. Any nonzero splitting ∆El results from p-like hole contributions to the
conduction band due to confinement. This explains why the splitting in the conduction
band is so small compared to the split-off energy of the valence bands ∆, which is 0.81 eV
for InSb and 0.38 eV for InAs [6].
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Figure 7.3: (a) Energy levels of the lowest |l | = 1 states as a function of B in a tight-binding simulation of a
hexagonal InSb wire of 20.1 nm diameter, grown in the 111 direction. (b) SOC splitting as a function of diameter
in a cylindrical wurtzite InAs wire.

Since ∆El results from the scattering of states at the surface of the wire, the boundary
conditions impact the numerical value, and even the sign, of ∆El , see Chapter 7.6.1.
Abrupt boundaries can be problematic in k·p simulations [40], therefore, we use tight-
binding (TB) simulations to check the robustness of our results, Chapter 7.6.2. The effec-
tive tight-binding Hamiltonian is generated from the first-principles s and p-like Wannier
functions [41], calculated using the Vienna ab initio simulation package (VASP) [42–45]
with the projector augmented-wave method [46, 47], a cut-off energy of 300 eV, a 8×8×8
Monkhorst-Pack mesh and using the HSE06 hybrid functional [48–50]. Furthermore, the
TB model includes the Dresselhaus term which was neglected for the zincblende k·p
simulations since its effect is found to be very small, Chapter 7.6.1. In Fig. 7.3 (a) we show
the magnetic field dependence of the |l | = 1 subbands in a hexagonal InSb wire. The
g -factors of -59 and +40 and Bcrit ≈ 0.2Tesla agree qualitatively with the k·p-results.

While in zincblende wires boundary effects are dominating, in wurtzite wires the
situation is different: There, the conduction band has a mixed s and p character. Thus,
wurtzite wires have an intrinsic splitting independent of confinement [51]. Using a k·p-
model for wurtzite semiconductors [52], we find a nearly size-independent ∆El of order 1
meV for [0001] grown wurtzite InAs wires for experimentally used diameters of 40 to 160
nm [53], see Fig. 7.3 (b). At very large wire diameters > 200 nm the confinement induced
subband splitting becomes smaller than ∆El , leading to a reduction of ∆El , and at very
small diameters < 20 nm the cubic Dresselhaus term dominates over the linear Rashba
term, causing a sign change in ∆El [54], Chapter 7.6.1.



7.4. LANDÉ g -FACTOR IN SYSTEMS WITH BROKEN CYLINDRICAL SYMMETRY

7

101

0 2 4 6 8 10
E (meV/nm)

200

100

0

100

g

60

65

70

0.0 0.2 0.4 0.6 0.8 1.0
B (Tesla)

55
60
65E

(m
eV

)

0 ◦ 30 ◦ 60 ◦ 90 ◦

α

200

100

0

100

g

(a) (b)

(c)

(d)

(e)

Figure 7.4: (a) Magnetic and electric field directions in the hexagonal 111 wire. (b) The g -factors measured at
0.2 Tesla (α= 0) of a hexagonal InSb wire with 40 nm diameter as a function of a perpendicular electric field. (c)
((d)) Energy levels of the |l | = 1 states as a function of B at an electric field of E = 0meV/nm (E = 3meV/nm). (e)
The g -factors as a function of α measured at 0.2 Tesla in a hexagonal InSb wire with 40 nm diameter. In (b) and
(e) the color code is the same as in Fig. 7.2 (c/d).

7.4. LANDÉ g -FACTOR IN SYSTEMS WITH BROKEN CYLINDRICAL

SYMMETRY
We now consider the effects of broken cylindrical symmetry and solve the full 2D cross
section of hexagonal zincblende wires, grown in the 111 direction, using a 2D discretiza-
tion of the k·p-model [55], Chapter 7.6.3. We allow for symmetry breaking by electric field
and off-axis magnetic field, see Fig. 7.4 (a) for the definitions of the relevant directions.
In experimental situations, the symmetry is generally broken by electric fields, e.g. due
to the backgate for tuning the electron density in the wire [8, 10, 15, 28]. We find that,
especially in higher subbands, the enhanced g -factors are quite robust to an external
electric field.

In Fig. 7.4 (b-d) we simulate a hexagonal InSb wire, of 40 nm diameter, in a per-
pendicular external electric field E . The point group of the wire at E = 0 is C3v and
crossings between states of different angular momentum are protected, as illustrated
in Figure 7.4 (c). At nonzero E the different angular momentum eigenstates hybridize,
which reduces their orbital angular momentum expectation value. However, as shown
in Figs. 7.4 (b) and (d), the orbital contribution to the g -factor remains very significant
until very large fields are applied. Bands with larger values of |l | have larger splitting ∆El

and, therefore, the orbital contribution to their g -factors is more robust and can remain
significantly larger than the bulk g -factor until large electric fields, e.g. see the cyan and
magenta lines corresponding to |l | = 2 in Fig. 7.4 (b).

