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ABSTRACT

One of the most beneficial polarimetric variables may be the specific differential phase KDP because of its

independence from power attenuation and radar miscalibration. However, conventional KDP estimation

requires a substantial amount of range smoothing as a result of the noisy characteristic of the measured

differential phaseCDP. In addition, the backscatter differential phase dhv component ofCDP, significant at

C- and X-band frequency, may lead to inaccurate KDP estimates. In this work, an adaptive approach is

proposed to obtain accurate KDP estimates in rain from noisy CDP, whose dhv is of significance, at range

resolution scales. This approach uses existing relations between polarimetric variables in rain to filter dhv
fromCDP while maintaining its spatial variability. In addition, the standard deviation of the proposedKDP

estimator is mathematically formulated for quality control. The adaptive approach is assessed using four

storm events, associated with light and heavy rain, observed by a polarimetric X-band weather radar in the

Netherlands. It is shown that this approach is able to retain the spatial variability of the storms at scales of

the range resolution. Moreover, the performance of the proposed approach is compared with two different

methods. The results of this comparison show that the proposed approach outperforms the other two

methods in terms of the correlation between KDP and reflectivity, and KDP standard deviation reduction.

1. Introduction

Weather observations are conventionally performed

by single-polarization S- or C-band weather radars.

Although these radars have substantially improved

weather monitoring, researchers have found several

limitations. For example, the spatial and temporal reso-

lutions obtained from these conventional radars seem to

be undesirable for the early detection of small but

threatening features of convective weather as well as

the detection of localized and heavy rainfall storms

(Heinselman andTorres 2011; Schellart et al. 2012; Berne

and Krajewski 2013). In contrast, single-polarization

X-band weather radars are suited to obtain localized

weather observations at resolutions higher than those of

conventional radars. For example, a network of X-band

weather radars in Hamburg, Germany, is used to observe

precipitation at high resolutions (Lengfeld et al. 2016).

Nonetheless, power attenuation and radar miscalibration

may reduce the accuracy of single-polarization radar

observables (Gourley et al. 2009).

One technique to potentially mitigate these issues is

polarimetric radar technology (Doviak et al. 2000;

Bringi and Chandrasekar 2001). For instance, in western

Europe, polarimetric X-band weather radars are used to

obtain high-resolution rainfall rates in order to cope

with urban flooding (Ochoa-Rodriguez et al. 2015). In

the United States, a network of X-band radars with

polarimetric capabilities is used to improve the coverage

of convective weather at low levels (McLaughlin et al.

2009), while in France a similar radar network is used to

fill the gaps from operational radars in mountainous

regions (Beck and Bousquet 2013). Moreover, in

Germany, polarimetric Doppler X-band radars to-

gether with Doppler lidars are installed in international

airports to provide local measurements of precipitation

type and wind shear conditions, which are difficult to

obtain from a national weather radar network (Ernsdorf

et al. 2015).

In this work the polarimetric radar variable of interest

is the specific differential phase KDP because it is in-

dependent of attenuation and miscalibration; therefore,

it can improve rainfall-rate estimation compared to

power-based measurements, usually in heavy rain

(Wang and Chandrasekar 2010). However, the accuracy
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of KDP is not yet sufficient because the measured

differential phase CDP could be significantly noisy in

light and moderate rain. In addition, in moderate and

heavy rain, CDP can include a nonnegligible scattering

component resulting from the Mie scattering region,

which is known as the backscatter differential phase dhv
(Matrosov et al. 2002; Trömel et al. 2013). Thus, accu-

rate estimation of KDP is necessary in order to unleash

the potential of polarimetric weather radars.

Literature review reveals a large and continuous study

to estimate KDP and for simplicity it is divided into two

groups. For the first group and in situations where dhv
can be neglected (e.g., at S-band frequency or light rain),

straightforward approaches based on autoregressive

average models are applied to smooth CDP (Bringi and

Chandrasekar 2001; Matrosov et al. 2006; Vulpiani et al.

2012). For the same group but in cases where dhv is of

significance, Hubbert and Bringi (1995) introduced an

iterative filtering approach to smoothCDP and filter dhv.

A common problem in this group is that KDP is esti-

mated with inadequate spatial resolutions that could

result in an underestimation ofKDP peaks and therefore

lead to an inaccurate phase-based rainfall estimation

(Ryzhkov and Zrnić 1996). This limitation was reduced

by Wang and Chandrasekar (2009), who developed an

algorithm to filter dhv and to control the smoothing de-

gree onCDP while maintaining its spatial resolution. For

the second group, the KDP approaches included polari-

metric relations in rain, such as the self-consistency (SC)

relation, which formulates a dependency between KDP,

reflectivity Z, and differential reflectivity ZDR (Scarchilli

et al. 1996; Goddard et al. 1994; Gorgucci et al. 1992), and

the relation between dhv and ZDR, dhv–ZDR (Scarchilli

et al. 1993; Testud et al. 2000). Otto and Russchenberg

(2011), were able to estimate KDP at range resolution

scales using both relations, while Schneebeli and Berne

(2012) included the dhv–ZDR relation in their Kalman

filter approach. Recently, Giangrande et al. (2013)

introduced a linear programming method that includes Z

measurements, whereas Huang (2015) used the SC re-

lation to estimateKDP at S-, C-, and X-band frequencies.

A disadvantage of using polarimetric relations is that

uncertainties on Z and ZDR measurements might reduce

the performance of these approaches. Last, approaches in

both groups could be associated with significant errors

when KDP is estimated at range resolution scales

(Grazioli et al. 2014; Hu et al. 2015).

In this work an adaptive approach that includes po-

larimetric relations is presented to estimate accurate

KDP from CDP in rain, whose dhv is of significance, at

high spatial resolution. This paper is a follow-up of Otto

and Russchenberg (2011) and is organized as follows.

Two KDP methods—given by Hubbert and Bringi

(1995), first group, and Otto and Russchenberg (2011),

second group—are shortly described in section 2. They

will be used for comparison with the proposed technique

because (i) the method of Hubbert and Bringi (1995) is

widely accepted for KDP estimation at C- and X-band

frequency and (ii) the focus of this work is to improve

the technique introduced by Otto and Russchenberg

(2011). In section 3, the adaptive high-resolution ap-

proach is introduced to estimate KDP and model its

standard deviation. To demonstrate the capability of

this approach in terms of dhv contamination and spatial

resolution, one storm event is analyzed in section 4. In

section 5, the performance of the adaptive approach is

compared with those from section 2, using four storm

events. In section 6, conclusions are drawn. Finally, the

standard deviation of the proposed KDP estimator is

derived in appendix A, while the filter required by

Hubbert and Bringi (1995) is designed in appendix B.

2. Specific differential phase: Background and
estimation

In polarimetric weather radars, the difference be-

tween the horizontal and vertical polarization phases is

defined asCDP (8). A conceptual model for aCDP profile

is expressed as

C
DP

(r)5F
DP

(r)1 d
hv
(r)1 « , (1)

where FDP(r) (8) represents the cumulative propagation

phase shift along its course, while dhv(r) (8) indicates local
backscattering phase shifts manifested as ‘‘blips’’ or

‘‘bumps.’’ Random noise is represented by « (8) and the

range by r (km). Depending on the weather environment,

the standard deviation error of CDP, sP (8), varies be-

tween 28 and 58 (Bringi and Chandrasekar 2001).

The one-way KDP (8 km21) is half the derivative

of FDP:

K
DP

(r)5
1

2

dF
DP

(r)

dr
; (2)

however, the estimation of accurate KDP is not

straightforward. For rainfall-rate applications, KDP

should be estimated such that the normalized standard

error (NSE) of rainfall rate is less than 20% (Gorgucci

et al. 1999; Bringi and Chandrasekar 2001). For instance,

assuming a standard deviation of FDP is equal to 38 and
estimating KDP as in Eq. (2) over a pathlength of 2 km,

the standard deviation of KDP, sK, would be 18 km21. If

the rainfall rate and KDP are given by a power-law re-

lation with a power coefficient of 0.8 (Ryzhkov et al.

