
L.J. van Vliet, B.J.H. Verwer, A contour processing method for fast binary neighbourhood operations,
Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36.

A contour processing method for fast binary
neighbourhood operations
Lucas J. van VLIET and Ben J.H. VERWER

Pattern Recognition Group, Faculty of Applied Physics
Delft University of Technology
Lorentzweg 1, 2628 CJ Delft, The Netherlands.

Abstract: In this paper new fast algorithms for erosion, dilation, propagation and skeletonization are presented.
The key principle of the algorithms is to process object contours. A queue is implemented to store the contours in
each iteration for the next iteration. The contours can be passed from one operation to another as well. Contour
filling and object labelling become available by minor modifications of the basic operations. The time complexity
of the algorithms is linear with the number of contour elements to be processed. The algorithms prove to be faster
than any other known algorithms..

Keywords: Binary neighbourhood operations, skeleton, contour processing algorithm.

1. Introduction

Binary neighbourhood operations are basic operations
in image processing. Their simple description has
long allowed special purpose hardware to be
constructed. In those situations where such hardware
is not available, one has to restrict oneself to
algorithms suited for general purpose computers. On
general purpose computers a straightforward
implementation of the binary neighbourhood
operations performs poorly, performance being
measured as the total required processing time to
transform an input image into an output image.

Erosion, dilation, propagation and
skeletonization are often iterated several times or
even as many times as required to achieve
stabilization. We propose a method in which only the
interesting pixels are processed. This is achieved by
keeping a simple administration in each iteration to
aid the next iteration.

We know of three other cases in the literature
which deal with fast binary neighbourhood
operations. We will compare the performance of our
algorithms with the results of Young et al. (1981),
and Groen & Foster (1984). Groen & Foster (1984)
used a table-lookup approach in combination with a
region of interest per line. They sorted pointers in
order to process connected runs of pixels. Young et
al. (1981) used a run-length representation of images
to achieve among others binary neighbourhood
operations (erosion, dilation, propagation, medial

axis transform). However, their medial axis transform
is so bounded by the run-length representation that a
comparison with the traditional Hilditch-skeleton
(1969) is uncalled for.

We were not able to compare our results
directly with the results of Piper (1985), who
proposed a skeletonization method for an
environment based on interval coding, but we will try
to indicate how his results relate to ours.

For completeness we will give the processing
times achieved by straightforward implementations
of the operations as well.

Figure 1. 3x3 neighbourhood

2. Description of operations

We will briefly recapitulate the definitions of
erosion, dilation, propagation and skeletonization.
We will follow the notation of Groen & Foster
(1984).

The operations treated in this paper are based
on 3x3-neighbourhoods. Erosion, dilation and
propagation work with neighbourhoods (figure 1) in
the image before a particular iteration started. We

b0

b1b2b3

b4

b5 b6 b7

b8

L.J. van Vliet, B.J.H. Verwer A contour processing method for fast binary neighbourhood operations

Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36. 2

will refer to these neighbourhoods as non-recursive
(figure 2a). Skeletonization as proposed by Hilditch
(1969) uses non-recursive, recursive and partially
recursive neighbourhoods. Recursive neigbhoorhoods
are neighbourhoods in the image in which the values
calculated are updated immediately; partially
recursive neighbourhoods consist of seven neighbours
taken from a non-recursive neighbourhood and one
neighbour taken from a recursive neighbourhood
(figure 2c, 2d, 2e, 2f).

For a 3*3-neighbourhood Groen & Foster
define the number of 4-connected neighbours Φ4:

Φ4
0 2 4 6

=
=
∑ bk

k , , ,

the number of 8-connected neighbours Φ8:

Φ8
0 7

=
=
∑ bk

k , ,L

and the Hilditch crossing number γ h (1969):

γ h k
k

h=
=
∑
1 2 3 4, , ,

where bk denotes the binary pixel value at position k
(figure 1) in a the neighbourhood (figure 2) and
where hk = 1 if (b2k-2 = 0) and (b2k-1 = 1 or b2k = 1)
else hk = 0.

We assign object pixels the value one and
background pixels the value zero. Below we have
listed the conditions, which, if true, cause a change
in the value of the central pixel b8.