The electron g -factor anisotropy in the magnetic field of 2DEGs is well established [3,
6, 56, 57]. In our case of orbitally enhanced g -factors in nanowires we expect an even
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Figure 7.5: (a) ((b)) show the local density of states (LDOS) at the end of an InAs wire with 40 nm diameter and
2172 nm length in an electric field of E = 1.2meV/nm and proximity effect induced superconducting pairing
∆= 0.2meV. The chemical potential µ= 39.6meV (µ= 68.5meV) is tuned to the |l | = 1 (|l | = 2) subbands. The
slope of the whites lines amount to a g -factor of 23 (43).

stronger anisotropy. Indeed, the electron spins in subbands with l 6= 0 feel a very strong
orbital magnetic field that aligns them (anti-) parallel to the wire axis. Therefore, a
perpendicular magnetic field first needs to overcome this orbital effect to create a Zeeman
splitting of the states [30, 31].

This is illustrated in Fig. 7.4 (e), where we simulate a hexagonal InSb wire of 40 nm
diameter in a magnetic field of 0.2 Tesla. We show there the g-factor as a function of the
angleα between the magnetic field and the nanowire axis. While the g -factor of the lowest
l = 0 subband is unaffected by the direction of B, the g -factor for bands with l 6= 0 almost
vanishes for perpendicular magnetic field. This strong anisotropy of the electron g -factor
can be used in experiments to prove the important role of orbital angular momentum in
nanowires.

In a Majorana wire circular symmetry breaking by gate potentials and band bending
is mandatory to create a Rashba effect in the wire [19, 20, 58]. The results shown above
suggest that even in such an environment orbital effects still dominate the g -factors of
certain subbands in wires. This is illustrated in Fig. 7.5 (a) and (b), where we simulate an
InAs wire proximity coupled to an Al superconductor, Chapter 7.6.3. When the chemical
potential is tuned to the |l | = 1 and |l | = 2 subbands, the g -factors, extracted from the
slope of the Majorana state forming Andreev bound state, are 23 and 434, respectively.
These g -factors are significantly larger than the bulk g -factor of InAs, thus reproducing
the experimental result of Ref. [15].

7.5. CONCLUSIONS
In summary, we have provided a theory for the previously unexplained large g -factors
observed in nanowires. Our findings help to better understand and optimize Majorana
experiments. Similar results apply to quantum dots. For cylindrical quantum dots we find
that orbital g -factor enhancements are still significant if the length of the dot is much
shorter than its diameter. Due to the observed robustness of the effect, it also applies in

4Our simulations do not include the effects of the superconductor [59, 60], which could lead to a reduction of
the resulting g -factor.
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irregularly shaped quantum dots and can explain g -factor fluctuations there.

7.6. SUPPLEMENTARY INFORMATION

7.6.1. SOLVING CYLINDRICAL NANOSTRUCTURES IN THE AXIAL APPROXIMA-
TION

NUMERIC SIMULATIONS EMPLOYING THE AXIAL APPROXIMATION

The cylindrical symmetry of a quantum wire allows for a considerable reduction in the
computational effort of simulating the wire. To make use of this we furthermore assume
that the zincblende structure itself has cylindrical symmetry by employing the so-called
axial approximation [35]. In this approximation the k·p-Hamiltonian has continuous
rotational symmetry about the principal axis of the crystal. In this section we consider
wires consisting of a zincblende semiconductor grown in the 001 direction and wurtzite
semiconductor in the 0001.

In its simplest form the axial approximation amounts to equalling the two Luttinger-
Kohn parameters γ2 = γ3. We choose to set γ2 = γ3 only in the terms of the Kane Hamilto-
nian [32] that would otherwise break the cylindrical symmetry. For the exact definition of
the Hamiltonian see Tab. V in Ref. [34]. The k·p-parameters of InAs and InSb are taken
from Ref. [6]. Throughout the paper, we avoid spurious solutions by renormalizing the
bare electron mass to γ0 = 5 [33, 61].

Within the axial approximation, the wave-function can be written as [37]

ψ(ρ,φ, z) =∑
n

gn(ρ, z)e i lznφ|un〉, (7.4)

where |un〉 are the basis states for the 8-band k·p Hamiltonian | jtot, jz〉:

|u1〉 = | 1
2 , 1

2 〉, |u2〉 = | 1
2 ,− 1

2 〉, |u3〉 = | 3
2 , 3

2 〉, |u4〉 = | 3
2 , 1

2 〉,
|u5〉 = | 3

2 ,− 1
2 〉, |u6〉 = | 3

2 ,− 3
2 〉, |u7〉 = | 1

2 , 1
2 〉, |u8〉 = | 1

2 ,− 1
2 〉.

(7.5)

The states |u1〉 and |u2〉 derive from s-orbitals, whereas the remaining basis states are
derived from p-orbitals. Since the Hamiltonian is block-diagonal in the total angular
momentum fz one obtains the orbital part of each component lzn = fz − jzn .

The Hamiltonian is transformed into polar coordinates (x, y, z) → (ρ,φ, z)

H Polar
i j (ρ,φ, z) = e−i ( fz− jzi )H Cartesian

i j (x, y, z)e i ( fz− jz j ), (7.6)

where theφ-dependece of H Polar drops out due to the axial approximation. The momenta
kx and ky are transformed by

kx =−i
∂

∂x
=−i (cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
) = cosφkρ − sinφ

ρ
kφ,

ky =−i
∂

∂y
=−i (sinφ

∂

∂ρ
+ cosφ

ρ

∂

∂φ
) = sinφkρ + cosφ

ρ
kφ.

