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Summary 
Vehicle automation in the form of Advanced Driver Assistance Systems (ADAS) is seen as a promising 
way to increase traffic safety. Several types of ADAS will even become mandatory in all new vehicles 
in the European Union (EU) from 2024 onwards. However, the size of the effects of ADAS on traffic 
safety in practice is unknown. This has several causes, from methodological differences in measuring 
effects, to the lack of focus on the effects of combining multiple ADAS, to unknowns about how 
consumers use the systems in practice. The uncertainty about the effects of ADAS on traffic safety is a 
problem for both policymakers and consumers. For the former not just because it is the government’s 
responsibility to approve and deal with these systems on the roads, but also because it is seen as a 
potential policy instrument to increase traffic safety. For the latter because (perceived) safety is an 
important factor in buying and using a vehicle.  
At the same time, ADAS may provide an opportunity. Vehicles equipped with ADAS have several 
sensors onboard to facilitate these systems and are often connected with built-in SIM cards. The 
wealth of data collected by these systems may allow to measure traffic safety in a more pro-active 
way, by measuring traffic conflicts (interactions that are dangerous but do not necessarily result in an 
accident). This would solve several of the problems with existing ways of measuring traffic safety with 
reactive indicators (accidents and resulting fatalities and severe injuries). This research will focus on 
safety at network level as an aggregated statistic as this can help to assess the development of traffic 
safety over time, and with that the effects of future policy interventions. Measuring traffic safety with 
proactive indicators would allow for more and faster acquired knowledge than the current reactive 
indicators, which could ultimately improve traffic safety policies and traffic safety.  
 
Therefore, the objective of this research is to explore if data collected by vehicles equipped with ADAS 
can be used for measuring traffic safety at network level. In order to reach this goal, a literature review 
is conducted followed by expert input in the form of a Delphi study. The research focusses on two 
aspects: potential types of indicators for measuring traffic safety and on the feasibility of using vehicle 
sensor data to measure these indicators.  
 

Literature review 
Traffic safety is a complex concept that can be measured in many ways and at different levels. The two 
main parties involved in measuring traffic safety are the government and (academic) researchers. The 
literature review discusses a variety of indicators used by these two parties to various ends. The Dutch 
government uses fatalities and severe injuries as a measure for traffic safety at network level and is in 
the process of implementing the Dutch Safety Performance Indicators (SPIs) which focus on risks 
involved in traffic. Various indicators to measure traffic conflicts have been developed and used in the 
academic community. Some of these are specifically focussed on the safety evaluation of vehicles 
equipped with automation. An overview of all of these types of indicators is presented in the literature 
review, including strengths and weakness of individual types of indicators.  
In order to assess if any of these indicators can be measured based on vehicle sensor data, it is first 
necessary to discuss if and how collecting and using vehicle sensor data is even possible at a large scale. 
The literature review shows that there is already legislation in place that regulates access to various 
types of vehicle data, such as accident data (via eCall) and Safety Related Traffic Information (SRTI). 
OEMs own and have access to more data produced by vehicles, such as the vehicle sensor data that is 
the focus of this research.  Several theoretical models are discussed to collect and share vehicle sensor 
data, of which the extended vehicle (ExVe)/neutral server model is preferred by the OEMs. This makes 
it the most likely model to be used in any future effort to use vehicle sensor data to measure traffic 
safety, given the importance of OEMs as stakeholders. In this model, vehicle sensor data is transmitted 
encrypted to dedicated servers of the OEM which can then make (processed) data available to third 
parties. This can be done directly or indirectly through a neutral server operated by a (consortium of) 
independent parties. Pilots such as the Proof-of-Concept Data for Road Safety show that the 
ExVe/neutral server model is not just a theoretical model but can effectively be applied in practice as 
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well. However, various potential barriers are identified that could prevent the large-scale collection 
and usage of vehicle sensor data.  

 
Methodology 
Given the novelty of the idea of using vehicle sensor data to measure traffic safety, no consensus has 
been reached on what types of indicators should be used and whether it would be feasible to measure 
these indicators on a large scale with vehicle sensor data. Therefore, this is asked to experts in the 
form of a Delphi study.  
A Delphi study is a survey under specifically selected experts, making it fundamentally different from 
a regular survey. Where a regular survey has the goal to generalise results of a representative sample 
to a larger population, a Delphi survey aims to reach consensus among experts. The experts remain 
anonymous to each other to prevent influencing of the results. Next to this, the iterative character and 
controlled feedback provided to experts in the second round are important aspects of a Delphi study. 
The Delphi survey consisted of questions that required experts to give a score on a 7-point Likert scale 
and provided room for an explanation. The Delphi survey was conducted over two rounds which asked 
the same questions. The second round included additional information at each question: a histogram 
showing the distribution of scores given in round 1 and arguments for these scores as given by the 
experts, both in favour and against. This allows the experts to re-evaluate their initial response, which 
should give a better result.  
27 experts were invited, with backgrounds ranging from government to academia and industry. The 
goal of this was to ensure a heterogenous panel, which usually provides better results as varying 
perspectives are included. 16 experts completed the first round and 11 the second, with all experts 
scoring well enough on a set of criteria developed to establish a minimum level of expertise.  
 
A selection of the four most promising types of indicators as identified in the literature review were 
evaluated by the experts on four criteria (validity, reliability, sensitivity, and understandability), as well 
as a fifth indicator based on the answers of multiple experts on the question if any other relevant 
potential indicator was not discussed in the first round. The types of indicators included are the Dutch 
SPIs, Proximity based SMoS such as Time-to-Collision (TTC), Kinematic based SMoS like swerving or 
strong acceleration, Engagement of ADAS such as Forward Collision Warning (FCW). Driver distraction 
measured by the Driver Distraction and Attention Warning (DDAW) was added in the second round.  
Additionally, the experts rated nine potential barriers for the collection and usage of vehicle sensor 
data to measure traffic safety. The barriers included are technical feasibility, legal feasibility, 
willingness of OEMS, suppliers, and service providers, cybersecurity, and going from pilot to reality. 
Again, one additional potential barrier was added in the second round at the suggestion of several 
experts, being the willingness of people.  
 

Results  
The experts that filled in the survey were committed, as is shown by the high percentage (74%) of 
questions where the optional explanations were given in full sentences. In this Delphi study, consensus 
is measured as a certain level of agreement measured by two metrics where consensus is reached if 
both metrics reach a certain threshold based on academic literature. After two rounds, the experts 
reached consensus on 16 out of 20 questions related to the types of indicators, and on 5 out of 10 in 
questions related to potential barriers for using vehicle sensor data in practice. The topics that do not 
reach consensus are treated more cautiously in the remainder of the research. Further analysis is 
conducted to look into the cause of disagreement. Table 1 shows the results after two rounds on the 
questions related to the types of indicators with the median score and in between brackets the 
minimum and maximum scores given. A higher score means the experts rated a type of indicator better 
on a criterium.  
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Table 1 Overview of the median (minimum, and maximum) scores given by experts per type of indicator per criteria (on a 7-

point scale; strongly disagree to strongly agree) where an Asterix (*) means no consensus is reached 

 Validity Reliability Sensitivity Understandability 

Dutch SPIs 5 (3 to 6) 6 (5 to 7) 5 (2 to 7) 6 (5 to 7) 

Proximity based SMoS 6 (4 to 7) 5 (2 to 6) 5 (4 to 6) 5 (1 to 6) 

Kinematic based SMoS 6 (4 to 6) 5* (3 to 7) 5 (4 to 6) 5* (2 to 6) 

Engagement of ADAS 6 (3 to 7) 5* (2 to 7) 5 (3 to 7) 5 (4 to 7) 

Driver distraction 5 (4 to 7) 4* (2 to 6) 4,5 (4 to 6) 5 (4 to 7) 

 
The results regarding the size of potential barriers for collecting and using vehicle sensor data in 
practice are summarised in a series of boxplots (figure 1). Each boxplot shows the median score given 
by the experts (the black dot), the middle 50% of scores (the blue box), and the entire range (the 
vertical line). The figure therefore shows both the size of a barrier as estimated by the experts, as well 
as the degree of agreement among the experts. 
 

 
Figure 1 Boxplots potential barriers, where the black dot denotes the median score and the Asterix (*) means no consensus. 

Scale: 1=No barrier at all, 2=Weak barrier, 3=Somewhat weak barrier, 4=Moderate barrier, 5=Somewhat strong barrier, 

6=Strong barrier, 7=insurmountable barrier 

Discussion 
Most types of indicators score well on most criteria, and limited differences are found between the 
types of indicators evaluated by the experts. This could indicate that these types of indicators would 
be suitable indicators to measure traffic safety at network level. However, the limited differences may 
also be found due to methodological errors or limitations regarding the way questions are asked or 
the experts involved. Further research should be undertaken to confirm these results.  
The four most important barriers for collecting and using vehicle sensor data in practice are legal 
feasibility, willingness of people, cybersecurity, and willingness of OEMs. Legal feasibility is the largest 
barrier as the legal framework dictates the room for using vehicle sensor data. Uncertainty exists 
around upcoming EU regulations. If legal analysis of these regulations turns out positive, this research 
indicates that there are no other insurmountable barriers for using vehicle sensor data in practice. At 
the same time, this research also indicates that some of the barriers are sizable and thus form a starting 
point for further research and discussion on these specific topics.  
 
It is important to note that no single indicator can tell the entire story of safety. Current standard 
practice of measuring traffic safety at network level is to use severe injuries and fatalities as indicators. 
Any of the types of indicator discussed in this research is aimed to supplement this current practice to 
help deal with their weaknesses.  
It is important to note that the types of indicators discussed in this research only measure traffic safety 
from the point of view of motorised traffic, and only of the subset of the vehicles that have sufficient 
sensors and connectivity to collect and transmit the required data. Vulnerable road users and older 
vehicles are not included. Further research should focus on how well this subset of vehicles represents 
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the traffic safety of all vehicles and further discuss on what types of accidents these types of indicators 
measure, and which it does not.  
 

Conclusion and recommendations 
This research explored the idea of using data collected by vehicles to measure traffic safety at network 
level. It has shown that if certain conditions are met and various barriers are addressed, it should be 
possible to collect and use vehicle sensor data to measure traffic safety. The main condition is that 
that upcoming legislation will provide sufficient legal room. This research has proven that, while it is 
still a novel idea surrounded by various issues, there is at this point enough of a path forward towards 
collecting and using vehicle sensor data to measure traffic safety to warrant further research and 
discussions on this topic. This research provides a starting point for this further research into the 
suitability of the types of indicators discussed in this research and on various current unknowns and 
the wider context of these types of indicators. Research could focus on the relationship between these 
types of indicators and specific types of accidents, the validity of this relationship, and the thresholds 
that could or should be used to signal traffic conflicts at different road types.   
Additionally, research and discussions with OEMs should be initiated to address the barriers identified 
in this research. Future research should also focus on the differences between vehicle sensors and 
ADAS of different OEMs in order to understand its effects on the indicators that they measure. Lastly, 
the issue of measuring only the subset of the entire fleet of vehicle in the Netherlands that is the 
connected and equipped with sensors should be addressed 
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1. Introduction 
 
1972 was the worst year in terms of traffic fatalities  in the Netherlands, with 3264 fatalities  (SWOV, 
2020b). Ever since then, the number of traffic fatalities has been falling steadily. In fact, the declining 
trend was so strong that in 2008 the target for 2020 was lowered to a maximum of 500 traffic fatalities  
per year (Ministerie van Verkeer en Waterstaat, 2009). On the long term, the Dutch government has, 
together with the European Union (EU) as a whole, adopted the Vision Zero; with as goal to reach zero 
traffic fatalities by 2050 (European Commission, 2011; Ministerie van Infrastructuur en 
Watermanagemant, 2018). In the Netherlands, this Vision Zero is translated into the “Sustainable 
Safety” vision (Schagen & Aarts, 2018). 
However, after reaching an all-time low of 570 traffic fatalities  in both 2013 and 2014, the decline has 
halted and in 2020, 610 people died in traffic instead of the goal of 500 (L. Aarts et al., 2021). It is 
expected that without the COVID-19 pandemic and the accompanying measures this number would 
have been even higher (L. Aarts et al., 2021), as in 2019 661 traffic fatalities  were recorded (SWOV, 
2020c). For severe injuries, the target for 2020 is even further off with 19.700 severe injuries against a 
target of 10.600 (L. Aarts et al., 2021). 
 
To increase traffic safety and reach the target of Vision Zero, the Dutch Ministry of Infrastructure and 
Water Management has identified nine policy areas, ranging from infrastructure to driver behaviour 
to technological developments (Ministerie van Infrastructuur en Watermanagemant, 2018). The 
European Commission (EC) identifies similar focus areas with infrastructure, vehicles and road use 
(European Commission, 2019). One specific development that both see as a way to increase traffic 
safety are Advanced Driver Assistance Systems (ADAS). Both also aim to promote the penetration and 
use of such systems. This can for example be seen in the fact that the Dutch Ministry of Infrastructure 
and Water Management has initiated the ADAS Alliantie, an alliance of a wide range of public and 
private institutions that aims to promote the safe use of ADAS (ADAS Alliantie, 2019). Figure 1 shows 
the penetration rate of several ADAS in the Netherlands. 
 

 
Figure 1 Penetration rate of several ADAS in the Netherlands on 01-12-18 (Tillema et al., 2020) 

On an EU-wide level, the European Commission (EC) has revised its General Safety Regulation to 
mandate a variety of ADAS in order to be granted EU type-approval for new type of vehicles by July 
2022 (Regulation EU 2019/2144, 2019). By July 2024, every newly produced vehicle must have these 
ADAS  (Regulation EU 2019/2144, 2019). As a result, the penetration rate of ADAS, or at the least the 
penetration rate of these specific ADAS, will increase. This is expected to increase traffic safety. The 
EC estimates that these ADAS will have saved thousands of lives and ten thousands of severe injuries 
on EU roads by 2030 (European Commission, 2019).  
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The reasoning behind this is that the human driver is seen as the main contributing factor responsible 
for the majority of the accidents and that ADAS can help reduce these error. The ADAS takes away a 
single and relatively easy task from the driver and executes this in a more consistent way and at a 
higher performance level (Onderzoeksraad voor Veiligheid, 2019). In research for the US National 
Highway Traffic Safety Administration (NHTSA), Singh (2015) concluded that for 94% of almost 2.2 
million accidents driver errors were the critical factor. Of these human errors, recognition error (41%) 
was the largest type of error, followed by decision error (33%) and performance error (11%). The fact 
that individual ADAS can increase traffic safety, or at the least do not negatively affect traffic safety, is 
also confirmed by for example Vlakveld (2019) in a literature review for the SWOV or in meta-analysis 
such as Wang et al. (2020).  
 

1.1 ADAS as a challenge 
Individual ADAS may be expected to increase traffic safety, but uncertainty about the size of the effects 
of ADAS on traffic safety remain. A large variety in effectiveness of specific ADAS is found in different 
studies, as is noted by both Wang et al. (2020) and Vlakveld (2019). For example, in a meta-analysis by 
Wang et al. (2020), one study found that Forward Collision Warning (FCW) could reduce the number 
of rear-end crashes by 41% while another study only found an effect of 12%. Research on the safety 
effects of other types of ADAS show similar ranges. Vlakveld (2019) even found sufficient conflicting 
studies on the safety effectiveness of Adaptive Cruise Control (ACC) that he cannot conclude anything 
about the effect of ACC. The reason why these large variances exist among different studies is 
threefold, according to Wang et al. (2020). Studies use different assessment methods, under different 
experimental conditions, and with varying driver conditions which can thus result in different effects 
found.  
This is not just seen as a concern in the academic world. ERTRAC, an European public-private 
partnership between the EC and experts from both the industry and the academic world, also identify 
the lack of standardised testing methods for the safety effects of automated systems that can account 
for real-world scenarios with varying circumstances as one of the main challenges (ERTRAC, 2019). 
 
The importance of looking at real-world scenarios is amplified by two more factors: the effects of the 
combination of various ADAS is seldomly studied, and even if all the technology works well in theory, 
people will still have to use it and use it correctly in practice.  
Firstly, Wang et al. (2020) notes that the combination of various ADAS is seldom studied in the 
academic literature, even though increasingly more vehicles combine several ADAS. This could be a 
problem because of what Victor et al. (2018) calls the irony of automation. The irony is that introducing 
more automation to increase safety might lead to more unsafe situations. This can occur if people start 
to pay less attention to traffic due to having to carry out less tasks which could result in a slower 
reaction time in a situation which does require action from the driver. This risk is also highlighted by 
the Dutch Safety Board which points out that this will mainly be a problem in the current ‘hybrid 
situation’ in which both man and machine control the vehicle (Onderzoeksraad voor Veiligheid, 2019). 
Noy et al. (2018) add to this that partial automation in vehicles will change the dynamics of the vehicle 
under varying circumstances. This will require the driver to develop more skills to cope with these new 
situations but, due to the automation, fewer learning opportunities will occur. This irony of automation 
can change driving behaviour and is not accounted for in all safety assessment methods which can lead 
to an overestimation of the safety effects of ADAS in reality (Sohrabi et al., 2021). 
 
Secondly, even if both individual ADAS and the combination of ADAS significantly increase traffic 
safety, and if these ADAS have penetrated the market in large numbers, consumers still need to use 
these systems and do this correctly in order to achieve the safety effects.  Over a quarter of the 
consumers that have vehicles equipped with ACC do not or rarely use it while for Lane Keeping Assist 
(LKA) this is about a third (Boelhouwer et al., 2020). Harms et al. (2020) reach different conclusions 
based on a survey among Dutch business drivers. They compared the self-reported presence and usage 
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of ADAS with the actual presence of ADAS according to the vehicle specifications. As can be seen in 
figure 2 below, almost all drivers that are aware of the ADAS in their vehicle use it but, especially with 
LDW and ACC, the majority of the drivers are not aware of the presence of these ADAS in their vehicle.  
 

These types of considerations are usually not taken into account by research into safety effectiveness 
of ADAS as most studies assume a 100% market penetration (Sohrabi et al., 2021). This risk is also 
recognised on a policy level, by the Dutch government in their strategic plans on traffic safety towards 
2030  (Ministerie van Infrastructuur en Watermanagemant, 2018) 
 
This uncertainty about the actual size of safety effects of ADAS, is a problem for two reasons. Firstly, 
this is a problem for policymakers. Policymakers and their executive authorities represent the society 
and as such, should act in its interest. This is not only the case because of the fatalities , injuries and 
suffering on a personal level that result from traffic unsafety but also for its associated costs for society 
as a whole (Ministerie van Infrastructuur en Water Managemant, 2018). In 2018, these costs are 
estimated to be 17 billion euros in the Netherlands, or well over 2% or its GDP (SWOV, 2020a).  
Secondly, the (perceived) safety of ADAS is an important factor in the intent of consumers to use such 
systems (Sener et al., 2019). In a study by Sener et al. (2019), concerns about safety were the second 
most important reason for consumers to not want to use ADAS, behind the lack of trust in these 
systems. Less trust of consumers in the abilities and safety effects of ADAS could hinder the adoption 
of ADAS, as Sohrabi et al. (2021) argues. This could in turn lead to less safety benefits of these systems. 
Additionally, Blumenthal et al. (2020) also point at the importance of communicating with the public 
about safety of such systems because it is both a technical and a political issue due to the potential 
risks involved for the public. 
 

Figure 2 Awareness and use of ADAS (Harms et al., 2020) 
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1.2 Safety evaluation for driving automation systems 
To help solve this problem, more insight is needed in how well vehicles with driving automation 
systems perform. A wide variety of safety evaluation methods for driving automation systems exist, 
each with their own advantages and disadvantages. An important distinction can be made between 
the several types of evaluation methods. Some methods (road test data analysis, Field Operational 
Test (FOT), Naturalistic Driving Study (NDS)) are based on real-world environments with others are 
based on simulated scenarios or even simulated environments (test track tests, driving simulator, 
traffic simulation, failure risk assessment). According to Vlakveld (2019), the first category is more valid 
while the second category can yield more reliable results. These methods are discussed more in-depth 
in appendix B.1. 
 
In the case of ADAS and traffic safety, it is important to look at the real-world application of ADAS 
because of several uncertainties around this topic. Several methods, mostly in the second category 
named above, cannot explicitly deal with mixed-traffic issues (Sohrabi et al., 2021). Mixed-traffic issues 
are issues that may arise when (partially) automated vehicles are introduced into a network with 
human driven vehicles (HDVs). This could result in more heterogeneity in several driving elements such 
as speed and headway which in turn can lead to more potential conflicts (Virdi et al., 2019). 
Additionally, as discussed earlier, the irony of automation and the actual usage and penetration rates 
of ADAS will determine the actual effects of ADAS on safety.  
This uncertainty about the influence of the irony of automation can be researched with driving test 
studies in which vehicles are outfitted with a variety of sensors and are driven on public roads. The 
most valid of these is the naturalistic driving study (NDS) because it allows to collect data on how 
“drivers typically drive in the wild’’ (Fridman et al., 2019), as opposed to a Field Operational Test (FOT) 
which follows a strict experimental design. However, these types of studies usually have a relatively 
short time span and are held with a small group of cars due to high costs (Vlakveld, 2019). As a result, 
accidents may not happen, and not enough data can be gathered.  
This is also highlighted by Sohrabi et al. (2021) who claims that more data is required to draw reliable 
conclusions on the safety of driving automation systems because existing road tests are limited. Kalra 
& Paddock (2016) have calculated the number of miles that need to be driven in order to demonstrate 
that failure rates of vehicles with driving automation systems are lower than failure rates of vehicles 
driven by humans. The results can be seen in figure 3. If vehicles with driving automation systems 
would be 20% better than human drivers, it would still take 11 billion miles to statistically prove this. 
This shows that there is a large need for more data in the safety evaluation of vehicles with driving 
automation systems. 

 
Figure 3 Miles needed to demonstrate with 95% confidence that failure rates of vehicles with driving automation are lower 

than human failure rates (Kalra & Paddock, 2016) 
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Currently, data used in safety evaluation methods vary, both in the type of data and the way of 
collecting it. It can include crash statistics, observational data from fixed point sensors, on-board data 
collection with smartphones or with research-designated sensors. All of these have their problems as 
is discussed in Appendix B.2. 
Retrofitting vehicles with research-designated sensors is a flexible method that can detailed datasets. 
It however also comes at a high financial cost. This poses a problem as this data is necessary as is shown 
in this review. As Talal et al. (p25, 2020) concludes about DAS: “providing a low-cost, reliable and easy-
to-implement system is a tremendous step towards research advancement”.  
 

1.3 ADAS as an opportunity 
However, as much as ADAS may be a challenge in the sense that the size of the effects on traffic safety 
are unknown, it may also be a solution. For ADAS to work, vehicles are becoming increasingly smarter 
and equipped with more and better sensors like GPS, radar, cameras or even LiDAR (Ackermann et al., 
2019). The market penetration rate of these systems will only increase, especially once several ADAS 
become mandatory in the EU in new types of vehicles in 2022 and in all new vehicles from 2024 
(Regulation EU 2019/2144, 2019). The question can be raised if these already present sensors could 
be used to collect data for research purposes, in order to supplement data collected through current 
methods.  This data can take many forms, it can be data produced by ADAS, but also by other parts of 
the vehicle actuator input, speed and acceleration, or GPS data. Some examples from various 
perspectives are discussed below that use different types of data produced by vehicles.  
 
In the academic world, studies are carried into the using vehicle data to measure traffic safety. For 
example, Jang et al. (2020) uses data gathered by forward collision warning (FCW) to measure several 
surrogate measures of safety (SMoS) such as the time-to-collision (TTC) and the crash potential index 
(CPI). These are then used to identify the effects of forward hazardous situation warning (FHSW). This 
study did use a separate system to collect and transmit the data from the ADAS. Xie et al. (2019) does 
something similar by using real-world data from connected vehicles to identify high risk locations. They 
do this based on a newly developed SMoS: time-to-collision with disturbance (TTCD). 
According to interviews with members of the ADAS development team from a Swedish leading 
automotive company by Orlovska et al. (2020), car manufacturers already use data from ADAS for 
internal verification and validation of these ADAS. However, once the vehicles enter the market, little 
interest is given to the follow-up of ADAS performance. This is because the manufacturers assume the 
ADAS to be validated and verified sufficiently within their specified limitations (Orlovska et al., 2020). 
One last example is found in which a government uses data collected by vehicles with the aim to 
increase safety.  Since the end of 2021,  vehicles in the Netherlands will automatically share data with 
road authorities to help detect damages to the infrastructure or icy roads in the winter (Minsterie van 
Infrastructuur en Waterstaat, 2021). This can help road authorities to maintain their roads more 
efficiently and ultimately improve traffic safety (Minsterie van Infrastructuur en Waterstaat, 2021).  
 
This shows that new and emerging data sources like vehicle sensor data could potentially help create 
advances in safety assessment methodology. This trend is shown in figure 4 below by Mannering & 
Bhat (2014). It shows that with an expanding data frontier due to new data sources, new 
methodological opportunities can emerge to leverage this new data.  
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1.4 Literature gaps and research question 
So, based on this overview of academic literature, the following literature gaps can be defined: 

1. There is no agreement in scientific literature on the estimates of the safety benefits of 
ADAS in practice. 

2. The effect of a combination of various ADAS on traffic safety is seldomly studied in the 
academic literature. 

3. Current data collection methods for the safety evaluation of ADAS either lack sufficient 
depth and reliability or are too expensive, showing the need for a more cost-effective, 
reliable, and easy data collection system. 

 
These literature gaps can potentially be filled in using new methodologies that have become possible 
due to the larger availability of data, produced, and collected by vehicle sensors. The question can be 
raised if the safety benefits of ADAS in practice can be proven this additional data. After all, if in an 
ideal world all vehicles would be able to collect and transmit data on driving behaviour, it would be 
possible to conduct what is essentially a Naturalistic Driving Study on an unprecedented scale.  
Proving the safety benefits of ADAS in practice implies the need for a baseline or a comparison to 
vehicles without ADAS. However, comparing vehicles with automation to fully human driven vehicles 
(HDVs) is highly difficult and usually unfair, as will be discussed in the literature review (section 2.2). 
 
It may however be possible to measure the safety performance of vehicles with ADAS on its own, so 
without comparing it to HDVs. This essentially amounts to measuring traffic safety which is an essential 
part of monitoring the effects of traffic safety policy (Ministerie van Infrastructuur en 
Watermanagemant, 2018; SWOV, 2005). Additionally, it is also useful for estimating current (specific) 
aspects of traffic safety and for comparison with other countries (ETSC, 2001). However, current 
practice on measuring traffic safety does have its problems for which measuring traffic safety based 
on vehicle sensor data could potentially be a good solution as will be shown below.  
Traffic safety policies used to be based on a reactive approach of “black sports”, locations with a 
relatively high number of accidents (Ministerie van Infrastructuur en Watermanagemant, 2018). By 
now, most of these locations have been made safer which in turn means that the accidents that are 
still happening are more spread out over the network (Ministerie van Infrastructuur en 
Watermanagemant, 2018). Therefore, monitoring traffic safety at network level has become more 
important.  
Measuring traffic safety at network level is currently being done with severe injuries and fatalities as 
indicators. As will be discussed in section 2.2 of the literature review, these indicators are useful but 
not without their problems. Accidents, and especially severe accidents, are rare. By using these as 

Figure 4 State of methodological research with emerging data sources (Mannering & Bhat, 2014) 



 7 

indicators for traffic safety, any policy is reactive and may result in underlaying causes to remain 
unaffected (Ministerie van Infrastructuur en Watermanagemant, 2018).  
A more pro-active approach of measuring traffic safety is to measure dangerous situations that nearly 
became an accident: traffic conflicts or critical events (see section 2.2 of the literature review). These 
events are much less rare and therefore allow for a more pro-active approach of measuring traffic 
safety. Measuring these critical events requires data that was previously difficult or even impossible 
to collect but this could change completely with the advance of vehicles full of sensors that gather 
large amounts of data.  
 

1.4.1 Research objective and relevance 
The objective of this research will be to explore if data collected by vehicles equipped with ADAS can 
be used for measuring traffic safety at network level. It will focus on two main aspects: indicators for 
measuring traffic safety at network level based on vehicle sensor data, and on the feasibility of using 
vehicle sensor data to do so in practice. So, firstly it aims to look at what could be measured and 
secondly at the question if it even is possible to use vehicle sensor data to do just that in practice.   
  
This research has a clear societal relevance because it can contribute to improving the way in which 
traffic safety is measured. This can help to better evaluate traffic safety policies, decrease the number 
of accidents, reach the goal of Vision Zero and ultimately save lives.  
It also is scientifically relevant because it helps contribute to the body of knowledge of traffic safety 
evaluation. Current methods and data sources are lacking in various ways, as is shown in the literature 
review. This research could help explore if data collected by vehicles could help overcome some of the 
currently existing issues and ultimately improve the way in which traffic safety is measured currently 
and might in the future contribute to the evaluation of the safety benefits of vehicles equipped with 
automation.  
 

1.4.2 Research question 
The identified literature gaps in combination with the research objective results in the following 
research question: 
 
(How) can data from sensors of vehicles equipped with ADAS be used to measure traffic safety at 
network level? 
 
The wide term vehicle sensor data is used on purpose to avoid missing potentially valuable data 
sources within the vehicle. In this research, vehicle sensor data refers to all data produced by sensors 
in a vehicle. This can take various forms like data produced by ADAS, but also by other parts of the 
vehicle such as actuator input, speed and acceleration, or GPS data.  
 
With measuring traffic safety at network level is meant any indicator that measures traffic safety 
independent of a specific location but instead the performance on the network as a whole.  
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In order to answer this question, several sub-questions need to be answered first. 
1. How is traffic safety measured currently? 

Before new ways to measure traffic safety based on vehicle sensor data can be developed, it 
is first necessary to understand how traffic safety is measured currently. Measuring traffic 
safety is done using indicators which differ for specific use cases where the indicator used also 
depends on the goal. 
Two important and distinctively different groups that measure traffic safety exist: 
governments and researchers. These two groups may look and measure traffic safety from a 
different perspective because of different goals and because of practical limitations. What 
could be a useful and practical way to evaluate traffic safety with a small number of vehicles 
in a controlled environment for a researcher may be very different for the whole of the 
Netherlands by the ministry of Infrastructure and Water Management.  However, both 
perspectives can help to identify potential indicators based on vehicle sensor data that can be 
used to measure traffic safety at network level. Therefore, this sub question is split in two: 

 
a. What indicators are currently used by the Dutch government to measure traffic safety?  

Firstly, it will give an overview of different ways in which traffic safety is currently defined and 
how this is measured. This concerns ways in which general traffic safety is measured in practice 
at network level. 
 

b. What indicators to measure traffic safety are proposed in the academic world? 
Secondly, it will look at ways researchers and the academic world measure traffic safety. This 
is often more focused on evaluating traffic safety at individual vehicle level in specific 
circumstances.  
 

2. What are possible scenarios for using vehicle sensor data to measure traffic safety in 
practice?  
In order to look at how vehicle sensor data could be used to measure traffic safety, it is also 
necessary to look at the data these vehicles produce and if and how this data can be extracted 
from vehicles so it can be processed into useable information.  
  

3. What are feasible and suitable indicators based on vehicle sensor data to measure traffic 
safety at network level? 
This research question applies the knowledge from the first research question about indicators 
for measuring traffic safety to the context of the second research question: using vehicle 
sensor data to do so.  

 
4. What barriers exist for the collection and usage of vehicle sensor data to measure traffic 

safety in practice by the Dutch Ministry of Infrastructure and Water Management? 
Using vehicle sensor data to measure traffic safety in practice is a new concept which has not 
been applied on a large scale in the Netherlands. A variety of barriers can be thought of that 
have prevented this, such as privacy regulations and technical feasibility. This research 
question will look at such barriers and assess to what extent they exist.  
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Figure 5 below gives a graphical overview of the logic and design of this research. The first two research 
questions (1a and b, 2) will result in potential indicators based on vehicle sensor data to measure traffic 
safety. The input for this will be a review of relevant literature of both scientific and policy related 
documents. These potential indicators based on vehicle sensor data safety will then be evaluated by 
experts in the form of a Delphi study (to be introduced below) to assess how feasible and suitable 
these metrics are for measuring traffic at network level. This will answer research question 3. To 
answer research question 4, expert knowledge will also be used to assess potential barriers for the 
collection and usage of vehicle sensor data to measure traffic safety.  

 
Figure 5 Graphical overview of the research 

1.4.3 Scope 
There is a wide range of ADAS with a large variety of functions that also differ amongst different car 
manufacturers. For this research, the ADAS in table 1 will be included. The choice for these five ADAS 
is based on the EU 2019/2144 regulation which will make these ADAS mandatory by 2022 in new type 
of vehicles and for all new vehicles by 2024. As a result, the penetration rate of these systems will rise 
sharply, as can be seen in figure 6. Figure 6 shows the penetration rate of emergency lane-keeping 
system (called LKA in the figure) which will rise steadily to approximately 50% in 2030 (MuConsult, 
2021).  
 

Table 1 Overview of ADAS included in the research (based on ADAS Alliantie, 2019; Regulation (EU) 2019/2144, 2019) 

ADAS Description 

Intelligent Speed Assistance (ISA) ISA gives feedback to the driver to help adhere to the maximum speed 

Driver drowsiness and attention 
warning (DDAW) 

This system asses the driver’s alertness through vehicle systems 
analysis and warns the driver if needed 

Advanced driver distraction warning  This system warns the driver when the driver is distracted 

Advanced Emergency Breaking (AEB) AEB is a further development of FCW and automatically applies the 
brakes when it detects a potential crash 

Emergency lane-keeping system This ADAS keeps the vehicle within the boundaries of its lane when a 
lane departure occurs and a collision in imminent 

 
EU 2019/2144 includes other ADAS such as the alcohol interlock installation facilitation or reversing 
detection. These are excluded in this research because these do not directly impact the actual driving 
of the vehicle. Furthermore, the research will focus on Dutch roads.  
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1.5 Overview of methodology 
As is shown in figure 5, both literature review and expert judgement will be used in this research. The 
first two research questions will be answered with a review of relevant literature of both scientific and 
policy related documents.  
 
Literature review 
Scientific literature will mainly be collected via ScienceDirect and Scopus, as well as Google Scholar. To 
find relevant papers keywords like measuring traffic safety, at network level, vehicle sensor data, 
vehicle data, and combinations of these will be used. When specific indicators are mentioned in 
papers, more literature will be looked up in these databases on these specific indicators such as Time-
to-Collision (TTC) or more in general on Surrogate Measures of Safety (SMoS).  
Next to scientific and peer-reviewed papers, policy documents are a valuable source of information 
for this research. The Dutch government, in all her forms, plays and important role in traffic safety. 
This includes traffic safety policies as well as measuring traffic safety to monitor the effects of the 
policies, but also in a wider role that sets the frameworks and laws, for example on data protection. 
Policy documents that will be used as sources in this thesis are therefore policy documents from the 
Dutch government or from the European Commission or research and policy evaluations carried out 
by for example the Dutch Safety Board (onderzoeksraad voor Veiligheid, OvV) or the national scientific 
institute for road safety research (SWOV). These are found through their respective websites, by 
searching on Google, and on suggestions made by employees of the department Smart Mobility of the 
Ministry of Infrastructure and Water Management.  
Additionally, one interview will be conducted to gain additional insight into an ongoing pilot project 
that uses vehicle sensor data to assess road quality, slipperiness due to ice, and traffic safety. The pilot 
is still ongoing at the time of this research, so no written evaluation was available but given the high 
relevance of this pilot it is included in this way.  
From the literature review, two intermediate results are derived:  

1. A list of potential indicators based on vehicle sensor data for measuring traffic safety at 
network level. 

2. A list of potential barriers for the collection and usage of vehicle sensor data in practice.  
The question about how suitable these potential indicators are for measuring traffic safety on a 
network level and the question on the size of the potential barriers of using vehicle sensor data to do 
so are then asked to experts in the form of a Delphi study. Additional literature research will be 
conducted into the workings of the Delphi method to ensure an as rigorously conducted Delphi survey 
as possible.  
Expert judgement is needed because using vehicle sensor data to measure traffic safety is a relatively 
new concept so limited information is available in the literature. The Delphi method allows a 
researcher to leverage the knowledge of experts to assess new technologies without the need for 
extensive data which would be needed for example in a simulation study.  
 

Figure 6 Expected rise in  penetration rate of LKA in newly sold cars and in the passenger car fleet (MuConsult, 2021) 
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Delphi Method 
Skulmoski et al. (2007, p2) describe the Delphi methods as “an iterative process used to collect and 
distil the judgments of experts using a series of questionnaires interspersed with feedback.” Simply 
put, experts are invited to respond to a series of questions. The researcher then combines and 
summarises the responses and again asks the experts to respond to the same questions in order to 
reach consensus (Belton et al., 2019).  The Delphi method has its origin in US military research in the 
1950s in which it was used as a forecasting method (Okoli & Pawlowski, 2004). From there, it has been 
used in, and adapted to, a wide variety of fields such as healthcare and quality-indicator development 
(Belton et al., 2019), policy related questions (de Loë et al., 2016) and in transport (Melander, 2018). 
The common denominator is that the Delphi research is about the future. Hsu & Sandford (2007, p1) 
put it eloquently: “Common surveys try to identify “what is,” whereas the Delphi technique attempts 
to address “what could/should be”.” It works well when there is incomplete knowledge about a 
problem and the goal is to improve the understanding of this problem, opportunity or solution 
(Skulmoski et al., 2007).   
That is the case in this research. As is shown in this introduction, measuring traffic safety based on 
vehicle sensor data could be a solution to existing problems with monitoring traffic safety at network 
level and a step forward in the safety evaluation of vehicles equipped with automation. But how this 
would work in practice and what would be useful indicators is not known.  
 
Delphi method is chosen over other methods that use the input of expert like interviews because 
Delphi method can combine qualitative and quantitative questions in a structured way. This then 
allows for a fair comparison of different indicators and potential barriers for measuring traffic safety 
based on vehicle sensor data.  
 
How the Delphi method works in detail and how it is applied in this research is discussed in chapter 3 
Methodology and operationalisation of the Delphi Study.  

 

1.6 Outline of the study 
This study consists of six chapters in total. This introduction is followed by a literature review that aims 
to answer research questions 1a, 1b, and 2. It concludes with a list of potential indicators based on 
vehicle sensor data for measuring traffic safety at network level and with a list of potential barriers for 
doing so in practice. This is input for chapter 3: Methodology and operationalisation of the Delphi 
Study which explains how a Delphi survey works in general and how it is applied in this study.  
The results are discussed in chapter 4, followed by the discussion in chapter 5 and finally the conclusion 
in chapter 6.  
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2. Literature review 
Traffic safety lies at the core of this research and forms the start of this literature review it in the form 
of RQ1: How is traffic safety measured currently? The first part of the literature review focusses on 
traffic safety (section 2.1) and on measuring it with indicators used by both the Dutch government 
(section 2.2) and by academic researchers (section 2.3), as these are the main actors involved in 
measuring traffic safety. The second part of the literature research focusses on vehicle sensor data and 
its practical application, aiming to answer RQ2: What are possible scenarios for using vehicle sensor 
data to measure traffic safety in practice? The research focusses on types of vehicle sensor data 
(section 2.4) and suggestions in academic literature on how this data can be shared (section 2.5). It 
also looks at the practice by discussing pilots that involve using and sharing vehicle sensor data (section 
2.6) and which lessons are learned from this by identifying potential barriers for collecting and using 
vehicle sensor data (section 2.7). 
 

2.1 Traffic safety and ways to measuring it 
Traffic safety is a broad concept with many aspects that are not easily defined. This section will show 
this by introducing two frameworks on traffic safety and potential opportunities for safety measures. 
It also introduces indicators and the difference between lagging and leading indicators.  

