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Abstract—This paper presents a large sample analysis of to the (nonblind) Wiener receivers [16]. This is unlike CMA,
the covariance of the beamformers computed by the analytical whose asymptotic solutions are known to be close to but not
constant modulus algorithm (ACMA) method for blindly sep- coinciding with the Wiener receivers [7], [24], [25]. Here, we

arating constant modulus sources. This can be used to predict . . . L .
the signal-to-interference plus noise ratio (SINR) performance will continue the analysis of ACMA by deriving the large

of these beamformers, as well as their deviation from the (non- Nite sample performance of a block 6f samples. Apart from
blind) Wiener receivers to which they asymptotically converge. the theoretical interest, this gives answers to practical design is-
The analysis is based on viewing ACMA as a subspace fitting sues, e.g., the choice of the data block size, the required SNR,
optimization, where the subspace is spanned by the eigenvectorsyye effect of fading and channel conditioning, and the tradeoff
of a fourth-order covariance matrix. The theoretical performance bet trainina-based blind i Einit
is illustrated by numerical simulations and shows a good match. etween training-base Versf"s s In so_urce sgparq ion. Finite
sample performance of CMA is still terra incognita, with only a

small start made in [10].

Our approach will be to derive the statistical properties and,
in particular, the covariance of the beamformers computed by
. INTRODUCTION ACMA. For a better understanding, this is then mapped in terms

HE last decade has seen a large interestin blind source s@fpscale-invariant parameters such as the resulting signal-to-in-
T aration techniques. An important part thereof is claimegrference plus noise ratio (SINR) at the output.

by constant-modulus algorithms. Not only is the constant-mod-For purpose of the analysis, ACMA is written as the solution
ulus property directly applicable to many communication sc& @ subspace fitting problem, where the subspace is spanned by
narios, it is also very robust in practice, can be applied to nothe eigenvectors of a fourth-order covariance matrix. The per-
constant modulus communication signals, and can often provigémance can thus be derived along the lines of the analysis
better separation performance than algorithms based on chadf!USIC or WSF [20]. (?o_mphcatmg factors in the e_maIyS|s
properties, such as direction finding [9]. In contrast to the oveX© that we need the statistics of a fourth-order covariance ma-
whelming number of algorithms that have been proposed is iifx, which gives rise to eighth-order statistics, and that the usual
low number of algorithms whose performance has been studrigenvector analysis results for Gaussian sources are not appli-
in more detail. cable here.

In this paper we will study the performance of the analytical Several other papers that analyze the performance of fourth-
constant modulus algorithm (ACMA), which was propose@rder source separation algorithms provide useful ingredients,
in [18]. ACMA is a nonrecursive batch algorithm that, unde®-9- & fourth-order MUSIC DOA algorithm is analyzed in [4].
noise-free conditions, can compute exact separating beapiilarly, [13] contains expressions for the covariance of fourth-
formers for all sources at the same time, using only a smafder cumulants. In our case, we can be more explicit because
number of samples. It has good performance in noise af@nstant-modulus sources have kurtosts and known sixth-
fits several applications: not only blind source separation, bfd eighth-order statistics. A second difference is that the al-
direction finding [21], [9] and frequency estimation [11] adgorithm is not based on the cumulant matrix but on a different
well. In communication scenarios, it provides an excellefurth-order covariance matrix, in which the influence of the
starting point for more optimal nonlinear receivers, suclaussian noise is nonzero. An expression for the covariance
as ILSE [15], and it can be extended to handle convolutivd eigenvectors in the non-Gaussian case has been presented in
channels [19]. Although it has been derived as a determinist&3] in the form of a summation over six indices. Here, we de-
method, it is closely related to JADE [5] and other fourth-orddfve & more compact expression from first principles.
statistics-based source separation techniques. The outline of the paper is as follows. The data model is

We have shown that in the presence of noise, the AcMRrmulated in Section Il and the ACMA in Section Ill. Subse-

beamformers converge asymptotically in the number of sampRiently, Section IV provides an approximate expression for the
statistics of the fourth-order covariance matrix used by ACMA,

. . . Section V the statistics of the eigenvectors of this matrix, and
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Il. DATA MODEL (A®B)(C®D)=AC®BD 4

A. Problem Statement (AoB)#(CoD)=A"CoB"D )

We consider a linear data model of the form (a” @ B)C =a” @ BC (6)

A . (A ® B)(CoD) =AC o BD @)

Xk = ASk + 1 (1) vedABC) =(C”  A)veqB) ®)

wherex;, € CY is the data vector received by an arraydf veq A diaglb) C) =(C" 0 A)b 9
sensors at timé, s, € C¢ is the source vector at time and [a® b]lc® d]H —a®bc” @ d"

M ; " ; _ )
n, € C" is an additive noise vectoA = [a; ... a4] rep —ef o ad” b, (10)

resents ad/ x d complex-valued instantaneous mixing matrix
(or array response matrix). The sources are constant mod
(CM), i.e., each entry; of s satisfies|s;| = 1.

We collectN samplesinamatriX = [xy,...,xy]: M X
N. Similarly definingS : d x N andN : M x N, we obtain

UE‘](S-) denotes the expectation operator. For a matrix-valued sto-
chastic variabldR, define its covariance matrix

cov{R} = E{[veqdR — E(R))][vedR — E(R))]7}.
X =AS+N. (2) _
For a zero mean random vectoe [xz;], define the fourth-order
A, S, andN are unknown. The objective is to reconstr&ct cumulant matrix
using linear beamforming, i.e., to find a beamforming matrix
W = [wi,...,wg] € CM*? of full row rank d such that Ky = Z(eb ® eq)(e. ® el cum(z,, 7y, v, 74)  (11)
S = WX approximates. SinceS is unknown, the criterion abed
for this is thatS should be as close to a CM matrix as possible,
i.e., we aim to makdS,,| = |wHx,| = 1 Vi, k. If this is where
the case, theS is equal toS up to unknown permutations and _ _ o _ _
unit-norm scalingsqof its rowz. With noise,pwe can obviouslg:/un(w“’:Eb’l‘c’l‘d) = E(waByreta) = E(vato) B(wcTa)
recover the sources only approximatively. —E(za7a) E(Tyre) — E(vate) E(TyTa).
We work under the following assumptions.
1) A has full rankd, and M > d (so thatA has a left
inverse). The analysis will in fact only consider the case

This can be written compactly as

Ky =Exox)Xox)! - EE®x)EXex)