(7.7)

Below we write all the terms that appear in the Hamiltonian and need to be transformed
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(note that kρ and kφ do not commute when the magnetic field is turned on)

k+ = kx + i ky = e iφ(kρ + i

ρ
kφ), (7.8)

k− = kx − i ky = e−iφ(kρ − i

ρ
kφ), (7.9)

(k+)2 = e2iφ[k2
ρ +

i

ρ
kρ + i

ρ
(kρkφ+kφkρ)+ 1

ρ2 (−2kφ−k2
φ)], (7.10)

(k−)2 = e−2iφ[k2
ρ +

i

ρ
kρ − i

ρ
(kρkφ+kφkρ)+ 1

ρ2 (2kφ−k2
φ)], (7.11)

k2
x +k2

y = k2
ρ −

i

ρ
kρ + 1

ρ2 k2
φ. (7.12)

According to Eq. (7.4), in the final matrix elements Hi j , one needs to replace each oc-
curence of kφ by lzn = fz − jzn .

For a uniform magnetic field B in the z direction the vector potential may be taken as

Az = Aρ = 0, Aφ = 1

2
Bρ, (7.13)

which can be included in the simulation by substituting

kφ→ kφ− π

2φ0
Bρ, (7.14)

where φ0 is the magnetic flux quantum.
We solve the system of coupled differential equations for the eigenmodes by rewriting

it first to a generalized eigenvalue problem

Hvn = EnC vn , (7.15)

where H is the Hamiltonian with substituted discretized expressions for the differential
operators. The indices i , j of Hi j run over both the basis states Eq. (7.5) and the discretized
radial positions ρ.

We have to consider boundary conditions of both Dirichlet type vni = 0 and Neumann
type vni −vn(i+1) = 0. If i corresponds to a position with ρ =W , with W being the radius of
the wire, the Dirichlet condition is taken. If i corresponds to ρ = 0 the Dirichlet condition
is taken for lz 6= 0 and the Neumann condition for lz = 0. Thus, the matrix Ci j , which
encodes the boundary conditions, has only diagonal elements which are 1 if i corresponds
to an interior site of the wire and 0 if i is either at ρ = 0 or ρ =W .

ANALYTIC ESTIMATES FOR THE SPIN-ORBIT SPLITTING

We calculate the spin-orbit interaction (SOI) splitting δE of the subbands perturbatively
in the rotational invariant case with γ2 = γ3 in a circular wire. We use the continuum
Hamiltonian in cylindrical coordinates. Starting from the exact solution in the γ1 = γ2 =
γ3 = 0 case [36] we find a splitting that lowers the energy of subbands with parallel orbital
and spin angular momentum using the minimal boundary amplitude condition. This
splitting scales as W −4 for thick wires and as ∆ for small ∆.
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Exact solution of a special case The real-space continuum problem can be exactly
solved for the electron-like wave functions when γ1 = γ2 = γ3 = 0. Following Ref. [36] we
express the hole-like components in terms of the electron-like ones from the Schrödinger
equation, and substitute it back to the electron component equation to get the Helmholtz-
equation {[

P 2

3

(
2

E +E0
+ 1

E +E0 +∆
)
+ γ0

2m0

]
∇2 +E

}
ψeσ(r) = 0 (7.16)

where ∇2 is the Laplacian, E is the (unknown) energy of the state and ψeσ(r) is the wave
function amplitude in the electron-like bands (the equations are identical for the two spin
sectors). The full wave-function, including the hole-like components can be written as

ψ↑(r) =
(

1 0 − k−Pp
2(E0+E)

√
2
3 kz P

E0+E
k+Pp

6(E0+E)
0 − kz Pp

3(∆+E0+E)
− k+Pp

3(∆+E0+E)

)
ψe↑(r)(7.17)

ψ↓(r) =
(

0 1 0 − k−Pp
6(E0+E)

√
2
3 kz P

E0+E
k+Pp

2(E0+E)
− k−Pp

3(∆+E0+E)
kz Pp

3(∆+E0+E)

)
ψe↓(r)(7.18)

where for a cylindrical wire the momenta can be written in cylindrical coordinates as
in Eq. (7.7). The hole-like components of the real space wave-function are obtained by
acting with the differential operators on the electron-like wave-function on the right.