 

2.1.1 Traffic safety as a concept 
Traffic safety, or even safety in general, does not have a consensus definition (Fraade-Blanar et al., 
2018). The exact definition often depends on the context in which it is used or on the specific situation 
it is applied to. However, these definitions are usually centred around one concept: lack of harm 
(Fraade-Blanar et al., 2018). So, traffic safety is defined from the opposite of safety, unsafety or risk as 
Kulmala notes (2010). He for example defines it as “the expected number of fatally or otherwise 
injured persons of an entity in a unit of time” (p1360, 2010). In this definintion, an entity can refer to 
a variety of aspects of traffic ranging from a specific road section or a certain type of junctions to 
(groups of) drivers or vehicles (Kulmala, 2010).  
This already shows that traffic safety consitsts of several aspects. Kulmala (2010) works this out in his 
safety assesment framework (figure 7). Based on earlier research by Thulin & Nilsson (1994), he defines 
three dimensions of traffic safety: exposure, crash risk and consequence. Exposure is the size of 
potential exposure to accidents which, depending on the intended purpose, can be measured in 
kilometers traveled per driver, vehicle or in total. Crash risk is the risk of being in an accident per million 
person kilometer while consequence is the probability of (serious) injury or death as a result of the 
crash.  
Alongside the three dimensions of safety, Kulmala (2010) also included the three levels of road user 
decision making (strategic, tactical, and operational) and the type of effect (engineering and 
behavioural). He then identified nine different types of safety measures can be taken that cover all 
three of these aspects. This shows that traffic safety has a variety of aspects with many potential safety 
measures that impact these through a complex system.  
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Figure 7 The safety assessment framework of Kulmala (2010) by road user decision level, safety dimension and safety effect 

type. Black colour indicates that the mechanism typically focuses on that aspect, grey means relevance but no focus on the 

aspect 

That traffic safety is complex and consists of a variety of factors on which safety measures work can 
also be seen in the Haddon Matrix (table 2). The Haddon Matrix is a framework in which each cell is a 
possible opportunity for safety measures. It consists of the three stages of a crash – pre-crash, crash, 
and post-crash – and of three factors that can interact at each stage of a crash: the human, the 
machine, and the environment (Fraade-Blanar et al., 2018; Peden et al., 2004). 
 

Table 2 The Haddon Matrix (Peden et al., 2004) 

Phase  Human Factors Vehicle and Equipment Factors Environmental Factors 

Pre-crash  a. Information 
b. Attitudes 
c. Impairment 
d. Police enforcement  

a. Roadworthiness  
b. Lighting  
c. Braking  
d. Handling  
e. Speed management  

a. Road design and road 
layout  

b. Speed limits  
c. Pedestrian facilities  

Crash  a. Use of restraints 
b. Impairment  

a. Occupant restraints  
b. Other safety devices  
c. Crash-protective design  

a. Crash-protective 
roadside objects  

Post-
crash 

a. First-aid skills 
b. Access to medics  

a. Ease of access  
b. Fire risk  

a. Rescue facilities  
b. Congestion  

 
The three phases of the Haddon Matrix are also known as primary, secondary, and tertiary prevention. 
Primary prevention is about preventing the crash as a whole, secondary prevention is about minimizing 
the injuries sustained from the crash while tertiary prevention is about the medical aftercare. This is 
similar to the three safety dimensions (exposure, crash risk, and consequence) of the safety 
assessment framework by Kulmala (2010) 
From this paragraph can be concluded that traffic safety can be understood in terms of unsafety and 
safety measures are aimed at reducing this unsafety. It is a complex system with a large variety of 
factors and potential points to influence this safety.   
 

2.1.2 Measuring traffic safety with indicators 
Measuring traffic safety is highly difficult. As discussed above, there is no single definition of traffic 
safety and there is a large variety of factors that influence traffic safety. No model exist that can fully 
explain traffic safety, with all the relevant factors and their corresponding importance (Stipdonk, 
2013). And even if there was such a model, it would require accurate data on all those factors which is 
often not available (Stipdonk, 2013).  
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So, indicators are used to measure traffic safety instead. It is important to note that no single indicator 
exists that can fully describe traffic safety (Fraade-Blanar et al., 2018). In general, there are two types 
of indicators for measuring traffic safety at network level: lagging and leading indicators. Lagging 
indicators measure events like accidents. Thus, the event first needs to happen. Leading indicators are 
proactive and measure events leading up to accidents, meaning that accidents do not need to happen 
before traffic safety can be measured (L. T. Aarts, 2018). So, leading indicators can serve as surrogates 
or proxies for lagging indicators (Fraade-Blanar et al., 2018).  
This distinction between the two types of indicators can also be illustrated with the Haddon Matrix 
(table 2). Leading indicators draw from the first row (pre-crash) while lagging indicators are related to 
the second and third row (crash and post-crash) (Fraade-Blanar et al., 2018). 
 

2.2 Indicators used for measuring traffic safety from a policy perspective 
The Dutch government uses both lagging and leading types of indicators of indicators to measure 
monitor the development of traffic safety at network level over time. These will be discussed in 2.2.1 
and 2.2.2. Evaluating traffic safety can also be done at vehicle level, with ex-ante or ex-post safety 
evaluation. This is discussed as well, to see if any indicators are used in those process that may be 
relevant for measuring traffic safety at network level based on vehicle sensor data.  

 

2.2.1 Fatalities and severe injuries 
The two most important and widely used lagging indicators are the number of fatalities and number 
of severe injuries (L. Aarts et al., 2021) . The SWOV, the national scientific institute for road safety 
research in the Netherlands, publishes the State of Road Safety (De staat van de verkeersveiligheid) on 
a yearly basis which presents these from the year before. In these statistics, a fatality is someone who 
dies within 30 days of the accident and a severe injury is someone with an AIS score of 2 or higher 
(SWOV, 2016). AIS stands for Abbreviated Injury Scale and is a way to classify injuries on a scale from 
1 (minor) to 6 (maximal/untreatable) with 2 being a moderate injury (SWOV, 2016).  
These two lagging indicators have a few strong advantages. They are well established as metric and 
thus have a clear and uniform definition, resulting in relatively high quality of the data (Blumenthal et 
al., 2020). Additionally, they are easy to understand for both the general public and policy makers 
(Blumenthal et al., 2020). Lastly, given their long use it is possible to compare trends over time 
(Stipdonk, 2013). In other words, fatalities and severe injuries can “tell the final story on if it is safe or 
not.” (Blumenthal et al., 2020, p12). 
 
However, there are five issues with using crash statistics. The first problem concerns the registration 
of these statistics. The total number of fatalities come from the official statistics of Statistics 
Netherlands (CBS) (SWOV, 2020c) which consists of a combination of three sources (Centraal Bureau 
voor de Statistiek, n.d.). These are the official cause of death forms (doodsoorzaakformulieren) as 
signed by a medical doctor, municipal records and police records (CBS, n.d.). However, this data is only 
available since 1996 and includes a limited number of characteristics: mode of transportation1, age, 
gender, and location (province). 
The police also records accidents with fatalities and severe injuries which include up to 40 relevant 
variables (SWOV, 2016) such as opposing party, road type and weather conditions (Stipdonk, 2013). 
The problem with the police records, collected in a system called BRON, is that these are not complete. 
Of the 661 fatalities in the official statistics of the CBS, 586 are registered in BRON, a registration rate 
of 89% (SWOV, 2020c). In the years from 1996 to 2005 (the first ten years of BRON) the registration 
rate was 94% on average while the registration rate in 2009 was 83% (Stipdonk, 2013). 
The registration rate of injuries is lower and depends on the severity of the injuries where less severe 
injuries are less likely to be registered (correctly) (SWOV, 2016). Additionally, definitions and databases 

 
1 Road oriented modes only: car, bicycle, motorcycle, pedestrian, moped, mobility scooter, truck/van  
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have changed since the first recorded traffic fatalities in 1950, making historical analysis difficult 
(Stipdonk, 2013). 
So, there is underreporting of both fatalities and severe injuries which is not uniformly distributed 
throughout time and (most likely) over types of crashes. This makes analysis difficult. Next to the 
problem of data incompleteness, four other problems with crash statistics are identified by 
researchers. 
The second problem with using fatalities and severe injuries as indicators for traffic safety is that 
crashes are subject to random fluctuations (Chang et al., 2017; ETSC, 2001). So, changes in fatalities 
throughout the years do not necessarily mean changes in traffic safety. Also, the number of fatalities 
and severe injuries does not say anything about the processes that have caused these fatalities and 
severe injuries. In any given situation there will be a probability that a crash might occur, and whether 
this happens or not is to a certain extent up to chance. So, sometimes a relatively safe situation might 
result in a crash while a hazardous situation does not. (ETSC, 2001) 
The third reason why using fatalities and severe injuries as the only indicators are problematic, is that 
they do not help understand the processes that cause accidents (ETSC, 2001). According to Chang et 
al. (2017), crash reports are set up in a way to attribute responsibility instead of searching for the 
causes of the crash. And this while understanding the causes of crashes are necessary to develop 
effective safety measures.  
A fourth problem is brought forward by many researchers, as is outlined in research by Tarko (2012). 
As can be seen in figure 8, the riskiness of an event is inversely related to the frequency of an event. 
This means that accidents are rare occurrences which makes (statistical) analysis more difficult (Chin 
& Quek, 1997; Tarko, 2012). This is also neatly illustrated in Hydén’s Safety Pyramid which can be seen 
in figure 9.  
 

 
Figure 8 The steps from standard behaviour to actual accident (Klebelsberg, 1964, in Tarko, 2012) 

This introduces the fifth and last problem. One of the goals of measuring traffic safety is to monitor 
and evaluate safety measures but by measuring traffic safety with lagging indicators like injuries and 
fatalities might take a long time. Using crash statistics is thus a reactive approach in which a sufficiently 
large number of accidents need to occur, before a problem can be found and addressed. Many 
researchers (Arun, Haque, Bhaskar, et al., 2021; Chin & Quek, 1997; Mahmud et al., 2017; Tarko, 2012; 
L. Wang et al., 2020) mention that this raises ethical questions as people first need to crash and 
perhaps even die before action can be taken to prevent those crashes and fatalities .  
 

 
Figure 9 Hydén’s Safety Pyramid (Chang et al., 2017) 
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2.2.2 Dutch SPIs 
Leading indicators are proactive indicators. In the context of traffic safety, this means that these 
indicators can measure traffic safety without accidents needing to happen (L. T. Aarts, 2018).  
In the Netherlands, this has resulted in the concept of risk-based policy (risciogestuurd beleid). The 
idea is to map and reduce risks in order to prevent risks (Ministerie van Infrastructuur en 
Watermanagemant, 2018). These risks are measured in Safety Performance Indicators (SPIs) which the 
SWOV defines as follows: SPIs are indicators for risk factors or operational conditions of traffic systems 
that can be used to measure traffic safety and help understand the processes leading to accidents and 
the accompanying injuries and fatalities (L. T. Aarts, 2018). As an example, the following SPIs are used 
(Ministerie van Infrastructuur en Watermanagemant, 2018):  

• Road quality (share of drivers driving over roads classified as ‘sufficiently safe’) 

• Speed (share of drivers that speeds) 

• Vehicles (share of vehicles that meet the norm) 

• Participants 
o Usage of protective equipment (share of drivers using protective equipment) 
o Usage of lighting (share of drivers that use the correct lighting)  
o Usage of drugs/alcohol (share of drivers under the influence) 

• Handling of accidents (share of traffic victims receiving professional medical help within the 
set standard)  

 
It is important to note that all the SPIs are defined as the “share of…”, and not just the “number of…”. 
The latter does not tell the complete story as exposure is not taken into account (L. T. Aarts, 2018). 
Stipdonk (2013) illustrates nicely how important it is to take exposure (in any form) into account by 
showing figure 10, in which both the fatalities and fleet size of mopeds can be seen. In 1974, helmets 
became mandatory, and the number of fatalities decreased sharply. This, however, does not 
necessarily mean that helmets are (fully) responsible for this decrease as the fleet size also decreased 
sharply.  

 
Figure 10 Number of moped fatalities and moped fleet size (Stipdonk, 2013) 

Furthermore, the list of SPIs is meant as an example, not a full list with complete definitions2. For 
example, the first SPI about road quality can be specified into motorised traffic and cyclists and 
protective equipment can refer to seatbelts in cars or to helmets on scooters. Whichever is used 
depends on the aim of the monitoring. Additionally, this concept of risk-based policy using SPIs is still 
in the process of being implemented throughout all types of Dutch governments. For the period 2020-
2025, the goal is to implement, use and especially learn about the SPIs with an evaluation and 
professionalisation period between 2025-2030 in which the SPIs can be modified and changed if 
necessary. (Ministerie van Infrastructuur en Watermanagemant, 2018) 

 
2 For the full list and definitions: see Aarts (2018) 
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2.2.3 Ex-ante and ex-post safety evaluation at vehicle level 
Measuring traffic safety is a complex task that can be done with several types of indicators. However, 
measuring the effect of (partial) automation on traffic safety is an even more complex and difficult 
exercise as “the integration of the driver and vehicle invalidates or changes how traditional measures 
can be used and gives rise to new needs” (Fraade-Blanar et al., 2018, p14). Looking at safety evaluation 
at vehicle level may give insight into how to deal with this issue, as vehicles with automation have 
entered the market, which requires type-approval for those automated systems (Guiting & Striekwold, 
2021). Indicators used to measure traffic safety at vehicle levels could potentially be translated to 
measuring traffic safety at network level based on vehicle sensor data.   
 
Ex-ante safety evaluation  
In the EU, all new types of vehicles and individual sub-systems need to be approved by a designated 
approval authority before it can enter the EU market. This is done to ensure harmonisation among EU 
member states and to ensure requirements with regards to safety and sustainability are met which is 
specified in Regulation (EU) 2018/858 (2018) (Guiting & Striekwold, 2021).  
Every EU member state has an approval authority which in the Netherlands is the RDW. As can be seen 
in figure 11, a manufacturer sends its new product to an accredited technical service which tests the 
product on the aforementioned technical requirements. The approval authority assesses the test 
report and gives a type-approval to the manufacturer which is then allowed to produce this vehicle or 
sub-system for the EU market. The approval authority regularly checks the production to confirm it is 
the same as the tested product. (Guiting & Striekwold, 2021) 
For already existing technologies and functionalities, this makes the safety evaluation fairly 
straightforward. However, the technical requirements as specified in the regulations are functional 
requirements aimed at mechanical components (Onderzoeksraad voor Veiligheid, 2019). This is 
problematic for most ADAS as these are new technologies for which such requirements do often not 
exist (yet). For example, the first Lane Keeping Systems (LKA) entered the market in 2014 but only in 
2018 specific requirements were formulated in UNECE3 regulations and adopted by the EU 
(Onderzoeksraad voor Veiligheid, 2019). 

 

 
 
 
 
 
 
 
 
 
 
 

That these systems still got type approval has to do with the fact that these were often admitted 
through a specific article aimed at stimulating innovation (article 20 in the now obsolete Directive (EU) 
2007/46/EG and article 39 in the replacement Regulation (EU) 2018/858) (Onderzoeksraad voor 
Veiligheid, 2019). In both regulations, it is required that these new technologies are at least at the 
same level of safety as other vehicles (Directive (EU) 2007/46/EG, 2007; Regulation (EU) 2018/858, 

 
3 The UNECE is an organization aimed at pan-European integration in which in specific working groups technical 
requirements are negotiated. Countries with major vehicle manufacturers like the USA and Japan are also 
represented in these working groups. (UNECE, 2020) 

Figure 11 Type approval process within the EU (adapted from Guiting & Striekwold, 2021) 
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2018). But because any sub-system admitted through these articles is by definition an exception, no 
standard safety evaluation method exits.  
According to the Dutch Safety Board (2019), it is often stated that it is not possible to demonstrate the 
effect of this specific ADAS on traffic safety. Since it can also not be proven that this specific ADAS 
negatively impacts traffic safety it is said to have met the requirement of being at least as safe. 
This might be changing though. The first regulatory step for automated driving systems in which the 
vehicle is in primary control of itself in both the longitudinal and lateral direction has entered into force 
in January 2021; UN Regulation No 157 [2021/389] (2021). This regulation lays out safety requirements 
for Automated Lane Keeping Systems (ALKS), as well as requirements regarding the handover from the 
ALKS to the driver and on Human-Machine Interface (HMI). Examples of specific safety requirements 
include minimum following distances at different speeds and thresholds for TTC before the vehicle has 
to avoid a collision with a vehicle cutting into its lane (UN Regulation No 157 [2021/389], 2021).  
This makes clear that in ex-ante safety evaluation currently no indicators to measure traffic safety are 
being used that could potentially translate to measuring traffic safety at network level based on vehicle 
sensor data.   
 

Ex-post safety evaluation and comparing vehicles with driving automation systems to HDVs 
Ideally, it should also be possible for the Dutch government to continually assess the effects of ADAS 
on traffic safety after they have entered the market. This is however currently not possible because it 
is not registered which ADAS are present in a vehicle. This is however currently being investigated 
whether or not this should become a part of the existing vehicle registration system and if this would 
be technically feasible. (Onderzoeksraad voor Veiligheid, 2019) 
And even if this registration would be present, current indicators such as fatalities and severe injuries 
have their problems associated with accident registrations as discussed in section 2.2. Knowing just 
whether a vehicle is equipped with a specific ADAS does not mean it is used or if it is used correctly. 
Additionally, new problems arise when you want to compare vehicles equipped with ADAS to Human 
Driven Vehicles (HDV). 
 
First of all, vehicles with driving automation systems and HDVs have different capabilities. 
Disengagement as discussed in the previous section, could possibly be used to say something about 
the (change) of safety of an vehicles with driving automation systems, but it cannot be compared to 
HDVs because these cannot disengage. It would even be difficult to compare vehicles with driving 
automation systems from different manufacturers because they use different systems and report 
disengagement in a different way (Fraade-Blanar et al., 2018). So, the availability of data on vehicles 
with automation could be a problem.  
The second problem arises because this data is made available by the vehicle manufacturer but 
without a uniform definition and method of measuring such an indicator, the gameability could 
become an issue (Blumenthal et al., 2020).  
Thirdly, even when there is solid data on the performance of vehicles with automation on specific 
indicators, this does not mean this data is available for HDVs (Blumenthal et al., 2020). While vehicles 
with driving automation systems might have the sensors to measure, detect and store/sent vehicle 
data, older vehicles do not. Additionally, even if a representative sample of conventional vehicles 
would be retrofitted with measuring equipment, the question could be raised if it is fair to compare 
these new vehicles with driving automation systems to those older conventional vehicles, given that 
the average lifespan of Dutch vehicles is about 20 years (MuConsult, 2021).  
Fourthly, even if both sufficient data for HDV and vehicles with automation is available, a fair 
comparison would only be possible if the events and exposure measured could be matched with the 
ODD of the vehicles with automation (Blumenthal et al., 2020). Automation in vehicles have specific 
functions and are designed to operate in specific conditions. For example, in tests on public roads, 
Waymo let their vehicles drive fully autonomous on roadways with speed limits up to and including 45 
miles per hour (Schwall et al., 2020). Comparing the recorded accident rates of the Waymo vehicles 
with driving automation systems to HDV accident rates would be fair if the HDV accident rates on these 
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types of roads be known. However, at these lower speeds, property-damage-only accidents are 
frequent these are severely underreported in the USA (Schwall et al., 2020) 
Lastly, vehicles with driving automation systems are fundamentally different to conventional vehicles 
because the former contain large amounts of software that can and are upgraded and updated during 
their lifespan. This means that vehicles should become safer, which could mean that comparisons even 
between two vehicles from the same make and model are not 100% fair (Onderzoeksraad voor 
Veiligheid, 2019).  
Ex-post safety evaluation is currently not conducted so no indicators to measure traffic safety are being 
used that could potentially translate to measuring traffic safety at network level based on vehicle 
sensor data.  Additionally, comparing the safety performance of HDVs and vehicles with automation is 
currently highly difficult and may in the best case be unfair.  
 
To conclude this section, table 3 gives an overview of indicators used by the Dutch government to 
measure traffic safety. 
 

Table 3 Overview of indicators used by the Dutch government 

Category Specific examples Strengths Weaknesses Current usage 
Lagging 
indicators 

Fatalities, severe 
injury 

1 Easy to understand a 
2 Uniform definition a 
3 Historical data 
available ab 
4 High validity a 

1 Reactive approach cd  
2 Rarity of occurrence d 

3 Does not give insight into process ce 

4 Subject to random fluctuations ce 

5 Data incompleteness b 

network level f  

Dutch SPIs Safe participants, safe 
speeds 

1 Help to give insight g 

 
1 Still being implemented g 

2 Little data available g 
Still in development, 
aims for network 
level at national, 
regional, and local 
scale g 

 
a  Blumenthal et al. (2020) 
b Stipdonk (2013) 
c Chang et al. (2017) 
d Tarko (2012) 
e ETSC (2001) 
f SWOV (2020c) 
g Aarts (2018) 
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2.3 Indicators used for measuring traffic safety from a scientific perspective  
Next to the government, the academic community is involved in measuring traffic safety. And while 
the previous section shows the government currently does not yet have conclusive way to evaluate 
traffic safety of vehicles with automation, much research into this is conducted in the academic 
community, as will be shown in this section. 
 
The effect of vehicles with driving automation systems on safety is determined in different ways by 
different researchers. These differences in assessment methods are one of the reasons why the found 
safety effectiveness can vary considerably. Fraade-Blanar et al. (2018) argues that there are four 
different settings in which testing of vehicles with driving automation systems can take place (table 4). 
In artificial settings, researchers can explore and test the behaviour of vehicles with driving automation 
systems without (in simulation) or with minimal (closed course) risk. In both settings, there is no risk 
to the general public, which is present with public road testing.  
 
 
 

Table 4 Classification of safety evaluation methods for vehicles with driving automation systems (adapted form Fraade-

Blanar et al., 2018) 

Setting Safety considerations 

Public roads With safety driver Risk to professional driver and to other road users 

Without safety driver Risk to driver and to other road users 

Artificial setting Closed course Risk only to professional driver 
Simulation No risk  

 
Appendix B.1 goes more in depth on what safety evaluation methods exist and are proposed in the 
research community, but this only describes how something is measured, not what is measured. In 
those safety evaluation methods, safety is operationalised in indicators. The specific indicators used 
vary per method and per experiment, depending on the scenarios and goals of the experiment.  
 
Crashes are sometimes used as indicator, for example in Road test data analysis. However, as discussed 
in the introduction and in section 2.2.1, accidents are rare. Therefore, driving test studies often use 
traffic conflicts instead, as these are much more common. Gettman et al. (2008) for example found a 
ratio of traffic conflicts to actual accidents of approximatly 20.000 to 1. Simulation studies also often 
use surrogate measures of safety (SMoS). For Connected and Automated Vehicles (CAVs), 
microsimulation using SMoS to estimate traffic safety is even the most common safety evaluation 
method (C. Wang et al., 2021). SMoS are meant as an alternative/complement to using injuries and 
fatalities (Johnsson et al., 2021; Laureshyn et al., 2016).  
 

2.3.1 Surrogate Measures of Safety (SMoS) 
The basis of SMoS are traffic conflicts, which as a concept was coined already in 1964 by Klebelsberg. 
Back then, it simply meant a dangerous traffic interaction (Arun, Haque, Bhaskar, et al., 2021). Since 
then, many more definitions have been proposed yet, similarly to the definition of traffic safety, no 
single definition exists as the used definition often depends on the goal (Arun, Haque, Bhaskar, et al., 
2021). An often-used definition is the definition by Amundsen & Hyden (1977): “traffic conflicts are an 
observable situation in which two or more road users approach each other in space and time to such 
an extent that there is a risk of collision if their movements remain unchanged” (in Arun, Haque, 
Bhaskar, et al., 2021, p4).  
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Observing SMoS 
Originally, traffic conflicts were observed and recorded by trained human observes. Nowadays, this 
can be done much more accuratly on three different levels according to (Arun, Haque, Bhaskar, et al., 
2021): on road user level, on facility level and with microsimulation.  
Road user level observations happen from the point of view of the road user. This can be done in 
naturalistic driving studies in which a vehicle is outfitted with measuring equipment or in a driver 
simulator as discussed previously. Nowadays however, it could also be done with equipment already 
present in the vehicle. This method provides the most detailed dataset but is usually also the most 
costly and time consuming, especially when the time and energy needed to process the raw data is 
taken into account (Arun, Haque, Bhaskar, et al., 2021).  
Facility level observation can be done much quicker because it focusses on specific locations, like (a 
specific type of) intersections. The obeservation can be done with sensors already in place (e.g. loop 
detectors or Intelligent Transport Systems (ITS)) or with temporarily placed equipment like cameras or 
LiDAR (Arun, Haque, Bhaskar, et al., 2021).  
Microsimulation can be used for both networkanalyisas and for specifc locations and has as main 
benefits that the research has full control over the experimental variables and that new, not widely 
available, technologies can be tested. This method however also has some major disadvantages: the 
quality of the simulation heaviliy depends on the underlying assumptions and behavourial models, the 
validity is often questioned and perhaps most imporant: there is often a significant difference in 
distribution of observed and simulated crashes (Arun, Haque, Bhaskar, et al., 2021). 
 
Thresholds and validity of SMoS 
So, SMoS like TTC or PET can by observed by on three levels with different observation methods. In 
order to draw conclusions about safety, one last element is needed: the threshold. By passing the 
threshold a normal traffic interaction becomes a traffic conflict or near-miss (Johnsson et al., 2021).  
As can be seen in figure 12, a stricter threshold is closer to the actual crash and thus theoretically 
better if the goal is to estimate the expected total number of crashes. However, events with a stricter 
threshold are rarer, leading to longer observation periods. This is one of the problems SMoS were 
developed to overcome in the first place. With too loose thresholds on the other hand, crash risk is 
not measured, but exposure (Johnsson et al., 2021). Laureshyn et al. (2016) conducted a literature 
review and found a wide range of thresholds used for both TTC and PET. They found that the most 
common threshold for TTC is between 1,5s and 3s while for PET it is between 1s and 3s.  
Therefore, choosing the right threshold is highly important for the validity of research but is often 
chosen quite arbitrarily (Arun, Haque, Bhaskar, et al., 2021). The validity of SMoS depends on the 
relationship between the traffic conflict and the actual crashes. In older studies, no or only a 
statistically weak relationship was found but with advancing observation and processing technologies, 
strong correlations have been found (Mahmud et al., 2017). This is confirmed in a literature review by 
Johnsson et al. (2018) although it is noted that it is difficult to generalise the validity of different 
indicators because of the variety of methods used. Therefore, Johnsson et al. (2021) suggests using a 
relative approach to validity in which it is accepted that SMoS may not accurately reflect the number 
of accidents but that they can still be used to reflect a change in safety (for better or for worse).  

 
Figure 12 The theoretical relationship between elementary units of exposure, SMoS at different threshold values, and crashes 

(Johnsson et al., 2021) 
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Choosing an adequate threshold for an SMoS does pose several challenges. As mentioned before, 
there is no scientific consensus on thresholds for specific SMoS. A threshold also forms a hard border 
between safe and unsafe, meaning that for example with a TTC with a threshold of 2s means that a 
traffic interaction with a TTC of 2,01s is considered safe while 1,99s is not. It can be argued that in 
reality safety is more a continuum instead (Souman et al., 2021). Additionally, Souman et al. (2021) 
argue that using a single threshold regardless of the external circumstances like weather and the 
quality of the road is also problematic.  
Lastly, specific SMoS are developed to assess safety in a specific context, like TTC for vehicles moving 
in the same direction and PET for intersections. This means that in order to assess safety in general, a 
combination of several indicators must be used. This will result in added complexity.  
 

2.3.1.1 Proximity based SMoS 
Because SMoS are much more common than crashes, they have advantage that they can be directly 
observed in traffic and that it takes considerable less time to assess changes in traffic safety (Johnsson 
et al., 2021). There is a large variety of SMoS, as is shown by Mahmud et al. (2017) who have identified 
38 SMoS in their literature review. However, two SMoS are used significantly more than any other. 
Both in the literature reviews of Johnsson et al. (2021) and Laureshyn et al (2016), time-to-collision 
(TTC) is found to be the most used by a margin, followed by post encroachment time (PET). 
TTC is the time remaining until an accident occurs if two vehicles maintain their current course and 
speed (Mahmud et al., 2017). TTC is mainly used for rear-end type of crashes or for hitting pedestirians 
or objects like a parked vehicle (Mahmud et al., 2017).  
For measuring of modelling traffic safety on inttersections, Post Encroachment Time (PET) is more 
suitable (Mahmud et al., 2017). PET is the time between one vehicle leaving a certain point or area and 
the arrival of a second vehicle at that point or area (Arun, Haque, Bhaskar, et al., 2021). 
Both are of these are called proximity based SMoS as these are based on proximity in time. Other 
families of SMoS exists, such as those based on spatial proximity, kinematic based SMoS (based on 
deceleration or acceleration) and those who do not fall in any of the other categories to suit very 
specific cases (Arun, Haque, Bhaskar, et al., 2021; Mahmud et al., 2017). According to Arun et al. 
(2021), kinematic based SMoS are often prefered in naturalistic driving studies and are therefore 
included in this analyisis.  
 

2.3.1.2 Kinematic based SMoS 
In urban areas, research has found that the most common evasive action to avoid collision is 
deceleration (Johnsson et al., 2018). Therefore, (strong) deceleration could indicate a potentially 
dangerous situation. This could be defined in a relatively simple way in which each event in which the 
strength of the deceleration exceeds a threshold is counted (Arun, Haque, Bhaskar, et al., 2021). More 
elaborate indicators have also been developed as described by Mahmud et al. (2017). They describe 
the Deceleration Rate to Avoid the Crash (DRAC) which also considers vehicle in front. 
The main advantage of kinematic based SMoS is that they are easy to understand, objective and 
physics-based and that they can be used in several different situations (Blumenthal et al., 2020; 
Mahmud et al., 2017). It is therefore used in naturalistic driving studies (Arun, Haque, Bhaskar, et al., 
2021). 
Next to deceleration, acceleration could be used in a similar way, as well as evasive action in the form 
of swerving (Johnsson et al., 2018). Johnsson et al. (2018) does however report that no validation 
studies have been carried out into deceleration-based indicators.  
 

2.3.2 Disengagement of the automation in the vehicle 
Disengagement of the automation in the vehicle  happens when the driver retakes full control or when 
the automation fails (Fraade-Blanar et al., 2018). This could be a proxy for unsafe situations. The use 
of disengagement has been used as an indicator for safety early on but has since fallen out of use 
(Blumenthal et al., 2020; Fraade-Blanar et al., 2018). The main reason for this is how sensitive 
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disengagement is to the circumstances like the environment and the driver (Blumenthal et al., 2020). 
This is also shown in Schwall et al. (2020) in which the situation after disengagement of Waymo 
vehicles in real world situations were simulated. In more than 99,9%, no simulated contact occurred. 
Additionally, when it is used in testing by safety drivers to proof how safe a vehicle is (as is done in the 
past by Tesla in California), it is also highly gameable (Blumenthal et al., 2020).  
 

2.3.3 Engagement of the automation in the vehicle 
Similar to how disengagement of automation in the vehicle could be a proxy for unsafe situations, 
engagement of automation in the vehicle could be used as well. ADAS such as Forward Collision 
Warning (FCW) and Automatic Emergency Braking (AEB) are safety system that warn the driver or 
intervene when the system detects that an accident is imminent (Onderzoeksraad voor Veiligheid, 
2019). No discussion of using engagement of these systems as a measure for safety was found in 
academic literature but pilots like the Road Monitor (RoMo) and Kia Insights from vehicle data (see 
section 2.7) do report using it.  
 

2.3.4 Infractions  
For human drivers, there is a statistically significant relationship between infractions and crashes, and 
it can be assumed that this is similar for vehicles with driving automation systems, at least in this early 
stage (Blumenthal et al., 2020). Infractions like speeding could be measured by the vehicle itself. 
However, context matters here as well as sometimes an illegal move could be the safest course of 
action (Blumenthal et al., 2020). And while there is a statistically significant correlation between 
infractions and crashes, it is not well-understood or very strong (Blumenthal et al., 2020). 
 

2.3.5 Roadmanship  
Roadmanship is a concept that aims to measure whether or not a vehicle drives safely and responds 
well to the unsafe driving of others. It is a concept still in development and no single best way to define 
and measure it has emerged (Blumenthal et al., 2020). It can be measured in by for example SMoS like 
TTC or PET, but no single metric can yet cover all of its aspects (Blumenthal et al., 2020). So often, more 
holistic measures like the safety envelope concept are proposed. In this concept, of which the 
Responsibility Sensitive Safety (RSS) model is an example, an envelope is defined around the vehicle 
which is the minimum safe distance to other vehicles around it, depending on the environment and 
speed of the vehicle (Fraade-Blanar et al., 2018). Violation of this envelope then indicates an unsafe 
situation. This method is however very data intensive and not yet clearly defined (Fraade-Blanar et al., 
2018). Wishart et al. (2020) have made a more comprehensive list of metrics for this and other similar 
metrics for the safety evaluation of vehicles equipped with automation.  
 
For these indicators, exposure needs to be into account, as it is done in the SPIs used by the Dutch 
government. A common way to do that is by measuring, for example, disengagements per vehicle 
miles travelled (VMT) (Fraade-Blanar et al., 2018). Using disengagement per million VMT is done by for 
example Matysiak & Razin (2018).  

 
To conclude this first part of the literature review which focussed on measuring traffic safety and 
indicators for doing so, table 5 shows an overview of indicators used in to evaluate safety in the 
academic world. Together with table 3 (Overview of indicators used by the Dutch government) this 
gives an answer to the first research question: How is traffic safety measured currently?  
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Table 5 Overview of indicators used in the academic world 

Category Specific examples Strengths Weaknesses Current usage 
Proximity 
based SMoS 

TTC, PET  1 Directly observable in traffic h 

2 Objective and physics-based a 
1 Data intensive  
2 Specific for situation i 

3 Validity of threshold hij 

(simulation) 
experiments hi 

Kinematic 
SMoS 

Deceleration, 
acceleration, swerving 

1 Easy to understand a 

2 Objective and physics-based a  
3 Suitable for several situations i

 

1 Validity of threshold hij Naturalistic driving 
studies j 

Disengagement 
of ADAS 

ACC, LKA 1 Easy to measure a 1 Sensitive to context ak 

2 Low validity a 

3 Gameable a 

Field tests k 

Engagement of 
ADAS 

BSW, ACC, LKA, FCW 1 Easy to measure l ? 
 

Public-private pilots 
mn 

Infractions Speeding 1 Statistically significant 
relationship with crashes a 

2 Could be compared to HDV a 

1 Context dependent a 

2 Relationship not well 
understood or strong a 

? 

Holistic 
Roadmanship 
measures 

Safety envelop 
violation 

1 Objective and physics-based a 1 No uniform definition 
of roadmanship ao 

2 Data intensive aop 

Still in development ao 

 
a  Blumenthal et al. (2020) 
h Johnsson et al. (2021) 
i Mahmud et al. (2017) 
j Arun et al. (2021) 
k Schwall et al. (2020) 
l Presumed to be similar to disengagement of ADAS 
m Interview with Vrijens, ministry of I&W, Appendix C 
n Kia Nederland (2021) 
o Fraade-Blanar et al. (2018) 
p Wishart et al. (2020) 
 

2.4 Vehicle sensor data 
The previous sections discussed how traffic safety in general can be measured and what types of 
indicators are used. The data necessary for measuring these indicators varies. As is highlighted in the 
introduction, new vehicles are becoming increasingly smarter, connected, and are equipped with more 
sensors which has led to the idea that vehicles can collect the necessary data for measuring traffic 
safety at network level. The next several sections are aimed at answering the second research 
question: What are possible scenarios for using vehicle sensor data to measure traffic safety in 
practice? It first discusses existing types of vehicle data that are used to various ends to see how these 
are accessed. It then looks specifically at vehicle sensor data and how these can be shared both in 
theory and in practice by discussing pilots doing just that. 
 

2.4.1 Regulated types of vehicle data 
Vehicles collect a variety of data to various ends. Table 6 shows the availability of three types of vehicle 
data which regulated by various EU regulations, SRTI, RMI and accident data. These are regulated 
because they serves a societal goal like improving traffic safety or fair market competition (Ecorys, 
2020). All three types of data are based on vehicle data but have a different aim and a different target 
group. RMI data is not (directly) meant for drivers but for mechanics, either from official dealers or 
independent (Ecorys, 2020). eCall can warn emergency services after a crash has taken place 
(Regulation (EU) 2015/758, 2015) while SRTI is aimed at warning drivers at a specific location for eight 
different dangerous situations (Henkens et al., 2020). 
The availability of SRTI messages is regulated in Regulation (EU) No 886/2013 (2013) although there is 
a discussion on how wide this regulation should be interpreted (Henkens et al., 2020). According to 
this regulation, SRTI messages should be made available to a National Access Point (NAP) in a specified 
format (DATEX II).  
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Each EU member state was required to set up an NAP by Regulation (EU) 2015/962 (2014) which can 
be used to access, exchange and re-use both static and dynamic road status data and traffic data.  

 
Table 6 Regulated vehicle data accessible (Ecorys, 2020) 

Datatype  Explanation Examples Access 

Repair and 
Maintenance 
Information 
(RMI) 

RMI are technical 
data used for repair 
and maintenance 

a. Diagnostics 
b. Fault codes  

Accessed via 
OBD portal, 
supplemented 
by information 
from OEM 

Accident data 
(via eCall) 

System calls 112 
when an accident is 
detected (automatic 
or manually) 

Minimum Set of Data (MSD): 
a. Time of activation  
b. Vehicle Identification Number (VIN) 
c. Number of Passenger  
d. Location and driving direction 
e. Type of vehicle 
f. Propulsion type  

Via public 
mobile wireless 
communications 
network 

Safety Related 
Traffic 
Information 
(SRTI) 

SRTI are warning 
messages provided 
in-car, based on 
vehicle data 

a. Temporary slippery road 
b. Animal, people, obstacles, debris on 

the road 
c. Unprotected accident area 
d. Short-term road works 
e. Reduced visibility 
f. Wrong-way driver 
g. Unmanaged blockage of a road 
h. Exceptional weather conditions 

From vehicle to 
National Access 
Point (NAP), 
back to vehicles 
near the 
relevant 
location; see 
figure 14, p33 

 
Next to these three regulated data types are two unregulated data types: the data that is intellectual 
property of the vehicle manufactures and the ‘other’ data that has commercial value. The former 
consists of data necessary to operate the vehicle like firmware while the latter is all the other data 
collected by the vehicle that could, after processing, have commercial value (Ecorys, 2020).  
 

Table 7 Unregulated vehicle data (Ecorys, 2020) 

Datatype  Explanation Examples 

Intellectual property VM Data necessary to operate the 
vehicle and its systems 

a. Software updates 
b. Firmware 

‘Other’ The remainder of the data that 
may have commercial value 

a. Data on car usage 
b. Data on interface usage 
c. Data on driving behaviour 

 
It is also  possible to retrieve this vehicle sensor data without the help of vehicle manufacturers, 
although it is  y discusses three ways: with a CAN-bus reader, with an OBD dongle or with Stand-alone 
kits and smart phones. Via the Controller Area Network (CAN)-bus all electronic signals are sent 
through the system, meaning that (almost) all vehicle sensor data passes through the CAN-bus. This 
data is encrypted but can (partially) be deciphered with aftermarket devices for access near real-time 
data. This is typically done by large fleet owners.  
The OBD portal is used to acquire RMI information in garages.  With an OBD dongle, all information 
from the OBD portal can also be acquired while driving.  
Stand-alone kits or smartphones can also collect data through external sensors. This technically is not 
vehicle sensor data because the data is not collected by the vehicles themselves. It therefore is also 
more limited in the information it can provide. (Ecorys, 2020) 
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All three options are cumbersome and not very suited for large scale data-collection as they require 
aftermarket devices. This means that any effort for large scale data-collection would require 
cooperation with OEMs.  
 