M =d. u .
2) N > d? (this is required by the algorithm). - E(xx") @ E(xx")
3) The sources are statistically independent constant mod- —EEe)1ex)oElex)(xe1). (12)
ulus sources, circularly symmetric, with covariance
R, := E(ssf) = L. For circularly symmetric variables, the last term vanishes.
4) The noise is additive white Gaussian, zero mean, circu-
larly symmetric, independent from the sources, with co- [ll. FORMULATION OF THE ALGORITHM

i — HY _ 2
varianceR,, := fi(nn™) = o°L. In this section, we present a brief outline of the ACMA in a

B. Notation form that admits its analysis. ACMA consists of two main steps:

. . o a prewhitening operation and the algorithm proper (see Fig. 1).
An overbar, i.e.,~ denotes complex conjugatiof, is the We discuss each in turn.

matrix transposef is the matrix complex conjugate transpose,

andf is the matrlx. psegdo-mvgrse (Mqorg—?enrose mveise)A_ Prewhitening

(orI,)is the p x p) identity matrix, anc; is itsith column. The ) o

operator R¢) selects the real part of its argumedand1 are The main purpose of the prewhitening filter is to rgduce the

vectors for which all entries are equal to 0 and 1, respectivelyiata vector dimension fromi/ channels tod, which is the
veqA) is a stacking of the columns of a matriX into a number of sources. This is necessary in the noise-free case to

vector. For a vector, didg) is a diagonal matrix with the entriesa‘VI(;'d the existence of nullspace beamformerg such that

of v on the diagonal. For a matrix, vecdia) is a vector con- Wo X = 0 since these can be added to any solutiowithout

sisting of the diagonal entries &. @ is the Schur—Hadamard changing the outcome and, hence, create a nonuniqueness. In

(entry-wise) matrix product is the Kronecker product, and the presence of noise, this dimension reduction gives improved

is the Khatri-Rao product, which is a column-wise Kroneckdierformance. A second purpose of the prewhitening is to whiten
product; the data covariance matrix. Although the algorithm will work

without this aspect, it was shown in [16] that the whitening
AoB=[a;®b; a;®by ---]. causes the beamformer to converge asymptotically ito the

) ) _Wiener beamformer, which is a very desireable feature.
Notable properties are (for matrices and vectors of compatiblepefine the data covariance matrix and its sample estimate
sizes)

. 1
veqab”) =b® a ©) Ry:= B{xx"}, Rx:= > xxy
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mixing prewhitening source sep.
Xk A=1/2.4 Xy .
d M d d
3 )
ny - : h
subspace ACMA
estim.
Fig. 1. Data model and beamforming structure.
SinceRs = I andR,, = ¢2I, R, has as a model If we ignore the effect of dimension reduction, this is equivalent

" ) to finding a beamformet in the whitened domain
R, = AA" +5°1

. . iy t = argminyC 14
We now introduce the eigenvalue decomposition a;i?;f Yo=Y (14)
Ul }

_ H _ As
R, = UAUY = [U, Un][ AnHUE

followed by settingw = UA, /¢. The dimension reduction

forcesw to lie in the dominant column span .
ACMA is obtained as a two-step approach to the latter mini-
mization problem (in the whitened domain) [16]:

U is a unitaryM x M matrix, andA a diagonal matrix whose
diagonal contains the eigenvalues in descending ofdeand
A are partitioned such that the largestigenvalues are i,

(the “signal” eigenvalues) and the remainihg— d in A,, (the 1) Findan qrthonorma}{bAasTé =[y1,..., ya] ofindepen-
“noise” eigenvalues). Note that the latter are equattoLike- dent minimizers o “ C.y, i.e.,
wise, we can introduce the corresponding sample eigenvectors - . HA
and eigenvalues from the decompositiorif Y= irﬁglfll r(Y7C,Y). (15)
Ry, = UAUY = U, A, U + U,A, UL, The solutiong; are the eigenvectors corresponding to the

d smallest eigenvalues @, .

The prewhitening filter that the algorithm uses is defined by 2) Find a basis §; @ ¢ t, ® &,} that spans the same
1 1y---50d d

X = [A720HX linear subspace asi{, ..., y4} and with ||t;|| = 1, i.e.,
solve
where the underscore indicates the prewhitening. NoteXhat A A _
hasd rows and thaR,, = I. The data model in the whitened T = min [[Y — (T o T)M]% (16)
domain is '

X — AS + N subject to the constraint dig§?T) = I. M is ad x d
A=A45+X invertible matrix that relates the two bases.

whereA = [AS—I/Q[};H]A has sizel x d and is invertible. By usiljg (9) of K_ro_necl_<er prO(_juct.s, the second step can also
be be written as a joint diagonalization problem

B. ACMA Outline ) _ R o
GiventheN data samplesq;], the purpose of a beamforming T= Tn{lkn} Z 1Y = TATH|

vectorw is to recover one of the sources gs= wfx;. One A
technique for estimating such a beamformer is by minimizinghereY; = vec '(y;), andA; is a diagonal matrix whose
the deterministic CMA(2,2) cost function diagonal is equal to th&h column ofM. The original ACMA
1 paper introduced a Jacobi iteration to (approximately) solve the
W = argmin N 2:(|wak|2 - 1) latter problem. This can then be used as an initial point for a
w Gauss—Newton algorithmto solve (16) exactly, if so desired [17].
Define It was shown in [16] thal’ converges asymptotically iN to
R 1 amatrixT = A, whereA, is equal teA, except for a scaling
Cx= D Rk © xp) (Re @ x5) " and permutation of its columns. Transforming back to the non-
) ) u whitened domain, we obtain tha¥ = ﬁSAgl 2i‘ converges
— {N Z X ® xk} [N Z X ® xk} asymptotically toW = R;'Ay, which is the W!ener receiver
(except for the scaling and the permutation, which are of no con-
and defineCx similarly, but based on the whitened data. In [16[5€duence to the usual scale-independent performance criteria).
we have derived that CMA(2,2) is equivalent to (up to a scaling A Performance analysis is now possible and consists of the

of w, which is not of interest to its performance) following steps. R
. g 1) Find the statistics (covariance) 6f, ; see Section IV.
W = argmin y~ Cxy. (13)  2) Find the covariance of the eigenvectorsaf; see Sec-

y:w@w .
wH Ry w=1 tion V.
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3) Find perturbation results for the subspace fitting step; seeCy has an interpretation as the covarianc®gf Indeed

Section VI.
» _ » A H
The steps in this outline are identical to the performance analySR/{Rx} =E{[vedRx) — vedRx)][vedRx) — vedRx)]" }
of the MUSIC_ and WSF DOA estimators [20]. Howev_er, in that _ -B { {i Z t0x - E(X® X)} .
case, the statistics were that of a second-order covariance matrix N

of Gaussian variables. Here, we need to extend these results to 1 _ _ H

fourth-order non-Gaussian statistics. [N Z Xex—EX® X)]
The following limitations to the analysis are introduced to )

keep the derivations tractable. =5 [E{zox)(x® x)H}

1) We assume thaW is sufficiently large so that we can _ _
neglect terms of orde¥ —2 compared with terms of order —E{g @ x}E{x @ x}"]
N~1. Similarly, we will assume that the noise power :iCx. (17)
is sufficiently small so that we can neglect overos?. N