2005; Wang and Chandrasekar 2010), then the value of

sK is theoretically sufficient forKDP larger than 48 km
21.
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However, for KDP values smaller than 48 km21, sK

values are required to decrease accordingly, which can

be achieved by increasing the pathlength with the sac-

rifice of spatial resolution.

a. Conventional method

Hubbert and Bringi (1995) introduced an iterative

range filtering technique based on two steps. In the first

step a low-pass filter is designed such that fluctuations

resulting from dhv and « at scales of the radar resolution

[Dr (km)] are eliminated from the CDP profile. The

magnitude response H of this filter is given in the range

domain by defining its Nyquist frequency as 1/(2Dr).
In this domain, H is specified by the filter order and

Dr/rc, where rc (km) is the required cutoff scale such

that rc . Dr. This means that the filter will maintain (or

‘‘pass’’) spatial variations ofCDP(r) at scales larger than

rc. However, spatial variations smaller than rcwill not be

effectively suppressed because H is characterized by a

transition bandwidth from the ‘‘pass’’ band to the ‘‘stop’’

band. This transition can be faster if the order of the

filter is heavily increased. However, a high-order filter

will strongly smooth the spatial variability of CDP,

leading to a coarse spatial resolution of KDP. Thus, the

order of the filter is selected such that H will suppress

spatial variations at scales slightly larger thanDrwithout
compromising the spatial resolution ofKDP. This filter is

referred to as a ‘‘light’’ filter that will lead to reduced sP

and thereby sK.

In the second step the light filter is applied several

times to eliminate extended dhv fluctuations, up to rc
scales, as it would result from a ‘‘heavy’’ filter but

without excessive smoothing. This process begins by

filtering CDP, resulting in a first estimation of FDP

(~FDP). The absolute difference between CDP and ~FDP

profiles at each range gate are employed to generate a

modifiedCDP profile ( ~CDP): if the absolute difference is

larger than a threshold t, then ~CDP(r) 5 ~FDP(r) holds;

otherwise, ~CDP(r) 5 CDP(r) holds. This threshold is

predefined from the interval [1.25; 2]sP. The process is

iterated until ~CDP from two consecutive iterations show

insignificant changes. Next, ~CDP from the last iteration

is filtered one more time to obtain FDP and thereby

KDP according to Eq. (2).

Even though this is an elegant approach to estimate

KDP in real time, the following issues limit its purpose.

First, spatial fluctuations larger than rc will not be

completely eliminated by the iterative step. Second, its

performance is sensitive to the value of t. For example,

t 5 2sP will lead to a ~CDP more correlated toCDP than

to ~FDP, which might not be sufficient to eliminate un-

wanted fluctuations. Third, if rc is increased or Dr is

decreased, then the order of the filter should be

increased (Wang and Chandrasekar 2009), which may

exacerbate these issues. In summary, in the design of the

filter and the selection of the threshold, there is a trade-

off between the smoothing extent and the spatial reso-

lution required to estimate KDP with small standard

deviation and reduced bias.

b. High-resolution method

In contrast to the conventional approach, Otto and

Russchenberg (2011) included dhv–ZDR and SC relations

in rain to estimate KDP at X-band frequency. The first

relation is represented by dhv 5 e1Z
e2
DR and the second by

KSC
DP 5 c

1
10(c2Z/10)10(c3ZDR) , (3)

where Z and ZDR are given in dBZ and decibels (dB),

respectively, while coefficients e1, e2, c1, c2, and c3 establish

the average fit from a set of drop size distributions (DSDs),

drop shape models, and temperatures. The specific dif-

ferential phase in Eq. (3) is indicated byKSC
DP to distinguish

betweenKDP from the SC relation andKDP from the high-

resolution approach.Otto andRusschenberg (2011) used a

normalized gamma distribution to model DSDs. To rep-

resent rain variability, 1500 DSDs were modeled by vary-

ing the parameters of the distribution (i.e., median volume

diameter, concentration, and shape parameter). In

addition, a hybrid drop shape model that consists of three

models and temperatures in the range of 18–258C was

considered to express a wide range of possibilities. The

coefficients for the dhv–ZDR relation are e1 5 1 and

e2 5 1.8, while for the SC relation they are c1 5 1.37 3
1023, c2 5 0.68, and c3 5 20.042.

The measurements for Z and ZDR are corrected for

attenuation and differential attenuation, respectively,

according to Bringi et al. (1990). The path-integrated

attenuation (PIA) in reflectivity and in differential re-

flectivity (PIADP) is given by 0.34DCDP and 0.05DCDP,

respectively, where both coefficients are obtained from

scattering simulation. For a CDP profile represented by

Eq. (1), the difference of CDP in a path ab can be ap-

proximated as DCDP 5 DFDP 1 Ddhv, where DCDP 5
CDP(b)2CDP(a) and b. a. The length of ab could be as

small as Dr or as large as the maximum unam-

biguous range. To identify whether Ddhv is negligible, the
dhv–ZDR relation is used in the following assumption: if

jZDR(b) 2 ZDR(a)j is smaller than 0.3dB, then dhv(b) 2
dhv(a)’ 08. If that case is satisfied, then DCDP is retained

for further processes; otherwise, DCDP is discarded. Mul-

tiple DCDP samples associated with negligible Ddhv are

obtained by considering more paths. These samples are

weighted by Z and ZDR using the SC relation to obtain

DCDP samples at Dr scale. For instance, the weight w at

gate i within path ab is
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w(i)5
KSC

DP(i)

�
b

a

KSC
DP(g)

; with g5 a, . . . ,b . (4)

Weighted DCDP samples are used according to Eq. (2)

to obtain multiple KDP samples. Finally, KDP(i) is esti-

mated by the arithmetic mean of these samples.

Otto and Russchenberg (2011) demonstrated their

method using one rainfall event, showing a visual consis-

tency betweenKDP andZ as well as between dhv andZDR.

Nevertheless, fewer consistent results were observed for

KDP values smaller than 48 km21. In addition, estimates of

KDP were associated with values of sK as high as 38 km21.

Moreover, the sensitivity of the SC relation to DSD, drop

shape, and temperature variability and its impact on

estimated weights were not discussed. In addition, the

effect of uncertainmeasurements ofZ andZDR caused by,

for example, attenuation, partial beam blockage (PBB),

and miscalibration on the performance of this approach

remains an open question. Besides its limited validation,

another matter is the computational time required to

weigh a significant amount ofDCDP samples at each range

gate, which might be inefficient for operational purposes.

3. Adaptive high-resolution approach

The presented approach is an improved version of the

high-resolution method in order to address limitations

associated with the conventional and high-resolution

methods, mainly the low accuracy of KDP in light rain,

contamination resulting from unfiltered dhv, sensitivity

to Z and ZDR measurements, and computational time.

The inputs are radial measurements ofCDP, Z, andZDR

in rain. In addition, a predetermined length interval

[Lmin; Lmax] is required to control the selection of

pathlengths. This interval is assumed to be defined by a

user; however, possible values are discussed in section

3e. The adaptive approach consists of three processes:

preprocessing, pathlength selection, and KDP estima-

tion. A flowchart to estimate KDP, among other vari-

ables, for a given radial profile, is presented in Fig. 1.

a. Preprocessing

To correct Z and ZDR profiles for attenuation and

differential attenuation, respectively, Otto and

Russchenberg (2011) used noisy DCDP instead of DFDP,

which may decrease the accuracy of the method given

by Bringi et al. (1990). In contrast, in the adaptive

high-resolution approach, a linear regression fit over a

3-km window is applied to a CDP profile, resulting

in a FDP profile (Ft
DP). Thus, attenuation-corrected re-

flectivity (Zt) and differential reflectivity (Zt
DR) are

given as Zt 5 z1 0:34DFt
DP and Zt

DR 5 zdr 1 0:05DFt
DP,

respectively, where z (dBZ) and zdr (dB) represent at-

tenuated and differential attenuated measurements,

respectively. This attenuation correction method

might be sensitive to measurements errors, constant

coefficients, and dhv contamination. However, Gorgucci

and Chandrasekar (2005) studied the method of Bringi

et al. (1990) at X-band frequency and showed that this

method performs fairly well with only a slight degrada-

tion of the average error for attenuation correction.

