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ABSTRACT
Stochastic description and simulation of oceanographic variables are essential for

coastal and marine engineering applications. In the past decade, copula-based ap-
proaches have become increasingly popular to estimate the multivariate distribution of
some variables at the peak of a storm along with its duration. The modeling of the
storm shape, which contributes to its impact, is often simplified. This article proposes a
vine-copula approach to characterize hourly significant wave heights and corresponding
mean zero-crossing periods as a random process in time. The model is applied to a data
set in the North Sea and time series with the duration of an oceanographic winter are
simulated. The synthetic wave scenarios emulate storms as well as daily conditions.
The results are for example useful as input for coastal risk analyses and for planning
offshore operations. Nonetheless, selecting a vine structure, finding appropriate copula
families and estimating parameters is not straightforward. The validity of the model,
as well as the conclusions that can be drawn from it, are sensitive to these choices. A
valuable by-product of the proposed vine-copula approach is the bivariate distribution
of significant wave heights and corresponding mean zero-crossing periods at the given
location. Its dependence structure is approximated by the flexible skew-t copula family
and preserves the limiting wave steepness condition.

INTRODUCTION
Wind-induced seawaves affect coastlines, marine structures and offshore operations.

Unfavorable conditions can cause significant morphological change, damages or down-
time. Intuitively, the higher a wave, the more energy it carries and the more destructive
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it is. At beaches and dunes, which act as defenses to coastal developments, high waves
with long periods lead to higher run-up and intensify erosion rates (van Gent et al.
2008). Wave overtopping is also problematic at non-sandy coasts. Moreover, extreme
wave heights and periods can contribute to structural failure of marine structures. In
particular offshore, wave periods close to the resonant heave period of a vessel or a
structure pose an additional threat (e.g., Faltinsen 1993).

Wave heights and periods are strongly interrelated, usually arising from a common
meteorological system. In addition, wave heights are limited by their associated periods
in terms of a so-called maximum steepness condition, which postulates that too steep
waves break and reduce in height. Understanding the joint behavior of wave heights
and periods and being able to estimate possible extreme conditions is important, for
instance, to determine design criteria and for risk analyses of marine structures and
coastal environments (Hawkes et al. 2002; Salvadori et al. 2014; Gouldby et al. 2014)
or for scheduling and budgeting offshore operations (Leontaris et al. 2016). Instead
of considering individual waves, one generally uses statistics that describe the sea
state under stationary conditions. For example, in this article, we concentrate on the
significant wave height, Hm0, and the mean zero-crossing period, Tm02, which are
computed from the zeroth- and second-order moments of the variance density spectrum
of a wave record (Holthuijsen 2010).

Multiple studies have been dedicated tomodeling the dependencies between oceano-
graphic variables. Most common are analyses of maxima or peak over threshold values
to model storms, with variables of interest being, for instance, significant wave heights,
peak wave periods and water levels.

A popular approach is based on copulas, which isolate the marginal properties
from the dependence structure of random variables (e.g., Genest and Favre 2007 for an
introduction). A combination of any copula with any marginal distribution leads to a
valid specification of a joint distribution, enabling representations of a wide range of
complex multivariate behaviors. In the bivariate case, many different copula families
have proven to be useful (e.g., Salvadori et al. 2014; Masina et al. 2015, and references
therein). For more than two oceanographic variables, nested (also called hierarchical)
Archimedean copulas (Wahl et al. 2012; Corbella and Stretch 2013; Lin-Ye et al. 2016)
and elliptical copulas, such as Gaussian or t, (Li et al. 2014a; Wahl et al. 2016; Rueda
et al. 2016) have been implemented and found valuable, but also dependence trees
(Poelhekke et al. 2016) and vines (De Michele et al. 2007; Montes-Iturrizaga and
Heredia-Zavoni 2016), which are a generalization thereof, have been proposed.

Callaghan et al. (2008) and Serafin and Ruggiero (2014) adopt two other approaches
to model dependencies. They use a bivariate logistics model (Tawn 1988) and they
specify parameters for a conditional distribution of one variable based on the value of
the conditioning variable.

Not only the dependencies between variables are important for impact assessment,
but also their temporal evolution; impacts amass during long-lasting or recurring ex-
treme conditions (e.g., Karunarathna et al. 2014, and references therein for impacts on
a sandy beach). Storm sequences (i.e., time series of storm events) have been modeled
as different types of renewal processes (De Michele et al. 2007; Callaghan et al. 2008;
Corbella and Stretch 2013; Li et al. 2014b; Wahl et al. 2016) and storm shapes are

2 Jäger, May 4, 2017



Hm0 

t

Hm0,critical 

D/2D/2

Fig. 1. Illustration of a "triangular equivalent storm" in terms of significant wave height
(Hm0) and storm duration (D).

often approximated by a triangle (Fig. 1) whose size is determined by a peak value
and a critical threshold value of, for example, wave height or water level together with
the storm duration (e.g., Boccotti 2000). For instance, Corbella and Stretch (2012)
and Poelhekke et al. (2016) have used these triangles and the dependencies between
variables at the peak to derive idealized storm time series with high resolution (~1h)
to force numerical, physics-based models that compute resulting erosion and flooding.
Differently, Wahl et al. (2011) apply linear regression to parameterize and simulate the
temporal evolution of total water levels during storm surges.

In this article, we explore a vine-copula approach to represent bivariate time series
of significant wave heights and mean zero-crossing periods. By modeling the two
variables as a stochastic process in time, we do not need to make explicit assumptions
on shape, duration and inter-arrival time of a storm. We model only one time step
explicitly, but simulate time series of arbitrary lengths by assuming stationarity and a
Markov property of order 1. The time series may, for instance, serve as input for coastal
hazard models or offshore operations.

Our aim is three-fold: (1) to present an overview of vine-copula models for time
series, (2) to point out useful copula families for the instantaneous relationship of signifi-
cantwave height andmean zero-crossing period, which safeguard the physicalmaximum
wave steepness, and (3) to set forth a methodology for parsimoniously representing sea
waves as a stochastic process.

