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Statistical Performance Analysis of the Algebraic
Constant Modulus Algorithm
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Abstract—This paper presents a large sample analysis of
the covariance of the beamformers computed by the analytical
constant modulus algorithm (ACMA) method for blindly sep-
arating constant modulus sources. This can be used to predict
the signal-to-interference plus noise ratio (SINR) performance
of these beamformers, as well as their deviation from the (non-
blind) Wiener receivers to which they asymptotically converge.
The analysis is based on viewing ACMA as a subspace fitting
optimization, where the subspace is spanned by the eigenvectors
of a fourth-order covariance matrix. The theoretical performance
is illustrated by numerical simulations and shows a good match.

Index Terms—Blind beamforming, constant modulus algorithms
(CMAs), eigenvector perturbation, performance analysis.

I. INTRODUCTION

T HE last decade has seen a large interest in blind source sep-
aration techniques. An important part thereof is claimed

by constant-modulus algorithms. Not only is the constant-mod-
ulus property directly applicable to many communication sce-
narios, it is also very robust in practice, can be applied to non-
constant modulus communication signals, and can often provide
better separation performance than algorithms based on channel
properties, such as direction finding [9]. In contrast to the over-
whelming number of algorithms that have been proposed is the
low number of algorithms whose performance has been studied
in more detail.

In this paper we will study the performance of the analytical
constant modulus algorithm (ACMA), which was proposed
in [18]. ACMA is a nonrecursive batch algorithm that, under
noise-free conditions, can compute exact separating beam-
formers for all sources at the same time, using only a small
number of samples. It has good performance in noise and
fits several applications: not only blind source separation, but
direction finding [21], [9] and frequency estimation [11] as
well. In communication scenarios, it provides an excellent
starting point for more optimal nonlinear receivers, such
as ILSE [15], and it can be extended to handle convolutive
channels [19]. Although it has been derived as a deterministic
method, it is closely related to JADE [5] and other fourth-order
statistics-based source separation techniques.

We have shown that in the presence of noise, the ACMA
beamformers converge asymptotically in the number of samples
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to the (nonblind) Wiener receivers [16]. This is unlike CMA,
whose asymptotic solutions are known to be close to but not
coinciding with the Wiener receivers [7], [24], [25]. Here, we
will continue the analysis of ACMA by deriving the largefi-
nite sample performance of a block of samples. Apart from
the theoretical interest, this gives answers to practical design is-
sues, e.g., the choice of the data block size, the required SNR,
the effect of fading and channel conditioning, and the tradeoff
between training-based versus blind source separation. Finite
sample performance of CMA is still terra incognita, with only a
small start made in [10].

Our approach will be to derive the statistical properties and,
in particular, the covariance of the beamformers computed by
ACMA. For a better understanding, this is then mapped in terms
of scale-invariant parameters such as the resulting signal-to-in-
terference plus noise ratio (SINR) at the output.

For purpose of the analysis, ACMA is written as the solution
to a subspace fitting problem, where the subspace is spanned by
the eigenvectors of a fourth-order covariance matrix. The per-
formance can thus be derived along the lines of the analysis
of MUSIC or WSF [20]. Complicating factors in the analysis
are that we need the statistics of a fourth-order covariance ma-
trix, which gives rise to eighth-order statistics, and that the usual
eigenvector analysis results for Gaussian sources are not appli-
cable here.

Several other papers that analyze the performance of fourth-
order source separation algorithms provide useful ingredients,
e.g., a fourth-order MUSIC DOA algorithm is analyzed in [4].
Similarly, [13] contains expressions for the covariance of fourth-
order cumulants. In our case, we can be more explicit because
constant-modulus sources have kurtosis1 and known sixth-
and eighth-order statistics. A second difference is that the al-
gorithm is not based on the cumulant matrix but on a different
fourth-order covariance matrix, in which the influence of the
Gaussian noise is nonzero. An expression for the covariance
of eigenvectors in the non-Gaussian case has been presented in
[23] in the form of a summation over six indices. Here, we de-
rive a more compact expression from first principles.

