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Graph invariants are a useful tool in graph theory. Not only do they encode useful
information about the graphs to which they are associated, but complete invariants can
be used to distinguish between non-isomorphic graphs. Polynomial invariants for graphs
such as the well-known Tutte polynomial have been studied for several years, and recently
there has been interest to also define such invariants for phylogenetic networks, a special
type of graph that arises in the area of evolutionary biology. Recently Liu gave a complete
invariant for (phylogenetic) trees. However, the polynomial invariants defined thus far
for phylogenetic networks that are not trees require vertex labels and either contain a
large number of variables, or they have exponentially many terms in the number of
reticulations. This can make it difficult to compute these polynomials and to use them
to analyse unlabelled networks. In this paper, we shall show how to circumvent some of
these difficulties for rooted cactuses and cactuses. As well as being important in other areas
such as operations research, rooted cactuses contain some common classes of phylogenetic
networks such phylogenetic trees and level-1 networks. More specifically, we define a
polynomial F that is a complete invariant for the class of rooted cactuses without vertices
of indegree 1 and outdegree 1 that has 5 variables, and a polynomial Q that is a complete
invariant for the class of rooted cactuses that has 6 variables whose degree can be bounded
linearly in terms of the size of the rooted cactus. We also explain how to extend the Q
polynomial to define a complete invariant for leaf-labelled rooted cactuses as well as

(unrooted) cactuses.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Given a class C of graphs, and a polynomial P(C) as-
signed to each element C in this class, we call P an in-
variant of C if P(C) = P(C’) when C is isomorphic to C’
for all C,C’ € C; if P(C) = P(C’) also implies that C is
isomorphic to C’" we call P a complete invariant for the
class (see e.g. [15]). Polynomial invariants have been de-
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fined for various classes of graphs (see e.g. [4]), including
the extensively studied Tutte polynomial (see e.g. [1] and
the references therein). These usually encode useful infor-
mation about the graph (e.g. number of edges, spanning
forests), but they are not always complete invariants, and
finding complete invariants for graphs remains an impor-
tant area of research in graph theory and computer science
[15].

Recently there has been interest in defining polynomial
invariants for graphs that arise in the field of phylogenet-
ics [13,17]. Such graphs are called phylogenetic networks,
and they often come equipped with a leaf-labelling of the
vertices corresponding to some collection of species (see
e.g. [18, Chapter 10] for a recent overview). Phylogenetic
networks are commonly used to elucidate the evolution-
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ary history for a collection of species that has undergone
non-treelike evolution (such as e.g. bacteria or plants) [3],
and an important problem asks to find ways to distinguish
between distinct networks to compare evolutionary histo-
ries (see e.g. [5]). Hence finding complete invariants for
special classes of phylogenetic networks could be useful
as, for example, they would yield metrics on networks in
question (see e.g. [14] where this approach has been re-
cently used to study how the influenza virus evolves).

In this paper, we focus on the problem of finding com-
plete polynomial invariants for the classes of rooted cac-
tuses and cactuses (with or without leaf-labellings), two
special classes of phylogenetic networks [7,8] which also
arise in other areas such as operations research [12] and
genome comparisons [16]. More specifically, recall that
a cactus (also known as a Husimi tree) is a connected
undirected graph in which any two cycles are edge dis-
joint [10]; a rooted cactus is a directed acyclic graph with
a single source or root whose underlying undirected graph
is a cactus, and such that there is a directed path from the
root to any vertex in the graph [8] (see Fig. 1 for an exam-
ple of a cactus and a rooted cactus). Observe that rooted
cactuses are related to, but different from directed cactuses,
which are strongly connected directed graphs where each
edge is contained in exactly one directed cycle [2]. Also
note that in general a rooted graph may also mean any
type of graph that contains a distinguished vertex, which
is slightly different from our meaning of rooted. If the un-
derlying graph of a rooted cactus is an undirected tree (or,
for brevity, a tree), we call it a rooted tree (also known as
an arborescence). As well as trees, there are various other
subclasses of unrooted and rooted cactuses such as (un-
labelled) level-1 networks and galled trees (see e.g. [18,
p.247]).

In previous related work, for trees, one of the first com-
plete invariants for rooted trees was introduced in [6]. In
fact, this polynomial is defined as the restriction of a cer-
tain greedoid polynomial (the Tutte polynomial of a gree-
doid) which arises from the fact that any rooted directed
graph gives rise to a certain greedoid structure [6]. In [19]
a modification was made to this polynomial to also give a
complete invariant for rooted undirected unicyclic graphs
(note that rooted undirected unicyclic graphs are similar
but different from rooted cactuses, as the former is undi-
rected and contains at most one cycle, while the latter is
directed and can contain more than one cycle in the un-
derlying graph). Interestingly, the problem of defining a
complete invariant for (undirected) trees remained open
until a solution was recently proposed in [13], in which
Liu defined a new complete invariant B for rooted trees,
which was extended to the class of (undirected) trees.