Vine-copulas have recently been suggested for time series modeling in the financial
field, for energy research and in the social sciences (Smith et al. 2012; Smith 2015;
Brechmann and Czado 2015; Nai Ruscone and Osmetti 2017). Dependence trees, the
simplest form of a vine-copula, have been applied for environmental time series before:
in a preliminary study for this article (Jäger and Morales Nápoles 2015) and to compute
workabilitywindows for the installation of offshorewind farms based onwind speeds and
significant wave heights (Leontaris et al. 2016). The dependencies between wave height
and period statistics have also received attention before. Repko et al. (2004) compared a
physics-based model to different statistical models for analyses of extremes and Vanem
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(2016) proposed the construction of skewed copulas by extra-parameterization.
The remainder of the article is structured as follows. The next section provides an

overview on vine-copulas, in general and in particular on time series modeling. Section
3 describes the data set and the preprocessing that has been carried out prior to the
analysis. In sections 4 and 5 the results of the marginal and dependence analyses are
shown and discussed. Section 6 presents the main conclusions.

METHOD
Preliminaries on Copulas and Vines

A copula is a specific type of joint distribution function that fully characterizes the
joint dependence between random variables, separately from their respective marginal
behaviors.

Definition 1 For a n-variate distribution function F with univariate margins F1, ..., Fn,
the copula associated with F is a distribution function C : [0, 1]n → [0, 1] with uniform
margins on [0, 1] that satisfies

F (x) = C(F1(x1), ..., Fn(xn)), x ∈ Rn. (1)

Theorem 1 (Sklar 1959)
If F is a continuous n-variate distribution function with univariate margins F1, ..., Fn
and quantile functions F−1

1 , ..., F−1
n , then the copula

C(u) = F (F−1(u1), ..., F−1
n (un)), u ∈ [0, 1]n, (2)

is unique.

A valid parametric model for F arises when F1, F2, ..., Fn and C are chosen from
appropriate parametric families of distributions. In the bivariate case, n = 2, many
parametric families have been proposed, covering awide range of dependence structures.
Joe (2014) and Nelsen (2013) provide comprehensive overviews.

Constructing higher dimensional families of copulas has proven to be difficult and
existing models, for example, multivariate elliptical or Archimedean copulas, can be too
restrictive for many applications. Montes-Iturrizaga and Heredia-Zavoni (2016) discuss
this with respect to environmental variables. A more flexible approach to modeling
multivariate dependencies can be taken with a graphical model called R-vine (Joe 1996;
Cooke 1997; Bedford and Cooke 2002; Aas et al. 2009).

Definition 2 Vine, R-vine (Kurowicka and Cooke 2006)
V is a vine on n elements if

1. V = (T1, ...,Tn−1)
2. T1 is a connected tree with nodes N1 = {1, ..., n − 1}, and edges E1; for i =

2, ..., n − 2, Ti is a connected tree with nodes Ni = Ei−1.

andV is a regular vine, or R-vine, on n elements if additionally
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3 (proximity) For i = 2, ..., n − 2, if {a, b} ∈ Ei, then #a∆b = 2, where ∆ denotes
the symmetric difference. In other words if a and b are nodes of Ti connected by
an edge in Ti, where a = {a1, a2}, b = {b1, b2}, then exactly one of the ai equals
one of the bi.

A special class of R-vines that are considered in this article are drawable vines,
or D-vines, for which the maximal number of edges attached to any node in the first
tree is 2. Loosely stated, the nodes reachable from a given edge in a R-vine are called
the constraint set of that edge. When two edges are joined by an edge in tree Ti, the
intersection of the respective constraint sets form the conditioning set. The symmetric
difference of the constraint sets form the conditioned set. R-vines can be used to specify
a joint density through a decomposition into univariate densities and (conditional)
bivariate copulas:

Theorem 2 R-Vine density (Kurowicka and Cooke 2006)
Let V = (T1, ...,Tn−1) be an R-vine on n elements. For each edge e( j, k) ∈ Ti, i =
1, ..., n−1 with conditioned set { j, k} and conditioning set De, let the conditional copula
and copula density be Cj k |De and c j k |De . Let the marginal distributions Fi, i = 1, ..., n be
given. Then the vine-dependent distribution is uniquely determined and has a density
given by

f1...n = f1 · · · fn

n∏
i=1

∏
e( j,k)∈Ei

c j k |De (Fj |De, Fk |De ). (3)

For a given R-vine this density is unique. The product on the right hand side contains
n(n−1)/2 copulas and conditional copulas, which is the exact number of ways in which
n elements can be coupled. This property is one reason why a vine-copula is more
flexible than a fully nested Archimedean copula. Only n − 1 bivariate margins can
be modeled distinctively with the latter, while all others are recurrent (e.g., Serinaldi
and Grimaldi 2007, for an exemplification). Furthermore, the families of the bivariate
copulas in an R-vine are not restricted to the Archimedean class.

A practical difficulty arises from the many possible different R-vine structures when
attempting to estimate a suitable vine-copula, especially if the dimension is high. On n
variables there are in total (

n
2

)
× (n − 2)! × 2(n−2

2 ) (4)

labeled R-vines (Morales-Nápoles et al. 2010; Morales-Nápoles 2011). We address the
issue of selecting a suitable structure for time series in the next section.

Once we selected a structure, we make the simplifying assumption that copulas of
conditional distributions do not directly depend on the conditioning variable in order
to keep inference and model selection fast and robust. While Haff et al. (2010) showed
that a simplified pair copula decomposition can be a good approximation even when
the assumption is far from being fulfilled, Acar et al. (2012) illustrated that it can
also be misleading. To simulate time series, we sample recursively according to well
known algorithms using the inverse conditional copulas corresponding to the R-vine
density decomposition in (3) (Kurowicka and Cooke 2006; Aas et al. 2009). In the
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following section, we describe three vine structures in more detail and we included the
accompanying sampling algorithms in Appendix I.
Vines for Time Series

Suppose {X (1)
t }, ..., {X

(n)
t } are n univariate time series jointly observed at time points

t = 1, ...,T . For T = 30 and n = 2 this amounts to a vine on 60 nodes. According
to equation (4) the number of possible R-vines on 60 nodes is incredibly high, any
requiring the specification of 60 marginal distributions and 1770 pair copulas.

