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SUMMARY

The study of crystalline solids and condensed matter physics at large concerns itself with
the new behaviors and phases of matter exhibited by elementary particles, atoms, and
molecules by virtue of being assembled into a structure. These phases arise from com-
plex microscopic behaviors, which makes it is difficult to establish rigorous quantitative
models. The analysis of certain phases is greatly simplified in the presence of symmetries.
These symmetries can be non-spatial (time-reversal, particle-hole) or spatial (rotation,
inversion, reflection). For example, topological phases of matter are easily characterized
and classified by the symmetries of the system. Symmetries constrain the band structure
of a system, and as a result produce certain quantized responses, such as surface modes
on an otherwise insulating bulk. Since these surface modes are related to the symmetry
of the bulk, this phenomenon is known as bulk-edge correspondence. So long as the
symmetries protecting the topological phase are respected and the energy gap of the insu-
lating bulk remains open, bulk-edge correspondence persists in the presence of disorder.
This disorder can be non-structural (applied magnetic field), involve part of the structure
(impurities) or the entire structure, such as in amorphous systems.

Amorphous systems appear to possess no spatial symmetries, but they are isotropic
on average: they possess average reflection and average continuous rotation symmetry.
These average spatial symmetries protect topological phases. I present 2D and 3D amor-
phous systems that host topological insulator phases and have delocalized gapless edge
modes on any surface orientation. Since the symmetries protecting the phase are only
present on average, the topological phases are statistical topological insulator phases. I
demonstrate this by presenting topological invariants and transport statistics consistent
with statistical topological insulator phases.

In the same way that the presence or absence of a symmetry can alter the phase of
matter hosted by a system, the presence or absence of energy conservation radically
changes the physics of the system. For instance, systems that conserve energy obey the
principle of near-sightedness, whereas systems that don’t conserve energy, also known as
non-Hermitian systems, do not. This principle dictates that a perturbation can only affect
the electronic states in its vicinity, and states arbitrarily far from the perturbation are
unaffected by it. The absence of this principle in non-Hermitian systems is exemplified
by an extreme sensitivity to boundary conditions — the spectrum of a translationally
invariant, periodic non-Hermitian system is completely different from the spectrum of
the corresponding open system. In non-Hermitian systems with non-reciprocal hopping,
all of the modes of the system localize at the system boundary (or boundaries). This was
considered to be bulk-edge correspondence — a bulk property (non-reciprocal hopping)
leads to a response at the system surface. However, since non-Hermitian systems are
globally sensitive to local details, bulk-edge correspondence is not guaranteed to exist. I
demonstrate this by showing that a single impurity with sufficiently large non-reciprocal
hopping asymmetry is capable of attracting all of the modes of the system away from the
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system boundary. Therefore, a bulk index cannot predict the position of the modes, which
means there is no bulk-edge correspondence in the absence of translation invariance.

Further breaking translation invariance in non-Hermitian systems from a single im-
purity to disorder everywhere in the system, has an important impact on the system
dynamics. In a clean non-Hermitian system, the various components of a wave packet
injected into the system will be amplified or suppressed at rates that are determined by
the imaginary parts of the corresponding eigenvalues, until the fastest-amplified compo-
nent of that initial wave packet dominates. In a disordered non-Hermitian system, a wave
packet scatters inelastically and acquires various new components. As the wave packet
evolves, it is dominated by the component that is amplified the fastest. This process
continues until the wave packet acquires the fastest amplified component possible in the
system, and this state will dominate all future dynamics of the system. I demonstrate that
this phenomenon leads to the existence of a transition between two propagating phases
that is unique to non-Hermitian dynamics, and which is only realizable in the presence of
disorder.