Figure 2. (a) non-recursive neighbourhood, (b) recursive
neighbourhood, (c-f) partially recursive neighbourhoods.
Letter N denotes a pixel from the non-recursive image.
Letter R denotes a pixel from the recursive image.

Erosion

In each iteration those object pixels are removed,
which were connected to at least one background
pixel in the preceding iteration. The erosion therefore
works with non-recursive neighbourhoods.

4-connected: b8 → 0 if (b 8 = 1 and Φ4 < 4),
8-connected: b8 → 0 if (b 8 = 1 and Φ8 < 8).

Dilation

In each iteration those pixels are added, which were
connected to at least one object pixel in the
preceding iteration. Again, only non-recursive
neighbourhoods are used.

4-connected: b8 → 1 if (b 8 = 0 and Φ4 > 0),
8-connected: b8 → 1 if (b 8 = 0 and Φ8 > 0).

Propagation

Each iteration propagation consists of one iteration
dilation of the input image (often called seed)
followed by a logical AND with a mask image.

4-connected:
b8 → 1 if (b8 = 0 and m8 = 1 and Φ4 > 0),
b8 → 0 if (b8 = 1 and m8 = 0);

8-connected:
b8 → 1 if (b8 = 0 and m8 = 1 and Φ8 > 0),
b8 → 0 if (b8 = 1 and m8 = 0).

m8 denotes the value of the pixel in the mask image
which corresponds to the central pixel in the input
image.

Hilditch skeletonization

Hilditch has developed a skeletonization method in
which non-recursive, recursive and partially recursive
neighbourhoods are used. Non-recursive
neighbourhoods are used to avoid removal of end and
break pixels; recursive neighbourhoods to avoid
removal of single pixels and two pixel thick lines;
partially recursive neighbourhoods to avoid erosion of
two pixel thick lines from the end. Which partial
recursive neighbourhoods have to be tested is
dependent on the scan direction (see section 4).

Hilditch defined a crossing number (_h) to
represent the topology. If and only if the crossing
number equals one, may a pixel be removed. If the
crossing number exceeds one, a pixel is a link- or
vertex pixel. If the crossing number equals zero, the
pixel is either a single pixel or lies in the middle of
an object.

b8 → 0 if (b8 = 1 and Φ8 ≠ 1 and γ h = 1).

Anchor Skeletonization

The anchor skeleton (Verbeek and Duin (1979)) is a
variant of the skeleton in which some pixels are per
definition skeleton pixels. These pixels are specified

N N

NNN

N

N N N

R R

RRR

R

R R R

N N

NNN

R

N N N

N N

NRN

N

N N N

N R

NNN

N

N N N

N N

NNN

N

N R N

a b

c d e f

L.J. van Vliet, B.J.H. Verwer A contour processing method for fast binary neighbourhood operations

Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36. 3

in a separate image, called anchor image. The
anchor skeleton is useful to connect different parts of
a scene. E.g. when skeletonizing a greyvalue image
greylevel after greylevel, the skeleton pixels in an
upper level are 'anchored' in a lower level. Or when
skeletonizing layers of printed circuit boards,
connection points are anchored.

If a8 denotes the value of the pixel in the anchor
image, which corresponds to the central pixel in the
input image, then the condition for change becomes:

b8 → 0 if (b8 = 1 and Φ8 ≠ 1 and a8 = 0 and
γ h = 1).

Note that the anchor skeleton reduces to the ordinary
skeleton if the anchor image is left empty. Therefore
we have only implemented anchor skeletonization.

3. Principles of approach

Traditionally, binary neighbourhood operations have
been implemented as table lookups. Each pixel is
treated alike. We propose to take advantage of
specific properties of operations to gain processing
time. To process as less pixels as possible and to
keep the calculations as simple as possible are the
principles of our approach.

The operations described in the introductory
remarks have in common the existence of a region of
interest which consist of pixels on or connected to
object contours. We propose to use a queue to
address these pixels. In the initializing phase of the
operations pointers to contour pixels are queued.
During the iterations pixels which pop from the end
of the queue are processed and the neighbours to be
processed in the next iteration are pushed to the front
of the queue.