The outline of the paper is as follows. The data model is
formulated in Section II and the ACMA in Section III. Subse-
quently, Section IV provides an approximate expression for the
statistics of the fourth-order covariance matrix used by ACMA,
Section V the statistics of the eigenvectors of this matrix, and
Section VI of the beamformers resulting from the subspace fit-
ting step, mapped to an expression for the resulting SINR at
the output of the beamformer. Finally, Section VII compares
the theoretical performance to the experimental performance in
simulations.
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3084 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 12, DECEMBER 2002

II. DATA MODEL

A. Problem Statement

We consider a linear data model of the form

(1)

where is the data vector received by an array of
sensors at time, is the source vector at time, and

is an additive noise vector. rep-
resents an complex-valued instantaneous mixing matrix
(or array response matrix). The sources are constant modulus
(CM), i.e., each entry of satisfies .

We collect samples in a matrix
. Similarly defining and , we obtain

(2)

, , and are unknown. The objective is to reconstruct
using linear beamforming, i.e., to find a beamforming matrix

of full row rank such that
approximates . Since is unknown, the criterion

for this is that should be as close to a CM matrix as possible,
i.e., we aim to make . If this is
the case, then is equal to up to unknown permutations and
unit-norm scalings of its rows. With noise, we can obviously
recover the sources only approximatively.

We work under the following assumptions.

1) has full rank , and (so that has a left
inverse). The analysis will in fact only consider the case

.
2) (this is required by the algorithm).
3) The sources are statistically independent constant mod-

ulus sources, circularly symmetric, with covariance
.

4) The noise is additive white Gaussian, zero mean, circu-
larly symmetric, independent from the sources, with co-
variance .

B. Notation

An overbar, i.e., denotes complex conjugation, is the
matrix transpose, is the matrix complex conjugate transpose,
and is the matrix pseudo-inverse (Moore–Penrose inverse).
(or ) is the ( ) identity matrix, and is its th column. The
operator Re selects the real part of its argument.0 and1 are
vectors for which all entries are equal to 0 and 1, respectively.

vec is a stacking of the columns of a matrix into a
vector. For a vector, diag is a diagonal matrix with the entries
of on the diagonal. For a matrix, vecdiag is a vector con-
sisting of the diagonal entries of. is the Schur–Hadamard
(entry-wise) matrix product, is the Kronecker product, and
is the Khatri-Rao product, which is a column-wise Kronecker
product:

Notable properties are (for matrices and vectors of compatible
sizes)

vec (3)

(4)

(5)

(6)

(7)

vec vec (8)

vec diag (9)

(10)

denotes the expectation operator. For a matrix-valued sto-
chastic variable , define its covariance matrix

cov vec vec

For a zero mean random vector , define the fourth-order
cumulant matrix

cum (11)

where

cum

This can be written compactly as

(12)

For circularly symmetric variables, the last term vanishes.

III. FORMULATION OF THE ALGORITHM

In this section, we present a brief outline of the ACMA in a
form that admits its analysis. ACMA consists of two main steps:
a prewhitening operation and the algorithm proper (see Fig. 1).
We discuss each in turn.

A. Prewhitening

The main purpose of the prewhitening filter is to reduce the
data vector dimension from channels to , which is the
number of sources. This is necessary in the noise-free case to
avoid the existence of nullspace beamformers such that

since these can be added to any solutionwithout
changing the outcome and, hence, create a nonuniqueness. In
the presence of noise, this dimension reduction gives improved
performance. A second purpose of the prewhitening is to whiten
the data covariance matrix. Although the algorithm will work
without this aspect, it was shown in [16] that the whitening
causes the beamformer to converge asymptotically into the
Wiener beamformer, which is a very desireable feature.

Define the data covariance matrix and its sample estimate
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Fig. 1. Data model and beamforming structure.