2) We assume that the prewhitening step is based on ‘H‘?us, 1/NC

eigenvalue decomposition of theie covariance matrix gample estimate of this covariance. However, it is a biased

_ H . i : ; i .
R = UAU R o ) - . estimate since some simple but tedious manipulations show that
3) Instead ofthe jointdiagonalization using Jacobiiterations,

« is the covariance oRy, and C provides a

we assume that the exact solution to (16) is computed by . 1 - - H

the algorithm, e.g., via a Gauss—Newton iteration. E{Cx} =E { N Z(X ®x)(X®x)
Thus, we will analyze a slightly different algorithm than the 1 _ 1 _ H
original ACMA. If M = d, then it can be shown that the dif- N (x® X)N (ZX ® X) }
ference in prewhitening usinB., instead ofRy is negligible 1
for N sufficiently large. However, i/ > d, the dimension = <1 - N) Cx

reduction in the prewhitening step will introduce an additional,

complicated effect that is not incorporated in the analysis. Sinthis is entirely analogous to the bias that usually occurs in an

this form of prewhitening is quite common, a detailed study a&stimated variance when the mean is also estimated from the

this is of independent interest and, hence, is omitted here. Thdata.

our analysis is valid only fol = d. A second interpretation fo€C, is obtained by defining a
“data” sequence

IV. VARIANCE OF Cx
) ) ) ng:)_(k®Xk—E{)_(k®Xk}, k=1,....N (18)
In this and the next sections, we drop for convenience the
underscore from the notation since all variables are basedad considering its covariance and sample covariance
whitened data. The whitening is of no consequence for the re- R 1
sults in this section: We will not use the fact tag, = 1. Ry = E{gigl}, Rg:= N nggf.
Ourobjective is to find an expression for the covariand@ of
which is denoted bf2,. SinceCy contains fourth-order mo- Lemma 1:
ments, its covariance involves eighth-order statistics. A precise

description has very many terms and does not give additional ARg =Cx

insight (cf.[4] and [14, App.A] for the covariance of fourth-order E{Rg} =Rg = Cyx

cumulantmatrices). Here, we derive a compact approximation. Rg =Cy (1+O0(N7Y).

A. Model forCx Proof: The first two properties are straightforward. To
Define prove the third property, note that

Cy = B{(Xr®x:)(Xr 0x:)7} — E{xr 0% }E{Rr®@x, 7. Ry :% Y (®ex-E{xeox})(xex— E{xox})?

1 - - H
Then,Cx has model = {N E (X ®x)(XQx)
Cx = Kx + Rx ® Ry 1 _ 1 o N\H
"N ®ON F) (xex) }

whereR, = AAf 4+ R,,, andK, denotes the fourth-order
cumulant matrix with entries cuf@y, z,, z.., ) as defined in + [— Z(i ®x)—-E{x® x}}

(12) and satisfies the model N "
1 _ =
Ky =[A ® AJK;[A ® A]" + K, X [ﬁ Z(X®X)—E{X®x}} :

=[A o AJ[A o A] .
The first term in brackets is recognized@g . For the second
sinceKs = —[I;014][L; 0 I;] andK,, = 0; we also used (7). term, note that([l/N) > (%X ® x) — E{X ® x} ] has covari-
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ancel/NC, [see (17)] so thaf{g — Cx = O(1/NCy) = where
O(1/NCy). O
Thus,Cy is the covariance ofy, , andRg is an unbiased R. :E(ccH) =1
sample estimate of it; in first-order approximation, it has theg —Emn") = R, @ Ry + AA¥ @ Ry, + Ra @ AAF.
same properties as the biased estin@fe Similar to (17), it o

follows that co{R¢} = 1/NCg , where _
For the model ok;,, we know thailC, = K +Rx @Ry, where

_ _ o _ _ H R, = AA® + R, andK, = [A ® A]JK[A ® AJH. Afirst
Ce=E{(g0g)E®e)"} ~EigglB{B@8}". (19 j4as is that analogousi, def[ined in](19[) can b]e written as
Ce~ Ky + R @Ry With Kg ~ [A, @ A JKc[A:. @ AH.
Sincec andn are not independent (only uncorrelated) and not
circularly symmetric, an@y, # 0, this is not true with equality.

In summary, we have proven the following theorem.
Theorem 2: Q2 := cov{Cyx} = 1/NCg + O(1/N?).
A compact description o€, in terms of our data model is

derived next. Certain cross-terms are ignored. In addiitbh, does not have
a simple diagonal structure because the entriesave related.
B. Approximate Expression f@@, We now set out to find a more accurate descriptiof only

taking into account the terms up (@_(02). ~
Theorem 3:Cg = [Ac ® A JKL[Ac® A7 + Ry @Ry +
E + Ef + O(o%) , whereE = [A @ RY? ® AJE [A. ®

B =1/2 H 172 _ =~ ~ ~ T/21H
gi=(A®A)sp+n;, k=1,...,N Ri“ @A + [Ri” © A®A]E[A: ® A ® Ry 7|7, and

Inserting the modek;, = Asj, + ny in the definition ofgy,
we obtain

K. =K. + Z Z(e;j ® ely) (el @ e)

where
i#j k#l
§ =5 ®s — Vqu) = €;iS;S; _ 12 12 ’ /I \H
; 17271 Kc = — ;(eu 34 eij)(eij ® eij)
— 1£]
n:=n®n—R,+ASs®n+n® As.
) " +(e; @ e};)(e); ® e(ij)H
/ / / / \H
Here,e;; := e; ® e; = veqe;ell) is a vector with only a +(ef; @ ef;)(ef; @ €f) "]
single nonzero entry. The vectohas entries that are either zero E, = Z Z Z e;-,iH Rer@Ii@el @e),
or constant modulus (CM). We can conveniently drop the zero i gL ki
entries by defining a truncated vectr = vec(e;e}), where + e;jH ve;ol;0el ®e},

vec(+) is a vectoring operator that skips the main diagonal. We

; H H / j
thus obtain a model te Qe @li®ey ®ej(1-6)

EzZZZZeQiH@)ef@Id@ej@e’ik

gk = Accrp + 1y iog7i kA
te. el 9,0 e ®e,
where +e§jH ey 91i®er el (1—6]).
c:= Zef:jgjsi (All indices range ovell, ..., d. Note that the latter matrices
7] are data independent and represent simply collections of “1”
:[51827...7§18d7§2817§283,...]T entries.)