A significant simplification of this problem can be achieved by making stationarity
and Markov assumptions. For stationary data, the marginal distributions for each
variable do not change with time. In the same way, the bivariate copulas (including the
conditional ones) joining any two variables are preserved in time. A Markov property
of order k implies that all copulas with a lag length greater than k in the conditioned
nodes can be set to the independence copula. As a consequence, the number of bivariate
copulas that need to be estimated no longer depends onT , but on k and the vine structure.
The simplest case is, of course, k = 1. When developing the vine-copula model for
significant wave heights and mean zero-crossing periods, we limit ourselves to this case.

To achieve a desirable parsimonious model for the time series data, the vine structure
should be selected so that (1) the number of unique copulas to be used is minimized,
(2) the number of independence copulas in the model is maximized, and (3) the model
is easily extendable to arbitrarily many time steps. The last point automatically leads
to a structure that represents the flow of time in an intuitive manner. Structures that
fulfill these requirements are usually not obtained when using the popular structure
selection algorithm by Dissmann et al. (2013), which allocates the strongest pairwise
dependencies to the first tree.

Advantageous structures for stationary and Markovian multivariate time series have
been proposed by Brechmann and Czado (2015), Smith (2015) and Nai Ruscone and
Osmetti (2017). Brechmann and Czado (2015) call their approach COPAR, which
stands for COPula AutoRegressive model, and investigate inflation effects on industrial
production, stock returns and interest rates. In COPAR serial dependence of X (1)

t is
modeled unconditionally of X (2)

t ...X (d)
t and the serial dependence of X (i)

t , i ≥ 2, is
modeled conditionally on all X ( j)

t , j < i. In two dimensions, this approach is most
appropriate when modeling the dependence of one time series onto another. The first
three trees of a modified version of the COPAR model for n = 2 and T = 3 are depicted
in Fig. 2a. In this version, serial dependence of {X (1)

t } is also modeled conditionally, in
this case on {X (2)

t }. We made the modification for two reasons. On one hand, there is no
obvious cause and effect relationship between significant wave heights and mean zero-
crossing periods. On the other hand, all non-independence copulas are now included in
the first three trees yielding a clearer graphical representation. Just as for the COPAR, 5
unique copulas are needed to quantify this R-vine. These are listed in the third column
of Table 4. It is evident that we can sample X (1)

t+s and X (2)
t+s iteratively for all s > 1 in the

same way we sampled X (1)
t+1 and X (2)

t+1
Smith (2015) propose a D-vine structure of a univariate series Y = (Y1, ...,YN ),

N = Tn, into which the elements of a multivariate time series have been re-ordered.
Their article examines five dimensional time series from the Australian electricity

6 Jäger, May 4, 2017



market. Fig. 2b shows the first three trees of this model for n = 2 and T = 4. From now
on, we call this model alternating D-vine, because X (1) and X (2) alternate in the first
tree. Similarly to the modified COPAR example, 5 unique bivariate copulas are needed
to quantify it (column 4 in Table 1), although they differ except for CX (1)

t ,X (2)
t
. Again, it

is sufficient to create an alternating D-vine up to t = 2. After that, we can iteratively
sample X (1)

t+s and X (2)
t+s for s > 1 (Appendix I).

A third alternative is given in Fig. 2c with unique copulas reported in column 5
of Table 1. In the 2D case it coincides with a proposal by Nai Ruscone and Osmetti
(2017). This structure is referred to as branching D-vine, as X (1) and X (2) branch out.
In higher dimensions, the first tree is star-like. Note that 6 instead of 5 unique copulas
are needed, with one of them being in the highest order tree. The main difference
with the previous approaches is that serial correlations in each univariate series are
modeled unconditionally on the other series. While cross-series dependence is modeled
conditionally on previous time points, except of course for t = 1. Because of the high
number of independence copulas, we can again sample X (1)

t+s and X (2)
t+s iteratively, this

time for s > 2 (Appendix I).

Table 1. Overview of bivariate copulas other than the independence copula that are
needed for each of the three vines to specify a stationary bivariate stochastic process
{X (1)

t , X (2)
t }t=1,2,... with Markov property of order k = 1.

Tree Copula modified
COPAR

Alternating
D-Vine

Branching
D-Vine

1

C
X (1)
t ,X (1)

t+1
x x

C
X (1)
t ,X (2)

t
x x x

C
X (2)
t ,X (1)

t+1
x

C
X (2)
t ,X (2)

t+1
x

2

C
X (2)
t ,X (1)

t+1 |X
(1)
t

x x

C
X (1)
t ,X (2)

t+1 |X
(1)
t+1

x

C
X (1)
t ,X (2)

t+1 |X
(2)
t

x

C
X (2)
t ,X (2)

t+1 |X
(1)
t+1

x

C
X (1)
t ,X (1)

t+1 |X
(2)
t

x

3 or higher
C
X (2)
t ,X (2)

t+1 |X
(1)
t ,X (1)

t+1
x

C
X (1)
t ,X (2)

t+1 |X
(2)
t ,X (1)

t+1
x

C
X (1)
t+1,X

(2)
t+1 |X

(1)
t ,X (2)

t
x

In theory, the three vine structures define different decompositions for the same joint
density. In other words, they are equivalent representations of a bivariate stationary
stochastic process with Markov property of order 1. However, in practice, it may be
easier to find suitable bivariate copula models for one structure than for another. This
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X
(1)
1 X

