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ABSTRACT

Climate-Based Daylight Modelling (CBDM) methods have been validated against long-term measure-
ments in laboratory settings and found to exhibit errors small enough to make such assessments useful
for daylight performance prediction. However, real occupied spaces are affected by a higher number of
uncertainties than laboratory or controlled conditions. This study aims at validating CBDM methods
against measurements collected in an occupied classroom space, where a monitoring system based on
High Dynamic Range Imaging was installed. Four vertical regions were identified on two of the room’s
walls, and mean illuminance was calculated for these regions at every time step, both from HDR images
and from simulated results. Two simulation methods were evaluated: the 2-phase and the 4-component
methods. Sun and sky conditions for the simulations were derived from simultaneous monitored irradi-
ation measurements. Both simulation methods led to moderate over-prediction of HDR-derived results,
when considering instantaneous illuminance means and when looking at long-term metrics (cumulative
irradiation and Useful Daylight Illuminance). Wall regions exposed to more direct sky- and sunlight were
characterised by smaller systematic errors (rMBE = 4%) but similar variance (r? = 0.83) than regions sit-
uated at the back of the room (rMBE = 17-34% and rMAE = 27-37%). Further studies are needed to iden-

tify and separate the sources of such errors.

© 2022 Published by Elsevier B.V.

1. Introduction

Building performance simulation is a powerful tool for assess-
ing design options and their relative environmental performance.
Assessments performed at the design stage often contain numer-
ous assumptions regarding the form and composition of the build-
ing since many details are yet unknown to designers and
engineers. At the operational stage, the behaviour of actual occu-
pants is likely to further increase the uncertainty of building per-
formance predictions. Occupants might modify the internal
layout (e.g., adding furniture and decorations) or interact with
building systems in unexpected ways (e.g., keeping blinds down
more often than required and using electric lighting instead). It is
therefore expected that initial performance results will differ from
the actual performance of a building in use. However, it is very
important to understand where the causes of this discrepancy
might lie and try to improve initial prediction models accordingly.
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A vast literature explored the subject of the “performance gap” in
energy simulation [1-4] since this issue was first brought up [5].
There is however still much research to be done on the “daylight
performance gap”, especially in relation to annual performance
and evaluation in occupied spaces under normal usage.
Daylighting practice went through a fundamental transition
when Climate-Based Daylight Modelling (CBDM) was introduced
in the late 1990s [6,7]. Rather than limiting the assessments to
standard sky models (typically overcast and clear), CBDM includes
a range of intermediate sky conditions and, using sky models, char-
acterises them based on irradiance and illuminance values found in
weather files. This makes it possible to assess long-term daylight
conditions and facilitates the integration with other building per-
formance analyses, e.g., energy or thermal comfort, which are
based on the same weather data. Moreover, dealing with absolute
simulation results allows model validation and calibration against
field measurements. On the other hand, absolute values require
higher accuracy in input data and taking into account their uncer-
tainties become even more relevant. For validation of CBDM met-
rics, it is also necessary to run measurement or monitoring
campaigns over long periods of time, in order to capture the vari-
ability of daylight conditions over different seasons. Validations
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performed in laboratory settings [8,9] characterised errors typical
for daylight ‘matrix methods’ (or ‘phase methods’) as being within
+20%. Among Post-Occupancy Evaluation (POE) studies that
focused on the validation of daylight and visual comfort metrics
against subjective occupant impressions in existing buildings, only
very few looked at long-term daylight performance [10,11]. The
study performed by Jakubiec, Quek, and Srisamranrungruang [11]
is the most comprehensive to date, but measurements were only
collected once and used to calibrate the simulation models [12],
whose results were then correlated to subjective responses of
visual comfort.

The successful integration of daylight with artificial lighting at
the design stage requires confidence in the reliability of simulated
climate-based measures of daylight [13,14]. In 2013, the UK Educa-
tion Funding Agency (EFA) made climate-based daylight modelling
a mandatory requirement for the evaluation of designs submitted
for school building programmes. This was the first major upgrade
to mandatory daylight requirements since the introduction of the
daylight factor more than half a century ago. Unsurprisingly, this
decision was seen as controversial by some practitioners/re-
searchers, in part because it was claimed that CBDM metrics were
difficult if not impossible to verify in actual buildings [15]. Whilst
there was a sizeable body of evidence from validation studies indi-
cating the likely potential reliability of the CBDM approach itself
[16], the question regarding the in situ validation of CBDM metrics
for actual occupied buildings remains.