As the equation is invariant under rotations around the z axis and translations along
the z axis, the wave-function can be separated as ψe↑(ρ,φ, z) = Rlσ(ρ)e i lφe i kz z , substitut-
ing this we get the Bessel equation for the radial part(

d 2

dρ2 + 1

ρ

d

dρ
− l 2

ρ2 +χ2
)

Rlσ(ρ) = 0 (7.19)

with

χ2 =−k2
z +E

/[
P 2

3

(
2

E +E0
+ 1

E +E0 +∆
)
+ γ0

2m0

]
(7.20)

where χ is the radial wavenumber and is determined by the boundary conditions. The
solutions can be written in terms of Bessel functions Rlσ(ρ) = Jl (χρ). Setting kz = 0, the
full wave function can be written as:

ψl↑(ρ,φ) =
(

1 0
i e−iφP (l+i kρρ)p

2(E0+E)ρ
0

eiφP (i l+kρρ)p
6(E0+E)ρ

0 0 − eiφP (i l+kρρ)p
3(∆+E0+E)ρ

)
Rl↑(ρ) ,

(7.21a)

ψl↓(ρ,φ) =
(

0 1 0
i e−iφP (l+i kρρ)p

6(E0+E)ρ
0

eiφP (i l+kρρ)p
2(E0+E)ρ

i e−iφP (l+i kρρ)p
3(∆+E0+E)ρ

0
)

Rl↓(ρ) ,

(7.21b)

where we used that the action on our ansatz amounts to the replacement of kφ with l .
The different hole-like Bloch states have different internal angular momentum, but the
total angular momentum of each component is the same, this is manifest in the extra
orbital phase factors in the expression.

The hole-like contribution is proportional to the radial derivative of the wave function.
As the Bessel-functions cannot have both vanishing magnitude and derivative at finite
ρ, it is not possible to demand vanishing of all components of the wave function at



7

106 7. ORBITAL CONTRIBUTIONS TO THE ELECTRON g -FACTOR IN NANOWIRES

the boundary. In the large wire (large W and small χ) limit the hole-like amplitude is
suppressed, so demanding the electron-like component to vanish is approximately a
good boundary condition.

Minimal boundary amplitude boundary condition We assume that the system is infi-
nite, but the states are confined by a large potential V at the boundary. Assuming V is
much larger than any of the energy scales in the problem, then the wave function decays
exponentially outside as

ψ(W ) ≈ e
−(ρ−W )

√
2m∗
ħ2 V

(7.22)

where W is the radius of the wire where the potential step is. The expectation value of

the potential energy goes as
√

ħ2

2m∗ V |ψ(W )|2, so in the large V limit the wave function

amplitude is minimized, and the states get shifted up as
p

V .
We express the magnitude squared of the wave function on the boundary using our

previous expression.

|ψlσ(W,φ)|2 = R2
(
1+ l 2(2a +b)

3W 2

)
+σl RR ′ 2(a −b)

3W 2 + (
R ′)2 (2a +b)

3W 2 (7.23)

where σ=±1 stands for up and down spin,

a = P 2

(E0 +E)2 , (7.24)

b = P 2

(E0 +E +∆)2 (7.25)

are constants with length squared dimension and we introduced the dimensionless

quantity χ′ = χW , such that R = Jl (χW ) = Jl (χ′) and R ′ = W d Jl
dρ (χW ) = χ′ J ′l (χ′). It can

be seen that in the W 2 À a, b limit (for InSb b < a ≈ 10nm2) the total amplitude can
be minimized by minimizing the amplitude in the electron bands. This happens when
χ′ = zl p , the p’th root of Jl .

For finite W we expand around this solution. To get a tractable approximation we can
treat R and R ′ as independent variables and express R that minimizes the amplitude in
terms of R ′:

R =−σlR ′ (a −b)

3W 2 + (2a +b)l 2 . (7.26)

The right hand side does not depend on γ0 and is linear in ∆ for small values and E can
be set to zero for approximate calculations if the subband energy is much smaller than
the bandgap, E ¿ E0. We expand both sides to first order in δχ′ = χ′− zl p and use the
identity5 J ′l (zl p )+ zl p J ′′l (zl p ) = 0 to get

δχ′ =−σl zl p
a −b

3W 2 + (2a +b)l 2 . (7.27)

5This follows from the identity l 2−x2

x Jl (x) = J ′l (x)+x J ′′l (x).



7.6. SUPPLEMENTARY INFORMATION

7

107

101 102 103

wire diameter (nm)

102

100

10-2

10-4

−
∆
E
l
(m

eV
)

l= 1, numerical
l= 1, analytic
l= 2, numerical
l= 2, analytic

101 102 103

wire diameter (nm)

102

100

10-2

10-4

−
∆
E
l
(m

eV
)

l= 1, numerical
l= 1, analytic
l= 2, numerical
l= 2, analytic

(a) (b)

Figure 7.6: (a) ((b)) Diameter dependence of the SOI splitting ∆E1 and ∆E2 for InSb (InAs) wires with soft
boundary conditions. The analytic approximation of Eq. (7.30) is shown for comparison.

Such a change in χ′ effectively renormalizes the radius of the wire and results in
a splitting between states with different total angular momentum. From Eq. (7.20) the
energy E of a state in the smallχ (large W , small l and p and small E ) limit is approximately

El p =
z2

l p P 2

3W 2

3E0 +2∆

E0(E0 +∆)
. (7.28)

where we set χ= zl p /W ignoring SO corrections. Note that this approximation does not
depend on γ0. Substituting χ′ with χ′+δχ′ from (7.27) and expanding to linear order the
energy change induced by SOI is

δEl pσ =−σl
2El p (a −b)

3W 2 + (2a +b)l 2 . (7.29)

In the large W limit the subband splitting is (dotted lines in Fig. 7.6)

El p↑−El p↓ =−l
4z2

l ,p P 4∆(∆+2E0)(2∆+3E0)

9W 4E 3
0 (∆+E0)3

, (7.30)

which for the lowest l = 1 subband gives

E11↑−E11↓ ≈− 1

W 4 687 eV nm4 (7.31)

where in the last approximation we used the renormalized parameters for InSb [33, 61],
note that W is the radius of the wire.