SAMENVATTING

Het onderzoek naar kristallijne vaste stoffen en de natuurkunde van gecondenseerde
materie richt zich op nieuwe gedragingen en fasen van materie die worden tentoonge-
steld door elementaire deeltjes, atomen en moleculen doordat ze worden samengevoegd
tot een structuur. Deze fasen ontstaan uit complexe microscopische behandelingen,
wat het moeilijk maakt om systematische kwantitatieve modellen te creëren. De ana-
lyse van bepaalde fasen wordt sterk vereenvoudigd in aanwezigheid van symmetrieën.
Deze symmetrieën kunnen niet-ruimtelijk zijn (tijdsomkering, deeltje-gat) of ruimte-
lijk (rotatie, inversie, reflectie). Bijvoorbeeld, topologische fasen worden gemakkelijk
gekenmerkt en geclassificeerd door de symmetrieën van het systeem. Symmetrieën
beperken de bandstructuur van een systeem en leiden daardoor tot bepaalde gekwanti-
seerde consequenties, zoals oppervlaktemodi op een verder isolerende bulk. Aangezien
deze oppervlaktemodi gerelateerd zijn aan de symmetrie van de bulk, staat dit fenomeen
bekend als bulk-rand correspondentie. Zolang de symmetrieën die de topologische fase
beschermen worden gerespecteerd en de energiekloof van de isolerende bulk open blijft,
blijft de bulk-rand correspondentie bestaan in aanwezigheid van wanorde. Deze wanorde
kan niet-structureel zijn (aangelegd magnetisch veld), betrekking hebben op een deel van
de structuur (onzuiverheden) of de gehele structuur betreffen, zoals bij amorfe systemen.

Amorfe systemen lijken geen ruimtelijke symmetrieën te hebben, maar ze zijn gemid-
deld isotroop: ze hebben gemiddelde reflectie- en gemiddelde continue rotatiesymmetrie.
Deze gemiddelde ruimtelijke symmetrieën beschermen topologische fasen. Ik presenteer
2D- en 3D-amorfe systemen die topologische isolerende fasen herbergen en gedelokali-
seerde energie continue randmodi hebben voor elke oppervlakteoriëntatie. Omdat de
symmetrieën die de fase beschermen alleen gemiddeld aanwezig zijn, zijn de topolo-
gische fasen statistische topologische isolatorfasen. Ik toon dit aan door topologische
invarianten en transportstatistieken te presenteren die consistent zijn met statistische
topologische isolatorfasen.

Op dezelfde manier waarop de aanwezigheid of afwezigheid van een symmetrie de
fase van materie in een systeem kan veranderen, verandert de aanwezigheid of afwe-
zigheid van energiebehoud radicaal de natuurkunde van een systeem. Bijvoorbeeld,
systemen met energiebehoud volgen het principe van kortzichtigheid, terwijl systemen
die geen energie behouden, ook wel bekend als niet-Hermitische systemen, dat niet
doen. Dit principe betekent dat een verstoring alleen de elektronische toestanden in de
nabijheid ervan kan beïnvloeden, en toestanden die zich willekeurig ver van de verstoring
bevinden, niet beïnvloed worden. De afwezigheid van dit principe in niet-Hermitische
systemen wordt geïllustreerd door een extreme gevoeligheid voor randvoorwaarden -
het spectrum van een translationeel invariabel, periodiek niet-Hermitisch systeem is
volledig verschillend van het spectrum van het overeenkomstige open systeem. In niet-
Hermitische systemen met niet-wederzijdig gelijke overgangen lokaliseren alle modi van
het systeem zich aan de systeemgrens (of systeemgrenzen). Dit werd beschouwd als bulk-
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rand correspondentie - een bulk eigenschap (niet-wederzijdig gelijke overgangen) leidt
tot een reactie aan het oppervlak van het systeem. Echter, aangezien niet-Hermitische
systemen overal gevoelig zijn voor lokale details, is bulk-rand correspondentie niet gega-
randeerd om te bestaan. Ik toon dit aan door te laten zien dat een enkele onzuiverheid
met voldoende grote asymmetrie in niet-wederzijdig gelijke overgangen in staat is om alle
modi van het systeem weg te trekken van de systeemgrens. Daarom kan een bulk-index de
positie van de modi niet voorspellen, wat betekent dat er geen bulk-rand correspondentie
is in de afwezigheid van translationele invariant.