The present study compares CBDM results with daylight mea-
surements collected in a in-use classroom over a period of over 8
months. An unprecedented collection of 14670 High Dynamic
Range (HDR) images allowed the measurement of indoor lumi-
nance at 10-minute resolution without disturbing occupants’
activities. Compared to validations performed in test laboratories,
which focus more on the physical validity of simulated output, this
comparison aims at providing information with regard to mod-
elling assumptions and uncertainties.

2. Methods

This study compares two datasets of long-term indoor illumi-
nance values, obtained with two different methods: (1) by moni-
toring a real, in-use classroom via an HDRI system, and by using
the luminance maps and known reflectance to derive illuminance;
and (2) by simulating indoor illuminance using two CBDM meth-
ods, which relied on locally measured irradiance data to simulate
sky conditions.

The space used for the study is one of the four classrooms
selected for a wider research on daylight performance in schools
[17]. These four classrooms, located in two different school build-
ings, were continuously monitored for a period of 8 to 12 months.
The room used in the present paper is located in Loughborough, UK
(geographical coordinates: 52.77 N; 1.2 W) and it is illustrated in
Fig. 1. It is a side-lit space with a fully fenestrated facade, looking
towards North-West (27°from due North). Shading devices were
not installed during the monitoring period. At the time, the room
was used for various educational activities, including face to face
teaching classes and practical sessions.

2.1. HDRI-based monitoring

The room was monitored for a total of almost a year, starting
from the 3™ April 2015 until 4" April 2016. A Canon EQS 600D Dig-
ital SLR camera, fitted with an ultra wide-angle Canon EF-S 10-
18 mm lens and tethered to a MacMini computer for automatic
capture and storage of images, comprised the self-contained cap-
ture equipment. This was placed in a corner of the classroom and
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oriented towards the interior space. The aperture was set to f8,
the sensitivity to ISO 100 and the white balance to ‘Daylight’. The
focussing mode was set to manual and the focus checked/adjusted
for sharpness once the camera was in position. The HDR capture
sequence was controlled by a timed script which was executed
every 10min between 08:00 and 17:50 using the UNIX cron func-
tion. Each HDR capture comprised a sequence of seven ordinary
low dynamic range (LDR) images taken in quick succession using
a fixed aperture (f8) and varying shutter speed covering the range
1/2000s to 2s in two exposure stop increments, i.e. 1/2000, 1/500,
1/125s, etc. Immediately following each capture, the seven LDR
images were compiled into a HDR image using the hdrgen program
with a predetermined HDR image response calibration file. Note,
the response file was created from a scene including direct sun illu-
mination on white painted surfaces and calibrated against lumi-
nance measurements taken with a Konica Minolta LS-100
luminance meter. To save disk storage space, the LDR images were
deleted after the HDR image was generated. Each newly generated
HDR image was then tested for mean scene luminance, and those
registering zero or very low luminance levels (i.e. taken under lar-
gely dark conditions) were deleted to further save disk space. The
remaining HDR image (already saved to the MacMini primary
drive) was then uploaded to a cloud server.

2.2. Climate-based daylight modelling

Simulation results were obtained with two different CBDM
methods: the two-phase method (2PH, also known as daylight coef-
ficient method) and the four-component method (4CM) [6], which
are respectively the more common and the more thoroughly vali-
dated methods to simulate clear glazing systems. Both are based
on the Radiance ray-tracing engine [18] but they use two different
approaches, based on the rcontrib and on the rtrace commands
respectively. For the 2PH to produce more accurate results of direct
sunlight, a sky discretization scheme with 5185 patches (MF:6)
was used. The Radiance parameters set for the ambient calculation
in the 2PH were: -ab 5 -ad 100000 -1w le-5. For the 4CM, which
is based on the rtrace command and uses ambient interpolation’,
the parameters were: -ad 4096 -ab 7 -ar 256 -as 256 -aa 0.2 -1w
0.001 -1r 10. Furniture was not included in the virtual model.
Reflectance properties of the interior surfaces were derived from
combined measurement of luminance and illuminance, under the
assumption that they exhibited Lambertian properties (i.e., perfectly
diffusing surfaces). Glass transmittance was determined from manu-
facturer’s specification sheets found for the installed window model
and type (double-glazed insulated unit). These optical properties,
reported in Table 1, were then assigned to the simulation model.