In the above calculation we used the linearized expression for E and set E = 0 in a and
b. A more precise result can be obtained for thin wires by numerically solving the third
order Eq. (7.20) for E with χ′ = zl p (no SOI), substituting it in Eq. (7.27) and calculating
the energy at the modified χ′ by again using Eq. (7.20).

NUMERICAL RESULTS FOR WIRES WITH SOFT BOUNDARY CONDITIONS

All results shown in the main text refer to the hard boundary condition case, where the
wave functions is set to zero at the boundary of the wire. Here we instead apply a step
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Figure 7.7: (a) SOI splitting in the Rashba model wire as a function of wire diameter. The dotted lines are the
analytical result of Eq. (7.33). (b) Rescaled energies as a function of wire diameter. (c) ((d)) SOI splitting (rescaled
energy levels) in an InAs wire obtained by an 8-band k·p-model for wurtzite InAs.

potential, which is set to zero inside the wire and 0.2 eV outside of the wire. This mimics
the minimal amplitude boundary condition referred to above.

Most results, like the g -factors and the magnitude of ∆El , are very similar with soft
and hard boundary conditions. The most striking difference is that, for soft boundary
conditions, and zero magnetic field, the Kramers pair

∣∣±|l |,∓ 1
2

〉
is higher in energy than

the Kramers pair
∣∣±|l |,± 1

2

〉
. Thus ∆El has a negative sign in the soft boundary case.

In Fig. 7.6 we show the SOI splitting for wires with soft boundary conditions. Apart
from the sign, the asymptotic behavior is identical. Especially, the 1

W 4 dependence for
large W , as in Eq. (7.30), is present in both the soft and hard boundary case. Generally,
the agreement of the numerics with the analytic approximation Eq. (7.30) is quite good.

NUMERICAL RESULTS FOR WURTZITE WIRES

Here we consider InAs wurtzite wires in the 0001 growth direction, as they have been
used in Majorana experiments [15]. The main difference in the conduction band of a
wurtzite-type semiconductor to a zincblende one is the linear Rashba-like spin-splitting
in directions orthogonal to the 0001 wurtzite direction [51]. Therefore, the SOI splitting
has a contribution originating from this linear spin splitting. Apart from the origin of
the SOI splitting, the mechanism for the enhancement of g -factors in wurtzite wires is
equivalent to zincblende wires.

We describe the conduction band of wurtzite InAs by a Rashba model

H =−ħ2

2

(
k2

x +k2
y

m⊥
+ k2

z

m∥

)
+α(

σx ky −σy kx
)

. (7.32)

using m⊥ = 0.0416me and m∥ = 0.0370me [54] and α = 0.03eVnm [52]. We solve this
model in an infinite wire geometry using cylindrical coordinates as described above. In
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Figure 7.8: (a) ((b)) The energy levels (g -factors) in a cylindrical InSb quantum dot with 40 nm diameter and
variable length. The g -factors where evaluated at infinitesimal magnetic field. The lowest five distinct angular
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Fig. 7.7 (a) we show the SOI splittings ∆E1 and ∆E2 as a function of wire diameter. For
wire diameters smaller than 100 nm it is approximately constant. For small wire diameters
the SOI splitting is approximately given by [62]

∆El = E(l + 1

2
)−E(l − 1

2
) =−l

2m∗α2

ħ2 , (7.33)

which is in good agreement with our numerical solution. Note that the sign is opposite
from the zincblende hard boundary case. For large wire diameters (around 100 nm) the
subband splitting becomes of similar size as the SOI splitting leading to a reduction of the
SOI splitting. This is also visible in the rescaled energies shown in Fig. 7.7 (b).

While the Rashba model can explain the origin of the SOI splitting in wurtzite wires it
neglects several other aspects like the nonparabolicity of bands and the cubic Dresselhaus
splitting. Therefore, we solve the 8-band k·p-model for wurtzite InAs introduced in
Ref. [52] in cylindrical coordinates. Note, that the model is already axially symmetric
and no further simplification is needed as in the zincblende case. The results are shown
in Fig. 7.7 (c) and (d). For small wire diameter the cubic in k Dresselhaus spin splitting
dominates over the linear in k Rashba splitting and causes an SOI splitting that is different
in sign. At large wire diameter the results are very similar to the Rashba model.

QUANTUM DOTS

The same reasoning as for wires leads to enhanced g -factors in quantum dots with (ap-
proximate) cylindrical symmetry. Cylindrically symmetric quantum dots are simulated in
the axial approximation. Due to the additional confinement in z-direction a 2D boundary
value problem needs to be solved now.