Het verder verbreken van translationeel invariant in niet-Hermitische systemen, van
een enkele onzuiverheid tot wanorde overal in het systeem, heeft een belangrijke invloed
op de systeemdynamiek. In een schoon niet-Hermitisch systeem zullen de verschil-
lende componenten van een golfpakket dat in het systeem wordt geïnjecteerd, worden
versterkt of onderdrukt met snelheden die worden bepaald door de imaginaire delen
van de overeenkomstige eigenwaarden, totdat de snelst versterkte component van dat
initiële golfpakket domineert. In een verstoord niet-Hermitisch systeem verspreidt een
golfpakket onelastisch en verkrijgt het verschillende nieuwe componenten. Naarmate het
golfpakket evolueert, wordt het gedomineerd door de component die het snelst wordt
versterkt. Dit proces gaat door totdat het golfpakket de snelst versterkte componenten die
mogelijk zijn in het systeem heeft, en deze staat zal alle toekomstige dynamiek van het
systeem domineren. Ik toon aan dat dit fenomeen leidt tot het bestaan van een overgang
tussen twee voortplantende fasen die uniek zijn voor niet-Hermitische dynamica, en die
alleen realiseerbaar is in aanwezigheid van wanorde.
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2 1. INTRODUCTION

1.1. PREFACE

An object in motion will remain unchanged if no force acts on it — this is a well-known law
of classical physics. It is true even for very small objects, like a single electron propagating
in a vacuum. Applying a force to a moving electron may redirect, accelerate or stop it. If
the applied force is a random time-dependent force, the electron reacts by diffusing in a
random walk. So long as the diffusing electron retains a finite velocity, it will eventually
travel arbitrarily far from its starting point.

The situation changes if the electron propagates in a crystalline solid instead of
a vacuum. In crystals, quantum mechanical effects become important and a purely
classical description of electron motion is insufficient. The initial picture is the same:
if a crystal is disordered, the disorder acts like a random force and makes the electron
scatter and diffuse. However, quantum mechanical interference between the different
electron trajectories can inhibit the electron from travelling arbitrarily far. If the disorder
in the crystal is sufficiently strong, the electron wave function may become completely
localized to a certain region of the material — this phenomenon is known as Anderson
localization [1, 2]. In one- and two-dimensional systems, even a small amount of disorder
may localize the electron. In higher dimensions electrons may take many different paths
through a material and thus are able to resist localization for weak enough disorder, but
as disorder strength increases, eventually all electron wave functions become localized.

However, particle excitations in solids do not always have to localize in the presence
of disorder. Crystalline solids tend to be symmetric: along with translation invariance
by lattice vectors, they may have reflection planes or discrete rotation axes that leave
the structure invariant. The symmetries of the system may protect symmetry-protected
topological insulator phases. Topological insulators in dimension 2 and higher are charac-
terized by surface channels in which excitations are able to travel ballistically. If disorder
in the crystal does not break the symmetries protecting the topological phase or close the
energy gap in the bulk of the crystal, then it cannot localize the excitations propagating in
the surface channels.

Another mechanism by which electronic states overcome Anderson localization is
the creation of a preferred transmission direction in systems that allow amplification and
suppression. Energy can be injected into these systems, which makes states delocalize
and overcome the disorder potentials in the system. As long as a sufficient amount of
energy is provided to the system, the modes of the system resist localization from disorder
of an arbitrary magnitude.

These two cases, in which transport persists in the presence of disorder, are the main
subjects of this thesis. I present topological phases where symmetries protect propagating
modes from localization. Rather than considering disorder which leaves the relevant
symmetries intact, I present systems where disorder breaks these symmetries locally, but
leave the system ensemble invariant. The topological protection of these symmetries is
weakened, but excitations still resist localization on average — some disorder configu-
rations will localize the modes, and some allow the particles to be perfectly transmitted.
I then present systems where the injection of energy delocalizes all of the modes of the
system. Since these systems do not conserve energy, the dynamics of the particles in the
system have unique characteristics that go beyond traditional quantum mechanics.
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1.2. TOPOLOGY AND SYMMETRIES