A queue is most easily implemented as an
array with two pointers to denote the 'front' and the
'end' of the queue. The pointers are incremented
modulo the size of the array each time a pointer is
read at the 'front' or written at the 'end'; shifting
inside the queue is not necessary.

Figure 3. Pathological image pattern in which 8/9th of
the total number of pixels belong to the contour.

Robustness however demands a queue-length of at
least 8/9th of the size of the image to be processed
to be able to store the maximum number of contour
pixels which can occur in an image (see figure 3).
Taking into account the fact that each pixel only
needs to be queued once for the operations involved,
moderate extra memory costs will simplify the
administration to a large extent: if one increases the
queue size to the size of the image to be processed
the modulo requirement vanishes. We have adopted
this approach for the algorithms presented in the next
section.

If memory allocation should pose problems it
is possible to stick to the 'modulo' approach. The
queue size then has to be determined heuristically.
Apart from pathological cases a queue size of about
20% of the size of the image is sufficient.

The second principle, to keep the calculations
as simple as possible, is a derivative of the first. At
the point where only contour pixels are processed the
need for calculations can vanish. For example, if a
contour pixel is removed in an erosion, all object
neighbours are subject to removal the next iteration
and any calculation in the next iteration would be
redundant. Only the skeleton requires additional
computations, induced by the need to hold break and
end pixels.

From hereon we will speak of 'queueing a
pixel' rather than the more precise 'queueing a
pointer to a pixel'.

4. Algorithms

Introduction

The algorithms start with a call to a routine in which
all contour pixels are queued. The skeleton uses a
special routine because candidate pixels for removal
may not be set in the anchor image. After the queue
initialization, the operations proceed along different
but comparable paths. Either the neighbours of the
queue pixels are processed and queued or the pixels
on the queue are processed themselves and their
neighbours are queued. Most often the first method is
used to prevent pixels from being queued twice
without having to use labels. In the case of
skeletonization the second method is more natural
because the recursive and the non-recursive image
must be available.

Connectivity

In binary neighbourhood operations connectivity is
crucial. Pecht (1985) has shown that the shape of
structuring elements can induce redundancy after one

L.J. van Vliet, B.J.H. Verwer A contour processing method for fast binary neighbourhood operations

Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36. 4

or more iterations. For the 8-connected erosion and
dilation only diagonal neighbours have to be
considered after the first iteration. In the propagation
redundancy is not present because of the constraints
introduced by the mask image. Skeletonization
erodes objects 4-connected and in the 4-connected
case naturally only the horizontal and vertical
neighbours have to be processed.

Queue initialization

The queue is initialized by filling it with the contour
pixels of the objects in the image. A contour pixel is
an object pixel which is connected to at least one
background pixel.

We have implemented and compared two
methods. It proved to be faster to check only object
pixels in the detection of the contour if the 8-
connected contour is desired or if less than fifty
percent of the image is object. Otherwise it is faster
to check all pixels with a scan method as proposed
by Groen & Foster (1984).

The processing time of the scan method is
image independent, while the processing time of the
object-oriented method is image dependent. The scan
method is implemented by a table-lookup. The table-
entry is composed of the 3*3 neighbourhood. Three
neighbours in the scan-direction are read for each
pixel. In the entry of the previous pixel the upper
three bits are stripped off, the result is shifted up
three bits and the new values are added. In the
detection of the 8-connected contour use of the scan-
code is not advantageous.

Erosion

Our erosion starts with a call to the initialization
procedure. In the first iteration all queued pixels are
removed (i.e. the value of the pixels is changed from
one to zero). In the next iterations the object
neighbours of the pixels on the queue are removed
and queued. Because of the sequential procedure
each pixel will only be queued once. During the
iterations queued pixels are counted in order to know
how many pixels must be popped in the next
iterations (the number of queued pixels is implicitly
derived at the end of each iteration by taking the
difference of the pointers to the 'front' and the 'end' of
the queue.)