(1)
2 X

(1)
3

X
(2)
1 X

(2)
2 X

(2)
3

(a) First three trees of the modified COPAR model

X
(1)
1 X

(2)
1 X

(1)
2 X

(2)
2 X

(1)
3 X

(2)
3

(b) First three trees of the alternating D-Vine Structure

X
(1)
3 X

(1)
2 X

(1)
1 X

(2)
1 X

(2)
2 X

(2)
3

(c) Branching D-vine Structure

Fig. 2. Examples of (truncated) vines for a bivariate stochastic process {X (1)
t , X (2)

t }t=1,2,3.
Edges of the same tree have the same line type and edges signifying serial dependence
with Markov property of order k > 1 are depicted in gray.

will affect the overall performance of the vine-copula, which is discussed in section 4.
Although Smith (2015) and Brechmann and Czado (2015) propose integral vine-

copula estimation methods, the sea waves application relies on a sequential estimation
approach, because fast algorithms are not available for some of the copula models we
consider. Estimation and simulation efforts are comparable for the three vine-copulas.

DATA
Hourly values of the significant wave height, Hm0, and the mean zero-crossing wave

period, Tm02, are available for a period of 27 years, starting April 1989 and ending
in February 2016. The data has been collected at the Europlatform, a Dutch offshore
station located 58km off the coast of Rotterdam (52◦00′N , 03◦17′E) at a water depth
of approximately 26.5m, which is operated by Rijkswaterstraat. To bypass seasonal
effects, the study is limited to the wave climate during the oceanographic winter period
(1 November - 15 April) in which storm events are more frequent and heavier than
during the summer period, see Fig. 3. An analysis for the summer season may be
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conducted similar to the one presented in this paper.

(a)

(b)
Fig. 3. Hourly (a) significant wave heights and (b) mean zero-crossing periods at the
Europlatform (April 1989 - February 2016). Winters are depicted in black, summers in
gray.

Both time series exhibit strong temporal serial correlation. Fig. 4 shows the serial
correlation, in terms of Spearman’s rank correlation coefficient, and indicates that it
only drops below 0.1 for a time lag of at least 200 hours for significant wave heights. A
similar relationship arises for the mean zero-crossing periods (Fig. 4). Here a periodic
variation is notable in the order of 12 hours, which could be attributed to the tidal cycle.
In the following analysis this variation is neglected to keep the modeling parsimonious.

While we try to model the serial correlation structure, ignoring it in the inference
process can cause unwanted bias. In particular, standard statistical inference proce-
dures require independent and identically distributed (i.i.d.) observations. To obtain
(approximately) i.i.d. observations, we have sub-sampled the data. More precisely, we
extracted a comparatively small number of time series fragments (N = 506, T = 2).
These are sufficient for the inference of the vine-copula models under consideration,
because we assume stationarity and a Markov property of order 1, as explained in the
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Fig. 4. Serial correlation in terms of Spearman’s rank correlation coefficient for mea-
sured significant wave heights and mean zero-crossing periods

previous section. In the time series fragments, we denote the respective j-th sample of
the t-th time point of significant wave height and mean zero-crossing period as hm0j,t

and tm02j,t , where j = 1, ..., N and t = 1,T . The N joint samples are (approximately)
i.i.d and can be used for inference of the marginal distributions and bivariate copulas.

Because formal hypothesis testing for stationarity yielded contradictory results, we
followed a diagnostic approach. QQ-plots attest that the univariate distributions do not
depend on t (not shown) and the observed differences in rank correlation coefficients
for the same variable pairs at different points in time are very small. Table 2 reports all
coefficients for a time series fragment of length T = 4 to indicate the order of magnitude
in the differences. Thus, we concluded that it is reasonable to model the processes, in a
first instance, as stationary. Nevertheless, more research in this direction is desirable.

Another aspect that has to be dealt with before the data analysis, is the limited
instrumental resolution, which causes the available measurements to be discrete, while

Table 2. Spearman’s rank correlation coefficients for time series fragments with T = 4
(N = 506)

Hm0t Tm02t Hm0t+1 Tm02t+1 Hm0t+2 Tm02t+2 Hm0t+3 Tm02t+3

Hm0t 1 0.80 0.99 0.81 0.98 0.80 0.95 0.79
Tm02t 0.80 1 0.78 0.97 0.76 0.92 0.73 0.85

Hm0t+1 0.99 0.78 1 0.80 0.99 0.80 0.98 0.79
Tm02t+1 0.81 0.97 0.80 1 0.78 0.97 0.76 0.90
Hm0t+2 0.97 0.76 0.99 0.78 1 0.79 0.99 0.79
Tm02t+2 0.80 0.92 0.80 0.97 0.79 1 0.78 0.96
Hm0t+3 0.95 0.73 0.98 0.76 0.99 0.78 1 0.79
Tm02t+3 0.79 0.85 0.79 0.90 0.79 0.96 0.79 1
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the physical variables are continuous. Mainly in the case of the mean zero-crossing
period this phenomenon causes a high number of ties, imposing additional challenges for
the statistical analysis. To overcome these, the data has been randomized following the
extensive guidelines in Salvadori et al. (2014): SupposeT∗m02j

is a discrete measurement
of Tm02j . It is transformed to

T̃m02j = T∗m02j
+ ∆ ·W j, (5)

where j = 1, ..., N , ∆ is the approximate resolution of the measurement instrument and
W j has a uniform distribution on [0, 1]. Thus, T∗m02j

is re-sampled uniformly over the
resolution interval and the resulting T̃m02j is assumed to be statistically equivalent to the
real Tm02j . We did not find our results to be sensitive to the choice of ∆.

