
A new approach to managing data
model and database co-evolution

Master’s Thesis

Phil Hunte





A new approach to managing data
model and database co-evolution

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Phil Hunte
born in Willemstad, Curacao

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Avanade Netherlands BV
Versterkerstraat 6

1322 AP
Almere, the Netherlands

www.avanade.nl

www.ewi.tudelft.nl
www.avanade.nl


c© 2013 Phil Hunte.



A new approach to managing data
model and database co-evolution

Author: Phil Hunte
Student id: 1328557
Email: p.hunte@student.tudelft.nl

Abstract

Applications evolve over the course of time, therefore their data models need to
be adapted. To reduce the effort required for data model and database co-evolution, an
automation solution is needed that can transform a database in such a way that it can
store the new data whilst also retaining the existing data.

This thesis presents a redesign of the operation-based approach to automating the
coupled evolution of graphical data models and their data. In addition to its auto-
mated co-evolution support, the redesign also addresses the inherent limitations of the
operation-based approach.

On the basis of an exploratory evaluation it was concluded that the proposed ap-
proach indeed supports the co-evolution of graphical data models and that it results in
an increase of the expressivity and the adaptability of the approach.
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Preface

“The roots of education are bitter, but the fruit is sweet”

– Aristotle

The purpose of this research project is to redesign an operation-based approach to au-
tomate the co-evolution of graphical data models and the database that they represent. The
redesign focuses on the design of the internal components and on the mitigation of the
inherent limitation of operation-based approaches.

The research project consisted of a literature survey and a design research. The literature
survey and the first half of the thesis research were carried out at Avanade from April 2012
to February 2013. Avanade is a joint venture between Accenture (a management consulting,
technology services and outsourcing company) and Microsoft. Avanade was chosen as the
location for this research because of its expertise in Microsoft technologies, which meant
that they could provide the necessary tooling and expert support needed for a successful
completion of the research project.

March of 2012 marked the beginning of this thesis project process. It began with three
months of searching for a TU supervisor and three research topic changes, after which I
received the go-ahead for conducting a literature survey on automating model co-evolution
and database transformation. After having concluded the literature survey it took another
three months of research scope changes to define a thesis proposal. Each change of the thesis
scope was accompanied by moments of frustration, self-doubt, and tiredness. This uncer-
tainty was carried into the project until April of 2013 when the evaluation of the research
lead to the insight behind the current project objective. As a consequence, the majority of
the thesis was restructured.

This report is the result of the restructured design research project done on automating
the co-evolution of graphical data models.

Phil Hunte
Delft, the Netherlands

October 22, 2013
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Chapter 1

Introduction

Software applications are continuously evolving. This evolution is evident throughout the
entire development life cycle, from initial development to maintenance, and includes the
introduction of new features, the improvement of old features, and bug fixing [16]. Appli-
cations developed using the Model-Driven Engineering approach are not immune to this.
Model-Driven Engineering (MDE) [65] is a software engineering paradigm that aims to fa-
cilitate software development by creating, maintaining and manipulating abstractions which
represent the system. These abstractions, also known as models, enable developers to create
and evolve software at a higher level of abstraction which, in turn, simplifies the develop-
ment effort [27].

One aspect that needs to be taken into account when a model of a software system has
evolved is the propagation of this change to the vital components which are not directly
represented in the model. Cicchetti et al. [9] term this problem; the maintenance of overall
application validity. They state that the validity of Model-Driven (MD) applications is based
on interdependencies between the meta-model and model, as well as between the model and
the aspects that are not depicted in it (i.e. the non-reflected aspects such as data and manual
customization). Therefore, to ensure the validity of a system, the (meta-)model changes
need to be propagated to both the reflective and the non-reflected aspects. Furthermore,
Cicchetti et al. state that the more formally these non-reflected aspects are defined, the
easier it becomes to automate the management of the system’s validity.

1.1 Project Motivation

This research project focuses on the system validity management issue that occurs when
dealing with the evolution of database-centric applications developed using the MDE ap-
proach. Such applications generally rely on a data model to store application data into a
database [73]. Therefore, as these applications evolve so do their data models. An exam-
ple of this is the changing of an application’s logical structure. This would require a new
database schema which, in turn, leads to changes in the data model to accommodate the new
manner in which the application data should be stored [1]. Ideally the application should
automatically maintain its validity by migrating its database (along with its data) to con-

1



1. INTRODUCTION

form to the modified application structure. However, the deployment of a new application
version is often accompanied by the creation of a new database [70]. This is a straightfor-
ward approach to ensure that the application uses a database that conforms to the new data
model. Consequently, the original data in the existing database becomes inaccessible to the
new application. To resolve this issue the existing data needs to be migrated to the new
database. Since manual migration of database tables is tedious and error-prone, adequate
tooling is needed to support the necessary data migration [10].

1.2 Problem Definition

There have been a number of advances in model evolution automation which could be used
to reduce the human effort needed to support the coupled evolution (co-evolution) of data
models and the database that they represent [8, 23, 64, 36, 74]. The current state-of-the-art
model evolution approaches focus on the reconstruction of the evolution steps using model
matching techniques [64]. The result of this reconstruction is a set of identified model
differences. These model differences can then be used to co-evolve the database. This two-
step process could be used to automate the co-evolution of a data model and its database.
However, in the case of data models with a graphical notation this model matching approach
has a distinct drawback. Identifying the changes made to a graphical model by comparing
model versions is a complex operation, because it can be reduced to the graph isomorphism
problem which is NP-hard [61]. The use of model matching techniques, therefore, do not
result in an exact identification of the occurred model evolution; but rather an approximation
thereof. As a consequence of this approximation, corrective user input becomes necessary.

According to the literature survey [41] conducted prior to this research, there is another
possible approach to automating data model and database conformance which is to use an
operation-based approach instead of the model matching approach. The literature survey1

concluded that operation-based co-evolution was the preferred approach for coupling model
transformations to data migration. This is because it tracks model adaptations more accu-
rately and it provides a mechanism to map model adaptations to arbitrary transformations.
The latter can be used to map model adaptations to corresponding database transforma-
tions. Consequently, the operation-based approach seems to be the better choice, but it too
has inherent limitations.

The operation-based approach uses operators to execute co-evolution tasks [45]. If the
existing operators cannot realize the required task, then there are two outcomes. Either
the approach is discarded in favor of another one that does support the needed task, or a
new operator is created to handle it. Thus, if the approach relies solely on its existing set
of operators, it is not expressive enough to fully support custom co-evolution tasks. In
other words, it should be possible to define new operators. Some implementations of the
operation-based approach use general-purpose languages to define their operators. This al-
lows for enough coding flexibility. However, these languages do not provide a means to
capture migration patterns or other reoccurring patterns [31]. Therefore, the creation of
a new operator involves writing both the model transformation statements and the corre-

1The details of this literature survey are outlined in Chapter 2
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Project Goal

sponding database transformation statements. As mentioned before, this process is tedious
and error-prone. Furthermore, scripts are used to evolve an existing database. Such a script
contains the set of Structured Query Language (SQL) statements needed to migrate the
database. In an operation-based approach the script would be generated from the recorded
model-to-database mapping output. If, for any reason, any of the script’s statements need to
be changed, there are two options: the first is to change the script manually (which would
require one to be able to find the statements that need to be changed), the second would be
to undo the relevant model transformations and then re-apply them in order to update the
migration script. Either option would be tedious and error-prone.

Though the operation-based approach seems to be the better choice for automating the
co-evolution of data models, its inherent limitations need to be addressed in order for it to
provide a more extensible and adaptable automation support.

1.3 Project Goal

The goal of this research project is to find a way to redesign the operation-based approach so
that it could provide better support for the coupled evolution of graphical data models and
their data. Therefore, a redesign was proposed that aims to improve the approach by doing
two things. The first is designing a new operator definition framework that addresses the
operator creation limitations and thereby facilitate extensibility. The second is to redesign
the way in which model modifications are recorded in order to facilitate the adaptation
of the generated database transformations, without it having to affect the applied model
transformations.

1.4 Research Method

Based on the motivation and goal for this research, the following research question was for-
mulated: “How can the limitations inherent to the operation-based approach to automating
the co-evolution of data models with graphical notation be mitigated by using operator
composition and event-sourcing patterns?”

In order to systematically tackle the research question, it was divided into the following
sub-questions:

• RQ1 - What are the limitations inherent to the operation-based approach to automat-
ing the co-evolution of data models with a graphical notation?

• RQ2 - How can the use of operator composition reduce the effort required to define
new operators?

• RQ3 - How can the event-sourcing pattern be used to manage the process required to
map data model adaptations to a database transformation?

3



1. INTRODUCTION

1.5 Thesis Structure

This thesis report consists of six chapters which are structured as follows. Chapter 2 pro-
vides the research background and related work. Chapter 3 presents the proposed solution.
The techniques used to realize a prototype of the proposed redesign are described in Chap-
ter 4. This is then followed by the evaluation of the redesign in Chapter 5 and Chapter 6
concludes the report.

4



Chapter 2

Background

This chapter introduces the concepts and fields of research that form the basis to the thesis.
Section 2.1 introduces the terminology and principles that pertain to the coupled evolution
of data models and their data. Section 2.2 reviews the three main approaches used for
automating coupled evolution. Furthermore, an overview of the available tools is presented
in Section 2.3. Finally, the research areas relating to coupling data models and databases
are described in Section 2.4.

2.1 Introduction to Coupled Evolution

Lämmel states that coupled evolution is defined as a process in which mutually dependent
software artifacts of different kinds are simultaneously transformed. In addition, the trans-
formation is centered on a grammar (or schema, Application Programming Interface (API),
or a similar structure) that is shared between the artifacts [50] [49]. Simply put, coupled
evolution can be defined as a development activity in which several artifacts are all changed
to maintain consistency. Co-evolution can be performed by first changing a single artifact
(e.g. source code) after which each dependent artifact is changed to re-establish consistency
[64]; the latter activity will be called migration.

2.1.1 Terminology

The concepts that will be discussed throughout this report may contain ambiguous terms.
For that reason, this section provides a concise description of the main concepts.

Model: A model is an abstraction of an object. In the case of this thesis, the object in-
stance is a database containing application data. Models are represented through a
model language - also termed Domain-Specific Language (DSL) - which encapsu-
lates the concepts, relationships and constraints pertaining to the specific application
domain [16]. The DSL uses a notation that conforms to the syntax and semantics of
the domain, thus making it easier and more effective to develop with than general-
purpose programming languages [54]. This notation can be graphical or textual [65]
(cf. Figure 2.1 and Listing 2.1).

5



2. BACKGROUND

A particular advantage of a graphical DSL is its use of a visual interface that al-
lows someone who is a domain expert but not a software developer to use it as an
application development tool. A graphical DSL is often a restrictive language that
only consists of domain concepts and it has well-formedness rules that constrain the
domain programs that can be created with it [67].

Person
firstName : string
lastName : string
address : string
birthday : datetime
phoneNumber : string
accID : int

Account
accID : int
description : string
balance : money
accType : int

AccountType
accTypeID : int
accTypeName : string

Figure 2.1: Visual Data Model

1 class Person {
2 string firstName;
3 string lastName;
4 string address;
5 datetime birthdate;
6 string phoneNumber;
7 Account accID;
8 }
9

10 class Account {
11 string accID;
12 string description;
13 string balance;
14 AccountType accTypeID;
15 }
16

17 class AccountType {
18 int accTypeID
19 string accTypeName
20 }

Listing 2.1: Equivalent Textual Data Model

Data Model: Data models are an aspect of software development. They define the structure
of data that is processed by an application and the schema of a database. Applications
produce and store data that conforms to the data model [72].

A data model consists of entity declarations which have a name and a set of properties.
Each property has a name and a type. An entity declaration might inherit from another
entity declaration which means that there can be a hierarchical structure.

Model Evolution: The collective term for the coupled evolution of meta-models and their
model instances is model evolution. Another variation of this collective term is cou-
pled model evolution or model migration.

6



Introduction to Coupled Evolution

Model Transformation: Model transformation is a development activity in which a model
is adapted according to certain well-defined specifications. There are three types
of model transformations: there are model-to-model transformation, model-to-text-
transformation and text-to-model transformation [14]. Each type of transformation
has unique characteristics and tools, yet they all share some common characteristics.
This thesis focuses on the model-to-model transformation type.

Data Model Evolution or Data Model Co-Evolution: This is the collective term for the
migration of a database as a result of changes to its data model.

Coupled Operator: A coupled operator is a set of model transformation statements and
corresponding database transformation statements. Therefore, when an operator is
applied to a data model it transforms it according to its set of model transformation
statements and it produces the SQL code necessary to migrate the existing database.
The execution of the produced SQL statements will reestablish the conformance re-
lation between the new data model and the existing database.

2.1.2 The Coupled Evolution Problem

Lämmel gives a two-part definition for the “coupled evolution problem”. The first part
states that any instance of coupled evolution must define the notion of consistency for the
involved artifacts. Meaning, a coupled evolution starts from and finishes with a consistent
collection of artifacts. Secondly, any kind of coupled evolution instance must also define
the notion of migration, which defines how evolutions of one artifact affect all the other
artifacts [49]. In other words, consider without loss of generality the re-establishment of
consistency (or reconciliation) of two artifacts. Let A and B be these artifacts. We assume
a consistency relation c on A and B, and we are given two concrete artifacts a:A and b:B
such that c(a, b) holds. We consider a type-preserving transformation on A, denoted by g,
and we apply this transformation to a such that we obtain a = g(a). Then, the reconciliation
is about determining a suitable b such that c(a, b) holds.

In the same work, Lämmel states that there are a number of reconciliation options, such
as no reconciliation, degenerated reconciliation, symmetric reconciliation, asymmetric rec-
onciliation and reconciliation by matching. Figure 2.2 depicts the asymmetric reconcilia-
tion option. The continuous arrows show the transformations and dashed arrows represent
consistency claims.

7



2. BACKGROUND

Figure 2.2: Artifact Migration Option - Asymmetric Reconciliation

Asymmetric reconciliation is based on the assumption that there is access to an actual
translation of a to b. It requires a description t of this translation in terms of a dedicated
transformation language. Then, the actual translation from a to b is the interpretation t̄ of
the description t. The f is a transformation description which is used to maintain a link
between two artifacts. The interpretation of the description f, denoted as f̄ , provides two
actual transformations, one on A, and another on B. In other words, if A is the data model
and B is the database that it represents, then t is the coupled operator that is responsible
for transforming the two. The set of transformations within the operator that will transform
both A and B is f̄ .

This option involves two critical issues. First, one must identify a language for defining
f̄ . Second, the primary transformation language (i.e. the model transformation language)
must be defined such that its effect can also be properly mapped to the data transformation
language [49].

2.1.3 Coupled Evolution Domains

Coupled evolution problems are ubiquitous; they are encountered in various domains of
computer science, e.g. in language processing, generative programming, automated soft-
ware engineering, software re-engineering, model-driven architecture, and database re-
engineering [49]. This section describes the coupled evolution domains that are relevant
to model evolution and database evolution.

Coupled Evolution of Models

The co-evolution of models deals with the maintenance of the consistency between a model
and its meta-model. Meta-models describe the set of available domain concepts and con-
straints, i.e. the syntax [6], that a proper model must conform to [43]. Therefore, when a
meta-model is adapted, existing models may no longer conform to the adapted meta-model.
These models have to be migrated so that they can be used with the evolved modeling
language. Manually migrating existing models to the adapted meta-model is tedious and

8



Introduction to Coupled Evolution

error-prone, hence the need for tool support which reduce the effort associated with model
migration.

Coupled evolution for the meta-model domain was introduced by Gruschko [24]. As is
the case for most publications on coupled evolution of models, he models evolution using
small elementary transformation steps. Wachsmuth applies coupled evolution to Meta Ob-
ject Facility (MOF) 1 compliant meta-models [74, 39]. MOF is an extensible model driven
integration framework for defining, manipulating and integrating meta-data and data in a
platform independent manner. Ecore, the meta-meta model used in the model development
environment Eclipse Modeling Framework (EMF) [21], is a variant on MOF. Wachsmuth
introduced a set of transformations and proposes a mapping to model migrations imple-
mented in the Query-View-Transformation (QVT) model transformation language [58].
Similar to Wachsmuth, Herrmannsdörfer looked at coupled model evolution based on small
evolution steps [30]. He focused on EMF itself.

Coupled Evolution of Databases

Analogous to the model and meta-model coupled evolution, there is the (database) schema
evolution in which the aim is to maintain the consistency between a schema and the database
instance that it pertains to. This type of coupled evolution can be seen as a variation of the
data model evolution [69].

The main difference between a meta-model and a database schema is that database
schemas are a domain-specific modeling language for database development. However,
they serve as a descriptor of meta-data, and are therefore subject to the same challenges
when their meta-data changes. Furthermore, schemas are used to describe a set of concepts.
The schemas provide an abstraction containing only those concepts which are relevant [18].
Therefore, schemas in these domains may be thought of as being analogous to meta-models
because they provide a means for describing an abstraction over a real-world instance. Con-
sequently, approaches to identifying, analyzing and performing schema evolution are rele-
vant to the evolution of data models in MDE.

Many of the published works on schema evolution focus on defining a list of evolution-
ary operators which the developer is expected to apply to evolve schemas. This approach is
used for Extensible Markup Language (XML) schema evolution [25, 68].

Lastly, data model evolution can also be seen as a variation of ‘format evolution’. For-
mat evolution is an instance of what Cunha et al. [13] refer to as two-level transforma-
tions. This is a transformation where a type-level transformation (the data type) determines
or constrains value-level transformations (the data instances). Numerous approaches have
been found to solve two-type evolution problems [51, 13, 5, 26, 3]. These mainly focus on
the schema to data mapping for a specific type of schema.

1http://www.omg.org/spec/MOF/2.4.1/
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2.2 Automating Coupled Evolution

Applying the various types of coupled evolution manually can by tedious and error-prone,
therefore techniques are needed to automate aspects of the co-evolution process. Sections
2.2.1 and 2.2.2 give an overview of the main approach categories used to automate model
evolution, namely: difference-based and change-based approaches.

2.2.1 Difference-based Co-Evolution

Difference-based approaches, also known as the model matching approach, try to auto-
matically deduce model transformations from the difference between two snapshots of the
model. There are various techniques available to identify model differences. Since this
thesis is focused on models with a graphical notation, this section will only describe those
techniques that fit within this scope.

Model Matching Techniques Algorithms are used to identify model differences. There
are four types of algorithms used to match models with a graphical notation [47].