In Fig. 7.8 we investigate the length dependence of the g -factor in a short cylindrical
InSb wire of 40 nm diameter. The g -factors of higher subbands stay larger than the bulk
g -factor even when the wire length is already much shorter than the wire diameter. The
kinks in the g -factors result from level crossings with z-confinement induced subbands.
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Figure 7.9: Tight-binding simulation of a hexagonal InSb wire, grown in the 111 direction, with 20.1 nm diameter.
(a) The g -factor of the lowest five Kramers pairs in the conduction states as a function of B . (b) Energy levels of
the lowest |l | = 1 states as a function of B .

Therefore, besides wires, the enhanced g -factors could be observed in gate-defined
quantum dots embedded in a 2DEG, either of circular or approximately square shape
(the square case is treated below). We also expect orbital contributions to be relevant to
quantum rings hosting possible Majorana bound states [63].

7.6.2. TIGHT-BINDING SIMULATIONS

The k·p approximation is only guaranteed to work for long wavelengths and the zincblende
k·p model used in our simulations neglects the Dresselhaus term, which results from
inversion symmetry breaking. For comparison, we also simulate semiconductor wires in
zincblende structure using highly accurate first-principles derived tight-binding models.
In the tight-binding framework the states are described correctly in the whole Brillouin
zone of the lattice, thus, abrupt changes like a hard boundary pose no problem.

For the first-principles calculations we used the Vienna ab initio simulation package
(VASP) [44, 45] with the projector augmented-wave method, a cut-off energy of 300 eV
and using the HSE06 hybrid functional [48–50]. The BZ integration was faciliated with
an 8×8×8 Monkhorst-Pack mesh. Due to the computational complexity of the HSE06
functional only bulk unit cells were considered directly with ab initio methods. Instead,
wire calculations use an effective tight-binding Hamiltonian generated from the first-
principles Wannier functions [41], by projecting the first-principles wave-function on the
s and p-like orbitals of In, As and Sb. The magnetic field is added via Peierls substitution
to the Hamiltonian [64].

In Fig. 7.9 we show results for a InSb wire grown in the 111 direction and with 20.1
nm diameter. The measured g -factors and the critical magnetic field Bcrit of about 0.2
Tesla agree qualitatively with the k·p-results presented in the main text. We also find that
for the l 6= 0 states the Kramers pair with negative g -factor, corresponding to

∣∣±|l |,∓ 1
2

〉
,

is lower in energy than the one with positive g -factor, which corresponds to
∣∣±|l |,± 1

2

〉
.

Thus, the tight-binding approach gives the same sign of ∆El as the hard wall case in k·p,
justifying our choice of boundary conditions in the main text.
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Figure 7.10: Hexagonal InSb wire with 40 nm diameter with perpendicular electric field. (a) ((b)) Energy levels
of the first ten states as a function of B at an electric field of E = 0meV/nm (E = 3meV/nm). In the E = 0 case
the colors mark different angular momenta. (c) ((d)) Norm squared wave functions of the first five conduction
levels at k = 0 and B = 0 at an electric field of E = 0meV/nm (E = 3meV/nm).

7.6.3. k·p SIMULATIONS WITH BROKEN CYLINDRICAL SYMMETRY

HEXAGONAL WIRES

In the main text we consider hexagonal wires grown in the 111 direction of a zincblende
semiconductor. Again we take the k·p-parameters from Ref. [6]. The 8-band Kane model,
this time without the axial approximation, is taken from Ref. [6] and is discretized on a
simple cubic lattice. Apart from the Majorana simulations we use a lattice constant of 0.5
nm for the discretization. The wire is built and infinitely extended in the 111 direction.
Magnetic and electric fields are added to the lattice Hamiltonian [64]. Note that the simple
cubic discretization conserves all symmetries of the cubic zincblende lattice, thus also
conserving all symmetries of the wire. Sparse diagonalization is finally used to solve for
the eigenenergies and eigenstates of the wire. In Fig. 7.10 we show results for a hexagonal
InSb wire of 40 nm diameter.

In previous 8-band zincblende k·p simulations we neglected the Dresselhaus term.
While we implicitly checked that the Dresselhaus term does not introduce significant
changes via the tight-binding calculation, it is convenient to have a direct comparison of
8-band k·p results with and without Dresselhaus term. The Dresselhaus term is added to
the 8-band k·p Hamiltonian using the definitions and parameters of Ref. [6]. In principle,
the Dresselhaus term should affect the SOI splitting ∆El , like it is the case in wurtzite
wires. However, for InAs and InSb it is too small in magnitude to have a significant effect,
see Fig. 7.11.

RECTANGULAR WIRES

In the main text we focused on hexagonal and cylindrical wires, here we consider now
rectangular wires. The parameters of the simulation are identical to the hexagonal case
apart from the the growth direction which is now 001.

For a simple quadratic band with effective mass m∗ the energy levels at k = 0 of a
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rectangular wire with dimensions Lx and Ly are given by

Enx ,ny =
ħ2

2m∗

[(
nxπ

Lx

)2

+
(

nyπ

Ly

)2]
, (7.34)

with the quantum numbers nx and ny taking on nonzero positive integer values. The
corresponding wavefunctions are given by

ψnx ,ny (x, y, z) = 1√
Nnx ,ny

sin

(
nxπ

Lx
x

)
sin

(
nyπ

Ly
y

)
e i kz , (7.35)

where N (nx ,ny ) is a normalization factor.
In the case Lx = Ly the lowest energy level is E0,0 and the first excited level is two-fold

degenerate E1,2 = E2,1. With SOI the two-fold degeneracy is lifted into two separate states
with fz ≈ 1

2 and fz = 3
2 with SOI splitting ∆E1. Note that due to the C4 symmetry of the

wire the angular momenta fz = {− 3
2 ,− 1

2 , 1
2 , 3

2 } are still in different symmetry sectors.
Therefore, we can still talk of the l ≈ 1 subbands as in the cylindrical case and also the
enhanced g -factors are found.