RESULTS
Univariate Margins

The marginal distribution of the significant wave height is assumed to follow a
Weibull distribution with shape parameter 1.78 and scale parameter 167.21. The mean
zero-crossing period is approximated by a gamma distribution with shape parameter
30.08 and rate parameter 6.51. Both distributions are estimated from sub-sampled
data, as described in section 3. Histograms and the maximum likelihood fits are
displayed in Fig. 5. The adequate fit of these distributions is attested by the QQ-plots
in Fig. 6. Moreover, we sampled 506 random numbers from the specified distributions
and performed two-sample Kolmogorov-Smirnov tests. These did not reject the null
hypotheses that the observed and sampled data stem from the same distributions. We
performed such tests 100 times and obtained p-values ranging from 0.07 to 0.90 for
significant wave heights and from 0.08 to 0.97 for mean zero-crossing periods.

(a) (b)
Fig. 5. Histograms and maximum likelihood fit of (a) significant wave heights and (b)
mean zero-crossing periods
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(a) (b)
Fig. 6. QQ-plots showing the fit of the univariate models for (a) significant wave heights
and (b) mean zero-crossing periods

Table 3. Nomenclature for variables

Variable Standard name Name in this article
Significant wave height [cm] Hm0 X (1)

Mean period [s] Tm02 X (2)

Dependence Structure
To be consistent with the mathematical notation of section 2, we denote significant

wave heights and mean zero-crossing periods now as X (1) and X (2) (cf. Table 3).
We estimated the vines sequentially, that is, we estimated the bivariate copulas in

lower order trees before the ones in higher order trees. To quantify the three candidate
models, 12 unique bivariate copulas need to be estimated. They are listed in the first
column of Table 4. Inference on the bivariate copula models is based on ranks and not
by using the parametric univariate distributions. They give a faithful representation of
dependence, irrespective of the marginal behavior of the variables. The rank of x (i)

j,t

among x (i)
1,t, ..., x (i)

N,t divided by N + 1 will be denoted as u(i)
j,t . Before copula selection,

we performed an independence test based on Kendall’s τ. This test is implemented
in the VineCopula package (Schepsmeier et al. 2015) and described in (Genest and
Favre 2007). If the null hypothesis of independence could not be rejected, we chose the
independence copula. In general, we estimated model parameters by pseudo maximum
likelihood and selected families according to the AIC criterion with the VineCopula
package. As potential candidate copula models, we considered the following commonly
known families, which are included in the package: Gaussian, t, Frank, Gumbel,
Clayton, Joe, BB1, BB6, BB7, BB8 families and, if applicable, rotated versions thereof.
All selected models as well as their parameters are listed in Table 4. The independence
copula is represented by

∏
.

We made an exception to this procedure for CX (1)
t ,X (2)

t
and CX (2)

t ,X (1)
t+1
, because the
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corresponding data exhibits a skewness feature that none of the above models can
represent. The observations of (U (1)

t ,U (2)
t ) are shown in Fig. 7a). The variables are

positively associated. Very notable is an asymmetry with respect to the main diagonal,
or skewness, and a sharp line bounding the maximum significant wave height for
given mean zero-crossing period values. Considering the water depth at the measuring
location, this feature of the data can be attributed to steepness-induced wave breaking
("white-capping"). The observations of (U (2)

t ,U (1)
t+1) are visually not distinguishable

from the ones of (U (2)
t ,U (1)

t ). For CX (1)
t ,X (2)

t
and CX (2)

t ,X (1)
t+1
, we considered the Tawn, the

skew-t and the gamma 1-factor model (GFM) families. Again, we estimated parameters
by pseudo maximum likelihood. Appendix II provides more details on these families
and shows samples of the respective maximum likelihood fits for (U (1)

t ,U (2)
t ). The Tawn

copula does not capture the sharp line which limits the wave height with respect to the
period, and indicates the threshold for wave breaking (Fig. 14a). This is an important
physical process and, therefore, we did not select this family. Both, the GFM and the
skew-t family are able to capture the wave breaking (Fig. 14b and Fig. 14c). Besides
visually comparing the simulated points from the three copulas to the data, we computed
semi-correlations, in terms of Pearson’s product moment correlation, for their normal
scores (Nsim = 105). These are listed in Table 5. Semi-correlations are correlations
of the lower and upper quadrants, ρ+N and ρ−N , respectively. The empirical ρ+N and ρ−N
are notably different, indicating stronger upper than lower tail-dependence in the data.
Because, the GFM has more symmetric semi-correlations than the skew-t copula, the
latter has been selected for further analysis. A disadvantage of the skew-t family is that
closed form conditional and inverse conditional copula are not available and need to be
approximated numerically.

The three vines are different approaches to specifying the dependence structure
between significant wave heights and mean zero-crossing periods. We investigated their
relative performance on three bivariate margins, namely on (U (1)

t ,U (2)
t ), (U (1)

t ,U (1)
t+1)

and (U (2)
t ,U (2)

t+1). To this end, we simulated 506 bivariate time series with T = 100. The
scatter plots for the empirical pairs of ranks are depicted in Fig. 7. Fig. 7b exposes the
dependence between significant wave heights at subsequent hours, while Fig. 7c shows
the dependence between mean zero-crossing periods at subsequent hours. In both cases
the points are distributed closely around the main diagonal indicating a very strong
positive association, which is in agreement with Fig. 4.

Fig. 8 shows the simulated ranks for t = 1 as well as t = 99. Results of the modified
COPAR model are promising (Fig. 8 (a) - (c)). Pairwise scatter plots are very similar
to the ones of the data (Fig. 7 (a) - (c)) and the dependence structure does not appear
to change significantly over time. Moreover, considering a small time series fragment
of T = 4, the simulated and observed rank correlation coefficients are comparable (cf.
Table 6 and Table 2). The maximum difference we observe is 0.047.