1.2.1. TOPOLOGICAL PHASES OF MATTER
The term ‘phase of matter’ brings to mind the different forms in which matter can exist,
like solids, liquids, gases and plasmas. These phases are distinguished by their properties
(such as density and structure), and a phase transition (melting, boiling etc.) is required
to move between them. Similarly, topological phases of matter are differentiated by their
properties and separated by phase transitions. Topological phases are characterized by
quantized observables - some output of the system, be it a current or the winding of
an electronic phase, only takes integer values. These integers are known as topological
invariants because they can only change at the phase transition point, and different
topological phases are identified by different values of this invariant. Topological phases
of matter arise from the collective behavior of electrons in a solid, and this outwardly
simple behavior is the result of a complex set of interactions. This section serves as an
introduction of topological phases, how they are created and what their characteristics
are.

A clue as to why topological phases produce quantized observables with fixed values
is in their namesake. Topology is a branch of mathematics, which studies the properties
of shapes and spaces that remain unchanged under continuous deformations such as
stretching, bending, or twisting, but not tearing or gluing. The classic example of a
continuous deformation is a donut being deformed into a mug. The donut cannot be
deformed into a mug with two handles, without an additional hole being punched into it -
these two objects are therefore not connected by a continuous deformation. Applying
this to condensed matter systems, the electronic band structure can be thought of as a
‘shape’ that electrons occupy. Systems with different band structure shapes that cannot be
continuously deformed into each other constitute different topological phases. A vacuum
is the simplest topological phase, because it has no energy bands. Any observable of
the system will be 0, any way you look at it (no current, no phase winding, etc.), so the
topological invariant characterizing this phase is 0. This phase is referred to as the trivial
insulator phase.

The vacuum is continuously connected to an atomic insulator whose valence band is
fully occupied and whose conduction band is empty, and therefore they are topologically
equivalent. Upon closing the bulk gap, the shape of the band structure is allowed to
change and undergo a topological phase transition. This is due to the possibility of valence
and conduction bands hybridizing when the gap closes, known as a band inversion. When
a band inversion occurs, the coupling between the bands may lead to the re-formation
of a gap and a topological phase transition. A topological phase transition separates
phases with different topological characteristics - it corresponds to a ‘tearing or gluing’
non-continuous change. During this phase transition the band topology changes, and
a trivial insulating state becomes a topological insulator or vice-versa. A topological
insulator differentiates itself from a trivial insulator by the presence of surface states that
cannot be removed as long as the bulk gap remains open.

A well-known example of a topological phase is the Chern insulator, also known as
the quantum anomalous Hall phase. This phase shares some similarities with the integer
quantum Hall effect (IQHE) but arises without an external magnetic field. Similarly to the
IQHE, the Chern insulator has unidirectionally propagating, or chiral, modes at its edges,
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shown schematically in Fig. 1.1 (a). The number of chiral modes at the edge only changes
when the bulk gap closes. An invariant quantity of the Chern insulator is therefore the
number of chiral modes at the edge of the system, known as the Chern number C . The
topological invariant, a quantized observable of the system, is the Hall conductivity σx y ,
which is proportional to the Chern number, σx y = e2/hC (e is the elementary charge
and h is the Planck constant). A trivial Chern number C = 0 therefore results in σx y = 0.
The energies of the edge modes lie within the bulk energy gap: disorder that preserves
the gap cannot couple the edge states to bulk states and localize them. Therefore the
edge states are protected from localization due to the topology of the energy bands; this
phenomenon is known as topological protection. Topologically protected edge modes
remain robust against disorder and scattering, so long as the gap remains open.

(a) (b)

(c)

(d)

Figuur 1.1: Visualization of the effect of symmetry on topological phases. (a) Schematic of the Chern insulator
(black square) with a single protected chiral edge mode circulating (gray arrow). (b) Schematic of the quantum
spin Hall insulator (black square) with a single pair of counter-propagating edge spin channels. Different colors
indicate different spin species. (c)-(d) Coupling of neighboring Majorana states (particle-hole symmetry case)
or lattice sites (chiral symmetry case) which produce (c) a trivial insulator (d) a topological insulator with
zero-energy states (in purple).