Since and , has as a model

We now introduce the eigenvalue decomposition

is a unitary matrix, and a diagonal matrix whose
diagonal contains the eigenvalues in descending order.and

are partitioned such that the largesteigenvalues are in
(the “signal” eigenvalues) and the remaining in (the
“noise” eigenvalues). Note that the latter are equal to. Like-
wise, we can introduce the corresponding sample eigenvectors
and eigenvalues from the decomposition of

The prewhitening filter that the algorithm uses is defined by

where the underscore indicates the prewhitening. Note that
has rows and that . The data model in the whitened
domain is

where has size and is invertible.

B. ACMA Outline

Given the data samples [ ], the purpose of a beamforming
vector is to recover one of the sources as . One
technique for estimating such a beamformer is by minimizing
the deterministic CMA(2,2) cost function

Define

and define similarly, but based on the whitened data. In [16],
we have derived that CMA(2,2) is equivalent to (up to a scaling
of , which is not of interest to its performance)

(13)

If we ignore the effect of dimension reduction, this is equivalent
to finding a beamformer in the whitened domain

(14)

followed by setting . The dimension reduction
forces to lie in the dominant column span of.

ACMA is obtained as a two-step approach to the latter mini-
mization problem (in the whitened domain) [16]:

1) Find an orthonormal basis of indepen-
dent minimizers of , i.e.,

tr (15)

The solutions are the eigenvectors corresponding to the
smallest eigenvalues of .

2) Find a basis { } that spans the same
linear subspace as { } and with , i.e.,
solve

(16)

subject to the constraint diag . is a
invertible matrix that relates the two bases.

By using (9) of Kronecker products, the second step can also
be be written as a joint diagonalization problem

where vec , and is a diagonal matrix whose
diagonal is equal to theth column of . The original ACMA
paper introduced a Jacobi iteration to (approximately) solve the
latter problem. This can then be used as an initial point for a
Gauss–Newton algorithm to solve (16) exactly, if so desired [17].

It was shown in [16] that converges asymptotically in to
a matrix , where is equal to , except for a scaling
and permutation of its columns. Transforming back to the non-
whitened domain, we obtain that converges
asymptotically to , which is the Wiener receiver
(except for the scaling and the permutation, which are of no con-
sequence to the usual scale-independent performance criteria).

A performance analysis is now possible and consists of the
following steps.

1) Find the statistics (covariance) of ; see Section IV.
2) Find the covariance of the eigenvectors of; see Sec-

tion V.
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3) Find perturbation results for the subspace fitting step; see
Section VI.

The steps in this outline are identical to the performance analysis
of the MUSIC and WSF DOA estimators [20]. However, in that
case, the statistics were that of a second-order covariance matrix
of Gaussian variables. Here, we need to extend these results to
fourth-order non-Gaussian statistics.

The following limitations to the analysis are introduced to
keep the derivations tractable.

1) We assume that is sufficiently large so that we can
neglect terms of order compared with terms of order

. Similarly, we will assume that the noise power
is sufficiently small so that we can neglect over .

2) We assume that the prewhitening step is based on the
eigenvalue decomposition of thetrue covariance matrix

.
3) Instead of the joint diagonalization using Jacobi iterations,

we assume that the exact solution to (16) is computed by
the algorithm, e.g., via a Gauss–Newton iteration.

Thus, we will analyze a slightly different algorithm than the
original ACMA. If , then it can be shown that the dif-
ference in prewhitening using instead of is negligible
for sufficiently large. However, if , the dimension
reduction in the prewhitening step will introduce an additional,
complicated effect that is not incorporated in the analysis. Since
this form of prewhitening is quite common, a detailed study of
this is of independent interest and, hence, is omitted here. Thus,
our analysis is valid only for .

IV. V ARIANCE OF

In this and the next sections, we drop for convenience the
underscore from the notation since all variables are based on
whitened data. The whitening is of no consequence for the re-
sults in this section: We will not use the fact that .

Our objective is to find an expression for the covariance of,
which is denoted by . Since contains fourth-order mo-
ments, its covariance involves eighth-order statistics. A precise
description has very many terms and does not give additional
insight (cf. [4] and [14, App.A] for the covariance of fourth-order
cumulantmatrices). Here, we derive a compact approximation.