In this approach an estimate of the standard deviation

of Zt
DR profile, sZDR (dB), is required by the pathlength

selection process. A moving window of five gates is ap-

plied to the Zt
DR profile so that local sZDR samples are

obtained. Then, sZDR is estimated by averaging these

sZDR samples. The estimation of KDP is achieved gate

by gate, starting from ranges near the radar and con-

tinuing downrange. Assuming that the first gate with

measurements of rain is located at ri, the estimation of

KDP begins at gate i.

b. Pathlength selection

In the high-resolution technique, DCDP samples were

obtained from CDP using paths of any possible length.

However, KDP results were associated with high values

of sK and significant computational time. In this work a

pathlengthL (km) for gate i is selected from [Lmin;Lmax]

such that a theoretical sK is minimized. The formulation

of a theoretical sK is shown in section 3e but now let the

theoretical sK be a function of parameters L and M,

where M represents the number of DCDP samples with

negligible Ddhv. To identify negligible Ddhv, the high-

resolution technique used a fixed threshold to constrain

jDZt
DRj. However, a fixed threshold might not capture

the possible variability of ZDR within the storm. In this

work the condition to identify negligible Ddhv is given by

FIG. 1. Flowchart for the adaptive high-resolution KDP approach.
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jDZt
DRj,s

ZDR
. (5)

Equation (5) can be considered to be independent of any

parameterized dhv–ZDR relation because this relation is

not used quantitatively. Instead, Eq. (5) relies on the

existing correlation between dhv and ZDR. Furthermore,

the sudden variability in microphysics is taken into

consideration by using sZDR rather than an arbitrary

threshold. Issues such as ZDR miscalibration are miti-

gated by the estimation of DZt
DR. Equation (5) is

referred to as the DCDP filter condition.

The pathlength selection starts with L 5 Lmin. For

simplicity, a pathlength is of the formL5 nDr, where n is

an integer larger than 1. Then, a range interval centered

at gate i is defined as [ri2L; ri1L]. This range interval is

used to limit the extent of Zt
DR and to obtain multiple

DZt
DR samples. These samples are achieved by shifting a

path of length L, within the interval starting at ri 2 L, n

times with steps of Dr. In this manner, (n 1 1)2DZt
DR

samples are obtained. Next, M is calculated by counting

the number of samples that satisfy Eq. (5). Note thatM#

(n 1 1). From L and M, a sK value is determined. To

have a set of sK values, the same procedure is repeated

for the next value of L until L 5 Lmax. Finally, the

pathlength that leads to theminimumsK is selected and is

represented by L*.

Repeating a similar procedure but with L* [i.e.,

shifting a path of length L* and using Eq. (5)],M–DCDP

samples with negligible Ddhv are retrieved from CDP

to estimate KDP(i). The remaining DCDP samples are

discarded to avoid bias on KDP(i). For the next steps,

only CDP, Zt, and Zt
DR profiles in the interval

[ri 2L*; ri 1L*] are used.

c. KDP estimation

To estimate KDP(i), M–DCDP samples should be

downscaled from L* to Dr scales. A downscaling weight

w(i) was suggested by the high-resolution method ac-

cording to Eq. (4). In contrast, in the adaptive high-

resolution approach, a different formulation of w(i) is

proposed in order to reduce its sensitivity to possible

sources of uncertainty that were discussed in section 2b,

mainly the sensitivity of the SC relation to rain vari-

ability, radar miscalibration, and PBB effects. More-

over, this formulation allows us to study statistics of w(i)

and KDP(i) for quality control purposes.

Consider a theoretical DCDP $ 08 from a path ab of

length L. For gate i in the interval [a 1 1; b], the

downscaling weight w(i) is expressed as a factor that

weighs DCDP such that DCDP(i) 5 w(i)DCDP, where

DCDP(i) represents the difference CDP(i)2 CDP(i 2 1)

(i.e., at Dr scale). For derivation purposes, let w(i) be

bounded by the interval [0; 1] and �b

a11w(i)5 1. Using

Eqs. (1) and (2), DCDP(i) and DCDP are expressed in

terms of KDP and w(i) as

w(i)5
2DrK

DP
(i)1 d

hv
(i)2 d

hv
(i2 1)

2LK
DP

1 d
hv
(b)2 d

hv
(a)

. (6)

BothKDP(i) andKDP are estimated using the SC relation

according to Eq. (3) at scales of Dr andL, respectively. In

the numerator of Eq. (6), adjacent dhv values are assumed

to be similar, so dhv(i)2 dhv(i2 1) is approximately 08. In
the denominator, assuming that DCDP satisfies Eq. (5),

the difference dhv(b) 2 dhv(a) is negligible. In this man-

ner, w(i) is formulated as

w(i)5
Dr

L

KSC
DP(i)

KSC
DP

, (7)

where the SC relation is used two times in contrast to the

high-resolution method, which is used (n1 2) times [see

Eq. (4) and replace b with a 1 n]. In this way, added

errors associated with the SC relation are reduced.

To downscaleM–DCDP samples (i.e.,DC(j)
DP with j5 1,

2, . . . M) associated with M–ab paths of length L*, Eq.

(7) is used and the jth weight is given as

ŵ(j)(i)5
Dr

L*
10c2[Z

t(i)2Z(j)]/1010c3[Z
t
DR

(i)2Z
(j)
DR

] , (8)

where Z(j) and Z
(j)
DR represent the arithmetic mean of

Zt(i) and Zt
DR(i) values in path ab(j), respectively. Re-

peating Eq. (8) over the remaining paths, M–ŵ(i) sam-

ples are obtained and KDP(i) is estimated as

K̂
DP

(i)5
1

M
�
M

j51

DC(j)
DP ŵ

(j)(i)

2Dr
; with j5 1, 2, . . . M . (9)

Once KDP(i) is estimated, the pathlength selection and

KDP estimation processes are applied to gate i 5 i 1 1

until the last gate measured in rain. Hence, aKDP profile

is obtained as well as associated L* and M profiles.

d. KDP uncertainty

TheKDP estimator is a function of variables DC(j)
DP and

ŵ(j), which result from the DCDP filter condition and

DCDP downscaling, respectively. Therefore, it is impor-

tant to discuss errors associated with both variables. For

this purpose, DC(j)
DP is expressed as DCDP 5DFDP 1 «d,

where «d indicates possible errors from neglecting Ddhv.
Using the scattering simulation introduced in section 2b

and setting sZDR equal to 0.2dB, the estimatedmean and

standard deviation of «d are 0.048 and 0.68, respectively.
The uncertainty of ŵ(j) depends on the SC relation in rain.