Proof. See Appendix A.
Fig. 2 gives an overview of the structure of the model@y
and its components, fof= 3, A = I, andR,, = ¢°I. Itis seen
that the dominant term B ® R but that there are many other
r}erms that are caused by the dependencies among the entries of
c andn.

Ac:=[a; ® ailig;

=[a; ® az,...,a; ®ay,a; ®a;,a; ag,...|

The vectorc is CM (with certain dependencies among its e
tries). Likewise, the matriA . skips thea; ® a; columns of
A®A. _ _ o

The modelg, = A.ci + ny, has several properties that are The precedLng model foC, gives a good description of the
) covariance ofCy for reasonably largéV and signal-to-noise
ratio (SNR). Note that ifc and n are simply regarded as

Gaussian vectors with independent entries, we obtain

similar to that ofx;, = Asy + ng. In particular, since

Cg ~ (_jx ® Cx- (20)

- Making this perhaps crude approximation would lead to partic-
Rg = AcRcAc + Ra ularly simple results in the eigenvector perturbation study and
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C ;d=3,0°=0.3 | Kg | {negative entries of Kg in circles)
4
10} = - - e 15 10 ®
20f = o - 3 20 . @ ]
30 - - . - . o5 30 @ -
40 . . . - . 5 40
50 -t . . 15 50 L ®
60 .. s . ] 60 : . ® "
SR . . . 0.2
70 . o, 70 .
. ) - 0.5 ®© 04
80 AL B S S o 80 L 0
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
T .
F‘g @ F‘g E+E
10 - 25 10 . - )
- . . i
20 " 20 . .. .
", 2 . . .
30 ™, of .. o% . 08
- . . .
40 15 40 . - U : 06
50 = 50 . . -
= 1 : - 0.4
LY ' . " bl ’
80 , 60 . . " - = .
LY 0.5 - - " . .o
70 . ) 70 . . B 02
80 A 80 L R S o
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

Fig. 2. Structure ofZ, and its componentA = I, R,, = ¢2I,d = 3, ando? = 0.3.

subsequent steps as we basically can apply the theory in Vibprgcess, consider the eigenvalue decomposifibrs UAU",
[20]. R = UAUZX. Note that
» _(TT _ H BT _ H TOA H
V. EIGENVECTOR PERTURBATION R-R=(U-U)AU R(U-U)U" +UA - A)U".

All variables in this section are based on whitened data, afd¢he eigenvalues are distinct and the phase ambiguity of the
we drop the underscore from the notation. The results in S&igenvectors is resolved in some default manner (see [6]), then
tion V-B depend on the whitening. R — RimpliesU — UandA — A. Thus, in first-order

In this section, we consider the statistical properties of tPProximation
elgenvectors o€, which is a}fourth -order sar_nple povarlance R-R :<fj_U)AUH_R(fJ—_U)UH
matrix based on non-Gaussian signals. We first give a general

derivation and then specialize to the case at hand. The general- +U(A-A)U"

ization is needed because existing derivations typically consider <

Gaussian sources, e.g., standard results for a second-order geg R—R) =[U @ I][A ® I-1® R]veq U—U)
variance matrix of a Gaussian signal have been derived in [1], +[0o U]vecdiaqfx—A)

and extended in [8] for complex Gaussian signals. Results for - " .
deterministic signals in Gaussian noise can be found in [12]. A =[U (}? UJA® I__I?A] [Ie U™ veqU-U)
general result appears in [23], based on the (real-valued) pertur- +[U o U]vecdiagA—A). (21)
bation analysis in Wilkinson [22]. The derivation in what fol- Assume now that we partition the eigenvalue decomposition
lows leads to essentially the same result but written more COPFR as

pactly in tensor notation and with a self-contained proof.

R-UAUT (U, U] % 00 U e

A. General A,

_ For a covariance matriR with unbiased sample estimatewhere (in this section) the partitioning is arbitrary, as long as the
R based onV samples of a (not necessarily Gaussian) vectergenvalues im ; are distinct and unequal to any eigenvalue in
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A,,. We are interested in the perturbations of the estimaté.,of whereA ; collects thel smallesteigenvalues o€y. Likewise,

in directions orthogonal to this subspace. U, is a basis for the approximate null spaceGyf. The model
Note that{U, @ U,]"[U o U] = ([L 0]0[0 1]) =0. ¢\« 4 ine whitened domain, is
Thus, premultiplying (21) witiU,® U,,]¥ removes the second x| whi n, 1

term, giving Cx = — [AoAJ[Ao A]” + R, ® Rx
[0, ® Un]Hvec(R ~R) =—[AoA][Ao A]H +1 (25)
—([I 0]®[0 INA®I-I®Alle UfvedU —U) Introduce the singular_value decomposition
“A,@I-1®A)([I 0] Ul)veqU - U) A=AcA=UaZaVa (26)
o whereUa hasd orthonormal columnsy s = diagoy] is a
A, @I-1® A,] '[U, @ U,]”vedR — R) d x d diagonal matrix, and/ 4 is d x d unitary. LetUx be the
=([I 0]® Ud)veqU - U) orthogonal complement dff 4. It follows from (25) that the
>[I U,)A,@I-1®A,]"'[U, 2 U,)"veqR - R) eigenvalue decomposition @, is given by
—(r 0)e Puveatl =) cu=[ua vk]['TF J[us vi]" en
=vedP,Us) 1

whereP,, = U,,UH . From the latter, we can immediately de_In view of the partitioning in (24), we set the “signal” subspace
. n ’ Us = Ua andA, = I - 3%. The “noise” eigenvalues are all

rive an expression for the covariance of the “signal” eigenvet-* _
tors projected into the “noise” subspace. equal and given by, = L.