The simulated ranks from the alternating D-vine are plotted in Fig. 8 (d) - (f).
This model does not capture the strong serial correlation between mean zero-crossing
periods; ρU (2)

t ,U (2)
t+1

of the simulated data is around 0.61, while we estimated a value of

0.97 for the data (Table 2). In the branching D-vine the skewness of the (U (1)
t ,U (2)

t )
pair deteriorates in time (actually already within a few steps), which is not surprising
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Table 4. Copula families and parameters for vines

Copula Family Parameters
C
X (1)
t ,X (1)

t+1
t ρ = 0.99, ν = 11.18

C
X (1)
t ,X (2)

t
skew-t (ρ, δ1, δ2, ν) = (0.73,−0.85,−0.27, 30)

C
X (2)
t ,X (1)

t+1
skew-t (ρ, δ1, δ2, ν) = (0.7,−0.85,−0.26, 30)

C
X (2)
t ,X (2)

t+1
t ρ = 0.96, ν = 12.06

C
X (2)
t ,X (1)

t+1 |X
(1)
t

∏
−

C
X (1)
t ,X (2)

t+1 |X
(1)
t+1

∏
−

C
X (1)
t ,X (2)

t+1 |X
(2)
t

Frank θ = 1.35

C
X (2)
t ,X (2)

t+1 |X
(1)
t+1

Gumbel θ = 3.01

C
X (1)
t ,X (1)

t+1 |X
(2)
t

Survival Gumbel θ = 5.21

C
X (2)
t ,X (2)

t+1 |X
(1)
t ,X (1)

t+1
Gumbel θ = 3.17

C
X (1)
t ,X (2)

t+1 |X
(2)
t ,X (1)

t+1
90◦ rotated BB8 (θ1, θ2) = (−1.47,−0.96)

C
X (1)
t+1,X

(2)
t+1 |X

(1)
t ,X (2)

t
t (ρ, ν) = (0.36, 17.05)

Table 5. Lower and upper semi-correlations, ρ+N and ρ−N , for the pair (X (1)
t , X (2)

t )

Copula ρ+N ρ−N
Empirical 0.80 0.45
Tawn type 2 0.79 0.54
GFM 0.66 0.59
Skew-t 0.72 0.56

given the skew-t copula is only used to model the very first point in time (Fig. 8 (d) -
(f)).

Hence, we chose the modified COPAR structure for time series simulation of signif-
icant wave heights and mean zero-crossing periods. Copula samples can be transformed
to the original (Hm0,Tm02)-space by applying the respective inversemarginal distribution
functions.
Bivariate Distribution of Significant Wave Heights and Mean Zero-Crossing Peri-
ods

The specification of the modified COPAR includes a specification of the bivariate
distribution of significant wave height and corresponding mean zero-crossing period.
Samples of this distribution are shown in Fig. 9. A visual comparison of observed
and simulated points indicates that the model is valuable. In particular, it captures the
physical limitations on wave steepness due to wave breaking. Wave steepness can be
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Table 6. Spearman’s rank correlation coefficients for time series fragments simulated
with the modified COPAR (T = 4, Nsim = 506)

Ĥm0t T̂m02t Ĥm0t+1 T̂m02t+1 Ĥm0t+2 T̂m02t+2 Ĥm0t+3 T̂m02t+3

Ĥm0t 1 0.79 0.99 0.76 0.98 0.76 0.97 0.77
T̂m02t 0.79 1 0.79 0.93 0.78 0.88 0.78 0.83

Ĥm0t+1 0.99 0.79 1 0.78 0.99 0.78 0.98 0.78
T̂m02t+1 0.76 0.93 0.78 1 0.77 0.94 0.76 0.88
Ĥm0t+2 0.98 0.78 0.99 0.77 1 0.78 0.99 0.78
T̂m02t+2 0.76 0.88 0.78 0.94 0.78 1 0.78 0.93
Ĥm0t+3 0.97 0.78 0.98 0.76 0.99 0.78 1 0.79
T̂m02t+3 0.77 0.83 0.78 0.88 0.78 0.93 0.79 1

(a) (b) (c)

Fig. 7. Empirical normalized ranks of (a) significant wave heights at t and mean zero-
crossing periods at t, (b) significant wave heights at t and at t+1, (c) mean zero-crossing
periods at t and at t + 1.

computed as
Sp =

2π
g

Hm0

T2
m02

. (6)

Spmax = 0.07 is thought to be an upper limit (Holthuijsen 2010), and is represented as
a line in Fig. 9. A histogram of wave steepness for observations and simulated points
confirms that the distribution of Sp is well described by the model (Fig. 10). The
skew − t family is a promising, although computationally more intensive, alternative to
the skewed families constructed by extra-parameterization in (Vanem 2016).

DISCUSSION
We simulated 100 time series of 3984 hours, which is equivalent to an oceanographic

winter, with the modified COPAR. However, these synthetic series contain notably
fewer storm events than observed. An exploratory analysis of the root cause of this
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Simulated points for significant wave heights at t andmean zero-crossing periods
at t, significant wave heights at t and at t + 1, and mean zero-crossing periods at t and
at t + 1: (a) - (c) modified COPAR, (d) - (f) alternating D-vine, and (g) - (i) branching
D-vine.

phenomenon shows that the long term serial correlation is very sensitive to the choice
of the ρ parameter in the CX (1)

t ,X (1)
t+1

copula, now denoted by ρ(1)
t,t+1.

We conducted a sensitivity analysis, assuming values 0.98 and 0.95 besides the
estimated 0.99 for ρ(1)

t,t+1. Fig. 11 shows examples of simulated time series as well
as the observations from the winter 2013/2014. The three simulated time series are
based on the same random seed. They exhibit the same pattern, however, the spikes in

16 Jäger, May 4, 2017



Fig. 9. Simulated and observed significant wave heights andmean zero-crossing periods

Fig. 10. Histogram of wave steepness for simulated and observed significant wave
heights and mean zero-crossing periods

significant wave height and mean zero-crossing period are higher for lower values of
ρ(1)

t,t+1. The boxplot in Fig. 12a provides more insight into the total hours with significant
wave heights higher than 400 cm, NHm0≥400. Recall that N = 27 time series have been
observed and N = 100 have been simulated. For smaller ρ(1)

t,t+1, the median increases,
while the variance decreases. The reason for this model behavior is likely to lie in
the faster decay of the serial correlation for smaller ρ(1)

t,t+1 (Fig. 13), increasing the
likelihood of sudden, extreme changes in Hm0 and Tm02. The serial correlation function
of both variables is most closely approximated when using ρ(1)

t,t+1 = 0.98. Results for the

17 Jäger, May 4, 2017



number of hours with significant wave heights smaller than 50 cm, NHm0≤50, are different
(Fig. 12b). In this case the median is higher in the simulations than in observations.