• Static Identity-based Matching With this type of algorithm each element has a per-
sistent, non-volatile unique Id assigned upon creation. This Id is then used to match
model elements to each other [2]. The advantages are that there is almost no initial
setup cost; meaning there is no configuration requirement for such algorithms. And
secondly, this technique tends to be quite fast compared to the remaining algorithm
types. On the other hand, its drawbacks are that it does not apply to models con-
structed independently of each other, or model representations that do not support
unique Ids.

• Signature-based Matching Much like the previous algorithm, this matching technique
uses element Ids. The difference is that each model element Id is a signature calcu-
lated dynamically using a user defined function which is based on the elements fea-
tures [62]. The benefit of using signatures is that it eliminates the shortcomings of the
Static Identity-based algorithms. The disadvantage is that it requires configuration.
The Id-signature calculation function needs to be defined for each model element
type.

• Similarity-based Matching This algorithm attempts to identify matching model ele-
ments based on the aggregated similarity of their features. Each feature is assigned
a relative weight. This weight indicates the importance of the item [55] [23] [19].
The advantage compared to the identity-based matching is that typed attribute graph
matching algorithms have been shown to produce more accurate results. The draw-
backs are that defining and fine-tuning the element weight is mostly a trial-and-error
process, and because of its generic natures, it fails to take into account the semantics
of the modeling language used. If this disadvantage is addressed one can reduce the
search space which in turn increases the accuracy and the run-time performance of
the algorithm.

10



Automating Coupled Evolution

• Custom Language-specific Matching This is a generic category for custom techniques
developed for a specific language and based on that language’s syntax. Therefore it is
equally or more accurate than the other matching algorithms, with the added benefit of
a better run-time performance due to the much smaller search space involved [7] [46].
Its shortcoming is that it requires specification of the complete matching algorithm
which is a substantial implementation requirement. Furthermore, unlike the other
matching techniques, this one may require custom development-tools to facilitate its
model matching implementation.

These four matching algorithms provide a generic approach to diagram-matching for ar-
chitectural models and data models. Thus, they are applicable to any graphical modeling
language. However, the computational complexity of these algorithms makes them less fea-
sible for large applications. The algorithms have high complexities with regard to memory
allocation and computation time. Furthermore, even though these techniques are fully-
automatic, they have the disadvantage that the derived migration may not be the one in-
tended by the developer. Its dependence on availability of stable model element identifiers.
In the absence of stable unique identifiers, the direct comparison would not be capable of
detecting element moves and would detect a deletion followed by an addition instead. Con-
sequently, the developer has to manually correct and understand the derived migration.

2.2.2 Change-based Co-Evolution

The change recording approach records a list of primitive changes made to a model and
this list can be normalized to reduce redundancies. However, normalizing the list may also
remove useful information such as the exact order in which each change occurred. Some
types of modifications such as meta-model element renaming can be more easily recognized
using this approach [64]. Much like model differencing, this technique does not always lead
to an unambiguous result. This is due to the fact that the order in which the changes are
recorded affects the inference of the transformation. Hence, this approach requires the
developer to continuously be aware of the way the changes will be interpreted.

One of the challenges of using change recording is that the granularity of the changes
that can be tracked influences the inference process. In other words, deciding on which gran-
ularity to use is more of a trial-and-error approach than a calculated choice. Furthermore,
this approach still has the same limitation as the model differencing approach. Meaning,
this approach is fully-automated yet there is a chance that the output it produces may need
manual correction.

Operation-based Co-Evolution

Operation-based co-evolution is a specific instance of the change-based approach. It is
based on specifying the evolution using a library of operators. Each operator specifies an
evolution step as a mapping from a model change to one or more changes at the same or
different abstraction level. The more expressive (complete) the library is, the more use-
ful this approach becomes. In case there is a change for which there is no operator in the
library the developer must either use another approach or specify this operator manually

11



2. BACKGROUND

[8]. Operation-based matching allows for a finer-grained specification of the model modi-
fications. In other words, besides the obvious item addition, deletion and update, it is also
possible to map additional transformations to an operator.

This approach avoids the manual correction and the understanding of derived migrations
problem by using incremental transformations which enable the capturing of the intention
while performing (meta-)model adaptation. Consequently, the developer has to take the
impact on models into account which may constrain (meta-)model adaptation, but it also
may leads to a more systematic modeling process. Wachsmuth adopts ideas from grammar
engineering and proposes a classification of meta-model changes based on instance preser-
vation properties [74]. Based on these preservation properties, Wachsmuth defined a set of
high-level coupled operations.

2.3 Coupled Evolution Tools

There has been a number of advances in tooling to support automated coupled evolution.
They differ in the type of coupled evolution they support. Rose et al. present a classification
for such tools based on the approach they utilize [64]. The categories are as follows:

• Manual specification approaches provide languages tailored for model migration to
manually specify the migration. These approaches do not provide explicit support to
ensure that the specified migration is semantics-preserving.

• Matching approaches try to detect a migration based on the matching between two
different snapshots (versions) of an item. The main downside to matching approaches
is that they are not able to detect a semantics-preserving migration.

• Operation-based approaches specify the needed migration as a sequence of coupled
operations which encapsulate the model adaptation and the required migration. Be-
cause of this it is possible to preserve some aspects of the semantic [74, 34].

The next sections detail a list of tools according to this classification which support the
coupled evolution of data-models and databases.

2.3.1 Manual Specification Tools

Any Integrated Development Environment (IDE) which allows hand-written general-purpose
programming languages such as Java, C# and SQL can be used to specify data model evo-
lutions. However, there are a few which facilitate the process of coupled evolution. There
are model development environments such as the aforementioned Eclipse Modeling Frame-
work (EMF) 2, for example, that provide an editor which provides a variety of function-
ality that support model transformations. Such modeling environments can also facilitate
database migrations by sending commands to database servers. Many tools have been writ-
ten as plug-ins to such platforms.

The following is a list of the relevant manual migration tools:
2EMF web-site: http://www.eclipse.org/emf/
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Ecore2Ecore: is a manual specification migration tool that is part of the EMF. Migration
is specified with a mapping model and hand-written Java code. Ecore2Ecore has
been used in real-world projects, such as the Eclipse MDT UML2 project , to manage
co-evolution [63].

Epsilon Flock: is a manual specification migration tool. Flock is a domain-specific trans-
formation language tailored for model migration. In particular, Flock automatically
copies from original to migrated model all model elements that have not been affected
by meta-model evolution. Flock is built atop Epsilon 3 which is an extensible platform
providing inter-operable programming languages for model-driven development.

Visual Studio Visualization and Modeling SDK 4 This Software Development Kit (SDK)
which integrates tools and templates for building Domain-Specific Language design-
ers, extending Unified Modeling Language (UML) and Layer designers into Visual
Studio. This model development environment is the .NET equivalent to the Eclipse
based environment, however it is not as elaborate as the EMF.

Graph Modeling Framework: Graphical Modeling Framework (GMF) 5 is a DSL frame-
work which is used to develop graphical editors based on EMF and Graphical Edit-
ing Framework (GEF) 6. EMF provides a modeling and code generation framework
for Eclipse applications based on structured data models, and GEF provides tech-
nology to create rich graphical editors and views for the Eclipse Workbench User
Interface (UI). The GMF is defined as the bridge between these two frameworks that
combines their features to enable the graphical development of models. The advan-
tages of this tool are that it has an extensible framework that allows editors to be
extended through custom code and it also enables the option of creating a distribution
site using the Eclipse Plug-in Development Environment (PDE) features which help
with keeping client installations up-to-date.

MetaEdit+: MetaEdit+ 7 is a two-part commercial domain-specific modeling environment.
There is a MetaEdit+ Workbench with which the modeling language is designed, and
there is the MetaEdit+ Modeler that enables development with the designed language.

The workbench provides a meta-modeling language and tool suite for designing lan-
guage concepts, properties, associate rules, symbols, generators and checking reports.
It also has an extensive library of reusable modeling language components [57].

The modeler enables the development of a language through graphical diagrams, as
matrices or as tables. It uses four components (diagram, matrix and table editor and
a browser) which together offer full modeling tool support [56].

The advantages of this tool are the amount of advanced features that it supports. To
name a few, there is support for full integration of the toolset with existing tool-chains

3http://www.eclipse.org/epsilon/
4VS VMSDK website: http://archive.msdn.microsoft.com/vsvmsdk
5GMF web-site: http://www.eclipse.org/gmf
6GEF web-site: http://www.eclipse.org/gef/
7MetaEdit+ web-site: http://www.metacase.com/
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through APIs and there is built-in support for language evolution. Furthermore, the
multi-concurrent user support enables developers on different platforms and at differ-
ent locations to collaborate on a project. One drawback is the base-price of e150,00
for 1 academic license.

2.3.2 Matching-based Tools

Matching-based tools model the evolution through a set of differences between the original
and evolved version of a model. The changes that constitute the evolution are not recorded
as they occur, rather they are recorded afterwards. In other words, they register the effect of
the evolution.

The state-of-the-art matching-based approach for identifying model differences is the
similarity flooding algorithm [66]. The state-of-art implementation for identifying model
differences is the combination of the EMF Compare tool and the ECL tool [9]. Cicchetti et
al. have proposed a data model evolution approach based on the EMF Compare and ECL
tools. It uses this model differencing technique to realize a migration approach capable of
detecting the modifications a model underwent during its lifecycle after which it automat-
ically derives from them the programs that are capable of migrating various aspects of the
whole application including the data persistently stored in a database. They use Acceleo 8 to
realize this data migration. The following is a list of matching-based tools such as Acceleo.

Acceleo: This is a template-based approach for generating text from models. It can be
used to generate SQL queries to update a database schema and to migrate the exist-
ing stored data based on a difference model. Its output is a text-based script which
requires a separate tool to execute [9].

Acoda: Acoda is a model matching approach for co-evolving object-oriented data models
and their database. It provides a domain-specific language for specifying data model
evolution as a separate concern at the data model level. The input are two versions
of a data model and a database. Acoda the automatically detects what was changed
from one data model to the other and changes a copy of the data accordingly. The
output is a ready-to-use database dump adhering the latest data model version.

Acoda offers an Eclipse plugin developed using Spoofax/IMP [42].

2.3.3 Operation-based Tools

Operation-based tools describe the evolution by a sequence of applications of change oper-
ators, subsequently referred to as coupled operators. The use of coupled operators facilitate
the reuse of recurring migration knowledge. However, adequate tool support also has to pro-
vide expressiveness to cater to complex migrations [34]. The operation-based approaches
which fulfills both the reusability and the expressiveness requirements is Herrmannsdörfer’s
[32] tool called COPE (COuPled Evolution). COPE, however, is used to automate model

8http://www.acceleo.org
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evolution. Nonetheless, its design properties can be of interest in designing a data model
evolution variant.

There are also various Computer-Aided System Engineering (CASE) tools that sup-
port graphical data model evolution. The research tool DB-MAIN is one of such CASE
tools which is specialized in database transformations. The DB-MAIN tool uses predefined
schema transformations to achieve its adaptations, hence it classification as an operation-
based tool.

COPE: 9 This is an operator-based coupled evolution approach for the Eclipse Modeling
Framework [7]. In other words, it records coupled evolutions of meta-models and
models in an explicit history model, in order to obtain a correct model transformation.
As a result, the history model stores the sequence of coupled operations that have
been performed during evolution. A coupled operation is defined as the meta-model
adaptation and reconciling model transformations to conform the model to the new
meta-model. To further reduce migration effort, COPE provides high-level operations
which have built-in meaning in terms of the migration of models [36]. Furthermore,
the tool supports functions to inspect, refactor and recover the history model to better
understand, correct and reverse engineer the coupled evolution [32]. COPE has been
transformed to Eclipse EMF Edapt 10 in 2011. The main difference is that Edapt
specifies migrations directly in Java instead of through a general-purpose scripting
language.

The advantages of the tool are that it allows developers to specify custom mappings
when no operator is appropriate. This is done using Java. It is therefore expressive
enough for complex model transformations. It uses reusable coupled transactions that
encapsulate recurring transformation knowledge. The drawback is that it needs to be
integrated into the editor being used to modify the model.

DB-MAIN: This CASE tool also supports the development, reengineering, migration and
evolution of data-centered applications. This is done through features such as data-
modeling support and transformation and generation capabilities [11].

This tool provides more than 25 schema transformations sufficiently rich to encom-
pass most database engineering processes. These transformations are designed to
automatically construct the mapping between different schemas [10].

One of this tool’s features is the ability to generate a script or database which con-
forms to a target model given a database and the model of the database.

2.3.4 Tool Overview

Table 2.1 gives an overview of the co-evolution tooling options described above.
The DB-MAIN supports both textual and graphical model notations. However the schema
transformation are intra-schema transformation, meaning they do not provide a mapping

9COPE web-site: http://cope.in.tum.de
10Edapt web-site: http://www.eclipse.org/edapt/
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````````Approach
Domain Coupled Evolution Of

Meta-model & Model Model & Database Database & Program Code
Manual EMF-based tools (e.g. Ecore2Ecore and Flock), MetaEdit+, Visual Studio VMSDK-based tools
Matching-based EMF-based tools Acceleo, Acoda
Operation-based COPE Acoda, DB-MAIN* DB-MAIN