2.4.2 Vehicle sensor data 
Modern vehicles can be equipped with a wide range of driving automation systems. In 2022, a variety 
of ADAS will become mandatory in new type of vehicles and in 2024 in all newly produced vehicles, as 
is discussed in the introduction and in 3.1.3 (Scope). These ADAS include amongst others: Intelligent 
Speed Assistance (ISA), Advanced Emergency Breaking (AEB), Emergency lane-keeping system (ELKA), 
Driver drowsiness and attention warning and Advanced driver distraction warning (table 1, p11). These 
ADAS perform a variety of tasks and need a variety of sensors to achieve these tasks. Figure 13 shows 
which sensors are generally used to perceive the environment, although the exact usage may differ 
among different vehicle manufacturers (Ackermann et al., 2019).  
 

 
Figure 13 Overview of sensors (adapted from Ackermann et al., 2019). 

Data from these sensors and ADAS can have significant commercial value to car manufacturers and 
related actors. McKinsey (2018) expect services around vehicle sensor data to become increasingly 
important for vehicle manufacturers while at the same time their conventional markets of selling and 
maintaining vehicles will be put under pressure. They predict that the market around mobility data 
could be worth between 450 and 750 billion USD by 2030 through three main value creation models: 
generating revenue directly, reducing costs, and increasing safety and security. Generating revenue 
directly could be done by selling additional services to the customers (the drivers), by using the vehicle 
sensor data to tailor advertising (for both vehicle maintenance and for non-vehicle related 
promotions), and by selling the vehicle sensor data to third parties for any purpose (McKinsey, 2018). 
In many cases permission from the customer is needed to share their data. Therefore, McKinsey (2018) 
sees communicating the added value to the customers as one of the key challenges in this market, 
although further research by them suggests that a significant portion of customers is willing to share 
their data related to navigation and mobility. 
  

2.5 Models for sharing vehicle sensor data  
In order to use vehicle sensor data, it needs to be collected, processed, and shared. The sharing of the 
data can be done through the built-in SIM cards that make vehicles connected (Ecorys, 2020). There 
are however several ways in which such a system of data sharing can be designed. 
The Platform for the Deployment of Cooperative Intelligent Transport Systems in the European Union 
(C-ITS Platform) is a platform in which a large variety of stakeholders, including vehicle manufacturers 
and member states, worked on identifying success and failure factors for the deployment of C-ITS in 
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the EU (European Commission, n.d.-c). Working Group 6 (WG6) of this platform proposed three main 
technical solutions to allow access to in-vehicle data and resources (TRL, 2017): 

• In-vehicle interface 

• On-Board Application platform 

• Data Server Platform 
 

2.5.1 In-vehicle interface 
The first solution proposed is already in the market. With an in-vehicle interface, data available through 
the OBD interface is accessed and transmitted through an external device connected to the OBD 
interface(TRL, 2017). The current generation OBD-II does have two disadvantages. Firstly, it is not 
secure enough and secondly, it cannot deliver data at a high enough bandwidth to support the 
transmitting of large amounts of real-time data. To achieve this, the current OBD-II needs to be 
replaced with the more advanced OBD+.  
 

2.5.2 On-Board Application platform 
With an On-Board Application platform data can be accessed through a dedicated platform integrated 
in the vehicle. This platform would allow the installation of apps on the HMI (Human Machine 
Interface) of the vehicle. This would allow third parties on one hand to directly access the CAN-network 
(Ecorys, 2020)and transmit this data to the party operating the application and on the other hand to 
send information back to interact with the driver (TRL, 2017). The main issues with this solution are 
again security and safety. Firstly, a large number of applications running on the vehicles internal 
systems could degrade the performance of this system as a whole. Secondly, it could be possible to 
make changes to the software of the vehicle through the applications, introducing concerns about 
liability and security (TRL, 2017). These risks could however be mediated by putting a system in place 
for testing and certifying applications (by either the vehicle manufacturer or an independent actor) 
before allowing installation of said app. This concept is sometimes also referred to as Open Telematics 
Platform (OTP). 
 

2.5.3 Data Server Platform 
The first two solutions process data within the vehicle while the third solution does this outside of the 
vehicle. With a data server platform solution, data is sent directly to a separate server through the 
mobile network. Three models exist for this solution: 

• Extended vehicle (ExVe) 

• Shared server 

• B2B marketplace 
 
In the extended vehicle model (ExVe), vehicle sensor data is transmitted encrypted to dedicated 
servers of the vehicle manufacturer. The vehicle manufacturer can then make (processed) data 
available to third parties.  
In the shared server model, the data is not sent to a server operated by the vehicle manufacturer but 
to a neutral server operated by a consortium of stakeholders. This model would also allow to have 
data from multiple vehicle manufacturers on one server. The vehicle manufacturers would then need 
to deliver their data in a standardized format. 
The last model, B2B marketplace, is a combination of both models in which a neutral service provider 
would be able to access the servers of the vehicle manufacturers to forward data to a neutral server. 
On this server, third parties could gain access. It is likely that this neutral service provider would be a 
large big data or IT company like Google (TRL, 2017).  
One of the main issues of these models is that the vehicle manufacturer controls which data can be 
accessed, unlike with the on-board application platform. It also does not allow for communication of 
third parties with the driver through the HMI resulting in concerns about fair market competition (TRL, 
2017).  
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As a result of this, the Alliance for the Freedom of Car Repair (AFCAR)4 opposes this solution and is in 
favour of the on-board application platform while the European Automobile Manufacturers’ 
Association (ACEA) sees the ExVe model as the only solution due to security and safety concerns 
(Ecorys, 2020). In 2016, the ACEA together with the European Association of Automotive Suppliers 
(CLEPA) proposed a fourth model to meet the concerns of AFCAR: the ExVe/neutral server model.  
In this model, the ExVe model is supplemented with a neutral server allowing the operator of the 
neutral server to better negotiate with the vehicle manufacturers and at the same time giving third 
parties the option to choose between going to the vehicle manufacturer directly or indirectly through 
the neutral server (TRL, 2017). In late 2017, CLEPA decided to no longer support this model due to 
concerns around fair market competition (Ecorys, 2020).   
 

2.6 Pilots using vehicle sensor data  
The collecting and sharing of vehicle sensor data as described in the previous sections is not just theory, 
it is already being put in practice. This section will show several examples of projects in which this is 
done to show the development throughout the years and to show different scopes of projects, in 
amongst others purpose, size, and geographical scope.  
  
Praktijkproef Amsterdam (PPA)  
One of the largest and oldest Smart Mobility experiments in the Netherlands in the past several years 
(2012-2021) has been the Praktijkproef Amsterdam (PPA) (Groenendijk, 2021). The goal of this project 
was to optimise mobility in urban regions by letting in-car and roadside systems communicate and 
work together (Groenendijk, 2021). This project was not necessarily aimed at improving traffic safety. 
However, the various pilots done in the PPA did lay a foundation for further projects and delivered 
many important lessons on both technical aspects of such systems and, perhaps even more important, 
on working together in complex public-private partnerships (Groenendijk, 2021). An example of this is 
that the experiences of the PPA on cooperating between governments, knowledge institutes and 
companies (car manufacturers, data- and service providers and other suppliers of smart technologies) 
have been developed into a framework in SOCRATES2.0 (Groenendijk, 2021).  
 
SOCRATES2.0 
SOCRATES2.0 was an EU wide project which third and final phase of the PPA was part of. This project 
ran from 2018 until 2021 with most of the testing being done in 2020 (Groenendijk et al., 2021). 
SOCRATES2.0 demonstrated that it is possible for public and a variety of private parties to work together 
on the topic of traffic management and data exchange on five different use cases5 across different EU 
member states (Groenendijk et al., 2021).  Partners in the SOCRATES2.0 project have been somewhat 
surprised by: “the openness in the international setting and the willingness to experiment with working 
together in a new way (within the boundaries of the project)“ (Groenendijk et al., 2021, p31). 
 
Talking Traffic  
Talking Traffic is a corporation in the Netherlands between (local) governments and 20 (inter-) national 
companies aimed at improving traffic flow, traffic safety and sustainability (Bourdeaud’hui et al., 
2020). In two use cases - in vehicle signage and speed limit advice, and potentially dangerous situations 
and road works – vehicle sensor data was used to research the effects of the use cases. Both used 
individual GPS traces acquired in other parts of the Talking Traffic value chain  (Bourdeaud’hui et al., 
2020). For one month (November 2019), GPS traces were logged every 4 seconds for about 15% of all 
vehicles in the Netherlands resulting in 600 million datapoints per day (Bourdeaud’hui et al., 2020).  

 
4 A large coalition of repair and maintenance companies, insurance companies and consumer organisations 
5 network optimisation, smart destination, environmental zone information, lane information and road 
works 
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Proof of Concept Data for Road Safety 
While the sharing of vehicle data for road safety applications has been regulated since 2013, as 
mentioned in section 2.4.1, it was not until 2017 that plans were developed to actually make this 
happen (Henkens et al., 2020). A Proof on Concept (PoC) for generating and sharing Safety Related 
Traffic Information (SRTI) then ran from June 2019 until October 2020 in which several EU members 
states worked together with service providers (SVP) like TomTom Traffic and OEMs such as BMW 
(Henkens et al., 2020). Figure 14 shows the process of generating and sharing the SRTI messages.  

- It starts when a certain trigger condition is met based on input of vehicle sensors like wheel 
speeds, steering deflection, wipers, and others.  

- A data package of a single vehicle is sent to the access/aggregation point by the OEM or SVP. 
This can be the National Access Point (NAP) that every EU member state should have.   

- Then, this data is validated with data from other vehicles and/or other OEMs and SVPs.  
- This then forms SRTI message which is sent back to the end user by an SVP.  

 
The sharing of the data between the parties is done through a Data Server Platform, specifically with 
an extended vehicle (ExVe) concept (Data for Road Safety, 2021) as explained in section 2.5.3. 

 

Figure 14 Simplified overview of the process of the PoC Data for Road Safety (Data for Road Safety, 2021) 

Road Monitor (RoMo) 
The Road Monitor (RoMo) is a new project of the Dutch Ministry of Infrastructure and Water 
management in which vehicle sensor data is processed into useful information for the road authorities. 
One of the three focus areas is detecting unsafe situations. The data comes from sensors present in 
the vehicles. This can be the input of drivers like sudden braking or abrupt steering wheel motions, or 
it can be the intervention of specific ADAS like Forward Collision Warning (FCW). The collection and 
processing of the data is done by one OEM and the information is then delivered to the ministry of 
I&W in the form of an interactive dashboard, which helps to guarantee the privacy of the drivers. This 
dashboard can then be used to identify dangerous locations and also provide context on why these 
locations are dangerous. (Interview with Vrijens, ministry of I&W, Appendix C) 
 
Kia Insights from vehicle data  
in 2021, Kia started a project with the ministry of I&W to explore the potential added value of vehicle 
data for various public and/or private purposes (Kia Nederland, 2021). For three months, vehicle 
sensor data was collected from 4000 Kia vehicles to explore insights in charging behaviour and in 
safety. To gain insights into traffic safety, the deployment and status together with time and location 
of four ADAS (Blind spot detection, LKA, ACC, FCW) were tracked throughout these months, resulting 
in 41 million observations (Kia, 2021). In this project, like in RoMo, no data was shared with the ministry 
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of I&W but only the insights gained from this data to ensure that the government cannot trace the 
data back to individual users (Kia Nederland, 2021).   

 

2.7 Potential barriers for using vehicle sensor data 
The projects and pilots have provided opportunities to explore the potential of using vehicle sensor 
data to various ends. In doing so, issues have been raised and lessons have been learned. This section 
will discuss several of the most mentioned lessons and issues.   
 

2.7.1 Technical feasibility  
Collecting, sharing, and processing vehicle sensor data is a technically complex operation. However, as 
the PoC Data for Road Safety and the Kia project show, it is possible to extract data from sensors in 
the vehicle and to process this data outside of the vehicle. Henkens et al. (2020) conclude in the PoC 
Data for Road Safety that the supply of data is constant, stable, and timely. Additionally, this project 
shows that it is technically possible to share data between several parties with the ExVe concept. 
Furthermore, TRL (2017) finds that the other possible solutions (In-vehicle Interface and On-board 
Application Platform) are also technically feasible.  
It is important to note that this is all done on a pilot level, which are limited in terms of scope. Kia 
(2021) concludes that collecting and storing data is costly, meaning that it is important to be selective 
in collecting only the data that is needed to gain the wanted insights. In order to scale up Henkens et 
al. (2020) conclude that additional actions are necessary to scale up the system of SRTI messages 
because of large differences in development among partners.  

 
Both the PoC Data for Road Safety and the SOCRATES2.0 project stress the importance of using 
standards for the exchange of data (Groenendijk et al., 2021; Henkens et al., 2020). SENSORIS and 
DATEX-II are such standards which are widely adopted in Europe although in the SOCRATES2.0 project 
it is concluded that the standard “is not as mature as often thought“ (Groenendijk et al., 2021, p28) 
and that [about DATEX-II] “there is a lot of own interpretation and therefore ambiguity and 
miscommunication possible” (Groenendijk et al., 2021, p8). 
 

2.7.2 Legal feasibility  
There are two main legal issues with using vehicle data for various purposes as described in the 
examples: the privacy of the drivers and fair market competition 
 
Privacy 
Most legal issues in this case have to do with privacy. Under the GDPR, data that can be traced back to 
an individual is personal data and as a result needs to adhere to stricter rules (Ecorys, 2020). There is 
an ongoing debate whether or not vehicle sensor data is personal data in which various stakeholders 
and even the supervisory authorities on privacy of different EU member states disagree (Ecorys, 2020). 
In all examples given in 6.4 where vehicle sensor data is collected (PoC Data for Road Safety, Road 
Monitor, Kia project) the owners of the vehicles have given permission to collect their data, an 
important aspect in the GDPR. Additionally, in the PoC Data for Road Safety all parties are contractually 
bound  make sure no personally identifiable data is exchanged within the ecosystem, by stripping off 
all personal data elements and only sharing the bare minimum (Data for Road Safety, 2021). This is not 
an issue in the Kia project, as no data is shared with the ministry of I&W (only insights), thus avoiding 
many privacy related issues (Kia Nederland, 2021).  
But even with permission to collect data, problems arise. The owner gives permission to collect data, 
but the vehicle manufacturer decides to share which information with which party (Henkens et al., 
2020). Additionally, this permission must also be able to be revoked, which in practice often is difficult 
(Ecorys, 2020). This becomes even more complex when the vehicle is bought second-hand or when 
the owner is not the user, for example in the case of a lease car or a shared vehicle (Ecorys, 2020).  
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Fair market competition 
A second set of legal issues may arise around fair market competition, given the dominant position of 
the vehicle manufacturers. In the TRL research (2017) is concluded that existing laws on this topic 
should be strong enough to prevent unfair market competition but does explicitly state that the 
practical application of these laws is highly complex. (Ecorys, 2020) agrees, especially for the coming 
few years. They also point at the practical aspects because under these fair market competition laws 
it would need to be proven that a company has a dominant position and also abuses this position. They 
deem this unlikely, also given the fact that this is a new and quickly developing market.  

 

2.7.3 Cybersecurity 
Cybersecurity is one of the most discussed emerging risks in the transition towards more autonomous 
driving (Ryan, 2020). As vehicles are being equipped with more autonomous functions, both the 
amount of software6 as the level of connectivity increases strongly (Onderzoeksraad voor Veiligheid, 
2019). The latter is important because an increase in the number of external connections in a vehicle 
comes with an increase in the potential points of attack (Fraade-Blanar et al., 2018; Onderzoeksraad 
voor Veiligheid, 2019; Ryan, 2020). This does not just refer to V2V or V2I connections but also to Over-
The-Air (OTA) updates.  
The risks are also substantial: in recent years researchers and ethical hackers have managed to gain 
remote access to vehicles which allowed them to take over control of systems like the brakes, engine, 
and steering wheel (Onderzoeksraad voor Veiligheid, 2019; Ryan, 2020). Besides the direct threat to 
human life present in such a hacked vehicle, other risks are also present such as data breaches and 
ransomware attacks (Fraade-Blanar et al., 2018; Ryan, 2020).  
The Dutch Safety Board did not find any accidents where cybersecurity may have played a part in but 
at the same time concludes that this does not mean that no such accidents have taken place. There is 
no active centralised monitoring of such cybersecurity breaches and often, not enough information is 
available to establish such a breach after the fact (Onderzoeksraad voor Veiligheid, 2019). Both OEMs 
and policymakers are taking steps to minimise the risk of cybersecurity attacks, but residual risk will 
remain (Ryan, 2020). How large this residual risk is, and how to deal with it, is currently not known.  
 

2.7.4 Willingness of stakeholders 
Any system that uses vehicle sensor data for any purpose will involve a variety of stakeholders. As 
discussed in section 2.4.2, a potentially large market exists around use cases involving vehicle sensor 
data. Who exactly will be involved depends on the scope that is applied but Ecorys (2020), McKinsey 
(2018), and TRL (2017) all discuss OEMs, suppliers, and service providers.  
OEMs are an essential player as these control access to the human machine interface (HMI) and to 
data collected and produced by the vehicle itself (McKinsey, 2018). Many OEMs see the potential value 
of using vehicle sensor data for a variety of purposes, as is also shown by the fact that the ACEA 
(organisation for European OEMs) sees a new business in data and information (Henkens et al., 2020). 
However, it should not be underestimated how large and complex these OEMs are (McKinsey, 2018). 
For example, within an OEM conflicting interests may exist between for example the sales department 
wanting new features and the engineers focusing on quality and complexity reduction for the driver.  
Suppliers are another important stakeholder as they deliver parts of the vehicles and may therefore 
also have control over the access to specific data that can provide them direct economic value or serve 
as a source of differentiation to competitors (McKinsey, 2018). They can monetize the data through 
the OEM or directly to their consumer (not necessarily B2C but also B2B), for example with predictive 
maintenance and failure diagnostic, or through feedback- based R&D optimization (Ecorys, 2020; 
McKinsey, 2018).  

 
6 A modern vehicle equipped with several ADAS will have anywhere from 5 to 20 times more lines of code than 

a f-35 (JSF) fighter jet ( 50-100 million lines of code) (Onderzoeksraad voor Veiligheid, 2019) 
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Service providers are playing an increasingly larger role in vehicles and the interaction with the drivers. 
Initially, the services were related to infotainment and navigation but a shift can be seen towards a 
larger variety of services and further in-vehicle integration (McKinsey, 2018). Examples of this are 
Apple Carplay and Android Auto which can connect a smartphone to the car’s screen and system or 
HERE Europe and TomTom Traffic who supplied and/or used data, or served as an aggregator in the 
PoC Data for road safety (Henkens et al., 2020). The service providers thus have an important role in 
integrating and connecting the vehicle with other technology and the wider ecosystem (McKinsey, 
2018). 

 

2.7.5 From pilot to reality  
Besides the issues on specific aspects as discussed above, a more general factor is also relevant to 
consider: the paradox of the pilot. Groenendijk (2021) calls the belief that a successful pilot can simply 
be scaled up and will lead to the same successful results naïve. Certain factors (like those in table 8 
below) that contribute to a pilot’s success can equally lead to failure in a scaled-up version.  
 

Table 8 The paradox of the pilot (adapted from Groenendijk, 2021) 

Factor Success for pilot Failure for scaled-up version 
More space Room to experiment Distance to regular day-to-day business 

Budget Extra budget for a specific pilot Not in the regular budget 

Enthusiastic employees Motivated people  Other employees do not feel responsible to use 
the results from the pilot 

 
This second part of the literature review focussed on vehicle sensor data and collecting it and in doing 
so aimed to answer RQ2: What are possible scenarios for using vehicle sensor data to measure traffic 
safety in practice? This review has shown that vehicle manufacturers are currently already obliged and 
capable of collecting and transmitting data related to safety, accident data via eCall and the SRTI data. 
Several theoretical models for sharing data are discussed of which the ExVe/neutral server model is 
supported by the vehicle manufacturers, making this the most viable scenario. This model has been 
tested in successfully in pilots, although various barriers to using vehicle sensor data have been 
identified.  
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3. Methodology and operationalisation of the Delphi study 
 

In the literature review, this research has identified a variety of categories of indicators that can be 
used to measure traffic safety, together with their respective strengths and weaknesses. Since no 
consensus has been reached in the scientific literature on which category of indicator would be the 
most suitable to supplement fatalities and severe injuries as indicator for traffic safety on a network 
level, this will be the first aim of the Delphi study and in doing so, answering RQ3: What are feasible 
and suitable indicators based on vehicle sensor data to measure traffic safety at network level? 
Additionally, the literature review discusses several potential barriers of using vehicle sensor data to 
measure traffic safety in practice as faced in various pilots. Different pilots faced different issues. To 
gain more insight into these barriers and to what extend these barriers exist, the assessment of experts 
will be sought as well. This will then be used to answer RQ4: What barriers exist for the collection and 
usage of vehicle sensor data to measure traffic safety in practice by the Dutch Ministry of Infrastructure 
and Water Management? 
 
In a Delphi study, the opinion of experts is leveraged to improve the understanding of a problem, 
opportunity or solution when there is incomplete knowledge about this problem (Skulmoski et al., 
2007). That is the case here. Several indicators have been identified but the question remains which, 
if any, could be suitable to supplement fatalities and severe injuries as indicator for traffic safety on a 
network level.  
There are different types of Delphi studies and different ways to execute them, but it usually has the 
following four characteristics: anonymity, iteration, controlled feedback, and statistical group 
response (Fritschy & Spinler, 2019; von der Gracht, 2012). Experts are asked questions, separate and 
anonymous to prevent influencing each other. In subsequent rounds, the same (or similar questions) 
are asked again but this time with controlled feedback. This feedback can consist of statistics on the 
group response of the previous round and/or often used arguments. The experts are then given the 
chance to revaluate their answer, with the goal of reaching consensus or establishing clear dissensus. 
(Beiderbeck et al., 2021a; Belton et al., 2019; Hsu & Sandford, 2007) 
 
Any Delphi study starts with defining the goal of the study which is the basis for the design and 
development of  the study (Belton et al., 2019).  For this study the goal will be twofold: 

1. To assess which, if any, indicators based on vehicle sensor data are the most suitable for 
supplementing fatalities and severe injuries as indicator for assessing traffic safety on a 
network level. 

2. To assess whether or not the large-scale collection and usage of vehicle sensor data for 
measuring traffic safety will be feasible in practice and what factors act as barriers. 

 
This chapter will focus on the methodological design of the Delphi study and the operationalisation by 
consecutively discussing how experts are selected (3.1), the operationalisation of the questions in the 
Delphi survey (3.2) including how questions are asked and how the feedback to experts is provided, 
dealing with bias (3.3), as well as practical aspects of the Delphi survey (3.4).  

 

3.1 Expert selection 
A Delphi survey is fundamentally different from a regular survey because it does not have the goal to 
generalise results of a representative sample to a larger population, but instead to reach consensus 
among experts (Okoli & Pawlowski, 2004). Therefore, participants are not selected randomly but 
rather purposely and based on their expertise (Keeney et al., 2006). And while the Delphi method has 
proven to produce valid results in the past (Förster & von der Gracht, 2014; Landeta, 2006), the 
selection of appropriate experts is a highly important part in the process, as the quality of the experts 
directly relates to the quality of the results (Hsu & Sandford, 2007; Keeney et al., 2006).  
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However, as Keeney et al. (2006, p209) states: “there is no magic formula to help researchers decide 
on who are the experts and how many there should be.”  
 

3.1.1 Expert identification methods 
Most studies using Delphi study report on how they have selected experts, but fail to report why this 
selection is made (Devaney & Henchion, 2018; Mauksch et al., 2020). And while there is a general 
consensus that an expert is “someone who is skilful and well-informed in some special field” (Mauksch 
et al., 2020, p2) no single best way to define and measure expertise has been developed (Devaney & 
Henchion, 2018; Hasson et al., 2000; Mauksch et al., 2020). Not clearly defining what an expert 
constitutes for a specific study and how these experts are selected can cast doubt on the results of 
such a Delphi study (Donohoe & Needham, 2009). 
Therefore, Mauksch et al. (2020) have constructed an overview of expert identification methods which 
can be seen in table 9 below. Of these eight methods, five are not suited for this study. In past 
performance experts are selected on their performance in earlier Delphi surveys. It is aimed at 
repeated studies and needs data on previous forecasting performance of the experts, which is not the 
case here. Knowledge tests and psychological traits both use tests to assess and subsequently select 
experts. Knowledge tests focusses on the amount of knowledge a potential expert has on a specific 
topic while psychological traits tests try to assess expertise based on various cognitive criteria (inner 
consistency, discrimination ability, the drawing of analogies etc.). Both these methods are highly time-
intensive for both the author and for potential experts, and require extensive psychological expertise, 
making them not suitable for this study. 
Social Acclamation where experts nominate peers is advised against by Winkler & Moser (2016) as it 
is likely to introduce strong bias and create a panel of too like-minded experts. Self-Ratings circumvent 
the problem of measuring expertise by letting (potential) experts rate themselves. However, empirical 
research shows little proof that self-rated experts perform better (Mauksch et al., 2020).  Self-Rating 
could be beneficial when it is used in an intra-individual way rather than an inter-individual way, as 
suggested by Ward et al. (2002). This does however require substantial more work for both the 
researcher as the experts (increasing the risk of drop-out) and requires a more in-depth knowledge of 
psychology making it again not suitable for this study.  
 
This leaves Political Influence, Personal Involvement and External Cues as potential expert 
identification methods for this study. Political influence is an expert identification method that selects 
experts based on their potential political influence. It is aimed more at Delphi studies being a socio-
political learning activity in which the goal is to develop policies, making it a “form of negotiation 
around far-minded plans for the future” (Mauksch et al., 2020, p7).  
Personal involvement is similar to this approach in the sense that it selects experts based on their 
involvement in the topic at hand but it takes a wider scope than just including policy makers by also 
including researchers for example (Mauksch et al., 2020). People that are interested in the topic of the 
Delphi study tend to have higher response rate and are less likely to drop-out (Hasson et al., 2000). 
Additionally, selecting experts close to the topic in the Delphi study makes it more likely to produce 
valid results (Donohoe & Needham, 2009). This could however also lead to bias, as the experts could 
potentially be influenced by the outcome of the study (Hasson et al., 2000).  
The last expert identification method discussed here is External Cues. Mauksch et al. (2020) define this 
as a wider term that includes any criteria potentially available to the researcher. This is an easy to 
implement method and the most popular as well (Mauksch et al., 2020). Criteria can be based on any 
factor deemed relevant by the researcher. Because the cues are defined by the researcher, this 
approach is likely to have (hidden) biases which is important for the researcher to be aware of (Croce 
et al., 2016) 
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Table 9 Overview of expert identification methods (adapted from Mauksch et al., 2020) 

Method Definition/ explanation Pro Contra 

Social 
Acclamation 

Peer Nomination • Field experts are good assessors of other domain-specific experts 
• “Democratic” and holistic approach 
• Co-nominated experts outperformed laymen in some studies 
• Peer assessments correlate with external cues 
• Inclusion of unknown experts 
• Drop-outs are less likely in nomination procedures 

• Social desirability bias or popularity effect, i.e., acclaimed expertise correlates with 
popularity of a person 

Political 
Influence 

Selecting experts with 
potential political impact 

• Easily accessible information 
• Foresight projects may achieve positive social/environmental change 

• Politically powerful individuals are not always experts 

Personal 
Involvement 

Selection based on personal 
interest in the subject 

• Deliberate practice as an important element of expertise 
• Higher response rate 
• More inclusive expert selection 

• Requires operationalization/ measurement 
• Self-selection bias 
• Materialistic personal interests may be involved 

External Cues Assessment based on 
externally available criteria, 
e.g., years on the job, job 
position, certification, 

publications etc. 

• Easily accessible information 
• External reflection of skills 
• Experience often correlates with improved cognitive skills and 
deeper knowledge 

• Risk of hidden biases in the research team's decisions of who counts as an expert 
• More experience does not always mean more expertise 
• Professionals move always up, but seldom down; some professionals never become 
experts 

• Not applicable to domains lacking institutionalized criteria of expertise  
• Good theorists are not necessarily good practitioners (domain expertise vs. process 
expertise) 
• Neglects creativity and imagination 

Self-Ratings Self-assessment of expertise • Low-barrier method for fields that lack objective criteria of expertise 
• Experts are theoretically the best judges of their performance; 
experts excel strong self-monitoring skills 
• Self-rated experts outperform self-rated non-experts 

• Ambivalent results from decision research 
• Biases: overoptimism, overconfidence 

Past 
Performance 

Selection based on past 
performance 

• Low-barrier, low-cost method if past performance data is available 
• Well-established “gold standards” and rating systems exist in some 
domains (e.g., in several scientific disciplines) 
• Applicable to repetitive tasks with evaluable outcomes 

• Depends on measurable outcomes 
• Negative evidence for the forecasting of extreme or rare events 
• Biases: overconfidence after success 
• Fails to acknowledge non-quantifiable, non-observable aspects about experts (e.g. tacit 
knowledge) 

Knowledge 
Tests 

Selection based on 
verifiable knowledge 

• Allows for sub-selection within a group 
• Answers are verifiable 

• Important, but not sufficient: knowledge elicitation is more important than knowledge 
alone 
• Neglects experience-related heuristics  
• Ethical issues/waste of resources: Participants are tested and then excluded 
• Neglects creativity and imagination 

Psychological 
Traits 

Cognitive tests assessing 
expertise 

• Identification of “true” domain experts who meet important 
cognitive criteria (inner consistency, discrimination ability, the drawing 
of analogies etc.) 

• High demand for preparation 
• Some fields lack knowledge about cognitive processes in experts 
• Not applicable if experts are confronted with new tasks 
• Involves sophisticated and time-intensive procedures 
• Neglects creativity and imagination 
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3.1.2 Expert identification in this study 
Mauksch et al. (2020) recommend using a combination of expert identification methods to help 
mitigate the drawbacks and potential biases of each individual method. This reserach will use a 
combination of External Cues and Personal Involvement using the expert continuum model of 
Donohoe & Needham (2009) (see figure 15). The personal involvement approach will be first be used 
to identify groups of stakeholders and specific and relevant organisations. The external cues approach 
will then be used to assess the expertise of the potential experts.  
Political Influence will not be used as an expert identification method for two reasons. Firstly, this 
method is more focused on developing policies on politically sensitive and contested topics with 
several opposing interests which is not the case in this study. Secondly, Political influence is quite 
closely linked to be Personal Involvement. It is expected that there will be significant overlap in experts 
identified through the Political Influence method and those identified through the Personal Interest 
method of the mandated closeness class.  
 
Personal involvement  
The main strength of Personal Involvement can also be its main weakness: involving those who might 
be affected by the outcome of the study can lead to self-selection bias (Mauksch et al., 2020). To help 
find a balance between impartiality and interest in the topic, the expert continuum model of Donohoe 
& Needham (2009) could be used (Devaney & Henchion, 2018). In this model, the definition of an 
expert is worked out in three groups by defining experts along a continuum (figure 15): subjective 
closeness are experts with hands-on experience, experts with mandated closeness have a formal role 
(policy/legal) while experts with objective closeness are those involved in the topic from an objective 
standpoint (Devaney & Henchion, 2018; Donohoe & Needham, 2009). 
 
 

 
Figure 15 The expert continuum model (adapted from Donohoe & Needham, 2009) 

Using this model helps to capture a wide range of experts involved in the topic which in turn could 
help to balance potential interests and additionally helps to gain a better understanding of the problem 
and its solutions (Donohoe & Needham, 2009). Table 10 operationalises the model for this research. 
For each class, relevant organisations are selected based on knowledge gathered in the literature 
review and discussions with supervisors.  
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Table 10 The expert continuum model in this research (based on Donohoe & Needham, 2009) 

Class of the expert 
continuum model 

Personal 
interest 

Description of organisation Relevant organisations 

Subjective 
closeness  

Hands-on 
experience 

Companies involved in collecting and using 
vehicle sensor data for safety purposes 

OEM 
BOVAG/RAI 

Mandated 
closeness 

A formal role 
(policy/legal) 

Policy makers on the topic of measuring 
traffic safety and smart mobility 

Ministry of Infrastructure & Water 
Management 

- Department of Smart Mobility  
- Department of Traffic Safety 

RDW 
Rijkswaterstaat (RWS) 
CROW 

Objective closeness An objective 
standpoint 

Researchers on the topic of measuring 
traffic safety or on intelligent vehicles and 
vehicle sensor data 

University researchers 
- TU Delft 
- TU/e 
- UTwente 

SWOV 
TNO 

 
External cues  
Many researchers report using external cues as a way to measure expertise but often these are not 
reported in a detailed way or not even reported at all. Table 11 shows several examples of authors 
that did include criteria for the expert selection for their Delphi study in their paper. Of these, Devaney 
& Henchion (2018) is the most explicit by also including that any expert must meet three of their five 
criteria. The criteria in table 11  are also mostly in line with the research of Mauksch et al. (2020) who 
define three sub-types of external cues that could potentially reflect expertise: experience, 
certifications and publications, and work positions. Experience is an obvious indicator for expertise and 
widely accepted as such in the academic literature (Mauksch et al., 2020). One often used way to 
operationalise this is in years working in the field or in a particular job.  
Certifications and publications could serve as a proxy for knowledge. However, in (highly) specific 
topics no certifications exits, which is why there are experts needed in the first place (Mauksch et al., 
2020). Publications could therefore be a more useful criteria, especially in theoretical fields like in this 
research.  
Work positions is the last of the three categories. This is a disputed criteria as a higher job position 
does not necessarily lead to more expert knowledge (Mauksch et al., 2020). It could serve a role in 
Delphi studies aimed at for example developments at a strategy level or those concerning policy 
development, but that is not the case in this study.  
 
Given the goals of the Delphi study (1. to assess the suitability of indicators for traffic safety on network 
level and 2. to assess the feasibility of collecting and using vehicle sensor data for safety purposes), 
experts are needed on both measuring traffic safety and on collecting and using vehicle sensor data. 
It is recognised that it will be difficult for experts to have extensive knowledge on both topics so an 
expert will be considered as such if the expert has knowledge on either of the two topics.  
This, together with the research discussed above and in table 11 below has resulted in the following 
criteria to assess experts:  

1. The expert has at least 5 years of experience with the topic  
2. The expert has published a paper or spoken at conference on the topic 
3. The expert has a relevant work position the field 
4. The expert has a relevant academic background 
5. The expert is based in the Netherlands or in a comparable EU country  

An expert will be considered having sufficient expertise when they meet at least two of the five criteria. 
Additionally, the expert needs to have the time and willingness to participate. 
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Table 11 A non-exhaustive overview of criteria used in other Delphi studies 

von der Gracht & 
Darkow (2010) 

Devaney & Henchion 
(2018) 

Roßmann et al. 
(2018) 

Schuckmann et 
al. (2012) 

Warth et al. 
(2013) 

Management level Contributor to a 
bioeconomy-related 
strategy document 

Work position Individual's 
professional 
capacity 

Knowledge and 
experience of 
the issues under 
investigation 

Academic 
background 
 

Member of a bioeconomy-
related advisory, 
taskforce, industry, or 
foresight committee 

Academic status Willingness Capacity and 
willingness to 
participate 

Job specialisation Possess at least 5 years of 
experience in a 
bioeconomy–related area 

Years of 
experience 
 

Sufficient 
amount of time 
capacity to 
participate. 

Sufficient time 
to participate 

Publications Published in a bioeconomy 
area or invited to speak at 
a relevant national event 
in the last three years 

Published 
works or 
conference 
participations 

Effective 
communication 
skills 

Functions inside 
and outside of the 
organisation 

Represent a media contact 
point on bioeconomy-
related issues 

Functional area 

Education Educational level 

Age  Age 

Gender 

 

3.1.3 Number of experts 
Next to the question of identifying experts is the question of how many experts should be selected. 
Similar to the previous question, this question also does not have a clear and unambiguous answer. 
No consensus exists in the literature on the optimal, or even minimal, number of experts needed for a 
Delphi study (Donohoe & Needham, 2009; Hsu & Sandford, 2007; Keeney et al., 2006; Okoli & 
Pawlowski, 2004). The range of number of experts used in past Delphi studies is large, ranging from 
just three (Norani et al., 2012) to 149 (Devaney & Henchion, 2018) or even several hundreds, as 
discussed by Keeney et al. (2006). However, typical ranges suggested are between 5 to 20 (Belton et 
al., 2019), 7 to 15 (Donohoe & Needham, 2009), 10 to 18 (Okoli & Pawlowski, 2004) or 15 to 20 (Hsu 
& Sandford, 2007).  
The number of experts needed depends on the specifics of the study where a sample size should be 
large enough to have sufficient (and representative) input on the topic (Hsu & Sandford, 2007). At the 
same time, a larger expert panel also imposes a larger burden on both the researcher as on the experts 
in terms of data analysis which could result in a lower response rate (Hasson et al., 2000; Hsu. & 
Sandford, 2007). Keeney et al. (2006, p208) finally conclude that “it [the number of experts] appears 
to be related to common sense and practical logistics”. 
Therefore, in line with the ranges suggested above and the fact that the aim of this Delphi study is 
quite specific, this study will aim to include between 10 to 15 experts.  
 
To conclude, by employing a combination of two expert identification a balanced expert panel can be 
created. The personal involvement approach using the expert continuum model helps to introduce 
heterogeneity in the panel. Heterogeneity can come in many forms but in this case, it means difference 
in terms of closeness to the topic and the accompanying specific knowledge. Heterogeneous panels 
have proven to create a wider range of perspectives than an homogeneous panel which helps to 
prevent bias and framing effects (Förster & von der Gracht, 2014; Winkler & Moser, 2016). This will 
result in an “inclusive expert population” which will help to mitigate bias in the research (Donohoe & 
Needham, 2009, p427).  
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3.1.4 Expert drop-out  
A common issue with any Delphi survey is the risk of experts dropping out during the study, especially 
given the iterative character of the study and the accompanying time commitment (Belton et al., 2019; 
Hasson et al., 2000; Keeney et al., 2006). Experts dropping out can negatively impact the quality of the 
study (Belton et al., 2019; Hasson et al., 2000; Keeney et al., 2006). To prevent this, both Belton et al. 
(2019) and Keeney et al. (2006) point at the importance of making the experts see the goal and 
relevance of the Delphi study. If the expert selection is done correctly, the experts are interested and 
involved in the topic, and are perhaps interested or even affected by the outcomes of the study (Belton 
et al., 2019; Keeney et al., 2006). This can, if the questionnaire is also clear and understandable, help 
give experts some project ownership and therefore prevent experts dropping out (Keeney et al., 2006).  
Establishing and communicating a clear timeline and sending remainders via email can also help 
increase response rates (Turnbull et al., 2018). Experts in the research of Turnbull et al. (2018) do not 
report these reminders as annoying, making this a viable method of increasing response rates.  
These strategies are applied in this research to try and minimise expert drop-out.  
 

3.2 Operationalisation of the Delphi Survey  
Developing the questions of a Delphi survey is an essential step that must be carefully deliberated 
(Belton et al., 2019). Several aspects like the type of questions, the wording of questions, and dealing 
with bias are discussed in this section. The full questionnaires as sent to the experts are found in 
Appendix D for round 1 and Appendix E for round 2. 
 