More recently, polynomial invariants have also been
introduced for classes of phylogenetic networks, build-
ing on Liu's approach. In [13], Liu showed how to ex-
tend the polynomial invariant B to leaf-labelled trees, and
more recently a polynomial invariant was introduced for
rooted binary internally multi-labelled phylogenetic net-
works (where vertices with indegree at least 2, or retic-
ulations, are distinctly labelled) in [17]. This was shown
to be a complete invariant for a certain subclass of such
partly-labelled networks. In [11], a polynomial invariant
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is defined for rooted unlabelled networks based on their
spanning trees, and it is briefly mentioned that the poly-
nomial is a complete invariant restricted to the class of
so-called rooted, leaf-labelled? tree-child networks.

The polynomial invariants defined thus far for phylo-
genetic networks (that are not trees) require vertex labels
and either contain a large number of variables, or they
have exponentially many terms in the number of reticula-
tions. This can make it difficult to compute these polyno-
mials and to use them to analyse unlabelled networks. In
this paper, we shall show how to circumvent some of these
difficulties for rooted cactuses and cactuses. More specif-
ically, we begin in Section 2 by introducing a complete
invariant for a certain class of vertex-labelled trees (which
we call special pairs), which generalizes the tree polynomial
presented in [13]. We then use this new invariant to intro-
duce two new polynomial invariants for rooted cactuses.

Our first polynomial invariant F given in Section 3 is
based on unfolding a network, a technique used in [17] and
inspired by [9]. When unfolding a rooted cactus, copies of
the subnetwork rooted at every reticulation are created.
Labels are subsequently added to the unfolded network,
which is a directed tree, to create a special pair. In The-
orem 3.3 we give a one-to-one correspondence between
a rooted cactus and its labelled unfolded network. This
immediately gives a polynomial invariant F for rooted cac-
tuses using the special pair definition from before. The
polynomial F has 5 variables when leaves are unlabelled,
and at most n + 4 variables when its n leaves are labelled.
In addition, as we shall show, F is a complete invariant for
the class of rooted cactuses without elementary vertices,
that is vertices with indegree and outdegree one. Note
that in phylogenetics this is not a strong assumption since
elementary vertices are commonly excluded from phyloge-
netic networks as they do not correspond to evolutionary
events such as speciation or hybridization.

Our second polynomial invariant Q for rooted cactuses
which is given in Section 4, is based on expanding a rooted
cactus, a process in which we encode every reticulation
with two appended leaves and an added edge. Each itera-
tion of the expansion removes one reticulation vertex from
the network; labelling the vertices creates a special pair,
that uniquely encodes the original rooted cactus. As we
prove in Theorem 4.3, this gives a complete invariant for
the class of rooted cactuses (where we now allow for ele-
mentary vertices), which we call Q. The Q polynomial has
6 variables when leaves are unlabelled, and at most n+ 5
variables when its n leaves are labelled. We also show that
the degree of the Q polynomial is linear in the number of
leaves and the reticulations of the network.

In Section 5, we show how to define a complete invari-
ant for the class of leaf-labelled rooted cactuses, by gen-
eralising an approach used in [13]. We also explain how
to use Q to obtain a complete invariant for (undirected)
cactuses, either with or without leaf-labels. Finally, in Sec-
tion 6, we discuss our findings and give suggestions for
future research.

2 In [11] this result is stated to hold for unlabelled networks, but in
a personal correspondence with the authors we were informed that it
should be stated to hold for labelled networks.
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2. Liu’s polynomial revisited

In this section, we define a polynomial invariant P for
rooted trees with certain vertex labellings which general-
izes Liu’s polynomial for rooted (leaf-labelled) trees. We
shall use this polynomial to define our new invariants for
cactuses in the following sections.

Let 7 denote the class of rooted trees. For T € 7 we let
pr denote the root of T, V(T) and L(T) be the vertex and
leaf-sets of T respectively, and e denote the single vertex
tree in 7. The stem of a tree T € T is the shortest directed
path in T that starts at the root of T and does not end in
a vertex of outdegree 1. We call a stem trivial if it consists
only of the root. Note that if T is the single vertex tree we
regard it as a root and a leaf. Given a set {Tq,..., Tg}, k>
1, of rooted trees we let A(Tq,..., Tx) denote the rooted
tree obtained by taking a single vertex v and joining this
vertex to the root p; of each tree T; by an arc (v, p;).