1.2.2. TOPOLOGICAL CLASSIFICATION
Topological phases manifest independently of symmetries, as exemplified by the Chern
insulator. However, topological phases are characterized by the shape of their band
structure, which are in turn constrained by symmetries. The presence or absence of
symmetries therefore leads to the existence of different topological phases. Therefore, in
addition to their topological invariants, topological phases can be classified and identified
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by the symmetries that leave them invariant. Moreover, the formulation of the topological
invariant of a symmetry-protected topological phase is informed by its symmetries, as
bulk invariants are most simply expressed in terms of these symmetries [3].

The spatial symmetries of a lattice are the simplest to visualize: these are the reflection
through a plane, the inversion around a point, and the rotation around an axis. Beyond
spatial symmetries, a system is time-reversal symmetric if the dynamics of the system
are the same whether time goes forwards or backwards. Time-reversal also reverses the
direction of pseudo-vectors such as spins. Because of this, in time-reversal invariant
materials, states must come in pairs of opposite momentum and spin orientation. The
action of the unitary part of the time-reversal operator UT on a Bloch Hamiltonian H(k),
with k the crystal momentum, is:

UT H∗(k)U−1
T = H(−k), (1.1)

and when this operation leaves the Hamiltonian invariant, H∗(−k) = H(k), the Hamilto-
nian is said to be time-reversal symmetric. Upon squaring UT , its diagonal elements are
either all equal to 1 or to −1. In the latter case, each eigenvalue of the system is doubly
degenerate, known as Kramers degeneracy [4]. The 2D Chern insulator discussed above
clearly is not time-reversal symmetric, since its edge modes propagate in one direction:
upon applying time-reversal, the modes propagate in the opposite direction and the
system is equivalent to a Chern insulator with a Chern number of opposite sign. In order
to obtain a time-reversal symmetric system, we consider two Chern insulators, with equal
and opposite Chern numbers. This system is time-reversal symmetric, since reversing
counter-propagating modes yields the same system. However, the total system has a total
Chern number of 0, and so the system is trivial - in the presence of even mild disorder,
electrons in one channel scatter into the counter-propagating channel, and the system
localizes. In order to prevent the electrons from back-scattering, we can set one copy of
the Chern insulator to only have spins of one type, and the other copy to only have spins
of the opposite type. In this case, only magnetic impurities that can flip the sign of the
spin can back-scatter the modes, which are forbidden in time-reversal symmetric systems.
Now the system is time-reversal symmetric and corresponds to the quantum spin Hall
topological phase, shown schematically in Fig. 1.1 (b) [5]. Unlike the Chern insulator, the
edge modes do not carry a charge current, but instead carry a spin current.

Spatial and temporal symmetries act on particle position, momentum, and spin,
but particles have more properties that are subject to reversal, such as electric charge.
Particle-hole symmetry relates electron-like quasi-particles and electron vacancies or
‘holes’, which have equal and opposite charge. Specifically, the particle-hole operator
reverses the momentum and spin of electrons while also changing their electric charge.
In high-energy physics, this relates a particle to its anti-particle - for example, an electron
propagating in a given direction is equivalent to a positron propagating in the opposite
direction. In condensed matter systems, this symmetry requires the energies of particle-
like states (above the Fermi level) to be mirrored by the corresponding hole-like states
(below the Fermi level) with opposite crystal momentum k. The action of the unitary part
of the particle-hole operator on a given Bloch Hamiltonian H(k) is:

UP H∗(k)U−1
P =−H(−k). (1.2)
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Like UT , UP also squares to either 1 or −1 [4]. Close to the E = 0 point, the band structure
above the Fermi level has a predominantly electron-like character, and predominantly
hole-like below the Fermi level. The E = 0 point is special because it requires the bands to
have an equal superposition of electron-like and hole-like states, which is reminiscent of
Bogoliubov quasi-particles in superconductors, also known as Majorana modes. Majorana
modes are quasi-particles that are their own anti-particles, that appear in the presence of
and are topologically protected by particle-hole symmetry. A widely discussed example
of a system hosting Majorana modes is the Kitaev chain [6]. Simply put, the electron
creation and annihilation operators can be written in terms of the Majorana operator, and
an electron can therefore be viewed as a composite particle formed by two Majoranas. By
tailoring the pairing of the Majoranas in a chain of electrons, the system is either made
trivial (all states are electrons, no states at E = 0) or topological. This is illustrated in
Fig. 1.1 (c) and (d), where rectangles represent electron states, and circles represent the
Majorana states that compose each electron. When Majorana states are coupled as in
Fig. 1.1 (d), two isolated Majoranas at E = 0 are located on either end of the chain. Since
they are separated by a chain of unoccupied states, so long as the states are sufficiently
spatially separated, they cannot hybridize to re-form an electron state.

The product of time-reversal symmetry and particle-hole symmetry in itself is a sym-
metry that can protect topological phases, in the absence of either individual symmetry
that forms the product. This symmetry, known as chiral symmetry, is thus named because
it is closely related to the concept of chirality, which refers to an asymmetry between
an object and its mirror image. In condensed matter systems, chiral symmetry typically
arises from the arrangement of atoms or molecules in the material’s crystal lattice. Chiral
symmetry is also known as sublattice symmetry, since a key example of this symmetry is
a bi-atomic lattice composed of two identical lattices, with each sublattice hosting one
type of atom. One key manifestation of chiral symmetry is the emergence of robust chiral
edge states at the boundaries of the material. These chiral edge states propagate in a
single direction along the edge of the material. The action of the unitary part of the chiral
operator on a given Bloch Hamiltonian H(k) is:

UC H(k)U−1
C =−H(k). (1.3)

UC only squares to 1 [4]. A chiral symmetric band structure is symmetric around the E = 0
line (H(k) =−H(k)) - this makes states at E = 0 special. A widely discussed example of a
topological phase protected by chiral symmetry is the Su-Schrieffer-Heeger (SSH) chain
[7]. Its working principle is similar to the Kitaev chain, but instead of coupling Majorana
states, neighboring sites of the lattice are coupled with alternating strengths, similar to a
dimerized polymer. The schematic of the SSH lattice is the same as for the Kitaev chain,
shown in Fig. 1.1 (c) and (d), but here the rectangles represent a unit cell containing two
atoms. When inter-unit cell coupling is strong and intra-unit cell is weak [Fig. 1.1 (c)], the
system is trivial. In the opposite case [Fig. 1.1 (d)], the system enters a topological phase
and zero energy states at the end of the chain appear.

Time-reversal, particle-hole, and chiral symmetry are used to define and categorize
strong topological insulator phases into 10 different symmetry classes, based on all of the
combinations of these symmetries, both the combinations of their presence and to what
value their unitary parts square to [8, 9] [Table 1.1, Fig. 1.2].
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Symmetry class T P C

A 0 0 0
AI 1 0 0
AII -1 0 0
AIII 0 0 1
BDI 1 1 1

C 0 -1 0
CI 1 -1 1
CII -1 -1 1
D 0 1 0

DIII -1 1 0

Tabel 1.1: Symmetry classes and the symmetries they possess [8].

This classification reveals an underlying structure. The ‘complex’ classes A and AIII
form an alternating pattern in dimension space, and the remaining ‘real’ classes are
periodic in dimension with a period of 8 dimensions. The classification also reveals that
for the ‘real’ classes, the number of values topological invariants can assume, either 2
(denoted byZ2), any integer (Z), or any even integer (2Z), depends on both the dimension
and the symmetry class. Comparing neighboring columns of the table reveals that this
dependence is related to a dimensional shift [4].