Lemma 4: Let R be a sample covariance matrix converging Inserting this in (23), we obtain the needed expression for the
to R, and assume th& has eigenvalue decomposition (22)eigenvector perturbation.

where the entries ik, are distinct and unequal to any entry in - Theorem 5: The covariance of the estimated signal subspace

A,.. Then eigenvectoriijS of Cy outside the true signal subspace spanned
cov{P,U,} by Ua is
=IoU,JA, ®I-18A,] '[U, ® U,]" - cofR} ) )
(0, @ U, A, @T—T® A, ] IR U, 7 +o(N 7). co(PxU.} = Cuto(N 1)
(23) where
Here are two remarks as an asideRlfs the covariance ma- C, = [21—&265&1 ® le\]cg [GAZZQ ® P4l

trix of a Gaussian signal vector, then &} = (1/N)R ®
R, and the usual eigenvector perturbation result [8] followé&n approximate model fo€C, was shown previously in The-
A second observation is that R is the covariance due to aorem 3. Note that the higher order terms in this caseatdrop
data modek; = As; + ny, where the sources can have an@ut sincePx A, # 0.
fourth-order statistics but the noise is Gaussian, thefiBgv=
1I/NR ® R + [A ® AJK;[A ® A]¥). Suppose the noise VI. SUBSPACEFITTING
is white, and we partition the eigenvalues such thatcon-
tains thed largest eigenvalues. Thell,, 1 A; hence[U, ®
U,])7]A ® A] = 0. The term in coyR} contributed byK,
drops out. Hence, in first-order approximatidhe projected A, Cost Function
eigenvector statls_t|v{PnUS} are independent of the higher For the analysis of ACMA, we assume that the joint diago-
order source statistics and only depend Bn A consequence ..~ . S .

nalization step is implemented as the solution to the subspace

is that the performance of subspace-based algorithms such. as . ; . .
MUSIC, ESPRIT, or WSF do not depend on whether the sour?ggng problem in (16). This allows us to follow in outline the

are Gaussian or not. This corroborates results in [3] and [1z]gsrr]fglrznh?ncgeezn;lgsr:zézt;f;g;c}q/ue described in [26pme nota-

In (16), we described the subspace fitting problem as the com-

All variables in this section are based on whitened data, and
we drop the underscore from the notation.

B. Application S ) X A
o o putation of ad x d separating beamforming matrik (in the
We now specialize to our situation. We have whitened domain). The columns @fwere constrained to have
R« Ry =C, unit norm, and we can further constrain the first nonzero entry of
R . 1 each column to be positive real. With some abuse of notation, let
COV{R} = £ =COV{Cx} = - Cpg + O(N72). A(8) be a minimal parametrization of such matrices. The true

mixing matrix can then be written a = A (6,)B, whereB is
a diagonal scaling matrix that is unidentifiable by the subspace
Cx ZUJ}UH fitting. We assume that the true parameter ve@as uniquely

./}s H 1See also [2], which contains many statistical properties related to subspace
[Us Un} (24) fitting but, unfortunately, only considers the real domain. In particular, it gives
n proofs for semi-definite weightings.

Introduce the eigenvalue decomposition(®f as

[ v
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identifiable and thaf (8) is continuously differentiable around The derivatives ofA(#) and A (6), which are evaluated &,
0o.

. . are collected in vectors and matrices defined as
We proved in [16] that a8V — oo, T converges tA, =

A(6), and thus, we can regaffl as an estimate oA, and _ [031 da; Oay } (80)
write T = A(6). In this notation, (16) becomes T 06y, 0057 00|
8{11 82}1 82}2
A(@) = argmin||U, — AOM|7, A(0) := A(0) o A(D). D= [09 B0 Bg 7] (6o). (30)
A(),M 11 21 12

As usual, the problem is separable, and the optimuniMir SinceA (0) = [a(6:1) ® a(81). . ..,a(0a) ® a(fa)], we obtain
givenA(#), is A(8)"U,. EliminatingM, we obtain

D=A.oD+DoA,, A.:=A(B)®1]. (31)

A(#) = argmin[|Px ) Us |7

A®) Theorem 7:Let Ag := A(8) o A(8)

whereP sy = I- A(0)A(0). Itis further customary to solve

the latter subspace fitting problem in a more genemighted
norm, namely|| X |3 := vedX)#T'veqX), wherel is a pos- g N _ N
itive definite weighting matrix that can be used to minimize the Cui= [5)A Uar ® PA:| Ce [UAEA ® PA:|
estimator variance. Hence, we will consider the minimization of

the cost function whereUa, andX a are defined in (26). Then

M :=(AjUa)" @1}

J(8)=|Px ) Uslf =vedPx s U.) " TvedPx s U.) R .
(28) Q=4 {M ° PAD:| ré,r {M ° PAD}
whereT is positive (semi-)definite.

H
H =2 [M o P{&D} r [M ° P{&D}
B. Variance o

Denote the gradient of/() by the vectorJ'(8) =\ herepis defined in (31) so that for larg¥, the variance o
[0.J/06;(0)] and the second derivative (Hessian) by the matrix =~ =~ o L
J"(6) = [82(]/361-89]-(0)], and define that minimizes the subspace fitting problem (28) is, in first-order

approximation
Q:= lim NE{I(80) 3 (60)"}

RY = cov{d) = —H-'QH"".
H = lim J"(6)). (29) ? Wr=yra
Proof: See Appendix C.
Following [20], note that at the minimum of the cost function, The covariance depends on the choice of weighfingnd
J'(0) = 0. Sinced is strongly consistent, a first-order Taylor exthis weighting can be used to minimize the parameter covari-
pansion ofl’(#) aroundd, then leads td—6, ~ —H~'J’(8,), ance. Under some technical conditions outlined in [2] that have
which gives a description of the variancefbfas follows. to do with identifiability in casd” is singular, it is known that
Lemma 6: (Viz. [2] and [20]) VN (8 — 8,) is asymptoti-
cally normal distributed, with zero mean and covariaRge= 1 7 -
H-'QH~!, whereQ andH are defined in (29). Ry > Ry = N ([M ° PfxD] Cl, {M o PiDD
In view of this lemma, explicit expressions f@ and H, (32)

which are a function of the specific choice for the parametriza- hat the | h : ot hi
tion of A (@), remain to be found. Since the columnsAof@) are ined\;[ve?;;tiig%vggtr iog?d on the covarial™ is achieved by

not coupled, we can writdh(6) = [a(61),...,a(6q)], where A useful suboptimal weight** is obtained by ignoring the

a(#,) is a parametrization of a unit-norm vector with real NOMon-Gaussian part i, [(20): C, ~ Cy ® C.] and using the
negative first entry. A possible parametrization is given in Ap; i B8 X rH n

. ecompositiorC, = = I-
pendix B2 Suppose that the number of (real-valued) parameters P UAU" = Ua(I-32)Ua +Px
per vector isp. For future notational convenience, we arrange

the parameters oA (#) in two equivalent ways: C, ~ [E;Qﬁf ® Pi} (TATY @ UAUY)
O=10,,....04:pxd, 0 = ved®). _[I—JAE;@P‘#}
The entries 0B are denoted by;; (: = 1,...,p,j =1,...4d). :2112(1 _ 23&)2;2 ® Pj
2If more information is known about(#), e.g., an array manifold structure, -~ T ':24A(I - E‘QA)A ® Pj& (33)

then this can easily be taken into account at this point.
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Itis straightforward to obtain a consistent estimate of this weigiihe derivatives are to be evaluated at the true value of the param-

from the eigenvalue decomposmonﬁ‘;c [see (27)]. In partic-
ular, compute’,, = UAU# = U,A, UZ+U, A, UZ. Then,

$a = (I—A,)Y2 so that
e =(I- 55)25;1 ® L

Note that we could replace the projectigrk by I since this
does not alter the resulPf can be absorbed in vépx U, }

eters, whereé; = a;(6,). Since the columns are parametrized
independently, the derivatives are only nonzerodty/d6,, =
8aj/89i]~ (00) It follows that

R, = D;[Rg];;D}', [Reljj:=le; @) Ryle; ® L]
(34)
whereD; = [0a;/00:1;(6),. .., 8aj/89m (8p)] is a subma-
trix of D, as defined in (30), an@Ra]JJ is thejj-th subblock of
sizep x p of Ry.