Now, given an arbitrary rooted tree T = A(Tq, ..., Ty)
where T; € 7, define the 2-variable polynomial B(T) €
Z[x, y] by recursively applying the following rules [13, Def.
2.1]:

(1) B(e) =%, and
(2) B(T) =y + [T, B(T).

In [13, Theorem 2.8] it is shown that B is a com-
plete invariant for 7. Moreover in [13, Corollary 3.5], it
is proven that a complete invariant B; for the class of
leaf-labelled, rooted trees can be defined as follows. For
T = A(T1,...,Ty) where T; € T, and e; denoting the sin-
gle vertex tree with label x;, define B;(T) by replacing
rules (1) and (2) with [13, Def. 3.4]:

(1') BI(OJ‘) =Xj, and
(2') Bi(T) =y + [15_; Bi(Tp).

Note that different leaf vertices in T may have the same
label.

We now generalize these polynomial invariants to
rooted trees whose vertices are labelled. We call a max-
imal directed path of outdegree-1 vertices a string.

For any set of variables K, we call a pair (T,A) a
vertex-labelled rooted tree if T € 7 and A : V(T) — K. Let
K C {x1,x2...} U{y,z} U {s}, be a fixed set of variables
(possibly infinite). We call the pair (T, A) special if:

(1) AL(T)) € {x1,%2...},

(ii) If W = (w1,...,wp) is a string in T, then A(wq) €
{y,z} and if p > 1, then A(w;) =y for all 2 <i <p,
and

(iii) For every vertex v € V(T) that is not in L(T) or in a
string, A(v) € {y,z} US.

Hence, basically, the vertices of a special pair can be
labelled arbitrarily as long as the labelling of the leaves
is disjoint from the labelling of the internal vertices and
strings are labelled (z, y,y,...) or (¥, y,...). Moreover, we
shall see below, given any T € 7T, there is some A so that
(T, 2) is a special pair. Note also that if T = A(Tq, ..., Tk)
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where T; € T, then (T;, A; = Ay (1;)) is a special pair for all
1<i<k.

We now define a polynomial invariant Py for the class
of vertex-labelled trees. Given a vertex-labelled tree (T, 1)
define Pg (T, 1) recursively as follows:

o If T=({v},?), set Pg(T,Ar) =Ar(v).
oIf T = A(Tq,...,Ty), set Pg(T,A) = Alpr) +
TTE Pk (Ti, ).

To ease notation, in case the set K is clear from the con-
text, we denote Pg(T,A) by P(T, A).

An example of a special pair is given by setting x = x;
and K = {x, ¥}, and, for any rooted tree T € 7, defining
A:V(T)— K by A(v) =y if v is an internal vertex and
A(v) =x if v is a leaf. Then P(T,A) = B(T) is in fact Liu’'s
polynomial for T.

For another example, set K = {x1,x2,...} U {y} (note
this is an infinite set). Suppose T € T is a leaf-labelled tree
with ¢ : L(T) — {x1,X2,...,Xp} where n > 1. Then define
AL V(T) — K, by setting Ay (v) =y if v is an internal ver-
tex and Ap(v) = ¢(v) if v is a leaf. Then P(T,Ar) = Bi(T)
is Liu’s polynomial for T with leaf-labels.

We say that special pairs (T, ) and (T’, 1) are isomor-
phic if T is isomorphic to T' via a map ¢ : V(T) — V(T')
such that A(v) = A/ (¥ (v)) for all v € V(T). We now show
that P is a complete invariant for special pairs.

Theorem 2.1. Suppose that (T,)) and (T’,\') are special
pairs. P(T,A) = P(T’, ') if and only if (T, 1) is isomorphic
to (T', ))).

Proof. It is straight-forward to check that P is an invariant
for special pairs using a similar proof to [13, Prop 2.2]. To
show that P is also a complete invariant, we use a similar
proof to [13, Cor. 3.5].

Suppose P(T,A) = P(T’,\'). We want to show that
(T, A) is isomorphic to (T’, ). Assume A(V (T)) = {s1,...,
sk} S {x1,x2...}U{y,z} US, where k > 2. Since P(T,)) =
P(T’, )", it follows that A(V(T")) = {s1, ..., s¢} (i.e, P(T, L)
and P(T’,2') are both polynomials in the same variables).

Consider the polynomial P’ in Z[x, y] obtained from
the polynomial P(T, 1) in Z[s1,...,sk] by replacing each
variable x; by x and each variable in S U {z} by y. Then
P’ is Liu’s polynomial for T, i.e. B(T), and so P’ is irre-
ducible in Z[x, y] [13, Lem. 2.6]. It follows that P(T, 1) is
irreducible in Z[s1, ..., S].