Trabal et al. (2014) demonstrated that the coefficients

of the SC relation shown in Eq. (3) are sensitive to
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temperature variability, while DSD and drop shape vari-

abilities are well represented by a normalized gamma

distribution and a hybrid drop shape model. Similar find-

ings were reported by Gourley et al. (2009) and Adachi

et al. (2015). Although ŵ(j) is independent of c1, any

possible sensitivity to c2 and c3 is modulated by the dif-

ferenceZt(i)2Z(j) andZt
DR(i)2Z

(j)
DR, respectively (i.e., it

depends on the spatial variability of Zt and Zt
DR within

path ab(j) instead of their absolute values). For example,

in a uniform path, ŵ(j) might be constant and equal to

Dr/L*. Moreover, ŵ(j) is independent of constant biases in

Zt andZt
DR within ab(j) aswell as radarmiscalibration. This

independence could reduce the impact of biases onZt and

Zt
DR areas caused by PBB. For simplicity the estimated

weight is rewritten as ŵ(j) 5 â(j)Dr/L, where â(j) is referred

to as the SC ratio [see Eqs. (7) and (8)].

The uncertainty of â(j) can be quantified by its NSE.

Scarchilli et al. (1996) derived an expression for NSE of

KSC
DP, hereinafter NSE(K), that is a function of c2, c3, and

variances of Zt and Zt
DR. Using this expression and basic

properties of the variance, the NSE of â(j) is given by

NSE[â(j)] 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 1/n

p
NSE(K). For example, setting n

equal to 10 (i.e., L is 10 times Dr) and using values of c2
and c3 given in section 2b and conventional accuracies of

1 and 0.2 dB for Zt and Zt
DR, respectively, NSE[â(j)]

results in 15.7%. This analysis can be used as guidance

to identify which elements associated with the DCDP

filter condition and DCDP downscaling can lead to an

incorrect estimation of KDP.

The uncertainty of K̂DP(i) is measured by its standard

deviation as

s
K
(i)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
�
M

j51

"
DC(j)

DP ŵ
(j)(i)

2Dr
2 K̂

DP
(i)

#2
vuut ; with

j5 1, 2, . . . M . (10)

Equation (10) is referred to as the actual sK. In addition,

the NSE of K̂DP(i), hereinafter sn
K(i), is given by

[sK(i)/jK̂DP(i)j]100%. Both actual sK and sn
K profiles

are added to the output of Fig. 1, which can be used

for quality control purposes. In a similar manner but

for the M–â(i) samples, profiles of their actual mean

(ma), standard deviation (sa), and NSE (sn
a) are also

obtained.

e. sK modeling

The uncertainty of K̂DP can be controlled bymodeling

its actual sK. Therefore, a theoretical sK is derived from

Eq. (9), where ŵ(j) is replaced by â(j)Dr/L. Values of Dr,
L, and M are assumed to be given, while DC(j)

DP and â(j)

are defined as random variables. Using properties of the

variance that involve the sum and product of random

variables, a theoretical sK is approximated as (for a

detailed derivation, refer to appendix A)

s
K
5

m
a

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

P 1s2
«

4M

r
, (11)

where s2
P and s2

« are the variance of CDP and «d,

respectively. The value of ma depends on the spatial

variability ofZt andZt
DR. For example,mamay be near 1

in stratiform rain, but it can be between 2 and 5 in

convective rain. The value of sP also depends on rain

type, while s« is assumed equal to 0.68 as given in section

3d. To illustrate theoretical sK, let us assume thatma and

sP are equal to 3 and 38, respectively. A similar value for

sP was given by Lim et al. (2013).

Theoretical sK curves as a function of M and for

different combinations of L are presented in Fig. 2.

Although sK in Eq. (11) is independent of Dr, the

maximum value ofM for a fixed pathlengthL is given by

(n1 1), which is equivalent to L/Dr1 1. For Dr equal to
0.03 km, Fig. 2a shows that if L is near 1 km, then it is

expected to obtain sK values larger than 18 km21.

However,sK values smaller than 0.58 km21 are expected

if L is equal to 2 km andM is larger than 40. In terms of

probability,M larger than 40 indicates that at least 60%

of the total number of paths (n1 1) satisfies Eq. (5). For

L larger than 3km, sK curves continue for values of M

beyond 100 but are not shown here. Note that the gap

between consecutive sK curves decreases as L increases

(e.g., sK curves corresponding to 5 and 6km are almost

identical). Therefore, it is recommended to avoid large

values of L (i.e., lengthy paths) associated with a small

reduction of sK.

Recall that for a given value of L, M is determined

only after evaluating Eq. (5). To search for the combi-

nation of L and M that leads to the smallest theoretical

sK, a pathlength interval [Lmin; Lmax] is considered

instead of a single pathlength. For example, a length

interval equal to [3;5] km could be defined from Fig. 2a

as an input to the adaptive high-resolution approach. In

that case, sK is expected to be small with a sufficient

number of paths M. Similar sK curves can be produced

for a coarser spatial resolution. For instance, if Dr 5
0.25 km, then a set of L values ranging from 4 to 14km

would be used to generate sK curves as shown in Fig. 2b

and an interval equal to [6;10] km would be defined.

Note that for larger Dr, a smaller number of paths M

might lead to reasonable sK values (cf. Figs. 2a and 2b).

In this sK modeling, it is assumed that a user

predefines a theoretical value forma and sP according to

the storm type, and sets [Lmin; Lmax]. For example, in a

uniformZ field (i.e., lowma and sP) or amore variableZ

field (i.e., highma and sP), [Lmin;Lmax] can be decreased
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or increased according to theoretical sK curves. In

summary, setting [Lmin; Lmax] allows us to avoid high

values of actual sK as well as unnecessary lengthy paths

associated with an increased dependence on the SC ratio

and a large computational time.

4. Analysis of the adaptive high-resolution
approach

a. Data settings

The polarimetric X-band weather radar the In-

ternational Research Centre for Telecommunications

and Radar (IRCTR) drizzle radar (IDRA) is a

frequency-modulated continuous wave system whose

operational range is 15.3 km with a resolution of 0.03 km

(Figueras i Ventura 2009). IDRA is located at the

Cabauw Experimental Site for Atmospheric Research

(CESAR) observatory in the Netherlands at a height of

213m from ground level (Leijnse et al. 2010). It scans

at a fixed elevation of 0.508 and rotates the antenna over

3608 in 1min with a beamwidth of 1.88. Clutter echoes
are removed by a filter based on spectral polarimetric

processing (Unal 2009). Moreover, the measured linear

depolarization ratio LDR is used to filter areas that in-

clude particles other than rain and have low SNR, such

that range gates with LDR larger than 218dB are re-

moved (Bringi and Chandrasekar 2001). This simple

filtering procedure should be extended in the case of an

automatic algorithm. The unwrapping of differential

phase profiles is performed by detecting a differential

phase jump between two adjacent gates, equal to 80%of

the maximum differential phase of 1808.
A convective storm event was observed by IDRA

on 10 September 2011. The plan position indicators

(PPIs) of z, zdr, and CDP are shown in Fig. 3.

Attenuation-affected areas can be identified behind

strong reflectivity echoes. The radial pattern observed in

the fields of zdr and CDP is probably due to a metallic

fence that surrounds the IDRAplatform. This introduces

an azimuthal-dependence bias in the zdr field in a similar

way as PBB effects (Giangrande and Ryzhkov 2005). In

addition, z might suffer from radar miscalibration as re-

ported by Otto and Russchenberg (2011). Here, we use

the opportunity to study the impact of rain attenuation

and biases associated with PBB andmiscalibration on the

adaptive high-resolution approach.

b. Methodology

The proposed KDP approach is analyzed using the

storm event observed by IDRA. Besides the z, zdr, and

CDP fields, a pathlength interval is required. For this

requirement, Fig. 2a can be used for guidance because

the theoretical sK curves were built for the same range

resolution as for IDRA and with theoretical ma and sP

equal to 3 and 38, respectively, which express the spatial

variability of the observed z and CDP fields. Thus, from

Fig. 2a, a length interval of [3;5] km, which is associated

withsK, 0.58 km21 forM. 20, is selected. This interval

is used by the pathlength selection process for all radials.