3.2.1 Questions of the Delphi survey 
In a Delphi survey, both open-ended and structured questionnaires have been used (Toma & 
Picioreanu, 2016). While open ended questions can provide a wealth of information and a variety of 
perspectives, it can also fail to include major subjects known from the literature because experts fail 
to bring it up (Nowack et al., 2011; Toma & Picioreanu, 2016). Structured questions are much better 
at this by providing an opportunity to the expert to give their judgement on a specific issue and built 
upon that (Toma & Picioreanu, 2016). Therefore, Delphi surveys usually consist of a set of questions 
that require a numerical response, often followed by an opportunity of the expert to comment on the 
question (Belton et al., 2019).  
Next to the type of questions asked, the wording of the questions is also relevant. Research has shown 
that the wording of questions can influence the quality of the survey data (Markmann et al., 2021). 
Markmann et al. (2021) have analysed the effect of language on the assessment of respondents on 
Likert-type scales and have found the following results: 

• More abstract language results in more moderate assessment 

• Examples lead to more extreme assessments 
Additionally, a weak relation was found between lengthy questions and more moderate responses 
while positive or negative connotations, or the use of modifiers (short words like only, most, often, 
etc.) were not found to have a clear effect.  
Furthermore, a trade-off exists regarding the length of the survey, where a longer survey increases the 
amount and depth of information gathered but at the same time increases the load on the experts. 
This could increase the risk of experts dropping out, which negatively impacts the legitimacy of the 
results (Belton et al., 2019). 
 
So, taking these findings into account, the questionnaire has been developed. The survey will consist 
of two parts, consistent with the two aims as discussed at the beginning of this chapter. The first aim 
is to assess the suitability of specific types of indicators to measure traffic safety on a network level. 
Seven types of indicators for measuring traffic safety at network level are identified in the literature 
review. However, from the literature review it has become clear that not every type of indicator 
identified is as suitable as the others for various reasons. Additionally, if all seven types of indicators 
are included in the Delphi survey it will become very time-intensive for the experts which increases 
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the risk of high expert drop-out. Therefore, a selection of four types of indicators is included as will be 
explained in section 3.2.2 below.  
 
In the Delphi survey, the experts are asked to rate the four types of indicators on four criteria on a 
scale from 1 (strongly disagree) to 7 (strongly agree). They are then given the opportunity to explain 
their assessment.  
The criteria are based on research by Aarts (2018) for the SWOV where they are used to assess traffic 
safety indicators. The criteria are made less abstract by using them in a sentence (table 12), which will 
decrease the room for interpretation by the expert and increase the assessment following from the 
findings of Markmann et al. (2021). Based on the same research of Markmann et al. (2021), examples 
of the types of indicators are also included in the questions.  
 

Table 12 Criteria used to evaluate types of indicators in the Delphi survey 

Criteria in Aarts (2018) Criteria operationalised in Delphi survey 

Validity a. This type of indicator reflects traffic safety well  

Reliability b. This type of indicator could be measured in a reliable way 

Sensitivity  c. This type of indicator is sensitive to external changes, i.e., it will respond to future 
traffic safety interventions 

Understandability  d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

 
Part two of the survey addresses the second aim of the survey, to assess the feasibility of using vehicle 
sensor data to measure traffic safety. The experts are asked to rate the severity of potential barriers 
identified in section 2.7 on a 7-point scale (no barrier at all to unsurmountable barrier) and again 
provide an explanation. All potential barriers discussed in 2.8 are included, and economic feasibility is 
added as an additional potential barrier.  
 
The Likert-type scale used in this Delphi survey has seven response options. Research suggests that 7-
point scales are the most reliable (Beiderbeck et al., 2021a; Toma & Picioreanu, 2016). By having an 
uneven number of response options, a neutral halfway point is also available. This gives the experts 
the possibility of explaining a neutral point of view (Toma & Picioreanu, 2016). To make sure this 
halfway point is truly neutral, an 8th option is also given: I do not know. This will give the experts the 
option to say ‘I do not know” instead of just choosing the middle (neutral) option (Toma & Picioreanu, 
2016). 
 The options are all labelled, as Beiderbeck et al. (2021a) suggest that this will leave little room of 
interpretation for the experts and gives the highest psychometric quality.  
 

3.2.2 Types of indicators included  
This section will discuss the in the literature review identified leading indicators and whether or not 
these will be included in the Delphi study. This will be decided based on the identified strengths and 
weaknesses, as well as their suitability to be applied to measuring traffic safety at a network level.  
 

Category Specific 
examples 

Strengths Weaknesses Current usage Included 
in Delphi? 

Dutch SPIs Safe participants, 
safe speeds 

1 Help to give 
insight g 

 

1 Still being 
implemented g 

2 Little data available g 

Still in development, 
aims for network level 
at national, regional, 
and local scale g 

Yes 

g Aarts (2018) 
 

The Dutch SPIs will be included in the Delphi study. These are specifically developed to solve some of 
the issues of using only fatalities and severe injuries as indicators for traffic safety. They can mainly 
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help gain insight into causes of accidents. They are included because they are still in development and 
questions about how to measure them remain. 
For this study, the two indicators safe participants and safe speeds are the most relevant as these 
directly concern the driver and its behaviour as opposed to the three other indicators of safe roads, 
safe vehicles and high-quality trauma care which are out of the scope of this research.  

 
Proximity 
based SMoS 

TTC, PET  1 Directly observable in traffic h 

2 Objective and physics-based a 
1 Data intensive  
2 Specific for situation i 

3 Validity of threshold hij 

(simulation) 
experiments hi 

Yes 

a  Blumenthal et al. (2020) 
h Johnsson et al. (2021) 
i Mahmud et al. (2017) 
j Arun et al. (2021) 
 

Proximity based SMoS will be included in the Delphi study as these are objective metrics which can 
directly be observed in traffic. For this reason, they are widely used in all sorts of experiments. The 
question is whether or not these could be useful on a network level, especially given how potentially 
data intensive this could become. The validity of the threshold could also be a problem. This might be 
solved by taking a relative approach in which only the change in direction matter.  

 
Kinematic 
SMoS 

Deceleration, 
acceleration, 
swerving 

1 Easy to understand a 

2 Objective and physics-based a  
3 Suitable for several situations i 

1 Validity of 
threshold hij 

Naturalistic 
driving studies 
j 

Yes 

a  Blumenthal et al. (2020) 
h Johnsson et al. (2021) 
i Mahmud et al. (2017) 
j Arun et al. (2021) 

 
Kinematic SMoS are already being used in naturalistic driving test and form an easy to understand and 
objective metric. Additionally, they can be used for different types of situations, both when vehicles 
move in the same direction on one road and when they come from different directions like 
intersections. This could make them suitable for measuring traffic safety on a network level although 
the same problem about the validity of threshold values exists as with proximity based SMoS.  
 

Disengagement 
of ADAS 

ACC, LKA 1 Easy to measure a 1 Sensitive to context ak 

2 Low validity a 

3 Gameable a 

Field tests k No 

a  Blumenthal et al. (2020) 
k Schwall et al. (2020) 
 

Disengagement of ADAS has been used in the past to measure traffic safety but has since fallen out of 
favour. This is mainly due to how sensitive the disengagement of the ADAS is to the context which 
results in questions about its validity. Disengagement of LKA does not need to mean that a situation is 
unsafe, it could also be due to missing lane markings (the environment) or due to the fact that the 
driver does not like to use LKA anymore (the driver). Therefore, disengagement of ADAS is deemed to 
not be a suitable metric to assess traffic safety on a network level and is not included in the Delphi 
study.  
 

Engagement 
of ADAS 

BSW, ACC, LKA, 
FCW 

1 Easy to measure l ? 

 
Public-private pilotsmn Yes 

i Mahmud et al. (2017) 
m Interview with Vrijens, ministry of I&W, Appendix C 
n Kia Nederland (2021) 

 
Engagement of ADAS is used in pilot projects discussed in section 2.7 like the Road Monitor and Kia 
Insights from vehicle data. Similar to disengagement of ADAS, it is easy to measure and perhaps also 
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sensitive to the context in which it takes place. There are however two important differences. Firstly, 
FCW is a passive ADAS that only intervenes when necessary.  This makes that an engagement of FCW 
is more likely to be a sign of an unsafe situation than the disengagement of an active ADAS like LKA. 
Secondly, while disengagement of ADAS is discussed in scientific literature and deemed to not be valid, 
this is not the case for engagement of ADAS. No research into its validity was found, leaving this as an 
open question. Therefore, this is included in the Delphi study.  

 
Infractions Speeding 1 Statistically significant 

relationship with crashes a 

2 Could be compared to HDV a 

1 Context dependent a 

2 Relationship not well 
understood or strong a 

? No 

a  Blumenthal et al. (2020) 

 
While there is a statistically significant relationship between infractions and accidents, it is weak and 
not well understood. Additionally, just because there is a statistically significant correlation between 
the two, it does not necessarily mean that there is a causal relationship between the two. The context 
of the infraction is important as sometimes, as sometimes an illegal move like speeding is the safest 
move if it can help avoid an accident. Therefore, using infractions as a metric to assess safety on a 
network level is not a good idea and not included in the Delphi study.  

 
Holistic 
Roadmanship 
measures 

Safety envelop 
violation 

1 Objective and 
physics-based a 

1 No uniform definition of 
roadmanship ao 

2 Data intensive aop 

Still in 
development ao 

No 

a  Blumenthal et al. (2020) 
o Fraade-Blanar et al. (2018) 
p Wishart et al. (2020) 

 
Roadmanship is a concept coined by the RAND cooperation that aims to describe the ability of a vehicle 
to drive safely. It is an interesting development as it goes deeper than other metrics describe here and 
aims to be more holistic in its assessment. However, it is a new concept without a clear definition that 
is still in development. No papers were found specifically on this concept in the databases of 
ScienceDirect or Scopus. Therefore, it is deemed too underdeveloped and unknown to be useful and 
thus not included in the Delphi study.  
 
So, based on the analysis of the strengths and weaknesses of the types of indicators found in part 1, 
four types of indicators will be included in the Delphi study: 

• Dutch SPIs 

• Proximity based SMoS 

• Kinematic SMoS 

• Engagement of ADAS 
 

3.2.3 Additional questions included in round 2 
In addition to the questions where the experts had to evaluate either types of indicators or potential 
barriers, three other open questions were asked. The experts were invited to suggest types of 
indicators (question 1.5) and potential barriers (question 2.7) not discussed in the survey. This was 
done to help make sure all relevant types of indicators and potential barriers are included in the survey. 
Table 13 below shows the results, and it can be seen that both for the type of indicators and potential 
barriers one suggestion was made by several experts. 5 experts suggested to use driver distraction as 
a type of indicator for traffic safety. 5 experts suggested that the willingness of people to let their data 
be used for traffic safety research could be a barrier as well. Therefore, these two have been added as 
an additional type of indicator and as an additional potential barrier in the second round of the survey.   
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Table 13 The experts' answers to questions about additional types of indicators and potential barriers 

Question: Are there any other types of indicators based on vehicle sensor data not 
mentioned above that you think could potentially be a suitable indicator for measuring 
traffic safety at network level? 

Number of 
responses (N=16) 

Responses 
by experts 

N/A 5 

Driver distraction/driver behaviour 5 

Lane deviation (due to sleepy driver) 1 

ADAS active? 2 
Environmental/external conditions 2 

Infractions (running a red light)  1 

Question: Are there any other factors not mentioned above that you think could potentially be a barrier for 
implementing a system of using vehicle sensor data to measure traffic safety? 

Responses 
by experts 

N/A 5 

No 1 
Willingness of people to participate 5 

Storage of data 1 

Sufficient number of vehicles to get reliable results 1 

Organisational problems (combination of technical issues, economic 
viability, and willingness of stakeholders) 

3 

 

3.2.4 Number of rounds 
Typical for a Delphi study is the iterative character of it by asking question over several rounds (Belton 
et al., 2019; Fritschy & Spinler, 2019). But similarly to the number or selection of experts, there is no 
single answer to how many rounds the Delphi survey should have (Schmalz et al., 2021). Early Delphi 
studies that were highly focussed on reaching consensus used to have four rounds, but this has since 
then decreased to two or three rounds (Hasson et al., 2000). This is also shown in a review by Nowack 
et al. (2011) who found that a large majority of the Delphi studies they reviewed conducted two 
rounds, a minority three and only one did four rounds. The number of rounds usually depends on the 
set-up of the Delphi survey and on the time available (Hasson et al., 2000; Keeney et al., 2006). From 
the perspective of the experts are also two important aspects to consider. Too lengthy and complex 
Delphi surveys can lead to expert fatigue and thus a lower response rates over each subsequent round 
(Frewer et al., 2011; Fritschy & Spinler, 2019; Keeney et al., 2006). This already happens after two 
rounds, especially when experts are busy (Keeney et al., 2006). Additionally, most revisions of the 
expert’s own opinions happen after the first round and not afterwards (Fritschy & Spinler, 2019). 
So, for these reasons the Delphi survey in this study will consist of two rounds.  
 

3.2.5 Feedback to experts in round 2  
Next to anonymity and iteration, controlled feedback and statistical group response are the two other 
important characteristics of a Delphi study (Belton et al., 2019; Fritschy & Spinler, 2019). Controlled 
feedback refers to the feedback presented to the experts in the second round and is called “controlled” 
feedback because the researcher decides on the type of feedback and how it is presented (von der 
Gracht, 2012). This feedback usually consists of the statistical group response, possible augmented 
with qualitative feedback (von der Gracht, 2012).  
 
In this research, the controlled feedback that will be provided to the experts in the second round 
consists of a histogram showing the distribution of scores given by the experts in the first round to a 
specific question.  This gives the experts a visual overview of the scores given per question in the first 
round. This is augmented with qualitative feedback that consists of arguments brought up by the 
experts, both in favour and against. Not all arguments made in the first round are included in the 
survey to keep the workload for the experts reasonable. A selection is made of the most used 
arguments of which some are edited to remove any references that could reveal the identity of the 
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experts. Changes to improve the grammar or flow of certain arguments are made as well, although an 
effort is made to keep the arguments as much in the same wording as possible.  
Furthermore, a suggestion by Winkler & Moser (2016) (see 3.3 below) is followed for most questions 
to sort the arguments and put those contrary to the central tendency on top, to make sure that experts 
are confronted with opposite opinions and are thus forced to rethink their own opinion.  
 

3.2.6 Distribution of the Delphi survey 
The Delphi survey is sent to the experts via email in the form of a Word document, similarly to Fritschy 
& Spinler (2019). This method is chosen over dedicated survey software as this does not require an 
active internet connection, it is easy for the experts, it allows them to spent as much time as necessary 
and finally, because it provides an easy platform to transfer data to other digital platforms for later 
analysis (Toma & Picioreanu, 2016). 
Included in the questionnaire is an introduction including the goal and setup of the survey, and contact 
details, as recommended by Schmalz et al. (2021).  Because the research concerns human subjects, 
approval of the Human Research Ethics Committee of the TU Delft is sought which includes a Data 
Management Plan to ensure the privacy of the experts. The experts are notified of this in the 
introduction where they also give their informed consent to participating in the study.  
The questions are presented in a consistent format to let the experts get accustomed to the format, 
as suggested by Beiderbeck et al. (2021a). It also gives an estimate of the time necessary to complete 
the survey.  
 

3.3 Dealing with bias 
Even in carefully constructed questionnaires, several types of biases may still be present that 
negatively affect the results. Winkler & Moser (2016) have identified four types of bias and potential 
solutions as is summarised in table 14. Framing bias and Desirability bias can exist in both rounds of 
the survey while the Bandwagon effect and Belief-persevereance two are specific to the second round.  
 
Table 14 Types of bias present in Delphi studies bias (Winkler & Moser, 2016) 

Bias Explanation Solution 

Framing bias Presentation of questions influences 
the assessment of the issue 

1 Heterogeneity in panel 
2 More involved experts are less susceptible  
3 Explicit warning against framing (Cheng and Wu, 2010)   

Desirability 
bias 

Desirability of an event positively 
influences a person's likelihood 
judgment 

1 Design of Delphi study (rounds) 
2 Heterogeneity in panel 

Bandwagon 
effect 
 

Urge to confirm to the majority 
opinion 

1 Design of Delphi study (anonymity) 
2 Heterogeneity in panel 
3 Configuration of the provided feedback  
4 Consider not using statistical feedback 

Belief-
perseverance 

Experts may overweight their own 
judgment and underweight other 
available advice 

1 High-quality argumentative feedback 
2 Give participants one or two examples of good and 
poor reasons 
3 Make use of warning and counter- arguments 

 
Several of the counters against the biases have to do with nature and design of a Delphi study and with 
the composition of the expert panel, which have been discussed extensively in section 3.1. The quality 
of the feedback provided to the experts in the second round is important as well. According to Winkler 
& Moser (2016), not all arguments of experts from the first round should be included in the second 
round as feedback. The researcher should filter the arguments to prevent duplicates and low-quality 
arguments, instead, the feedback should “provide good cues about where the most accurate answers 
lie” (Winkler & Moser, 2016, p70). By doing this, a significant influence of bias should be prevented.  
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3.4 Analysis of the Delphi survey 
The analysis of the Delphi survey consists of several aspects that are discussed below. A syntax analysis 
is used to assess the commitment of experts. Non-response bias could influence the results and it is 
therefore checked if this is present. The level of agreement is used to measure consensus, but different 
metrics exist. This section will discuss which will be used in this research.   
 
Syntax analysis 
A syntax analysis of the explanations given by the experts in round 17 is conducted to show their level 
of engagement (Beiderbeck et al., 2021a).  The syntax analysis as is done in this study was originally 
developed by Förster & von der Gracht (2014) and also applied in Roßmann et al. (2018) and in 
Beiderbeck et al. (2021b). In a syntax analysis, the experts’ explanations are classified as whole 
sentences, phrases, catchwords, or no explanation. A high percentage of whole sentences indicates a 
high level of commitment and thus serves as a quality measure (Beiderbeck et al., 2021a).  
 
Non-response bias 
Influential research by Armstrong & Overton (1977) suggested that those who do not respond to 
physically mailed surveys may be substantially different from those who do respond, thus introducing 
bias. Hudson et al. (2004) showed that surveys distributed via the internet are not significantly 
different from physically mailed surveys in this aspect. One way of controlling for this bias is by 
comparing the answers of early respondents to those of late respondents (Díaz de Rada, 2005). This 
can be done by dividing the group of respondents in two by order of responses (Warth et al., 2013) or 
by those who responded initially and those who only responded after reminders (Díaz de Rada, 2005). 
The idea behind both methods is that the latter groups were more reluctant to answer the survey and 
thus are more similar to those who did not respond at all (Armstrong & Overton, 1977; Díaz de Rada, 
2005). If these two groups differ difference in a statistically significant way can be tested with a Mann-
Whitney U test (Piecyk & McKinnon, 2010; Warth et al., 2013).  

 
Level of agreement 
Measuring the level of agreement is often done in a rather simple way by defining a certain level of 
agreement such as an (absolute) majority or a standard deviation of ± 1.64 (von der Gracht, 2012). The 
choice for criteria and thresholds are usually made based on the goal of the study but are still chosen 
rather arbitrarily (von der Gracht, 2012). This study will use two established and robust metrics to 
measure the level of agreement to decrease this subjectivity: the IQR and the Coefficient of variation 
(V). 
An often used and seen as rigorous and objective metric of level of agreement is the IQR (von der 
Gracht, 2012). The IQR is a measurement of dispersion based on the median and is the difference 
between the 25th and the 75th percentile values. Thus, the range of the IQR depends on the size of the 
scale. On 5-point scales, an IQR of less than 1 is often used as a level of agreement that signals 
consensus (Raskin, 1994; Ray & Sahu, 1990) while 2 is used as a threshold on a 9-point scale (von der 
Gracht & Darkow, 2010) or on a 10-point scale (Linstone & Turoff, 1975; Scheibe et al., 2002). No 
research using both the IQR, and a 7-point scale was found, so a IQR of less than 1,5 will be used as 
threshold for having reached a satisfying level of agreement.  
Next to the IQR, the coefficient of variation (V) will be used to this end. V allows for comparing the 
distributions of answers on a scale like IQR but is based on the mean (von der Gracht, 2012). It is 
calculated as the standard deviation divided by the mean multiplied by 100 (English & Kernan, 1976; 
von der Gracht, 2012). It is interpreted as is shown in table 15.  
 

 
7 This analysis is only done for round 1 because in round 2 the explanation was optional (to decrease the 
workload for the experts filling in the survey).  
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Table 15 Coefficient of Variation (V) and consensus (English & Kernan, 1976; von der Gracht, 2012) 

Coefficient of variation (V) Decision rule 

0 < V  0,5 Good degree of consensus. No need for additional round 

0,5 < V   0,8 Less than satisfactory degree of consensus. Possible need for additional round. 

V > 0,8 Poor degree of consensus. Definite need for additional round.  

 
Stability over rounds 
In many Delphi studies, specific questions are not included in the subsequent round of the survey when 
a specific level of agreement is reached (von der Gracht, 2012). However, Dajani et al. (1979) discusses 
that a specific level of agreement can be meaningless when stability over rounds is not reached or not 
tested. Stability over rounds in this case means the stability of the group’s responses on a specific 
question, as opposed to individual stability. This is because the focus of a Delphi study is the opinion 
of the group (von der Gracht, 2012). 
Stability over rounds can be measured in a variety of ways but is usually measured based on the change 
in level of agreement over rounds (von der Gracht, 2012). This study uses two metrics to determine 
the level of agreement which both are based on the dispersion, namely IQR and the coefficient of 
variation (V). If these stays at a similar level or decrease, it signals stability or convergence of opinions 
on that question.  
Additionally, inferential statistics can be used to test for stability between rounds in a more robust way 
(von der Gracht, 2012). These can establish relationships among variables, in this case between the 
answers on the same questions of round 1 and 2. These answers are dependent as they are given by 
the same experts to the same questions (Argyrous, 1997). Therefore, a McNemar Chi-square test (in 
the case of interval scales) or a Wilcoxon matched-pairs signed-ranks test (in the case of ordinal scales) 
can be used to test if the differences in two sets of answers are statistically significant (von der Gracht, 
2012). Given the ordinal scales in this research the Wilcoxon signed rank test is used, where a p-value 
of lower than 0,05 indicates that there is a statistically significant difference between the two 
observations (at a 95% confidence level). This was in none of the 25 questions the case, meaning that 
in none of the questions, the answers from the first and second round differ in a statistically significant 
way.  
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4. Results 
 
The results of the Delphi study consist of the numerical answers of the experts to the questions, as 
well as their written explanations. This chapter will discuss these results and initial analysis. It is split 
in three parts that each serve a different goal. Descriptive statistics give an overview of the data and 
provide the basis for the feedback to the experts in the second round. Analysing and quantifying the 
degree of consensus (or dissent) is one of the main goals of a Delphi study (Diamond et al., 2014). 
Further analysis can help reveal where dissent comes from.  
 

4.1 Descriptive statistics 
This section will discuss descriptive statistics on both the experts and their responses, as well as on the 
actual quantitative results. The former shows the quality and level of engagement of the experts while 
the latter gives an overview of the data.  

 

4.1.1 Experts and engagement 
27 experts were invited to participate in the Delphi study. 16 experts completed round 1 which is a 
response rate of 59%. All experts that responded to round 1 met at least three of the five criteria 
formulated in section 3.1 with most of the experts scoring four or five out of five. On average, the 
experts had 11 years of experience with traffic safety and/or vehicle sensor data. This confirms a high 
level of expertise of the invited experts.  
Table 16 shows the distribution of experts over the three classes which is highly similar in both the 
group of invited experts and in the group that responded in both rounds 1 and 2. Academia (university 
researchers, SWOV and TNO) form a significantly larger group than the other two. Overrepresentation 
of one group could potentially introduce bias. However, given the nature of the topic - a future 
development – it makes sense to have a larger share of researchers than those with hands-on 
experience (industry) or a formal role (government).  
 

Table 16 Distribution of experts per class 

 
Invited Response R1 Response R2 

Government 6 22% 3 19% 2 18% 

Academia 17 63% 10 63% 7 64% 

Industry 4 15% 3 19% 2 18% 

Total 27 
 

16 
 

11 
 

 
In the Delphi survey the experts are asked to make an assessment on a 7-point scale and then explain 
why they make this assessment. In 90% of the questions of round 1, a score of 1 to 7 was given. The 
remaining 10% were mostly a 0, meaning “I do not know” or in a few cases were not filled in. Given 
the fact that the latter occurred only a few times and are spread out across questions and experts, not 
filled in scores are presumed to be the same as a 0.  
Table 17 below shows the syntax analysis for round 1. It can be seen that in total 74% of the 
explanations were given in whole sentences. This is a lower than the percentage of whole sentences 
in Beiderbeck et al. (2021b) (87%) but similar to those in Förster & von der Gracht (2014) (72%) and 
Roßmann et al. (2018) (78%) and signals a high degree of engagement by the experts. Table 17 also 
shows no large difference between part 1 (type of indicators) and part 2 (potential barriers). Only the 
share of phrases is larger in part 2 (13% vs 2% in part 1). This could be due to the differences in the 
questions. The questions in part 1 consisted of one textual explanation per four scores (for the four 
criteria). Part 2 asked for with one explanation per score which may require a less elaborate response.  
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Table 17 Syntax analysis (based on Förster & von der Gracht, 2014) 

 Part 1 (type of indicators) Part 2 (potential barriers Total 
Total Percentage Total Percentage Total Percentage 

Whole sentences 50 78% 104 72% 154 74% 

Phrases 1 2% 18 13% 19 9% 

Catchwords 0 0% 1 1% 1 0% 

No explanation 13 20% 21 15% 34 16% 

 
Splitting the group in half based on response order showed no significant differences between the 
groups. Splitting the group by those who received a reminder and those who did not showed one 
question (1.2c: sensitivity of proximity based SMoS) where a statistically significant difference was 
found at an alpha of 0.05 (p=0.039). Since only one out of twenty-five questions showed a statistically 
significant difference for one of the approaches, it can be concluded that no strong non-response bias 
is present.  
 

4.1.2 Quantitative results  
Descriptive statistics in a Delphi study often includes the central tendency (in the form of the mean or 
median) and the dispersion (e.g. standard deviation) (von der Gracht, 2012). The mean is often used 
in Delphi surveys to show the central tendency, although this is strictly speaking not correct. A Likert 
scale is an ordinal scale, making the mean an invalid statistic and thus the median the preferred choice 
for a metric of central tendency (von der Gracht, 2012). Additionally, the median is less sensitive to 
outliers than the mean (Gordon & Pease, 2006; von der Gracht, 2012).  
Consequently, the standard deviation technically not the correct statistic to show the dispersion of the 
experts’ assessments, as it is based on the mean. Instead, Interquartile Range (IQR) will be used as it 
is a measure of dispersion for the median. The IQR is the distance between the 25th and the 75th 
percentile values (De Vet et al., 2005). Therefore, a value below 1 means that more than 50% of the 
scores are within one point on the scale (De Vet et al., 2005). Tables 18 and 19 below show the 
descriptive statistics for round 1  
 

Table 18 Descriptive statistics Delphi survey part 1 

Type of indicator Criteria Round 1 Round 2 

N Median Mean IQR SD N Median Mean IQR SD 

1: Dutch SPIs Validity 16 5 5,3 1 1,2 11 5 5,2 1 1,0 
Reliability 16 6 5,6 0,25 1,4 10 6 6,0 0 0,7 

Sensitivity  15 5 5,3 1 1,3 11 5 5,4 1,5 1,5 

Understandability  16 6 5,9 1 1,5 10 6 6,1 0 0,6 

2: Proximity 
based Surrogate 
Measures of 
Safety (SMoS) 

Validity 15 6 5,4 1 1,4 11 6 5,5 1 0,8 

Reliability 14 5 4,6 1 1,2 10 5 4,8 0 1,1 
Sensitivity  13 5 5,0 1 1,2 11 5 5,4 1 0,7 
Understandability  15 5 4,5 2 1,7 11 5 4,5 1 1,4 

3: Kinematic 
based Surrogate 
Measures of 
Safety (SMoS) 

Validity 15 5 5,5 1 0,9 11 6 5,5 1 0,8 
Reliability 15 6 5,5 1 1,2 11 5 5,0 2 1,3 
Sensitivity  13 5 5,2 1 0,8 10 5 5,0 0 0,7 

Understandability  15 5 5,1 2 1,3 11 5 4,9 2 1,3 

4: Engagement 
of ADAS 

Validity 15 6 5,6 1,5 1,4 11 6 5,5 1 1,2 
Reliability 15 6 5,3 2,5 1,4 11 5 4,9 2 1,6 
Sensitivity  13 5 5,1 2 1,4 11 5 4,9 1 1,2 
Understandability  15 6 5,5 1 1,0 11 5 5,5 1 0,8 

5: Driver 
distraction 

Validity - - - - - 8 5 5,4 1 0,9 
Reliability - - - - - 8 4 4,0 2 1,3 

Sensitivity  - - - - - 8 4,5 4,8 1,25 0,9 

Understandability  - - - - - 9 5 5,3 1 1,0 
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Table 19 Descriptive statistics Delphi survey part 2 

Potential barrier 

Round 1 Round 2 

N Median Mean IQR SD N Median Mean IQR SD 

Technical feasibility (collecting data 
within a single vehicle) 

16 4 3,8 2,25 1,6 11 4 3,6 1 1,2 

Technical feasibility (extracting and 
processing data from a fleet) 

15 4 3,9 1 1,4 11 4 4,0 1,5 1,0 

Legal feasibility 15 5 5,1 1,5 1,2 11 5 5,3 1 1,1 

Economic feasibility 14 4,5 4,4 1 1,5 10 4 4,1 1,75 1,4 

Cybersecurity 14 4 4,5 2 1,5 11 4 4,5 2 1,4 

Willingness of OEMs 15 5 5,0 1,5 1,4 10 5 4,8 0,75 1,2 

Willingness of suppliers 8 5 4,5 3,25 1,9 6 4 4,0 2 1,5 

Willingness of service providers 12 2 3,0 1,25 1,5 9 2 2,8 1 1,3 

Willingness of people - - - - - 11 5 4,1 2 1,6 

From pilot to reality 14 4,5 4,3 2,5 1,6 10 4,5 4,6 2 1,7 

 

4.2 Analysing consensus 
Measuring consensus is an essential part of any Delphi survey, yet defining consensus has proven to 
be difficult (von der Gracht, 2012). Defining and measuring consensus can, and is, done in a large 
variety of ways, as is shown and discussed by von der Gracht (2012). An important conclusion of von 
der Gracht (2012) is that measuring consensus consists of two aspects: the level of agreement and the 
stability of opinions over rounds.  
 

4.2.1 Level of agreement  
Using the IQR and coefficient of variation (V) as metrics for the level of agreement, it can be concluded 
that in part 1 consensus is reached after two rounds on the majority of the questions (on 16 out of 20 
questions). Table 20 shows the level of agreement for part 1 in rounds 1 and 2 while table 21 shows 
this for part 2. The V is well below the threshold of 0,5 in all questions. The IQR is above the threshold 
of 1,5 on four criteria, spread out over three types of indicators. In part 2, consensus is reached on five 
out of ten potential barriers after the second round. The remaining five do not reach consensus of 
which one is the Willingness of people which was only asked in the second round.  

Table 20 Level of agreement in part 1 

Type of indicator Criteria 

Round 1 Round 2 

IQR V Consensus? IQR V Consensus? 

1: Dutch SPIs Validity 1 0,23 Yes 1 0,19 Yes 

Reliability 0,25 0,24 Yes 0 0,11 Yes 

Sensitivity  1 0,24 Yes 1,5 0,28 Yes 

Understandability  1 0,26 Yes 0 0,09 Yes 

2: Proximity based 
Surrogate Measures of 
Safety (SMoS) 

Validity 1 0,26 Yes 1 0,15 Yes 

Reliability 1 0,25 Yes 0 0,24 Yes 

Sensitivity  1 0,23 Yes 1 0,13 Yes 

Understandability  2 0,38 No 1 0,32 Yes 

3: Kinematic based 
Surrogate Measures of 
Safety (SMoS) 

Validity 1 0,17 Yes 1 0,15 Yes 

Reliability 1 0,22 Yes 2 0,27 No 

Sensitivity  1 0,16 Yes 0 0,13 Yes 
Understandability  2 0,25 No 2 0,26 No 

4: Engagement of ADAS Validity 1,5 0,24 Yes 1 0,22 Yes 

Reliability 2,5 0,27 No 2 0,33 No 

Sensitivity  2 0,28 No 1 0,25 Yes 

Understandability  1 0,18 Yes 1 0,15 Yes 

5: Driver distraction Validity - - - 1 0,17 Yes 

Reliability - - - 2 0,33 No 

Sensitivity  - - - 1,25 0,19 Yes 

Understandability  - - - 1 0,19 Yes 
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Table 21 Level of agreement in part 2 

Potential barrier 

Round 1 Round 2 

IQR V Consensus? IQR V Consensus? 

Technical feasibility (collecting data within a single 
vehicle) 

2,25 0,43 No 1 0,33 Yes 

Technical feasibility (extracting and processing data 
from a fleet) 

1 0,35 Yes 1,5 0,25 Yes 

Legal feasibility 1,5 0,23 Yes 1 0,21 Yes 

Economic feasibility 1 0,33 Yes 1,75 0,35 No 

Cybersecurity 2 0,33 No 2 0,31 No 

Willingness of OEMs 1,5 0,27 Yes 0,75 0,26 Yes 

Willingness of suppliers 3,25 0,43 No 2 0,39 No 

Willingness of service providers 1,25 0,51 No 1 0,47 Yes 

Willingness of people - - - 2 0,37 No 

From pilot to reality 2,5 0,37 No 2 0,39 No 

 

4.2.2 Stability over rounds  
In round 2, experts were given the chance to revaluate their own scores and change them if they 
wished based on the additional information provided. 54 changes were made out of the 258 possible 
changes (20,9%). The largest number of changes per expert was twelve while three experts did not 
make any change. On average each expert made approximately five changes while the median number 
of changes is four. 35% of the changes were in a positive direction, meaning for part 1 a higher score 
was given on a criteria for a type of indicator while for part 2 a potential barrier was evaluated as 
lower. Consequently, 65% of the changes were in a negative direction. The proportion of changes were 
similar for both parts.  
Of all the revisions, the large majority (81,5%) were changes of one point on the scale and the 
remainder of two points in the scale. One change was the exception with a change of -4, which can be 
attributed to a misunderstanding of the question in round 1 based on the comment made by the 
expert.  
While the share of revisions made is a little lower than those in Fritschy & Spinler (2019) and Roßmann 
et al. (2018) with 25% and 37% respectively, the proportions of upwards and downwards revisions are 
similar (61% up/39% down and 56% up/44% down in Fritschy & Spinler, 2019, and Roßmann et al., 
2018) 
 
Tables 23 and 24 below show whether or not consensus exists in rounds 1 and 2, based on the IRQ and 
V. It then shows how this has changed between the two rounds and if there is a converging trend.  A 
change occurred in 6 questions out of 25 (16 in part 1, 9 in part 2). Twice this change was from 
consensus to dissent and four times from dissent to consensus.  In the latter, both the IQR and the V 
become smaller indicating a decline in the dispersion of answers. This should ideally be the case for all 
questions as this signals a greater degree of consensus in the second round. In 19 out of 25 questions 
this convergence does take place. In the six questions where no convergence can be observed, two 
questions go from consensus in round 1 to dissent in round 2 while two questions have dissent in both 
rounds. This means that two questions have no converging trend from round 1 to round 2 but still stay 
below the threshold for consensus in both rounds.  
The last column finally shows whether further analysis is done. Further analysis is done when no 
consensus is reached after the second round to reveal why this is the case. This will be done in the next 
section for the seven questions where no consensus was reached after two rounds and for two of the 
additional questions where no consensus was reached in the first and only round.  
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Table 22 Consensus and stability in part 1 

Type of 
indicator 

Criteria Round 1 Round 2 Comparison Further 
research? IQR V Con-

sensus? 
IQR V Con-

sensus? 
Change 
R1 to 
R2? 

IQR 
change 

(%) 

V 
change 

(%) 

Wilcoxon 
signed 

rank test 
(p-value) 

Conver-
ging? 

1: Dutch 
SPIs 

Validity 1 0,23 Yes 1 0,19 Yes No 0 -16 0,102 Yes No 

Reliability 0,25 0,24 Yes 0 0,11 Yes No -100 -51 0,157 Yes No 

Sensitivity  1 0,24 Yes 1,5 0,28 Yes No 50 15 0,564 No No 

Understandability  1 0,26 Yes 0 0,09 Yes No -100 -63 0,257 Yes No 

2: Proximity 
based 
Surrogate 
Measures of 
Safety 
(SMoS) 

Validity 1 0,26 Yes 1 0,15 Yes No 0 -43 1.000 Yes No 

Reliability 1 0,25 Yes 0 0,24 Yes No -100 -7 0,317 Yes No 

Sensitivity  1 0,23 Yes 1 0,13 Yes No 0 -46 0,564 Yes No 

Understandability  2 0,38 No 1 0,32 Yes Yes -50 -14 1.000 Yes No 

3: Kinematic 
based 
Surrogate 
Measures of 
Safety 
(SMoS) 

Validity 1 0,17 Yes 1 0,15 Yes No 0 -10 0,083 Yes No 

Reliability 1 0,22 Yes 2 0,27 No Yes 100 24 0,317 No Yes 

Sensitivity  1 0,16 Yes 0 0,13 Yes No -100 -14 1.000 Yes No 

Understandability  2 0,25 No 2 0,26 No No 0 5 0,317 No Yes 

4: 
Engagement 
of ADAS 

Validity 1,5 0,24 Yes 1 0,22 Yes No -33 -8 0,317 Yes No 

Reliability 2,5 0,27 No 2 0,33 No No -20 23 0,317 No Yes 
Sensitivity  2 0,28 No 1 0,25 Yes Yes -50 -12 0,157 Yes No 

Understandability  1 0,18 Yes 1 0,15 Yes No 0 -17 0,317 Yes No 

5: Driver 
distraction 

Validity - - - 1 0,17 Yes - - - - - No 

Reliability - - - 2 0,33 No - - - - - Yes 

Sensitivity  - - - 1,25 0,19 Yes - - - - - No 

Understandability  - - - 1 0,19 Yes - - - - - No 

 
Table 23 Consensus and stability in part 2 

Potential barrier Round 1 Round 2 Comparison Further 
research? IQR V Con-

sensus? 
IQR V Con-

sensus? 
Change 
R1 to 
R2? 

IQR 
change 

(%) 

V 
change 

(%) 

Wilcoxon 
signed 

rank test 
(p-value) 

Conver-
ging? 

Technical feasibility 
(collecting data within a 
single vehicle) 

2,25 0,43 No 
 

 

1 0,33 Yes Yes -56 -23 0,317 Yes No 

Technical feasibility 
(extracting and 
processing data from a 
fleet) 

1 0,35 Yes 1,5 0,25 Yes No 50 -29 0,655 No No 

Legal feasibility 1,5 0,23 Yes 1 0,21 Yes No -33 -9 0,18 Yes No 

Economic feasibility 1 0,33 Yes 1,75 0,35 No Yes 75 8 0,564 No Yes 

Cybersecurity 2 0,33 No 2 0,31 No No 0 -8 0,414 Yes Yes 

Willingness of OEMs 1,5 0,27 Yes 0,75 0,26 Yes No -50 -6 0,317 Yes No 

Willingness of suppliers 3,25 0,43 No 2 0,39 No No -38 -10 0,317 Yes Yes 

Willingness of service 
providers 

1,25 0,51 No 1 0,47 Yes Yes -20 -9 0,317 Yes No 

Willingness of people - - - 2 0,37 No - - - - - Yes 

From pilot to reality 2,5 0,37 No 2 0,39 No No -20 4 0,083 Yes Yes 
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4.3 Further analysis 
Common explanations for dissent include the presence of outliers, bipolarity in the responses, and 
different opinions by different stakeholder groups (Beiderbeck et al., 2021a; Warth et al., 2013). 