We now use strong induction on n, the number of leaf
vertices in T.

If n=1, then T = (wq,...,w;), where [ > 1, is a di-
rected path of length [—1.If [ > 1, then (w1, wa, ..., W;_1)
is a string in T. If [ =1, then P(T,A) =x;, and if [ > 2,
then P(T,A\)=(1—-1)y+xjor P(T,A)=z+ (1—-2)y +xi,
for some i > 1. In either case it is straight-forward to
check that P(T,1) = P(T’, 1) implies (T, A) is isomorphic
to (T, 1)).

Now suppose that T has N > 1 leaves and that the re-
sult holds for trees with n leaves where 1 <n <N — 1.
First note that if T has a stem (wyq, ..., w;, v) with length
greater than O (with outdegree of v at least 2), then
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(W1, ..., w)) is a string with [ > 1. It follows that the de-
gree 1 terms in P(T, A) are either ly+A(v) or z+(—1)y+
A(v), where A(v) € {y, z}US. Hence, as P(T, 1) = P(T’, \),
it follows that T’ has a stem of the same length as T and
that A and A’ restricted to the stems are the same.

It follows that we can assume that T and T’ both
have trivial stems consisting of a root with outdegree at
least 2, and hence that A(p1), A (1) € {y,z2}US. So T =
A(T1,...,Ti) where i > 1, and T' = /\(T’,...,T}) where
j > 1. But then

P(T,2) =2(pr) + [ | P(Tk, 1)
k=1
J
= (pr) + [ [ P(T]. 2 = P(T, 2).
=1

Since i, j > 1, the products are polynomials in which all
terms have degree 2 or higher, and so A(or) = /(o) as
these are both degree 1 polynomials. Moreover, (T, Ag),
1<k<i, and (T, ), 1 < j<I, are all special pairs and so
their polynomials must be irreducible. It follows that i = j
and after reordering of indices, P(Tk,Ax) = P(T;,A,) for
all 1<k <i. Since the trees T; and T; have fewer than N
leaves, it follows by the induction hypothesis that T; and
T/ must be isomorphic. Therefore (T, 1) is isomorphic to
(T',»). O

3. Arooted cactus invariant based on unfolding

In this section we modify the technique used in [17] to
obtain a complete polynomial invariant for a special sub-
class of rooted cactuses. To define this polynomial we first
require some additional notation. Recall that a rooted cac-
tus is a directed acyclic graph with a single root p whose
underlying undirected graph is a cactus, and such that
there is a directed path from the root to any vertex in the
graph. Note that from this definition, it follows that p is
the only vertex with indegree 0 and that all vertices of V
have indegree at most 2. Note that cycles of the underlying
cactus may overlap in a vertex. We call a vertex elementary
if it has indegree 1 and outdegree 1. A vertex with outde-
gree 0 is called a leaf and a vertex with indegree 2 is called
a reticulation (so we allow a vertex to be both a leaf and
a reticulation). A reticulation cycle for a reticulation v in a
cactus is a pair of internally vertex-disjoint paths ending
in v and with the same origin vertex w; we call w the top
vertex of the reticulation cycle.

We now define a polynomial invariant for the class of
rooted cactuses, which we will show to be complete for
rooted cactuses without elementary vertices. First, we as-
sociate a vertex-labelled pair (Uy, An) to a rooted cactus N
as follows (see Fig. 1 for an example):

(A) For every vertex v in N that is the top vertex for ¢ >
1 reticulation cycles, resolve the vertex v as follows.
Let wy, wi, ..., w¢, wi be children of v such that each
pair (w;, w}) is in the same reticulation cycle. For 1 <
i <c, add a new vertex v; with an arc (v, v;), replace
the arcs (v, w;), (v, w}) by arcs (vi, wi), (vi, wj) and
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Ny

Fig. 1. Example of four rooted cactuses. All arcs are directed downwards.
The networks N1 and N; have the same F polynomials F(Nq) = F(Ny) =
Yy+s+[y+x(y+z+x)][y+z+x], but different Q polynomials, since
QIND=y+s+[y+x(y+Plz+x(y+q) and Q(N2) =y +s+(y +
Xq)(z+ y +x)q (for example, Q (N1) has an xyzq term while Q (N3) does
not).

give v; label s, i.e., set Anx(vj) =s. Call the resulting
network N’.

Unfold the network N’ to get Uy as follows. While
there exists a lowest reticulation v, make a copy of the
tree rooted at v and replace one incoming arc (w, v)
of v by an arc (w,v’) with v/ the root of the copy
of v. If v and v’ are leaves, label them r. Otherwise,
label them z.