For simplicity, L*(i) is indicated by L(i) and is de-

termined by minimizing 1/(L
ffiffiffiffiffiffiffiffi
4M

p
) instead of sK, as

shown by Eq. (11), because theoretical ma, sP, and s«

remain constant in all radials. The coefficients c2 and c3
given in section 2b are used by the KDP estimation

process.

To study the performance of the KDP approach in

terms of spatial resolution and dhv filtering, three vari-

ations on applying the DCDP filter condition and DCDP

downscaling, given by Eqs. (5) and (9) respectively,

are defined and indicated in Table 1. In case I, KDP is

estimated using the DCDP filter condition without

FIG. 2. Theoretical standard deviation of the adaptive high-resolutionKDP estimator as a function of the number of

paths M. (a) Theoretical sK curves for ma 5 3 and Dr 5 0.03 km. (b) As in (a), but for Dr 5 0.25 km.
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downscaling DC(j)
DP (i.e., ŵ(j) 5 Dr/L and the SC ratio is

equal to 1). This case is denoted by Ddhv ’ 08 and a’ 1.

In case II, theDCDP filter condition is not used butDC
(j)
DP

is downscaled. This case is expressed by Ddhv 6¼ 08 and
a 6¼ 1. In case III, the DCDP filter condition is applied

and DC(j)
DP is downscaled, and this case is represented by

Ddhv ’ 08 and a 6¼ 1. Note that case III follows the

proposed KDP approach and that cases I and II are de-

fined only for analysis purposes.

After a KDP profile is obtained, a FDP profile is re-

constructed by integrating Eq. (2) and dhv is de-

termined as dhv 5 CDP 2 FDP. Moreover, Z and ZDR

are obtained by correcting z and zdr in a similar manner

as in section 3a but replacing DFt
DP with DFDP. This

correction method could be improved by using more

sophisticated techniques, such as those given by Park

et al. (2005a) and Snyder et al. (2010). However, at-

tenuation correction for z and zdr is beyond the scope

of this work, as our goal is to assess the performance of

the KDP approach.

c. KDP and sK results

1) FOR A PPI RADIAL

TheKDP approach specified by cases I–III is applied to

the azimuthal radial of 2138 and its results are shown in

Fig. 4. The downscaling aspect of KDP is examined by

comparing the CDP, FDP (case I), and FDP (case III)

profiles as shown in Fig. 4a. Observe that the total DFDP

for cases I and III is equal to 458. However,FDP from case

III captures the spatial variability and rapid increments of

CDP better than FDP from case I. This can be seen by

their correspondingKDP profiles, which are also shown in

Fig. 4a but they are shifted by2108 km21, where twoKDP

FIG. 3. Observations by the IDRA radar at an elevation angle of 0.58 in theNetherlands at 1950UTC 10 Sep 2011.

Fields of (a) attenuated reflectivity, (b) attenuated differential reflectivity, and (c) differential phase. Also shown is

the 15.3-km range coverage of IDRA (black circles). Range resolution is 0.03 km.

TABLE 1. Three cases for KDP estimation using the adaptive HR

approach.

Cases I II III

Ddhv Ddhv ’ 08 Ddhv 6¼ 08 Ddhv ’ 08
a a ’ 1 a 6¼ 1 a 6¼ 1
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peaks (both of approximately 108 km21) from case III

correspond to fast increments of CDP located downrange

in convective areas. Observe that the CDP profile

includes a dhv ‘‘bump’’ in the range 2–4km. To analyze the

dhv contamination aspect of KDP, FDP from cases II and

III are shown in Fig. 4b as well as their corresponding dhv
profiles shifted by 2108. This dhv bump of 2-km length

does not show an impact on FDP (case II) because its

length is smaller than Lmin 5 3km. Also, CDP values

outside the bump are similar and therefore most DCDP

samples have values near 08. In summary, KDP estimation

is not affected by this dhv bump in both cases, II and III.

Note that in the range 7–11km, CDP increases rapidly,

which probably means that raindrops of moderate to large

size are present and thus significant dhv values are ex-

pected. However, both FDP profiles are similar. This

similarity may be due to dhv values hardly varying in this

range and thus Ddhv samples do not impact DCDP

samples. Such a feature can be seen in dhv (case III), where

it shows a slight spatial variability. Further, the estimation

of dhv depends on FDP estimation, which can include ac-

cumulated KDP errors (e.g., toward the end of the range).

A rigorous estimation and analysis of dhv are beyond the

scope of this work; the focus here is on KDP estimation.

Figure 4c shows attenuated z, corrected Zt, and cor-

rected Z profiles—the last profile being associated with

case III. The correction of z is evident toward the con-

vective range 7–11km, where PIA reaches 15 dB at

11 km. Note that the Zt profile shows values slightly

larger than those of the Z profile because of unfiltered

dhv. In a similar manner, the correction of the zdr profile

is shown in Fig. 4d, where PIADP equals 2.3 dB at 11 km.

Note that the dhv and ZDR profiles show a correlated

behavior as expected from the dhv–ZDR relation.

2) FOR A FULL PPI

The results from applying the KDP approach, speci-

fied by case III, to all radials of Fig. 3 are shown in

Fig. 5. The field of Z is plotted in Fig. 5a and the field of

L, selected from the interval [3; 5] km, in Fig. 5b. The

spatial variability of L exhibits an adaptive perfor-

mance with the purpose of minimizing sK. The KDP

and FDP fields are shown in Figs. 5c and 5d, re-

spectively. It can be seen that the KDP field maintains

the structure and resolution of the storm illustrated by

the Z field, whereas the FDP field displays the propa-

gation phase component of the CDP field depicted in

Fig. 3c. Note that the KDP field presents some gaps in

FIG. 4. Profiles from estimating KDP using cases I–III at azimuthal radial of 2138. Shown are (a) the CDP profile

(black) and the reconstructed FDP using case I (blue) and case III (green). Corresponding KDP profiles, with an

offset of 2108 km21, are shown in a similar manner. (b) As in (a), but using cases II (red) and III (green) and

showing dhv instead of KDP. (c) Profiles of z (black), Zt (gray), and Z (green). (d) As in (c), but for ZDR.
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areas of measured Z (e.g., at approximately 8 km south

from IDRA). In these areas, M is equal to 0, which

means that for any bounded value of L, none of the

(n 1 1)–DCDP samples satisfies Eq. (5). Such an issue

could be avoided if, for instance,KDP is estimated using

case II instead of case III or interpolation algorithms

are used. Figure 5e shows the actual sK, whose arith-

metic mean is equal to 0.18 km21. However, values as

high as 18 km21 are visible near convective edges. This

increase in sK is partly due to a reduced number of

DCDP samples that satisfy Eq. (5). The actual ma are

represented in Fig. 5f, whose values aremostly between

0 and 5. Thus, setting theoretical ma equal to 3 in this

convective storm is a reasonable predefinition. The

field of ma also shows an adaptive characteristic of the

KDP approach as it handles the spatial variability of

CDP. In a similar manner, KDP is estimated using cases

I and II.

FIG. 5. PPI fields from estimatingKDP using case III: (a) attenuation-correctedZ, (b) selectedL, (c) estimatedKDP,

(d) reconstructed FDP, (e) actual sK, and (f) actual ma.
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To study the impact of unfiltered dhv on the standard

deviation of KDP, actual sK resulting from cases II and

III over all radials is displayed in Fig. 6 as a function of its

corresponding number of pathsM, withM. 1. Because

of the large number of sK and M samples, they are

plotted as 2D histograms for better visualization. Note

that the sK–M histogram from case II shows a very small

dependence onM as opposed to Eq. (11). This holds for

values of M up to 167 (i.e., the nearest integer less than

Lmax/Dr 1 1). Such behavior occurs because the DCDP

filter condition is not applied in case II and thereafter

adjacent paths are employed to obtain DCDP samples,

which leads to an increased correlation coefficient

between these samples. In a hypothetical situation

with a correlation coefficient equal to 1, theoretical sK is

no longer a function ofM [see Eq. (A2) in appendix A].