To investigate whether the observed NHm0≥400 and NHm0≤50 are statistically different
to the ones simulated, we conducted an analysis of variance (ANOVA) and performed
a two-sample Kolmogorov-Smirnov (KS) test. At the 5%-level the Null-hypothesis of
the ANOVA, the mean of observed and simulated NHm0≥400 or NHm0≤50 are equal, is
not rejected for any of the values of ρ(1)

t,t+1. For the KS-test with the Null-hypothesis
that observed and simulated NHm0≥400 are equal in distribution, ρ(1)

t,t+1 = 0.99 is rejected
with a p-value close to 0, but ρ(1)

t,t+1 = 0.98 and ρ(1)
t,t+1 = 0.95 cannot be rejected at the

5%-level. The results are different when testing the Null-hypothesis that observed and
simulated NHm0≤50 are equal in distribution. ρ(1)

t,t+1 = 0.99 cannot be rejected at the
5%-level, ρ(1)

t,t+1 = 0.98 is rejected with a p-value of 0.04 and ρ(1)
t,t+1 = 0.95 is rejected

with a p-value close to 0.
Considering these findings, the modified COPAR is useful for applications that

require extreme wave scenarios, such as coastal risk analyses, as well as for applications
that need estimations of quiet seas, such as scheduling of offshore operations. It is not
surprising that very small differences in ρ(1)

t,t+1, which could even be sample fluctuations,
gain importance when simulating longer time frames, such as T = 3984. It is therefore
essential to validate the model in view of the application and time frame of interest.

CONCLUSIONS
In this article, we presented a vine-copula approach to simulate joint time series of

significant wave heights and mean zero-crossing periods. First, we reviewed existing
vine-copula models for time series. While many different vine structures are possible,
a few have recently been proposed that make efficient use of stationarity and Markov
assumptions and yield parsimonious representations of such stochastic processes. In
two dimensions, depending on the structure, no more than 5 or 6 unique copulas have to
be specified to characterize arbitrarily long, stationary time series with Markov property
of order 1 .

Furthermore, as a building block for the vine-copula, we investigated the dependence
structure of significant wave heights and mean zero-crossing periods at the same time.
We approximated the dependence with the flexible 4-parameter skew-t copula family. It
captures asymmetric tail dependence as well as skewness patterns of the data, and, as a
result, preserves the limiting wave steepness condition in simulated samples of the two
variables.

Finally, we found an R-vine structure similar to the COPAR introduced by Brech-
mann and Czado (2015) to be most valuable for this application. Based on observations
of two successive pairs of significant wave height and mean zero-crossing period, we
constructed a vine-copula on four variables. These observations are a small i.i.d. subset
of measurements (506 out of 53492), collected during the oceanographic winter period
at a single location in the North Sea. We simulated time series with the duration of an
oceanographic winter and compared them against all measured winters. While results
are sensitive to small changes in the copula parameters, the presented model has po-
tential to provide valuable input for various applications, such as coastal risk analysis,
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(a)

(b)

Fig. 11. Hourly measurements of (a) significant wave height and (b) mean zero-crossing
period during winter 2013/2014 and examples of simulated time series using the same
random seed, but a different parameter in CX (1)

t ,X (1)
t+1

denoted as ρ(1)
t,t+1.

design of marine structures and offshore operations.
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APPENDIX I. SAMPLING ALGORITHMS
This appendix presents the sampling algorithms for the three vine-copulas that have

been used in this article. Conditional copulas are denoted by the following h-function:

h(u, v, θ) =
∂Cu,v (u, v, θ)

∂v
, (7)

where u, v, ∈ [0, 1] and θ denotes the set of parameters for the copula of the joint
distribution function of u and v. Thus, the second parameter of h(·) always corresponds
to the conditioning variable. The inverse of the h-function with respect to u is denoted
by h−1 and corresponds to the inverse conditional copula. We recall that n is the number
of variables and k is the order of the Markov property.
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(a) (b)

Fig. 12. Boxplots for (a) NHm0≥400 and (b) NHm0≤50 in the measured and simulated data.
ρ(1)

t,t+1 denotes one of the two parameters of CX (1)
t ,X (1)

t+1
. The whiskers represent the 5th

percentile and the 95th percentile of the distribution of interest.

(a) (b)
Fig. 13. Serial correlation of measured and simulated (a) significant wave heights and
(b) mean zero-crossing periods. ρ(1)

t,t+1 denotes one of the two parameters of CX (1)
t ,X (1)

t+1
.

Algorithm 1 (modified COPAR for n = 2 and k = 1)

1. Simulate 2T random variates s1, ..., s2T from U (0, 1).
2. Set x (1)

1 = s1

3. Set x (2)
1 = h−1(s1, x (1)

1 , θX (1)
t ,X (2)

t
).

For i = 2, ...,T:

4. Set x (1)
i = h−1(h−1(s2i−1, h(x (2)

i−1, x (1)
i−1), θX (1)

t ,X (1)
t+1 |X

(1)
t

), x (1)
i−1, θX (1)

t ,X (2)
t

)

5. Set x (2)
i = h−1(h−1(h−1(s2i, h(h(x (2)

i−1, x (1)
i−1, θX (1)

t ,X (2)
t

), h(x (1)
i , x (1)

i−1, θX (1)
t ,X (1)

t+1
),
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θX (2)
t ,X (1)

t+1 |X
(1)
t

), θX (2)
t ,X (2)

t+1 |X
(1)
t ,X (1)

t+1
)θX (1)

t ,X (1)
t+1

), x (1)
i−1, θX (2)

t+1,X
(1)
t

)

Algorithm 2 (Alternating D-Vine for n = 2 and k = 1)

1. Simulate 2T random variates s1, ..., s2T from U (0, 1).
2. Set x (1)

1 = s1.
3. Set x (2)

1 = h−1(s2, x (1)
1 , θX (1)

t ,X (2)
t

).