 

4.3.1 Outlier analysis 
Outliers in a dataset can unrealistically influence the mean and standard deviation (Warth et al., 2013) 
as well as the IQR (Beiderbeck et al., 2021a). Checking for outliers can be done by converting the scores 
into standardised z-scores and highlighting those more extreme than the absolute value of 2,58 (the 
99% confidence level) (Beiderbeck et al., 2021b; Warth et al., 2013).  Fritschy & Spinler (2019) check 
for outliers by visually inspecting the boxplots in SPSS which automatically flag outliers. Both methods 
do not show any outliers for the nine questions analysed in this section and thus rule out outliers as a 
possible reason for the present dissent.   

 

4.3.2 Bipolarity analysis 
Bipolarity is a second explanation for dissent because it reveals any possible opposing groups of 
experts with different opinions (Dajani et al., 1979). If bipolar opinions are present, they will almost 
always prevent consensus (Beiderbeck et al., 2021a). Checking for bipolarity can be done by visually 
inspecting the histograms (Beiderbeck et al., 2021b; Warth et al., 2013) and by checking for multiple 
modes (Beiderbeck et al., 2021b; Scheibe et al., 2002). Out of the nine questions without consensus, 
four have multiple modes as can be seen in figures 16 and 17. In three of these four cases, the modes 
are also not directly next to each other8. Cybersecurity as a potential barrier is also included in figure 
17 even though it does not have two modes, but it does clearly have two different groups of opinions 
not directly adjacent to each other.  
 

 
The bipolarity apparent in reliability of both engagement of ADAS and driver distraction could not be 
confirmed based on the qualitative comments of the experts. In the questions regarding types of 
indicators, a single explanation was asked for the four scores given on the four criteria to prevent the 
Delphi survey from becoming too long and burdening the experts too much. As a consequence, 
however, not all experts discuss reliability in their qualitative answers, meaning that too little 
information is available to discuss the apparent bipolarity in these individual criteria in a valid way.  
This is different for the questions regarding potential barriers where each score given is accompanied 
by a comment. The apparent bipolarity in cybersecurity, willingness of suppliers, and willingness of 
people as potential barriers could be confirmed based on the comments made by the experts, as will 
be discussed below. 

 
8 In the 20 other questions that did reach consensus, only four have multiple modes which also lie directly 
adjacent. This strengthens the case that the bipolarity observed in the five cases here does indeed prevent 
consensus, and that in the other 20 cases no bipolarity exists.  

Figure 16 Histograms of the questions that appear to have bipolar opinions in part 1 
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In the case of cybersecurity being a potential barrier, all experts agree that there are significant risks, 
but the disagreement lies in how well these can be contained. On one hand, those who do believe the 
risks can be minimised refer to “recent advances in cybersecurity and data protection protocols” or to 
the fact that “the communication of the data is not time critical and vehicle decisions are not based on 
it”. On the other hand, different experts point data leaks in relation to privacy laws, the consequences 
for public user acceptance, and one expert made the link between the risk of cybersecurity attacks and 
the willingness of OEMs to facilitate the sharing of data as no OEM would “jeopardize the IT security 
for a better software service level, at least not now”. 
There are also two groups of opinions on the extent to which the willingness of suppliers a barrier is 
to the implementation of a system where vehicle sensor data is used to measure traffic safety. One 
group points out that with a sufficient economic incentive, suppliers will be willing to cooperate. The 
other group believes that suppliers are unlikely to be willing to participate in any sharing of data as it 
would threaten their IP and competitive position. 
Willingness of people as a potential barrier is divisive as well. Those who think it is a strong barrier 
believe that people are not willing to share their data because they will not see the benefits, especially 
when the data can be linked to traffic violations. Other experts see it more as a moderate barrier with 
one expert expecting “some discussion at the introduction but people will forget it over time” by 
making a comparison to the public acceptance of smartphones and the data those collect. Other 
experts propose incentives for the sharing of their data and point to the fact that not all vehicle owners 
would need to share their data, only a (representative) part.  
 

4.3.3 Stakeholder group analysis 
The stakeholder group bias is the third and final analysis that could explain a lack of consensus. 
Different stakeholder groups could hold different perspectives on the same topic due to different 
interests (Warth et al., 2013). A Mann-Whitney test can be used to assess if statically significant 
differences between stakeholders exist (Beiderbeck et al., 2021a; Warth et al., 2013). This research 
has clearly defined stakeholder groups which were used in the expert selection (academia, 
government, and industry). Only for the potential barrier economic feasibility statistically significant 
(p-value <0,05) differences were found between the stakeholder groups academic and industry. The 
industry rated this as a higher barrier (median score of 6) than the academia (median score of 4).  
That no other statistically significant differences were found, does not necessarily mean that these 
differences do not exist. The limited size of the different stakeholder groups in this research means 
that large differences would need to exist in the dataset to achieve statistical significance (Norman, 
2010). Small differences may exist in a larger population of experts, but these are not found in the 
current expert population due to the sample being too small. Therefore, Beiderbeck et al. (2021a) 
suggests that each stakeholder group should consist of at least 15 to 20 participants, which is not the 
case in this research.  
 

Figure 17 Histograms of the questions that appear to have bipolar opinions in part 2 
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4.4 Overview of results 
This section shows and discusses the results of the second round of the Delphi survey for both part 1 
and part 2.  
 

4.4.1 Results part 1 
Table 24 below shows the five types of indicators and the median and mean scores given per criterion. 
The scale runs from 1 to 7 where a higher score means that the experts agree more that this type of 
indicator scores well on that criterium. The median score is more robust than the mean, which is still 
presented for comparison. In most cases the median and mean are close to each other while in several 
cases the difference is up to 0,5 points.  
 
Table 24 Median, mean, minimum, and maximum scores (7-point scale) on type of indicators per criteria where the Asterix 

(*) means no consensus 

 Validity Reliability Sensitivity Understandability 

Median Mean Min. Max. Median Mean Min. Max. Median Mean Min. Max. Median Mean Min. Max. 
Dutch SPIs 
 

5,0 5,2 3 6 6,0 6,0 5 7 5,0 5,4 2 7 6,0 6,1 5 7 

Proximity 
based SMoS 

6,0 5,5 4 7 5,0 4,8 2 6 5,0 5,4 4 6 5,0 4,5 1 6 

Kinematic 
based SMoS 

6,0 5,5 4 6 5,0* 5,0* 3 7 5,0 5,0 4 6 5,0* 4,9* 2 6 

Engagement 
of ADAS 

6,0 5,5 3 7 5,0* 4,9* 2 7 5,0 4,9 3 7 5,0 5,5 4 7 

Driver 
distraction 

5,0 5,4 4 7 4,0* 4,0* 2 6 4,5 4,8 4 6 5,0 5,3 4 7 

 

As the table shows, the median scores given by the experts are quite closely together. Most median 
scores are 5,0, followed by 6,0. The median scores of 4,0 and 4,5 are present only once each.  
 

The Dutch SPIs, like Safe speeds and Safe participants, scores the highest on reliability and 
understandability of all types of indicators. These scores are also grouped more closely together than 
in the other types of indicators, as figure 18 shows. Multiple experts mention that this type of indicator 
represents “basic safety conditions (…) which are pretty easy to collect and analyse”.  Especially the 
example of safe speeds is highlighted by several experts as understandable for policymakers. 
Additionally, “speed limits have always been and will continue to be important for safety”. It does 
however “not give a complete picture on safety” as one research expert states: “For example, if one 
drives at 50kph in a highway, one follows the speed limit, but one also creates a hazard to others.” 
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Proximity based SMoS like TTC score high on validity which is confirmed by several experts highlighting 
that it is a “very good precursors of crashes” and “represents critical situations well”. Like the Dutch 
SPIs, proximity based SMoS are context dependent, but unlike those, it also needs a threshold which 
comes with additional problems. One academic expert states that “deciding what the threshold should 
be, has a big impact on what is actually measured” and points out that this might need to change over 
time as “the introduction of AVs might change what we think of as a critical TTC value.” As can be seen 
in figure 18, the experts do rate it as quite sensitive, more so than the other type of indicators while it 
is seen as less understandable for policy makers.  
 

Kinematic based SMoS such as acceleration, deceleration, and swerving did not reach consensus on 
reliability (IQR = 2, V = 0,27) and on understandability (IQR = 2, V = 0,26). Figure 18 shows that for both 
of these criteria, the scores given by the experts are spread out over a relatively wide range, 3 to 7 and 
2 to 6 respectively. Some experts believe that it can be measured reliably with one expert claiming 
that: “longitudinal [movement] (acceleration/deceleration) is easier to measure compared to lateral 
[movement] (swerving)”. Other experts disagree: “Due to the nature of these variables, there are many 
errors and noises in measuring them via accelerometers, and other devices”.  
Interestingly enough, one academic expert claims that “the scientific evidence for the correlation 
between harsh acceleration and crashes is weak” while a second academic expert says that “there 
seems to be research that links the behaviours you listed (e.g., hard breakings) with collisions”. This 
will be further discussed in chapter 5 Discussion. 
 
In the case of engagement of ADAS such as FCW, AEB, and BSW, most experts seem to agree that in 
essence these engagements signal serious potential conflicts and that they are quite easy to measure. 
However, the experts also see a variety of practical obstacles, mainly that “a warning from FCW will 
be different from one OEM to another OEM”. Additionally, some experts have concerns about the 
reliability (e.g., AEB/FCW false positive) and that the systems change/improve over time, resulting in 
several experts identifying harmonisation as a key aspect.  
Two experts have more fundamental critique on this type of indicator. The activation of these ADAS is 
based on “some pre-defined thresholds on indicators of safety like TTC or acceleration”. Therefore, 
they conclude that one might as well just measure those directly.  
 
The suitability of driver distraction as measured by DDAW is only asked about in the second round of 
the Delphi survey as it was added based on suggestions made by the experts in the first round. 
Therefore, the stability of consensus could not be measured. Nevertheless, consensus was reached on 
three out of four criteria with reliability (IQR = 2, V = 0,33) as the exception. This type of indicator has 
the lowest median scores of all with 4,0 and 4,5 for reliability and sensitivity respectively. 
Experts point out the large differences between DDAW systems of different OEMs, much more than 
those discussed in the previous type of indicator.  Additionally, “driver distraction results in specific 
kind of accidents”. It would make more sense to relate this to specific locations or types of roads than 
to use this to measure the safety performance of the entire network, as this “gives insights in where 
drivers are distracted or what circumstances contribute to distraction. 
 

4.4.2 Results part 2  
The results of the second part of the Delphi study, on potential barriers for the implementation of a 
system of measuring traffic safety on network level based on vehicle sensor data, are summarised in 
figure 19. This figure shows the boxplot for each potential barrier which includes both the minimum 
and maximum of the answers given, as well as the median and first and third quartile.  
Five out of ten potential barriers have a median score of 4 (moderate barrier) and only one is lower, 
willingness of service providers (2, weak barrier). Willingness of people has a median score of 4,5 while 
the remaining three have a median score of 5, meaning a somewhat strong barrier. So, most potential 
barriers identified in the literature review are confirmed by the experts as such, but none of them are 
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seen as strong or even insurmountable barriers. These barriers are discussed below, with the exception 
of those who did not reached consensus due to bipolarity and are discussed in the previous section 
(willingness of suppliers, cybersecurity, willingness of people). 
 
 

 
Figure 19 Boxplots potential barrier where the black dot denotes the median score and the Asterix (*) means no consensus. 

Scale: 1= No barrier at all, 2 = Weak barrier, 3 = Somewhat weak barrier, 4 = Moderate barrier, 5 = Somewhat strong 

barrier, 6 = Strong barrier, 7 = insurmountable barrier 

Willingness of service providers is seen as a weak barrier because “they will see this as new business”. 
This is supported by an industry expert, claiming that “there are more Service Providers than buyers 
in the connected car industry, including safety data”. Additional data from service providers may not 
even be needed according to another experts, disregarding this as a barrier altogether.  
 
The technical feasibility of collecting the data is split in two separate barriers: collecting data within a 
single vehicle, and extracting, processing, and storing data from a fleet of vehicles. Collecting data 
within a single vehicle necessary to report any of the in part 1 discussed indicators is seen by the 
experts as a moderate barrier. Most experts agree that it is technically possible to collect data within 
a vehicle but that it is “depending on the indicator of interest and the sensor suit present in the 
vehicle”. Of course, “there are a lot of existing vehicles on the road that are NOT connected in any way, 
due to their age”. While the experts agree that it should be possible, one government expert refers to 
experience with a recent pilot using the ExVe/Neutral Server concept and claims it “it works ok but has 
a lot of flaws and loose ends that have not been solved yet.”  
Extracting, processing, and storing the data from a fleet of vehicles from a technical point of view is 
also seen as a moderate barrier. While several experts point at the required efforts and costs to do 
this, especially “given the volume and privacy requirements” most experts agree that “it seems very 
feasible, especially in a country like the Netherlands with great data coverage and a strong network.” 
The difficulty will lie more in “ensuring the data is comparable between different manufacturers” and 
in “having all OEM installing the technology (especially for low-cost vehicles)”.  
An additional open question on the topic of technical feasibility was asked. The experts were asked if 
the answers they gave about technical feasibility would be different for any of the specific types of 
indicators. The experts do not believe that large difference would exist. However, as table 25 shows, 
four experts point out that combining data from multiple sensors requires more computing power, 
making it slightly more difficult  
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Table 25 The experts' answers to a question about differences in their answer on the technical feasibility for any of the 

discussed specific types of indicators 

Question: Would there be a difference in your answers on the technical feasibility for any of the 
discussed specific types of indicators? 

Number of 
responses 

(N=16) 

N/A 4 
No 6 

I do not know 2 

It does not necessarily depend on the type of indicator, but on the sensors that are required to 
measure that type of indictor. Example: proximity based SMoS (like TTC) needs data on predecessor, 
meaning that data from different sensors needs to be combined which requires more computing 
power  

4 

 
Economic feasibility is seen as a moderate barrier as well, although no consensus is reached on this 
potential barrier (IQR = 1,75, V = 0,35) with scores spread quite evenly between 2 and 6. The experts 
agree that it makes sense for the government to be interested in this data but that “it might be difficult 
to specify the benefits of network-level safety evaluation to OEMs.” Experts do not agree on whether 
or not a business case for OEMs exists, while this is a crucial factor: “OEMs can stay in a negative 
business case longer than service providers, but without an eco-system the whole connected industry 
will struggle”. And while the business case improves “if the indicators can be measured with sensors 
already onboard”, an important issue is the role of legislation and the accompanying uncertainty and 
risks.   
 
Willingness of OEMs is seen as a somewhat strong barrier by the experts. On one hand, several experts 
state that OEMs are reluctant to share data, as “they are responsible for the safety of the vehicle and 
its data”. On the other hand, it may just be “a point of economic benefit and regulation” as one 
academic expert states. These economic benefits are disputed by an industry expert: “Making €10M 
is nice, but that is only a spec for the bigger OEMs”. Experts point out that regulation already plays a 
role with EU Act 2013/886 mandating access to road safety data and the fact that the data is owned 
by the consumer under the Data Act, meaning that “the OEM can only share this data with consent of 
the consumer, or on a legal base.” 
 
This legal feasibility is seen as a somewhat strong to strong barrier because “legislation can make or 
break the business”. The main relevant legislations discussed by experts are the GDPR and EDPB 
Guidelines for personal data - in which “lots of vehicle sensor data is considered as personal data and 
needs thus consent of the owner [to be collected and processed]”. Additionally, new legislation is 
underway with the proposed EU Data Act and future sectoral legislation on vehicle data which is 
currently open for public consultation.  
Several experts point out that while legislation can be changed, this would require strong EU support 
and a lot of time and effort. And even then, a legal requirement to provide data and insights may need 
compensation for OEMs to not threaten the market in the long run, as one expert points out.  
 
Going from pilots to reality is seen by some experts as a weak to somewhat weak barrier while most 
experts rate it as a somewhat strong barrier. The former group argues that pilots are a good way to 
start and that “anyone doing a pilot (with reason), has the ambition to scale up”. The latter sees this 
differently and sees this as “a big, steep hill to climb”. Besides the fact that all barriers discussed needs 
to be overcome, it would require harmonization of data and/or interfaces of different OEMs which “is 
difficult and time consuming”. 
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5. Discussion 
 
Vehicle automation has been seen as a promising solution to many problems including traffic safety 
and is as such a popular topic. However, there is limited insight into the real-world effects of vehicle 
automation on traffic safety. At the same time, measuring traffic safety is an essential step in 
monitoring and evaluating traffic safety policies. The current practice uses traffic deaths and severe 
injuries as indicators for traffic safety at network level which has several shortcomings, mainly that it 
is a reactive approach. 
 

5.1 Added value of this research 
This study explores if a more proactive approach can be viable where data is collected by vehicles 
equipped with ADAS. In doing so, it contributes to the existing body of knowledge in several ways. 
Firstly, it looks into what type of proactive indicators would be suitable to apply in the specific context 
of measuring traffic safety at network level. Given the benefits of leading indicators, many studies exist 
on this topic but often in an isolated view or focussed on the development of a single leading indicator 
(Arun, Haque, Bhaskar, et al., 2021). Based on a literature review, this study provides an overview of 
different types of indicators that could be based on vehicle sensor data for a specific and practical goal: 
measuring traffic safety at network level.  
Secondly, this research discusses to what extent vehicle sensor data can be used to measure traffic 
safety. Less research exists on this topic. By studying academic literature, policy documents and 
evaluations of pilots involving vehicle sensor data, this study has collected and discussed several 
potential barriers for using vehicle sensor data in practice. As far as the author could find, no 
comprehensive discussion of overview of such potential barriers exists in the current academic 
literature.  
But thirdly and most importantly, this research evaluates both several types of indicators and potential 
barriers for using vehicle sensor data to measure traffic safety at network level at the same time using 
a Delphi survey. It therefore allows for a fair comparison between different types of indicators for the 
application in this context. Additionally, in existing literature potential barriers for collecting and using 
vehicle sensor data is only discussed in a general and limited fashion. This study provides an overview 
of multiple potential barriers and then builds on it by letting experts evaluates the potential barriers. 
Because this is done in the same survey by the same experts, it can give an insight into how the 
potential barriers relate to each other in terms of size.  

 

5.2 Discussion on results 
Limited differences are found in the median scores given by the experts between the types of 
indicators and the criteria (table 25, p55). Almost all types of indicators score quite high at all criteria 
with most median scores being five or six on a scale of seven.  
This could be because not all types of indicators identified in the literature review were presented to 
the experts, but only those that were seen as the most promising types of indicators. Additionally, the 
types of indicators could also be too similar, especially Proximity based SMoS, Kinematic based SMoS 
or Engagement of ADAS. If this is the case, only limited differences are present between these types 
of indicators, and all could potentially be used to measure traffic safety at network level.  
It could also be the case that only limited differences are found for other reasons. The types of 
indicators could also appear to be too similar to the experts, either due to unclear questions or to lack 
of expertise of the experts (to be discussed below). In either case, further research is required which 
will be discussed under recommendations. 
 
The results regarding potential barriers for collecting and using vehicle sensor data are clearer. Most 
of the potential barriers initially identified in the literature review are confirmed as such by the experts. 
However, none of the barriers are rated as insurmountable which provides perspective for 
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implementing any system that uses vehicle sensor data in practice. So, does that mean that it would 
be possible to use vehicle sensor data to measure traffic safety?  
The experts agree that, while some challenges need to be overcome, from a technical point of view it 
should be doable to both collect data within a vehicle and to share it through an ExVe/neutral server 
as discussed in section 2.5. Both service providers and suppliers to the vehicle manufacturing industry 
should be willing to cooperate based on this research as they see it as new business.  
There are however four sizable barriers that need to be overcome of which legal feasibility is the 
largest. Privacy regulations are discussed by all experts because these dictate if and in what form data 
can be collected and extracted from vehicles. Several experts also discuss the uncertainty surrounding 
upcoming regulation. The EC has proposed the Data Act which aims to regulate the access and use of 
all data generated in the EU across all economic sectors (European Commission, n.d.-b), and a public 
consultation has just finished on additional legislative measures concerning access to in-vehicle 
generated data for vehicle-related and mobility services (European Commission, n.d.-a). While the aim 
of this additional sectoral legislation is to help implement the Data Act and aims at “creating benefits 
from different economic, social and environmental perspectives” it is also focused on the protection 
of intellectual property of OEMs and personal data of consumers (European Commission, n.d.-a). At 
this point, it is not known how the additional sectoral legislation would look like, but it has the potential 
to have a significant impact on any effort to use vehicle sensor data for measuring traffic safety. This 
will determine the framework and amount of room available to use vehicle sensor data to measure 
traffic safety, if any at all.  
The second important barrier is the willingness of OEMs to cooperate. On one hand, the experts think 
that OEMs are reluctant to share any data because of market competition or because of costs 
consideration. On the other hand, experts point out that costs might be relatively low since sensors 
are already present in most new vehicles, and OEMs could be (partly) compensated for remaining costs 
of data extraction and processing. Additionally, regulation could force OEMs to share certain types of 
data. This is not without precedent as OEMs are already obliged to share SRTI data and data from eCall 
or the Event Data Recorder (EDR) in the case of an accident (see section 2.4).  
Although the experts do not reach consensus on willingness of people to cooperate, it can be 
established that this is third barrier that needs to be overcome, especially as the new Data Act will 
allow people more control over their own data and who can access it (European Commission, n.d.-b). 
Experts believe that people may be unwilling to share their data for several reasons. From a privacy 
perspective people can be opposed to sharing their data which will especially be the case if the data 
could be linked to traffic violations. Although it is unlikely that this would even be possible in practice 
because of privacy regulations, it is the perception of people that matters. The willingness of people 
to share data could depend on what personal benefits people gain from it, experts point out. This could 
range from quite abstract benefits as contributing to traffic safety to individual reports or even 
insurance benefits, as one expert states. Important to note is that in both the pilot Kia Insights from 
vehicle data and the Road Monitor a large share of the people invited were willing to cooperate.  
The fourth barrier that needs to be addressed according to all experts is cybersecurity. And while all 
agree that it is an important topic, disagreement remains on how far the risks of cyberattacks or data 
leaks can be contained. Further research efforts should be made to better understand this, especially 
as these risks could tie into other important factors such as willingness of people and OEMs to 
participate.  
 
Next to these four barriers that need to be overcome, two points are brought up by most experts 
throughout the Delphi survey. The first point is that there are no standards for ADAS so an OEM can 
build and define it in the way they want to. This means that a warning from FCW will be different from 
one OEM to another OEM. Using an FCW as a proxy for a traffic conflict could therefore mean that a 
vehicle from one OEM would signal this potentially dangerous situation while another vehicle from a 
different OEM would not. The same goes for the thresholds for proximity based or kinematic SMoS. 
Experts therefore point at the need for standardization and harmonization. 
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The second point experts make is that all vehicle sensor data comes from relatively new (roughly less 
than four years old as one government expert estimates) or high-end vehicles that have these sensors. 
This is only a (currently small) portion of all vehicles on the roads in the Netherlands. Does this modern 
subset of all vehicles represent the entire fleet of vehicles in a fair way? Related to this is the suggestion 
of a government expert to only select a subset of all potential vehicles any, as monitoring all vehicles 
may be very time and cost intensive.  This would require so assumptions for extrapolation, which in 
turn could lead to measurement error in data. An important sidenote that must be made here is that 
the proportion of vehicles equipped with at the sensors needed to measure the types of indicators 
discussed in the Delphi survey, will increase steadily in the coming years as these are necessary for 
those ADAS that become compulsory in all new vehicles in 2024. 
 

5.3 Wider context 
No single indicator can tell the entire story of safety. It is important to stress that any type of indicator 
discussed here is aimed to supplement the current practice of measuring traffic at network level with 
severe injuries and fatalities.  
In proposing to use leading indicators based on vehicle sensor data it is important to keep in mind that 
only a portion of all traffic is able to collect data.  Motorised vehicles such as cars and trucks can have 
sensors and forms of automation that are able to collect data which could eventually be used to 
measure traffic safety, but other modes of transport like bicycles, pedestrians, or motorcycles to some 
extent cannot do that. As a result, it will be difficult to directly measure the traffic safety of these road 
users. This is not unlike the current situation, but it does come with a bigger problem. Evaluating traffic 
safety policies based on vehicle sensor data will favour those policies that increase the traffic safety of 
motorised traffic. It therefore risks that this increased traffic safety could come at the expense of 
others not represented in these indicators and as a result make it less safe for vulnerable road users. 
If it would be possible from both a legal and a technical perspective to measure any of the proposed 
indicator per road type (highway, provincial roads, urban streets, etc), this would be less of an issue. 
These indictors could then be treated more cautiously on those road types where many vulnerable 
road users are present.  
 
Furthermore, it be noted that the assumption behind using proximity based SMoS, kinematic based 
SMoS, and engagement of ADAS as indicators is that these signal traffic conflicts which are proxies for 
accidents. And while traffic conflicts are regarded as suitable proxies for accidents (Arun, Haque, 
Bhaskar, et al., 2021), they still have their limitations. According to Arun, Haque, Bhaskar, et al. (2021) 
there are two main theoretical models to explain the relationship between crashes and traffic conflicts: 
statistical association and causal relationship. Both models would work as the theoretical basis behind 
the idea of this study, but it is important to note that additional validation is needed to confirm the 
relation between traffic conflicts and crashes, as is pointed out by several experts and by Arun, Haque, 
Bhaskar, et al. (2021) and Arun, Haque, Washington, et al. (2021).  
The types of indicators evaluated in the Delphi survey may also measure different types of traffic 
conflicts. Proximity based SMoS based on TTC can only measure traffic conflicts when two vehicles 
move in the same direction and ignore evasive action, measuring only rear-ended accidents (Arun, 
Haque, Bhaskar, et al., 2021). Kinematic SMoS do not have this limitation. However, kinematic SMoS 
will miss any dangerous traffic conflict where no evasive action is taken, either by swerving, braking, 
or acceleration. Additionally, it may be reasonable to assume that thresholds for kinematic SMoS 
based on strong accelerations or decelerations should be different for different types of vehicles and 
perhaps speeds. A certain acceleration could be reasonable when entering a highway while the same 
acceleration would be dangerous in a city centre. Finally, using engagement of ADAS such as FCW is 
limited by how the OEM has implemented the FCW which could depend on the speed of the vehicle.  
It can be concluded that there is reason to believe that not all types of indicators discussed here are 
suited for every road type, or that varying thresholds should be used. Taking a relative approach to 
thresholds may be an interesting direction as well, as discussed in section 2.3. Further research should 
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be conducted to identify and validate specific thresholds for specific types of indicators for specific 
road types. Depending on this, it may be a good approach to use multiple types of indicators as they 
can identify different types of traffic conflicts.  
The Dutch SPIs and Driver distraction based on DDAW do not signal traffic conflicts but underlaying 
risks associated with accidents such as speeding and distracted driving. These give insight into how 
these risks exist in practice and can be a starting point for developing specific policies to target these 
specific risks.  
 
Using leading indicators instead of the current lagging indicators is a step forward as it solves some of 
the problems discussed in section 2.2. It does however not solve them all. The ethical issue of having 
to wait for sufficient dangerous traffic situations to happen before measures can be justified to 
improve traffic safety still exists. It may lead to quicker policy responses to dangerous developments 
in traffic than with lagging indicators, but it still requires those dangerous events to happen.  
New issues may arise as well. If OEMs are going to collect more data and share that data with the 
government or potentially with other parties with the aim to increase traffic safety, special attention 
should be paid to other public interests such as privacy. Nissenbaum (2004) has developed the notion 
of privacy as a contextual integrity, which means that any gathering of data should be appropriate to 
a specific context, and not be used for anything else to prevent risking “driving to the panopticon9 ” 
(Reiman, 1995). Zimmer (2005) builds upon this in the specific context of intelligent vehicles and points 
at the importance of designing technology in such a way that privacy is insured by design. And while 
the notion of privacy by design has been incorporated in EU regulation (Onderzoeksraad voor 
Veiligheid, 2019), fear for the large scale gathering of data by the government or companies remain, 
for example in news media (Hofman, 2021; Modderkolk, 2020; Teeffelen, 2022) and in the Dutch 
parliament (van Huffelen, 2022; Van Nieuwenhuizen, 2019). It is therefore important that any future 
discussion or research should not just approach this research from a purely “technical” point of view 
focussing on how and under what conditions the large-scale collection of data can take place, but also 
on whether or not this should be desirable and appropriate. Ideally, these discussions should not just 
be confined to for example academic researchers but be part of a larger political and societal debate, 
not only specifically on the collection of vehicle sensor data alone, but in a wider context.  
 

5.4 Methodological limitations 
Much is written on the validity and reliability of the Delphi method, see for example Förster & von der 
Gracht (2014), Hasson et al. (2000), Landeta (2006), and von der Gracht (2012). However, as Belton et 
al. (2019) conclude, Delphi method is not a standardized technique and its form can vary between 
studies. It is therefore of limited use to discuss the reliability or validity in general terms, but more so 
to focus on the individual execution (Belton et al., 2019). This study has tried to execute the Delphi 
method in the best way possible, following advice from academic literature on the Delphi method (see 
chapter 3).  
Belton et al. (2019) discusses that reliability (the ability to produce similar results when the study is 
repeated) is difficult to establish for a Delphi study, although there have been studies in the past that 
found similar results across two separate panels. One type of reliability that could be tested is the 
intra-respondent test-retest reliability where experts are asked the same question twice in different 
wordings (Belton et al., 2019). This comes however at the drawback of a much lengthier survey and 
may risk a higher expert dropout, which is the reason why this is not applied in this research.  

 
9 The panopticon is a specific type of prison design where all cells can be surveilled from one point, used by the 
French philosopher Michel Foucault as an metaphor for the mechanisms of large-scale social control (Reiman, 
1995) 
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Content validity (the extent to which a survey measures what it is supposed to measure) and what 
Belton et al. (2019) calls external validity (the extent to which findings can be generalized to a wider 
population) can be enhanced by making sure that the experts involved form a representative, 
heterogenous, and large enough sample of relevant experts, that are motivated and have enough 
opportunity to give their input (Belton et al., 2019; Okoli & Pawlowski, 2004). This study has aimed to 
reach these goals by using the expert continuum model to help capture a wide and heterogenous range 
of experts involved in the topic. Additionally, criteria are used to establish a minimum level of 
expertise. Experts were also given the opportunity to give both quantitative as qualitative input at each 
question, as well as several open-ended questions to give the experts the chance to give any input they 
wanted. The syntax analysis (table 16, p46) showed that they used these opportunities, showing a high 
level of commitment.  
Based on ranges suggested in academic literature (5 to 20, 7 to 15, 10 to 18, 15 to 20, see section 3.1) 
the goal of this study was to include 10 to 15 experts which was reached with eleven experts 
completing both rounds. It is however important to note that given the wide range the backgrounds 
of experts, the research would have benefited from more experts, especially from the government and 
industry. This would either have solidified the current opinions or may have added additional input. 
Doing this would increase the external validity.  
Moreover, the Delphi survey focused on two topics: types of indicators for measuring traffic safety and 
potential barriers for using vehicle sensor data to do so. It is acknowledged that while a relation is 
made between these topics in this study, it still requires separate knowledge that not all experts may 
have. In turn, this could have influenced the results. This is partly countered by adding the option “I do 
not know” at each question, which experts also used throughout the survey, showing their awareness 
of their own lack of knowledge. One expert even only answered questions in the second part of the 
survey, acknowledging the limits of its knowledge. Additionally, the design of a Delphi study helps in 
this regard, by letting experts reevaluate their own opinions in the second rounds based on additional 
arguments brought up by other experts. It can be reasoned that experts with less knowledge on a 
specific question would be more likely to reevaluate their answer from the first round. However, it can 
be assumed that more experts would have helped to alleviate this issue.  
 
The external validity could also be increased by better assessing the expertise of the involved experts. 
This could have been done with self-rating in an intra-individual way as proposed by Ward et al. (2002) 
or by using deep surface variables as proposed by Spickermann et al. (2014). Both were not viable in 
this study due to a lack of in-depth psychologic knowledge of the author, as well as practical and time 
constraints. A third way in which this issue could be addressed is by splitting the parts into two separate 
Delphi surveys with two separate panels. This would have as additional benefit that the survey would 
be shorter, which could either make it easier for experts to answer it or which could be used to ask 
more or more in-depth questions. It may also have given room to increase the intra-respondent test-
retest reliability in the way as suggested by Belton et al. (2019) and discussed above. However, this 
would have required substantially more effort to recruit sufficient experts for two panels. It would also 
have required more time and effort to develop and execute both surveys.   
Lastly, the quantitative data that followed from the Delphi survey is of ordinal scale, as the data can 
be categorised and ranked but it cannot be presumed that the intervals between values are equal 
(Norman, 2010). Therefore, in the papers of Beiderbeck et al. (2021a) and Belton et al. (2019), which 
provide a practical guide of developing a Delphi survey, the usage of only non-parametric statistics and 
tests is recommended. However, an extensive academic discussion exists on this topic with where 
researchers like Argyrous (1997) and Jamieson (2004) take this point of view while others such as 
Norman (2010) and Shields et al. (1987) argue that parametric tests can be used as well. Some argue 
that the data can be treated as being of interval level (e.g. Shields et al., 1987) while others (e.g. 
Norman, 2010) do not contest that answers on a Likert scale are of ordinal level, but rather argue that 
parametric tests are robust enough to be used in analysis. In practice, both are used, although not 
always based on a clear consideration (von der Gracht, 2012). This research followed to strict 
interpretation of Beiderbeck et al. (2021a) and Belton et al. (2019) to stay on the cautious side. Other 
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effects may have been found using a less strict approach in for example statistical differences between 
the two rounds or between stakeholder groups.  
 

5.5 Recommendations  

The aim of this research was to explore if data collected by vehicles equipped with ADAS can be used 
to measure traffic safety at network level in a more proactive approach than the current approach. As 
demonstrated above, this research has made several contributions towards the academic knowledge 
of this topic. However, as an explorative research, it also serves as a starting point for further analysis. 
This discussion highlights several areas that require further efforts, both in (academic) research (1) as 
in more practical oriented ways by the Dutch ministry of Infrastructure and Water Management (2).  

1. The results of the Delphi study seem to indicate that all of the four initially included types of 
indicators could potentially be used to measure traffic safety at network level. However, more 
scientific research is required to understand:  

a. Why limited differences are found in the Delphi survey between the different types of 
indicators. 

b.  Which types of indicators signal which types of accidents. This would on one hand 
allow for a better understanding of their meaning if they would be measured in reality, 
and on the other hand allow for a more conscious and informed choice on what 
(combination of) type of indicators should be measured. 

c. How valid the relationship is between traffic conflicts measured by these types of 
indicators and crashes, on different road types. 

d. Which thresholds would be suitable for any type of indicator per road type. 
2. Next to academic research, more applied research should be organised by the ministry of 

Infrastructure and Water Management on the two topics below. This research can be 
conducted by various actors, such as the SWOV, TNO, or consultancy firms, possible in 
combination with academic researchers.  

a. Differences between vehicle sensors and ADAS of different OEMs should be 
understood if the indicators are based on vehicle sensor data. A way to deal with the 
differences should be developed or a push for a standard and harmonisation should 
be made. While it may be difficult or even undesirable to harmonise sensors and ADAS, 
any indicator should be clearly defined so all OEMs can report the same measure.  

b. Related to this is the need for research on how well the share of vehicles that are 
equipped with such sensors represent the entire vehicle fleet in the Netherlands. This 
determines how, or how well, this subset of the vehicle fleet can represent all vehicles. 

3. The following actions need to be undertaken by the Dutch ministry of Infrastructure and Water 
Management according to this research, to address the barriers for using vehicle sensor data 
to measure traffic safety: 

a. A legal analysis should be developed to identify the legal room for using vehicle sensor 
data for measuring traffic safety. This should take the proposed Data Act into account, 
as well as the upcoming additional sectoral legislation on this topic. This would require 
some time, as these are in development at the moment. 

b. A discussion should be opened with OEMs (either directly or through ACEA) to better 
understand how willing they are to cooperate in a system where they will be required 
to collect and share vehicle sensor data, and under what conditions. This will 
determine how such a system would be able to exist (economic benefit for the OEMs, 
because of the OEMs reputations, or if they would need to be forced by legislation, 
etc.).  

c. Included in this discussion should be the issue of cybersecurity and in how far the risks 
related to cybersecurity can be contained. This may require not just the input of the 
OEMs but also the internal knowledge of the ministry of Infrastructure and Water 
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Management on this topic, as well as external input from consultancy firms of 
academic researchers.  

d. In any implementation of such as system, it is important to take the consumer and its 
privacy seriously. Allow them to give informed consent of sharing their data and clearly 
communicate to what end it will be used. Make clear who has access to what data, so 
it is also clear what can or cannot be done with the data. This will help to increase the 
willingness of people to cooperate.  
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6. Conclusion 
 
This research has explored the idea of using data collected by vehicles to measure traffic safety at 
network level. Much research is carried out into vehicle automation and its effect on traffic safety, 
although the size of the safety benefits of a combination of ADAS in practice remains unclear. At the 
same time, the current practice of using fatalities and severe injuries as indicators for measuring traffic 
safety at network level has several problems, mainly that it is a reactive approach that only measures 
severe crashes which are rare. Being able to monitor the effects of any policy intervention, and of 
vehicle automation specifically, on traffic safety is important to evaluate current policies and develop 
new policies to address existing issues. This has given rise to the idea of using data collected by the 
vehicles themselves to measure traffic safety at network level. This vehicle sensor data could allow for 
using proactive indicators that could measure traffic conflicts, traffic interaction that are dangerous 
but do not necessarily result in an accident. As these traffic conflicts are much more common, traffic 
safety could be measured in a more proactive way, solving some of the problems of the current 
practice.  
 
This has led to the following research question: (How) can data from sensors of vehicles equipped with 
ADAS be used to measure traffic safety at network level? There are two aspects to this question. First 
comes the theoretical aspect of how traffic safety can be measured with indicators based on vehicle 
sensor data. What should be measured? The second aspect is more practically focussed and discusses 
whether or not it is feasible to collect, process and use vehicle sensor data in practice. 
 