Give all leaf vertices in Uy, that are not already la-
belled, label x. Give all remaining unlabelled vertices
in Uy label y.

(B

—

—
@)
N

Observe that each vertex of Uy that corresponds to a
reticulation of N is either an internal vertex labelled z or
a leaf labelled r. We now show that (Uy, Ay) is a special
pair if N has no elementary vertices.

Lemma 3.1. Let N be a rooted cactus without elementary ver-
tices. Then (Uy, An) is a special pair with K C {x; =X, X2 =
r}U{y,z} U {s}.

Proof. Each string consists of exactly one vertex, which is
labelled z. In addition, each leaf is labelled x or r and each
internal vertex is labelled y,z ors. O

Note that Lemma 3.1 would not be true if we al-
lowed N to contain elementary vertices, as then (Uy, An)
could contain a string with a sequence of labels (y, z, ...).
See Fig. 1 for two non-isomorphic networks that have the
same F polynomials. We now define operations that undo
the unfolding described above. The lowest common ancestor
(LCA) of two vertices u and v of a rooted cactus is the
unique lowest vertex that has a path to both u and v.
Given (Up, An), for a rooted cactus N without elemen-
tary vertices, we construct a digraph M(Uy, Ay) from the
rooted tree Uy as follows.

(a) While there exists a pair of vertices a,b in Uy that
are either both internal vertices labelled z or both
leaves labelled r, choose such a pair with lowest LCA
v¢. Fold-up the two rooted cactuses below a and b by
adding an arc from the parent of b to a and then delet-
ing b and all its descendants. Remove the label (r or z)
from a.

(b) Contract all arcs of the form (v, u) where u has label s.
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Observe that this digraph M(Up, An) is unlabelled as it
does not come with a labelling map.

Lemma 3.2. If N is a rooted cactus without elementary vertices,
then N is isomorphic to M(Uy, AN).

Proof. We will show that (a) reverses (B). Since it is clear
that (b) reverses (A), and since the vertices of N and
MUy, Any) are unlabelled, it will follow that M(Uy, An)
is isomorphic to N.

We now show that (a) reverses (B). Each iteration of
(B), acting on a reticulation v of a reticulation cycle with
top vertex v, creates a pair a,b of vertices that are either
both internal vertices labelled z or both leaves labelled r.
In either case, their lowest common ancestor is v;. Call
such a triple (a, b, v¢) a good triple. Future iterations may
make copies of such good triples, which will also all be
good. We will show that (a) only selects good triples.

To do so, we first observe that, for any pair of good
triplets (a,b, v¢), (@', b, vy) (with {a,b} # {d’,b'}), the
paths from v; to a and b are vertex disjoint from the
paths from v; to a’ and b’. This follows from the ob-
servation that, after step (A), all reticulation cycles are
vertex disjoint. We now show that (a) only selects good
triples. Suppose (a) selects a triple (a,b, v¢) that is not
good. Since a is labelled z or r, it is also in a good triple
(a,c, we). Note that w; is not strictly below v; because
then (a) would not select (a, b, v;). So either w; = v; or
w; is above v;.

Now note that also b is in a good triple (b, d, u;). More-
over, u; is below v, and u; # v, because otherwise the
paths from u; to b and d would not be vertex disjoint from
the paths from w; to a and c. This gives a contradiction
because in this case (a) would not select (a, b, v¢).

We conclude that (a) only selects good triples. Hence,
each iteration of (a) undoes an iteration of (B) on one
copy of the created good triple. It follows that (a) reverses
(B). O

Now define a polynomial F for a rooted cactus N by
setting

F(N)=P(UN, An).

Note that if N € 7 is a rooted tree, then F(N) = B(T),
i.e., Liu’s polynomial for T. Moreover, if N is binary, i.e.,
if all vertices have outdegree at most 2 and all reticula-
tions have outdegree 1, then F is a polynomial in the four
variables x, y,z and s, and otherwise in the five variables
X,y,z,r and s.

We now show that F(N) is a complete invariant for the
class of rooted cactuses without elementary vertices.

Theorem 3.3.If N and N’ are rooted cactuses without elemen-
tary vertices, then F(N) = F(N’) if and only if N is isomorphic
toN'.