A. Model for

Define

Then, has model

where , and denotes the fourth-order
cumulant matrix with entries cum as defined in
(12) and satisfies the model

since and ; we also used (7).

has an interpretation as the covariance of. Indeed

cov vec vec vec vec

(17)

Thus, is the covariance of , and provides a
sample estimate of this covariance. However, it is a biased
estimate since some simple but tedious manipulations show that

This is entirely analogous to the bias that usually occurs in an
estimated variance when the mean is also estimated from the
data.

A second interpretation for is obtained by defining a
“data” sequence

(18)

and considering its covariance and sample covariance

Lemma 1:

Proof: The first two properties are straightforward. To
prove the third property, note that

The first term in brackets is recognized as . For the second
term, note that [ ] has covari-
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ance [see (17)] so that

Thus, is the covariance of , and is an unbiased
sample estimate of it; in first-order approximation, it has the
same properties as the biased estimate. Similar to (17), it
follows that cov , where

(19)

In summary, we have proven the following theorem.
Theorem 2: cov
A compact description of in terms of our data model is

derived next.

B. Approximate Expression for

Inserting the model in the definition of ,
we obtain

where

vec

Here, vec is a vector with only a
single nonzero entry. The vectorhas entries that are either zero

or constant modulus (CM). We can conveniently drop the zero
entries by defining a truncated vector vec , where
vec is a vectoring operator that skips the main diagonal. We
thus obtain a model

where

The vector is CM (with certain dependencies among its en-
tries). Likewise, the matrix skips the columns of

.
The model has several properties that are

similar to that of . In particular, since

we have that

where

For the model of , we know that , where
, and . A first

idea is that analogously, defined in (19) can be written as
with .

Since and are not independent (only uncorrelated) and not

circularly symmetric, and , this is not true with equality.

Certain cross-terms are ignored. In addiiton, does not have
a simple diagonal structure because the entries ofare related.
We now set out to find a more accurate description of, only
taking into account the terms up to .

Theorem 3:
, where

, and

(All indices range over . Note that the latter matrices
are data independent and represent simply collections of “1”
entries.)

Proof: See Appendix A.
Fig. 2 gives an overview of the structure of the model for

and its components, for , , and . It is seen
that the dominant term is but that there are many other
terms that are caused by the dependencies among the entries of

and .

The preceding model for gives a good description of the
covariance of for reasonably large and signal-to-noise
ratio (SNR). Note that if and are simply regarded as

Gaussian vectors with independent entries, we obtain

(20)

Making this perhaps crude approximation would lead to partic-
ularly simple results in the eigenvector perturbation study and
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Fig. 2. Structure ofC and its components.A = I,R = � I, d = 3, and� = 0:3.

subsequent steps as we basically can apply the theory in Viberg
[20].

V. EIGENVECTORPERTURBATION

All variables in this section are based on whitened data, and
we drop the underscore from the notation. The results in Sec-
tion V-B depend on the whitening.

In this section, we consider the statistical properties of the
eigenvectors of , which is a fourth-order sample covariance
matrix based on non-Gaussian signals. We first give a general
derivation and then specialize to the case at hand. The general-
ization is needed because existing derivations typically consider
Gaussian sources, e.g., standard results for a second-order co-
variance matrix of a Gaussian signal have been derived in [1],
and extended in [8] for complex Gaussian signals. Results for
deterministic signals in Gaussian noise can be found in [12]. A
general result appears in [23], based on the (real-valued) pertur-
bation analysis in Wilkinson [22]. The derivation in what fol-
lows leads to essentially the same result but written more com-
pactly in tensor notation and with a self-contained proof.

A. General

For a covariance matrix with unbiased sample estimate
based on samples of a (not necessarily Gaussian) vector

process, consider the eigenvalue decompositions ,
. Note that

If the eigenvalues are distinct and the phase ambiguity of the
eigenvectors is resolved in some default manner (see [6]), then

implies and . Thus, in first-order
approximation

vec vec

vecdiag

vec

vecdiag (21)

Assume now that we partition the eigenvalue decomposition
of as

(22)

where (in this section) the partitioning is arbitrary, as long as the
eigenvalues in are distinct and unequal to any eigenvalue in
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. We are interested in the perturbations of the estimate of
in directions orthogonal to this subspace.