Table 2.1: Co-Evolution Tooling - Approach Overview

````````Approach
Domain Co-Evolution Of Data Model & Database

Textual Models Graphical Models
Manual EMF GMF, Visual Studio VMSDK-based tools
Matching-based Acceleo, Acoda GMF-based tools
Operation-based Acoda CASE Tools

Table 2.2: Overview of current tools which support coupled data model evolution

from model to data migration. Therefore, it does not comply with the data model evolution
as defined in this thesis. Because of this it has an asterisk behind it.

In table 2.2 an overview of co-evolution tools is given with a classification based on the
types of model notations that they support.

2.4 Related Work

Coupled evolution plays a significant role in computer science and has been discussed in
various areas. Earlier research primarily focused on constructing coupled evolution support
for specific domains [69]. This section presents the recent research being done in the field
of data model evolution.

2.4.1 Data Model Evolution in MDE

In March of 2012 Pérez-Castillo et al. published a process that aimed to tackle the prob-
lem of evolving database-centric software systems. In that particular article they dealt with
legacy databases. The process consisted of a re-engineering process that follows model-
driven development principles to reverse engineer Web services from legacy databases.
These Web services manage access to legacy databases which, in turn, allows these databases
to be used by newer systems in a service-oriented environment.

A support tool was created to facilitate the adoption of this process which was shown to
reduce development effort and improve the return on investment by extending the lifespan
of legacy databases [59].

In the same year, Vermolen et al. published their research on the automated recon-
struction of complex meta-model operations, based on detected differences between two
meta-models. They proposed a reconstruction algorithm capable of addressing the three
major problems in the reconstructing of complex evolution steps; dependency (between op-
erations), detection (finding steps that make up the complex step), and interference (steps
that affect actions taken in another step or that are hidden by/from other steps). They im-
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plemented this reconstruction algorithm in the tool Acoda which resulted in an enriched
evolution trace from which the required data migration could be generated [71].

2.4.2 Database Evolution

Research over the last decade from DB-MAIN includes work done on forward propagation
of changes in data models to the database it represents. For instance, changes made to
a model should propagate to the database in a way that transforms it while maintaining
the existing data rather than dropping the database and regenerating a fresh instance. The
changes are applied using Data Definition Language (DDL) statements in order to take the
database to its next version and support applications accessing the new version. In other
words, it is a non-versioning strategy. There is no guarantee of backward compatibility.

DB-MAIN stores each model transformation in a history buffer. These are replayed
when it is time to deploy the changes to a database instance. A model transformation is cou-
pled with a designated relational transformation as well as a script for translating instance
data in essence, a small extract-transform-load workflow. The set of available translations
is specified against the conceptual model rather than the relational model, so while it is not
a relational schema evolution language by definition, it has the effect of evolving relational
schemas and databases by proxy [29].

MeDEA is another tool that supports database evolution by exposing relational databases
as conceptual models and then allowing edits to the conceptual model to be propagated back
to schema changes on the relational database. A key distinction between MeDEA and DB-
MAIN is that MeDEA does not have a fixed modeling language or a fixed mapping to the
database. As a result, the relationship between model and database is variable.

Given a particular object in the conceptual model, there may be multiple ways to rep-
resent that object as a schema in the database. Consequently, when one adds a new object
to an existing model (or to an empty one), the developer potentially has many valid options
for persistence. A key concept in MeDEA is the encapsulation of those evolution choices
in rules. For each incremental model change, the developer chooses an appropriate rule that
describes the characteristics of the database change [17].

2.5 Chapter Summary

A comparison between matching-based and operation-based tools reveals that the main ad-
vantage of matching-based approaches is that they might be fully automated. However, it
has been shown that model migration cannot be automated in certain cases when the se-
mantics of a modeling language need to be taken into consideration [38]. Furthermore, the
comparison also shows that matching-based approaches are based on the reconstruction of
the model adaptation. On the other hand, the operation-based approach avoids such re-
construction by executing model adaptations through operators, which better facilitate the
coupling of model transformations to database co-evolution.

The tools that support database evolution through the propagation of changes between
relational schemas and conceptual models, closely resemble the aforementioned data model
evolution definition.
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The information presented in this chapter was used to redesign the operation-based approach
to address the goals that were set for this thesis. The approach redesign is described in the
next chapter.
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Chapter 3

OP-DEVO Approach: The Redesign

As mentioned in chapter 1, the objective of this design research project is to study the use
of the operation-based approach to automate the co-evolution of data models. The focus
of this study is on the inherent limitations of such an operation-based approach and how to
mitigate them through a redesign of the approach.

This chapter describes the steps that were taken to design an operation-based data model
co-evolution approach which aims to mitigate the inherent limitations of operation-based
approaches. The concept behind the design is covered in Section 3.1, followed by a de-
scription of its various components in Section 3.2.

3.1 Framework of the Design

As stated in previous chapters, the design is based on the operation-based approach. This
section explains the concept behind operation-based data model co-evolution and it de-
scribes the requirements involved.

3.1.1 Operation-based Data Model Co-Evolution

According to the literature survey [41] conducted prior to this research, the operation-
based approach should be used to automate the data model co-evolution for two reasons.
First, it can track model adaptations with greater accuracy. Secondly, it has a built-in map-
ping mechanism that can be extended to support the mapping of model transformations to
database transformations.

Another aspect to discuss when considering an operation-based approach is the use of
coupled operators. Coupled operators are central to the operation-based approach. The
operators are basically a grouping of transformation statements that can transform both a
model and another artifact simultaneously. These coupled operators can be divided into two
categories: generic operators and custom operators. The generalized operators facilitate the
reuse of recurring coupled changes across models. These simplify the data model evolution
process by reducing it to the application of a series of predefined atomic transformations.
The custom operators define scenario-specific model modifications. The use of these two
kinds of operators results in a composeable model evolution. In other words, the evolution
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from one model version to the next can be composed of manageable and modular adap-
tations, thus enabling flexible combinations of generalized coupled operators and custom
coupled operators [35].

Of the operation-based approaches that were studied during the literature survey, the
COPE tool (cf. section 2.3.3) was selected as the basis for this project. It is an established
operation-based approach to co-evolve meta-models and their model instance(s). This co-
evolution resembles the data model and database co-evolution concept, therefore it was
decided to take advantage of the documented research concerning the construction of the
COPE tool.

Basic Design Concept Based on the aforementioned, it became evident that an operation-
based data model co-evolution approach (subsequently referred to as the OP-DEVO ap-
proach) could be possible by doing the following:

Figure 3.1: Data Model Co-Evolution Concept

1. Define coupled operators by:

a) Collecting a list of the existing model transformations found in literature

b) Defining a list of generalized database transformation statements; each one cor-
responding to a particular model transformation from step a

c) Creating a mapping between each model transformation and the correspond-
ing database transformation statements, thereby establishing an explicit link be-
tween the lists from steps a and b

2. Use these coupled operators to modify the data model

3. Modify the change recorder to not only log the transformations on the model-level
but to also log the corresponding database-level transformations

4. Add a migration functionality which collects the recorded database transformations
into a script. This script can then be used to migrate the existing database
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In doing so, it would be possible to create an integrated and semi-automated solution
for coupling data model modifications with application data migration.

3.1.2 OP-DEVO Approach Requirements

The basic requirements for the OP-DEVO (OPeration-based Data model co-EVOlution)
approach were based on the work done by Herrmannsdörfer et al., who outlined four re-
quirements that an approach should fulfill in order to profit from the automation potential
[33], namely: reuse of migration knowledge, expressiveness of transformation language,
modularity of operators, and recording of transformation history.

The basic requirements for the OP-DEVO approach are:

BR1 - Parameterized Co-Evolution Operations. The approach must use the coupled
operators in its library to modify existing data models. These coupled operators must
be model-independent to allow for reuse across different data models. By using pa-
rameters to detail the transformations in an operator, the operator can be independent
of a particular data model [32, 31, 36, 15]. Meaning, the declaration (i.e. definition)
of the operator is generic while its instantiation is model-specific.

This requirement relates to the aforementioned reuse of migration knowledge require-
ment.

BR2 - Expressiveness, custom co-evolutions. The operator library must be extensible.
Thus, the approach ought to be flexible enough to allow custom coupled operators to
be defined. Since transformations can be arbitrarily complex, the formalism used to
define operators must be expressive enough to cover these arbitrary evolution scenar-
ios.

BR3 - Modularity. Coupled operators ought to be specified (i.e. instantiated) inde-
pendently of each other. This independency allows the different changes to be better
managed, because the specification or removal of an operator will not be affected by
existing operators.

BR4 - Change Recorder. The approach must maintain a list of the applied modifica-
tions which can then be stored for future use. This corresponds to the history require-
ment given by Herrmannsdörfer et al. They also state that such a history would be
particularly useful when working with distributed artifacts.

In addition to addressing the aforementioned basic requirements, the objective of the OP-
DEVO approach is to also address the inherent limitations of operation-based approaches.
The limitations, of which there are five [64, 31, 44, 37], can be divided into three categories:

1. Coupled Operator Limitations:

L1 - Operation-based approaches use a library of operators to execute the re-
quired model modification. If the existing operators cannot realize the required
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model modification, then there are two outcomes. Either the approach is dis-
carded in favor of another one that does support the needed modification, or a
new operator is created to handle it. Therefore, the amount of model modifica-
tion types that the approach can support is related to the amount of operators in
its library. Thus, it is favorable to have a rich operator library, yet the larger the
operator library the harder it is to find the correct operator for a particular task.
In other words, there is a trade-off between the size of the operator library and
the ease of finding the correct operator. Finding that balance between richness
and navigability is a key challenge in defining libraries of coupled operators.

L2 - Most operation-based approaches use a fixed set of operators, therefore
they cannot support custom transformations. From the description given in L1
it can be deduced that a fixed set of operators means that there are a fixed amount
of model modifications that such an approach can support. Therefore, it would
be favorable to allow the creation of new operators instead of using a fixed
operator library

L3 - This limitation is related to L2, in that allowing the creation of custom op-
erators means providing the developers with a modeling language that is expres-
sive enough for them to create arbitrary operators. These modeling languages do
not capture migration patterns or other reoccurring patterns, therefore the new
operators do not benefit from reusing the existing transformation knowledge

2. Database Co-Evolution Limitation:

L4 - The coupling of database migration code to a model transformation im-
pedes independent adaptation of either the model or the database migration
code. This implies that the developer needs to take the impact of the data model
changes on the database into account. Meaning, at the model-level two sep-
arate modifications can lead to an equivalent result, but at the database-level
they can produce two separate results. For example, the moving of one attribute
from one element to another is the same as deleting that attribute from one el-
ement and creating it in the other element. However, at the database-level the
move-operation preserves the data represented by the attribute (i.e. the opera-
tion is data-preserving) but the delete-and-create-operation results in data loss.
Therefore, the developer must be constantly aware of the impact of the model
modifications on the database.
Furthermore, because of this coupling the order of the model modification can
affect the generated database transformation. If a modification order leads to
an incorrect database transformation this would mean that the performed model
modifications will have to be undone and then repeated in a different order to fix
the issue. Therefore, it would be beneficial to know which modifications caused
the erroneous database transformation so that only those modifications can be
fixed instead of having to undo everything until the error is gone

3. Tooling Limitation:
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L5 - In order to use an operation-based approach, the chosen modeling tool
must implement the approach’s operator library, the model change recorder to
register the model modifications, and the migration functionality responsible for
the co-evolution process. Thus, it requires a significant upfront implementation
investment

The two main aspects of an operation-based approach are its operators and its mapping
mechanism. The operators ultimately determine the supported co-evolution scenarios and
the mapping is responsible for actually outputting the co-transformation that resulted from
the model modifications. Therefore, this project will focus on the limitations associated with
the definition of coupled operators (cf. L2 & L3) and the generation of database migration
code (cf. L4).

3.2 The OP-DEVO Design

This section presents an overview of the OP-DEVO design starting with the design goals
and followed by a dissection of the design into its various components.

3.2.1 OP-DEVO Design Goals

The aforementioned limitations, requirements and project objective were incorporated into
six design goals:

• Ability to create graphical data models

• Ability to modify data models using coupled operators

• Ability to create independent coupled operators (cf. BR1 & BR3)

• Ability to extend the operator library (cf. BR2)

• Ability to record the history of data model modifications (cf. BR4)

• Ability to generate database migration code automatically based on recorded model
modifications

• Ability to view and adapt the generated migration code

3.2.2 Component Interaction

There are three main components that constitute an operation-based approach: the use of
coupled operators, the operator library which contains these operators, and the recorder that
logs all the changes. The OP-DEVO approach contains these three components.

The interaction of these components is straightforward, in that it starts with the opera-
tor library which is a collection of all the available coupled operators. Thus, the operator
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library represents the type of co-evolution scenarios that the approach can handle. The cou-
pled operators perform the actual model transformations and generate the corresponding
database transformation statements. Coupled operators are defined using a modeling lan-
guage (subsequently referred to as the operator definition language). The third component,
the change recorder, logs each model modification and its generated database transforma-
tion statement(s). These recorded items can be kept for future use (e.g. audits) and they can
also be used to debug (i.e. identify and adapt recorded items) the approach.

Figure 3.2 illustrates the component interaction.

Figure 3.2: Overview Component Interaction

In the next sub-sections each component is described separately. The descriptions focus on
the original shortcomings of the component and the concept behind its redesign.

3.2.3 Operator Definition Language

The type of languages that is generally used to define new operators is based on a com-
bination of a modeling language specific to the modeling domain and a general-purpose
language such as Java or C#. These modeling language combinations provide the flexibility
needed to define arbitrary operators, but they do so at a cost (cf. limitation L3 in Section
3.1.2). Therefore, the added flexibility enables the creation of any type of operator, while
inhibiting the ease of its creation because it replicates the existing modeling knowledge
instead of reusing it. Thus, the standard operator definition language has some room for
improvement.

Operator Composition Framework The idea for defining an operator composition frame-
work to improve the way in which operators were defined came from the realization that,
the sequential application of operators can be seen as a composition of manageable, mod-
ular transactions. Such a composition can enable flexible combinations of both existing
operators and custom model transformation statements [35]. In other words, the operators
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are already being used as composite units of transformation. The new operator composition
framework merely formalizes this concept.

The new framework presents each operator as parameterized functions that can be
chained together. These functions encapsulate the various model transformation statements
into a single function definition. Thus, increasing the conciseness involved in defining cou-
pled operators. The ability to chain these functions together supports the notion of applying
transformations in a particular order and more importantly it provides a knowledge-retaining
framework with which to define new operators. In other words, the end result of this new
framework is that new operators can be defined by encapsulating transformation statements
into a single function. These functions can also define an operator that consists of multiple
existing operators. Such an operator is called a composite operator. This reuse increases the
precision of the new operator, because the existing operators have already been tested for
correctness.

In order to define an operator composition a composition framework is needed that
has semantic and syntactic specifications that are compatible with those of the operators
used in the modeling environment. Furthermore, a composition theory is needed in order
to reason about the composition. Such a theory enables calculation and result prediction
of applying a composition to an operator [52]. The new framework will adhere to these
specification in the following manner. Its syntax will include the use the dot-character (.)
to indicate composition. The dot-character will always be placed between two operators.
The semantics thereof is that the operator to the right of the dot-character will be executed
directly after the first operator. This implies that the second operator will use the outcome
of the first operator (i.e. the updated data model) as its input.

Thus, the operator composition framework facilitates the creation of new operators by
allowing both the writing of transformation code and the reuse of existing operators. This
should result in a more concise and precise way to define new operators, while retaining the
flexibility provided by the general-purpose language that is used.

3.2.4 Coupled Operator

The coupled operators found in the literature are for meta-model and model co-evolution.
Thus, a coupled operator variant is needed to perform data model co-evolution. According
to the basic design concept outlined in sub-section 3.1.1, the needed coupled operator con-
sists of three parts: the model modification operation, the database adaptation operation, and
the mapping mechanism that links each model modification operation to its corresponding
database adaptation operation.

Model Modification Operation Based on the work done in the field of model co-evolution,
it can be stated that there is a set of model modification operations that can be considered to
be complete. Furthermore, this set of possible model modifications can be divided into four
categories: structural modifications, non-structural modifications, complex modifications
and semantic modifications. The model modifications and the categories are based on the
practically-complete list of model co-evolution operations as defined by Herrmannsdörfer
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et al. [39]. Table A.1 in Appendix A depicts a list of model modification operations per
category.

Database Adaptation Operation While searching for standardized database transforma-
tion operations, the work done by Ambler et al.[4] was found. They outline a list of database
schema refactorings and transformations which they present as “best practises”. A database
refactoring is described as a simple change to a database schema that improves its design
while retaining both its behavioral and informational semantics. In other words, a database
refactoring should not add new data or change the meaning of existing data.

Each refactoring description consists of a before-and-after example, a list of reasons
for applying the refactoring, a brief statement of the potential tradeoffs, the Data Defi-
nition Language (DDL) code for updating the schema, and the Data Manipulation Lan-
guage (DML) code for migrating the data.

The assumption was made that the refactorings could be used to realize the needed
database adaptation operation. Based on this assumption and because of the semantics
preserving property of the refactorings, it was decided to use them. Thus, each model
modification was paired with one or more refactoring. A list of these refactorings along
with their model modification counter-part can be seen in table A.1.

Mapping Mechanism As for establishing an explicit link between the two operation
types, this can either be done within the operator definition [34] or it can be done at
the recorder-level by matching incoming model modifications to their database adaptation
counter-parts.

The advantage of having the both the model-level and database-level transformation
code in the definition of a coupled operator is that it is self-contained and it is in one place.
Thus, it facilitates maintenance. The advantage of having a mapping at the recorder-level is
the opportunity to also link manual model modifications to a database refactoring.