Virtual sensor points were placed in the Radiance model to rep-
resent the same four regions identified in the HDR images. Their
position was specified in two different ways for the two simulation
methods. For the 2PH, a coarse grid with a spacing of 0.50m was
created over the wall regions, for a total of 37 data points. For
the 4CM, which applies ambient interpolation, it was possible to
use a finer grid resolution, for a total of 1556 points. The difference
between the number of points defined in the two methods is sig-
nificant but not relevant here, as the scope of this work was not
to compare their performance relative to each other but relative
to the HDR measurements.

Both methods used the Perez All-Weather model [19] to derive
the sky luminance distribution from irradiance data. Irradiance
was measured at a weather station established 1.7 km away from
the classroom. A Delta-T SPN1 pyranometer with fixed shading

! Note, unlike the various ‘phased’ Radiance CBDM approaches, the 4CM takes full
advantage of both the keystone ambient interpolation algorithm and the overture
calculation to significantly reduce random variance (i.e., ‘lumpiness’) in the results.
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Fig. 1. Classroom used as case study. (a) Interior view from the viewpoint of the HDR camera and (b) technical drawing showing the room in plan view and as a cross section.
In the plan view the approximate position of furniture and the position of the ceiling-mounted lamps are indicated.

Table 1

Optical properties of the main geometrical elements found in the classroom and applied to the simulation model. Reflectances are based on measured values, whereas

transmittance is based on manufacturer’s specifications.

p Floor p Walls p Ceiling p Window frames

p External surfaces

T,is Window transmittance Window transmissivity

0.25 0.90 0.85 0.10 0.30

0.68 0.74

mask measured global and diffuse horizontal irradiance time ser-
ies, from which direct normal irradiance could also be derived
[20]. Measurements were recorded at 1-minute resolution and
later averaged over 10 minute time steps. As part of the quality
control procedure, any global and diffuse value recorded while
the sun was below the horizon, and any direct normal value
recorded for sun altitudes lower than 1 degree, were considered
to be equal to zero. A data loss in irradiance records meant that
simulations could only be performed starting from 22-07-2015.
Irradiance data from other sources (e.g., weather stations further
away or satellite data) could be used to fill the gap in the irradiance
time series, but that would introduce additional uncertainties and
was therefore not considered for the present study.

2.3. Comparison between measurements and simulation

The comparison between measured and simulated results was
based on vertical illuminance values. To derive illuminance from
the luminance values obtained with HDRI, a method based on
the Lambertian reflection equation was applied as described in
more detail by [21]. Such method derives the illuminance field fall-
ing onto a surface from luminance maps, by applying the equation

Lz

E > [Ix] (1)

and by interpolating the resulting illuminance across multiple
regions of known reflectance.

Four regions at the upper side of two walls (see Fig. 2) were
identified as being free from obstructions for most of the monitor-
ing period and therefore suitable to be characterised by a single
constant reflectance value (p,, = 0.90 in this case). This choice also
gave reasonable certainty that space occupants’ presence and
movements would be unlikely to significantly affect luminance
values measured by the HDRI system. An additional region (named
H1 in Fig. 2) was defined to compare HDR-derived illuminance val-
ues and measurements recorded by a wall-mounted Hanwell illu-

minance meter at 1-minute intervals (spectral response error 5%;
linear response error 1%). The illuminance meter was placed away
from possible exposure to direct sunlight, as that could have
reached the measuring upper limit of the sensor (50001x). The
meter was installed in the classroom from 17-11-2015 to 28-03-
2016. These data were used for a preliminary validation of the
HDR-derived illuminance measurements. They were also used as
a control for potential time drift effects in the HDR luminance ser-
ies, which might appear if the shutter mechanism slows down due
to mechanical fatigue.

When applied for building evaluation purposes, CBDM is gener-
ally used to assess long-term daylighting performance in terms of
particular metrics. To investigate the long-term accuracy of the
4CM and 2PH against HDR measurements, two metrics were cho-
sen: cumulative illumination, expressed in kixhr, and Useful Day-
light Illuminance (UDI), expressed as a percentage of the
analysed period. For UDI, four ranges were considered: 0-100 Ix
(UDI-n); 100-300 Ix (UDI-s); 300-3000 Ix (UDI-a); and over 3000
Ix (UDI-e). In contrast to the more usual applications of UDI, here
this metric is calculated from vertical illuminance values.

3. Results

The results extracted from the HDR monitoring dataset and
those obtained from simulations are presented in this section. An
overview of all the data measured and collected over the monitor-
ing period is presented at first, in Section 3.1. Then Section 3.2 pre-
sents the first data comparison, between HDR-derived and
measured illuminance, used as a control of the quality and consis-
tency of the HDR images. Last, Section 3.3 looks at the comparison
between HDR-derived and simulated illuminance.