Note that .
Thus, premultiplying (21) with removes the second
term, giving

vec

vec

vec

vec

vec

vec

vec

vec

where . From the latter, we can immediately de-
rive an expression for the covariance of the “signal” eigenvec-
tors projected into the “noise” subspace.

Lemma 4: Let be a sample covariance matrix converging
to , and assume that has eigenvalue decomposition (22),
where the entries in are distinct and unequal to any entry in

. Then

cov

cov

(23)

Here are two remarks as an aside. Ifis the covariance ma-
trix of a Gaussian signal vector, then cov

, and the usual eigenvector perturbation result [8] follows.
A second observation is that if is the covariance due to a
data model , where the sources can have any
fourth-order statistics but the noise is Gaussian, then cov

. Suppose the noise
is white, and we partition the eigenvalues such thatcon-
tains the largest eigenvalues. Then, ; hence,

. The term in cov contributed by
drops out. Hence, in first-order approximation,the projected
eigenvector statisticscov are independent of the higher
order source statistics and only depend on. A consequence
is that the performance of subspace-based algorithms such as
MUSIC, ESPRIT, or WSF do not depend on whether the sources
are Gaussian or not. This corroborates results in [3] and [12].

B. Application

We now specialize to our situation. We have

cov cov

Introduce the eigenvalue decomposition of as

(24)

where collects the smallesteigenvalues of . Likewise,

is a basis for the approximate null space of. The model

for , in the whitened domain, is

(25)

Introduce the singular value decomposition

(26)

where has orthonormal columns, diag is a

diagonal matrix, and is unitary. Let be the

orthogonal complement of . It follows from (25) that the

eigenvalue decomposition of is given by

(27)

In view of the partitioning in (24), we set the “signal” subspace
and . The “noise” eigenvalues are all

equal and given by .

Inserting this in (23), we obtain the needed expression for the
eigenvector perturbation.

Theorem 5: The covariance of the estimated signal subspace
eigenvectors of outside the true signal subspace spanned

by is

cov

where

An approximate model for was shown previously in The-
orem 3. Note that the higher order terms in this case donotdrop
out since .

VI. SUBSPACEFITTING

All variables in this section are based on whitened data, and
we drop the underscore from the notation.

A. Cost Function

For the analysis of ACMA, we assume that the joint diago-
nalization step is implemented as the solution to the subspace
fitting problem in (16). This allows us to follow in outline the
performance analysis technique described in [20].1 Some nota-
tional changes are necessary.

In (16), we described the subspace fitting problem as the com-
putation of a separating beamforming matrix (in the
whitened domain). The columns of were constrained to have
unit norm, and we can further constrain the first nonzero entry of
each column to be positive real. With some abuse of notation, let

be a minimal parametrization of such matrices. The true
mixing matrix can then be written as , where is
a diagonal scaling matrix that is unidentifiable by the subspace
fitting. We assume that the true parameter vectoris uniquely

1See also [2], which contains many statistical properties related to subspace
fitting but, unfortunately, only considers the real domain. In particular, it gives
proofs for semi-definite weightings.
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identifiable and that is continuously differentiable around
.
We proved in [16] that as , converges to

, and thus, we can regard as an estimate of and
write . In this notation, (16) becomes

As usual, the problem is separable, and the optimum for,
given , is . Eliminating , we obtain

where . It is further customary to solve

the latter subspace fitting problem in a more generalweighted
norm, namely, vec vec , where is a pos-
itive definite weighting matrix that can be used to minimize the
estimator variance. Hence, we will consider the minimization of
the cost function

vec vec

(28)
where is positive (semi-)definite.

B. Variance of

Denote the gradient of by the vector
and the second derivative (Hessian) by the matrix

, and define

(29)

Following [20], note that at the minimum of the cost function,
. Since is strongly consistent, a first-order Taylor ex-

pansion of around then leads to ,
which gives a description of the variance of, as follows.