3.2.5 Operator Library

The set of operators represents the different types of co-evolution scenarios that the ap-
proach can handle. Consequently, if there is a scenario that the existing operators do not
support, a new operator must be defined.

The new operator library, which replaces the old one, differs in only one aspect from
the standard library in that it contains functions that either represent a single operator or a
chained sequence of operators.

3.2.6 Change Recorder

The standard recorder’s task is to record the tracked model adaptations so that they can then
be used to produce a corresponding co-evolution strategy. The adaptations are recorded as
they are applied, therefore, the produced co-evolution strategy follows the same adaptation
order. Furthermore, the recorder does not provide any means to quickly locate the model
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modification that produced the particular transformation and any attempt to modify database
transformations will have to be by adapting the database migration script manually.

Event-based Change Recorder The objective of this component is twofold: to facili-
tate the search for the model transformation(s) that produced a particular set of database
transformation statements and to facilitate the adaptation of the aforementioned statements
without affecting anything else.

The guiding hypothesis behind the realization of this component consists of three parts.
The first is that it should be possible to locate a particular event by indicating the data model
entity and the modeling task that is involved. The second is that by storing model adapta-
tions as events that consists of two separate yet connected transformations, it should be
possible to adapt the produced database transformation without affecting its corresponding
model transformation, while retaining the link between the two. That link needs to remain
intact because it can be used to trace a database transformation back to the model adaptation
that produced it. The third is that by storing both the database transformation outcome and
the model-information necessary to recalculate that stored outcome, it would be possible to
adapt the database transformation outcome without affecting the integrity of the event log
(i.e. the outcome can be reset by recalculating it). This would make it possible to de-couple
the model transformation from its corresponding database transformation.

The design of this recorder resembles the event sourcing pattern as discussed by Fowler
[22]. Each model modification is logged as an event object. Such an event object contains
information concerning the context of the model transformation and a timestamp. The trans-
formation context consists of the modified model element both before and after the operator
is applied. The before-the-change element value is used to locate the existing database
items containing that value. The after-the-change values are used to update the database
items. Furthermore, the event sourcing pattern states that the events should be are stored as
a sequence, which can therefore be re-played as a sequence by simply looping through the
recorded changes. This facilitates the re-application of the event on an object. The compo-
nent uses this re-play mechanism to generate a database migration strategy (i.e. migration
script), by collecting the set of database transformations into a single file as they are being
looped through. The script provides a means to (re)view the database transformations as a
whole and it provides an opportunity for manual adaption before it is executed.

Thus, the event-based recorder enables one to have more control over the recorded data,
thereby enabling one to have control over the database transformations. That control is
defined as the ability to identify specific recorded transformations and the ability to adapt
database transformation without having it affect the existing data model.

3.3 Chapter Summary

As mentioned before, the main objective of this thesis was to find a way to mitigate two spe-
cific limitations: the operator creation limitations and the database transformations adapta-
tion limitation. This redesign set out to mitigate these limitations by revising the two com-
ponents that are directly responsible for operator creation and transformation adaptation: the
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operator definition language and the event-based change recorder. These two components
essentially constitute the novelty of the OP-DEVO approach.

The next chapter presents how these concepts are to be implemented by looking at the tool
that was built based on the redesign. The tool is called Modler.NET.
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Modler.NET: The Implementation

Modler.NET is the tool that was developed to implement the OP-DEVO approach that was
presented in Chapter 3. This chapter presents an overview of the implementation structure
and the techniques used to realize it.

Section 4.1 describes the modeling platform on which Modler.NET was built. This is
followed by an overview of the integration of the approach with the modeling platform in
Section 4.2. Lastly, an outline is given of the implementation of the tool’s main components
and its features in Sections 4.3 and 4.4.

4.1 Modler.NET’s Modeling Framework

Modler.NET was written in the C# programming language. It was built using Visual Stu-
dio’s Visualization & Modeling Software Development Kit (VMSDK) 1. VMSDK provides
a platform with which custom visual editors can be defined. Such editors contain features
that support the development of domain-specific models, such as point-and-click model
modification, model validation and artifact generation.

4.1.1 VMSDK

VMSDK caters to graphical models and as such it features a visual interface. Furthermore, it
uses a visual modeling language that is based on the conventions of the UML standard. The
modeling language consist of various shapes and connectors that represent basic reusable
building blocks that can be dragged-and-dropped onto its visual editor. The shapes repre-
sent domain classes which, in turn, represent the concepts in the specified domain. The
connectors represent domain relationships which are a representation of relationships be-
tween domain concepts.

Domain constraints are also an import part of the platform. Constraints ensure that the
created model is (semantically) valid. It is possible to define custom constraints in VMSDK
using hand-written code.

1VS VMSDK website: http://archive.msdn.microsoft.com/vsvmsdk
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After having created a valid model it is generally the case that some artifact whether it
is source code, data, a file or even another model be generated from the created model. Plat-
forms such as the VMSDK allows the developer to regenerate artifacts efficiently whenever
the model is changed [12].

4.1.2 Managed Extensibility Framework

VMSDK offers an extension framework called Managed Extensibility Framework (MEF) 2

which facilitates the discovery and use of extensions without the need for configuration. It
also supports the encapsulation of code in order to avoid hard dependencies. Furthermore,
MEF allows extensions to be reused within the same application as well as across different
applications. This facilitates the publishing of tool components built using the VMSDK.

4.2 Overview of Implementation Structure

VMSDK was the only established .NET-based platform (at the time of this writing) with
which to easily create a custom visual editor that could meet the various design goals for
the OP-DEVO approach (cf. Section 3.2.1). This is due to the fact that it supports the de-
velopment of graphical data models. It also provides a declarative interface, in the form
of a pop-up context-menu, with which model-transforming commands can be chosen and
executed directly on selected model items. Such a context-menu can be re-purposed to
contain coupled operators. In addition to that, the SDK’s modeling language is based on
C#, therefore, it should be flexible enough to develop parameterized operators and an op-
erator composition framework. Furthermore, the VMSDK platform provides a mechanism
through which every change to a model element can be registered. Thus, the registration
mechanism can serve as the foundation for the required change recorder. Lastly, windows
forms can be built to view and adapt the recorded migration information.

4.2.1 Component Data Flow

Figure 4.1 illustrates the data flow between the components and the general structure of the
Modler.NET tool.

2MEF web-site: http://msdn.microsoft.com/en-us/library/dd460648
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Figure 4.1: Overview Modler.NET’s Data Flow

4.2.2 VMSDK Integration

This sub-section details how the aforementioned components were realized and integrated
with the VMSDK platform.

Visual Editor The implementation of the visual editor was straightforward. A windows
form was created that consists of: a panel (i.e. an isolated area on the form) which contains
the data model elements, a column of buttons used to invoke a certain functionality and
a section which shows the recorded model modifications. To register this form with the
VMSDK platform as its visual editor interface, the developer is required to write six simple
lines of code. The VMSDK then provides the list of available model elements, as a toolbox,
that can be dragged-and-dropped onto the panel on the form.

The toolbox of available model element is generated from the meta-model that needs to
be defined. This meta-model defines the syntax (i.e. the structure) of the type of data model
that the visual editor will support. Based on the given syntax the VMSDK will: populate the
toolbox with the correct type of model elements and generate basic model validation-rules
to enforce proper model syntax.

Operator Library As mentioned before, right-clicking inside the panel area shows a
context-menu. This context-menu is re-purposed to represent the tool’s operator library.
As the name states, the pop-up menu is context-aware. This makes it possible to implement
filtering of the coupled operators that are shown in the context-menu. The filtering is based
on the selected model elements or the type of model element which the mouse-pointer is
hovering over when the right-click occurred.

In order to benefit from the extensibility feature of VMSDK, the operator library in-
vocation and filtering are done in MEF. This makes it possible to add more operators to
Modler.NET’s library without having to register them with the VMSDK platform [53].

MEF allows each coupled operator in the library to be define as a class. These classes
provide access to the selected model elements through its SelectionContext property. It
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also provides a method with which the desired filtering can be specified. Furthermore, it
provides a means to name the coupled operator and it has a method in which the coupled
operator itself can be instantiated. Listing 4.1 shows the MEF class for displaying the entity
rename operator when the selected model element is an entity.

1 public class RenameEntityCommandClass : ICommandExtension
2 {
3 // Provides access to current document and selection.
4 [Import]
5 IVsSelectionContext SelectionContext { get; set; }
6

7 // Called when the user selects this command.
8 public void Execute(IMenuCommand command)
9 {

10 Operators.Define(SelectionContext.CurrentStore).
11 RenameOperator(SelectionContext.CurrentSelection(Entity));
12 }
13

14 // Filtering based on selected model element type
15 public void QueryStatus(IMenuCommand command)
16 {
17 command.Enabled=command.Visible=(SelectionContext.

CurrentSelection(Entity);
18 }
19

20 // Determines the text of the command in the menu.
21 public string Text
22 {
23 get { return "Rename Element"; }
24 }
25 }

Listing 4.1: Menu definition in MEF for the rename operator

Coupled Operator The coupled operator declarations are done in a separate class file.
The model transformation statements are constructed using VMSDK’s modeling language.
They are created as methods that receive the specifics of the model element that needs to
be modified. As for the mapping mechanism, the choice was made to use a recorder-level
mapping in order to support manual model modifications. The database transformations
were defined in a separate class file as well to simplify the architecture. Their implemen-
tation is similar to the model transformation side, in that they are methods containing the
generic parameterized SQL code that receive the model element specifics needed to fill in
the parameterized code.

Capturing Model Changes The VMSDK has change-events that are triggered when a
model element is create, removed and updated. The change recorder component was im-
plemented by creating event handlers that register with a particular change-event. In other
words, the recorder implementation can be summarize as the creation of notification han-
dlers which are fired when the VMSDK’s change-events are triggered.
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When a model modification triggers a change-event, that event gets raised and is prop-
agated up to the event handler which in turn passes the event information to a method that
will record the information.

Listing 4.2 shows how the event handlers for model entities were registered. Two of
these registered handler methods are shown in listing 4.3. The call to the method han-
dleChangeNotification() takes two parameters: the state and the corresponding mapping
function. Hence, this is where the model transformation gets paired with its database trans-
formation statements.

1 // Handlers are added to the various change-events of the EMD:
2 EventManagerDirectory emd = store.EventManagerDirectory;
3

4 // Store events are registered per domain class, not per instance.
5 // After a listener is registered with a class, it is called for

every change to any instance of the class
6 DomainClassInfo entityInfo = store.DomainDataDirectory.

FindDomainClass(typeof(Entity));
7

8 emd.ElementAdded.Add(entityInfo , new Event <ElementAddedEventArgs >(
logger.elementAdded));

9

10 emd.ElementDeleted.Add(entityInfo , new Event <
ElementDeletedEventArgs >(logger.elementRemoved));

11

12 // Set one handler for all properties of a class
13 emd.ElementPropertyChanged.Add(entityInfo , new Event <

ElementChangedEventArgs >(logger.elementUpdated));

Listing 4.2: Register handler for event triggers

1 void elementAdded(object sender ,ElementAddedEventArgs e)
2 {
3 EventContext eventContext=fillEventContext((e.ModelElement).Name

, ElementCreatedString , e);
4 // log the state and SQL mapping for this particular event
5 handleChangeNotification(new AddedState(eventContext), new

AdditionMapping(eventContext));;
6 }
7

8 void elementRemoved(object sender ,ElementDeletedEventArgs e)
9 {

10 EventContext eventContext=fillEventContext((e.ModelElement).
CurrentName , ElementRemovedString ,e);

11 // log the state and SQL mapping for this particular event
12 handleChangeNotification(new RemovedState(eventContext), new

RemovalMapping(eventContext));
13 }
14 ...

Listing 4.3: Event Handlers
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4.3 Component Implemention Details

This section details how the event-based change recorder, the operation composition frame-
work and the operator library were implemented.

4.3.1 Change Recorder

To record the coupled evolution, a recorder is seamlessly integrated with the visual editor
used to perform the data model modifications. The recorder ensures that all changes to
the model’s state are stored as a sequence of events and that each event can be queried
separately. These two properties make it possible to reconstruct past states using the event
log and it also enables the automation of state adjustments in order to cope with retroactive
changes.

The recorder captures every state change in an event object and stores them in the same
sequence as they were applied. The key is to guarantee that all changes are initiated by the
event objects.

The main implementation challenge for this component was determining the event ob-
ject’s structure (i.e. how the events would be recorded). There needed to be a tradeoff
between the ease with which the information is stored and the ease of its retrieval.

The decision was made to construct one entity-event object for each modified model
entity which consists of an entity, an attribute and an inter-entity relationship (subsequently
referred to as a link) segment. Each of these three segments represents a sequence of event-
context objects. An event-context object is simply a set of properties such as the timestamp,
the affected model element type, the model element data values, and a hook into the map-
ping mechanism for that event. Listing 4.4 illustrates the properties of an event-context
object.

1 // Context of a model event
2 public struct EventContext
3 {
4 public string actionText;
5 public string entityName;
6 public DateTime timestamp;
7 public bool doSkipThisEvent { get; set; }
8 public MappingBase sqlEventMapping { get; set; }
9 public ContextElementType elementType;

10 public ElementEventArgs elementEventArgs;
11 }

Listing 4.4: Context Information for each Event Object’s Segment

In addition to the aforementioned segments, an entity-event object also has a ‘MainEn-
tityName’ property which allows for easy retrieval of the name of the parent entity of the
affected model element(s). Furthermore, the event object also contains a SQL script gen-
erator. This generator is a method that loops through the recorded events and collects all
of the mapped database adaptation code. The collected code is used by other components
which display it.
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This event structure allows each change-event to be grouped into the entity that it per-
tains to, thereby making the retrieval of all events for a particular model entity trivial. The
retrieval of events affecting a particular type of model element is also made trivial since
each change-event is separated into one of three segments depending on the affected ele-
ment type. The storing of the change-events, however, requires a bit of overhead in that the
recorder needs to identify or create the main entity-event object into which the change-event
is to be stored. Once the entity-event is established, the change-event is converted into an
event-context object and added to the collection of its respective segment.

The code for the entity-event object is shown in listing 4.5.

1 public class EntityEventInfo
2 {
3 // Events that pertain to an element
4 public IList <EventContext > entityEvent;
5 public IList <EventContext > attributeEvent;
6 public IList <EventContext > linkEvent;
7

8 public ElementEventInfo()
9 {

10 this.entityEvent = new List <EventContext >();
11 this.attributeEvent = new List <EventContext >();
12 this.linkEvent = new List <EventContext >();
13 }
14

15 // Name property of the main entity
16 public string MainEntityName { get; set; }
17

18 // Collection of the SQL mappings
19 public string collectSQLStatements()
20 {
21 StringBuilder strbResult = new StringBuilder();
22

23 var allSQLMappings = (from eContext in entityEvent where
eContext.doSkipThisEvent == false select eContext.
sqlEventMapping).

24 Union(from eContext in attributeEvent where eContext.
doSkipThisEvent == false select eContext.sqlEventMapping
).

25 Union(from eContext in linkEvent where eContext.
doSkipThisEvent == false select eContext.sqlEventMapping
);

26

27 foreach (MappingBase sqlMapping in allSQLMappings)
28 strbResult.Append(sqlMapping.GetSQLCodeMapping);
29

30 return strbResult.ToString();
31 }
32 }

Listing 4.5: Structure of an Entity-Event Object
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4.3.2 Coupled Operator

This sub-section illustrates the implementation of parameterized coupled operators, by fo-
cusing on the declaration of the entity/attribute renaming operator.

Rename Operator renames a model element (i.e. entity) or an attribute. Listing 4.6
shows the declaration code for this operator. The rename coupled operator is defined using
.NET’s generics. The use of generics allows it to be used to rename either an entity or an
attribute based on how it is instantiated. The actual element renaming is handled by separate
methods to facilitate maintenance.

1 public Operator RenameOperator <T>(IList <T> elementCollection)
2 {
3 // Constraint Validation Method
4 checkRenameOperator(elementCollection);
5

6 if (elementCollection != null)
7 {
8 if (elementCollection contains element -definition objects)
9 renameEntity(elementCollection);

10 else if (elementCollection contains attribute -definition
objects)

11 renameAttribute(elementCollection);
12 }
13 return this;
14 }

Listing 4.6: Rename Operator - Pseudo Declaration Code

The Renaming Method The input required for the actual renaming of an entity is the new
entity name. The new name is retrieved by prompting the user (through a input dialogbox)
to type it into a textbox. Listing 4.7 illustrates the implementation of this renaming process.
Furthermore, it also shows that the method is capable of handling the renaming of multiple
model entities.

The main implementation challenge associated with this component was to figure out which
model information to pass to the operator functions. In other words, the choice of param-
eters for each coupled operator function was tricky. VMSDK provides change-objects that
contain the data values of the changed model element. The properties of these objects are
filled in differently dependent on the type of model change that occurred. For example, the
removal of a newly created element using the keyboard’s delete button or using the undo
functionality effectively achieves the same outcome (i.e. the removal of the created ele-
ment). However, the property values of the change-object that indicates which element was
removed are different when using these two removal methods. When the keyboard is used
the change-object’s properties are filled in, i.e. the name and the Globally Unique Identi-
fier (GUID) of the removed model element. When using the undo function, however, the
change-object has no property values. The work-around for this issue was to define multiple
function signatures for each operator, where each function contained different parameters.
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Each of these extra function signatures converts its parameter(s) as needed and then they
invoked the same main function definition, passing along the corrected parameters.

1 private void renameEntity <T>(IList <T> entityList)
2 {
3 // Transaction is required if you want to update elements.
4 using (Transaction t = BeginTransaction("Rename Entity"))
5 {
6 string strElementName = string.Empty;
7 foreach (T entity in entityList)
8 {
9 Entity element = (entity as EntityShape).ModelElement as

Entity;
10 strElementName = Interaction.InputBox("Enter a new element

name:", "Rename Element - Inputbox", "ElementName");
11 if (strElementName != string.Empty)
12 {
13 element.Name = strElementName;
14 strElementName = string.Empty; // reset for next iteration
15 }
16 }
17 t.Commit();
18 }
19 }

Listing 4.7: Entity Renaming - Declaration Code

The code for the attribute renaming method is analogous to the aforementioned entity re-
naming code, therefore, it is not explicitly mentioned.

4.3.3 Operator Composition Framework

The operator composition framework was defined as the appending of operators to the base
operator object using the dot-character (.). The base operator object ensures that the proper
states are maintained and used throughout the composition. This is done by using a single
model-store object which is the in-memory store that VMSDK uses to save the current state
of models.

An operator composition is instantiated with the current model-store. After the model-
store has been set, operators can be appended to the base operator. Listing 4.8 gives two
examples of this operator composition instantiation followed by the adding of composite
operators.

1 Operators.Define(CurrentStore).MoveOperator(attributeList ,
targetEntity);

2 // or
3 Operators.Define(CurrentStore).
4 CreateOperator(IList eInfoList , out Guid newElemID).
5 MoveOperator(attributeList , newElemID);

Listing 4.8: Operator Composition
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This composition was achieved through two aspects. The first was defining a partial
class ‘Operators’ that contains the definition for the method ‘Define’ which ensures that
the appropriate model-store is used throughout the composition. Furthermore, it contains
a partial class ‘Operator’ in which all the coupled operators will be defined. Since the