To identify potential feasible and suitable types of indicators based on vehicle sensor data for 
measuring traffic safety at network level, a literature review is carried out. As this is a relatively novel 
idea, limited academic research exists on this topic. Therefore, existing indicators for measuring traffic 
safety are discussed that could be adapted to use vehicle sensor data as a source. Expert judgement 
in the form of a Delphi study is used to assess how suitable those indicators would be for measuring 
traffic safety at network level. The four most promising types of indicator identified in the literature 
review were evaluated both in a quantitative and qualitative way on four criteria over two rounds by 
a panel of experts, plus one additional type of indicator suggested by several of the experts. The panel 
consisted of eleven experts from with various backgrounds, ranging from government to academia to 
industry to ensure sufficient heterogeneity and varying perspectives.  
The experts rated four of the five types of indicators in a favourable way, with limited differences in 
median scores given. This could mean that all these types of indicators would be suitable and feasible 
to measure traffic safety at network level. That limited differences are found could however also be 
due to the study design or the expert panel. Further research is required to assess whichever is the 
case.  
The same combination of literature research and Delphi study is applied to identify barriers for 
collecting and using vehicle sensor data in practice. From this can be concluded that there are no 
insurmountable barriers that prevent using vehicle sensor data in practice. However, there are four 
sizable barriers that need to be addressed: legal feasibility, willingness of OEMs to cooperate as well 
as people’s willingness to cooperate and cybersecurity. Any usage of vehicle sensor data must happen 
within the regulatory framework set by privacy regulations. The new Data Act proposed by the EC will 
give consumers more control over their own data, increasing the importance of the willingness of 
people to cooperate. Upcoming additional sectoral legislation tied to this Data Act may have significant 
impact on the conditions under which the collection of vehicle sensor data may take place although at 
this point it is unknown how this legislation will look like.  Additionally, the questions of how well the 
subset of vehicles equipped with the sensors necessary to collect the vehicle sensor data represents 
the entire vehicle fleet needs to be answered, as well as how to deal with differences between systems 
of different OEMs.  
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So, the answer to the main research question - (how) can data from sensors of vehicles equipped with 
ADAS be used to measure traffic safety at network level- is that it depends. If certain conditions are 
met, it should be possible to collect and use vehicle sensor data to measure traffic safety. The main 
condition is that there should be legal room available under the proposed Data Act and on the 
upcoming additional sectoral legislation. It is therefore recommended to conduct a legal analysis when 
the regulations are published.  
It is important to note that the aim of this research was not to give a conclusive answer on how vehicle 
sensor data can be used to measure traffic safety, but to explore this novel idea and see if it would be 
possible at all. If the legal analysis of the upcoming regulations gives room for collecting vehicle sensor 
data, this research has proven that there are sufficient possibilities to warrant further research and 
discussions into using vehicle sensor data for measuring traffic safety.  
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Appendix A Scientific paper 
 
Starting on the next page is a scientific paper summarising the research.
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Abstract 
Current indicators for measuring traffic safety such as fatalities and severe injuries 
are reactive and lagging indicators.  With the rise of automation in vehicles, the 
opportunity may arise to measure proactive and leading indicators. This research 
uses the knowledge of experts on traffic safety and/or vehicle sensor data to 
evaluate the suitability of five types of indicators to measure traffic safety based 
on vehicle sensor data. It also evaluates ten potential barriers for using vehicle 
sensor data in practice. While limited differences are found between the types of 
indicators, none of the potential barriers is rated as unsurmountable by the 
experts. In doing so, this research proofs that it would be possible to measure 
traffic safety with vehicle sensor data and provides a starting point for further 
research

 

1. Introduction  
In the Netherlands, traffic safety policies have been in 
place for decades and currently have the ultimate goal 
to reach zero traffic fatalities by 2050 (Ministerie van 
Infrastructuur en Water Managemant, 2018). Traffic 
safety policies aim to influence the operational 
conditions of road traffic, resulting in less accidents, 
fatalities, and injuries which in turn reduces the total 
social costs associated with accidents (SWOV, 2005). At 
least, if the traffic safety measure is designed and 
implemented correctly. In order to assess whether or 
not an implemented safety measure is effective – and 
to see if the costs are proportionate to the benefits – it 
is important to monitor its effects on traffic safety (L. T. 
Aarts, 2018; SWOV, 2005). Measuring traffic safety is 
not only important for monitoring the effect of safety 
measures, but also for estimating current (specific) 
aspects of traffic safety and for comparison with other 
countries (ETSC, 2001). 
No model exist that can fully explain traffic safety, with 
all the relevant factors and their corresponding 
importance (Stipdonk, 2013). So, indicators are used to 
measure traffic safety instead. And while it is important 
to note that no single indicator exists that can fully 
describe traffic safety (Fraade-Blanar et al., 2018), the 
two most important and widely used indicators are the 
number of fatalities and number of severe injuries (L. 
Aarts et al., 2021). These indicators have a clear and 
uniform definition, resulting in relatively high quality of 
the data and are easy to understand for both the 
general public and policy makers (Blumenthal et al., 
2020). Given their long use it also is possible to compare 
trends over time (Stipdonk, 2013). In other words, 
fatalities and severe injuries can “tell the final story on 
if it is safe or not.” (Blumenthal et al., 2020, p12). 
These indicators are however not without their 
problems. There often are problems with 
underreporting of both fatalities and severe injuries 

which are not uniformly distributed throughout time 
and (most likely) over types of crashes (SWOV, 2016, 
2020a). These crashes are also subject to random 
fluctuations (Chang et al., 2017; ETSC, 2001). But most 
importantly, crashes are rare occurrences (see figure 1) 
which makes (statistical) analysis more difficult (Chin & 
Quek, 1997; Tarko, 2012). 
 

 
Figure 1 Hydén’s Safety Pyramid (Chang et al., 2017) 

Using severe injuries fatalities as indicators to monitor 
and evaluate traffic safety measures is a reactive 
approach in which a sufficiently large number of 
accidents need to occur, before a problem can be found 
and addressed. Many researchers (Arun et al., 2021; 
Chin & Quek, 1997; Mahmud et al., 2017; Tarko, 2012; 
Wang et al., 2020) mention that this raises ethical 
questions as people first need to crash before action can 
be taken to prevent those crashes and fatalities.  
 
These issues can be alleviated by using leading 
indicators. Leading indicators are proactive indicators 
that measure events leading up to accidents, meaning 
that accidents do not need to happen before traffic 
safety can be measured (L. T. Aarts, 2018). So, they 
measure the types of traffic conflicts lower in the Safety 
Pyramid of Hydén which can serve as surrogates or 
proxies for lagging indicators (Fraade-Blanar et al., 
2018). An often-used definition for a traffic conflict is 
the definition by Amundsen & Hyden (1977): “traffic 
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conflicts are an observable situation in which two or 
more road users approach each other in space and time 
to such an extent that there is a risk of collision if their 
movements remain unchanged” (in Arun et al., 2021, 
p4). 
Measuring these traffic conflicts requires data that can 
be gathered by observational data with fixed point 
sensors as discussed by for example Talal et al. (2020) 
and Young et al. (2014) or with on-board data collection 
as is often done in a Naturalistic Driving Study 
(Grimberg et al., 2020; Vlakveld, 2019). Both methods 
have their issues where the former is limited by its fixed 
location and resulting less variety (Talal et al., 2020; 
Young et al., 2014) while the latter is expensive because 
of the need to retrofit vehicles with a range of sensors 
and a way to store and transmit data, resulting in 
relatively short data collection methods with a limited 
number of vehicles (Grimberg et al., 2020; Talal et al., 
2020; Vlakveld, 2019).  
The rise of the share of vehicles equipped with ADAS 
may provide an opportunity to overcome this problem. 
Vehicles equipped with ADAS already have a range of 
sensors aboard to facilitate the ADAS and are often 
connected with built-in SIM cards (Ecorys, 2020). The 
question can be raised if these can be used to measure 
leading indicators for traffic safety. After all, if in an 
ideal world all vehicles would be able to collect and 
transmit data on driving behaviour, it would be possible 
to conduct what is essentially a Naturalistic Driving 
Study on an unprecedented scale.  
 
 This research aims to explore if and how the emergence 
of data produced by vehicles equipped with ADAS can 
be leveraged to measure traffic safety in practice. The 
research question central to this study is the following: 
(how) can data from sensors of vehicles equipped with 
ADAS be used to measure traffic safety at network 
level? 
The research will focus on two aspects of this question: 
what type of indicators could be used to measure traffic 
safety based on vehicle sensor data, and is it feasible to 
use vehicle sensor data in practice?  
To develop types of indictors based on vehicle sensor 
data, a literature review is carried out into existing types 
of indicators for measuring traffic safety. It will look at 
existing indicators used by policymakers to measure 
traffic safety at network level, as well as into indicators 
for evaluating traffic safety at vehicle level as used in 
scientific literature to assess the performance of 
vehicles equipped with ADAS. These indicators are then 
adapted to be based on vehicle sensor data. Experts on 
traffic safety and/or vehicle sensor data evaluated 
these types of indicators in the form of a Delphi study. 
Similarly, potential barriers for using vehicle sensor data 
in practice are identified in scientific literature and 
policy documents and evaluated by experts.  

This research is scientifically relevant because it helps 
contribute to the body of knowledge of traffic safety 
evaluation. This research helps to explore if data 
collected by vehicles could help overcome some of the 
currently existing issues and ultimately improve the way 
in which traffic safety is measured currently. 
This also has a clear societal relevance because it can 
help to better evaluate traffic safety policies, decrease 
the number of accidents, reach the goal of Vision Zero 
and ultimately save lives. 
 

2. Literature review 
The first part of the literature review focusses on 
currently existing and used types of indicators for 
measuring traffic safety and an overview is given in 
table 1.  
 

2.1 Types of indicators for measuring traffic safety 
Dutch SPIs 
In the Netherlands, the concept of risk-based policy 
(risciogestuurd beleid) is develop where the idea is to 
map and reduce risks in traffic (Ministerie van 
Infrastructuur en Watermanagemant, 2018). These 
risks are measured in various Safety Performance 
Indicators (SPIs) focussing on various areas related to 
traffic safety such as roads, drivers, or speeds(L. T. 
Aarts, 2018; Ministerie van Infrastructuur en 
Watermanagemant, 2018). Stipdonk (2013) emphasises 
the importance of taking exposure (in any form) into 
account, which is done in the SPIs by defining all the SPIs 
as the “share of…”, and not just the “number of…” (L. T. 
Aarts, 2018).  
 
Proximity based SMoS 
Surrogate Measures of Safety (SMoS) are indicators 
aimed at measuring traffic conflicts  (Johnsson et al., 
2021; Laureshyn et al., 2016) There is a large variety of 
SMoS, as is shown by Mahmud et al. (2017) who have 
identified 38 SMoS in their literature review. However, 
two SMoS are used significantly more than any other, 
namely time-to-collision (TTC), and post encroachment 
time (PET) (Johnsson et al., 2021; Laureshyn et al., 
2016).  
TTC is the time remaining until an accident occurs if two 
vehicles maintain their current course and speed 
(Mahmud et al., 2017). TTC is mainly used for rear-end 
type of crashes or for hitting pedestirians or objects like 
a parked vehicle (Mahmud et al., 2017). For measuring 
of modelling traffic safety on inttersections, 
PostEncroachment Time (PET) is more suitable 
(Mahmud et al., 2017). PET is the time between one 
vehicle leaving a certain point or area and the arrival of 
a second vehicle at that point or area (Arun et al., 2021). 
Both are called proximity based SMoS as these are 
based on proximity in time (Mahmud et al., 2017). 
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Kinematic based SMoS 
Kinematic based SMoS are based on deceleration or 
acceleration (Arun et al., 2021; Mahmud et al., 2017) 
and are often prefered in naturalistic driving studies 
(Arun et al., 2021). The reasoning is that in urban areas 
the most common evasive action to avoid collision is 
deceleration (Johnsson et al., 2018). Therefore, (strong) 
deceleration could indicate a potentially dangerous 
situation. This could be defined in a relatively simple 
way in which each event in which the strength of the 
deceleration exceeds a threshold is counted (Arun et al., 
2021). More elaborate indicators have also been 
developed as described by Mahmud et al. (2017). They 
describe the Deceleration Rate to Avoid the Crash 
(DRAC) which also considers vehicle in front. 
The main advantage of kinematic based SMoS is 
 
that they are easy to understand, objective and physics-
based and that they can be used in several different 
situations (Blumenthal et al., 2020; Mahmud et al., 
2017). It is therefore used in naturalistic driving studies 
(Arun et al., 2021). Next to deceleration, acceleration 
could be used in a similar way, as well as evasive action  
in the form of swerving (Johnsson et al., 2018). Johnsson 
et al. (2018) does however report that no validation 
studies have been carried out into deceleration-based 
indicators.  
 
Engagement of automation 
In the past, disengagement of the automation in a 
vehicle is used as proxy for unsafe situations but has 
since fallen out of use (Blumenthal et al., 2020; Fraade-
Blanar et al., 2018). The main reason for this is how 
sensitive disengagement is to the circumstances like the 
environment and the driver (Blumenthal et al., 2020). 
Table 1 Overview of indicators used to measure traffic safety 

a  Blumenthal et al. (2020) 
b Stipdonk (2013) 
c Chang et al. (2017) 
d Tarko (2012) 
e ETSC (2001) 
f SWOV (2020c) 
g Aarts (2018) 

In recent pilots, engagement of specific types of ADAS 
in the vehicle such as Forward Collision Warning (FCW) 
or Automatic Emergency Braking (AEB) is used as a 
proxy for an unsafe situations. After all, these are safety 
systems that warn the driver or intervene when the 
system detects that an accident is imminent 
(Onderzoeksraad voor Veiligheid, 2019). No discussion 
of using engagement of these systems as a measure for 
safety was found in academic literature.  
 

2.2 Potential barriers for using vehicle sensor data 
in practice 
Scenario for using vehicle sensor data 
The vehicle sensor data collected by the vehicle is 
owned by the OEM and while it is possible to collect 
data with aftermarket devices, this is not very suited for 
large scale data-collection (Ecorys, 2020). Therefore, 
any effort for large scale collection would require 
cooperation with OEMs. A potentially large market 
exists around mobility data which has the interest of 
OEMs which could make them willing to cooperate and 
supply vehicle sensor data to the government for 
measuring traffic safety (McKinsey, 2018). Forcing 
OEMs to share specific data concerning safety is also not 
without precedent, as current Regulation (EU) No 
886/2013 (2013) already obliges OEMs to collect and 
share data about specific cases, the Safety Related 
Traffic Information (SRTI).  
The most likely model to share large amounts of vehicle 
sensor data between OEMs, the government and 
potentially third parties is the extended vehicle 
(ExVe)/neutral server model as proposed by European 
Automobile Manufacturers’ Association (ACEA) which 
see it as the only solution that can guarantee sufficient 
security and safety of the data (Ecorys, 2020).  
 

h Johnsson et al. (2021) 
i Mahmud et al. (2017) 
j Arun et al. (2021) 
k Presumed to be similar to disengagement of ADAS 
l Interview with Vrijens, ministry of I&W, Appendix B 
m Kia Nederland (2021) 

 

Category Specific examples Strengths Weaknesses Current usage 

Lagging indicators Fatalities, severe 
injurie 

1 Easy to understand a 
2 Uniform definition a 
3 Historical data available ab 
4 High validity a 

1 Reactive approach cd  
2 Rarity of occurrence d 

3 Does not give insight into process ce 

4 Subject to random fluctuations ce 

5 Data incompleteness b 

network level f  

Dutch SPIs Safe participants, 
safe speeds 

1 Help to give insight g 

 
1 Still being implemented g 

2 Little data available g 
Still in development, aims for 
network level at national, 
regional, and local scale g 

Proximity based 
SMoS 

TTC, PET  1 Directly observable in traffic h 

2 Objective and physics-based a 
1 Data intensive  
2 Specific for situation i 

3 Validity of threshold hij 

(simulation) experiments hi 

Kinematic SMoS Deceleration, 
acceleration, 
swerving 

1 Easy to understand a 

2 Objective and physics-based a  
3 Suitable for several situations i

 

1 Validity of threshold hij Naturalistic driving studies j 

Engagement of 
ADAS 

BSW, ACC, LKA, FCW 1 Easy to measure ak ? 
 

Public-private pilots lm 
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In this model, vehicle sensor data is transmitted 
encrypted to dedicated servers of the OEM which can 
then make (processed) data available to third parties 
(TRL, 2017). This can be done directly or indirectly 
through the neutral server to allow third parties an 
option to choose (TRL, 2017). This model was 
successfully applied in a Proof on Concept (PoC) for 
generating and sharing SRTI messages (Henkens et al., 
2020). It is important to note that this is all done on a 
pilot level, which are limited in terms of scope. This 
pilot, and others, have provided opportunities to 
explore the potential of using vehicle sensor data. The 
following potential barriers to doing just that on a large 
scale in practice are identified and discussed below. 
 
Legal feasibility  
Most legal issues in this case have to do with privacy. 
Under the GDPR, data that can be traced back to an 
individual is personal data and as a result needs to 
adhere to stricter rules (Ecorys, 2020). There is an 
ongoing debate whether or not vehicle data is personal 
data in which various stakeholders and even the 
supervisory authorities on privacy of different EU 
member states disagree (Ecorys, 2020). The owner gives 
permission to collect data, but the vehicle manufacturer 
decides to share which information with which party 
(Henkens et al., 2020). A second set of legal issues may 
arise around fair market competition, given the 
dominant position of the vehicle manufacturers (TRL, 
2017). This should be less of a concern as existing laws 
on this topic should be strong enough to prevent unfair 
market competition although the practical application 
of these laws is highly complex (Ecorys, 2020; TRL, 
2017). 

 
Cybersecurity 
Cybersecurity is one of the most discussed emerging 
risks in the transition towards more autonomous driving 
(Ryan, 2020). An increase in the number of external 
connections in a vehicle comes with an increase in the 
potential points of attack (Fraade-Blanar et al., 2018; 
Onderzoeksraad voor Veiligheid, 2019; Ryan, 2020). The 
risks are also substantial: in recent years researchers 
and ethical hackers have managed to gain remote 
access to vehicles which allowed them to take over 
control of systems like the brakes, engine, and steering 
wheel (Onderzoeksraad voor Veiligheid, 2019; Ryan, 
2020). Besides the direct threat to human life present in 
such a hacked vehicle, other risks are also present such 
as data breaches and ransomware attacks (Fraade-
Blanar et al., 2018; Ryan, 2020).  
 
Willingness of stakeholders 
Any system that uses vehicle data for any purpose will 
involve a variety of stakeholders. Who exactly will be 
involved depends on the scope that is applied but 

Ecorys (2020), McKinsey (2018), and TRL (2017) all 
discuss OEMs, suppliers, and service providers.  
 
Economic feasibility 
Closely related to willingness of stakeholder is the 
economic feasibility. Is collecting and sharing vehicle 
sensor data on a large scale feasible against reasonable 
cost to OEMs or the government?  

 
Technical feasibility  
Collecting, sharing, and processing vehicle data is a 
technically complex operation. However, as the PoC 
Data for Road Safety and the Kia project show, it is 
possible to extract data from sensors in the vehicle and 
to process this data outside of the vehicle with the 
ExVe/neutral server model (Henkens et al., 2020; Kia, 
2021). 
 
From pilot to reality  
Besides the issues on specific aspects as discussed 
above, a more general factor is also relevant to 
consider: the paradox of the pilot. Groenendijk (2021) 
calls the belief that a successful pilot can simply be 
scaled up and will lead to the same successful results 
naïve. For example, the extra budget and room to 
experiment in a specific pilot may not necessarily be 
available in the regular day-to-day business of an OEM 
or government (Groenendijk, 2021)  
 

3. Methodology 
To assess if the types of indicators identified in the 
literature review would be suitable to be based on 
vehicle sensor data to measure traffic safety, and to 
assess the size of the potential barriers to use vehicle 
sensor data in practice, a Delphi study is conducted. 
There are multiple variations of the Delphi study but it 
always has the following four characteristics: 
anonymity, iteration, controlled feedback, and 
statistical group response (Fritschy & Spinler, 2019; von 
der Gracht, 2012). In this research, experts are asked 
questions, separate and anonymous to prevent 
influencing each other. In subsequent rounds, the same 
are asked again with additional information, the 
controlled feedback. This feedback consists of statistics 
on the group response of the previous round and often 
used arguments. The experts are then given the chance 
to revaluate their answer, with the goal of reaching 
consensus or establishing clear dissensus. (Beiderbeck 
et al., 2021a; Belton et al., 2019; Hsu & Sandford, 2007) 
 

3.1 Expert selection 
A Delphi survey is fundamentally different from a 
regular survey because it does not have the goal to 
generalise results of a representative sample to a larger  
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population, but instead to reach consensus among 
experts (Okoli & Pawlowski, 2004).Therefore, 
participants are not selected randomly but rather 
purposely and based on their expertise (Keeney et al., 
2006). And while the Delphi method has proven to 
produce valid results in the past (Förster & von der 
Gracht, 2014; Landeta, 2006), the selection of 
appropriate experts is a highly important part in the 
process, as the quality of the experts directly relates to 
the quality of the results (Hsu & Sandford, 2007; 
Keeney et al., 2006).  No single best way to define and 
measure expertise has been developed (Devaney & 
Henchion, 2018; Hasson et al., 2000; Mauksch et al., 
2020). This research follows the recommendations of 
Mauksch et al. (2020) to use a combination of expert 
identification methods which helps to mitigate the 
drawbacks and potential biases of each individual 
method. Personal Involvement using the expert 
continuum model of Donohoe & Needham (2009) is 
used to identify a wide range of experts involved in the 
topic. Using this model (figure 2), organisations are 
selected that have either hands-on experience 
(subjective closeness), a formal role (policy/legal) 
(mandated closeness), or an objective standpoint 
(objective closeness).  
 

 
Figure 2 The expert continuum model (adapted from Donohoe & 

Needham, 2009) 

This is followed by a selection of experts within those 
organisations using external cues to assess their 
expertise (Mauksch et al., 2020) where experts need to 
have at least three of the following five criteria (based 
on Devaney & Henchion, 2018; Roßmann et al., 2018; 
Schuckmann et al., 2012; von der Gracht & Darkow, 
2010; Warth et al., 2013): 

1. The expert has at least 5 years of experience 
with the topic  

2. The expert has published a paper or spoken at 
conference on the topic 

3. The expert has a relevant work position in the 
field 

4. The expert has a relevant academic 
background 

5. The expert is based in the Netherlands or in a 
comparable EU country  

27 experts were invited, 16 completed round 1 and 11 
round 2. This is in line with typical ranges suggested 
between 5 to 20 (Belton et al., 2019), 7 to 15 (Donohoe 
& Needham, 2009), 10 to 18 (Okoli & Pawlowski, 2004) 
or 15 to 20 (Hsu & Sandford, 2007). In this way, a 
heterogeneous panels is selected which have proven to 

create a wider range of perspectives than an 
homogeneous panel and helps to prevent bias and 
framing effects (Förster & von der Gracht, 2014; 
Winkler & Moser, 2016).  
 

3.2 Operationalisation  
The Delphi survey consist of questions that require a 
numerical response, followed by an opportunity for the 
expert to explain or comment on the question (Belton 
et al., 2019) where in the wording of questions advice 
by Markmann et al. (2021) is followed to  prevent 
influencing the quality of the survey data. The survey 
consists of two parts where in part one, experts are 
asked to rate the four types of indicators on four 
criteria (table 2) on a scale from 1 (strongly disagree) 
to 7 (strongly agree). They are then given the 
opportunity to explain their assessment.  
Table 2 Criteria used to evaluate types of indicators 

Criteria in Aarts 
(2018) 

Criteria operationalised in Delphi survey 

Validity a. This type of indicator reflects traffic 
safety well  

Reliability b. This type of indicator could be 
measured in a reliable way 

Sensitivity  c. This type of indicator is sensitive to 
external changes, i.e., it will respond to 
future traffic safety interventions 

Understandability  d. This type of indicator is understandable 
for different end-users such as 
researchers and policy makers 

Part two of the survey is aimed at assessing the 
feasibility of using vehicle sensor data to measure 
traffic safety. The experts are asked to rate the severity 
of potential on a 7-point-scale (no barrier at all to 
unsurmountable barrier) and again provide an 
explanation.  
A 7-point Likert-type scale is used in this Delphi survey 
as this is seen as the most reliable (Beiderbeck et al., 
2021a; Toma & Picioreanu, 2016). Following Toma & 
Picioreanu (2016), an 8th option, “I do not know “, is 
included to ensure  that the middle option is truly 
neutral. All options are labelled to leave little room of 
interpretation by the experts and reach the highest 
psychometric quality (Beiderbeck et al., 2021a).  
Delphi surveys have an iterative character where 
question are asked over multiple rounds (Belton et al., 
2019; Fritschy & Spinler, 2019). This Delphi survey 
consists of two rounds, as research shows that expert 
fatigue results in lower response rates over each 
subsequent round (Frewer et al., 2011; Fritschy & 
Spinler, 2019; Keeney et al., 2006). Additionally, most 
revisions of the expert’s own opinions happen after the 
first round and not afterwards (Fritschy & Spinler, 
2019). 
The controlled feedback provided to the experts in the 
second round consists of a histogram showing the 
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distribution of scores given by the experts in the first 
round per each question.  This is augmented with 
qualitative feedback that consists of arguments 
brought up by the experts, both in favour and against. 
Not all arguments made in the first round are included 
in the survey to keep the workload for the experts 
reasonable. A selection is made of the most used 
arguments of which some are edited to remove any 
references that could reveal the identity of the experts. 
Furthermore, a suggestion by Winkler & Moser (2016) 
(see 3.3 below) is followed for most questions to sort 
the arguments and put those contrary to the central 
tendency on top, to make sure that experts are 
confronted with opposite opinions and are thus forced 
to rethink their own opinion.  
 

3.3 Analysis 
Syntax analysis and non-response bias 
A syntax analysis of the explanations given by the 
experts in round will be conducted to show their level 
of engagement (Beiderbeck et al., 2021a). The syntax 
analysis as is conducted in this study was originally 
developed by Förster & von der Gracht (2014) and also 
applied in Roßmann et al. (2018) and in Beiderbeck et 
al. (2021b). In a syntax analysis, the experts’ 
explanations are classified as whole sentences, 
phrases, catchwords, or no explanation. A high 
percentage of whole sentences indicates a high level of 
commitment and thus serves as a quality measure 
(Beiderbeck et al., 2021a).  
Additionally, there will be tested for the existence of 
non-response bias by comparing the answers of early 
respondents to those of late respondents (Díaz de 
Rada, 2005). This is done by dividing the group of 
respondents in two by order of responses (Warth et al., 
2013) and by those who responded initially and those 
who only responded after reminders (Díaz de Rada, 
2005) and conducting a Mann-Whitney U test to check 
for differences (Piecyk & McKinnon, 2010; Warth et al., 
2013).  
 
Descriptive statistics and level of agreement 
Descriptive statistics in a Delphi study often includes 
the central tendency  and the dispersion (von der 
Gracht, 2012). Given that the scores from a Likert scale 
are of ordinal level, the median the preferred choice 
for a metric of central tendency (von der Gracht, 2012). 
Additionally, the median is less sensitive to outliers 
than the mean (Gordon & Pease, 2006; von der Gracht, 
2012). Consequently, the Interquartile Range (IQR) will 
be used as it is a measure of dispersion for the median 
and to assess the level of agreement.  
The IQR is a rigorous and objective metric of level of 
agreement  (von der Gracht, 2012) that is the distance 
between the 25th and the 75th percentile values (De Vet 
et al., 2005). Therefore, a value below 1 means that 

more than 50% of the scores are within one point on 
the scale (De Vet et al., 2005). On 5-point scales, an IQR 
of less than 1 is often used as a level of agreement that 
signals consensus (Raskin, 1994; Ray & Sahu, 1990) 
while 2 is used as a threshold on a 9-point scale (von 
der Gracht & Darkow, 2010) or on a 10-point scale 
(Linstone & Turoff, 1975; Scheibe et al., 2002). No 
research using both the IQR, and a 7-point scale was 
found, so a IQR of less than 1,5 will be used as 
threshold for having reached a satisfying level of 
agreement. In addition to the IQR, the coefficient of 
variation (V) will be used to this end. V allows for 
comparing the distributions of answers on a scale like 
IQR but is based on the mean (von der Gracht, 2012). It 
is calculated as the standard deviation divided by the 
mean multiplied by 100 (English & Kernan, 1976; von 
der Gracht, 2012) and interpreted as in table 3.  

Table 3 Coefficient of Variation (V) and consensus (English & 

Kernan, 1976; von der Gracht, 2012) 

Coefficient of 
variation (V) 

Decision rule 

0 < V  0,5 Good degree of consensus. No need for 
additional round 

0,5 < V   0,8 Less than satisfactory degree of consensus. 
Possible need for additional round. 

V > 0,8 Poor degree of consensus. Definite need 
for additional round.  

Stability over rounds 
Dajani et al. (1979) discusses that a specific level of 
agreement can be meaningless when stability over 
rounds is not reached or not tested. Stability over 
rounds in this case means the stability of the group’s 
responses on a specific question (von der Gracht, 
2012). It will be measured based on the change in level 
of agreement over rounds (von der Gracht, 2012). 
Additionally, inferential statistics are used to test for 
stability between rounds in a more robust way based 
on von der Gracht (2012). Given that the same 
questions are asked to the same experts, the answers 
are depended (Argyrous, 1997) and of ordinal scale, a 
Wilcoxon matched-pairs signed-ranks test is used to 
test if the differences in two sets of answers are 
statistically significant (von der Gracht, 2012).  
 
Further analysis of dissent 
Common explanations for dissent include the presence 
of outliers, bipolarity in the responses, and different 
opinions by different stakeholder groups (Beiderbeck 
et al., 2021a; Warth et al., 2013). 
Checking for outliers can be done by converting the 
scores into standardised z-scores and highlighting 
those more extreme than the absolute value of 2,58 
(the 99% confidence level) (Beiderbeck et al., 2021b; 
Warth et al., 2013).  Checking for bipolarity can be done 
by visually inspecting the histograms (Beiderbeck et al., 
2021b; Warth et al., 2013) and by checking for multiple 
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modes (Beiderbeck et al., 2021b; Scheibe et al., 2002). 
Different stakeholder groups could hold different 
perspectives on the same topic due to different 
interests (Warth et al., 2013). A Mann-Whitney test can 
be used to assess if statically significant differences 
between stakeholders exist (Beiderbeck et al., 2021a; 
Warth et al., 2013). 
 

4. Results  
Syntax analysis and non-response bias 
The syntax analysis (table 4) shows a high degree of 
engagement by the experts with a total of 74% of the 
explanations given in whole sentences. This is a lower 
than the percentage of whole sentences in Beiderbeck 
et al. (2021b) (87%) but similar to those in Förster & 
von der Gracht (2014) (72%) and Roßmann et al. (2018) 
(78%) and. No large difference exists between part 1 
(type of indicators) and part 2 (potential barriers). 
Table 4 Syntax analysis (based on Förster & von der Gracht, 2014) 

 Total Percentage 

Whole sentences 154 74% 

Phrases 19 9% 

Catchwords 1 0% 

No explanation 34 16% 

 
No strong non-response bias is present as no 
statistically significant differences are found using a 
Mann-Whitney U test between the groups when 
splitting the group in half based on response order. 
Splitting the group by those who received a reminder 
and those who did resulted in only one question where 
a statistically significant difference was found at an 
alpha of 0.05 (p=0.039).  
 
Descriptive statistics and level of agreement 
Tables 5 and 6 show descriptive statistics and the level 
of agreement of both parts in rounds 1 and 2. In part 1, 
consensus is reached after two rounds on the majority 
of the questions (on 16 out of 20 questions). The 
coefficient of variation is well below the threshold of 
0,5 in all questions. The IQR is above the threshold of 
1,5 on four criteria, spread out over three types of 
indicators. In part 2, consensus on five out of ten 
potential barriers is reached after the second rounds. 
The remaining five do not reach consensus based on a 
threshold of 1,5 IQR of which one is the Willingness of 
people which was only asked in the second round.

Tables 5 and 6 Descriptive statistics and level of agreement 

Type of  
indicator 

Criteria Round 1 Round 2 

N Median IQR V Consensus? N Median IQR V Consensus? 

1: Dutch SPIs Validity 16 5 1 0,23 Yes 11 5 1 0,19 Yes 
Reliability 16 6 0,25 0,24 Yes 10 6 0 0,11 Yes 

Sensitivity  15 5 1 0,24 Yes 11 5 1,5 0,28 Yes 
Understandability  16 6 1 0,26 Yes 10 6 0 0,09 Yes 

2: Proximity 
based Surrogate 
Measures of 
Safety (SMoS) 

Validity 15 6 1 0,26 Yes 11 6 1 0,15 Yes 
Reliability 14 5 1 0,25 Yes 10 5 0 0,24 Yes 
Sensitivity  13 5 1 0,23 Yes 11 5 1 0,13 Yes 
Understandability  15 5 2 0,38 No 11 5 1 0,32 Yes 

3: Kinematic 
based Surrogate 
Measures of 
Safety (SMoS) 

Validity 15 5 1 0,17 Yes 11 6 1 0,15 Yes 
Reliability 15 6 1 0,22 Yes 11 5 2 0,27 No 
Sensitivity  13 5 1 0,16 Yes 10 5 0 0,13 Yes 
Understandability  15 5 2 0,25 No 11 5 2 0,26 No 

4: Engagement 
of ADAS 

Validity 15 6 1,5 0,24 Yes 11 6 1 0,22 Yes 
Reliability 15 6 2,5 0,27 No 11 5 2 0,33 No 

Sensitivity  13 5 2 0,28 No 11 5 1 0,25 Yes 
Understandability  15 6 1 0,18 Yes 11 5 1 0,15 Yes 

5: Driver 
distraction 

Validity - - - - - 8 5 1 0,17 Yes 
Reliability - - - - - 8 4 2 0,33 No 
Sensitivity  - - - - - 8 4,5 1,25 0,19 Yes 

Understandability  - - - - - 9 5 1 0,19 Yes 

Potential barrier 

Round 1 Round 2 

N Median IQR V Consensus? N Median IQR V Consensus? 

Technical feasibility (collecting data 
within a single vehicle) 

16 4 2,25 0,43 No 11 4 1 0,33 Yes 

Technical feasibility (extracting and 
processing data from a fleet) 

15 4 1 0,35 Yes 11 4 1,5 0,25 Yes 

Legal feasibility 15 5 1,5 0,23 Yes 11 5 1 0,21 Yes 

Economic feasibility 14 4,5 1 0,33 Yes 10 4 1,75 0,35 No 

Cybersecurity 14 4 2 0,33 No 11 4 2 0,31 No 

Willingness of OEMs 15 5 1,5 0,27 Yes 10 5 0,75 0,26 Yes 

Willingness of suppliers 8 5 3,25 0,43 No 6 4 2 0,39 No 

Willingness of service providers 12 2 1,25 0,51 No 9 2 1 0,47 Yes 

Willingness of people - - - - - 11 5 2 0,37 No 

From pilot to reality 14 4,5 2,5 0,37 No 10 4,5 2 0,39 No 
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From round 1 to 2, the experts made 54 changes out of 
the 258 possible changes (20,9%). About 35% of the 
changes were in a positive direction, meaning for part 
1 a higher score was given on a criteria for a type of 
indicator while for part 2 a potential barrier was 
evaluated as lower. Consequently, 65% of the changes 
were in a negative direction. Of all the revisions, the 
large majority (81,5%) were changes of one point on 
the scale and the remainder of two points in the scale.  
While the share of revisions made is a little lower than 
those in Fritschy & Spinler (2019) and Roßmann et al. 
(2018) with 25% and 37% respectively, the proportions 
of upwards and downwards revisions are similar (61% 
up/39% down and 56% up/44% down in Fritschy & 
Spinler, 2019, and Roßmann et al., 2018). 

 
Stability over rounds 
A change occurred in 6 questions out of 25 (16 in part 
1, 9 in part 2). Twice this change was from consensus 
to dissent and four times from dissent to consensus 
which should ideally be the case for all questions as this 
signals a greater degree of consensus in the second 
round. 
Using a Wilcoxon signed rank test it is established that 
in none of the questions, the answers from the first and 
second round differ in a statistically significant way 
(alpha = 0,05). 
 
Further analysis of dissent 
Nine questions are without consensus. The further 
analysis found that none of those are due to outliers. 
The limited size of the different stakeholder groups in 
this research means that large differences would need 
to exist in the dataset to achieve statistical significance 
(Norman, 2010) and none are indeed found.   
Multiple modes are found in five of the questions and 
using the qualitative comments, bipolarity could be 
confirmed in three of those: cybersecurity, willingness 
of suppliers, and willingness of people as potential 
barriers.  
 

4.1 Overview of results part 1 
Table 7 shows the median scores given by experts per 
type of indicator per criteria (on a 7-point scale).  
The Dutch SPIs, like Safe speeds and Safe participants, 
scores the highest on reliability and understandability 
of all types of indicators. Multiple experts mention that 
this type of indicator represents “basic safety 
conditions (…) which are pretty easy to collect and 
analyse”. Especially the example of safe speeds is 
highlighted by several experts as understandable for 
policymakers although it does “not give a complete 
picture on safety” as one expert states: “For example, 
if one drives at 50kph in a highway, one follows the 
speed limit, but one also creates a hazard to others.” 
 

Proximity based SMoS like TTC score high on validity 
which is confirmed by several experts highlighting that 
it is a “very good precursors of crashes” and 
“represents critical situations well”. Like the Dutch 
SPIs, proximity based SMoS are context dependent, but 
unlike those, it also needs a threshold which comes 
with additional problems. One expert states that 
“deciding what the threshold should be, has a big 
impact on what is actually measured” and points out 
that this might need to change over time as “the 
introduction of AVs might change what we think of as 
a critical TTC value.”  
Kinematic based SMoS such as acceleration, 
deceleration, and swerving did not reach consensus on 
reliability (IQR = 2, V = 0,27) and on understandability 
(IQR = 2, V = 0,26). Some experts believe that this can 
be measured reliable with one expert claiming that: 
“longitudinal [movement] (acceleration/deceleration) 
is easier to measure compared to lateral [movement] 
(swerving)”. Other experts disagree: “Due to the 
nature of these variables, there are many errors and 
noises in measuring them via accelerometers, and 
other devices”.  
Interestingly enough, one academic expert claims that 
“the scientific evidence for the correlation between 
harsh acceleration and crashes is weak” while a second 
academic expert says that “there seems to be research 
that links the behaviours you listed (e.g., hard 
breakings) with collisions”. 
In the case of engagement of ADAS such as FCW, AEB, 
and BSW, most experts seem to agree that in essence 
these engagements signal serious potential conflicts 
and that they are quite easy to measure. However, the 
experts also see a variety of practical obstacles, mainly 
that “a warning from FCW will be different from one 
OEM to another OEM”. Additionally, some experts 
have concerns about the reliability (e.g., AEB/FCW false 
positive) and that the systems change/improve over 
time, resulting in several experts identifying 
harmonisation as a key aspect. Two experts have more 
fundamental critique on this type of indicator. The 
activation of these ADAS is based on “some pre-
defined threshold 
 
Table 7 Overview of the median scores given by experts per type of 

indicator per criteria (on a 7-point scale) where an Asterix (*) 

means no consensus is reached 

 Validity Reliability Sensitivity Understandability 

Dutch SPIs 5,0 6,0 5,0 6,0 

Proximity 
based SMoS 

6,0 5,0 5,0 5,0 

Kinematic 
based SMoS 

6,0 5,0* 5,0 5,0* 

Engagement 
of ADAS 

6,0 5,0* 5,0 5,0 

Driver 
distraction 

5,0 4,0* 4,5 5,0 
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on indicators of safety like TTC or acceleration”. 
Therefore, they conclude that one might as well just 
measure those directly.  
 
The suitability of driver distraction as measured by 
DDAW is only asked about in the second round of the 
Delphi survey as it was added based on suggestions 
made by the experts in the first round. Nevertheless, 
consensus was reached on three out of four criteria 
with reliability (IQR = 2, V = 0,33) as the exception. This 
type of indicator has the lowest median scores of all 
with 4,0 and 4,5 for reliability and sensitivity 
respectively. Experts point out the large differences 
between DDAW systems of different OEMs, much 
more than those discussed in the previous type of 
indicator.  Additionally, “driver distraction results in 
specific kind of accidents”. It would make more sense 
to relate this to specific locations or types of roads than 
to use this to measure the safety performance of the 
entire network, as this “gives insights in where drivers 
are distracted or what circumstances contribute to 
distraction. 
 

4.2 Overview of results part 2 
Five out of ten potential barriers have a median score 
of 4 (moderate barrier) and only one is lower, 
willingness of service providers (2, weak barrier). 
Willingness of people has a median score of 4,5 while 
the remaining three have a median score of 5, meaning 
a somewhat strong barrier. So, most potential barriers 
identified in the literature review are confirmed by the 
experts as such, but none of them are seen as strong or 
even insurmountable barriers 
Willingness of OEMs is seen as a somewhat strong 
barrier by the experts. On one hand, several experts 
state that OEMs are reluctant to share data, as “they 
are responsible for the safety of the vehicle and its 
data”. On the other hand, it may just be “a point of 
economic benefit and regulation” as one expert states. 