Lemma 6: (Viz. [2] and [20]) is asymptoti-
cally normal distributed, with zero mean and covariance

, where and are defined in (29).
In view of this lemma, explicit expressions for and ,

which are a function of the specific choice for the parametriza-
tion of , remain to be found. Since the columns of are
not coupled, we can write , where

is a parametrization of a unit-norm vector with real non-
negative first entry. A possible parametrization is given in Ap-
pendix B.2 Suppose that the number of (real-valued) parameters
per vector is . For future notational convenience, we arrange
the parameters of in two equivalent ways:

vec

The entries of are denoted by ( , ).

2If more information is known abouta(���), e.g., an array manifold structure,
then this can easily be taken into account at this point.

The derivatives of and , which are evaluated at ,

are collected in vectors and matrices defined as

(30)

Since , we obtain

(31)

Theorem 7: Let

where , and are defined in (26). Then

where is defined in (31) so that for large , the variance of

that minimizes the subspace fitting problem (28) is, in first-order
approximation

cov

Proof: See Appendix C.
The covariance depends on the choice of weighting, and

this weighting can be used to minimize the parameter covari-
ance. Under some technical conditions outlined in [2] that have
to do with identifiability in case is singular, it is known that

(32)
and that the lower bound on the covariance is achieved by
the weighting

A useful suboptimal weight is obtained by ignoring the
non-Gaussian part in [(20): ] and using the
decomposition

(33)
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It is straightforward to obtain a consistent estimate of this weight
from the eigenvalue decomposition of [see (27)]. In partic-
ular, compute . Then,

so that

Note that we could replace the projection by since this

does not alter the result ( can be absorbed in vec

in the cost function). With this weight, the cost function (28)
becomes

vec vec

Thus, this suboptimal weight involves only a scaling of each
column of the estimated null space basis by a function of the
corresponding eigenvalues. This is reminiscent of the result in
[20] for the WSF technique.

With the approximation (33), we can obtain a more compact
expression for . Inserting in (32), using property (5), and
writing , we find

C. Covariance of

We still need to map the previous result to an expression for
the covariance of the beamforming vectors. Let
be the optimal beamformer for theth source, and let
vec . Then, for small perturbations

so that has covariance

The derivatives are to be evaluated at the true value of the param-
eters, where . Since the columns are parametrized
independently, the derivatives are only nonzero for

. It follows that

(34)
where is a subma-
trix of , as defined in (30), and is the -th subblock of
size of .

D. SINR Performance

To allow interpretation of the performance of the beam-
formers, a plot of a scale-independent parameter such as the
output SINR is more informative than the description of their
covariance. This also allows a comparison of the performance
to that of the optimal nonblind (Wiener) receiver. In this
section, we derive a mapping of to the inverse SINR or
the interference plus noise-to-signal ratio (INSR)3 defined for
a beamforming vector and array response vector of the
corresponding source as (recall that )

INSR

The optimal solution that minimizes the INSR is (for
an arbitrary nonzero scaling), i.e., the matched beamformer
or Wiener beamformer in the whitened domain. Consider a per-
turbation , where . Then

INSR

where the approximation is good if (since
, this also implies ).

Let be a normalized (scale-invariant)
definition of the covariance of. Then, in the above approxima-
tion

INSR
tr

(35)

The first term represents the asymptotic performance of the
Wiener beamformer ( with ). The second term is
the excess INSR due to the deviation offrom the optimum.
We can simply plug in the estimates of from (34) in place
of (since is normalized) to obtain the INSR corresponding
to the ACMA beamformers.

For comparison, we consider the Wiener beam-
former estimated from finite samples and known, or

. Let be one of the columns of

3This parameter is chosen because it admits a good approximation in subse-
quent derivations.
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Fig. 3. Theoretical and experimental performance for source 1. Left column: finite sample excess INSR relative to the asymptotic INSR of the Wiener beamformer.
Right column: SINR performance.