‘Operator’ class is defined as a partial class, it is possible to split the class across separate
code-files. In this case, each coupled operator was defined in a separate code-file. This
design choice facilitated the maintainability of the coupled operator code and made it easier
to extend the number of operators.

The second aspect was defining the return-type of each coupled operator function as
type ‘Operator’. This meant that C#’s internal use of the dot operator for accessing a type’s
members could be used. In other words, the dot operator is used as it was intended, namely:
to access specific methods within a class. In this case the class was the ‘Operator’ class.
Since each coupled operator was defined as a function, the internal dot operator behavior
allowed each of these functions to be chained together.

4.3.4 Mapping Model Events to SQL Statements

There are two kinds of model changes that are registered as events: the first is the appli-
cation of a coupled operator and the second is the updating of property-values (i.e. setting
cascading mechanism or updating an attribute’s data type) through the tool’s user-interface.

Each event has a mapping attached to it which maps the model transformation to a
database transformation. Both the model transformation and its mapping result are stored
by the recorder. The benefit of this construction is that the migration script can be generated
at any time by simply running through the recorded events and collecting the mapping
results.

Current CASE tools can automatically generate DDLcode (i.e. code dedicated to the
creation of data structures), however, they generate incomplete DDL code that must be
modified to be operational. Additionally, data conversion are left for the developer to im-
plement [40].

Modler.NET not only produces DDL and DML code to provide a more complete database
transformation, but it also handles data conversions. The following sub-sections address
these claims.

Coupled Operator Mapping

Listing 4.9 shows the database adaptation implementation for the entity creation operator.
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1 private void addTableSQLCode()
2 {
3 // the element information is retrieved from the stored event

information
4 Entity entity = eventContext.elementEventArgs.ModelElement as

Entity;
5

6 strSQLMapping.AppendFormat(@"CREATE TABLE [{0}].{1} (" +
Environment.NewLine , Data.DatabaseSettings.SHEMA_NAME ,
entity.Name);

7 strSQLMapping.AppendFormat(" {0} " + MappingTypeConvertion.
translateDataTypeIntoSQLString(SqlDbType.NVarChar),
strTempColumnName);

8

9 foreach (EntityAttribute attribute in entity.EntityAttributes)
10 {
11 strSQLMapping.Append(@"," + Environment.NewLine);
12 strSQLMapping.AppendFormat(" {0} {1}", attribute.Name ,

MappingTypeConvertion.translateDataTypeIntoSQLString(
attribute.Type));

13 }
14

15 strSQLMapping.AppendLine(Environment.NewLine + ");" +
Environment.NewLine + "GO" + Environment.NewLine);

16 }

Listing 4.9: Implementation of the Database Adaptation - Entity Creation

Property-value Update Mapping

As for setting property values, the implementation is similar to the mapping for an oper-
ator with the exception of updating attribute data types.

This attribute data type change translates to a changing of the corresponding column’s
data type, because an attribute represents a column in a database table. The changing of a
column’s data type is more involved than just setting a value. It involves what are called
implicit and explicit data value conversions. In other words, the data values in a column
must conform to a column’s data type property, or else the database is said to be in an
invalid state. Therefore, these data values need to undergo a conversion.

An implicit conversion means that the database itself can safely (i.e. without loss of
information) convert the existing data values so that they can conform to the specified data
type. Explicit conversions, however, require extra input in the form of a conversion function.
These functions should provide the appropriate conversion of the data values. Appendix D
contains an overview of all the supported data type conversions per conversion type.

Modler.NET handles explicit conversions by copying and simultaneously converting the
existing data value into a temporary column that uses the new data type. If the copying is
successful, then the original column is dropped and the temporary column is renamed to
replace the original column. Hence, the detected attribute remove and rename patterns. If
the explicit conversion attempt fails, the developer receives an error which will require user
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input to correct. It must be noted that since the original column was copied, no data is lost
as a consequence of the failed conversion.

Listing D.1, which is located in Appendix D, contains a partial representation of the
function responsible for providing the data type conversion mapping.

4.4 Modler.NET’s Features

Figure 4.2 depicts Modler.NET’s main user interface. The user interface can be divided into
four compartments. The compartment on the left-side has two sections. The first labeled
“Toolbox” contains the basic building blocks for designing a model. These building blocks
can be dragged-and-dropped onto the visual editor (also referred to as the drawing canvas)
which is the center compartment. The second is the properties section which displays the
properties and the values of the selected model elements. The compartment on the right-
side contains two sections as well. The top-right section has buttons for the tool’s various
functions. The bottom-right section houses a check-box for pausing the change recorder,
and a tree-structured representation of the logged events.

This section contains a description of these features as well as the operator library UI.

Figure 4.2: Modler.NET’s User Interface
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4.4.1 Visual Editor, Model Toolbox & Event History

The model toolbox is a standard feature. The toolbox contains element-tools and connection-
tools. The former represents a graphical notation of each type of model element that is
supported by the specified domain. The latter represents the types of relationships that the
domain specifies. These are provided at run-time.

The visual editor, as mention in Section 4.2.2, is a form that is used as a visual editor.
This form is treated as a drawing canvas at run-time. VMSDK also provides drag-and-drop
functionality between the toolbox and the visual editor. As part of the editor, the tool has a
properties-section which simply displays the properties of the selected model element.

The event history section in the lower right-side of the tool’s UI was built to displays
the modifications that have been recorded. The recordings are grouped by entity and by the
type of model element that was involved in the modification.

4.4.2 Operator Library

The coupled operators are applied to the model through the visual editor’s context-menu
feature, which represents the operator library. Figure 4.3 shows the operator library menu
that appears when an element in the editor window is clicked using the right-mouse button.
In that figure the mouse was hovering over a model attribute, therefore the operator library
is filtered to contain operators applicable to model attributes. This use of context-awareness
reduces the selection complexity issue by filtering the whole operator library down to only
the relevant operators and thereby making it easier to select the required operator.

Figure 4.3: Context-aware Operator Library UI

4.4.3 Model Importing

Due to the data model creation design goal, a model importation function was built to
automate the process of creating a data model. The model importing function (as well
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as all the others) was implemented using the Strategy Design Pattern3 to ensure that the
functionality is extensible. This meant that the main code file consisted of an abstract class
with abstract methods which needed to be overwritten by a concrete class with specific
importing-logic.

Listing 4.10 contains the code for the ModelBuilder abstract class. It consists of three
methods: the first is used to establish a connection with the source of the data model in-
formation, the second is used to create the entities and attributes, and the third creates the
references between the entities.

1 public abstract class ModelBuilder
2 {
3 // Model root is used to access the diagram’s element store
4 private static ModelRoot modelRoot;
5 // Flag to determine if the tool is in import-mode
6 public static bool isImporting = false;
7

8 public virtual ModelRoot objModelRoot
9 {

10 get { return modelRoot; }
11 set { modelRoot = value; }
12 }
13

14 // Method for connecting to the model data source
15 public abstract void BuildDiagram();
16 // Method for creating entities
17 public abstract System.Guid createEntity <T>(T entity , bool

hasForeignKey , string fkAttributeName , System.Guid
referencedEntityId);

18 // Method for creating references between 2 entities
19 public abstract void createLink(Entity elementA , Entity elementB

, string attributeInA , string attributeInB);
20 }

Listing 4.10: ModelBuilder Abstract Class

4.4.4 Model Validation

To ensure that the generated migration script was based on a valid model, there needs to be
a validation function. VMSDK inherently enforces syntax through syntactical constraints,
but not semantic ones. For example, it does not enforce unique model element names.
Because model elements represent database tables and database tables are not allowed to
have similar names, custom validation rules were needed.

Model Consistency The consistency of a model relates to two things: the syntactic and
the semantic validity. The syntax consistency of a model entails ensuring that the evolved
model fulfills the constraints defined by its meta-model. The semantic consistency of a data
model entails ensuring that the model changes are allowed by the Database Management

3Reference web-site: http://www.oodesign.com/strategy-pattern.html

42



Modler.NET’s Features

System (DBMS) that manages the data represented by the data model and it also entails that
the model changes preserve referential integrity.

Modler.NET enforces syntactic data model consistency through the provided validation
rules. The only custom rules that were implemented are that entities, and attributes within
the same entity, must has unique names and that an entity must have at least one attribute.

As for semantic consistency two rules were implemented. The first is that to establish an
association between entity A and entity B, the source entity (in this case entity A) must have
a primary-key defined. Modler.NET will then automatically generate the needed foreign-
key constraint or ask the user to provide one. The second is that changing an attribute’s data
type is only allowed if the DBMS allows such a conversion.

Data Model Conformance The conformance between the data model and the data that
is represents entails ensuring that the data model correctly represents the schema of its
corresponding database.

Modler.NET does not enforce the conformance constraint. The work-flow was to im-
port the data model based on meta-data from the database, therefore, it was assumed that the
imported aspects (the data model and database) were in conformance. Consequently, there
is no conformance preserving constraint implementation to ensure successful co-evolution
completion. This was done through observation. On the other hand, not having this con-
straint enforcement allows for free model adaptation, meaning applying model modifica-
tions without have the tool prompting that the database no longer conforms to the data
model.

4.4.5 Event Viewer

Modler.NET has a EventManager utility (cf. figure 4.4) which is built on top of the event-
based recorder. This utility provides management controls of the recorded events and the
generated database transformation code.

The EventManager displays a list of all modified entities. Selecting one of these entities
populates the ‘Event Details’ section with the model modifications that were recorded for
that particular entity. Besides displaying the event details it is also possible to set a ‘skip-
this-event’ flag per event. This flag signals the script generator function to not collect the
SQL statements that pertain to the event. Furthermore, by selecting a particular event detail
the utility shows the SQL statements that corresponds to that event. It also allows these
statements to be edited and saved.

4.4.6 Script Viewer

The Script viewer feature (cf. figure 4.5) is a windows-form which displays the generated
SQL statements in an editable manner. It also has a ‘Save To File’ function that creates a
script file containing the SQL statements.

Each time this form is opened it retrieves the generated script code from the change
recorder to ensure that it is up-to-date.
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Figure 4.4: EventManager UI

Figure 4.5: SQL Script Viewer UI
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4.4.7 Publishing the Changes

The publishing of the model adaptation entails the propagation and persisting of the data
model changes to the database layer. This is done in two phases. First, the database trans-
formations are collected into a script. In the second phase the script is executed on the copy
of the existing database (which is referred to the staging database).

Thus, instead of using in-place updating, Modler.NET works on a copy of the original
database. The advantage of this approach is that it is conceptually simpler and undoing
erroneous evolution is straightforward, i.e. delete the copy and make a new one. The
drawback is that it is inherently slow when dealing with large amounts of data.

4.4.8 Pausing the Change Recorder

Modler.NET has a pause feature which when activated stops the change recorder from
recording any modification. The feature is activated or deactivated by checking or un-
checking the check-box above the ‘event history’ section. By activating this feature a flag
is set that signals the change recorder to not process the change events it receives.

It is particularly useful for making small corrections in imported data models to ensure
that the model conforms to the database it is representing, before starting the co-evolution
process.

4.4.9 Excluded Features

In order to maintain the project schedule as much as was possible certain features were
excluded from the tool. This feature freeze consisted of: the automated database migration,
and the implementation of a data modeling notation standard.

Automated Database Migration The second phase of publishing the recorded model
changes is the automated migration of the database. The intent was to implement this au-
tomated migration in two phases. First, all the modified entities were to be collected in
order to determine which tables need to be copied. In the second phase, the staging area is
created by copying the relevant tables into a temporary database (subsequently referred to
as the staging database). The last phase comprises the execution of the generated script on
the staging database.

Due to time constraints both phases of the automated migration were excluded. The
database copying was to be done manually as well as the execution of the script on the
database.

Since this feature freeze does not affect the main components of the redesign project,
its exclusion was considered to be acceptable.

Modeling Notation Standard In defining the syntax for the type of data models that
Modler.NET should support, the decision was made to use a modeling notation standard.
Their are three main data modeling notation standards: Entity-Relationship (ER), Informa-
tion Engineering (IE), and Extended IDEF (IDEF1X) [60, 28]. The ER method produces
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models with clutter because of its use of separate symbols for each attribute and each re-
lationship. Hence, it was not chosen. The IE does not have the clutter issue, however, it
lacks notations for unique identifiers. IDEF1X is a hybrid language combining conceptual
notions (e.g. entity, attribute, relationship) with relational database constructs (e.g. foreign
keys). It is seemed to be ideal yet it is possible for the making of one adjustment to the
model to result in the changing of multiple symbols.

Ultimately the decision was made to implement a simplified UML Class Diagram type
notation. It consisted of simple rounded blocks for entities and black lines for the asso-
ciation relationship. It only supports the binary association relationship-type. To identify
unique attributes a key-icon is placed to the left the attribute’s name. Furthermore, the no-
tation does not contain notations for cardinality or inheritance. Thus, it does not conform to
the UML Class Diagram or the UML For Data Modeling syntax presented in work done by
Ponniah [60].

The simplified data modeling notation does not hinder the execution of the model trans-
formations listed in Section 3.2.4, therefore its exclusion was considered to be acceptable.

4.5 Chapter Summary

The implementation of the OP-DEVO approach is based on Visual Studio’s VMSDK plat-
form. VMSDK provided the integration possibilities needed to fulfill the design goals men-
tioned in Chapter 3. This chapter presented the methodology that was used to implement
the OP-DEVO approach. The end result of this implementation process is the Modler.NET
tool.

This chapter also described the implementation choices and the implementation prob-
lems encountered during the construction of Modler.NET’s various components. The focus
of these descriptions was on the change recorder, the coupled operator, and the operator
composition framework. These components are at the center of this redesign project.

The next chapter will use Modler.NET to assess the feasibility of the OP-DEVO ap-
proach as well as to verify its claims of improved extensibility and adaptability.
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Evaluation

As described in chapter 1, the goal of this research project is to redesign the operation-
based approach so that it could provide better support for the coupled evolution of graphical
data models and their data. This improved support was to be obtained by addressing the
approach’s inherent limitations related to its expressiveness and its adaptability.

In order to evaluate the proposed operation-based approach a software tool, Modler.NET,
was developed that implemented it. This tool was used to collect empirical data which was
then analyzed and interpreted to deduce the extent to which the proposed approach achieved
the research goal.

This chapter presents the evaluation of the feasibility, expressivity and adaptability of
the proposed approach redesign. This evaluation was based on three exploratory case stud-
ies whose process and set up are outlined in Section 5.1. The results obtained from the
conducted experiments are reported in Section 5.2. Sections 5.3 and 5.4 concludes this
chapter with a validity assessment and a summary of the evaluation results.

5.1 Overview of the Evaluation Methodology

The overall objective of the evaluation was to assess three aspects. The first was the feasi-
bility of using an operation-based approach to automate the co-evolution of graphical data
models and their data. The second was the assessment of the operator composition frame-
work’s contribution to the approach’s expressiveness. The third aspect that needed to be
assessed was the event-based change recorder’s contribution to the approach’s adaptability.

The evaluation consisted of three case studies; one for each of the aforementioned eval-
uation aspects. Table 5.1 shows how these cases also relate to the limitations which this
research project sets out to mitigate.

A notable aspect of table 5.1 is that there are no cases that assess limitation L1. This is
due to the fact that it falls outside of the feasibility, expressiveness and adaptability scope.
It is a usability concern that was addressed in Section 4.4.2 using reasoning. Therefore, it
was excluded from this evaluation.
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Approach Limitation Case I Case II Case III
L1 - Operator Selection Complexity - - -
L2 - Lack of Custom Transformation Support x x
L3 - Lack of Knowledge Reuse x
L4 - Self-imposed Model Transformation Order Restriction x
L5 - Costly upfront Implementation Investment x

Table 5.1: Overview - Case Study and Approach Limitation Matchup

Used Resources The graphical data models needed to conduct the experiments were gen-
erated from meta-data found in a Customer Relationship Management (CRM) application
called Microsoft Dynamics CRM 2011. The CRM installation was filled with sample data
which contains multiple records for a few entities 1. Four of these entities were chosen as
the basis for the generated data models, namely: the ‘account’, ‘contact’, ‘lead’ and ‘op-
portunity’ entities. Of the entities that were populated with data, these four entities were
chosen because they represent some of the core objects in CRM applications.

The four generated data models were constructed by taking one of the four entities
and importing all entities directly connected to it. Table 5.2 gives a brief overview of the
properties of the generated data models. The actual data models are detailed in appendix B.

The reasons for choosing this type of data model were:

• Data model and database co-evolution is an actual recurring scenario in the devel-
opment and maintenance of CRM applications. This evaluation will therefore aid in
demonstrating the applicability of the proposed redesign

• Because CRM applications represent a real-life instance of the research problem, the
proposed approach will be evaluated using realistic data

• Generating the models based on imported data, means avoiding having to create the
needed models by hand. In other words, it saves time

The following are the additional software applications used to execute the case studies: Vi-
sual Studio 2012 (Ultimate Edition), Modler.NET (v1.0), Microsoft SQL Server 2012 (Busi-
ness Intelligence Edition) and Microsoft SQL Server Management Studio (v11.0.3128.0).

The next sections outline the case study set-ups.

Model Name Data Source Nr. of Entities Nr. of Attributes Nr. of Links
IM 1 Account Related Meta-data 45 2919 46
IM 2 Contact Related Meta-data 44 2862 44
IM 3 Lead Related Meta-data 36 2332 36
IM 4 Opportunity Related Meta-data 40 2704 40

Table 5.2: Overview - Initial Data Models

1http://blog.xrm.com/index.php/2011/06/sample-data-in-microsoft-dynamics-crm-2011/
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5.1.1 Case I - Feasibility

The objective of Case I was to determine which types of model modifications the operation-
based approach can support and also to find out if it can produce the corresponding database
transformations. This objective was reformulated into the following questions:

1. Model Transformations - How does the type of model modification affect the tool’s
ability to produce the appropriate target model?

2. Database Transformations - How does the type of model modification affect the tool’s
ability to produce the appropriate database transformation?

The Required Input Two inputs are needed to execute the case study. The first is the
generated data models. Each of them are used to define pairs of starting models, termed
initial models, and corresponding target models. These target models are an evolved version
of the initial model that they are paired with. Furthermore, since each model represents a
database, they all have corresponding initial and target databases as well.

The second input is the set of model changes that represents the four different types of
possible model modifications (cf. Section 3.2.4). The four types of model modification are:
structural modifications, non-structural modifications, complex modifications and semantic
modifications. This input selection is based on a list of operators that was researched and
concluded to be practically-complete [39]. Thus, the input is an unbiased representative of
the different types of possible model modifications.

The choice was made to have one target model represent one type of modification.
Meaning that each target model TM1 was defined in terms of one category of model changes
needed to transform its initial model IM1 into TM1. Therefore, it can be said that each
modification type is represented by its own target model. This categorization of the target
models allows for the granularity needed to answer the questions posed above.

Furthermore, data triangulation was used by varying the chosen initial models and target
models. This variation was done by having two sets of input data. The first consisted of a