This is illustrated in Fig. 7.12 where a rectangular InSb wire is simulated. For Lx = Ly

we find ∆E1 and the g -factor for the l ≈ 1 bands similar to the cylindrical and hexagonal
case. The wavefunctions of the second and third state shown in Fig. 7.12 (c) are clearly
angular momentum eigenstates.

Upon deformation of the quadratic wire the geometry splitting of the second and third
state soon surpasses the SOI splitting ∆E1 and g -factors decline rapidly, see Fig. 7.12 (a)
and (b). In the simple quadratic band model the geometry splitting is given by

Enx ,ny −Eny ,nx =
ħ2π2

2m∗

(
1

L2
x
− 1

L2
y

)
(n2

x −n2
y ), (7.36)

which is also found in good approximation in our more sophisticated 8-band k·p calcula-
tion. If Lx and Ly differ enough the geometry splitting exceeds the SOI splitting and the
wavefunctions are no more angular momentum eigenstates, see Fig. 7.12 (d).
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Figure 7.12: Results for rectangular InSb wires with fixed crossection of 40×40 = 1600nm2 and variable ratio of
height to width (Lx /Ly ). (a) ((b)) Energy levels (g -factors) of the first four conduction Kramers pairs as a function
Lx /Ly . (c) ((d)) Norm squared wave functions of the first four conduction states at Lx /Ly = 1 (Lx /Ly = 1.1). The
color code for the Kramers pairs is the same in (a), (b), (c) and (d).

EFFICIENT MAJORANA WIRE SIMULATIONS

The realization of Majorana states requires a proximity induced superconducting pairing
potential in the wire [19, 20]. For the superconducting calculations we transform the
zincblende k·p Hamiltonian in the Bogoliubov de Gennes (BdG) basis and double the
Hilbert space via adding the hole degrees of freedom. Then, we add an s-wave pairing
term ∆̂ to the off-diagonal block of the Hamiltonian [65]

HBdG(kz ) =
(

H(kz ) ∆̂

∆̂† −H∗(−kz )

)
. (7.37)

The s-wave pairing ∆̂ is assumed to be local and is kept constant throughout the wire.
Furthermore, we restrict it to the conduction band s-like orbitals (the |u1〉 and |u2〉 basis
states), which dominate near the Fermi level. It is then of the form

∆̂=∆∑
i

(
c†

i↑c†
i↓+h.c.

)
, (7.38)

where c and c† are annihilation and creation operators and with i running over all sites
and the s-like |u1〉 = i ↑ and |u2〉 = i ↓ basis states.

Differential conductivity measurements in semiconductor nanowires in contact to a
superconductor are an important probe of possible Majorana states [12–17]. Simulating a
realistic infinite wire is already computationally demanding, however, simulating a finite
3D wire long enough to host protected Majorana modes by exact diagonalization would
be a hopeless endeavor using current computer hardware. Using the clever Sancho-Rubio
scheme [66, 67] it is possible to significantly lessen the computational strain to something
which is tractable on modern supercomputers. With the Sancho-Rubio scheme one can
simulate the boundary and bulk Greens function of a wire in an iterative fashion, doubling
the effective wire length in each iteration [68].

We begin by writing the 1D Hamiltonian in a form that has only nearest neighbor
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interactions and is translationally invariant inside the wire

Hwire =


ε α

β ε α

β ε
. . .

. . .
. . .

 , (7.39)

where β=α†. Longer range interactions can be incorporated by artificially increasing the
size of the unit cell such that the effective interactions become nearest neighbor again.
Now one can make use of Dyson’s identity to write the Green’s function Gn=2 at the left
site for a chain of length 2

G−1
n=2 =ω− (ε+α(ω−ε)−1β)︸ ︷︷ ︸

εs
1

, (7.40)

where ω is the energy and εs
1 is an effective Hamiltonian for the left surface site. Equiv-

alently, one can attach two sites to the left and to the right to obtain the effective bulk
Hamiltonian in the middle of a chain of three sites

ε1 = ε0 +α(ω−ε)−1β)+β(ω−ε)−1α. (7.41)

It can be shown that the new effective interactions α1 and β1 for the effective Hamiltoni-
ans ε1 and εs

1 are given by [67]

α1 =α(ω−ε)−1α (7.42)

β1 =β(ω−ε)−1β. (7.43)

Thus the effective Hamiltonian for a system of length 2l a, with a being the lattice constant
of the chain, can be obtained by iterating the following set of equations

αl =αl−1(ω−εl−1)−1αl−1 (7.44)

βl =βl−1(ω−εl−1)−1βl−1 (7.45)

εl = εl−1 +αl−1(ω−εl−1)−1βl−1 +βl−1(ω−εl−1)−1αl−1) (7.46)

εs
l = εs

l−1 +αl−1(ω−εl−1)−1βl−1. (7.47)

The bulk and surface Green’s function are given by Gb = (ω− εl )−1 and Gs = (ω− εs )−1.
In practice a small imaginary part is added to ω to broaden the energy levels for better
visibility.