3.1. Overview of the collected data

All measured quantities are first presented here, to show the
range of values that characterised the recorded time series and



E. Brembilla, N.C. Drosou and J. Mardaljevic

Energy & Buildings 262 (2022) 111989

Fig. 2. Regions (R1 to R4) identified in the HDR images as having no or little obstructions throughout the analysis period. The same regions were defined when setting up
analysis grids in the 2PH and 4CM simulations. Region H1, enlarged next to the main image, was used to compare HDR-derived illuminances with those measured by the

luxmeter mounted just below.

to visualise side-by-side the periods in which measurements were
collected. Fig. 3 shows the different types of data collected during
the entire monitoring period. Fig. 3a shows the mean luminance
recorded by HDR images over the four regions of interest (R1 to
R4). Each point represents the mean luminance from a single
region. From the HDR images, it was also possible to detect the
instances in which the electric lighting system was switched on.
The graph indicates those instances together with their relative
HDR-derived illuminance in yellow colour. In the following analy-
ses, only instances with all lights switched off were considered.
Fig. 3b shows illuminance values measured by the wall-mounted
illuminance meter. Fig. 3c shows the outdoor irradiance recorded
by the local pyranometer, with both global and diffuse horizontal
components (GHI and DHI).

The luminance data shown in Fig. 3a were then converted to
illuminance values for the comparison with simulated results.
The irradiance values shown in Figure 3c were used in the simula-
tions as input to the Perez All-Weather sky model; direct normal
irradiance was derived from GHI and DHI.

3.2. Validation of HDR-derived illuminance data

Fig. 4 shows the difference between illuminance derived from
HDR images and illuminance measured by the illuminance meter,
over the time period of its installation. Fig. 4a shows the correla-
tion between the two datasets. The correlation is highly linear
and the coefficient of determination r? is 0.96, indicating a very
close agreement. In 4b, instantaneous differences are plotted over
the considered time period. Peaks are noticeable throughout this
period, but they can be reliably considered outliers, as most of
them correspond to instances in which the classroom door was
open and covered the illuminance meter. All such outliers fall out-
side the ‘whiskers’ of a boxplot distribution graph and constitute
1% of the dataset. Considering outliers, the Mean Bias Error
(MBE) is +20 Ix (rMBE = +10%) and the Root Mean Square Error
(RMSE) is £33 Ix (rRMSE = 4+16%). The errors do not exhibit any
time-related trend and time drift effects can therefore be excluded.
These results give confidence that the HDR-derived illuminance
data are sufficiently reliable to serve as the datum for the compar-
ison that follows.

3.3. Comparison between HDR-derived and simulated illuminance
data

The core part of the analysis, presented in this section, takes the
illuminance derived from the HDR images as a benchmark to
assess the accuracy of simulation results in a real space. The anal-
ysis looks at the agreement between mean vertical illuminance
obtained from HDR images and simulated using either the 2PH
or the 4CM methods. Fig. 5 shows the error distribution histograms
for the four regions illustrated above (see Fig. 2). Overall, the errors

exhibited by the 2PH and the 4CM are similar, with the 4CM per-
forming marginally better, especially when looking at the region
closest to the window (R1). Such region is the one that receives
most direct sunlight among the four analysed regions. Given the
fact that the 4CM is based on a finer representation of the sun
and uses a higher resolution analysis grid, its higher accuracy when
compared to the 2PH was expected. For all other regions (R2-R4),
the rMBE is within a 17-34% range and the relative Mean Absolute
Error (rMAE) is within a 27-37% range. The boxplots placed above
the histograms show that 50% of the error population (i.e., within
the box limits) lies within a -30 to 1681x range, whereas 96% of
the errors (i.e., within the whiskers) lies within a -370 to 5441x
range.

To describe in more detail the errors that characterise the single
instances in time, a scatterplot showing the relationship between
the HDR-derived and the simulated illuminance datasets is pre-
sented in Fig. 6. It is evident that errors tend to increase for higher
illuminance values. In the case of R1, also the scatter is more pro-
nounced for high illuminance instances, corresponding to times
when direct sunlight enters the room directly and falls in the anal-
ysed region. For all regions and for both simulation methods, the
coefficient of determination r? is close or over 0.80, indicating a
close relationship between the two datasets (measured and simu-
lated). Such relationship is however not linear, as the variance
increases for higher illuminance values.