These economic benefits are disputed by one industry 
expert: “Making €10M is nice, but that is only a spec for 
the bigger OEMs”. Experts point out that regulation 
already plays a role with EU Act 2013/886 mandating 
access to road safety data and the fact that the data is 
owned by the consumer under the Data Act, meaning 
that “the OEM can only share this data with consent of 
the consumer, or on a legal base.” 
This legal feasibility is seen as a somewhat strong to 
strong barrier because “legislation can make or break 
the business”. The main relevant legislations discussed 
by experts are the GDPR and EDPB Guidelines for 
personal data - in which “lots of vehicle data is 
considered as personal data and needs thus consent of 
the owner [to be collected and processed]”. 
Additionally, new legislation is underway with the 
proposed EU Data Act and future sectoral legislation on 
vehicle data which is currently open for public 
consultation. Several experts point out that while 
legislation can be changed, this would require strong 
EU support and a lot of time and effort. And even then, 
a legal requirement to provide data and insights may 
need compensation for OEMs to not threaten the 
market in the long run, as one expert points out.  
In the case of cybersecurity being a potential barrier, 
all experts agree that there are significant risks, but no 
consensus is reached due to bipolar opinions. 
Disagreement lies in how well risks can be contained. 
On one hand, those who do believe the risks can be 
minimised refer to “recent advances in cybersecurity 
and data protection protocols” or to the fact that “the 
communication of the data is not time critical and 
vehicle decisions are not based on it”. On the other 
hand, different experts point at data leaks in relation 
to privacy laws, the consequences for public user 
acceptance. One expert made the link between the risk 
of cybersecurity attacks and the willingness of OEMs to 
facilitate the sharing of data as no OEM would 
“jeopardize the IT security for a better software service 
level, at least not now”.

 
 

Figure 3 Boxplots potential barriers, where the black dot denotes the median score and the Asterix (*) means no consensus. Scale: 1=No barrier 

at all, 2=Weak barrier, 3=Somewhat weak barrier, 4=Moderate barrier, 5=Somewhat strong barrier, 6=Strong barrier, 7=insurmountable 
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Willingness of people as a potential barrier is 
divisive as well. Those experts who think it is a 
strong barrier believe that people are not 
willing to share their data because they will not 
see the benefits, especially when the data can 
be linked to traffic violations. Other experts see 
it more as a moderate barrier with one expert 
expecting “some discussion at the introduction 
but people will forget it over time” by making a 
comparison to the public acceptance of 
smartphones and the data those collect. Other 
experts propose incentives for the sharing of 
their data and point to the fact that not all 
vehicle owners would need to share their data, 
only a (representative) part.  
 
Going from pilots to reality is seen by some 
experts as a weak to somewhat weak barrier 
while most experts rate it as a somewhat 
strong barrier. The former group argues that 
pilots are a good way to start and that “anyone 
doing a pilot (with reason), has the ambition to 
scale up”. The latter sees this differently and 
sees this as “a big, steep hill to climb”. Besides 
the fact that all barriers discussed needs to be 
overcome, it would require harmonization of 
data and/or interfaces of different OEMs which 
“is difficult and time consuming”. 
 
Two groups of opinions exist on the extent to 
which the willingness of suppliers a barrier is to 
the implementation of a system where vehicle 
data is used to measure traffic safety. One 
group points out that with a sufficient 
economic incentive, suppliers will be willing to 
cooperate. The other group believes that 
suppliers are unlikely to be willing to 
participate in any sharing of data as it would 
threaten their IP and competitive position. 
 
Economic feasibility is seen as a moderate 
barrier, although no consensus is reached on 
this potential barrier (IQR = 1,75, V = 0,35) with 
scores spread quite evenly between 2 and 6. 
The experts agree that it makes sense for the 
government to be interested in this data but 
that “it might be difficult to specify the benefits 
of network-level safety evaluation to OEMs.” 
Experts do not agree on whether or not a 
business case for OEMs exists, while this is a 
crucial factor: “OEMs can stay in a negative 
business case longer than service providers, 

but without an eco-system the whole 
connected industry will struggle”. And while 
the business case improves “if the indicators 
can be measured with sensors already 
onboard”, an important issue is the role of 
legislation and the accompanying uncertainty 
and risks.   
 
The technical feasibility of collecting the data 
within a single vehicle necessary to report any 
of the indicators is seen by the experts as a 
moderate barrier. Most experts agree that it is 
technically possible to collect data within a 
vehicle but that it is “depending on the 
indicator of interest and the sensor suit present 
in the vehicle”. Of course, “there are a lot of 
existing vehicles on the road that are NOT 
connected in any way, due to their age”. While 
the experts agree that it should be possible, 
one expert refers to experience with a recent 
pilot using the ExVe/Neutral Server concept 
and claims it “it works ok but has a lot of flaws 
and loose ends that have not been solved yet.”  
Extracting, processing, and storing the data 
from a fleet of vehicles from a technical point 
of view is also seen as a moderate barrier. 
While several experts point at the required 
efforts and costs to do this, especially “given 
the volume and privacy requirements” most 
experts agree that “it seems very feasible, 
especially in a country like the Netherlands 
with great data coverage and a strong 
network.” The difficulty will lie more in 
“ensuring the data is comparable between 
different manufacturers” and in “having all 
OEM installing the technology (especially for 
low-cost vehicles)”.  
 
Willingness of service providers is seen as a 
weak barrier because “they will see this as new 
business”. This is supported by an industry 
expert, claiming that “there are more Service 
Providers than buyers in the connected car 
industry, including safety data”. Additional 
data from service providers may not even be 
needed according to another experts, 
disregarding this as a barrier altogether.  
 

5. Discussion and conclusion 
This study explores if a more proactive 
approach can be viable where data is collected 
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by vehicles equipped with ADAS. In doing so, it 
contributes to the existing body of knowledge 
in several ways. Firstly, it looks into what type 
of leading indicators would be suitable to apply 
in the specific context of measuring traffic 
safety at network level and provides an 
overview of that.  
Secondly, this research discusses opportunities 
for using vehicle sensor data to measure traffic 
safety and provides an overview of potential 
barriers for doing so in practice.  
But thirdly and most importantly, this research 
evaluates both several types of indicators and 
potential barriers for using vehicle sensor data 
to measure traffic safety at network level at the 
same time using a Delphi survey. It therefore 
allows for a fair comparison between different 
types of indicators for the application in this 
context. Additionally, in existing literature 
potential barriers for collecting and using 
vehicle sensor data is only discussed in a 
general and limited fashion. This study 
provides an overview of multiple potential 
barriers and then builds on it by letting experts 
evaluates the potential barriers. Because this is 
done in the same survey by the same experts, 
it can give an insight into how the potential 
barriers relate to each other in terms of size.  
 

5.1 Discussion on results 
Limited differences are found in the median 
scores given by the experts between the types 
of indicators and the criteria. This could that all 
of the types of indicators evaluated in the 
Delphi survey could be suitable. It may also be 
the case that the results are found due to 
methodological limitations regarding the 
questions and experts involved. Further 
research should be undertaken to verify the 
results found here.  
The results regarding potential barriers for 
collecting and using vehicle sensor data are 
clearer. Most of the potential barriers initially 
identified in the literature review are 
confirmed as such by the experts. However, 
none of the barriers are rated as 
insurmountable which provides perspective for 
implementing any system that uses vehicle 
sensor data in practice.  
Four sizable barriers will need to be overcome 
of which legal feasibility is the largest. Privacy 
regulations are discussed by all experts 

because these dictate if and in what form data 
can be collected and extracted from vehicles. 
Uncertainty exists surrounding upcoming 
regulation as the EC has proposed the Data Act 
which aims to regulate the access and use of all 
data generated in the EU across all economic 
sectors (European Commission, n.d.-b), and a 
public consultation has just finished on 
additional legislative measures concerning 
access to in-vehicle generated data for vehicle-
related and mobility services (European 
Commission, n.d.-a). At this stage, it is not 
known how the additional sectoral legislation 
would look like, but it has the potential to have 
a significant impact on any effort to use vehicle 
sensor data for measuring traffic safety. This 
will determine the framework and amount of 
room available to use vehicle sensor data to 
measure traffic safety, if any at all.  
The other three important barrier that need to 
be addressed are cybersecurity, the willingness 
of OEMs to cooperate, as well as that of 
consumers. 
 

5.2 Wider context 
It is important to stress that any type of 
indicator discussed here is aimed to 
supplement the current practice of measuring 
traffic at network level with severe injuries and 
fatalities.  
In proposing to use leading indicators based on 
vehicle sensor data it is important to keep in 
mind that only a portion of all traffic is able to 
collect data.  Motorised vehicles such as cars 
and trucks can have sensors and forms of 
automation that are able to collect data which 
could eventually be used to measure traffic 
safety, but other modes of transport like 
bicycles, pedestrians, or motorcycles to some 
extent cannot do that. As a result, it will be 
difficult to directly measure the traffic safety of 
these road users. This is not unlike the current 
situation, but it does come with a bigger 
problem. Evaluating traffic safety policies 
based on vehicle sensor data will favour those 
policies that increase the traffic safety of 
motorised traffic. It therefore risks that this 
increased traffic safety could come at the 
expense of others not represented in these 
indicators and as a result make it less safe for 
vulnerable road users. If it would be possible 
from both a legal and a technical perspective to 
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measure any of the proposed indicator per 
road type (highway, provincial roads, urban 
streets, etc), this would be less of an issue. 
These indictors could then be treated more 
cautiously on those road types where many 
vulnerable road users are present.  
 
Furthermore, it be noted that the assumption 
behind using proximity based SMoS, kinematic 
based SMoS, and engagement of ADAS as 
indicators is that these signal traffic conflicts 
which are proxies for accidents. And while 
traffic conflicts are regarded as suitable proxies 
for accidents (Arun et al., 2021), they still have 
their limitations. The types of indicators 
evaluated in the Delphi survey may also 
measure different types of traffic conflicts 
 

5.3 Methodological limitations 
Eleven experts completed both rounds of the 
Delphi study, a number in line with typical 
ranges suggested in literature (see section 3.1). 
It is however important to note that given the 
wide range the backgrounds of experts, the 
research would have benefited from more 
experts, especially from the government and 
industry. This would either have solidified the 
current opinions or may have added additional 
input. It would then also be possible to conduct 
more in-depth stakeholder group analysis. 
Assessing the expertise of potential experts in 
a more sophisticated way would increase the 
external validity This could be done with self-
rating in an intra-individual way as proposed by 
Ward et al. (2002) or by using deep surface 
variables as proposed by Spickermann et al. 
(2014). 
 

5.4 Recommendations for future research 
This research is explorative in nature and 
serves as a starting point for further analysis. 
This discussion highlights several areas that 
require further efforts, both in (academic) 
research as in more practical oriented ways by 
government. 
The results of the Delphi study seem to indicate 
that all of the four initially included types of 
indicators could potentially be used to measure 
traffic safety at network level. However, more 
scientific research is required to understand:  

• Why limited differences are found in 
the Delphi survey between the 
different types of indicators. 

•  Which types of indicators signal which 
types of accidents. This would on one 
hand allow for a better understanding 
of their meaning if they would be 
measured in reality, and on the other 
hand allow for a more conscious and 
informed choice on what (combination 
of) type of indicators should be 
measured. 

• How valid the relationship is between 
traffic conflicts measured by these 
types of indicators and crashes, on 
different road types. 

• Which thresholds would be suitable for 
any type of indicator per road type. 

This research also provides several practical 
steps that could be undertaken by 
governments. 

• A legal analysis should be developed to 
identify the legal room for using 
vehicle sensor data for measuring 
traffic safety. This should take the 
proposed Data Act into account, as 
well as the upcoming additional 
sectoral legislation on this topic. This 
would require some time, as these are 
in development at the moment. 

• A discussion should be opened with 
OEMs (either directly or through ACEA) 
to better understand how willing they 
are to cooperate in a system where 
they will be required to collect and 
share vehicle sensor data, and under 
what conditions. This will determine 
how such a system would be able to 
exist (economic benefit for the OEMs, 
because of the OEMs reputations, or if 
they would need to be forced by 
legislation, etc.).  

• Included in this discussion should be 
the issue of cybersecurity and in how 
far the risks related to cybersecurity 
can be contained. This may require not 
just the input of the OEMs but also the 
internal knowledge of the ministry of 
Infrastructure and Water Management 
on this topic, as well as external input 
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from consultancy firms of academic 
researchers.  

• In any implementation of such as 
system, it is important to take the 
consumer and its privacy seriously. 
Allow them to give informed consent 
of sharing their data and clearly 
communicate to what end it will be 
used. Make clear who has access to 
what data, so it is also clear what can 
or cannot be done with the data. This 
will help to increase the willingness of 
people to cooperate. 

 

5.5 Conclusion 
So, the answer to the main research question - 
(how) can data from sensors of vehicles 
equipped with ADAS be used to measure traffic 
safety at network level- is that it depends. If 
certain conditions are met, it should be 
possible to collect and use vehicle sensor data 
to measure traffic safety. The main condition is 
that there should be legal room available under 
the proposed Data Act and on the upcoming 
additional sectoral legislation.  
 

Bibliography  
Aarts, L. T. (2018). Prestatie-indicatoren voor 

verkeersveiligheid (SPI’s); Overzicht 
van beschikbare kennis over SPI’s als 
basis voor risicogestuurd beleid (p. 52). 
SWOV. 

Aarts, L., Wijlhuizen, G. J., Gebhard, S., 
Goldenbeld, Ch., Decae, R., Bos, N., 
Bijleveld, F., Mons, C., & Hoekstra, T. 
(2021). De Staat van de 
Verkeersveiligheid 2021; 
Doelstellingen voor 2020 definitief niet 
gehaald – hoe nu verder? (p. 28). 
SWOV. 

Amundsen, F. H., & Hyden, C. (1977). 
Proceedings of first workshop on 
traffic conflicts. Oslo, TTI, Oslo, Norway 
and LTH Lund, Sweden, 78. 

Argyrous, G. (1997). Statistics for social 
research. Macmillan International 
Higher Education. 

Arun, A., Haque, M. M., Bhaskar, A., 
Washington, S., & Sayed, T. (2021). A 
systematic mapping review of 
surrogate safety assessment using 

traffic conflict techniques. Accident 
Analysis & Prevention, 153, 106016. 
https://doi.org/10.1016/j.aap.2021.10
6016 

Beiderbeck, D., Frevel, N., von der Gracht, H. A., 
Schmidt, S. L., & Schweitzer, V. M. 
(2021a). Preparing, conducting, and 
analyzing Delphi surveys: Cross-
disciplinary practices, new directions, 
and advancements. MethodsX, 8, 
101401.https://doi.org/10.1016/j.mex
.2021.101401 

Beiderbeck, D., Frevel, N., von der Gracht, H. A., 
Schmidt, S. L., & Schweitzer, V. M. 
(2021b). The impact of COVID-19 on 
the European football ecosystem – A 
Delphi-based scenario analysis. 
Technological Forecasting and Social 
Change, 165, 120577. 
https://doi.org/10.1016/j.techfore.20
21.120577 

Belton, I., MacDonald, A., Wright, G., & Hamlin, 
I. (2019). Improving the practical 
application of the Delphi method in 
group-based judgment: A six-step 
prescription for a well-founded and 
defensible process. Technological 
Forecasting and Social Change, 147, 
72–82. 
https://doi.org/10.1016/j.techfore.20
19.07.002 

Blumenthal, M. S., Fraade-Blanar, L., Best, R., & 
Irwin, J. L. (2020). Safe Enough: 
Approaches to Assessing Acceptable 
Safety for Automated Vehicles. RAND 
Corporation. 
https://www.rand.org/pubs/research
_reports/RRA569-1.html 

Chang, A., Saunier, N., & Laureshyn, A. (2017). 
Proactive methods for road safety 
analysis. SAE Technical Paper. 

Chin, H.-C., & Quek, S.-T. (1997). Measurement 
of traffic conflicts. Safety Science, 
26(3), 169–185. 
https://doi.org/10.1016/S0925-
7535(97)00041-6 

Dajani, J. S., Sincoff, M. Z., & Talley, W. K. 
(1979). Stability and agreement criteria 
for the termination of Delphi studies. 
Technological Forecasting and Social 
Change, 13(1), 83–90. 



 90 

https://doi.org/10.1016/0040-
1625(79)90007-6 

De Vet, E., Brug, J., Nooijer, J., Dijkstra, A., & 
Vries, N. (2005). Determinants of 
forward stage transitions: A Delphi 
study. Health Education Research, 20, 
195–205. 
https://doi.org/10.1093/her/cyg111 

Devaney, L., & Henchion, M. (2018). Who is a 
Delphi ‘expert’? Reflections on a 
bioeconomy expert selection 
procedure from Ireland. Futures, 99, 
45–55. 
https://doi.org/10.1016/j.futures.201
8.03.017 

Díaz de Rada, V. (2005). Measure and control 
of non‐response in a mail survey. 
European Journal of Marketing, 
39(1/2), 16–32. 
https://doi.org/10.1108/03090560510
571990 

Donohoe, H. M., & Needham, R. D. (2009). 
Moving best practice forward: Delphi 
characteristics, advantages, potential 
problems, and solutions. International 
Journal of Tourism Research, 11(5), 
415–437. 
https://doi.org/10.1002/jtr.709 

Ecorys. (2020). Onderzoek naar het delen van 
voertuigdata en interfaces [Rapport]. 
Ministerie van Algemene Zaken. 
https://www.rijksoverheid.nl/docume
nten/rapporten/2020/03/23/rapport-
delen-voertuigdata-en-interfaces-
ecorys 

English, J. M., & Kernan, G. L. (1976). The 
prediction of air travel and aircraft 
technology to the year 2000 using the 
Delphi method. Transportation 
Research, 10(1), 1–8. 
https://doi.org/10.1016/0041-
1647(76)90094-0 

ETSC. (2001). Transport Safety Performance 
Indicators. European Transport Safety 
Council. https://etsc.eu/transport-
safety-performance-indicators/ 

European Commission. (n.d.-a). Access to 
vehicle data, functions and resources. 
Have Your Say. Retrieved 21 August 
2022, from 
https://ec.europa.eu/info/law/better-
regulation/have-your-

say/initiatives/13180-Access-to-
vehicle-data-functions-and-
resources/F_en 

European Commission. (n.d.-b). Data Act: 
Measures for a fair and innovative data 
economy [Text]. European 
Commission - European Commission. 
Retrieved 21 September 2022, from 
https://ec.europa.eu/commission/pre
sscorner/detail/en/ip_22_1113 

Förster, B., & von der Gracht, H. (2014). 
Assessing Delphi panel composition for 
strategic foresight—A comparison of 
panels based on company-internal and 
external participants. Technological 
Forecasting and Social Change, 84, 
215–229. 
https://doi.org/10.1016/j.techfore.20
13.07.012 

Fraade-Blanar, L., Blumenthal, M. S., Anderson, 
J. M., & Kalra, N. (2018). Measuring 
Automated Vehicle Safety: Forging a 
Framework. RAND Corporation. 
https://www.rand.org/pubs/research
_reports/RR2662.html 

Frewer, L. J., Fischer, A. R. H., Wentholt, M. T. 
A., Marvin, H. J. P., Ooms, B. W., Coles, 
D., & Rowe, G. (2011). The use of 
Delphi methodology in agrifood policy 
development: Some lessons learned. 
Technological Forecasting and Social 
Change, 78(9), 1514–1525. 
https://doi.org/10.1016/j.techfore.20
11.05.005 

Fritschy, C., & Spinler, S. (2019). The impact of 
autonomous trucks on business 
models in the automotive and logistics 
industry–a Delphi-based scenario 
study. Technological Forecasting and 
Social Change, 148, 119736. 
https://doi.org/10.1016/j.techfore.20
19.119736 

Gordon, T., & Pease, A. (2006). RT Delphi: An 
efficient, “round-less” almost real time 
Delphi method. Technological 
Forecasting and Social Change, 73(4), 
321–333. 
https://doi.org/10.1016/j.techfore.20
05.09.005 

Grimberg, E., Botzer, A., & Musicant, O. (2020). 
Smartphones vs. in-vehicle data 
acquisition systems as tools for 



 91 

naturalistic driving studies: A 
comparative review. Safety Science, 
131, 104917. 
https://doi.org/10.1016/j.ssci.2020.10
4917 

Groenendijk, J. (2021). Verantwoording 
Praktijkproef Amsterdam. 
TwynstraGudde. 
https://praktijkproefamsterdam.nl/da
tabase/documenten/download/595 

Hasson, F., Keeney, S., & McKenna, H. (2000). 
Research guidelines for the Delphi 
survey technique. Journal of Advanced 
Nursing, 32(4), 1008–1015. Scopus. 
https://doi.org/10.1046/j.1365-
2648.2000.t01-1-01567.x 

Henkens, N., Sloot, M., & van Rij, M. (2020). 
Evaluation of the PoC ‘Data for Road 
Safety’ (No. SWNL0266365). Sweco. 
https://www.dataforroadsafety.eu/im
ages/Documenten/Microsoft_Word_-
_PoC_DTF_-
_monitor__evaluation_report_Sweco.
pdf 

Hsu, C.-C., & Sandford, B. (2007). The Delphi 
Technique: Making Sense Of 
Consensus. Practical Assessment, 
Research and Evaluation, 12. 

Johnsson, C., Laureshyn, A., & Dágostino, C. 
(2021). A relative approach to the 
validation of surrogate measures of 
safety. Accident Analysis & Prevention, 
161, 106350. 
https://doi.org/10.1016/j.aap.2021.10
6350 

Johnsson, C., Laureshyn, A., & De Ceunynck, T. 
(2018). In search of surrogate safety 
indicators for vulnerable road users: A 
review of surrogate safety indicators. 
Transport Reviews, 38(6), 765–785. 
https://doi.org/10.1080/01441647.20
18.1442888 

Keeney, S., Hasson, F., & McKenna, H. (2006). 
Consulting the oracle: Ten lessons from 
using the Delphi technique in nursing 
research. Journal of Advanced Nursing, 
53(2), 205–212. 
https://doi.org/10.1111/j.1365-
2648.2006.03716.x 

Kia. (2021). CONCEPT REPORT: Insigts from 
vehicle data. Kia Nederland, Ministry 

of Infrastructure and 
Watermanagement. 

Kia Nederland. (2021, November 25). Kia 
verkent inzichten in voertuigdata met 
Ministerie van IenW. Kia verkent 
inzichten in voertuigdata met 
Ministerie van IenW. 
https://nieuws.kia.nl/kia-verkent-
inzichten-in-voertuigdata-met-
ministerie-van-ienw/ 

Landeta, J. (2006). Current validity of the 
Delphi method in social sciences. 
Technological Forecasting and Social 
Change, 73(5), 467–482. 
https://doi.org/10.1016/j.techfore.20
05.09.002 

Laureshyn, A., Johnsson, C., De Ceunynck, T., 
Svensson, Å., de Goede, M., Saunier, 
N., Włodarek, P., van der Horst, R., & 
Daniels, S. (2016). Review of current 
study methods for VRU safety. 
Appendix 6–Scoping review: Surrogate 
measures of safety in site-based road 
traffic observations: Deliverable 2.1–
part 4. 

Linstone, H., & Turoff, M. (1975). The Delphi 
Method: Techniques and Applications. 
In Technometrics (Vol. 18). 
https://doi.org/10.2307/3150755 

Mahmud, S. M. S., Ferreira, L., Hoque, Md. S., 
& Tavassoli, A. (2017). Application of 
proximal surrogate indicators for 
safety evaluation: A review of recent 
developments and research needs. 
IATSS Research, 41(4), 153–163. 
https://doi.org/10.1016/j.iatssr.2017.
02.001 

Markmann, C., Spickermann, A., von der 
Gracht, H. A., & Brem, A. (2021). 
Improving the question formulation in 
Delphi-like surveys: Analysis of the 
effects of abstract language and 
amount of information on response 
behavior. FUTURES & FORESIGHT 
SCIENCE, 3(1), e56. 
https://doi.org/10.1002/ffo2.56 

Mauksch, S., von der Gracht, H. A., & Gordon, 
T. J. (2020). Who is an expert for 
foresight? A review of identification 
methods. Technological Forecasting 
and Social Change, 154, 119982. 



 92 

https://doi.org/10.1016/j.techfore.20
20.119982 

McKinsey. (2018). From buzz to bucks—
Automotive players on the highway to 
car data monetization. McKinsey. 

Ministerie van Infrastructuur en 
Watermanagemant. (2018). Veilig van 
deur tot deur. Het Strategisch Plan 
Verkeersveiligheid 2030: Een 
gezamenlijke visie op aanpak 
verkeersveiligheidsbeleid. 
https://www.rijksoverheid.nl/docume
nten/rapporten/2018/12/05/bijlage-
1-het-strategisch-plan-
verkeersveiligheid-2030-veilig-van-
deur-tot-deur 

Norman, G. (2010). Likert scales, levels of 
measurement and the ‘laws’ of 
statistics. Advances in Health Sciences 
Education: Theory and Practice, 15(5), 
625–632. 
https://doi.org/10.1007/s10459-010-
9222-y 

Okoli, C., & Pawlowski, S. D. (2004). The Delphi 
method as a research tool: An 
example, design considerations and 
applications. Information & 
Management, 42(1), 15–29. 
https://doi.org/10.1016/j.im.2003.11.
002 

Onderzoeksraad voor Veiligheid. (2019). Wie 
stuurt? Verkeersveiligheid en 
automatisering in het wegverkeer. 
http://www.onderzoeksraad.nl/nl/pag
e/4729/wie-stuurt-verkeersveiligheid-
en-automatisering-in-het-wegverkeer 

Piecyk, M. I., & McKinnon, A. C. (2010). 
Forecasting the carbon footprint of 
road freight transport in 2020. 
International Journal of Production 
Economics, 128(1), 31–42. 
https://doi.org/10.1016/j.ijpe.2009.08
.027 

Raskin, M. S. (1994). The Delphi Study in Field 
Instruction Revisited: Expert 
Consensus on Issues and Research 
Priorities. Journal of Social Work 
Education, 30(1), 75–89. 
https://doi.org/10.1080/10437797.19
94.10672215 

Ray, P. K., & Sahu, S. (1990). Productivity 
Management in India: A Delphi Study. 

International Journal of Operations & 
Production Management, 10(5), 25–
51.https://doi.org/10.1108/01443579
010005245 

Regulation (EU) No 886/2013, (2013). 
https://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=celex%3A32013
R0886 

Roßmann, B., Canzaniello, A., von der Gracht, 
H., & Hartmann, E. (2018). The future 
and social impact of Big Data Analytics 
in Supply Chain Management: Results 
from a Delphi study. Technological 
Forecasting and Social Change, 130, 
135–149. 
https://doi.org/10.1016/j.techfore.20
17.10.005 

Ryan, C. (2020). Emerging autonomous vehicle 
risks: The role of telematics and 
machine learning based risk 
assessment. 

Scheibe, M., Skutsch, M., & Schofer, J. (2002). 
IV. C. Experiments in Delphi 
methodology. The Delphi Method: 
Techniques and Applications, 257–281. 

Schuckmann, S. W., Gnatzy, T., Darkow, I.-L., & 
von der Gracht, H. A. (2012). Analysis 
of factors influencing the development 
of transport infrastructure until the 
year 2030—A Delphi based scenario 
study. Technological Forecasting and 
Social Change, 79(8), 1373–1387. 
https://doi.org/10.1016/j.techfore.20
12.05.008 

Spickermann, A., Zimmermann, M., & von der 
Gracht, H. A. (2014). Surface- and 
deep-level diversity in panel 
selection—Exploring diversity effects 
on response behaviour in foresight. 
Technological Forecasting and Social 
Change,105–120. 
https://doi.org/10.1016/j.tecfore.201
3.04.009 

Stipdonk, H. L. (2013). Road safety in bits and 
pieces; for a better understanding of 
the development of the number of 
road fatalities. 
https://repository.tudelft.nl/islandora
/object/uuid%3A435ca957-1b52-
446c-a325-f12c433a99d9 

SWOV. (2005). State of the art Report on Road 
Safety Performance Indicators; 



 93 

Deliverable D3.1 of the EU FP6 project 
SafetyNet (p. 177). European 
Commission. 

SWOV. (2016). Gegevensbronnen; Uitgebreid 
overzicht. SWOV. 
http://www.swov.nl/sites/default/file
s/bestanden/wegwijzer/gegevensbron
nen.pdf 

SWOV. (2020a). Verkeersdoden in Nederland 
[SWOV-Factsheet, april 2020.]. SWOV. 
https://www.swov.nl/feiten-
cijfers/fact/verkeersdoden-hoe-heeft-
het-aantal-verkeersdoden-nederland-
zich-sinds-1950 

SWOV. (2020b). De Staat van de 
Verkeersveiligheid 2020: 
Doelstellingen 2020 worden niet 
gehaald. SWOV. 
https://www.rijksoverheid.nl/binaries
/rijksoverheid/documenten/rapporten
/2020/12/14/bijlage-1-de-staat-van-
de-verkeersveiligheid-2020-swov. pdf 

Talal, M., Ramli, K. N., Zaidan, A. A., Zaidan, B. 
B., & Jumaa, F. (2020). Review on car-
following sensor based and data-
generation mapping for safety and 
traffic management and road map 
toward ITS. Vehicular 
Communications, 25, 100280. 
https://doi.org/10.1016/j.vehcom.202
0.100280 

Tarko, A. P. (2012). Use of crash surrogates and 
exceedance statistics to estimate road 
safety. Accident Analysis & Prevention, 
45, 230–240. 
https://doi.org/10.1016/j.aap.2011.07
.008 

Toma, C., & Picioreanu, I. (2016). The Delphi 
Technique: Methodological 
Considerations and the Need for 
Reporting Guidelines in Medical 
Journals. International Journal of 
Public Health Research, 4, 47–59. 

TRL. (2017). Access to In-vehicle Data and 
Resources; Final Report (No. CPR2419). 
https://ec.europa.eu/transport/them
es/its/studies/its_en. 
transport.its.menu 

Vlakveld, W. P. (2019). Veiligheidseffecten van 
rijtaakondersteunende systemen. 
SWOV. 

von der Gracht, H. A. (2012). Consensus 
measurement in Delphi studies: 
Review and implications for future 
quality assurance. Technological 
Forecasting and Social Change, 79(8), 
1525–1536.https://doi.org/10.1016/ 
j.techfore.2012.04.013 

von der Gracht, H. A., & Darkow, I.-L. (2010). 
Scenarios for the logistics services 
industry: A Delphi-based analysis for 
2025. International Journal of 
Production Economics, 127(1), 46–59. 
https://doi.org/10.1016/j.ijpe.2010.04
.013 

Wang, L., Zhong, H., Ma, W., Abdel-Aty, M., & 
Park, J. (2020). How many crashes can 
connected vehicle and automated 
vehicle technologies prevent: A meta-
analysis. Accident Analysis & 
Prevention, 136, 105299. 
https://doi.org/10.1016/j.aap.2019.10
5299 

Ward, M., Gruppen, L., & Regehr, G. (2002). 
Measuring self-assessment: Current 
state of the art. Advances in Health 
Sciences Education, 7(1), 63–80. 
Scopus.https://doi.org/10.1023/A:101
4585522084 

Warth, J., von der Gracht, H. A., & Darkow, I.-L. 
(2013). A dissent-based approach for 
multi-stakeholder scenario 
development — The future of electric 
drive vehicles. Technological 
Forecasting and Social Change, 80(4), 
566–583.https://doi.org/10.1016/ 
j.tecfore.2012.04.005 

Winkler, J., & Moser, R. (2016). Biases in future-
oriented Delphi studies: A cognitive 
perspective. Technological Forecasting 
and Social Change, 105, 63–76. 
https://doi.org/10.1016/j.techfore.20
16.01.021 

Young, W., Sobhani, A., Lenné, M. G., & Sarvi, 
M. (2014). Simulation of safety: A 
review of the state of the art in road 
safety simulation modelling. Accident 
Analysis & Prevention, 66, 89–103. 
https://doi.org/10.1016/j.aap.2014.01
.0

 



 94 

Appendix B Safety evaluation methods for vehicles with automation 
This appendix gives an overview of safety evaluation methods for vehicles with automation in section 
B.1 and of data collection methods used in those methods in section C.2. 
 

B.1 Safety evaluation methods for vehicles with automation 
That there is no standard way to measure safety effects is illustrated by the fact that studies into the 
assessment of safety effects of ADAS find different types of assessment methods. For example, Sohrabi 
et al. (2021) identifies six different safety assessment methods while Vlakveld (2019) and Yue et al. 
(2018) find five. Table B1 shows these assessment methods which will be discussed in more detail 
below.  

 
Table B1 Safety evaluation methods for vehicles equipped with automation as discussed in three review studies where the 

percentage show the share of studies in the review that used that method 

 Vlakveld 
(2019) 

Yue et al. 
(2018) 

Sohrabi et al. 
(2021) 

Setting 

Road test data analysis  x x (28%) x (30%) Public roads 

Driving 
Test 
Study 
(DTS) 

Field Operational Test 
(FOT) 

x x (28% for all 
DTS combined) 

 Public roads 

Naturalistic Driving 
Study (NDs) 

 x  Public roads 

Driving simulator x x x (21%) Artificial 

Test Track tests x   Artificial 

Traffic simulation   x (27%) Artificial 

Target crash population x x (44%) x (18%) Artificial 

Safety effectiveness   x (2%) Artificial 
System failure risk assessment   x (2%) Artificial 

 
Road test data analysis 
Road test data analysis is one of the three safety assessment methods all three studies discuss. Road 
test data analysis are studies that analyse reports and statistics on crashes or disengagements of 
vehicles with and without ADAS driving on roads (Sohrabi et al., 2021; Vlakveld, 2019; Yue et al., 2018). 
By comparing these crash rates, it can be estimated if the vehicles with ADAS are safer than those 
without. All three studies see this as the most reliable way of estimating safety effects of vehicles with 
ADAS. However, they also agree that there are limitations in the data available. Sohrabi et al. (2021) 
names the small size of datasets and the under reporting of crashes of human driven vehicles (HDVs). 
Vlakveld (2019) points at the fact that it is usually not known how many kilometres both types of 
vehicles (with and without ADAS) drive, making for an unfair comparison. This also has to do with the 
potential self-selection bias in which different type of drivers by different types of cars (Vlakveld, 2019). 
Finally, Yue et al. (2018) mention that this methodology is only possible for ADAS already present in 
the market in sufficient numbers. 
 
Within this type of assessment methods, Sohrabi et al. (2021) distinguish two more types: research 
into the characteristics crashes of vehicles with driving automation systems and research into the 
safety reliability of such vehicles. Examples of the former can vary from the type of crashes (Favarò et 
al., 2017) to factors influencing the likelihood of crashing (Boggs et al., 2020). An examples of the latter 
is the study by Kalra & Paddock (2016) as discussed in section 1.2 and figure 3 which aims to calculate 
how many kilometres need to be driven by vehicles with driving automation systems in order to 
demonstrate their reliability relative to human driven vehicles.   
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Road test data analysis is the only ex-post safety evaluation method discussed is this paragraph. All the 
other methods are ex-ante safety evaluation methods which aim to evaluate the safety effect of ADAS 
before they are released on the market.  
 
Driving Test Studies (DST) 
Driving Test Studies (DST) take a different approach by organising various types of tests. Yue et al. 
(2018) classifies Field Operational Tests (FOTs), Naturalistic Driving Study (NDS) and Driving simulator 
tests as DSTs. In all three of these types of experiments, drivers drive vehicles outfitted with specific 
ADAS and with measuring equipment so the impact of these ADAS can be measured (Yue et al., 2018).  
Both FOTs and NDS take place on real roads in daily life. The difference between the two is that in 
FOTs, drivers get certain instructions like when to use the ADAS and when to turn them off. This usually 
follows an A-B test design in which the drivers first drive without the ADAS (test A) and then with the 
ADAS (test B). In this way, the change in traffic safety, in whatever chosen metric, can be measured. 
(Yue et al., 2018).  
As can be seen in figure B1, there is an overlap between FOT and NDS. In an NDS,  people can drive in 
any way they prefer, without specific instructions while in NDS people drive in any way they prefer 
(FESTA, 2018; SWOV, 2012). Note that Vlakveld (2019) does not make the distinction between FOTs 
and NDS. The advantage of NDS over FOTs is that NDS resembles reality closer and that factors such 
as usage are considered (SWOV, 2012).  
A disadvantage of NDS is the high costs of outfitting vehicles with measuring equipment resulting in 
relatively short duration of these studies (Vlakveld, 2019). This is problematic because crashes are rare 
and thus might not occur during the tests (Vlakveld, 2019). 
 

 
Figure B1  The partial overlap between FOT and NDS (FESTA, 2018) 

This problem can be overcome by using a driving simulator. A driving simulator test is similar to FOTs, 
except that it takes place in a virtual environment. This allows the researchers to control many 
variables and create specific situations that are rare in reality. Yue et al. (2018) for example, use a 
driving simulator to test the effect of fog on the effectiveness of FCW. The disadvantage of driving 
simulators is that there might be bias in for example the participants of in the simulated environment 
leading to less valid results (Sohrabi et al., 2021). This makes it more difficult to generalise results from 
driving simulator test to real world driving (Vlakveld, 2019).  
 
Test Track tests 
ADAS can also be tested on a test track, a circuit or road section closed off to other drivers. Here, 
specific situations that might be rare in reality can be created to see how ADAS and/or the drivers 
respond to this situation (Vlakveld, 2019). This is similar to the driving simulator but in some case more 
valid because the drivers are in actual cars instead of a simulator (Vlakveld, 2019). 
 
Traffic simulation 
To assess the impact of ADAS on traffic safety on a higher level, traffic simulations can be used. These 
can for example be used to explore the impact of market penetration rates of ADAS on safety (Sohrabi 
et al., 2021). Like driving simulator tests, traffic simulations might suffer from similar biases. 
Additionally, these simulations have to make assumptions on the effectiveness of specific ADAS, which 



 96 

are based on previous research. In this way, the simulation inherits the shortcoming of those studies 
and make it difficult to validate the simulations (Sohrabi et al., 2021).  
 
Target crash population 
The target crash population approach aims to quantify the number of preventable crashes if ADAS 
were implemented. According to Sohrabi et al (2021), it consists of three steps: 

1. Identify the functionality of the ADAS 
2. Match this functionality with a specific target crash type 
3. Calculate the number of preventable crashes in the crash dataset 

 
Vlakveld (2019) classifies this as the least valid safety assessment method because potential changes 
in driving behaviour when driving with these ADAS are not considered and because 100% effectiveness 
of these systems are assumed. Sohrabi agrees and adds that potential new types of crashes due to 
interaction in mixed traffic are not considered. This together may lead to an overestimation of the 
effect of ADAS on safety and thus is more likely to represent the theoretical upper bound (Sohrabi et 
al., 2021). This method is mostly used for ADAS that have just entered the market or are still in 
development, making the much more valid road test safety analysis not possible (Vlakveld, 2019).  
In the interpretation of Yue et al. (2018), the effectiveness of the ADAS is not assumed to be 100% but 
based on previous NDS. A step is added in which the information about the functionality of the ADAS 
and the crash database is used to reconstruct a pre-crash scenario in kinematic models. This is then 
used to calculate the number of crashes avoided. On one hand, this is more valid because it does not 
assume a 100% effectiveness of ADAS but on the other hand the single near-crash event has no 
meaning because it is the result of a simulation, not an actual event (Yue et al., 2018). 
 