D. SINR Performance

in the cost function). With this weight, the cost function (28)

becomes

J*(8) =ved P%9)U.)" [(1- A,)?A; @ 1| ved P% 5)U.)
=[Pa@U.I— A A7

To allow interpretation of the performance of the beam-
formers, a plot of a scale-independent parameter such as the
output SINR is more informative than the description of their
covariance. This also allows a comparison of the performance
to that of the optimal nonblind (Wiener) receiver. In this
section, we derive a mapping &, to the inverse SINR or
the interference plus noise-to- S|gnal ratio (INSREgfined for

Thus, this suboptimal weight involves only a scaling of each beamforming vectot and array response vectarof the
column of the estimated null space basis by a function of te@rresponding source as (recall tiat = I)
corresponding eigenvalues. This is reminiscent of the result in

[20] for the WSF technique.

With the approximation (33), we can obtain a more compact
expression fongpt. Inserting in (32), using property (5), and

writing A = AyB, we find

Ry
1 _
zN[Mo]?XD]H(EfLA(I_ 2?&) ! ®P1Ji)

-[MoPAD]
1 -
=M 83 (1-£3)""M] © [D”PAD]
1
=y AUAZAI - 53) 7 UR A" @ 117]
© [D"PAD]

1 4
=5 BP(ATAM-T)7'B ® 11"] © [D"PD)-

C. Covariance ot

t7(I—aal)t

INSR(t) := T anflt

The optimal solution that minimizes the INSRtis= «a (for

an arbitrary nonzero scaling), i.e., the matched beamformer
or Wiener beamformer in the whitened domain. Consider a per-
turbationt = t + d, wheret = aa. Then

(t +d)E (I - aafl)(t +d)
(t+d)Haaf (t +d)
—L (1 —afla

T afHa
a"pLld )

INSR(t) =

Jrth+tHd+dHt+dHPad
L[, H+dHP;d
~N— —a a

tHt

ala

where the approximation is good df’P,.d <« tHt (since
P. = Py, this also impliedd?t| < t¥t).

Let A := E(dd”)/t"t be a normalized (scale-invariant)
definition of the covariance df. Then, in the above approxima-

We still need to map the previous result to an expression fiipn

the covariance of the beamforming vectors. Let=a; (o)
be the pptimal beamformer for thih source, and let; =
veda;(#)). Then, for small perturbations

so thatt; has covariance

R, =E{(t; — t;)(t; —t;)"}
ot . a otF
2, E{(ﬂ —0,)(0: —0;) }0—05

1—-afla tr(PLA)
+ .

E{INSR(t)} = ~Ta P

(39)
The first term represents the asymptotic performance of the
Wiener beamformert(= a with A = 0). The second term is
the excess INSR due to the deviationtofrom the optimum.
We can simply plug in the estimates Bf;, from (34) in place
of A (sincet; is normalized) to obtain the INSR corresponding
to the ACMA beamformers.

For comparison, we consider the Wiener beam-
former estimated from finite samples and knovi) or
Ty = (XXH)"'XS. Let ty be one of the columns of

3This parameter is chosen because it admits a good approximation in subse-
quent derivations.
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Fig.3. Theoretical and experimental performance for source 1. Left column: finite sample excess INSR relative to the asymptotic INSR of thaiiermaebe
Right column: SINR performance.

Ty, anda the corresponding column of. The normalized so that for the expected INSR of the finite-sample Wiener, we
covariance otyy is derived in Appendix E as find, in first-order approximation

1—afa d—1 1-afa

cov(ty — a)
- afla N (aHa)2 ’

11—afa 1
- 1+0(—
aHa N afa + <N2>

Ay E{INSR(tw)} = (36)
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Fig. 4. Same as Fig. 3 for varying number of sources.

VII. SIMULATIONS algorithm is caused by the different prewhitening. The changes

Some simulations are now presented to compare the deri\%t? to extending the Jacobi iterations by a Gauss—-Newton opti-

theoretical performance expressions with the experimenfﬂ‘zat'on step are ne_gllgl_b le. ) - L
performance. We use the data model = A(a)BS + N A second conclusion is that the “Gaussian” approximation

where A(a) = [a(a1)...a(aq)], anda(a) is the response (20) of C, is good enough to use since the dotted curves are al-

of a uniform linear array with half-wavelength spacing of itgnostindistinguishable from the full model. Moreover, although

- . . ; - there is about a factor of 2 difference in excess INSR between
M elements.B is a diagonal scaling matrix containing the ; . .
g g g &% A and Wiener, the difference in actual SINR performance

s very small in the region where the theoretical curves are valid.

is a random constant modulus matrix with independent entri Qe results of t_he weighted versior_l of the subspace-fitting step
andN is white Gaussian noise with independent entries. THES not shov_vn n the_ figures. Both in the th(_aoretlcgl_model and
noise powen? is set according to the desired SNR, where sniB the experiments, it was found that there is no visible perfor-

is defined with respect to the first antenna and the first user. mance |mproyement n applying the weighting.
Fig. 3 shows performance plots of the first source for a sc _For further insight, Fig. 4 shows the SINR performance plots

nario withd — 3 sourcesM = 3 antennas, source powerd®’ & varying number of sources, which are evenly spread in
o M — b the interval |40°, 40°], N = 100 samples, SNR 15 dB,

B = diag(1,1.2,0.9), and source anglas = [0, a, —«] for

varying SNR, number of samplés, and source éebarati@n and as many antennas as sources. The performance of the algo-

respectively. The left column of Fig. 3 shows the excess INS hm varies because the number of sources that fall within the

relative to the INSR of the asymptotic Wiener beamformer, ev Marylng) beamwidth determines the conditioningdoind A,
uated for source 4. The right column shows the resulting SINRbut it is seen that the performance of the Wiener beamformer
The experimental results show (with &™) the outcome of the varies in the same way. The accuracy of the theoretical perfor-
original ACMA algorithm of [18] and (with a&”) the algorithm mance prediction is quite good, provided thats> d> and that

as analyzed here, i.e., with prewhitening based on the true 8ae resulting SINR performance is positive.