For the 4-connected erosion the horizontal and
vertical neighbours are taken into account and for the
8-connected erosion the diagonal neighbours (see
remarks in the section on connectivity). To prevent
propagation outside the image, we have chosen to
remove the edge of the image beforehand. If the edge
is removed after calling the

initialization routine, objects will not be eroded from
the edges of the image; if it is called before, the
objects are eroded from the edges as well.

A pseudo code of the algorithm can be found
in the appendix.

Dilation

The dilation also starts with a call to the initializing
procedure. Contour pixels which are 4-connected to
the background are queued, independent of the type
of connectivity of the operation because all
background pixels can be reached from these pixels.

In the first iteration all background pixels, 4-
or 8-connected to the queued pixels dependent on the
connectivity of the operation, are added (the value is
changed from zero to one) and queued. Again each
pixel will only be queued once.

The next iterations are identical to the first
apart from the fact that the 8-connected dilation only
accesses the diagonal neighbours as described
previously.

A pseudo code of the dilation can be found in
the appendix.

Propagation

The propagation is the same as the dilation with one
extra check. In the initialization seed contour pixels
are queued after which the seed image is initialized
with the logical AND between the seed and the mask
image. In the iterations added neighbours have to be
set in the mask image.

The propagation is often used to remove
objects connected to the edges of an image. This is
easily achieved in our algorithm by adding to the
initialization a processing of the edges.

Hilditch skeleton

The most complex binary neighbourhood operation is
skeletonization. A skeleton algorithm which treats
the objects contour by contour and which uses
recursivity to its advantage is the Hilditch skeleton.

Hilditch (1969) uses a fixed scan direction
(top-down, left to right) and the newly found values
for the north and west neighbours are put in the
neighbourhoods in the original image to avoid
removal of two pixel thick lines. In our
skeletonization algorithm, in which a fixed scan
direction does not exist (figure 4), all 4-connected
neighbours have to be tested in partially recursive
neighbourhoods (see figure 2, section 2).

L.J. van Vliet, B.J.H. Verwer A contour processing method for fast binary neighbourhood operations

Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36. 5

The implementation of the Hilditch skeleton uses
three binary images:

• an input image;
• an anchor image, containing the pixels which

are by definition skeleton pixels;
• a change image, storing the pixels changed in

a current iteration.

Figure 4. Hilditch skeletonization. The order of
processing is image dependent.

The Hilditch skeleton is 8-connected. Hence, the
image has to be eroded 4-connected. The queue is
initialized with unanchored 8-connected contour
pixels. In the first iteration each queued pixel is
removed if it is not a break or end pixel in the
original neighbourhood, not a break pixel in the
recursive neighbourhood and not a break pixel in the
four partially recursive neighbourhoods. Of course
each of the latter has to be tested only if that
neighbour is set in the change image.

If a pixel may be removed it is set in the
change image. Detected break and end pixels are
anchored because: 'once a break pixel, always a
break pixel' and 'once an end pixel, always an end
pixel'.

When all queued contour pixels have been
processed, the input image is updated by removing
the pixels set in the change image. These pixels can
quickly be addressed by passing through the queue a
second time. Simultaneously a new queue is built.
All unanchored object pixels, 4-connected to the

changed pixels, are queued and temporarily anchored
to prevent double queueing. This temporary anchor is
removed during the testing phase of the next iteration
which is, apart from that, the same as in the first
iteration. Note that the temporary anchor can be
discerned from the original anchor because the
temporary anchor pixels are queued and the original
anchor pixels are not. The skeletonization procedure
finishes after a desired number of iterations or when
stabilization occurs.

The Hilditch skeleton without end pixels
proved to be relatively time consuming compared to
the Hilditch skeleton with end pixels. Without
endpixel condition a pixel which is a breakpixel in
some iteration will be a candidate pixel for removal
in all next iterations and therefore all one pixel thick
lines need to be queued over and over again.

A solution is to obtain the skeleton without
end pixels from the skeleton with end pixels by
eroding from the end pixels until closed contours or
single pixels remain. The anchor which has been
filled with detected skeleton pixels has to be restored
before the erosion from the end pixels can start.

If objects connected to the edge should stay
connected to the edge, the edge is anchored and
made object, else the edge is made background
before calling the initialization procedure.