System failure risk assessment 
Bhavsar et al. (2017) have tried to calculate the reliability of vehicles with driving automation systems 
by determining the failure rate of individual components from the literature. These are then 
synthesised according to a certain hierarchical model. This method is criticised by Sohrabi et al. (2021) 
because the failure risks can be overestimated due to redundancy in the system and because it is 
difficult to determine failure rates accurately.  
 
Safety effectiveness 
Safety effectiveness is a way to synthase results from different studies by using several formulas to 
normalise the effect of the ADAS on safety (Sohrabi et al., 2021). In this way, several studies can be 
compared. The use of method may be limited because it can still only compare studies based on the 
same metrics. Additionally, this method uses other driver or traffic simulation studies and thus inherits 
their limitations and flaws. (Sohrabi et al., 2021) 
 

B.2 Data collection for safety evaluation methods 
Several ways of collecting data for safety evaluation methods exist. A common method is to use crash 
statistics, as is done in road test data analysis (Young et al., 2014). This data is collected after a crash 
and these crash statistics databases are often incomplete. There are however more fundamental 
issues. According to Tarko (2012) the crash causality cannot be properly understood based on crash 
statistics, only contributing factors to the crash. This is because of the lack of detailed driving data. As 
a result, basing research on these crash statistics can sometimes lead to results opposite of those in 
reality (Talal et al., 2020).  
 
A second way in which data can be collected is with observational data (Young et al., 2014) or as Talal 
et al. (2020) call it, with fixed point sensors. This can include already present loop-detectors and 
surveillance cameras, purposely placed cameras and/or trained observers (Talal et al., 2020; Young et 
al., 2014). This method can observe and help understand driver behaviour, and can collect data on 
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near-crashes which crash data cannot do (Young et al., 2014). It is however not without its issues: it is 
difficult to collect data on the characteristics of the driver and the vehicle (Young et al., 2014) and the 
sensors could be costly and maintenance intensive (Talal et al., 2020). Another major drawback of this 
method is that these sensors are in a permanent location resulting in data gathered from limited 
locations and with less variety (Talal et al., 2020; Young et al., 2014).  
 
This leads to the third possible way of collecting data: on-board data collection as is often done in NDS. 
Collecting the necessary data can be done with several different data acquisitions systems (DAS). The 
first DAS to be discussed is in-vehicle research-designated DAS, in which vehicles are 
equipped/retrofitted with a large variety of fixed sensors like GPS, forward-facing radar and several 
cameras (Grimberg et al., 2020). This allows for low measurement error, high sampling rate and also 
the possibility of researchers to customise the DAS to their research question (Grimberg et al., 2020; 
Young et al., 2014). This is however a highly costly method, the Australian Naturalistic Driving Study 
(ANDS) with 379 drivers costed $4 million. This is not just the cost of the equipment but also the costs 
of processing the data as the video footage often still needs to be processed and coded manually 
(Grimberg et al., 2020; Talal et al., 2020).  
These high costs have resulted in a second DAS: smartphone-based DAS. Smartphones might be a 
cheaper alternative to dedicated in-vehicle DAS given that smartphones are widely spread among the 
population and that these often have built-in GPS, accelerometer, gyroscope, and are capable of 
storing and transmitting data from these sensors (Grimberg et al., 2020; Young et al., 2014). According 
to Talal et al. (2020) these sensors are too unreliable although this is disputed by Grimberg et al. (2020) 
who state that the measurement error is not too different from dedicated in-vehicle DAS and that 
computational corrections can help compensate for the small measurement errors. Nonetheless, both 
papers point to issues around data incompleteness and validity due to limited available storage, 
battery drainage, or the driver’s concern about these two issues. Additionally, using only smartphones 
as DAS does almost always not allow for video footage. This together makes smartphone DAS not 
suitable for crash and near-crash analysis (Grimberg et al., 2020) 
 
So, dedicated in-car DAS are capable of providing detailed data suited for the safety evaluation of 
several ADAS but comes at high costs. Using smartphones as DAS is much cheaper but this method is 
not capable of providing detailed and viable enough data. This poses a problem as this data is necessary 
as is shown in this review. As Talal et al. (p25, 2020) concludes about DAS: “providing a low-cost, 
reliable and easy-to-implement system is a tremendous step towards research advancement”.  
 
To conclude this paragraph, data for the safety evaluation of ADAS is collected in various ways, 
depending on the safety evaluation method used. On-board data collection is found to have several 
key advantages over the two other discussed methods, crash statistics and observational data. The 
former is not capable of identifying crash causality and does by definition only concern actual crashes 
while the latter can only collect data on fixed locations and is not able to identify driver characteristics. 
On-board data collection is able cover all these factors but only with - costly - dedicated research 
equipment. 
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Appendix C Interview summary on RoadMonitor (RoMo) 
 
This is a summary of an interview conducted with Erik Vrijens (Ministry of Infrastructure and Water 
management) on the Road Monitor (RoMo) (06-12-21) 
 
The Road Monitor (RoMo) is a project of the Dutch Ministry of Infrastructure and Water management 
in which vehicle data is processed into useful information for the road authorities. The project focusses 
on three areas: asset management, winter-maintenance, and detecting unsafe situations.  
Detecting unsafe situations is done based on data collected by the sensors present in the vehicles. This 
can be the input of drivers like sudden braking or abrupt steering wheel motions, or it can be the 
intervention of specific ADAS like Forward Collision Warning (FCW). An algorithm is developed which 
combines these inputs to detect potentially unsafe situations. What is special about this project that 
it not only detects potentially dangerous situations but also aims to provide context. This context 
comes from an algorithm that analyses a clip made by the vehicle’s cameras of the 10 seconds leading 
up to the situation. From this clip, the cause of the unsafe situation can be determined. 
The information is collected by all Mercedes vehicles of which the owners have given consent and also 
have the necessary sensors and communication technology. Mercedes is also the party that processes 
and analyses the data. This is then aggregated or anonymised and delivered to the Ministry of I&W in 
form the form of an interactive dashboard. In this way it is easier to guarantee the privacy of the 
drivers.  
Even though RoMo only uses vehicle data of Mercedes, there is still enough data to sufficiently cover 
most of the Netherlands. The main issue with using data from a single manufacturer is that only the 
specific ADAS of that specific manufacturer are evaluated. This means that it may not be possible to 
generalise results to all vehicles. In addition, other manufacturers produce vehicles with slightly 
different ADAS or even ADAS with different functions.  
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Appendix D Delphi survey round 1  
 

Part 1 
For this first part of this questionnaire, assume that vehicle manufactures are willing to supply the 
necessary vehicle data to the Dutch ministry of Infrastructure and Water Management and that they 
are capable of doing so. The goal of this part is to evaluate different types of indicators that could be 
used to measure traffic safety at network level. The goal of measuring traffic safety at network level 
here means to measure the level of road safety at a network, for example the network managed by 
Rijkswaterstaat (hoofdwegennet). 

 
This part will consist of five questions. In the first four questions, you will be asked to evaluate a type 
of indicator to measure traffic safety on four different criteria. Examples of the types of indicators are 
provided to give you an idea of what could potentially be used as indicator.  
 
Please rate the statements on a scale from 1 (strongly disagree) to 7 (strongly agree) and explain why 
you make this assessment. Table 1 below shows the meaning of each score. Please answer a 0 in case 
you do not have an answer. 
 
All parts that require a response from you are marked in blue. 
 

Question 1 
Type of indicator: Dutch Safety Performance Indicators (SPIs), like Safe Speeds and Safe Participants. 
 

Examples 
1 Safe Speeds: The share of motorized traffic that does not exceed the speed limit (per road 
type) 
2 Safe Participants: Share of vehicles (per type) that has their correct lights on (per visibility 
condition) 
3 Safe Participants: Share of drivers that wears their seatbelt 

a. This type of indicator reflects traffic safety well  Score 

b. This type of indicator could be measured in a reliable way Score 

c. This type of indicator is sensitive to external changes, i.e., it will 
change with future traffic safety interventions 

Score 

d. This type of indicator is understandable for different end-users such 
as researchers and policy makers 

Score 

Explanation 
 
 

 

Table 1 Meaning of the scores in part 1 

0 1 2 3 4 5 6 7 
I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 
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Question 2 
Type of indicator: Proximity based Surrogate Measures of Safety (SMoS) such as time-to-collision 
(TTC). 
 
SMoS = pro-active (leading) indicator that use traffic conflicts as surrogate for actual collisions.  
TTC = the time remaining until a collision between two vehicles would occur if they maintained their 
course and speed  
 

Examples 
1. The number of times TTC exceeds a certain threshold per 100.000 kilometers travelled 
(per road type) 

a. This type of indicator reflects traffic safety well  Score 

b. This type of indicator could be measured in a reliable way Score 
c. This type of indicator is sensitive to external changes, i.e., it will 
change with future traffic safety interventions 

Score 

d. This type of indicator is understandable for different end-users such 
as researchers and policy makers 

Score 

Explanation 
 
 

 

Table 1 Meaning of the scores in part 1 

0 1 2 3 4 5 6 7 

I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 
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Question 3 
Type of indicator: Kinematic Surrogate Measures of Safety (SMoS), like strong deceleration, 
acceleration or swerving.  
 
SMoS = pro-active (leading) indicator that use traffic conflicts as surrogate for actual collisions.  
 

Examples 
1. The number of strong decelerations per 100.000 kilometers travelled (per road type) 
2. The number of strong accelerations per 100.000 kilometers travelled (per road type) 
3. The number of strong swerving movements per 100.000 kilometers travelled (per road 
type) 

a. This type of indicator reflects traffic safety well  Score 

b. This type of indicator could be measured in a reliable way Score 
c. This type of indicator is sensitive to external changes, i.e., it will 
change with future traffic safety interventions 

Score 

d. This type of indicator is understandable for different end-users such 
as researchers and policy makers 

Score 

Explanation 
 
 

 

Table 1 Meaning of the scores in part 1 

0 1 2 3 4 5 6 7 

I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 
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Question 4 
Type of indicator: Engagement of ADAS, like Forward Collision Warning (FCW), Autonomous 
Emergency Braking (AEB) or Blind Sport Warning (BSW). 
 
Engagement of ADAS = the moment an ADAS acts, either by warning the driver or by actively 
intervening  
 

Examples 
1. The number of warnings of Forward Collision Warning (FCW) per 100.000 kilometers 
travelled (per road type) 
2. The number of interventions of Autonomous Emergency Braking (AEB) per 100.000 
kilometers travelled (per road type) 
3. The number of warnings of Blind Sport Warning (BSW) when the driver changes lanes per 
100.000 kilometers travelled (per road type) 

a. This type of indicator reflects traffic safety well  Score 

b. This type of indicator could be measured in a reliable way Score 

c. This type of indicator is sensitive to external changes, i.e., it will 
change with future traffic safety interventions 

Score 

d. This type of indicator is understandable for different end-users such 
as researchers and policy makers 

Score 

Explanation 
 
 

 

Table 1 Meaning of the scores in part 1 

0 1 2 3 4 5 6 7 

I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 

 

 
Question 5 
Are there any other types of indicators based on vehicle data not mentioned above that you think 
could potentially be a suitable indicator for measuring traffic safety at network level? If this is the case, 
please explain below. 
 

Explanation 
 
 

 
 
 
 
 

End of part 1 
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Part 2 
This part of the questionnaire is aimed at identifying what factors could potentially form a barrier for 
successfully implementing a system of measuring traffic safety at network level based on vehicle data. 
This does not specifically refer to any of the in part 1 discussed types of indicators but is meant in a 
more general way.  
 
This part consists of seven questions. In these questions, you will be asked to evaluate a potential 
barrier to successful implementation of a system of measuring traffic safety at network level based on 
vehicle data. 
 
Please answer the questions below by scoring the potential barrier from 1 (no barrier at all) to 7 
(Insurmountable barrier) and explain why you make this assessment.  
 
Table 2 below shows the meaning of each score. Please answer a 0 in case you do not have an answer. 
All parts that require a response from you are marked in blue. 
 
Table 2 Meaning of the scores in part 2 

0 1 2 3 4 5 6 7 

I do not 
know 

No barrier 
at all 

Weak 
barrier 

Somewhat 
weak barrier 

Moderate 
barrier 

Somewhat 
strong barrier 

Strong 
barrier 

Insurmountable 
barrier 

 

Question 1 
Technical feasibility  
1a. Is the technical feasibility of collecting the data within one vehicle a barrier to successful 
implementation? 
 
This refers to the technical feasibility of collecting the data necessary for reporting any of the indicators 
discussed in part 1, within a single vehicle. 

Score 

Explanation 
 
 

 
1b. Is the technical feasibility of extracting and processing the data of a fleet of vehicles a barrier to 
successful implementation? 
 
This refers to the technical feasibility of the entire process of extracting, processing, and storing the 
data necessary to report one of the indicators discussed in part 1 for a fleet of vehicles. 

Score 
Explanation 
 
 

 
1c. Would the answers given at 1a and 1b be different for any of the specific types of indicators 
discussed in part 1? If this is the case, please explain below. 

Explanation 
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Question 2 
Is Legal feasibility a barrier to successful implementation? 
 
This refers to how (EU) laws or directives on for example privacy or fair market competition could be 
a potential barrier. 
 

Score 

Explanation 
 
 

 
Table 2 Meaning of the scores in part 2 

0 1 2 3 4 5 6 7 

I do not 
know 

No barrier 
at all 

Weak 
barrier 

Somewhat 
weak barrier 

Moderate 
barrier 

Somewhat 
strong barrier 

Strong 
barrier 

Insurmountable 
barrier 

 
 

Question 3 
Is Economic feasibility a barrier to successful implementation?  
 
This refers to the question of whether or not a business case exists for relevant stakeholders (OEMs, 
government, service providers, etc.) that would make them willing to participate or organise such a 
system? Would it thus be possible to organise such a system with several stakeholders? 

Score 

Explanation 
 
 

 
Table 2 Meaning of the scores in part 2 

0 1 2 3 4 5 6 7 

I do not 
know 

No barrier 
at all 

Weak 
barrier 

Somewhat 
weak barrier 

Moderate 
barrier 

Somewhat 
strong barrier 

Strong 
barrier 

Insurmountable 
barrier 
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Question 4 
Is Cybersecurity a barrier to successful implementation?  
 

This refers to the cybersecurity during the whole process: within a vehicle, during the over-the-air 
communication, and during the processing of the data. 

Score 

Explanation 
 
 

 
Table 2 Meaning of the scores in part 2 

0 1 2 3 4 5 6 7 
I do not 
know 

No barrier 
at all 

Weak 
barrier 

Somewhat 
weak barrier 

Moderate 
barrier 

Somewhat 
strong barrier 

Strong 
barrier 

Insurmountable 
barrier 

 

Question 5 
Willingness of stakeholders 
 
Is Willingness of OEMs/vehicle manufacturers a barrier to successful implementation? 

Score 

Explanation 
 
 

 
Is Willingness of suppliers a barrier to successful implementation? 

Score 
Explanation 
 
 

 
Is Willingness of Service Providers a barrier to successful implementation?  

Score 

Explanation 
 
 

 
Table 2 Meaning of the scores in part 2 

0 1 2 3 4 5 6 7 

I do not 
know 

No barrier 
at all 

Weak 
barrier 

Somewhat 
weak barrier 

Moderate 
barrier 

Somewhat 
strong barrier 

Strong 
barrier 

Insurmountable 
barrier 
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Question 6 
Is Going from pilot to reality a barrier to successful implementation? 
 
This refers to the organisational difficulty of stakeholders to go from small scale pilots to the full 
incorporation of such a system in their organisations. 

Score 
Explanation 
 
 

 
Table 2 Meaning of the scores in part 2 

0 1 2 3 4 5 6 7 
I do not 
know 

No barrier 
at all 

Weak 
barrier 

Somewhat 
weak barrier 

Moderate 
barrier 

Somewhat 
strong barrier 

Strong 
barrier 

Insurmountable 
barrier 

 

Question 7 
Are there any other factors not mentioned above that you think could potentially be a barrier for 
implementing a system of using vehicle data to measure traffic safety? If this is the case, please explain 
below. 

Explanation 
 
 

 

 

Question 8 
Do you have any other comments or thoughts that you wish to share?  

Explanation 
 
 

 
 
 
 
 
 

End of the Delphi survey 
 
Thank you for your participation! Please save this file and sent it back to me. By the end of June, you 

will receive the second and final round of the survey. Please fill in that survey as well. 
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Appendix E Delphi survey round 2 
 

Instruction for round 2 
 
Dear expert, 
 
Thank you for participating in the second round of the Delphi study.  
 
This second and final round of the survey will consist of the same questions as round 1. Additional 
information is given, and you are asked to re-evaluate your answers based on this information. Each 
question has the following: 

1. The original question of round 1 with your own scores 
2. A histogram showing the distribution of scores given by all the experts in round 1 
3. Arguments against the type of indicator/potential barrier made by experts in round 1 
4. Arguments in favour of the type of indicator/potential barrier made by experts in round 1 
5. The question to re-evaluate you score from round 1  
6. The meaning of the scores 

 
You are asked to re-evaluate your answer and see if you want to change your answer based on the 
additional information. It is important to note that you do not have to change your answer.  
 
Similar to round 1, there is room to explain the score you give. All parts that require a response from 
you are marked in blue. 
 
Please fill in all the questions of this second round as well. 
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Instruction for round 2 
For this first part of this questionnaire, assume that vehicle manufactures are willing to supply the 
necessary vehicle data to the Dutch ministry of Infrastructure and Water Management and that they 
are capable of doing so. The goal of this part is to evaluate different types of indicators that could be 
used to measure traffic safety at network level.  
 
The goal of measuring traffic safety at network level here means to measure the level of road safety 
at a network, for example the network managed by Rijkswaterstaat (hoofdwegennet). 
 
This part will consist of five questions. You will be asked to evaluate a type of indicator to measure 
traffic safety on four different criteria. Examples of the types of indicators are provided to give you an 
idea of what could potentially be used as indicator.  
 
Please rate the statements on a scale from 1 (strongly disagree) to 7 (strongly agree) and explain why 
you make this assessment. Table 1 below shows the meaning of each score. Please answer a 0 in case 
you do not have an answer. 
 
All parts that require a response from you are marked in blue. 
 
Table 1 Meaning of the scores in part 1 

0 1 2 3 4 5 6 7 

I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 

 
  
Clarification criteria c: sensitivity 
Several experts asked for clarification on the third criterium:  

• c.  This type of indicator is sensitive to external changes, i.e., it will change with future traffic 
safety interventions  

 
This the goal of this criterium is to answer the question if the indicator would change if policies aimed 
at improving traffic safety are implemented in the future? So, it aims to clarify if the indicator can 
measure traffic safety in a relative way.  
 
An example about an indicator focussed on speed: let’s say that in the coming years action is taken to 
reduce speeding in any way (adapting infrastructure, the further deployment of ISA, or by increasing 
enforcement, etc.), will the indicator show a change?   
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Question 1 Dutch Safety Performance Indicators (SPIs) 
 
1. The original question 1: Please rate the statements on a scale from 1 (strongly disagree) to 7 
(strongly agree) 

Type of indicator 

• Dutch Safety Performance Indicators (SPIs) 

Examples of specific metrics  

• Safe Speeds: The share of motorized traffic that does not exceed the speed limit (per road 
type)  

• Safe Participants: Share of vehicles (per type) that has their correct lights on (per visibility 
condition) 

• Safe Participants: Share of drivers that wears their seatbelt 

 Your score round 1 

a. This type of indicator reflects traffic safety well  5 
b. This type of indicator could be measured in a reliable way 6 

c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

5 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

6 

 
 
2. Distribution of scores in round 1 
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3. Arguments made by experts against this type of indicator: 

• A safe speed is not always comparable with the speed limit: think of the external conditions of 
safe speed, such as weather or road works. 

• Monitoring all road users and measuring such a proportion is very time consuming and so 
assumptions are needed (e.g., extrapolation). This may lead to measurement error in data. 

• This type of indicator describes the safety risks from the perspective of policy makers, which 
does not consider the operational features of traffic dynamics. So, they are more for describing 
the general background/conditions of safety, instead of pinpointing the safety itself.     
 

4. Arguments made by experts in favour of this type of indicator 

• This kind of indicators represent basic safety conditions. They are pretty easy to collect and 
analyse. 

• Traffic speed is a good indicator of safety and severity of crash outcomes. It is also 
understandable for end users. 
 

5. Re-evaluate question 1: Please rate the statements on a scale from 1 (strongly disagree) to 7 
(strongly agree) 

Type of indicator 

• Dutch Safety Performance Indicators (SPIs) 

Examples of specific metrics  

• Safe Speeds: The share of motorized traffic that does not exceed the speed limit (per road 
type)  

• Safe Participants: Share of vehicles (per type) that has their correct lights on (per visibility 
condition) 

• Safe Participants: Share of drivers that wears their seatbelt 

 Score R1 Score R2 

a. This type of indicator reflects traffic safety well  5 Score 
b. This type of indicator could be measured in a reliable way 6 Score 

c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

5 Score 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

6 Score 

Explanation (optional) 
 
 
 
 

 
6. Meaning of the scores 

0 1 2 3 4 5 6 7 

I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 

  



 111 

Question 2 Proximity based Surrogate Measures of Safety (SMoS) 
 
SMoS = pro-active (leading) indicator that use traffic conflicts as surrogate for actual collisions.  
TTC = the time remaining until a collision between two vehicles would occur if they maintained their 
course and speed  
 
1. The original question 2: Please rate the statements on a scale from 1 (strongly disagree) to 7 
(strongly agree) 

Type of indicator 

• Proximity based Surrogate Measures of Safety (SMoS) such as time-to-collision (TTC). 

Example of a specific metric  

• The number of times TTC exceeds a certain threshold per 100.000 kilometres travelled (per 
road type) 

 Your score round 1 

a. This type of indicator reflects traffic safety well  5 

b. This type of indicator could be measured in a reliable way 6 

c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

5 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

6 

 
 
2. Distribution of scores in round 1 
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3. Arguments made by experts against this type of indicator: 

• TTC sounds nice on paper, but in practice can be cumbersome. TTC is often ill-defined. For 
example, what objects or road users will be included/excluded in this metric? It may be difficult 
to apply this homogenously and in such a way that it is robust across different road types etc. 

• All these SMoS are context dependent. They rely heavily on assumptions of driving behaviour. 

• It relies on vehicle’s sensors and those have their limitations (for instance for lane changing 
manoeuvre). 
 

4. Arguments made by experts in favour of this type of indicator 

• SMoS have been shown to be very good precursors of crashes in recent years. There are many 
ongoing studies to correlate them with crashes. 

• Especially with a low threshold (TTC being under the threshold), this measure represents 
critical situations well. 

• The aggregated data could generally show the occurrence of safety risks at the network level. 
Also, this type of indicator is often measurable/computable from vehicle data and still is 
applicable when automated driving is promoted in the future. 
 

5. Re-evaluate question 2: Please rate the statements on a scale from 1 (strongly disagree) to 7 
(strongly agree) 

Type of indicator 

• Proximity based Surrogate Measures of Safety (SMoS) such as time-to-collision (TTC). 
Example of a specific metric  

• The number of times TTC exceeds a certain threshold per 100.000 kilometres travelled (per 
road type) 

 Score 
R1 

Score R2 

a. This type of indicator reflects traffic safety well  5 Score 

b. This type of indicator could be measured in a reliable way 6 Score 

c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

5 Score 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

6 Score 

Explanation (optional) 
 
 
 

 
6. Meaning of the scores 

0 1 2 3 4 5 6 7 

I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 
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Question 3 Kinematic Surrogate Measures of Safety (SMoS) 
SMoS = pro-active (leading) indicator that use traffic conflicts as surrogate for actual collisions.  
 
1. The original question 3: Please rate the statements on a scale from 1 (strongly disagree) to 7 
(strongly agree) 

Type of indicator 

• Kinematic Surrogate Measures of Safety (SMoS) 
Examples of specific metrics  

• 1. The number of strong decelerations per 100.000 kilometres travelled (per road type) 

• 2. The number of strong accelerations per 100.000 kilometres travelled (per road type) 

• 3. The number of strong swerving movements per 100.000 kilometres travelled (per road 
type) 

 Your score round 1 

a. This type of indicator reflects traffic safety well  5 
b. This type of indicator could be measured in a reliable way 6 

c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

5 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

6 

 
 
2. Distribution of scores in round 1 
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3. Arguments made by experts against this type of indicator: 

• Due to the nature of these variables, there are many errors and noises in measuring them via 
accelerometers, and other devices. 

• Context matters: It may reflect distraction or a preference of the driver for aggressive driving, 
but it may also just represent any other energetic driving. 

• The measurements could be different for different vehicle types and traffic compositions. 
 

4. Arguments made by experts in favour of this type of indicator 

• These indicators provide insight into behaviours that might never show up in crash statistics 
as they are corrected before critical situations. Yet, they still influence road safety. 

• It is not matched to a location or traffic situation, so you don’t know why the vehicle had to 
brake and also not the conditions of the surrounding vehicles. But probably in an aggregate 
way it is a good indicator for the (statistical) safety at network or road (type) level. 

• I would say that accelerations/decelerations (swerving less so, but lane changes yes) is 
measurable relatively easily (unlike TTC, it does not require sensors that look ahead, but it can 
be measured from the ego-vehicle behaviour only) 

 
5. Re-evaluate question 3: Please rate the statements on a scale from 1 (strongly disagree) to 7 
(strongly agree) 

Type of indicator 

• Kinematic Surrogate Measures of Safety (SMoS) 
Examples of specific metrics  

• 1. The number of strong decelerations per 100.000 kilometres travelled (per road type) 

• 2. The number of strong accelerations per 100.000 kilometres travelled (per road type) 

• 3. The number of strong swerving movements per 100.000 kilometres travelled (per road 
type) 

 Score 
R1 

Score R2 

a. This type of indicator reflects traffic safety well  5 Score 

b. This type of indicator could be measured in a reliable way 6 Score 

c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

5 Score 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

6 Score 

Explanation (optional) 
 
 
 
 

 
6. Meaning of the scores 

0 1 2 3 4 5 6 7 
I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 
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Question 4 Engagement of ADAS 
 
Engagement of ADAS = the moment an ADAS acts, either by warning the driver or by actively 
intervening 
 
1. The original question 4: Please rate the statements on a scale from 1 (strongly disagree) to 7 
(strongly agree) 

Type of indicator 

• Engagement of ADAS 

Examples of specific metrics  

• The number of warnings of Forward Collision Warning (FCW) per 100.000 kilometres 
travelled (per road type) 

• The number of interventions of Autonomous Emergency Braking (AEB) per 100.000 
kilometres travelled (per road type) 

• The number of warnings of Blind Sport Warning (BSW) when the driver changes lanes per 
100.000 kilometres travelled (per road type) 

 Your score round 1 
a. This type of indicator reflects traffic safety well  5 

b. This type of indicator could be measured in a reliable way 6 

c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

5 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

6 

 
2. Distribution of scores in round 1 
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3. Arguments made by experts against this type of indicator 

• Systems are improving, which makes it a difficult indicator to compare over time as activation 
is not same. 

• Every manufacturer can define an ADAS system as they want to: a warning from FCW will be 
different from one OEM to another OEM. 

• The reliability of such systems may be a limitation (e.g., AEB/FCW false positive) 

• These warnings are triggered based on some pre-defined thresholds on indicators of safety 
like TTC or acceleration. So, using these warnings as a measure of safety is a chicken-egg 
problem; it is not exogenous but endogenous with safety. 

 
4. Arguments made by experts in favour of this type of indicator 

• These indicators reflect more serious conflicts and can be measured reliably by the vehicle. 

• Activation of AEBs, discarding false positives, indicate an imminent collision. Thus, if all cars 
had AEBs one could count the number of frontal car near collisions reliably. 

• These should be easy to measure in vehicle. It is important to know what the boundaries of 
the systems are and when exactly they activate. Differences between systems should be well 
understood and considered. 

• If the thresholds for activation of the ADAS as set by the OEMs can be harmonized, then yes 
these will be good indicators 

 
5. Re-evaluate question 4: Please rate the statements on a scale from 1 (strongly disagree) to 7 
(strongly agree) 

Type of indicator 

• Engagement of ADAS 

Examples of specific metrics  

• The number of warnings of Forward Collision Warning (FCW) per 100.000 kilometres 
travelled (per road type) 

• The number of interventions of Autonomous Emergency Braking (AEB) per 100.000 
kilometres travelled (per road type) 

• The number of warnings of Blind Sport Warning (BSW) when the driver changes lanes per 
100.000 kilometres travelled (per road type) 

 Score 
R1 

Score R2 

a. This type of indicator reflects traffic safety well  5 Score 
b. This type of indicator could be measured in a reliable way 6 Score 

c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

5 Score 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

6 Score 

Explanation (optional) 
 
 
 
 

 
6. Meaning of the scores 

0 1 2 3 4 5 6 7 

I do not 
know 

Strongly 
disagree 

Disagree Somewhat 
disagree 

Neutral Somewhat 
agree 

Agree Strongly 
agree 
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Question 5 Driver distraction like sleepiness  
 
This type of indicator is added in this second round based on suggestions made by the experts.  
 
1. Evaluate question 5: Please rate the statements on a scale from 1 (strongly disagree) to 7 (strongly 
agree) 

Type of indicator 

• Driver distraction like sleepiness  

Examples of specific metrics  

• The number of times a driver is at risk of falling asleep per 100.000 kilometres travelled (per 
road type), as measured by the driver drowsiness and attention warning (DDAW) 

 Score 
R1 

Score R2 

a. This type of indicator reflects traffic safety well  n/a Score 

b. This type of indicator could be measured in a reliable way n/a Score 
c. This type of indicator is sensitive to external changes, i.e., it will change 
with future traffic safety interventions 

n/a Score 

d. This type of indicator is understandable for different end-users such as 
researchers and policy makers 

n/a Score 

Explanation (optional) 
 
 
 
 

 
  
 
 
 
 
 
 
 
 

End of part 1 
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Information part 2  
 
This part of the questionnaire is aimed at identifying what factors could potentially form a barrier for 
successfully implementing a system of measuring traffic safety at network level based on vehicle data. 
This does not specifically refer to any of the in part 1 discussed types of indicators but is meant in a 
more general way.  
 
This part consists of six questions. In these questions, you will be asked to evaluate a potential barrier 
to successful implementation of a system of measuring traffic safety at network level based on vehicle 
data. 
 
Please answer the questions below by scoring the potential barrier from 1 (no barrier at all) to 7 
(Insurmountable barrier) and explain why you make this assessment.  
 
Table 2 below shows the meaning of each score. Please answer a 0 in case you do not have an answer. 
All parts that require a response from you are marked in blue. 
 
Table 2 Meaning of the scores in part 2 

0 1 2 3 4 5 6 7 

I do not 
know 

No barrier 
at all 

Weak 
barrier 

Somewhat 
weak barrier 

Moderate 
barrier 

Somewhat 
strong barrier 

Strong 
barrier 

Insurmountable 
barrier 
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Question 1a Technical feasibility (collecting data within a single vehicle) 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• Many signals are available; however, others are not (yet) available or require 
processing/calculation. 

• More complex is sensor data for TTC, not all vehicles are equipped with the necessary sensors. 
 

3. Arguments for a weaker barrier 

• Most of the indicators can already be collected technically within a vehicle 

• Depending on the indicator of interest and the sensor suit in the vehicle, and assuming the 
right algorithms exist to acquire, process, and transmit the data, collecting it should not be 
that difficult. 

 
4. Re-evaluate question 1a: Is the technical feasibility of collecting the data within one vehicle a barrier 
to successful implementation? 
 
This refers to the technical feasibility of collecting the data necessary for reporting any of the indicators 
discussed in part 1, within a single vehicle. 

Score round 1 Score round 2 
3 score 

Explanation (optional) 
 
 
 

 
5. Meaning of the scores 
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Question 1b Technical feasibility (extracting and processing data from multiple vehicles) 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• The problem is to communicate all that data via wireless communication to a central location 
periodically. It is not impossible, but it requires effort and cost. 

• On fleet level, data should be combined and processed, which is a little more difficult than at 
vehicle level. 

• I see the storing of data as a difficult given the volume. 
 
3. Arguments for a weaker barrier 

• With the advances in data management, storing, and processing, there is no barrier in these 
tasks anywhere in the world. 

• Storing and exporting all data requires storage and somewhat regular extraction. Both are easy 
enough technically.  Ensuring the data is comparable between different manufacturers is more 
difficult but not from a technical standpoint. 

 
4. Re-evaluate question 1b: Is the technical feasibility of extracting and processing the data of a fleet 
of vehicles a barrier to successful implementation? 
 
This refers to the technical feasibility of the entire process of extracting, processing, and storing the 
data necessary to report one of the indicators discussed in part 1 for a large number of vehicles. 
 

Score round 1 Score round 2 

3 score 

Explanation (optional) 
 
 
 

 
5. Meaning of the scores 
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Question 2 Legal feasibility 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• I think there is a legal barrier in terms of privacy if the data are to be collected using 
unobtrusive technologies inside the vehicles. 

• Legal requirements limit the allowance to share information. Also, because who is the ‘owner’ 
of the data: user or manufacturer? 

• GDPR seems an important issue here and may require strong EU support. A possible solution 
would be to anonymize all data as soon as possible, which would require OEMs to accept to 
do the job. 

 
3. Arguments for a weaker barrier 

• With the new Data Act there could be some improvement. This new Act will put the driver “in 
charge” who is able to extract data from his vehicle and who is permitted to do something 
with it. This will solve a part of the competition question and also solve (partially) the privacy 
question. 

• Laws can be changed to rule in favour of collecting the required data as long as safeguards are 
in place. 

 
4. Re-evaluate question 2: Is legal feasibility a barrier to successful implementation? 
 
This refers to how (EU) laws or directives on for example privacy or fair market competition could be 
a potential barrier. 
 

Score round 1 Score round 2 

3 score 
Explanation (optional) 
 
 
 

 
5. Meaning of the scores 
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Question 3 Economic feasibility 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• The business case for traffic safety is very difficult, since costs and benefits are divided over 
different stakeholders. 

• There is no obvious business model for OEMs. What would be the gain for OEMs to participate 
and engage in costs? The question is even more important if it requires adding (and paying for) 
new systems in the vehicle. 

 
3. Arguments for a weaker barrier 

• As long as there is an economic benefit for the companies, they might be willing to participate. 

• The cost of a system for extracting, collecting, and processing the data is quite high, but the 
ecosystem of the ITS/SRTI regulation has shown that there are possibilities. 

• If the indicators can be measured with sensors already onboard, then I think OEMs would not 
have too much of an economic problem. The government certainly benefits by doing this 
(evidence of improving safety). Service providers like cloud service providers, 5G networks, 
etc. may also stand to gain with this. 

 
4. Re-evaluate question 3: Is economic feasibility a barrier to successful implementation?  
 
This refers to the question of whether or not a business case exists for relevant stakeholders (OEMs, 
government, service providers, etc.) that would make them willing to participate or organise such a 
system? Would it thus be possible to organise such a system with several stakeholders? 
 

Score round 1 Score round 2 

3 score 

Explanation (optional) 
 
 
 

 
5. Meaning of the scores 
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Question 4 Cybersecurity 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• Cybersecurity attacks will be possible. It strengthens even more the importance of data privacy 
and the solidity of the GDPR measures 

• Cyber security is a hot topic. This is mainly of concern for the OEM but also for aftermarket 
suppliers of devices, especially when these devices are somehow connected to the CAN-
network in the vehicle. 

• During the processing of data, it is important to decide who has access to the data, how it is 
stored and when data are deleted.   

 
3. Arguments for a weaker barrier 

• Secure communication from vehicle should be possible. Especially as communication is not 
time critical and no vehicle decisions are based on it. 

• If over the air communication is used this becomes a bigger problem. If this is not the case, 
cybersecurity is less of an issue. 

• I don’t think it should be very hard to ensure a sufficient level of cybersecurity, although it may 
not always get the attention it deserves. 

• There is a potential safety risk if in-vehicle or traffic systems could be accessed from outside, 
but the safety indicators in itself do not contain a security risk. 
 

4. Re-evaluate question 4: Is cybersecurity a barrier to successful implementation?  
 
This refers to the cybersecurity during the whole process: within a vehicle, during the over-the-air 
communication, and during the processing of the data. 
 

Score round 1 Score round 2 

3 score 
Explanation (optional) 
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Question 5a Willingness of OEMs 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• OEMs tend to keep the data for themselves. 

• It depends on the request for information of the OEM. If it contains confidential information 
that is a threat to their competitive position, they will be reluctant to share it. It is also an 
additional effort (money), so it should not weaken their position. 

• The data is owned by the consumer (as defined in the Data Act), so the OEM can only share 
this data with consent by the consumer, or on a legal basis. 

 
3. Arguments for a weaker barrier 

• They may not want to share their data, but this is a point of economic benefit and regulation. 

• Market parties act where the money is. 
 

4. Re-evaluate question 5a: Is Willingness of OEMs/vehicle manufacturers a barrier to successful 
implementation? 
 

Score round 1 Score round 2 

3 score 

Explanation (optional) 
 
 
 

 
5. Meaning of the scores 
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Question 5b Willingness of suppliers 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• Similar to OEMs, implementing this needs consensus on how they could protect their IP and 
information 

 
3. Arguments for a weaker barrier 

• If there is an economic incentive for them, it is no barrier 

• I don’t see this. They only supply. 
 
4. Re-evaluate question 5b: Is Willingness of suppliers a barrier to successful implementation? 
 

Score round 1 Score round 2 

3 score 

Explanation (optional) 
 
 
 

 
5. Meaning of the scores 
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Question 5c Willingness of service providers 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• It is a barrier as long as there is no feasible business case for them to invest in a (part of a) 
network 

 
3. Arguments for a weaker barrier 

• I do not see a big issue here. They will see this as new business 

• I think service providers might be more open to the idea. 
 
4. Re-evaluate question 5c: Is Willingness of Service Providers a barrier to successful implementation? 
 

Score round 1 Score round 2 
3 score 

Explanation (optional) 
 
 
 

 
5. Meaning of the scores 
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Question 5d Willingness of people 
 
This potential barrier is included based on suggestions made by experts and does therefore not have 
any information about prior answers.  
 
 
1. Evaluate question 5d: Is Willingness of people a barrier to successful implementation? 
 
People refers to the owners of the vehicle that have to give permission to share their data. 
 

Score round 1 Score round 2 

n/a score 

Explanation 
 
 
 

 
2. Meaning of the scores 
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Question 6 Going from pilot to reality 
 
1. Distribution of scores in round 1 

 
2. Arguments for a stronger barrier 

• The logistics of setting this up will be huge and political. We can compare this to the Dutch 
Rekeningrijden (road pricing), a nice idea but received political resistance.  

• It is always difficult to go from innovation to operation. 

• I think there is a barrier in adapting these technologies by the stakeholders mostly because 
there is still lack of strong and sufficient evidence showing that these technologies are useful, 
and that they will work. 

• Experience from the ecosystem around the ITS/SRTI directive has shown that it takes a long 
time to realise such an implementation, in particular if this includes harmonisation of the 
data/interface etc. 

 
3. Arguments for a weaker barrier 

• I think this is a question of feasibility rather than going from pilot to reality. 

• I guess this would depend on the particular stakeholders, their experience with this process, 
are people involved with the correct skill sets? 

• Starting from small scale pilots to larger scale pilots can help with the jump from small scale 
pilots to actual implementation. 

 
4. Re-evaluate question 6: Is Going from pilot to reality a barrier to successful implementation? 
This refers to the organisational difficulty of stakeholders to go from small scale pilots to the full 
incorporation of such a system in their organisations. 
 

Score round 1 Score round 2 
3 score 

Explanation (optional) 
 
 
 

 
5. Meaning of the scores 
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