fixed initial model (IM1) and the type of target model paired with it was varied. The second
contained a fixed target model type while the initial model was varied.

The Execution Plan The preparation phase consists of loading an initial model into the
tool and using the tool to transform it into each of the target models that it is paired with.

After completing the preparation, the produced target models are compared to their
predefined target model counter-parts to determine their equivalence based on:

• Having the correct entities (the name and the amount of entities)

• Having the correct attributes (the name, the data type and the amount of attributes)

• Having the correct inter-entity relationships
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Since the use of an automated model comparison tool would have required the imple-
mentation and fine-tuning of a model exporting function, it would be quicker to do the
comparison manually. Thus, each model modification was to be checked by hand.
The type of model modification that the tool can support is determined based on whether or
not the produced model equals the target model specific to that modification type.

The final part is to use the tool to generate separate database transformation scripts based on
each of the model transformations that were done and to execute each script separately on
the initial database. The resulting database from each script execution is then compared to
the corresponding target database using the ‘Visual Studio 2012 - Schema Compare’ tool 2.
This utility generates an overview of the schematic difference (per table) between the two
databases.

The equivalence of the produced database to the target database is based on a few crite-
ria, namely:

• Having the correct table names

• Having the correct columns (correctness is defined as having the same data types)

• Having the correct relationships constraints

• Having the correct migrated data values

Similar to the model comparison, the extent of the equivalence of the two databases is
used to determine the type of database transformations that the tool can handle.

5.1.2 Case II - Expressiveness

With this case the objective was to determine if operator composition could increase the
overall expressiveness of an operation-based approach. To this end, the following questions
were posed:

1. Are there recurring transformation patterns that can be used to define an operator as
a sequence of patterns?

2. Can these patterns be used as basic operators?

3. Which operators could be defined in terms of a sequence of basic operators?

4. How can the use of operator composition increase expressivity?

The Required Input The only input required for this task is the list of coupled operators
used in Case I. Every item in the list of model modifications (cf. table A.1) is an operator.
As mentioned, the list of coupled operators is a practically-complete list and is therefore a
viable representative of the standard operators used to perform co-evolution tasks.

2http://msdn.microsoft.com/en-us/library/aa833202(v=vs.100).aspx
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The Execution Plan The first part of the assessment is to determine if there are transfor-
mation patterns that are used to define operators. To do this, the ‘Visual Studio 2012 - Code
Clone Analyser’ 3 utility is used to detect recurring transformation patterns in the code used
to implement the aforementioned list of operators. The standard detection criteria used by
the tool are that it finds “near miss” clones where it tolerates identifier renames, insert and
delete statements and rearranged statement ordering. As of the time of this writing, the
amount of these changes that it can tolerate was undisclosed. Furthermore, only statements
in methods and property definitions are compared. That is to say, type declarations are
not compared. Lastly, statement fragments with more than 40% token changes will not be
detected.

The second part is to divide these detected patterns into two groups. The basic operator
group will consist of operators that do not use multiple patterns to achieve their transfor-
mation. The second group consists of the composable operators. These are operators that
display a use of multiple patterns.

The third part sets out to determine if Modler.NET’s composition framework can pro-
duce a composite operator that can generate transformations that are equivalent to its com-
posable operator counter-part while enabling a more expressive way to define operators. The
equivalence comparison is based on the transformation equivalence of the operators in ques-
tion. As for the composition framework’s contribution to an increased expressiveness, this
is determined by tackling three characteristics of expressiveness: conciseness (the amount
of lines-of-code used to achieve an end result), precision (a measure of how straightforward
the written code is, i.e. the amount of boilerplate code involved in defining a co-evolution
task) and completeness (a measure of how many of the possible co-evolution tasks can be
expressed). The conciseness characteristic is assess using the Lines-Of-Code (LOC) metric
to compare each operator implementation method. As for the assessment of the precision,
this is done through observational comparison of the implementation code. Finally, the
completeness characteristic is argued using reasoning.

5.1.3 Case III - Adaptability

The objective of this case was to determine if the redesigned change recorder can increase
the adaptability of the database migration process. Adaptability in this context is defined in
terms of fixability, meaning the ability to fix the generated database transformation state-
ments without affecting anything else [20]. In order to determine this, two sub-goals were
defined. The first was to show that there are model transformations where it is evident that
the tight coupling of model modifications to database transformations results in an erro-
neous database migration. The second objective was to show that the event-based change
recorder enables retroactive correction of such erroneous database transformations.

The following questions were used to guide this case study:

1. How does the event-based recorder facilitate locating the event(s) that produced the
incorrect SQL statement?

3Code Clone Analyser web page: http://msdn.microsoft.com/en-us/library/hh205279.aspx
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2. How does the event-based recorder facilitate the correction of the incorrect SQL state-
ments?

The Required Input Two inputs are needed for this case. The first is the set of model
transformations that contain modifications that fit the criteria of causing database transfor-
mation errors because of the coupling of the two types of transformations. The second input
are the event histories that pertain to the aforementioned model transformations.

The Execution Plan The first part of the assessment is to collect the model transforma-
tions that fit the criteria and load each one, separately, into Modler.NET.

Secondly, using the tool’s EventManager feature the event log is accessed to pin-point
the event(s) that produced the incorrect statements by searching for events based on the
entities, attributes and links related to the transformation error.

Finally, once the event or events are found, the related SQL statements are corrected af-
ter which the tool’s script generator is used to generate an updated database transformation.
The success of the adaptation is determined by comparing the produced database - which
is obtained by executing the correct script on the initial database - and its predefined target
database.

The Visual Studio “Schema Compare” utility is used to compare these databases. The
criteria for determining the equivalence are:

• Having the correct table names

• Having the correct columns (correctness is defined as having the same data types)

• Having the correct relationships constraints

• Having the correct migrated data values

5.2 The Evaluation Results

This section presents the results from each case along with observations that were made
during their execution.

5.2.1 Case I - Feasibility Results

Table 5.3 gives an overview of the input data sets that were used to execute this case study.
The outcome of the equivalence tests of the produced model transformations and database
transformations are summarized in tables 5.4 - 5.7. This sub-section discusses each of them
individually.

Table 5.4 shows that the produced model and database transformations for the structural
modifications type met the given criteria.

The results for the non-structural modifications (cf. table 5.5), are similar to those
from the previous modification category with the exception of two differences between the
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produced database and the target database. Figure 5.1 depicts these difference as presented
by the Schema Compare utility.

Figure 5.1: Schema Comparison Overview - Non-Structural Modifications Differences

Based On Model Name Nr. of Entities Nr. of Attributes Nr. of Links
Input Data Set - 1
IM 1 TM-struct 1 48 2943 49
IM 1 TM-nonStruct 1 49 2933 50
IM 1 TM-complex 1 46 2921 47
IM 1 TM-semantic 1 45 2917 46
Input Data Set - 2
IM 2 TM-complex 2 44 2856 49
IM 3 TM-complex 3 36 2322 38
IM 4 TM-complex 4 40 2704 40

Table 5.3: Overview - Data Model Input Sets

hhhhhhhhhhhOperation
Transformation Model Database

Achieved Not achieved Achieved Not achieved
Entity Creation x x
Entity Removal x x
Attribute Creation x x
Attribute Removal x x
Relationship Creation x x
Relationship Removal x x

Table 5.4: Structural Modifications Overview
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The figure shows that the produced database contains an extra function called ‘dboGet-
GUID’. This function is used by Modler.NET to convert column data types while ensuring
that the related data values are also converted. Furthermore, the naming of foreign-key con-
straints is different (cf. details in listing 5.1). Instead of the ‘referencedTable referencingTable’
convention used by SQL Server 2012, the tool uses a ‘referencedTable referencingAttribute-
InReferencingTable’ naming convention.

1 /* Modler.NET’s way of defining FK constraints: */
2 ALTER TABLE [dbo].[TwitterProfile]
3 ADD CONSTRAINT [FK_TwitterProfile_account_ID] FOREIGN KEY ([account_ID

]) REFERENCES [dbo].[account] ([AccountId]);
4 GO
5

6 /* The SQL Server Management Studio’s way of defining FK constraints: */
7 ALTER TABLE [dbo].[TwitterProfile]

8 ADD CONSTRAINT [FK_ Twitter account] FOREIGN KEY ([account_ID])
REFERENCES [dbo].[account] ([AccountId]);

9 GO

Listing 5.1: Schema Comparison Overview - FK Constraint Naming Difference

Table 5.6 shows that the tool’s database transformations for most of the complex modifica-
tions did not fully meet the equivalence criteria. They failed to produce the correct migrated
data values.

Extracting attributes from one entity to another entity with which it has no relationship,

hhhhhhhhhhhhOperation
Target Equivalence Model Database

Achieved Not achieved Achieved Not achieved
Entity Rename x x
Attribute Rename x x
Attribute Change DataType x x
Attribute Make PrimaryKey x x
Attribute Drop PrimaryKey x x
Super Type Entity Creation x x
Super Type Entity Removal x x
Composite Relationship Creation x x
Composite Relationship Switch x x

Table 5.5: Non-Structural Modifications Overview

hhhhhhhhhhhhOperation
Target Equivalence Model Database

Achieved Not achieved Achieved Not achieved
Extract Entity x x
Inline Entity x x
Fold Entity x x
Unfold Entity x x
Move attribute over rel. x x
Collect attribute over rel. x x

Table 5.6: Complex Modifications Overview
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hhhhhhhhhhhhOperation
Target Equivalence Model Database

Achieved Not achieved Achieved Not achieved
Merge Entity x x
Split Entity x x
Merge Attribute x x

Table 5.7: Semantic Modifications Overview

results in a faulty database transformation. The database transformation script attempts to
insert null values into the target entity’s existing columns. If one of these columns has a
NOT Null constraint this will result in a database error. This error was avoided by first
establishing a relationship between the entities and using it in the join-condition used to
migrate the data to the target entity.

The database transformations related to the inline, fold, and unfold modifications suffer
from the same shortcomings as the database transformation for entity extractions.

The merging and splitting of an entity, as shown in table 5.7, experience the same transfor-
mation errors described above.

Feasibility Observations The tool’s output starts to stray from its intended target when
dealing with the operators involving the exchanging of attributes. The tool produces the
correct model transformation and the correct database schema transformations, but the data-
value migration is incorrect. This is a result of the inconsistent input coming from the
underlying VMSDK framework. This causes the event-recorder to record incomplete model
changes.

In the specific case of the merge entity operator, the VMSDK removes the relationship
data between the target entity and the source entity before the recorder can log it. A similar
issue was dealt with using a custom storage mechanism, however it was not used in this
instance because of time constraints. This emphasizes one of the inherent limitations of
the operation-based approach that hinders its adoption, namely limitation L5. The success
of the approach is dependent on how well its components are integrated into the chosen
modeling environment. However, it can be said from experience that this integration re-
quires a significant implementation investment, because it requires an understanding of the
modeling environment’s underlying framework.

Additionally, from looking at the implementation of the extract, inline, (un)fold, merge
and split operations it was evident that they use similar patterns. This might be the reason
for them exhibiting the same database transformation issues.

5.2.2 Case II - Expressiveness Results

As described in section 5.1.2, there are three parts to this case. The first is to determine
the existence of recurring transformation patterns. The second is to divide the operators
into two groups; basic operators and composable operators. The third is to show that a
composition framework facilitates the expressiveness of the proposed approach.

Each of the parts are discussed separately in the following paragraphs.
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hhhhhhhhhhhOperation
Detected Pattern

Modeling Pattern Database Pattern

Entity Creation (none) (none)
Entity Removal (none) (none)
Attribute Creation (none) (none)
Attribute Removal (none) (none)
Relationship Creation (none) (none)
Relationship Removal (none) (none)

Table 5.8: Pattern Detection for Structural Modifications

hhhhhhhhhhhOperation
Detected Pattern

Modeling Pattern Database Pattern

Entity Rename (none) (none)
Attribute Rename (none) (none)
Attribute Change DataType (none) Remove Attribute, Rename Attribute
Attribute Make PrimaryKey (none) (none)
Attribute Drop PrimaryKey (none) (none)
Super Type Entity Creation Create Entity, Create Link Create Entity, Create Link, Create Foreign-key (FK) constraint
Super Type Entity Removal Remove Entity 4 Remove Entity, Remove FK constraint
Composite Relationship Creation Create Link Create Link, Add FK constraint
Composite Relationship Switch Remove Link, Create Link Create Link, Remove FK constraint, Create FK constraint

Table 5.9: Pattern Detection for Non-Structural Modifications

Recurring Transformation Patterns

The results from using the code clone utility show that the structural modification operators
do not display a use of recurring transformation patterns. The same can be said of the en-
tity and attribute renaming operators and the creation and removal of the primary constraint
operators, which are part of the non-structural modification operators. The remaining op-
erators do contain recurring transformations. A detailed account of which transformation
patterns each operator uses is depicted in tables 5.9 through 5.11.

Table 5.9 contains a noteworthy occurrence. The attribute change dataType operator
displays the use of database transformation patterns but no model transformation patterns.
This occurrence is caused by the fact that, at the model-level, the changing of an attribute’s
data type value constitutes a simple property setting through the tool’s user-interface. At the
database-level however it involves either an implicit or explicit data value conversion (cf.
Section 4.3.4 for further details). In this particular case an explicit conversions is needed,
which is handled by copying and simultaneously converting the existing data value into a
temporary column that uses the new data type. The original column is then dropped and the
temporary column is renamed to replace the original column. Hence, the detected attribute
remove and rename patterns.

The split entity operator can move selected attributes in the source entity to an existing
destination entity or it can move them to a new entity. This operator’s use of the create
entity pattern is therefore dependent on whether a new destination entity is needed. Hence,
the asterisk behind the ‘Create Entity’ in table 5.11.

4Implies an implicit removal of the connected links
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hhhhhhhhhhhOperation
Detected Pattern

Modeling Pattern Database Pattern

Extract Entity Create Entity, Create
Attribute, Create Link,

Remove Attribute

Create Entity, Add FK constraint, Move Attribute

Inline Entity Remove Link, Create
Attribute, Remove Attribute,

Remove Entity

Remove Entity, Remove FK constraint, Move Attribute

Fold Entity Create Attribute, Remove
Attribute, Create Link

Add FK constraint, Move Attribute

Unfold Entity Remove Link, Create
Attribute, Remove Attribute

Remove FK constraint, Move Attribute

Move attribute over rel. Create Attribute, Remove
Attribute

Move Attribute

Collect attribute over rel. Create Attribute, Remove
Attribute

Move Attribute

Table 5.10: Pattern Detection for Complex Modifications

hhhhhhhhhhhOperation
Detected Pattern

Modeling Pattern Database Pattern

Merge Entity Create Attribute, Remove Attribute Move Attribute
Split Entity Create Entity*, Create Attribute, Remove Attribute Create Entity*, Move Attribute
Merge Attribute Create Attribute, Remove Attribute, Remove

Entity
Move Attribute, Remove Entity

Table 5.11: Pattern Detection for Semantic Modifications

Operator Grouping

Based on the results from tables 5.8 - 5.11 it is evident which operators were basic operators
and which were composable operators. The following is an overview of all the operators
per group.

Basic Operators:

– Entity creation, entity removal and entity renaming

– Attribute creation, attribute removal, attribute renaming, attribute data type chang-
ing and attribute moving

– Setting and removing primary-key or foreign-key constraints on an attribute

Composable Operators:

– Super-type creation and its removal

– Composite Relation creation and switching

– Entity extraction, inlining, folding, unfolding and splitting

– Merging of entities or attributes

Expressivity of Operator Composition
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In this paragraph the expressivity of the operator composition framework is assessed by
tackling three characteristics of expressiveness: conciseness, precision and completeness.

Starting with the conciseness characteristic of the composition framework, the following
sub-section shows that by re-implementing the composable operators as composite opera-
tors, an average reduction was achieved of 79%. An overview of the averaged reduction
results per modification type is given in Figure 5.2 and the detailed breakdown of the reduc-
tion results per operator is given in appendix C.

84.0%Structural Modifications

78.8%Non-Structural Modifications

88.4%Complex Modifications

80.8%Semantic Modifications

0% 25% 50% 75% 100%
Average LOC Reduction Percentage

Figure 5.2: Lines-Of-Code Reduction Overview

As for the precision of the operator implementations, the following code listings show the
comparison between the composable operators and their composite counter-parts. These
composite counter-parts were created by following the implementation details of the opera-
tor they are replicating. The main differences between the two operator definitions are that
the composition framework abstracts over the transaction-related statements and the object
instantiation statements. These statements are handled internally so that the needed input
are the object’s property values.

The first operation that displayed a use of both model transformation patterns and
database transformation patterns is the SuperType Entity Creation operator. It was shown
to use two basic operators; entity creation and link creation. Listing 5.2 and 5.3 depicts the
operator’s implementation as a composition operator and as a composite operator. The use
of abstraction and operator functions in listing 5.3 seems to result in a more straightforward
(i.e. precise) operator implementation.
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1 using (t = transactionMngr.BeginTransaction("Create Super Type"))
2 {
3 entity = new Entity(store);
4 entity.ModelRoot = eInfo.modelRoot;
5 entity.Name = eInfo.name;
6 entity.IsImported = eInfo.isImported;
7

8 foreach (Entity ent in entityList)
9 {

10 relationship = new EntityAssociation(entity , ent);
11 relationship.AttributeInSource = "";
12 relationship.AttributeInTarget = "";
13 attributeInTarget.isForeignKey = true;
14 }
15 t.Commit();
16 }

Listing 5.2: Operator - Create Super Type

1 Operator op = Operators.Define(store);
2 op.CreateEntityOp(modelRoot , entityName , isImported , out

newEntityID , null);
3

4 foreach (Entity ent in entityList)
5 op.CreateLinkOp(newEntityID , ent, "", attributeInTarget , false,

true);

Listing 5.3: Equivalent Composite Operator

The next operator, SuperType Entity Removal, is compared to its composite counter-part
in listing 5.4 and 5.5.

1 using (t = transactionMngr.BeginTransaction("Remove Super Type"))
2 {
3 foreach (Entity ent in entity.Targets)
4 ent.EntityAttributes.Where(a => a.isForeignKey == true && a.

ReferencedEntityID == entity.Id).ToList().ForEach(aa => aa
.isForeignKey = false);

5 entity.Delete();
6 t.Commit();
7 }

Listing 5.4: Operator - Remove Super Type
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1 Operators.Operator ops = Operators.Define(store);
2 foreach (Entity ent in entity.Targets)
3 ops = ops.UpdateAttributeProperty(EntityAttribute.

isForeignKeyDomainPropertyId , ent.EntityAttributes.Where(a
=> a.isForeignKey == true && a.ReferencedEntityID == entity.
Id).ToList(), false, ent);

4

5 ops.RemoveOperator(new List <Entity > { entity });

Listing 5.5: Equivalent Composite Operator

The two composite relationship operators have a similar build up to the superType op-
erators described above (cf. B.2).

The extract entity operator is similar to the entity inline, fold, unfold, merge and split
operators. They all have the same basic make-up. Listing 5.6 and 5.7 show how such an
operator was reproduced using composition.

1 using (t = transactionMngr.BeginTransaction("Create Relationship
For Extracted Entity"))

2 {
3 targetEntity = new Entity(store);
4 targetEntity.ModelRoot = modelRoot;
5 targetEntity.Name = name;
6 targetEntity.IsImported = isImported;
7

8 relationship = new EntityAssociation(sourceEntity , targetEntity);
9 relationship.AttributeInSource = "";

10 relationship.AttributeInTarget = "";
11 attributeInTarget.isForeignKey = true;
12 t.Commit();
13 }
14 using (t = transactionMngr.BeginTransaction("Move Attributes"))
15 {
16 foreach (EntityAttribute attr in attributeList)
17 {
18 targetEntity.EntityAttributes.Add(attribute.Copy() as

EntityAttribute);
19 sourceEntity.EntityAttributes.Remove(attribute);
20 }
21 t.Context.Add(Operators.GetMoveOpTransactionKey , sourceEntity);
22 t.Commit();
23 }

Listing 5.6: Operator - Extract Entity
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1 Operator op = Operators.Define(store);
2 op.CreateEntityOp(modelRoot , name , isImported , out newEntityID ,

null);
3

4 op.CreateLinkOp(sourceEntity , newEntityID , "", attributeInTarget ,
false, true).MoveOperator(attributeList , newEntityID);

Listing 5.7: Equivalent Composite Operator

Based on these listings it can be said that the operator composition framework results in
a more concise and precise implementation code.

Regarding the completeness of the framework, there are three facts that can be used to
establish that the framework possesses this characteristic. The first is that it was possible
to re-implement all of the operators from the operator list using the framework. Secondly,