Spatial symmetries such as rotation, reflection or inversion are also capable of protec-
ting and classifying topological phases, known as weak or crystalline topological phases
[10–12]. The action of the unitary part of the reflection, inversion and rotation operators
on a given Bloch Hamiltonian H(k) is:

UM H(k)U−1
M = H(RM ·k) (1.4)

UI H(k)U−1
I = H(−k) (1.5)

U (φ)H(k)U (φ)−1 = H(R(φ) ·k) (1.6)

where RMn̂ = 1−2n̂n̂T is the real space orthogonal action reversing the component in
the n̂ direction, U (φ) = exp

(
iφSz

)
, Sz is the onsite spin-z operator, and R(φ) = exp

(
iφLz

)
,

Lz = σy . A continuous, isotropic medium has the highest degree of spatial symmetry:
continuous rotation symmetry around any axis and inversion or reflection along any
axis. Condensed matter systems are composed of discretely spaced atoms, which reduces
the degree of spatial symmetry. Crystals tend to be translationally invariant, typically
are rotation-symmetric with a discrete angle of rotation, and commonly possess reflec-
tion axes. These symmetries refine the topological classification of strong topological
insulators and modify or often simplify the formulation of the topological invariant [3].

1.2.3. BULK-EDGE CORRESPONDENCE
Topological phases are special because they are robust to disorder - as long as the bulk gap
and system boundaries remain open, the surface modes of a topological phase cannot
be removed or gapped out. This is due to the fact that the boundaries of a topological
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Figuur 1.2: Classification of strong topological phases as a function of spatial dimension d and symmetry class.
The entries of the table indicate whether the topological invariant can assume 2 values (Z) or any number of
integer values (Z) A 0 entry denotes the case where the combination of dimension and symmetries yields a
trivial phase. Table reproduced from [8].

material interface with a vacuum or with another material. At these interfaces, the
topological invariant must either change to 0 or to another integer, which means the bulk
gap has to close. Therefore, due to the topological properties of the bulk, modes must be
present on the surface of topological insulators [13]. This phenomenon is known as bulk-
edge correspondence (BEC), a fundamental principle stating that the bulk topological
invariants determine the presence and properties of protected boundary states.

The surface states of crystalline topological insulators are present at every boundary
that globally preserves the symmetry protecting the topological phase. However, topolo-
gical surface states of a crystalline topological insulator are gapped out on surfaces that
systematically break the spatial symmetries protecting the phase, e.g. on a crystal plane
that is not a mirror-symmetric plane [Fig. 1.3].

When the entire system undergoes a topological phase transition, the bulk gap closes,
and the system is said to be in its critical phase. In the critical phase, there is a finite
density of states in the bulk, composed of either localized or delocalized modes, or a mix
of the two. The bulk invariant no longer assumes quantized values at the critical point.

1.3. TOPOLOGY IN DISORDERED SYSTEMS
As simple or elegant the theoretical formulations of topological phases may be, synthesi-
zing topological phases proves to be more challenging due to the presence of disorder.
Taking the example of the Kitaev chain, there exist proposals to create it in heterostructu-
res using two-dimensional electron gases [14], proximitized semiconductor nanowires
[15–18], and in quantum dot arrays [19–23]. Due to disorder and/or distance dependence
of the chemical potential, bound states appear that mimic certain effects of Majorana
bound states [24–27]. These make the interpretation of experimental results difficult,
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Figuur 1.3: Zero-energy local density of propagating modes in a crystal system; darker site color indicates higher
density. Insets: boundary dispersion relation corresponding to straight and tilted edge terminations. Figure
adapted from Chapter 2.

since certain experimental signatures of Majorana modes (in-gap state close to zero
energy, non-local conductance) can be replicated with trivial states [28].

Despite these difficulties, not all disorder is capable of destroying topological phases.
Strong topological insulators are agnostic to the details of the medium that do not affect
the symmetries that protect them. For this reason, strong topological insulator phases are
realizable even in the presence of maximal structural disorder, as in amorphous systems
[29]. Widespread surface disorder that systematically violates non-spatial symmetries,
such as magnetic fields or a distribution of magnetic impurities, may push the topological
surface modes away from the surface into the bulk, but will not destroy them. The disorder
must affect the entire bulk and therefore destroy the bulk topological phase, in order to
remove the surface modes. Spatial symmetries are closely tied to the structural details
of the lattice, and therefore crystalline topological phases are susceptible to structural
disorder. Like strong topological phases, if the bulk of a crystalline topological insulator
is free from disorder, boundary modes are likely to persist on planes that preserve the
spatial symmetries protecting the topological phase.