Whilst the errors for the point-in-time instances are revealing,
for practical application it is arguably the case that outcomes based
on a comparison of CBDM metrics is just as important. Fig. 7 shows
(a) the cumulative illumination, and (b) UDI values, calculated
from vertical illuminances obtained from the three methods
(HDR, 2PH and 4CM). The error bars reported in Fig. 7a represent
a 12% error, corresponding to the rRMSE found in the analysis pre-
sented in Section 3.2. The over-prediction of simulated results that
was observed in the previous analysis also affects long-term met-
rics. The difference in cumulative illumination as calculated with
the 4CM and the 2PH, relative to HDR results, closely matches
the statistical errors found for illuminance values. For R1, the
4CM over-predicts HDR-derived illuminance values by 5% and
the 2PH by 19%; for the other regions, both method over-predict
measured values by 17-34%. UDI results show the same trend,
with lower illuminance ranges (UDI-n) being underpredicted by
simulation methods. There were very few instances in which the
vertical illumination exceeded 30001x, therefore the UDI-e range
was equal to zero in all cases.

4. Discussion
Results presented in this paper show that simulated vertical

illuminance values tend to over-predict illuminances derived from
HDR images collected from the actual, in-use space. Systematic
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Fig. 3. Overview of the data collected during the study period. (a) Luminances measured by the HDR camera within each of the four wall regions; instances in which the
electric lighting system was switched on are highlighted. (b) Illuminances measured by the wall-mounted lux meter. (c) Irradiance values (global and diffuse horizontal)
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errors (MBE) range between +4% and +34%, whereas random errors
(MAE) vary between +18% and +£37%. CBDM metrics, such as UDI,
are affected by similar errors. As expected, these errors are larger
than those found when validating simulation methods in labora-
tory setting (+£20%). However, trends and correlations between
simulated and HDR-derived display promising outcomes for a field
study in an occupied building.

The higher systematic errors characterising the wall regions at
the back of the room seem to suggest that the main source of error
is in the simulation of predominantly reflected light, rather than
with the prediction of the (sun and sky) direct contributions. The
fact that furniture and other detailed elements were not included
in the virtual model certainly contributes to the uncertainty
related to light redistribution within the space. The general trend
noticed in simulated results to over-predict HDR-derived illumi-

nance might be related to these same factors, as the elements pre-
sent in the actual room might block daylight redistribution and
reduce illuminance levels on the walls. Trying to represent the
actual furniture - which was constantly rearranged by the occu-
pants - was impractical for this study. However, for future studies,
automated object recognition algorithms could perhaps be used to
identify the position of the elements in the room and modify the
virtual model accordingly. Another cause for the over-estimation
exhibited by simulation could be the specification of reflectance
and transmittance values in the virtual model, factors that are
known to affect final results [22]. Window transmittance is often
further reduced by maintenance factors, not included in the pre-
sent analysis, and has a direct effect on the amount of daylight
entering a space. Such errors could be potentially reduced by
model calibration.
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When analysing the scatterplot showing HDR-derived against
simulated illuminance (Fig. 6), variance was found to increase pro-
portionally with illuminance values. This could be interpreted as
an incremental effect of the errors due to aforementioned factors
when outdoor illuminance levels are higher, i.e., for clear sky/-

sunny conditions. On the other hand, the HDR-based procedure
to derive illuminance could be also affected by higher errors for
instances of high luminance, even though this effect is not dis-
played in the range 0-7001x investigated in Section 3.2 or in previ-
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ous studies carried out with the same setup [21]. Future research
should further investigate and clarify this point.

Physical characterisation of the immediate external environ-
ment facing the windows of the classroom contains potentially sig-
nificant uncertainties. In keeping with typical modelling practices,
a generic ground reflectance value of 0.20 was used, and the
ground geometry was modelled as a single polygon. The actual
ground area outside the classroom comprises a mixture of car
parking space (black tarmac), footpaths (also tarmac) and some
planting area with foliage and trees. Taken together, it seems a rea-
sonable proposition that the actual reflectance of the ground envi-
ronment facing the classroom windows is lower than the canonical
value of 0.20 commonly used in simulations. Accordingly, this
could explain some or much of the noted tendency for over-
prediction by both simulation methods.