, and the corresponding column of . The normalized
covariance of is derived in Appendix E as

cov

so that for the expected INSR of the finite-sample Wiener, we
find, in first-order approximation

INSR (36)
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Fig. 4. Same as Fig. 3 for varying number of sources.

VII. SIMULATIONS

Some simulations are now presented to compare the derived
theoretical performance expressions with the experimental
performance. We use the data model ,
where , and is the response
of a uniform linear array with half-wavelength spacing of its

elements. is a diagonal scaling matrix containing the
source powers. We make sure that sources do not have identical
powers because otherwise, the source eigenvalues coincide.4

is a random constant modulus matrix with independent entries,
and is white Gaussian noise with independent entries. The
noise power is set according to the desired SNR, where SNR
is defined with respect to the first antenna and the first user.

Fig. 3 shows performance plots of the first source for a sce-
nario with sources, antennas, source powers

diag , and source angles for
varying SNR, number of samples, and source separation,
respectively. The left column of Fig. 3 shows the excess INSR
relative to the INSR of the asymptotic Wiener beamformer, eval-
uated for source 1.5 The right column shows the resulting SINR.
The experimental results show (with a “”) the outcome of the
original ACMA algorithm of [18] and (with a “”) the algorithm
as analyzed here, i.e., with prewhitening based on the true co-
variance matrix and using Gauss–Newton optimization to
solve the subspace fitting step (initialized by the same Jacobi
iteration as used for the original algorithm). As is seen from
the figures, for three sources and three antennas, the theoret-
ical curves are a good prediction of the actual performance once

and SNR dB, and the separation is more than 10.
Below these values, there is some deviation, partly because of
the approximations in the model and partly because the algo-
rithm starts to break down (the gap between the “signal” and
“noise” eigenvalues of is too small). The small difference in
performance between the original algorithm and the analyzed

4This is not relevant for the algorithm but has to be avoided for the analysis
to be valid; cf. Lemma 4 .

5For the experimental curves, it is the mean of INSR(ŵ)� INSR(a) based
on 5000 Monte Carlo runs, and for the theoretical curves, it is evaluated as
tr(P �)(a a) .

algorithm is caused by the different prewhitening. The changes
due to extending the Jacobi iterations by a Gauss–Newton opti-
mization step are negligible.

A second conclusion is that the “Gaussian” approximation
(20) of is good enough to use since the dotted curves are al-
most indistinguishable from the full model. Moreover, although
there is about a factor of 2 difference in excess INSR between
ACMA and Wiener, the difference in actual SINR performance
is very small in the region where the theoretical curves are valid.
The results of the weighted version of the subspace-fitting step
are not shown in the figures. Both in the theoretical model and
in the experiments, it was found that there is no visible perfor-
mance improvement in applying the weighting.

For further insight, Fig. 4 shows the SINR performance plots
for a varying number of sources, which are evenly spread in
the interval [ 40 , 40 ], samples, SNR dB,
and as many antennas as sources. The performance of the algo-
rithm varies because the number of sources that fall within the
(varying) beamwidth determines the conditioning ofand ,

but it is seen that the performance of the Wiener beamformer
varies in the same way. The accuracy of the theoretical perfor-
mance prediction is quite good, provided that and that
the resulting SINR performance is positive.

VIII. C ONCLUDING REMARKS

We have derived theoretical models for the performance of
the ACMA beamformers. By describing ACMA as an eigen-
vector decomposition followed by a subspace-fitting step, the
analysis could follow the lines of the analysis of WSF, except
that extensions were needed to take into account that the eigen-
vectors are obtained from a fourth-order covariance matrix and
that the model is not Gaussian. The performance model turns
out to be already quite accurate for a small number of samples
(in the order of 30 for three sources) and for reasonably positive
SNR ( 8 dB) and conditioning of the problem. The analysis
was limited to , i.e., equal number of sources and an-
tennas. The case requires a more detailed analysis of
the prewhitening step that is deferred here.
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APPENDIX A
PROOF OFTHEOREM 3

In the derivation, we will compute with instead of

to simplify the notation. We will use the following and

similar straightforwardly verified equations, wheredenotes
an approximation of order :

Then, a somewhat tedious derivation shows that

Introducing cumulants of according to (12) and adding a

term of order gives

(37)

Explicit expressions for these terms, using the CM distribution
of , the independence ofand , and the fact that we only take
second-order terms in into account, are derived next.