A pseudo code of the Hilditch skeletonization
can be found in the appendix.

Combinations of operations

Binary neighbourhood operations can be combined to
compose higher level operations. Examples of higher
level operations are opening (erosion followed by
dilation), closing (dilation followed by erosion),
separation of objects with and without holes
(skeleton without end pixels followed by pepper
removal and propagation) or removing small objects
(erosion followed by propagation).

These higher level operation can be
programmed efficiently with our algorithms by
passing the region of interest from one operation to
another. Between the operations the image need not
be scanned for the contours.

The queue itself cannot be passed on
straightforwardly. Some operations end with a queue
containing the background contours, others with a
queue containing the object contours. Moreover the
queue has to be shifted to the start again. Interaction
routines to build a queue containing object contour
pixels from a queue of background contour pixels and
vice versa are easy to construct. In the first case the
object neighbours of the queued pixels become the
new queue. In the second case the background
neighbours of the queued pixels.

1 2

3 4

5 5

7 8

9 10 11 12

13

14 15 16 17 18 19

20

21

22

23

25

29

24

30 26 27 28

a b

c d

L.J. van Vliet, B.J.H. Verwer A contour processing method for fast binary neighbourhood operations

Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36. 6

The processing time drops dramatically if the queue
is passed on. The interaction routine is of time
complexity linear in the number of contour elements,
whereas a complete initialization is of time
complexity linear in the number of image pixels.

Contour filling and object labelling

Propagation of interesting pixels (contours) can be
used to fill contours and to label objects. In the case
of contour filling, a pixel inside a contour is queued
and subsequently the area inside the contour is filled
by queueing and adding all connected background
pixels inside the contour. In the case of object
labelling, the image is sequentially scanned. As soon
as a non-labelled object pixel is encountered, this
pixel is queued and all connected object pixels are
labelled subsequently as in the contour filling case.
Forks, spirals, etc. do not pose any problems as
opposed to a method which scan the image. The time
to label an image is proportional to the number of
object pixels.

5. Results

We have used two 2562 test images to compare the
speed of our algorithms, referred to as the VVV-
algorithms, with the CLP-algorithms of Groen &
Foster (1984) and the PXY-algorithms of Young et
al. (1981). The test images were a thresholded image
containing gold particles in glass (figure 5a) and the
background of this image (figure 5b). The objects are
of the shape frequently encountered in biomedical
cell analysis, the background is used to observe the
behaviour of the algorithms when a lot of holes are
present in an object. Depending on the operation, the
results on completely filled or empty images are
given as well, as are the results of straightforward
implementations.

a) b)
Figure 5. (a) Thresholded image containing gold
particles in glass plus the skeleton. (b) Background
of the same image plus the skeleton.

The computer used in this experiment was a
MicroDutch. This is a VME-bus system built around
a Motorola 68020 with a clock frequency of 12.5
MHz., running under UNIX V.2. All programs have
been written in C.

Piper (1985) has proposed a method to
implement the Hilditch skeleton using interval
coding. In his experiments he used a VAX 11/750
running under UNIX which is three to four times
slower than the MicroDutch we used. Nevertheless,
the performance of his method can be estimated.
Assume that his system is four times slower than ours
and that his image (Piper (1985), figure 5.b) is
comparable to our figure 5.b. Hence, the estimated
processing time of his algorithm on our system on the
image of figure 5.b is 10 seconds, twice the time of
our algorithm.

PXY-algorithms

The PXY-algorithms work on run-length coded
images. The run-codes are stored in pxy-tables. A
pxy-table contains the addresses of both the start and
the stop of each run. Processing a pxy-table means
processing only object contours.

Monadic and dyadic point operations (NOT,
AND, OR, XOR) are the basic operations in the
PXY-algorithms. A dilation is implemented by
shifting the runs in a pxy-table up, down, left and
right and by a logical OR between the original image
and the shifted image. An erosion is implemented as
a dilation of the background.

The strength of the PXY-algorithms is the
possibility to use the output pxy-table of one
operation as input for a next operation. A
disadvantage is the large amount of memory space
required for complicated images.