that list of operators was researched and concluded to be practically-complete [39]. As a
result of that, it can be said that the framework is able to express all probable co-evolution
tasks. Thirdly, the framework is based on the C# programming language which is Turing-
Complete (i.e. maximally expressive). Since the expressiveness of the syntactic mechanism
of a “host” language is inherited by that which is built on it [48], the framework’s syntax
allows for maximum expressivity. Thus, the operator composition framework is complete
in terms of its ability to define operators.

Expressivity Observations While conducting the experiment a few key observations were
made. The first was that, the addition and removal of foreign-key (FK) constraints are not
explicitly listed as an operator, even though the addition and removal of primary-key con-
straints are listed. The FK constraint creation and removal operation is used in 8 of the 13
composable operators. Because it is so frequently used it was added as a basic operator, so
that it can be used to compose new operators.

Secondly, it was observed that the use of operator composition inherently enables the
reuse of transformation knowledge when creating operators. This reuse was the main con-
tributing factor for the LOC reduction that was achieved for the composable operators.
Meaning, the LOC reduction for the composable operators is primarily dependent on the
reuse of the transformation code for the basic operators.

Thirdly, it was shown that the new framework increases the expressiveness with which
operators can be defined by facilitating the use of operator implementation code that is
more concise and precise while remaining flexible enough to cover arbitrary co-evolution
scenarios.

There are also a few drawbacks. There is a complexity increase from just navigating the
operator library to include the complexity of deciding what the correct parameters are for
an operator function. Additionally, the more expressive a language is the more complex it
will be to analyze. Furthermore, the higher level of abstraction may hinder expressiveness
in terms of not allowing specificity, hence the need for mixing the operation invocations
with custom statements when defining some of the composite operators.
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5.2.3 Case III - Adaptability Results

This case is centered around the OP-DEVO approach’s ability to retroactively adapt database
transformations. The component of Modler.NET that was used in this case was the Event-
Manager utility (cf. Section 4.4.5) which is built on top of the event-based change recorder.
This utility facilitates the process of locating an event as well as the process of adapting the
generated database transformation code that is linked to that model modification event.

The transformations and history logs from Case I were used as the source for the in-
puts. Specifically, the scripts generated from the evaluations of the complex and semantic
model modification types. The tool was shown to produce incorrect database transforma-
tions when reproducing these modification types. Thus, they represent actual scripts that
need correction. Furthermore, it was stated in Case I that the complex and semantic opera-
tors produce an incorrect database transformation because of the modification order issue.
The ordering of a model modification is an example of a situation where the modifications
at the model-level are a direct cause of incorrect database transformations.

The following is a detailed outline of this adaptation being performed on target model
TM-complex 1.

Adaptation Outline For TM-complex 1

It is known that the transformation error related to the extract entity operator is caused
by the attribute move event that could not establish a relationship between the source entity
”account.accountid” and the target entity ”addressInfo.account ID”. Using the EventMan-
ager this can be corrected by importing all of the primary-key values into the target entity
(cf. 5.8). This was added to the SQL-mapping value for the foreign-key creation event
between the two entities. Once this is done, the join-condition “ WHERE accountid = [Ad-
dressInfo].account ID” is no longer NULL, thus allowing the UPDATE statement to find a
set of rows to update.

After this adjustment has been made, the updated database transformation script is ob-
tained by simply re-generating the script.

1 INSERT INTO [dbo].AddressInfo (account_ID)
2 SELECT DISTINCT accountID FROM [dbo].account
3 GO

Listing 5.8: Import PK Values - Correcting Join Condition

Listings E.1 and E.2, which are located in Appendix E, show the incorrect database trans-
formation and the adjusted transformation for the extract operation.

Adaptability Observations By using the EventManager it is fairly easy to pin-point
which database transformation statements correspond to a particular model modification.
When a recorded model modification is selected, it displays the corresponding database
transformation in an editable textbox.
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Furthermore, any database transformation that was generated from a model modification
can be adjusted at any point during the model evolution process by using the EventManager
and that the adjustment can be done independently. This means that it is possible to de-
couple the database transformations from the model modifications that it was generated
from.

Thus, erroneous database transformations can be retroactively corrected without having
to redo any model modifications or having it affect other existing database transformation
statements.

5.3 Validity Threats

Despite the efforts made to maintain the integrity of these case studies, there are aspects
of the chosen evaluation methodology that can negatively impact the integrity of the ob-
tained results and thereby impact the validity of the project itself. These validity threats are
described below.

5.3.1 Internal Threats

The main internal threat was the unpredictable behavior of the modeling platform that was
used. The more functionality that was added to Modler.NET, the more unpredictable the
platform became. This problem expressed itself as inconsistent communication with the
change recorder which was tightly integrated with it. This threatened the validity of the
obtained results for Case I and III. Furthermore, the lack of maturity and correctness of the
tool’s implementation could decrease the validity of the results even more.

To minimize the threat of the modeling platform and the tool, the tool’s implementation
and its produced results were tested individually. The implementation code was tested by
writing tests. This lessens the probability of the tool itself being the cause of systematic
errors. In order to address the modeling platform threat, the results produced by the tool
were continuously tested. This was done by investigating each incorrect result. The intent
of these result-checks was to pin-point the cause. If the error was caused by a bug in the im-
plementation, this was corrected and the task was repeated. Otherwise, it was considered a
valid transformation that shows that the tool does not support that particular transformation.

5.3.2 External Threats

As stated in Section 5.1 the data models that were used as input were generated from CRM
meta-data. The choice was made to use this type of input because data model and database
co-evolution is an actual recurring scenario in the development and maintenance of CRM
applications, the data in the CRM application is realistic, and generating models instead
of creating them by hand saves time. This means that the selected input is too small and
specific to be a viable representative of graphical data models in general. Therefore, it is not
possible to claim that the obtained results are valid for all graphical data model development.
That which can be confidently claimed, however, is that the results are valid for CRM-based
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data models. This makes the results valuable and suitable to those whose work revolves
around the management and development of CRM and CRM-related applications.

5.3.3 Construct Threats

The evaluation was based on various comparisons between models and databases. In Case
I and III the equivalence measurement of the database pairs was done using Visual Studio’s
‘Schema Compare’ tool. The model pairs in Case I were compared by hand. In Case
II the existence of recurring patterns was determined using Visual Studio’s ‘Code Clone
Analyser’. If these measurements of the model equivalence and database equivalence were
to be incorrect, that error - whether it be accidental or systematic - would skew the results.
In order to minimize this threat the obtained results were manually double checked. If
an inconsistency was detected, it was manually corrected. In the case of detecting patterns
using the code clone utility, the tool was not as accurate as was hoped. It required significant
manual correction to find and log all viable patterns.

5.4 Results Summary

Despite the shortcomings of the tool’s recorder, the results of the feasibility assessment
show that the proposed approach could support the different types of model modifications
as well as generate viable database transformations from these model changes. In other
words, Modler.NET is capable of supporting arbitrary model transformations and, provided
a more thorough recorder implementation, the database transformation that is generated
from these model modifications can produce are a viable migration script.

The expressiveness case study revealed that the use of the operator composition frame-
work does increase the expressiveness with which new/custom operators are defined. This
increased expressiveness leads to a decrease in operator development effort by providing
an average LOC reduction of 79%. Consequently, there is a potential reduction in operator
implementation-time as well. The LOC reduction is primarily dependent on the fact the the
framework allows for reuse of existing operators. Thus, the framework allows for a more
concise and precise definition of custom operators. Furthermore, because the modeling lan-
guage’s host language is C#, the framework can also provide the needed flexibility to cover
arbitrary transformation scenarios.

As for the adaptability assessment, it was shown that it is possible to quickly pin-point
a database transformation from the list of recorded model modifications. Moreover, indi-
vidual event data can be retroactively adjusted after which the transformation script can be
regenerated to include these changes. This indicates that the proposed approach supports
independent adaptation of its ModelTransformation-2-SQLStatements mappings on-the-fly
(i.e. at any point during the model evolution process).
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Chapter 6

Conclusions and Future Work

Applications evolve over the course of time, therefore, their data models need to be adapted.
To reduce the effort required for data model and database co-evolution, an automation so-
lution is needed that can transform a database in such a way that it can store the new data,
that conforms to the evolved data model, as well as retain the existing data.

Chapter 2 gave an overview of the related work being done in this field. It states that
there are two main approaches for automating model co-evolution, namely: the model
matching-based approach and the operation-based approach. When dealing with data model
with a graphical notation, the operation-based approach has two advantages over its model
matching-based counter-part. The first is that it tracks model changes more accurately,
thereby, facilitating the production of correct database co-transformations. Secondly, its
model change tracking technique is more accurate and it is less computationally complex.
Thus, it produces better results in less time [44, 32, 41]. Consequently, the operation-based
approach seems to be the better choice, but it has some inherent limitations. These limita-
tions were described in chapter 3. After having analyzed these limitations it became evident
that the standard operation-based approach could be improved upon. Therefore a redesign
was proposed that aims to improve the approach’s expressiveness and adaptability through:

� Operator composition which should mitigate the expressivity limitations that compli-
cate the creation of custom transformations

� Event-sourcing-based change recording which should facilitate on-the-fly adaptation
of the generated database transformations

6.1 Conclusion

The goal of this research project was to redesign the operation-based approach so that it
could provide better support for the coupled evolution of graphical data models and their
data. This improved support was to be obtained by addressing the approach’s inherent
limitations related to its expressiveness and its adaptability. The main research question,
therefore, was: “How can the limitations inherent to the operation-based approach for
automating the co-evolution of data models with graphical notation be mitigated by using
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operator composition and event-sourcing patterns?”. This question was divided into three
sub-questions which were used to guide the research. This section provides the answers
to all of the questions, starting with the sub-questions, and ending with the researcher’s
conclusion.

RQ1: What are the limitations inherent to the operation-based approach to automating the
co-evolution of data models with a graphical notation?

As mentioned in chapter 3, the operation-based approach has five inherent limitations
that can be grouped into three categories. The first is Coupled Operator Limitations
which consists of three of the five limitations, namely:

L1 - It is favorable to have a rich operator library because the amount of model
modification types that an approach can support is related to the amount of
operators in its library. However, the larger the operator library is, the harder
it is to find the correct operator for a particular task. In other words, there is
a tradeoff between the size of the operator library and the ease of finding the
correct operator

L2 - From L1 it can be deduced that having a operator library with a fix set of
operators means that there are a fixed amount of model modification that such
the approach can support. Therefore, it would be favorable to allow the creation
of new operators instead of using a fixed operator library

L3 - In order to allow the creation of custom operators to expand the operator
library, the approach has to provide the developers with a modeling language
that is expressive enough for them to create arbitrary operators. These model-
ing languages do not capture migration patterns or other reoccurring patterns,
therefore the new operators do not benefit from reusing the existing transforma-
tion knowledge

The second category is called the Database Co-Evolution Limitation, which only
has one limitation (L4). This limitation has to do with the fact that the coupling of
database migration code to a model transformation impedes independent adaptation
of either the model or the database migration code. This implies that the developer
needs to take the impact of the data model changes on the database into account.
Since the generated database transformations are based on the recorded model modi-
fications, the order of the model modification can affect the generated database trans-
formation. If a modification order leads to an incorrect database transformation this
would mean that the performed model modifications will have to be undone and then
repeated in a different order to fix the issue. Therefore, it would be beneficial to know
which modifications caused the erroneous database transformation so that only those
modifications can be repeated.

The last is the Tooling Limitation (L5) which is that the use of an operation-based
approach requires one to have a modeling tool that implements operator library, the

66



Conclusion

model change recorder to register the model modifications, and the migration func-
tionality responsible for the co-evolution process. Thus, it requires a significant up-
front implementation investment

RQ2: How can the use of operator composition reduce the effort required to define custom
operators?

It was shown that the new operator composition framework decreased the effort as-
sociated with the definition of a new operator by increasing the expressiveness of the
operator definition language. Expressiveness was defined in terms of three aspects:
the conciseness, the preciseness and the completeness (i.e. being flexible enough to
support arbitrary transformations) of the definition language.

The operator composition framework defines an operator by using a function dec-
laration that encapsulates the needed model transformation statements. An opera-
tor is, therefore, represented by a function. These functions can contain individual
model transformation statements as well as existing operators. In other words, these
functions facilitate operator reuse. Because of this reuse facility the implementa-
tion code needed to define custom operators is more concise and precise. This was
demonstrated in the evaluation which showed an average reduction of 79% in Lines-
Of-Code (LOC) needed to define non-basic operators with the new framework. The
basic operators are those that are responsible for atomic transformations such as: 1)
the creation or removal of an entity, attribute or reference 2) the renaming of an entity
or attribute and 3) the modification of attribute properties.

The evaluation also showed that because the modeling language uses a general-purpose
language (C#) as its host language, the operator composition framework is complete
in terms of being able to support any co-evolution scenario.

Thus, the new operator composition framework provides a means to define new op-
erators more concisely and precisely which reduces the coding-related effort by an
average of 79%, while remaining flexible enough to cater to arbitrary transformations
scenarios.

RQ3: How can the event-sourcing pattern be used to manage the process required to map
data model adaptations to a database transformation?

The event-sourcing pattern was used to design an event-based change recorder that
provides the necessary framework upon which functionality was built to manage the
generation of data transformations such as: enabling one to have more control over
the recorded data. Control is defined as the ability to identify specific recorded model
transformations and adapting the corresponding database transformation without hav-
ing it affect the existing data model.

The evaluation also showed that the management functionality, EventManager, al-
lows erroneous database transformations to be retroactively corrected without hav-
ing to repeat any model modifications or having its adjustment affect other recorded
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transformations. In other words, the event-sourcing based change recorder provided
a means to de-couple the database transformations from the model modifications that
it was generated from.

Thus, the new event-based change recorder enables one to manage the processes per-
taining to database transformation mapping by: 1) providing a platform which records
model modifications as a detailed event 2) facilitating search and adaptation function-
ality of those events and 3) this can all be done at any point-in-time during the model
evolution process.

RQ main: How can the limitations inherent to the operation-based approach for automat-
ing the co-evolution of data models with graphical notation be mitigated by using
operator composition and event-sourcing patterns?

The answer to the main question is found by combining the previous answers as
follows.

The operator composition framework deals with limitations L2 and L3 in the follow-
ing manner. The proposed approach provides the user with an operator composition
framework with which new/custom operators can be created. As for the knowledge
reuse, the operator composition framework inherently enables the reuse of existing
modeling patterns to define new operators. Furthermore, it is also possible to reuse
the basic operators as well as the composite operators to create other operators. The
composition framework is built on top of the standard modeling environment, there-
fore it is also possible to write model transformation code in C#. This gives the
composition framework the flexibility needed to define arbitrary model transforma-
tion.

The event-based change recorder addresses limitation L4 by enabling control over
data transformations. This control will not correct the ordering issue itself, but rather
it will allow the related transformations to be identified and corrected. The approach
utilizes an asynchronous database transformation process. Meaning, the transforma-
tion is not executed immediately. This makes it possible to adjust the transformation
before it is executed. Therefore, the generated transformation can be checked at any
point in time during the model evolution and if an error is detected in the database
transformation - whether it be from the ordering of an adaptation or not - it can be
dealt with as follows. First, the event logs are used to pinpoint the event that caused
the error. The error in the event is corrected by either adjusting the SQL statements
generated from the recorded model change, or setting the doSkip-flag which will
cause the script generator to not add this event’s SQL statements to the transforma-
tion script. Once the incorrect event is fixed, the script generator is used to regenerate
the transformation script. Thus, erroneous database transformations can be retroac-
tively corrected without having to redo any model modifications.

As for limitation L1, Modler.NET uses context-aware context-menus which provide
the user with a list of possible operators that can be applied to the selected model
element(s). This list is filtered based on the selected element(s), therefore only those
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operators that are relevant are displayed. This use of context-awareness reduces the
selection complexity issue by filtering the whole operator library down to only the
relevant operators and thereby making it easier to select the required operator.

The last limitation, L5, was addressed by making the tool that was created to evaluate
the proposed approach, Modler.NET, available online. The core functionality of the
recorder and operators will be made available at https://modlernet.codeplex.
com/, thus providing an alternative to building the operator library and recorder from
scratch. This will reduce the upfront investment needed to get started with operation-
based data model co-evolution.

The end result of this research project is an operation-based approach that has mitigated its
expressivity and its adaptability limitations by incorporating two components. The first is
an operator composition framework which was shown to increase the approaches expres-
siveness in defining new operators by an average of 79%. The second component was the
event-based change recorder which logged each individual model modification as an event.
These events contained all the data necessary to be able to manage the generated contents
of a database transformation script. This meant that the script could be modified separately
from the data model at any time, thus increasing the adaptability of the generated database
transformations. In addition to the aforementioned limitations, the proposed approach also
addressed two other limitations, namely L1 and L5.

Based on these results, it can be concluded that this research project achieved its goal.

6.2 Contribution

The contribution of this thesis project can be summarized as the redesign of an operation-
based approach that, in addition to supporting the coupled evolution of data models with
graphical notation by coupling data model modifications to database migration, also aims to
address the inherent limitation of the operation-based approach through the use of operator
composition and event-based change recording. Furthermore, the tool (i.e. Modler.NET) 1

that was developed based on this approach and the case studies which were used to evaluate
it, can be used as resources to further the research on graphical data model co-evolution.

6.3 Discussion

The solution presented in this research project, as with any project, has its pros and cons.
These properties of the end result are discussed in the following sections.

6.3.1 Advantages of the Proposed Redesign

The OP-DEVO approach adds two components to the standard operation-based approach;
the operation composition framework and the event-based recorder. The operation compo-