variance matrixR and using Gauss—Newton optimization to

solve the subspace fitting step (initialized by the same Jacobi VIII. CONCLUDING REMARKS

iteration as used for the original algorithm). As is seen from We have derived theoretical models for the performance of

the figures, for three sources and three antennas, the theotrﬁé'ACMA beamformers. By describing ACMA as an eigen-
ical curves are a good prediction of the actual performance onee |

o ctor decomposition followed by a subspace-fitting step, the
N > 30 and SNR> 5 dB, aqd the separz?\tl(_)n is more thar? 10 analysis couldpfollow the lines ofxi[he anal?/sis of WgF, e>r<)cept
Below thes_e va_lues,_there is some deviation, partly becaus%) t extensions were needed to take into account that the eigen-
the approximations in the model and partly becau“s € the”al ctors are obtained from a fourth-order covariance matrix and
['th!“” fta_rts to break gown (the gap between thg signal 2fat the model is not Gaussian. The performance model turns
noise” eigenvalues oC, is toq ;mall). Th? small difference in out to be already quite accurate for a small number of samples
performance between the original algorithm and the anaIyz&ﬁ the order of 30 for three sources) and for reasonably positive
4This is not relevant for the algorithm but has to be avoided for the analysBNR (> 8 dB) and conditioning of the problem. The analysis
to be valid; cf. Lemma 4 . was limited toM = d, i.e., equal number of sources and an-
SFor the experimental curves, it is the mean of IN8R — INSR(a) based tennas. The cask/ > d requires a more detailed analysis of

on 5000 Monte Carlo runs, and for the theoretical curves, it is evaluated %s . . .
tr(PLA)(afa)-!. the prewhitening step that is deferred here.

powers because otherwise, the source eigenvalues cofrttid
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APPENDIX A E(s8i8j5k815mbn) =6 = 61610 @ 611" @ 6761 .

ikm
PROOF OFTHEOREM 3 B Usings = }_.,; e;js:5;, we obtain
In the derivation, we will compute with instead of(A ®

A)s to simplify the notation. We will use the following and ~ E(s ® 1)( ZZ eij ® 1)(1@ep) s},
similar straightforwardly verified equations, whetedenotes 7kl
an approximation of orde®(c*): = Z(eij ®1)(1®e;)!
1#]
E@on)(aon)’ ~0 and similarly
E(n®@n)E(n@n)" ~0 EQles)(so 1! =Y (1oeu)(en o 1)!
E(@&n)(@es) ~0 .
° so that
Fmh®s)(s®s)” =0
mesEes) Bse1)(129)7 0 B1os)Es 1T
EG@s)(don)! ~EEes)E@en)’

- Z Z(eij ® en)(ewn ® eji)

E(ss" @ nn') ~E(ss™) © E(nn™). i) kL
To find an expression foKs, inserts = Zi# €;;5;5; into
the general expression (11) to obtain
Ce =FE{[(5+ 1) ® (s + n)][(5+ 1) ® (s + n)]"} K=Y Y > > (en®eij)(emn @ epy)”
~ E[(5+1) @ (s +n)]E[E+ 1) @ (s +n)7 7 Ay

Then, a somewhat tedious derivation shows that

~CU|'T($Z‘.§]'7 SkSl, SmSn, Epsq).

T (= = H (= = H
~E(E®s)(5®s)" ~EE®s)EE®S) Note that for CM signals, cufv) is nonzero £ —1) only for
+ E(ss™) @ E(mn™) + E(as?) @ E(ss™) combinations of the form cufs, 3, s,3), cum(s, s, s, 5), or
o ) " cum(s, 5, 5, s). ForKs, this means that there is a response only
+E@es)(sen? +EEen)@es) or :
Introducing cumulants o according to (12) and adding a i=k=m=pAj=l=n=q
term E(an” ) ® E(aa'?) of orderO(o*) gives ori=l=n=pAj=k=m=q
ori=k=n=qAj=l=m=p
Ce ~K. + EE@1)(109)" 0 B1@s)Ee1)" so that we find the equation at the bottom of the page.
n Rg % Ry For the last two terms in (37), first apply (10), which gives
+E@®s)seon)? + Ecen)(@es)?. (37) E@os)seon) = EGE" @an" ©s)
- . . o with
Explicit expressions for these terms, using the CM distribution
of s, the independence sfandn, and the fact that we only take mm? ~Eon+nes)(son+nws)?
second-order terms in into account, are derived next. N i I i "
In particular, for CM signals, we can write, denotingéyhe ~s® n][:; ® SL + [1? @3] [SH® n]
binary “or” operator and; the Kronecker delta =s@nn” ®@s” +5° @nn" ®s
E(si5;) —5 so that we have equation at the bottom of the pdg& ®
E(s:5;565) =67, .= 876L @ 6167 n)(n ® s) is equal to the conjugate transpose of this expres-

Ko=—) (e ®eij)(ei; @eij) + (e @eij)(eji ®ei)) + (ei; @ ej)(eji @ eji) ™.
i#i

E@es)son’ ~EE5" ¢ (s®Ry@s” +57 @R, ©5) ©s}

:ZZ Z eg®(8k®Rn®e[I{+ekH®Rn®el)®emn(55]ﬁ:ln
i#j kl m#n
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sion. Subsequently, note thgk” can be combined with the in 8, and letA,, := (9A(8)/36,)(8,). The derivative O?i‘:(ﬂ)
conditioni # j andm # n So that it effectively reduces t0 ayqjyated ad, is [20]
stensd, @ onolol, @6nstsi, . This shows that the summation is

really over only three indices, with the other three fixed in var- al?i(o) N ; N -
ious ways, and leads to the claimed result. O Pyi=— (6o) = —PaA,Ap — (PaAyAp) .
n
APPENDIX B Thus, the derivative of the cost functionttp evaluated af is

PARAMETRIZATION OF A UNIT-NORM VECTOR . .
- o . _ Jy =vedP,U,) Tved P U,)
A minimal parametrization of a unit-norm vectarwith d A .
complex entries and real non-negative first entry is provided by + vec(EjUs)HFvedEnUs)
a sequence of Givens rotations: . .
= —vedPxA,ALU. + ALT A PR U
a=®PR (a1)Ra(as)...Ry_1(ag_1)e N
1( 1) 2( 2) d 1( d 1) 1 XFVGC(PA{&US)—[*]H

where

_ i is where[+]f stands for the Hermitian transpose of the previous

® =diag[1, e/®, ..., e/, 0<¢i <27 termsin the expression. For large U, — Ua,andPx U, —
¢ —F 0, giving in first-order approximation
L,

Ri(oz) =

3 ¢ J, = —2Red ved Px A, ALUA ) Tveq P U (38)

Idflfi n - ~A~7I~0~A) C(PA~S) .