Regions at the top of vertical walls were chosen for this analysis,
as the method to derive illuminance values from HDR images
requires areas that are less likely to be cluttered by other objects
or be occasionally obstructed by occupants, i.e., areas whose reflec-
tance properties can be assumed to be constant during the entire
duration of the study. However, these regions are less likely to rep-
resent the general daylight performance of the space. For daylight
sufficiency analyses, it is common to define an horizontal plane at
desk height, and CBDM metrics are usually calculated from illumi-
nance values simulated on such plane. Future work should look at
whether the performance at desk level could be derived from data
collected elsewhere in a room with a sufficient level of confidence.
This could be used in further studies investigating the accuracy of
CBDM metrics and advance our understanding of how they corre-
late with human'’s perception of daylight levels in indoor spaces.

The analysis was carried out with data from a single space,
hence it is not sufficient to draw any generalised conclusion about
the gap between simulated and actual daylight performance. How-
ever, it is reasonable to assume that simulating an empty space at
design stage will lead to an over-prediction of the daylight perfor-
mance characterising the same space once it is occupied and filled
with furniture and appliances. Long-term data on daylight levels in
occupied spaces would need to be collected to generalise the pre-
sent findings, ideally from many different building types. Both
indoor- and outdoor-mounted HDR-based monitoring systems for
the control of shading devices are under development [23-25].
Data from this type of systems could be also used to assess and
improve models currently implemented in daylight simulation.
Furthermore, the light monitoring method used in this paper could
offer a non-intrusive and data-rich solution to long-term POE stud-
ies on visual comfort.

5. Conclusion

To assess the daylight performance of a space, data about the
daily and seasonal variability of daylight are required. CBDM meth-
ods allow the simulation of such variability through the use of rep-
resentative weather data. To validate such methods,
measurements should be collected in real spaces over long time
periods (i.e., at least several months). This has been previously
done for laboratory settings, where the daylight performance could
be monitored under controlled conditions. However, the expected
‘laboratory’ accuracy might be severely affected by uncertainties
characterising real spaces. This study aimed at validating CBDM
methods and metrics against measurements collected in an occu-
pied classroom space, with the help of an HDR-based monitoring
system.

Vertical illuminance simulated with the 2PH and the 4CM
methods was compared with illuminance values derived from
HDR images, collected every 10 min for a period of over eight
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months. An illuminance meter was also mounted in the classroom
to check the accuracy and stability of HDR images, and related illu-
minance values; these were found to agree with direct measure-
ments, exhibiting a MBE of +201x (+10%) and a rRMSE of +331x
(£16%). The dataset did not exhibit any increase in typical errors
(i.e., time drift) during the monitoring period.

When assessing statistical errors against HDR-derived illumi-
nances, the 4CM showed better accuracy than the 2PH, especially
when simulating illuminance for the wall region which received
direct sunlight. In that case, the 4CM exhibited a rMBE = +4% and
a rMAE = +18%, whereas the 2PH exhibited a rMBE = +19% and a
rMAE = +£25%. For other regions, situated towards the back of the
room, the performance of the two methods was found to be largely
similar, with rMBEs ranging from +17% to +34% and rMAEs of +-27-
37%. The coefficients of determination calculated for the two meth-
ods and the four wall regions were found to be very similar too
(r? = 0.79-0.84).

Last, long-term illuminance results were expressed as CBDM
metrics, namely cumulative illumination (in kixhr) and UDI (with
thresholds 100, 300, and 30001x), and such metrics were used to
compare long-term performance as obtained from simulation and
from HDR images. The analysis confirmed the tendency of simula-
tion results to over-predict measurements by 5-34%, as noticed in
the previous analyses. This could be explained by the lack of furni-
ture and other details in the virtual model that might block light
redistribution inside the space, otherwise correctly captured by
results derived from HDR images.

Overall, the errors found in this study (£37%) are only margin-
ally larger than those found in laboratory studies (420%). As the
space was not under controlled conditions, it is more difficult to
determine exactly where the source of the errors is. Future studies
should look at identifying and separating the effects of sky models,
surface optical properties and occupant behaviour within the anal-
ysis of long-term daylight performance in occupied spaces. The
method shows potential to be further applied in studies on visual
comfort in existing buildings and on occupant behaviour
modelling.
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Appendix A

Relative errors were calculated with the following formulas
[26]:

N

rMBE [%] = 1)‘& § Vi — X (2)
i=1
100 &

IMAE [%] = sz’i — X 3)
i=1

rRMSE [%] = %

where x is the observed value and y the predicted value. The term x
indicates the mean of all observed values and the term N indicates
the size of the population.
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