Proof. It is straight-forward to check that if N is isomor-
phic to N’, then (U, Ay) is isomorphic to (Uys, An/). SO
by Theorem 2.1 F(N) = F(N').
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Conversely, suppose F(N) = F(N’). By Lemma 3.1, (Uy,
An) and (Uy/, Ays) are both special pairs. Therefore by
Theorem 2.1, (Uy,An) is isomorphic to (Ups, An’). So
M(Uy, An) is isomorphic to M(Upy, An/). By Lemma 3.2 it
now follows that N is isomorphic to N’. O

Remark 3.4. Observe that the polynomial F(N) can be ob-
tained directly from N by defining a polynomial F(N, v)
for each vertex v of N = (V,A) as follows, and let-
ting F(N) = F(N, p).

o If v is a leaf, then

if v is a reticulation,
otherwise.

F(N,v) = [;

e Otherwise, v is the top vertex of ¢ > 0 reticula-
tion cycles, with wq, wi,..., wc, w, children of v
such that each pair (w;, wj) is in the same reticu-
lation cycle, and wcyq,..., Wwg_ the other children
of v (with d the outdegree of v). Let G(N,v) =

< [s+ FIN.w) F(N, w)]TTEZE, ; FIN, wy). Then,

z+ G(N,v) if v is a reticulation

y+G(N,v) otherwise.

F(N, v):[

4. Arooted cactus invariant based on expanding

In the last section, we defined a polynomial F that is a
complete invariant for the special class of rooted cactuses
without elementary vertices. Although this polynomial has
the advantage of being in at most 5 variables, it is not
a complete invariant for all rooted cactuses, and F could
have degree that is exponentially dependent on the num-
ber of reticulations (observe that copies of networks rooted
at each reticulation are created when obtaining the special
pair). In this section, we introduce a polynomial invariant
Q for the class of rooted cactuses, which has the advan-
tages of not needing to exclude elementary vertices and
having a linearly bounded degree.

To define Q and show that it is a complete invariant
for cactuses, we use a similar approach to the one used for
F. Suppose that N = (V, E) is a rooted cactus. We begin by
associating a vertex-labelled tree (Ty, i) to N as follows
(see Fig. 2 for an example):

(A) As in page 4.

(B’) Expand the network N’ to get Ty as follows. While
there exists a reticulation, take a lowest reticulation
cycle in N’, with top vertex v, and with reticulation v
having parents u,u’. Remove arcs (u,v), (u/,v). Add
vertices p, p’ and arcs (u, p), (v, p’). Add arc (v, v).
Give both of the vertices p, p’ (which are leaves) la-
bel q. Give v the label z if it is an internal vertex and
rif it is a leaf.

(C) As in page 4.

The following lemma is straight-forward to prove.

Lemma 4.1. (Ty, uy) is a special pair with K C {x1 = x,x2 =
r.x3=qtU{y,z} U{s}.
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Nj (T, o)

Fig. 2. Example of how the special pairs (Un,, An;) and (Tn,, in,) are obtained from rooted cactuses N3 and N4 of Fig. 1, respectively. All arcs are directed

downwards.

Now, given (T, un), we construct a digraph M(Ty,
) from the rooted tree Ty as follows:

(a’) While there exists a pair of leaves p, p’ labelled q in
Ty, choose such a pair with lowest LCA v;. Let u,u’
be the (necessarily unique) parents of p and p’, re-
spectively. Let v be the (necessarily unique) child of v;
labelled z or r. Remove leaves p,p’ and arc (v¢,v).
Add arcs (u, v), W', v).

(b) Contract all arcs of the form (v, u) where u has label s.

Lemma 4.2.If N is a rooted cactus, then N is isomorphic to
M(Tn, n).

Proof. The proof follows from observing that (a’) reverses
(B), that (b) reverses (A) and that the vertices of both N
and M(Ty, uy) are unlabelled. O

Now define a polynomial Q for a rooted cactus N by
setting

Q(N) = P(TN, UN)- (1)

Note that if N € T is a rooted tree, then Q (N) = F(N) =
B(T). Moreover, if N is binary, then Q is a polynomial in
the five variables x, y, z, q, s and otherwise in the six vari-
ables x, y,z,q,r and s.

We now show that Q(N) is a complete invariant for
rooted cactuses.

Theorem 4.3.If N and N’ are rooted cactuses, then Q (N) =
Q (N') ifand only if N is isomorphic to N'.

Proof. This is analogous to the proof of Theorem 3.3, by
replacing Lemmas 3.1 and 3.2 with Lemmas 4.1 and 4.2. O

Note that, in contrast to the polynomial F, Q less di-
rectly reflects the structure of a cactus. Indeed, with the
construction of Q, we add two additional leaves for every
reticulation. On the other hand, with the construction used
for F, every leaf of the unfolded tree corresponds to a leaf
of the original network. However, as we shall now show,
unlike F, the degree of Q can linearly bounded in terms
of the number of leaves and reticulations.