In particular, for CM signals, we can write, denoting bythe
binary “or” operator and the Kronecker delta

Using , we obtain

and similarly

so that

To find an expression for , insert into

the general expression (11) to obtain

cum

Note that for CM signals, cum is nonzero ( 1) only for
combinations of the form cum , cum , or
cum . For , this means that there is a response only

for

or

or

so that we find the equation at the bottom of the page.
For the last two terms in (37), first apply (10), which gives

with

so that we have equation at the bottom of the page.

is equal to the conjugate transpose of this expres-
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sion. Subsequently, note that can be combined with the
condition and so that it effectively reduces to

. This shows that the summation is
really over only three indices, with the other three fixed in var-
ious ways, and leads to the claimed result.

APPENDIX B
PARAMETRIZATION OF A UNIT-NORM VECTOR

A minimal parametrization of a unit-norm vectorwith
complex entries and real non-negative first entry is provided by
a sequence of Givens rotations:

where

diag

The parameter vector for is

We will also need the derivative of to each of the
parameters:

, ,

,

where

Further note that

In some cases, other parametrizations ofare possible, e.g., in
terms of directions of arrival. This leads to similar definitions of

but with or parameters.

APPENDIX C
PROOF OFTHEOREM 7

In view of Lemma 6, and as defined there remains to
be computed. Let be the index of one of the parameters

in , and let . The derivative of

evaluated at is [20]

Thus, the derivative of the cost function to evaluated at is

vec vec

vec vec

vec

vec

where stands for the Hermitian transpose of the previous
terms in the expression. For large, , and

, giving in first-order approximation

Re vec vec (38)

Without loss of generality, we can assume thatis restricted
such that the expression in braces is real by itself (see Ap-
pendix D) so that we can drop the Reoperator. From theorem
5, we know that

vec vec

and we find

vec vec

vec

vec

Letting , then

(39)
where

vec

vec vec

Compared with the definition of , we see that merely aug-

ments each column of with many zero entries since parameter

affects only column of . Thus

and after substitution of this in (39), we obtain the claimed ex-
pression for .
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The expression for follows likewise. Let be the second
derivative of evaluated at . Then

vec vec

vec vec

vec vec

vec vec

For , , the underlined terms drop out, and

we obtain

vec vec

Re vec

vec

Again, the term in braces is real by itself, giving the claimed
expression for . (Note also that is

real.)

APPENDIX D
REAL PROCESSING

Since vec , the entries of this vector have a
certain Hermitian symmetry property. It follows that there exists
a unitary matrix such that is real for any . Con-
sequently, all derived matrices can be mapped to real: ,

, , and are all real.

In the subspace fitting cost function (28), we can without loss
of generality restrict to be of the form

(40)

where is real and symmetric. Indeed, in general, we
can write any Hermitian as ,
where the complex part represented byis skew-symmetric
( ). In the cost function

vec vec

vec vec

where vec is real. It follows that

for any (skew-symmetric) so that this compo-
nent has no influence on the cost. Hence, we can assume that
is of the form (40). After this, it is straightforward to show that
the expression in braces in (38), viz.

vec vec

vec

vec

is real by itself.

APPENDIX E
FINITE SAMPLE WIENER BEAMFORMER COVARIANCE

The large but finite sample performance of the Wiener beam-
former computed from known and is derived from a first-
order perturbation analysis as follows. Define (in the whitened
domain)

(41)

Then

cov

cov

cov

cov

cov (42)

Note that and that
is not independent from etc., but is related via the model

as

(43)

The Wiener beamformer (in the whitened domain) can thus be
approximated to as

Inserting (43), we obtain

and using (41)

cov
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Specializing to the covariance of theth column of , we
finally find, after some straightforward manipulations (using

)

cov cov
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