CLP-algorithms

The CLP-package of Groen & Foster does not
process whole images, but only regions of interest.
During one iteration the candidate pixels for the next
iteration are stored in a list. Per row the candidate
pixels are sorted to obtain runs of successive pixels.
In processing these runs a table-lookup is used. The
table-index is filled according to the scan-code, so
only three new neighbours have to be read for each
pixel on a line.

The computational overhead introduced by
sorting is large. Therefore a simple sub-optimal
procedure often proves to be as fast: instead of
building a complete candidate pixel list, only the
minimum and maximum column value of the
changed pixels are used in setting the region of
interest.

L.J. van Vliet, B.J.H. Verwer A contour processing method for fast binary neighbourhood operations

Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36. 7

The advantages of the methods are their general
applicability for binary neighbourhood operations and
their limited use of memory. A disadvantage is the
time consuming sorting in the optimal CLP-
procedure, as will become clear in the next section.

Measurements

The results are summarized in three tables. Table 1
contains the processing times of figure 5a, table 2 of
figure 5b and table 3 of empty and filled images.

Table 1. Times (in seconds1) required to process image of
Figure 5a. VVV times include 0.6 seconds to build a queue
with contour pixels. PXY times include 0.4 seconds to build
a PXY-table and 0.2 seconds to convert the output PXY-
table to an image.

10 itera-

tions 4-

connected

erosion

10 itera-

tions 4-

connected

dilation

Skeleton

with end

pixels

Skeleton

without

end pixels

Propaga-

tion from

edge

VVV 1 0.9 1.1 3.4 3.9 0.5
CLP 8.9 12.7 12.0 12.0 6.4
PXY 1.5 2.3 – – –
SFW 7.7 9.4 22.3 40.3 32.3

Table 2. Times (in seconds1) required to process image of
Figure 5b. VVV times include 0.8 seconds to build a queue
with contour pixels. PXY times include 0.4 seconds to build
a PXY-table and 0.2 seconds to convert the output PXY-
table to an image.

10 itera-

tions 4-

connected

erosion

10 itera-

tions 4-

connected

dilation

Skeleton

with end

pixels

Skeleton

without

end pixels

Propaga-

tion from

edge

VVV 1 1.3 1.1 5.3 5.9 1.2
CLP 12.8 9.1 19.5 19.5 34.7
PXY 2.4 1.5 – – –
SFW 9.4 7.7 34.6 35.1 97.1

Some comments on the experiments. We have only
compared the 4-connected algorithms. The results for
the 8-connected case show the same trend. The PXY-
propagation was not available. The VVV-skeleton
without end pixels consisted of a skeleton with end

1 In 1998 (10 years later) the processing times listed in
table 1-3 have been reduced by more than a factor of 100
using a Pentium II or PPC G3 at 250 MHz.

pixels followed by a pass through the image to detect
all non-break pixels and subsequent erosion from
these pixels. The initialization uses the first method
of section 4. The VVV-propagation from the edge
used a redundant pass through the image to test for
other seeds than the edge. If this pass is omitted the
processing time becomes 0.5 second less. The CLP-
algorithms we used were the optimal algorithms as
described by Groen & Foster (1984).

Table 3. Processing times (in seconds1) to clear a
completely filled image by erosion or to fill an almost
empty image by dilation of one pixel.

10 itera-tions 4-

connected dilation

Skeleton without end

pixels

VVV 1 2.0 1.4
CLP 32.0 55.6
PXY 3.7 4.8
SFW 114 105

The straightforward implementation (SFW) of the
skeleton is a scan-code algorithm. At each pixel a
table entry is composed of the neighbours by shifting
and refreshing three new pixel values. The recursive
and partially recursive neighbourhoods are
constructed from this entry as well. In the
straightforward implementation of the other
operations for each pixel the conditions as described
in section 2 are evaluated.

The VVV-algorithms calculate a skeleton 3 to
4 times faster than the CLP-algorithms. The dilations
and erosions are an order of magnitude faster than
the CLP-algorithms and almost 1.5 to 2 times as fast
as the PXY-algorithms. The processing times of the
straightforward implementations show that intelligent
algorithms have their benifits, but only if the
overhead is kept small.