From the diagonal part of the Greens function we obtain the local density of states
(LDOS) at the boundary of the wire, which is closely related to the differential conductiv-
ity [69]. Due to the increased computational effort a coarser discretization with a lattice
constant of 2.5 nm is used in these simulations.
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States: From Magnetic Tunability to Braiding, Phys. Rev. Lett. 117, 077002 (2016).

[25] A. Matos-Abiague, J. Shabani, A. D. Kent, G. L. Fatin, B. Scharf, and I. Žutić, Tunable
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8
CONCLUSIONS

8.1. CHAPTER 3
We discussed the two numerical methods used in this thesis. First, we proposed a dis-
cretization algorithm that automatizes the process of obtaining a tight binding Hamil-
tonian from a continuous one. The discretization algorithm works with any power of
momentum operators and properly treats all space-dependent parameters in the Hamilto-
nian. The reference implementation has been released as a part of Kwant simulation pack-
age [1]. Second, we discussed an implementation of Löwdin perturbation theory [2, 3].
Our implementation allows to obtain numerically an effective model up to a specified
order of perturbation. The resulting effective models are an analytic polynomial in the
specified free parameters, e.g. magnetic field or in-plane momentum. The reference
implementation is planned to be a part of a future Kwant release. Code is available upon
request.

8.2. CHAPTER 4
We used numerical calculations to analyse band structure and effective models of two-
dimensional InAs/GaSb and HgTe/CdTe heterostructures. A detailed k·p [4–7] analysis
revealed a burying of the Dirac point in the valence band. We showed that together with
a suppression of the edge-state g-factor this mechanism is a plausible explanation why
experiments on quantum spin Hall effect in InAs/GaSb shows extraordinary robustness
to magnetic field.

We found that the burying of the Dirac point is a generic feature for both InAs/GaSb
and HgTe/CdTe systems. The Dirac point is inside the topological gap only close to the
topological phase transition. Localizing the Majorana zero modes requires to align the
chemical potential with the edge-state Zeeman gap [8, 9]. Because of that, the quantum
spin Hall edge states can be used as a Majorana platform only if the Dirac point is located
in the topological gap. We therefore recommend to operate in the regime close to the
topological phase transition where the edge-state crossing remains in the gap.
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Possible continuation of the research could be concentrated on investigating different
growth directions (other than 001) and different direction of edges (other than 100 or 010).

8.3. CHAPTER 5
We investigated the spin-orbit interaction in a dual gated InAs/GaSb quantum well. By
using the back and top gate of the device, it was possible to tune the system from single
carrier (only electron) to two-carriers (both electron and hole) regimes in the experi-
ment [10]. In the single carrier regime, by comparing the Shubnikov-de Haas oscillations
data with the results of Landau level simulations, we extracted the strength of the linear
Dresselaus as β= 28.5 meVÅ and the Rashba coefficient α as between 75 and 53 meVÅ as
the electric field changes. Experimentally, in the two-carrier regime, a quenching of the
spin-splitting has been observed.

Our k·p band structure calculations are consistent with the experimental observations.
We showed that in the single-carrier regime the Rashba coefficientα show strong response
to the change of electric field, whereas effect on β is negligible. In the two-carrier regime
the k·p calculations revealed crossing of the bands with different spin that explains the
experimentally observed quenching of the spin-splitting.

An interesting direction of further research is how the strength of the spin-orbit
interaction depends on the different topological regime (inverted, trivial, close to phase
transition) as well as on the size of topological gap.

8.4. CHAPTER 6
We discussed a giant spin-orbit splitting observed in inverted InAs/GaSb quantum wells.
A fully spin-orbit polarized state has been found in both electron-like and hole-like states.
Hall plateaus evolving in e2/h steps and a non-trivial Berry phase confirmed the 100%
polarization of the system.

In the k·p band structure calculation we observe that bands with different spin have
different energy gaps that is consistent with the experimental observation of full spin-orbit
polarization.

8.5. CHAPTER 7
We discussed the orbital contributions to the electron g -factor in semiconductor nanowires.
First, we investigated problem analytically using the cylindrical approximation. We
showed that an L ·S coupling in higher subbands leads to an enhancement of the g -factor
of an order of magnitude or more in semiconductors with a small effective mass. We
validated our theoretical finding with simulations of InAs and InSb band structure using
the k·p model with axial approximation. Second, we investigated wires with square and
hexagonal cross section without the axial approximation. We showed that the effect
persists even if cylindrical symmetry is broken.

We observed that similar results apply to quantum dots. For cylindrical quantum
dots, we found that orbital g -factor enhancements are still significant if the length of the
dot is much shorter than its diameter. Due to the observed robustness of the effect, it
should also applied in irregularly shaped quantum dots, which may be a subject of further
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research.
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