Theorem 4.4. Let N be a rooted cactus with n leaves and k retic-
ulations. Then Q (N) is a polynomial of degree n + 2k.

Proof. We have defined Q (N) as the polynomial P of the
special pair (Ty, uy). By a similar argument to the one
presented in [[13], Lemmas 2.3 and 2.4], each term of
the polynomial Q (N) corresponds to a rooted subtree Sy
of Ty, where Sy and Ty share the same root, and any leaf
of Ty is a leaf of Sy or a descendant of a leaf of Sy (for
example, the term cx?r’q?y¢zfs8 in Q (N) corresponds to
a primary subtree of Ty that contains a+b+d+e+ f+g
leaves: a labelled x, b labelled r, d labelled g, e labelled
y, f labelled z, and g labelled s). Such rooted subtrees are
called primary subtrees. The coefficient c of the term counts
exactly how many primary subtrees exist with match-
ing leaves. The degree of the polynomial Q (N) is then
the greatest number of leaves across all primary subtrees
of Ty. This corresponds to, amongst possibly other primary
subtrees, the primary subtree that is isomorphic to Ty. To
count the number of leaves in Ty, observe that we add
two leaves labelled g every time we expand a reticula-
tion cycle. It follows that the number of leaves in Ty, and
therefore the degree of the polynomial Q (N), is n+2k. O

Remark 4.5. As with the polynomial F, we observe that
the polynomial Q (N) can be obtained directly from N by
defining a polynomial Q (N, v) for each vertex v of N =
(V, A) as follows, and letting Q (N) = Q (N, p).

o If v is a leaf then

r if v is a reticulation,
b% otherwise

Q(N,V)Z{

e Otherwise, v is the top vertex of ¢ > 0 reticulation cy-
cles, with wy, w),..., w¢, w; children of v such that
each pair (wi,wg) is in the same reticulation cycle
with reticulation v;, and w¢4q,..., wg_ the other
children of v (with d the outdegree of v). Let R(N,

voo= Jliqls 4+  Q(N,wp)Q'(N,w)Q(N,
vITTZE; Q' (N, wi) where

, if v is a reticulation,
Q'(N.v)=1{1

otherwise.

Q(N,v)
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Then we have

Z+ R(N,v)
¥+ R(N,v)

if v is a reticulation,
Q(N,v)= {

otherwise,

See Fig. 1 for an example of a Q polynomial for a given
network.

5. Cactuses and leaf-labellings

In this section, we show that the invariant Q can be
used to give an invariant for cactuses (which are undi-
rected), and that it is relatively simple to extend its def-
inition so as to give an invariant for partially leaf-labelled
rooted cactuses and cactuses (note that for cactuses a leaf
is a vertex with degree 1).

First, recall, that a cactus is an (undirected) graph in
which any two cycles are edge-disjoint. For a cactus G, let
R(G) be the set of all rooted cactuses that can be obtained
from G by picking some vertex to be the root and choosing
some orientation for each edge in G. Note that R(G) may
contain isomorphic rooted cactuses. The following observa-
tion follows a similar idea to the one used in [13, Lemma
3.1].

Lemma 5.1. Suppose that G, G’ are undirected cactuses. Then
G and G’ are isomorphic if and only if R(G) ~ R(G’) (i.e., there
is a bijection f : R(G) — R(G’) such that f(D) is isomorphic
to D forall D € R(G)).

Proof. If G and G’ are isomorphic, then clearly R(G) ~
R(G"). Conversely, if R(G) ~ R(G’) then pick any D € R(G).
Then there is a D’ € R(G’) that is isomorphic to D. Since G
and G’ are the underlying undirected graphs of D and D’,
respectively, it follows that G and G’ are isomorphic. O

Now suppose that C is any complete polynomial in-
variant for rooted cactuses with C(N) € Z[tq,...,tn]
for some variables tq,...,ty, and C(N) is irreducible in
Zt1,...,ty], for any rooted cactus N. Given a cactus G,
we define the polynomial C, by

Cu(G) = ]_[ c(D).

DeR(G)

Note that this polynomial can have large degree in gen-
eral, depending on the number of cycles and the size of
each cycle (larger sizes lead to more rootings). The fol-
lowing result is related to the observation following [13,
Theorem 3.2].

Theorem 5.2. The polynomial C, is a complete invariant for
cactuses.

Proof. By assumption, for each D € R(G), C(D) is an irre-
ducible polynomial in Z[t1, ..., ty]. The result now follows
from Lemma 5.1 and the fact that Z[tq, ..., ty] is a unique
factorization domain. O

Corollary 5.3. For the polynomial Q defined in (1), Q, is a
complete invariant for cactuses.
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Note that Q, restricted to the class of rooted trees is
not the same as Liu’s polynomial since our rooting proce-
dure differs the one in [13].