1Available at: https://modlernet.codeplex.com/
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sition framework enables reuse of existing transformation knowledge which was shown to
lead to increased expressivity. These added properties facilitate the development of new
co-evolution operation by providing a modeling environment which takes advantage of ex-
isting transformations - which have already been tested and therefore are likely to have less
bugs than newly written transformations - and of a simpler modeling language that allows
the new operator to be defined as a sequence of functions instead of lines of model and
database transformation code.

Furthermore, the OP-DEVO approach can be used as a platform on which to build
tools, similar to Modler.NET, that visualize model modifications and their impact on the
database schema and data. This is made possible by the change recorder. The level of
detail with which each model modification can be recorded and the readily available SQL
mapping for those modifications means that it can be a valuable resource for further database
migration/evolution research such as visualization aids for schema evolution (see future
works section 6.4).

6.3.2 Drawbacks of the Proposed Redesign

The use of the operator composition framework adds to the operator selection complexity.
The visual editor window has a context-menu which provides the user with a list of possible
operators that can be applied to the selected model element(s). That list is filtered based
on the selected element(s). When programming a new operator, however, it is difficult to
determine which operator needs to be filtered out because there is no context information.
The operators themselves are not aware of the elements on which they will be applied.
Therefore, one can define a new operator that uses the ‘remove-operator’ to remove an
entity followed by a ‘rename-operator’ that renames the entity which was deleted. In other
words, there needs to be a mechanism by which the programming of new operators can be
semantically checked.

Furthermore, there is a learning curve related to the use of the operator composition
framework. Most of the operators have multiple instances each having its own set of pa-
rameters. Thus, one needs to know which of the instances are available and figure out which
parameter can be filled in based on the available model information.

The granularity of the recorded model modifications can also be problematic, in that it
is not able to group relevant statements together. This leads to inefficient database transfor-
mations. An example is the simple action of removing an entity which can be done by just
dropping the related table, but because of the granularity of the recorder the delete-action
is translated as the deletion of individual columns and then the table itself is dropped. A
possible solution for this would be to provide extra information in the recorded events that
would allow the script generator to know which data to group and how to group them.

Lastly, the conclusions are based on the results of the evaluation of which the selected
input (i.e. CRM meta data) is too small and specific to be a viable representative of graphical
data models in general. Therefore, the results may only be valuable and suitable to those
whose work revolves around the management and development of CRM and CRM-related
applications.
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6.4 Future Work

While conducting this research a number of ideas surfaced on how the proposed approach
could be improved, as well as an idea to compare the redesign approach to its difference-
based counter-part. The following subsections outline these potential future research topics.

6.4.1 Multi-User Support

The use of model-driven development in industry has been increasing, hence the need for
managing these models in terms of change tracking and versioning. Version control is a
well-known solution for supporting multi-users for textual artifacts such as source code.
There is however very little being done for graphical artifacts such as the models dealt with
in this thesis [44, 31]. Thus, the integration of multi-user support in the form of version
control could be a potential research area worth exploring.

The proposed approach could potentially use a textual Version Control Software (VCS)
to track both the model evolution and the database transformation. The first step would be
to save the initial data model and the database. Secondly, use the textual VCS to track the
recorded change-events.

If a particular version of the data model is needed it can be obtained by de-serializing
that version of the recorded events and applying it to the initial model which will in effect
produce the required version of the data model. Furthermore, it would be possible to pro-
duce the corresponding database by generating a transformation script from the recorded
events and applying it to the saved database.

6.4.2 Interactive Database Migration

Interactive database migration entails the use of a migration algorithm that automatically
migrates the database in the background, and whenever it needs supplementary information,
it asks the model developer to provide the missing information [38].

This interactive approach to the migration process will enable syntactic and semantic
checking of the generated SQL statements (i.e. ensure statement validation and correctness).
Consequently, this will allow the user to fix any database-related errors from within the
model development environment.

6.4.3 Difference-based vs. Operation-based

There has yet to be a research project in which, given the same co-evolution scenario, the
difference-based approach is compared to the operation-based approach using quantitative
measures. None of the papers that were read during the conducted literature survey [41]
or those read during this project give actual numbers or percentages when comparing the
two approaches. Hence, there should be a research project that can quantify the ability
of these approaches to perform the same specific custom data model co-evolution tasks.
The ‘ability’ of each approach should be defined in terms of accuracy (the exactness of the
recorded model evolution), correctness (the production of a valid database co-evolution that
handles existing and future data properly) and time to execute (the time it took to apply the
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specified co-evolution tasks and yield an adequate result). The results should be compared
and used to deduce which approach should be used in the given scenarios.

Hopefully, such a research will lead to insights on any correlation between the choice of
approach and the co-evolution scenarios or the data model types. If such a correlation exists,
then the research can be used to determine - based on concrete data instead of theoretical
arguments or preference - which approach should be used when dealing with a specific
scenario or data model type.

72



Bibliography

[1] M.A. Aboulsamh and J. Davies. A metamodel-based approach to information systems
evolution and data migration. Proceedings of the 2010 Fifth International Conference
on Software Engineering Advances, pages 155–161, 2010. ICSEA ’10.

[2] M. Alanen and I. Porres. Difference and union of models. UML 2003 - The Uni-
fied Modeling Language. Modeling Languages and Applications, 2863:2–17, 2003.
Lecture Notes in Computer Science.

[3] T. Alves, P.F. Silva, and J. Visser. Constraint-aware schema transformation. The Ninth
International Workshop on Rule-Based Programming, pages 16–96, 2008.

[4] S.W. Ambler and P.J. Sadalage. Refactoring databases: evolutionary database design.
The Addison-Wesley signature series. Addison Wesley, 2006.

[5] P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Coupled schema transformation
and data conversion for xml and sql. Practical Aspects of Declarative Languages,
pages 290–304, 2007.
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[50] R. Lämmel. Transformations everywhere. Science of Computer Programming, 52(1-
3):1–8, 2004.
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Appendix A

Modifications & Refactorings

Table A.1 depicts a list of model modification operations per category. Each of these modi-
fication operations are paired with their corresponding database refactorings.

Model Modifications Database Refactorings
Structural Model Modification
Entity Creation Introduce New Table
Entity Removal Drop Table
Attribute Creation Introduce New Column
Attribute Removal Drop Column
Relationship Creation Add Foreign Key Constraint
Relationship Removal Drop Foreign Key Constraint
Non-Structural Model Modification
Entity Rename Rename Table
Attribute Rename Rename Column
Attribute Change DataType Introduce New Column & Move Data & Remove Column
Attribute Make PrimaryKey Introduce Column Constraint
Attribute Drop PrimaryKey 1 Drop Column Constraint
Super Type Entity Creation Introduce New Table, New Column, Column Constraint & Add Foreign Key Constraint
Super Type Entity Removal Drop Foreign Key Constraint & Drop Table
Composite Relationship Creation Introduce Column Constraints & Add Foreign Key Constraint
Composite Relationship Switch Add Foreign Key Constraint & Drop Foreign Key Constraint
Complex Model Modification
Extract Entity Introduce New Table & New Column & Move Column(s) & Introduce Column Constraint

& Add Foreign Key Constraint
Inline Entity Drop Table & Drop Foreign Key Constraint & Move Column(s)
Fold Entity Add Foreign Key Constraint & Move Column(s)
Unfold Entity Drop Foreign Key Constraint & Move Column(s)
Move attribute over rel. Move Column
Collect attribute over rel. Move Column
Semantic Model Modification
Merge Entity Merge Tables
Split Entity Split Tables
Merge Attribute Merge Columns

Table A.1: Model Modification & Corresponding Database Transformation

1Drop the constraint, not the attribute itself

79





Appendix B

Generated Data Models

Figures B.1,B.2,B.3 and B.4 depict the data models used for the evaluation of the proposed
operation-based approach redesign. Because of the size of these data models each one will
be addressed in separate sections. Furthermore, the purpose of this research project was to
address data model evolution, therefore, this chapter will focus on reporting the changes
made to the generated models and not the details of the models themself.

The data models related to the account data model (IM1) are outlined in Section B.1.
Sections B.2, B.3 and B.4 describe the contact, lead and opportunity data models, respec-
tively.

B.1 Account Related Data Models

Figure B.1 gives an overview of the structure of this data model and tables B.1-B.4 detail
the modifications that were made.

Modification Type Model Modifications
Entity Creation Twitter, LinkedIn and Facebook
Entity Removal Twitter, LinkedIn and Facebook
Attribute Creation each entity received 6 similar attributes (e.g.

Twitter: twitterID: int, accountID: int, twit-
ter username: int, twitter webpage: int, twit-
ter postedText: int and twitter checkdate: int)

Attribute Removal (all of the newly create attributes)
Relationship Creation (each entity received a link with the account entity,

establishing a FK constraint)
Relationship Removal (all of the newly created links)

Table B.1: Overview of Structural Model Modifications1

1These transformations were used to create the target model TM-struct 1
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Modification Type Model Modifications
Entity Rename TwitterProfile, LinkedInProfile, FacebookProfile
Attribute Rename each entity received similar renames (e.g. Twit-

ter: tw ID, accountID, tw username, tw webpage,
tw postedtext and tw checkdate)

Attribute Change DataType each entity received similar changes (e.g. Twit-
ter: tw ID: int, accountID: uniqueidentifier,
tw username: nvarchar(160), tw webpage: Text,
tw postedtext: nvarchar(250), tw checkdate: date-
time)

Attribute Make PrimaryKey the ‘ID’ attribute for each new entity was made the
PK (e.g. Twitter: tw ID (pk))

Attribute Drop PrimaryKey (all of the newly created PKs)
Super Type Entity Creation superType entity: SocialMediaMarketing (social-

mediaMrktID (PK), accountID(FK with entity ac-
count), subTypes: TwitterMrkt (twitterMrktID
(PK, FK with superType), hashtag campagne),
LinkedInMrkt (linkedInMrktID (PK, FK with su-
perType), linkedIn groupID), FacebookMrkt (face-
bookMrktID (PK, FK with superType), announce-
ment campagne)

Super Type Entity Removal (removal of SocialMediaMarketing)
Composite Relationship Creation (see relationships in superType creation)
Composite Relationship Switch (defined as the deletion of current links and recre-

ate the links to another superType entity, thus see
the changes related to creation and removal of su-
perType entity above)

Table B.2: Overview of Non-Structural Model Modifications2

Modification Type Model Modifications
Extract Entity (all address related attributes in ‘account’ were

moved to the newly created ‘addressInfo’ entity.
Additionally, 2 attributes were created: addressIn-
foID (PK) and accountID(FK with account)

Inline Entity (all address related attributes were moved back to
‘account’ and ‘addressInfo’ was removed

Fold Entity (see extract mod. without the entity creation)
Unfold Entity (see inline mod. without the entity removal)
Move attribute over rel. (see extract mod. without the entity creation)
Collect attribute over rel. (see inline mod. without the entity removal)

Table B.3: Overview of Complex Model Modifications3

Modification Type Model Modifications
Merge Entity entity addressInfo was created (see extract mod.)

and then ‘addressInfo’ was merged with ’account‘
Split Entity (this operation was used to execute the extract

mod.)
Merge Attribute the attributes ‘address1 city’ and ‘ad-

dress1 country’ were merge by concatenating
there values into ‘address1 city country’

Table B.4: Overview of Semantic Model Modifications4

2These transformations were used to create the target model TM-nonStruct1
3These transformations were used to create the target model TM-complex1
4These transformations were used to create the target model TM-semantic1
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Contact Related Data Models

Figure B.1: Initial Data Model based on Account Data (IM1)

B.2 Contact Related Data Models

Figure B.2 gives an overview of the structure of this data model and table B.5 detail the
modifications that were made.
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Modification Type Model Modifications
Extract Entity (all address related attributes in ‘contact’ were

moved to the newly created ‘addressInfo’ entity.
Additionally, 2 attributes were created: addressIn-
foID (PK) and contactID(FK with contact)

Inline Entity (all attributes starting with ‘address1 *’ were
moved back to ‘contact’

Fold Entity (see extract mod. without the entity creation)
Unfold Entity (see inline mod. without the entity removal)
Move attribute over rel. (see extract mod. without the entity creation)
Collect attribute over rel. (see inline mod. without the entity removal)

Table B.5: Overview of Complex Model Modifications

Figure B.2: Initial Data Model based on Contact Data (IM2)
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B.3 Lead Related Data Models

Figure B.3 gives an overview of the structure of this data model and table B.6 detail the
modifications that were made.

Modification Type Model Modifications
Extract Entity (all dotNot-flag related attributes in ‘lead’ were

moved to the newly created ‘DoNotInfo’ entity.
Additionally, 2 attributes were created: donotIn-
foID (PK) and leadID(FK with lead))

Inline Entity (all the moved attributes are moved back and the
donotInfo entity was removed)

Fold Entity (see extract mod. without the entity creation)
Unfold Entity (see inline mod. without the entity removal)
Move attribute over rel. (see extract mod. without the entity creation)
Collect attribute over rel. (see inline mod. without the entity removal)

Table B.6: Overview of Complex Model Modifications

Figure B.3: Initial Data Model based on Lead Data (IM3)
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B.4 Opportunity Related Data Models

Figure B.3 gives an overview of the structure of this data model and table B.7 detail the
modifications that were made.

Modification Type Model Modifications
Extract Entity (all monetary-total related attributes in ‘opportu-

nity’ were moved to the newly created ‘TotalInfo’
entity. Additionally, 2 attributes were created: to-
talInfoID (PK) and opportunityID(FK with oppor-
tunity))

Inline Entity (all the moved attributes are moved back and the
totalInfo entity was removed)

Fold Entity (see extract mod. without the entity creation)
Unfold Entity (see inline mod. without the entity removal)
Move attribute over rel. (see extract mod. without the entity creation)
Collect attribute over rel. (see inline mod. without the entity removal)

Table B.7: Overview of Complex Model Modifications

Figure B.4: Initial Data Model based on Opportunity Data (IM4)
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Appendix C

Operator LOC Reduction

The tables in this appendix present the amount of Lines-Of-Code (LOC) reduction that was
achieved by replacing the original operator definitions with their composite counter-parts.

Operators LOC Composable Op. LOC Composite Op. LOC Reduction Reduction Percentage
Entity Creation 8 1 7 87.5%
Entity Removal 5 1 4 80%
Attribute Creation 11 1 10 90.9%
Attribute Removal 5 1 4 80%
Relationship Creation 7 1 6 85.7%
Relationship Removal 5 1 4 80%

Average Reduction - - - 84%

Table C.1: Implementation Reduction for Structural Modifications

Operators LOC Composable Op. LOC Composite Op. LOC Reduction Reduction Percentage
Entity Rename 10 1 9 90%
Attribute Rename 10 1 9 90%
Attribute Change DataType 5 1 4 80%
Attribute Make PrimaryKey 8 1 7 87.5%
Attribute Drop PrimaryKey 8 1 7 87.5%
Super Type Entity Creation 16 5 11 68.8%
Super Type Entity Removal 7 5 2 28.6%
Composite Relationship Creation 8 1 7 87.5%
Composite Relationship Switch 9 1 8 88.9%

Average Reduction - - - 78.8%

Table C.2: Implementation Reduction for Non-Structural Modifications
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Operators LOC Composable Op. LOC Composite Op. LOC Reduction Reduction Percentage
Extract Entity 23 4 19 82.6%
Inline Entity 15 1 14 93.3%
Fold Entity 10 1 9 90%
Unfold Entity 15 1 14 93.3%
Move attribute over rel. 7 1 6 85.7%
Collect attribute over rel. 7 1 6 85.7%

Average Reduction - - - 88.4%

Table C.3: Implementation Reduction for Complex Modifications

Operators LOC Composable Op. LOC Composite Op. LOC Reduction Reduction Percentage
Merge Entity 22 8 14 63.6%
Split Entity 17 7 10 85.8%
Merge Attribute 14 1 13 92.9%

Average Reduction - - - 80.8%

Table C.4: Implementation Reduction for Semantic Modifications

88



Appendix D

SQL Server Data Type Conversion

The data type conversions that are allowed for SQL Server system-supplied data types can
be divided into three categories: those that do not require any extra effort (i.e. implicit
conversion), those that require a ‘cast’ or ‘convert’ function (i.e. explicit conversion), and
conversions that are not allowed. Figure D.1 illustrates all implicit and explicit conversions
that are allowed 1.

Figure D.1: SQL Server Data Type Conversion Chart

1Sourced from: http://www.microsoft.com/en-us/download/details.aspx?id=35834
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D. SQL SERVER DATA TYPE CONVERSION

Listing D.1 contains the partial code used to map data type updates. It shows how the
data conversion is implemented. The code has been truncated for the sake of clarity.

1 string getSQLStringForDataTypeConversion(entity , attribute ,
oldType , newType)

2 {
3 ...
4 // Implicit conversion of data type
5 if (hasImplicitConversion)
6 {
7 strbSqlCode.AppendFormat(@"ALTER TABLE [{0}].{1}" +

Environment.NewLine , SHEMA_NAME , entityName);
8 strbSqlCode.AppendFormat(@" ALTER COLUMN {0} {1}" +

Environment.NewLine , attribute.CurrentName ,
MappingTypeConvertion.translateDataTypeIntoSQLString(
newType));

9 strbSqlCode.AppendLine("GO");
10 }
11 else if (hasExplicitConversion)
12 {
13 // Copy data to temp column, while converting it to the proper

type (ETL)
14 strbSqlCode.AppendFormat(@"ALTER TABLE [{0}].{1} ADD {2} {3}"

+ Environment.NewLine , SHEMA_NAME , entityName , strPrefix +
attribute.CurrentName , MappingTypeConvertion.

translateDataTypeIntoSQLString(newType));
15 strbSqlCode.AppendFormat(@"UPDATE [{0}].{1} SET" + Environment

.NewLine , SHEMA_NAME , entityName);
16 //set new_column_name = convert(decimal(18,2), old_column_name

)
17 strbSqlCode.AppendFormat(@" {0} = cast({1} as {2})" +

Environment.NewLine , strPrefix + attribute.CurrentName ,
attribute.CurrentName , MappingTypeConvertion.
translateDataTypeIntoSQLString(newType));

18 strbSqlCode.AppendLine("GO" + Environment.NewLine);
19

20 strbSqlCode.AppendFormat("ALTER TABLE [{0}].{1}" + Environment
.NewLine , SHEMA_NAME , entityName);

21 strbSqlCode.AppendFormat(" DROP COLUMN {0}" + Environment.
NewLine , attribute.CurrentName);

22 strbSqlCode.AppendLine("GO" + Environment.NewLine);
23

24 strbSqlCode.AppendFormat("EXEC sp_RENAME ’{0}.{1}.{2}’, ’{3}’,
’COLUMN ’ " + Environment.NewLine , SHEMA_NAME , entityName ,
strPrefix + attribute.CurrentName , attribute.CurrentName)

;
25 strbSqlCode.AppendLine("GO");
26 }
27 return strbSqlCode.ToString();
28 }

Listing D.1: Mapping Implementation - Data Type Conversion
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Appendix E

Database Transformation
Adjustments

This appendix contains two listings (listing E.1 and E.2) which show how an incorrect
database transformation is adjusted to correctly perform a database transformation for the
extract operation mentioned in Section 5.2.3. The code inside the listings are truncated for
the sake of clarity.
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E. DATABASE TRANSFORMATION ADJUSTMENTS

1 /*** --- Creating table for added entity ’AddressInfo’ --- ***/
2 CREATE TABLE [dbo].AddressInfo (
3 addressInfo_ID INT,
4 account_ID UNIQUEIDENTIFIER
5 );
6 GO
7

8 /*** --- Updating key contraint for table AddressInfo on column
addressInfo_ID --- ***/

9 ALTER TABLE [dbo].AddressInfo
10 ADD CONSTRAINT PK_addressInfo_ID
11 PRIMARY KEY (addressInfo_ID);
12 GO
13

14 /*** --- Updating key contraint for table AddressInfo on column
account_ID --- ***/

15 /*** --- Attribute is now foreign key --- ***/
16 ALTER TABLE [dbo].AddressInfo
17 ADD CONSTRAINT FK_AddressInfo_account_ID
18 FOREIGN KEY (account_ID)
19 REFERENCES account;
20 GO
21

22 /*** --- Moving column statecode from source table account to
target table AddressInfo --- ***/

23 ALTER TABLE [dbo].AddressInfo ADD statecode VARCHAR (255)
24 GO
25

26 /*** --- Moving column address1_addressid from source table
account to target table AddressInfo --- ***/

27 ALTER TABLE [dbo].AddressInfo ADD address1_addressid
UNIQUEIDENTIFIER

28 GO
29

30 INSERT INTO [dbo].AddressInfo (address1_addressid)
31 SELECT address1_addressid
32 FROM [dbo].account
33 GO
34

35 /*** --- Moving column address1_addresstypecode from source table
account to target table AddressInfo --- ***/

36 ALTER TABLE [dbo].AddressInfo ADD address1_addresstypecode
VARCHAR (255)

37 GO
38

39 INSERT INTO [dbo].AddressInfo (address1_addresstypecode)
40 SELECT address1_addresstypecode
41 FROM [dbo].account
42 GO
43 ...

Listing E.1: Extract Entity - Generated Database Transformation
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1 CREATE TABLE [dbo].[AddressInfo](
2 [addressInfo_ID] [int] IDENTITY(1,1) NOT NULL,
3 [account_ID] [uniqueidentifier] NOT NULL,
4 CONSTRAINT [PK_AddressInfo] PRIMARY KEY CLUSTERED
5 (
6 [addressInfo_ID] ASC
7 )
8 GO
9

10 /*** --- Establish relationship between the tables --- ***/
11 ALTER TABLE [dbo].[AddressInfo] ADD CONSTRAINT [

FK_AddressInfo_account] FOREIGN KEY([account_ID])
12 REFERENCES [dbo].[account] ([AccountId])
13 GO
14

15 INSERT INTO [dbo].AddressInfo (account_ID)
16 SELECT DISTINCT accountID FROM [dbo].account
17 GO
18

19 /*** --- Moving column address1_addressid from source table
account to target table AddressInfo --- ***/

20 ALTER TABLE [dbo].AddressInfo ADD address1_addressid
UNIQUEIDENTIFIER

21 GO
22

23 UPDATE [dbo].AddressInfo SET address1_addressid =
24 (SELECT address1_addressid FROM account
25 WHERE accountid = [AddressInfo].account_ID
26 )
27 GO
28

29 /*** --- Moving column address1_addresstypecode from source table
account to target table AddressInfo --- ***/

30 ALTER TABLE [dbo].AddressInfo ADD address1_addresstypecode
NVARCHAR (255)

31 GO
32

33 UPDATE [dbo].AddressInfo SET address1_addresstypecode =
34 (SELECT address1_addresstypecode FROM account
35 WHERE accountid = [AddressInfo].account_ID
36 )
37 GO
38 ...

Listing E.2: Extract Entity - Adjusted Database Transformation
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