In addition to these adjacent samples, unfiltered Ddhv,
and thereby dhv, compromises the estimation ofKDP and

increases the variability of actual sK. In contrast, the

2D histogram from case III shows a dependence on M

because sK decreases whenM increases as expressed by

the theoretical sK in Eq. (11). Two theoretical sK

curves, for the same range resolution of IDRA, are also

plotted in Fig. 6 to compare theoretical sK with actual

sK from case III. The upper curve is set with L 5 3 km

(i.e.,Lmin) andma5 5 and the lower curvewithL5 5km

(i.e., Lmax) and ma 5 0.5, assuming the same theoretical

values for sP and s« as given in section 3e. For a fair

comparison between actual sK near 08 km21 and the

lower sK curve, only actual sK values slightly larger than

08 km21—for example, $0.058 km21—are considered.

In this comparison, 91% of the sK–M scatters are in

between both curves, while only 2% are located above

the upper curve.

3) Z–KDP RELATION

Another manner to study the downscaling and dhv
contamination aspects of the KDP approach is by ex-

amining the consistency between Z andKDP (Park et al.

2005b). For this purpose, Fig. 7a compares the Z–KDP

histograms from cases I–III. In case I KDP is estimated

at coarse resolution and its values are smaller than

88 km21, while in cases II and III KDP is estimated at Dr
scales and KDP values can be as high as 128 km21.

However, in case II the 2D histogram shows multiple

negative outliers because of unfiltered dhv, resulting in

underestimated and overestimated KDP values. Among

these three cases, case III provides the best consistency

because of the application of the DCDP filter condition

and DCDP downscaling specified by the proposed KDP

approach.

For evaluation purposes, Fig. 7b shows the Z–KDP

histogram from case III, the Z–KDP scatterplot using

scattering simulation from section 2b, and its theoretical

fit Z–KDP relation given by KDP 5 8.7 3 10(0.69Z/10)24.

Note that simulated Z values were shifted by 28 dB in

order to match those from case III, which could be due

to incorrect attenuation correction and/or bias associ-

ated with PBB and miscalibration. In contrast, the KDP

axis shows a noticeable agreement between simulation

and estimation. As a first step to analyze the discrepancy

in the Z axis, a similar histogram is shown but with

attenuated z instead of corrected Z, keeping estimated

KDP. From both plots it is clear that attenuation is not

the major reason for this inconsistency but rather PBB

and miscalibration.

d. KDP in solid or mixed precipitation

As part of the presented analysis, KDP estimation at

X-band frequency over areas of solid and melting hy-

drometeors, such as graupel, hail, and snow, are shortly

discussed. Because the shape and orientation response

of particles are strongly related to their dielectric re-

sponse, polarimetric signatures of solid hydrometeors

is reduced because their dielectric constant factor is

20% or less that of raindrops. For example, Dolan and

Rutledge (2009) and Snyder et al. (2010) simulated

KDP values at X band for solid and melting particles,

showing a limited range of 21 to 1 (8 km21) except for

melting graupel, which can be between22 to 7 (8 km21).

In addition, values of dhv from solid hydrometeors are

small except for large nonspherical hail or melting hail,

in which dhv can be in the order of 48–78 (Trömel et al.

2013). Moreover, Schneebeli et al. (2014) calculated

KDP in snow using a Kalman filter–based approach and

FIG. 6. 2D histograms of the actual sK and number of paths M

resulting from case II (red) and case III (green). Theoretical sK

curves, at Dr 5 0.03 km, are indicated (dashed black), where the

upper curve corresponds to L 5 3 km and ma 5 5 and the lower

curve to L 5 5 km and ma 5 0.5. Frequency of occurrence is given

in logarithm scale and applies to all subsequent histograms.
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found similar results when KDP is estimated by the

conventional technique. In this context the spatial var-

iability ofKDP in nonrain regions may be less significant

than in rain regions. Thus, the conventional approach or

an autoregression-based model can be considered to

complement KDP estimates in nonrain regions as dem-

onstrated by Lim et al. (2013). Alternately, the adaptive

high-resolution approach can be also used by setting ŵ(j)

equal to DrL21 and M equal to n 1 1, which is similar

to case I but without the DCDP filter condition, at

expenses of low-resolution and possibly dhv infiltration.

In this scenario the theoretical sK is simplified to

1:5
ffiffiffiffiffiffiffiffi
2Dr

p
L21:5 assuming sP 5 38, ma 5 1, and M 5 n.

For instance, for Dr values of 0.03, 0.25, and 1km, L can

be set to 3, 6, and 9km, respectively, in order to

obtain a theoretical sK equal to 0.078 km21. However,

further research is required to test the suggested

alternative.

5. Assessment of the adaptive high-resolution
approach

In this section the performance of the proposedKDP

approach specified by case III is compared with the

conventional and high-resolution (HR) techniques.

For this purpose, four storm events (E1–E4) observed

by IDRA are described in Table 2. Although only ob-

servations of E3 at 1950 UTC were shown in section 4,

the other events also display patterns related to

attenuation, PBB, and miscalibration. In the conven-

tional technique, the filter is designed using a 36th-order

filter with rc 5 1 km and t 5 1.5sP. More details on the

filter design are included in appendix B.

a. During 1min

The corresponding times for E1–E4 are 2151, 2225,

1950, and 0550 UTC, respectively. The Z–KDP histo-

grams resulting from the threeKDP approaches applied

to each 1-min event (i.e., one PPI) are shown in Fig. 8.

The Z–KDP scatters from the conventional technique

are significantly spread because KDP is estimated at

coarse resolution and dhv is not properly filtered, which

leads to negative and positive KDP bias. In contrast,

results from the HR method show more condensed

relations. However, for Z values smaller than approx-

imately 40 dBZ, multiple outliers are noticeable. Those

outliers are substantially eliminated by the adaptive

HR approach, which exhibits an enhanced consistency

for weak and strong Z. To quantify the consistency of

the results, the correlation coefficient between Z and

KDP, rZ,K, obtained from each approach is given by the

second, third, and fourth columns of Table 3. From this

quantification, the adaptive HR approach outperforms

the other two techniques. For reference purposes, the

rZ,K from the simulated Z–KDP shown in Fig. 7b was

also estimated and is equal to 0.75, which is similar to

those resulted from the adaptive HR technique. Note

that rZ,K values resulting from simulation or observa-

tions can change according to the range of Z and KDP

values because the theoretical Z–KDP relation is non-

linear and thereby rZ,K may be used as a relative

quantity.

The results of Z and KDP from the conventional and

adaptive HR methods, presented in Fig. 8, show a sim-

ilar discrepancy in the Z axis as indicated in Fig. 7b.

Although the degree of discrepancy is not the same in

all events, the Z values reached by the conventional

FIG. 7. (a) Histograms of Z–KDP resulting from cases I (blue), II (red), and III (green) are compared. (b) As in

(a), but only for case III, where the Z axis before (gray) and after (green) attenuation correction is shown. In

addition, a simulated Z–KDP scatterplot (1500 cross symbols) and its theoretical fit (cyan). Simulated Z values are

shifted by 28 dB.
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technique are in the same order as those from the

adaptive HR approach. This indicates that Z is most

likely biased and that the estimation of KDP by the

adaptive HR approach may not be affected by attenu-

ation and biases associated with PBB and/or

miscalibration.