For i = 2, ...,T:

4. Set x (1)
i = h−1(h−1(s2i−1, h(x (1)

i−1, x (2)
i−1, θX (1)

t ,X (2)
t

), θX (1)
t+1,X

(1)
t |X

(2)
t

), x (2)
i−1, θX (1)

t+1,X
(2)
t

)

5. Set x (2)
i = h−1(h−1(h−1(s2i−2, h(h(x (1)

i−1, x (2)
i−1, θX (1)

t ,X (2)
t

), h(x (1)
i , x (2)

i−1, θX (1)
t+1,X

(2)
t

),

θX (1)
t ,X (1)

t+1 |X
(2)
t

), θX (1)
t ,X (2)

t+1 |X
(2)
t ,X (1)

t+1
), h(x (2)

i−1, x (1)
i , θX (2)

t ,X (1)
t+1

), θX (1)
t ,X (2)

t+1 |X
(1)
t+1

), x (1)
i ,

θX (2)
t ,X (1)

t
)

Algorithm 3 (Branching D-vine for n = 2 and k = 1)

1. Simulate 2T random variates s1, ..., s2T from U (0, 1).
2. Set x (1)

1 = s1.
3. Set x (2)

1 = h−1(s2, x (1)
1 , θX (1)

t ,X (2)
t

)

4. Set x (1)
2 = h−1(h−1(s3, h(x (2)

1 , x (1)
1 , θX (1)

t ,X (2)
t

), θX (1)
t+1,X

(2)
t |X

(1)
t

), x (1)
1 , θX (1)

t ,X (1)
t+1

)

5. Set x (1)
2 = h−1(h−1(h−1(s4, h(h(x (1)

2 , x (1)
1 , θX (1)

t+1,X
(1)
t

), h(x (2)
1 , x (1)

1 , θX (2)
t ,X (1)

t
),

θX (1)
t+1,X

(2)
t |X

(1)
t

), θX (1)
t+1,X

(2)
t+1 |X

(1)
t ,X (2)

t
), h(x (1)

1 , x (2)
1 , θX (1)

t ,X (2)
t

), θX (1)
t+1,X

(2)
t+1 |X

(2)
t

), x (2)
1 ,

θX (2)
t+1,X

(2)
t

)

For i = 3, ...,T:

6. Set x (1)
i = h−1(s2i−1, x (1)

i−1, θX (1)
t ,X (1)

t+1
)

7. Set x (2)
i = h−1(h−1(s2i, h(x (1)

i , x (1)
i−1, θX (1)

t+1,X
(1)
t

), θX (1)
t+1,X

(2)
t+1 |X

(1)
t ,X (2)

t
), x (2)

i−1, θX (2)
t+1,X

(2)
t

)

APPENDIX II. EXISTING PARAMETRIC COPULA FAMILIES UNDER
CONSIDERATION
Tawn

The Tawn copula (Tawn 1988) is an asymmetric extension of the Gumbel copula
and its cdf is given by

C(u1, u2) = exp{log(u1u2)A
(

log(u1)
log(u1u2)

)
}, u1, u2 ∈ [0, 1], (8)

where A(t) = 1 − β + (β − α)t + {αrtr + βr (1 − t)r }
1
r , 0 ≤ α, β ≤ 1, 1 ≤ r < ∞,

t ∈ [0, 1]. Two simplified versions of the Tawn copula with two parameters each are
implemented in the R’s VineCopula package (Schepsmeier et al. 2015). They are called
"Tawn type 1" and "Tawn type 2" and have one of the asymmetry parameters fixed to 1
such that the dependence is either left- or right-skewed.
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Gamma 1-Factor Model
A bivariate gamma 1-factor model has the form

X j = Z0 + Z j, j = 1, 2 (9)

where Z0, Z1 and Z2 are independent gamma distributed variableswith shape parameters
θ1, θ2 and θ3 and scale parameters all equal to 1. The copula cdf is (Joe 2014, p.211)

Cθ1,θ2,θ3 (u1, u2) = F (F−1
θ0+θ1

(u1), F−1
θ0+θ2

(u2)), u1, u2 ∈ [0, 1] (10)

Here F is the joint cdf of X1 and X2, while Fθ0+θ1 and Fθ0+θ2 are the marginal distribution
functions of X1 and X2 obtained by convoluting the marginal distributions functions of
Z0, Z1 and Z2. This model is implemented in the R package "CopulaModel" (Joe and
Krupskii 2014).
Skew-t

The skew-t copula derives from the skew-t distribution, which is a normal mean
variables mixture. While several formulations exists, only the formulation by (Azzalini
and Capitanio 2003) is considered for this article. For this formulation an estimation
procedure based on maximum likelihood has been developed by (Yoshiba 2015), who
also published the corresponding R code. The copula cdf is given by

Cρ,δ1,δ2,ν (u1, u2) = St(St−1
1 (u1; 0, 1, δ1, ν), St−1

2 (u2; 0, 1, δ2, ν); 0, ρ, α, ν), u1, u2 ∈ [0, 1],
(11)

where St is the multivariate skew-t distribution with correlation parameter ρ, a trans-
formed skewness vector α and degrees of freedom ν. St1 and St2 are the univariate
margins of this distribution and δ1 and δ2 are the respective skewness parameters.

(a) (b) (c)

Fig. 14. Comparison of observations (U (1)
t ,U (2)

t ) with simulated points from (a) Tawn
type 2 copula, (b) gamma-1-factor model and (c) skew-t copula. Parameters are esti-
mated via maximum likelihood.
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