. ™ ™
¢ =cos(a), s = sin(a), ) <a< 9 Without loss of generality, we can assume thais restricted

such that the expression in braces is real by itself (see Ap-
pendix D) so that we can drop the Reoperator. From theorem
bire. ., b1 ]T _ 5, we know that

NE{vedPLU.(vedPAU,))"} = Cy + o(1)

The parameter vector far = a(f) is
0:[0517 ceey Qd—1,

We will also need the derivative cf(@) to each of thep
2(d — 1) parameters:

and we find
du(0) = Oda 0 . H

k(0) =55-(60) Que = lim NE{J,J{'}
B { aZTa i=k 1<k<d-1, =4vedPA A, A UA)"TC.IVedPAAcAlUA)
T2 i=k—d+1, d<k<2(d-1)

00, =4veqA,)"[(AfUA)" @ Px]"TC,I"
where f T L
o [(AgUa)” ® PxlveqAs).

Zq)Rl(al) s Ri_l(ai_l)R;(ai)Ri 1(Ozi 1)~
dav; B Letting Q = [Q,¢], then
AN Rd,l(ad,l)el

da Q=4D[[(A{UA)" ® PA]"TC.T((A{UA)" ® PAID.

e o
D, I (39)
—s —c where
_ 0,_1
Ri((l) - c P . De, ::[Veqén)]n:L...,pd
Q-1 Oved(A(0)) Oved(A(6))
Further note that = 00 om0 (6p).
da b -
50, = pg (a®a)=a®di+di®a Compared with the definition ab, we see thab. merely aug-

o . . ments each column @ with many zero entries since parameter
In some cases, other parametrizationa afe possible, e.g., in -

terms of directions of arrival. This leads to similar definitions ofi; affects only columry of A (6). Thus
d; but withp = 1 or p = 2 parameters.
DE :[el...el|e2...e2|...|ed...ed]oD

APPENDIX C

_ T
PROOF OFTHEOREM 7 =la®1;)oD

In view of Lemma 6,Q andH as defined there remains toand after substitution of this in (39), we obtain the claimed ex-
be computed. Le be the index of one of the parametdéis pression forQ.
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The expression faH follows likewise. Let/,: be the second APPENDIX E
derivative of.J(#) evaluated afl,. Then FINITE SAMPLE WIENER BEAMFORMER COVARIANCE
Jye = — veo(PnngS)HI‘vedPﬁfL) The large but finite sample performance of the Wiener beam-
ST T former computed from knowX andS is derived from a first-
+ VeanIijs)HI‘veqPE[i]’S) order perturbation analysis as follows. Define (in the whitened
T . T domain)
+ vedP:U;)"T'veqP, U,
(Pc0.)"Tveap, U.) L i,
- VEC(PX‘US)HI‘VGC(PMUS). 1
- NSSH =I+E,
For N — oo, U; — Ua, the underlined terms drop out, and 1 .
we obtain NNN =R, +E,. (41)
. L trr \H L T m Then
lim Jye =veqPxAyAgUA) TVedPxA:A;UA) + [+] 1
N—)OO - - - - - - - -
cov(E,) :NI
—2Re{ved A, ¥ (4}UA)" @ PEIT 1
cov(E;) =—1I
N
x[(AjUa)T ® P%] - VeO(As)} : cov(E,,) :%Rn @R,
Again, the term in braces is real by itself, giving t?e cla_limed Cov(iNSH> :iI R,
expression foH = limy_...[J,¢]. (Note also thatA ;Ua is N N
real.) O Lan®) _1a
cov| —SN =—R,®L 42
(o) por
APPENDIX D Note that(1/NXXH) 1 = I — E, + O(N~2) and thatE,
REAL PROCESSING is not independent fronk, etc., but is related via the model
Sincex ® x = veqxx"), the entries of this vector have aX = AS + N as
certain Hermitian symmetry property. It follows that there exists E :iXXH 1
a unitary matrixZ such thatZ(z ® x) is real for anyx. Con- N
seguently, all derived matrices can be mapped to #@l; Z# :ALSSHAH + LNNH
ZU,, ZA, andZPx Z*" are all real. N . ZlV
In the subspace fitting cost function (28), we can without loss + ANSNH + NNSHAH -1

of generality restricT" to be of the form 1 1
=AE,AT +E, + A_SN7 + _NSHAHT (43)
I=[Iz"T, [ Z (40) N N
The Wiener beamformer (in the whitened domain) can thus be
wherel', = I'T is real and symmetric. Indeed, in general, wapproximated t@(N~2) as

can write any Hermitial" asT' = [I® Z"] (T, + jT.) I® Z],

-1
where the complex part representedIbyis skew-symmetric T = (iXXH) LXSH
(I'T = —T.). In the cost function N N
N ~ 1 H
J :VEC(P_,JQUS)HI‘VGC(PX_US) :(I - Ez) (A(I + ES) + NNS )
=veqZPxZ" - ZU,)" (T, + jT.)ved ZPx Z" - ZU,) ~A + AE, + %NSH — E.A.
=vIT, + jul T, Inserting (43), we obtain

wherev, := vedZPxZ" - ZU,) is real. It follows that T — A =AE, — E,A + %NSH

vIT, v, = 0 for any (skew-symmetric. so that this compo- —AE,(I- A7A)-E,A
nent has no influence on the cost. Hence, we can assumE that 1 1
is of the form (40). After this, it is straightforward to show that -A <NSNH> A+ <NNSH> (I-A"A)

the expression in braces in (38), viz. )
and using (41)

veqPxA,A\U,)"TveqpPx U,) Ncov(T — A)
—vedZPxZ" - ZA, - A}Z" - 20,)" 12 Z]T[I 2 2"] =[(T-ATA)" @ AJ(T- A"A)" @ A7
+[AT @ IR, @ R,J[AT @ I}7
+[AT @ AR, @ I][AT @ A"
is real by itself. +[I-A"A)" @ IIo R,][(I-A"A)T 01",

-veqZPxZ - 7U,)
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Specializing to the covariance of théh columnfj of T, we

finally find, after some straightforward manipulations (using
AAHE + R, =1)

(1]

[2] J.-F. Cardoso and E. Moulines, “Invariance of subspace based estimgg0]

[3] J. F. Cardoso and E. Moulines, “A robustness property of DOA estima{21]
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(5]

(6]
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(8]

[9] A. Leshem and A. J. van der Veen, “Direction of arrival estimation fo#
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[13]

cov(t; — a;) =[e] @ IjcoV(T — A)fe; @ 1]

1
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