A second manner to quantify the performance of the

adaptive HR approach is by comparing its actual sK and

sn
K, which were introduced as quality measures in sec-

tion 3d, with the HR method for each event. The

mean values of the sK field (sK) and sn
K field (sn

K) re-

sulting from these techniques are given in Table 3. For

the calculation of sn
K, only gates with jKDPj $ 18 km21

are considered. Note that sK from the adaptive HR

approach is, on average, one-tenth of theHRmethod. In

addition, sn
K results from the adaptive HR approach are

smaller than a reasonable error of 20%, while those

from the HR method are much larger than 20%. An-

other quality measure, also given in section 3d, is sn
a,

which measures the percentage error of the actual ma

estimated by the adaptive HR approach. The mean of

the sn
a field (s

n
a) for each event is found reasonably small

as indicated in Table 3. Finally, in terms of computa-

tional time required by both techniques, the adaptive

HR approach needs, on average, one-third of the time

required by the HR method, which is on the order of a

fewminutes for 1min of data, while for the conventional

technique it is on the order of seconds.

TABLE 2. Description of four storm events observed by IDRA with coverage of 15.3 km and Dr 5 0.03 km.

Events Date Period (UTC) Storm type

E1 10 May 2011 2100–2300 Single cells,a light and moderate rain

E2 28 Jun 2011 2200–0000 A cluster of multicells (moderate rain) followed by a widespread area of light rain

E3 10 Sep 2011 1940–2140 A cell larger than 100 km2 followed by single cells, moderate and heavy rain

E4 7 Oct 2011 0420–0620 Cells of irregular shapes, light and moderate rain

a Area of a cell is found in the range 10–100 km2 withZ larger than 30 dBZ. Similar cell characteristics are defined by Johnson et al. (1998).

FIG. 8. (a) Histograms of Z–KDP for event E1. Conventional (gray), HR (red), and adaptive HR (green)

approaches. (b)–(d) As in (a), but for E2–E4, respectively.
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b. During 2h

Next, the three KDP techniques are compared and

evaluated using the same quality measures rZ,K, sK, s
n
K,

and sn
a and storm events E1–E4 but during 2-h periods

as illustrated in Figs. 9–12, respectively. In general,

it can be observed that the adaptive HR approach out-

performs the other two methods, although the perfor-

mance of each technique varies according to the storm

scenario. For example, the conventional technique can

lead to reasonable results when a storm consists of a

large area of heavy rain because CDP profiles carry

sufficient data samples with high SNR levels, reducing

the impact from CDP outliers. In the HR method,

acceptable results can be obtained in a scenario given

by a large cell or a cluster ofmultiple cells withmoderate

to heavy rain because it allows for consideration of

multiple DCDP samples over extended paths, which

reduces the impact of small and sometimes negative

DCDP values. In addition, this scenario may reduce the

sensitivity of the downscaling weight w(i) to noisy

measurements of Z and ZDR. In contrast, the adaptive

HR approach yields reliable results even when storm

cells cover relatively small areas with light rain because

DCDP samples are adaptively selected over paths with

lengths determined from a predefined interval so that a

theoretical value of sK is minimized. Moreover, un-

certainties associated with the SC relation are reduced

as a result of the improved formulation of w(i) in this

method. In case a storm cell becomes significantly small,

such that the extents ofCDP profiles are on the order of

Lmin, estimates ofKDP by the adaptive HR approach are

not possible; this feature could be beneficial because

accurate estimation of KDP from limited data samples

is rarely achieved.

The resulting time series of rZ,K for event E3 indicate

that during the first hour, the three KDP approaches

performed in a similar manner because KDP estimates

were obtained from a large cell with heavy rain in which

the conventional and HRmethods perform at their best.

During the second hour, small cells with moderate rain

were observed, leading to decreased performance of the

conventional and HR methods. In event E2, during

2220–2300 UTC, the HR and adaptive HR approaches

provided similar results and performed better than the

conventional technique because this period was associ-

ated with a cluster of cells with moderate rain. After this

period the adaptive HR approach maintained a satis-

factory performance, while the performance of the

conventional and HR methods decreased because

values ofKDP were estimated from light rain. For events

E1 and E4, rZ,K time series obtained from the conven-

tional and HR techniques are similar but smaller than

those from the adaptive HR approach because in these

events single cells with irregular shapes and light rain

TABLE 3. Comparison of the three KDP approaches—conventional (conv), HR, and adaptive HR (adap HR)—for the four storm events

quantified by rZ,K, sK , sn
K , and sn

a.

rZ,K (-) sK (8 km21) sn
K (%) sn

a (%)

Event Conv HR Adap HR HR Adap HR HR Adap HR Adap HR

E1 0.38 0.61 0.72 1.12 0.09 85 16 11

E2 0.48 0.70 0.74 0.93 0.09 50 9 13

E3 0.66 0.73 0.75 0.83 0.10 42 7 16

E4 0.53 0.67 0.75 1.22 0.06 83 6 10

FIG. 9. Time series of quality measures from the three KDP

approaches for event E1. (a) Correlation coefficients from the

conventional (gray), HR (red), and adaptive HR (green) tech-

niques. (b) Mean values sK from the HR (red) and adaptive HR

(green) approaches. (c) The sn
K from the HR (red, right y axis) and

adaptive HR (green, left y axis) approaches. Also sn
a from the

adaptive HR approach (green line with circles, left y axis).
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were observed. Although rZ,K time series from the three

KDP techniques can show similar results for a given

storm scenario, Z–KDP relations might include multiple

scatters as illustrated in Fig. 8, especially for weak Z

values. As a result, the adaptive HR approach provides

the best Z–KDP consistency for storm scenarios with

different cell sizes and rain amounts.

Time series of sK from the HR and adaptive HR

techniques for the four events exhibited values between

1 and 3 and near 0 (8 km21). However, the results from

the HR technique for event E2 showed values smaller

than 18 km21 because of a widespread area of rain with

low variability on Z, ZDR, and CDP fields. Nonetheless,

its performance measured by rZ,K remains below the

adaptive HR approach. This shows a persistent accuracy

in estimating KDP by the adaptive HR approach. Fur-

thermore, time series of sn
K and sn

a resulting from the

adaptive HR approach depicted, in all events, consistent

percentage errors smaller than 20%. However, for

events E1 (around 2200 UTC) and E3 (during some

periods after 2040 UTC), the percentage errors in-

creased because of inaccurate measurements of Z and

ZDR resulting from storm cells with heavy rain located

adjacent to or on top of the radar, leading to power

saturation in the receiver. This is an example of how

sn
K(i) or s

n
K and sn

a(i) or s
n
a can be used to identify areas

where KDP estimates could be compromised. Another

example of large sn
K can be seen in E2 around 2210

UTC, when sn
K values are as high as 40% because of

small areas of light rain with a reduced number of DCDP

samples, affecting the accuracy of KDP estimates. The

discontinuity seen between 2300 and 2320 UTC is due to

the constraint jKDPj $ 18 km21. A similar discontinuity

is observed in event E1 around 2130 UTC. During the

same event, a decreasing and discontinued behavior of

rZ,K is observed in the period 2120–2140 UTC. Such

behavior is associated with a progressive reduction of

storm cells in intensity and size, which led to light rain

echoes with areas smaller than 5km2 where the extents

of CDP profiles are not sufficient for the estimation of

KDP. This means that KDP cannot be estimated over a

CDP segment whose length is on the order of or smaller

than Lmin. For the case of the HR method, the time

series of sn
K indicated a limited performance, as sn

K

values are mostly larger than 50%.

6. Conclusions

Polarimetric studies have continuously focused on the

estimation of KDP because of its capability to overcome

power attenuation and radar miscalibration. However,

accurate estimation of KDP at scales of the range reso-

lution is challenging because KDP requires significant

spatial smoothing because of noisy CDP profiles, for ex-

ample, in light rain. This problem is intensified at short

wavelengths when CDP profiles include dhv components,

FIG. 11. As in Fig. 9, but for event E3.FIG. 10. As in Fig. 9, but for event E2.
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for example, in moderate and heavy rain. In this work an

adaptive HR approach has been presented to address

these problems. The standard deviation of the proposed

KDP estimator has been derived and formulated in order

to provide a pathlength interval that could lead to KDP

estimates with reduced error. This formulation takes into

account the spatial variability of the storm and the radar

range resolution.