6. Conclusion

We have implemented and tested algorithms for
binary neighbourhood operations. The operations are
erosion, dilation, propagation and skeletonization.
The algorithms process only object contours by
storing pointers to relevant pixels.

Our new algorithms are the fastest in all tests.
Compared to the PXY-erosion and -dilation of Young
et al. (1981), the gain in processing time is small,
but since these algorithms do not offer a reasonable
skeleton, the large difference with the next available

L.J. van Vliet, B.J.H. Verwer A contour processing method for fast binary neighbourhood operations

Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36. 8

alternative, the CLP-algorithms of Groen & Foster
(1984), is more important.

From the basic operations other operations can
easily be derived, such as contour filling and object
labeling. If operations are combined, e.g. opening and
closing, initialization is redundant and the algorithms
become even faster.

Acknowledgement

We thank I.T. Young, R.C. Peverini, P.W. Verbeek,
P.J. van Otterloo, F.C.A. Groen and N.J. Foster for
making their software available to us, and TPD -
TNO (Institute of Applied Physics Delft) for using
their computer system.

References

F.C.A. Groen and N.J. Foster, (1984), A fast
algorithm for Cellular Logic operations on sequential
machines, Pattern Recognition Letters 2, 333-338.

C.J. Hilditch, (1969) Linear Skeletons from Square
Cupboards, In: B. Meltzer and D. Mitchie, Ed.,
Macine Intelligence 4, University Press Edingburgh,
404-420.

J. Pecht, (1985) Speeding Up Successive Minkowski
Operations with Bitplane Computers, Pattern
Recognition Letters 3, 113-118.

J. Piper, (1985), Efficient Implementation of
skeletonisation using interval coding, Pattern
Recognition Letters 6, 389-398.

P.W. Verbeek and R.P.W. Duin, (1981), personal
communication.

I.T. Young, R.C. Peverini, P.W. Verbeek and P.J. van
Otterloo, (1981), A New Implementation for the
Binary and Minkowski Operators, Computer Graphics
and Image Processing 17, 189-210.

Appendix

The appendix contains the pseudo code of the erosion, dilation and the Hilditch skeleton.

Erosion 4-connected / 8-connected

begin
make image edge zero
initialize the queue with pointers to pixels 4- / 8-connected to the background
for all pointers on queue do

remove pixel pointed to
endfor
while (old_queue not empty and still iterations to go) do

for all pointers on old_queue do
for all horizontal & vertical / diagonal neighbours do

if neighbour = 1 then
neighbour = 0
put pointer to neighbour on new_queue

endif
endfor

endfor
old_queue = new_queue

endwhile
end

Dilation 4-connected / 8-connected

begin
make image edge one
initialize the queue with pointers to pixels 4-connected to the background

L.J. van Vliet, B.J.H. Verwer A contour processing method for fast binary neighbourhood operations

Pattern Recognition Letters, Vol. 7, No. 1, 1988, 27-36. 9

for all pointers on queue do
for all 4-connected/8-connected neighbours do

if neighbour = 0 then
neighbour = 1
put pointer to neighbour on new queue

endif
endfor

endfor
while (old_queue not empty and still iterations to go) do

for all pointers on old_queue do
for all horizontal & vertical / diagonal neighbours do

if neighbour = 0 then
neighbour = 1
put pointer to neighbour on new_queue

endif
endfor

endfor
old_queue = new_queue

endwhile
end

Hilditch Skeleton

begin
make image edge anchor
initialize the queue with pointers to the 8-connected unanchored contour pixels
while (old_queue not empty and still iterations to go) do

for all pointers on old_queue do
if (γ h = 1 in non-recursive, recursive and partially recursive
neighbourhoods and Φ8 ≠ 1 in non-recursive neighbourhood) then

set pixel in change image
else

anchor pixel
endif

endfor
for all pointers on old_queue do

if pixel pointed to is set in change image then
remove pixels in change, mask and anchor image

endif
for all horizontal & vertical neighbours do

if (neighbour = 1 and neighbour ≠ anchor) then
anchor the neighbour temporary
put pointer to neighbour on new_queue

endif
endfor

endfor
old_queue = new_queue

endwhile
end