We now consider leaf-labelled rooted cactuses (see e.g.
[8]). As mentioned in the introduction, in phylogenetics
it is common to consider (di)graphs in which the leaves
are labelled by some set of species (see e.g. [18, Section
10.3]). Using our results on special pairs it is straight-
forward to obtain a complete invariant for partially leaf-
labelled rooted cactuses (i.e. ones in which some subset of
the leaves is labelled), in a similar way used to deal with
leaf-labelled trees in [13]. Indeed, given a rooted cactus N
and amap ¢ : L — {x1,x2,...,xp} from a subset L’ of the
leaves of N to some collection of species {x1,x2,...xp}, we
can define a special pair (Ty, un) as in the definition of
Q above, except that in step (C), we give all remaining
leaf vertices v the label x; (instead of x) if ¢(v) =x; and
label x (as before) if v ¢ L. Then using the same argument
as in Theorem 4.3, it can be seen that this leads to a com-
plete invariant for the class of partially leaf-labelled rooted
cactuses. Moreover, using a partially leaf-labelled version
of Lemma 5.1 (in which we only select roots at vertices
that are unlabelled), it is possible to also define a poly-
nomial invariant for the collection of partially leaf-labelled
cactuses (see e.g. [7]), and to show that it is a complete
invariant for this class.

6. Discussion

We have introduced a new complete polynomial invari-
ant Q for the class of rooted cactuses which has at most 6
variables, and also shown how to use Q to obtain a com-
plete invariant for cactuses. In addition, we have shown
that the degree of the Q polynomial for a rooted cactus
with n leaves and k reticulations is n + 2k [Theorem 4.4].
We have also introduced a polynomial invariant F for
rooted cactuses which has only 5 variables regardless of
the number of reticulations in the network, and more nat-
urally respects the structure of the network. However, F is
only a complete invariant for rooted cactuses without ele-
mentary vertices and the degree of F for a rooted cactus
may be exponential in the number of reticulations in the
rooted cactus.

It could be of interest to look for other polynomial in-
variants of rooted cactuses/cactuses which shed different
light on their structure. For example, in [6] it is asked if
the greedoid polynomial invariant introduced for rooted
trees gives a complete invariant for larger classes of di-
rected rooted graphs, and so it is natural to ask if it gives
a complete invariant for rooted cactuses. However, in re-
cent work [20] it is shown that, even for a simple example
of a rooted cactus [20, Fig. 3], the polynomial does not
reflect the structure of the directed graph, so this seems
unlikely to be the case. Another possibility would be to
consider the TVT polynomial in [19] or the “B-polynomial”
for digraphs introduced in [1]; the TVT polynomial gives
a complete invariant for rooted trees [19, p. 569] but it is
not known whether this is the case for the B-polynomial
[1, Question 10.6].

Another natural question is to look for complete invari-
ants for broader classes of (di)graphs that are of interest in
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phylogenetics. For example, we could consider the classes
C and C’ that consist of directed acyclic graphs that are
uniquely determined by the graphs obtained by applying
steps (A), (B), and (C) or (A), (B’), and (C), used to obtain
a special pair in the definition of F and Q, respectively.
It would be interesting to know if we could obtain com-
plete invariants for C and C’ in a similar way to F and Q
and, if so, which well-known classes of (non leaf-labelled)
phylogenetic networks are contained in these classes (note
that for generalizing the approach used to obtain F, re-
sults on so-called stable networks in [9] might be rele-
vant). More specifically, it would be interesting to know
for which k > 0 is the collection of level-k networks (net-
work in which every biconnected component contains at
most k reticulations) contained in either C or C’? Note that
(non-leaf-labelled) level-0 and level-1 networks are rooted
trees and cactuses, respectively, so k =2 is the first case
of interest. Extra care must be taken in this k =2 case, as
reticulation cycles may have more than one top vertex. In
particular, this means unfolding and expanding will have
to be redefined, perhaps depending on the comparability
of top vertices of reticulation cycles.

As we have seen, different constructions of polynomi-
als give rise to advantages and disadvantages with respect
to the number of variables, the polynomial size, and the
graph classes for which it is complete. Ideally, it would be
useful to find complete invariants that can be computed
in polynomial time for special classes of phylogenetic net-
works.> However, even if it is not possible to find such
invariants, it could still be interesting to look for polyno-
mials like the Tutte polynomial which may not provide
complete invariants but may be easier to compute and can
still provide useful information about the underlying struc-
ture of the network.
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