A storm event observed by a polarimetric X-band

weather radar during 1min was used to analyze and test

the performance of the KDP estimator. Results showed

that the estimated KDP field kept the structure of the

attenuation-corrected Z field without significant spatial

distortion and that its estimation was associated with

reduced errors indicated by the actual standard de-

viation (i.e., the sK field). The consistency between Z

andKDP showed that negative values ofKDP, associated

with weak Z, can be reduced and that high KDP values,

associated with strong Z, can be obtained. To assess

the performance of the adaptive HR approach to

obtain accurate KDP at range resolution scales, four

storm events observed by the same radar but during 2-h

periods were considered and the KDP results were

compared with the conventional and HR techniques. In

general, the proposed approach was able to provide a

correlation coefficient between Z and KDP higher than

the other two methods. In terms of standard devia-

tions, the adaptive HR approach showed significant

improvements compared to the HR technique. The ac-

tual ma field, introduced by the adaptive HR approach,

was associated with reduced uncertainty as indicated by

the sn
a results. However, it was observed that the adap-

tive HR approach is able only to estimateKDP overCDP

segments larger than Lmin and where the number of

DCDP samples is larger than 0.

Although the adaptive HR approach considers mea-

surements of Z and ZDR and constant coefficients re-

lated to the SC relation and attenuation correction in

rain, the results of this method did not highlight issues

related to radar miscalibration, radial patterns in ZDR

as a result of PBB, power attenuation, and variability on

DSD and drop shape. Consequently, the adaptive HR

approach, which uses the correlation between dhv and

ZDR and the SC relation, is able to filter dhv andmaintain

the spatial variability of CDP. Therefore, accurate KDP

profiles at high spatial resolution in light and heavy rain

are achieved. However, if measurements of Z and ZDR

are associated with low SNR levels or are affected by

offsets that fluctuate along a given radial, then it is ex-

pected that the accuracy of the downscaling weights and

thereby KDP estimates will be reduced. In general,

quality control variables sn
K or sn

a, which are associated

with percentage errors larger than, for example, 20%,

might lead to inaccurate KDP estimates.

To achieve the ambitions of implementing the pro-

posed KDP algorithm for real-time operation, further

studies are required. This effort includes estimating and

updating the coefficients, which are used in the attenua-

tion correction method and in the SC principle, to oper-

ational C- and S-band frequencies and, if possible, taking

into account temperature variability. Note that at S-band

frequency, the DCDP filter condition can be excluded

from the KDP algorithm because dhv is usually negligible.

Moreover, an automatic algorithm might be needed to

classify areas of rain, nonrain, and nonhydrometeors. For

solid or mixed rain areas, either the SC ratio should be set

to 1, so that KDP is given at expenses of coarse spatial

resolution, or another KDP algorithm should be em-

ployed. Furthermore, [Lmin; Lmax] should be selected

according to values of Dr and to predefined values of ma

and sP; the latter two can be set as a function of the rain

scenario (e.g., 4 and 38 for convective and 1 and 28 for
stratiform rain). Last, it is recommended to evaluate the

proposed approach at longer ranges, where attenua-

tion and nonuniform beamfilling affect the Z and ZDR

measurements, and in scenarios where PBB is associated

with complex terrain features.

A reliableKDP is one of the most powerful observables

from polarimetric weather radars. The adaptive HR

approach may prove to be key in addressing the dilemma

between the spatial resolution and the accuracy of KDP

FIG. 12. As in Fig. 9, but for event E4.
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in rain. Moreover, the formulation of the theoretical sK

and the capability of calculating the uncertainty of KDP

estimates gate by gate allow for reducing and controlling

the errors in the estimation of KDP. Even though this

approach still needs to be tested in operational environ-

ments, urban hydrology and weather forecast communi-

ties may benefit from the proposed approach in terms of

spatial resolution, accuracy, and quality control of KDP

estimates, which can lead to significant improvements in

KDP -based products.
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APPENDIX A

Standard Deviation of the KDP Estimator

For the purpose of deriving sK, the weight in Eq. (8) is

expressed as ŵ(j) 5 â(j)Dr/L and therefore the KDP es-

timator given by Eq. (9) is rewritten as

K
DP
5

1

2L

"
1

M
�
M

j51

DC(j)
DPa

(j)

#
; with j5 1, 2, . . . M . (A1)

Note that this expression includes the pathlength L and

omits the index i for simplicity. Both DC(j)
DP and a( j) are

considered to be independent random variables (rvs)

and hence their product is also an rv and denoted by k( j)

with j5 1, 2, . . .M. Assume that k(1), k(2), . . . , k(M) have

the same variance s2
k and that the pair [k( j), k(m)], with

j 6¼ m, has a constant covariance gk. Using the variance

property of the sum of correlated rvs and the relation

gk 5 s2
krk, where rk is the correlation coefficient, the

variance of the KDP estimator s2
K is expressed as

s2
K 5

1

(2ML)2
Ms2

k[11 (M2 1)r
k
] . (A2)

If the terms2
k is rewritten usingDC

(j)
DP anda

( j), we obtain

s2
K 5

1

(2L
ffiffiffiffiffi
M

p
)2
[m2

as
2
D 1s2

a(m
2
D 1s2

D)][11 (M2 1)r
k
] ,

(A3)

where ma and mD represent the mean of a( j) and DC(j)
DP,

respectively. Similarly, s2
a and s2

D indicate their vari-

ance. Equation (A3) can be reduced if rk and s2
a are

assumed to be significantly small. In consequence, Eq.

(A3) is simplified to

s2
K 5

m2
a s

2
D

(2L
ffiffiffiffiffi
M

p
)2
. (A4)

To include residuals from the DCDP filter condition (i.e.,

neglecting Ddhv), the difference in differential phase

is represented by the sum of two uncorrelated rvs:

DC(j)
DP 1 «

(j)
d , where «

(j)
d has a mean and variance equal to

08 and s2
«, respectively. Thus, Eq. (A4) is rewritten as

s2
K 5

m2
a(s

2
D 1s2

«)

(2L
ffiffiffiffiffi
M

p
)2

. (A5)

For a givenpath ab,DC(j)
DP is expressed asCDP(b)2CDP(a),

which is the difference between two rvs. If both rvs

have the same variance s2
P, then the variance of DC(j)

DP is

FIG. B1. (a) Magnitude response of a FIR low-pass filter specified by rc 5 1 km, Dr5 0.03 km, filter order of 36,

and Hann window. (b) Histograms of Z–KDP from the first step (blue) and both steps (gray) of the conventional

approach.
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given by s2
D 5 2s2

P. As a result, a theoretical sK for the

KDP estimator is defined as

s
K
5

m
a

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

P 1s2
«

4M

r
. (A6)

APPENDIX B

Filter Design to Estimate KDP by the Conventional
Technique

A finite impulse response (FIR) filter type is selected

for designing the light filter (first step). The filter order is

set to 36, while the required rc is set to 1 km. In

addition, aHannwindow function is included to obtain a

magnitude response H (dB) with small sidelobes. The

response H is shown in Fig. B1(a) as a function of the

normalized range scale fn 5 Dr/rs, where rs $ Dr and rs
in km. Note that H reaches approximately 240dB at

fn 5 0.1. This means that the light filter is designed such

that spatial variations at range scales smaller than 0.3 km

are suppressed. Next, this filter is iterated several times

(second step) by setting t equal to 1.5sp. The storm

event E3 at 1950 UTC is used for demonstration pur-

poses. The Z–KDP histograms from the first and second

steps are shown in Fig. B1(b). Observe that the iterative

step eliminates several outliers without excessively

smoothing KDP.
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