While disorder is capable of breaking symmetries, it does not necessarily break aver-
age symmetries. For instance, a random magnetic field will locally break time-reversal
symmetry, but when averaging over an entire system, time-reversal symmetry is present
on average [30]. Average symmetries are capable of protecting topological phases [31];
however, the quality of the topological protection is modified. Disordered systems that
support topological insulating phases with one or more average symmetries are called
statistical topological insulators [30]. The surface modes of these systems behave like they
would in a lower-dimensional critical topological phase. For 2D statistical topological
insulators, this translates to bimodal behavior where a certain disorder configuration
either yields perfect transmission or localization. Averaging over disorder configurations,
the conductance scales as 1/

p
L as if the modes were propagating in a disordered, critical

1D chain [32, 33]. This is in contrast to the unit transmission of translationally-invariant
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topological phases, independent of system size. The surface modes of 3D statistical
topological insulators propagate as though they were in a 2D critical phase and the con-
ductance on their surfaces scales like a 2D critical phase, and so on for higher dimensions
[30].

The reason why statistical topological insulators bear similar transport characteristics
to d −1-dimensional critical topological phases is because they inherit their topology
from these phases [30]. The bulk invariant of a statistical topological insulator in a given
symmetry class is constructed from the invariant of the d −1 topological phase in the
same symmetry class. Therefore, if no d −1 topological phase exists in a given symmetry
class, there will be no corresponding d-dimensional statistical topological insulator. Due
to disorder, the invariants of statistical topological insulators are conjectured to be Z2

[30], in contrast to the invariants of systems without disorder [Fig. 1.2].

1.4. NON-HERMITIAN DELOCALIZATION
So far I have presented topological phases in systems where energy is conserved. However,
realistic systems tend to have some degree of loss or dissipation. Despite the ubiquity of
dissipation, relaxing the constraint of energy conservation has far-reaching consequences
on the physics of the system. Systems that don’t conserve energy are called non-Hermitian,
and in this section I will define them, explain the link between non-Hermiticity and
topology, and exposit their unique characteristics and responses.

1.4.1. NON-HERMITIAN SYSTEMS

In conventional quantum mechanics, Hamiltonians (which represent the energy operator
of a quantum system) are typically Hermitian, meaning they are equal to their adjoint
or Hermitian conjugate H = H †. Hermitian Hamiltonians have real eigenvalues [Fig. 1.4
(a)], which correspond to the energy levels of the system. Hermitian Hamiltonians also
preserve the norm of the wave function, guaranteeing unitary time evolution and energy
conservation.

Breaking the Hermiticity constraint H ̸= H † results in a non-Hermitian system. Energy
conservation is no longer guaranteed, and therefore non-Hermitian operators typically
describe systems that perform non-conservative processes, like gain and loss. Non-
Hermitian Hamiltonians have complex eigenvalues, and their imaginary components
determine the behavior of the corresponding eigenstate in the system. If a given eigenva-
lue has a positive imaginary component, the corresponding eigenstate will be amplified
at a rate proportional to the magnitude of this imaginary part. Conversely, an eigenstate
whose associated eigenvalue has a negative imaginary component will be suppressed.

At the quantum-mechanical level, non-Hermitian operators are typically only suitable
for phenomenological descriptions of physical processes. This is because observables are
given by Hermitian operators acting on the Hilbert space of the system, whose eigenvalues
are real, and the time evolution of the system is unitary, preserving the probability density.
By definition, the eigenvalues of non-Hermitian system are generically complex, its
time evolution is not unitary, and therefore the measurement probabilities increase or
decrease with time, which makes a physical interpretation difficult or even meaningless
[34]. Physical implementations of non-Hermitian quantum mechanics are restricted to
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Figuur 1.4: Illustration of the sensitivity of non-Hermitian systems to boundary conditions, and comparison to
Hermitian systems. (a) Spectrum of a Hermitian system with periodic boundary conditions as a function of
k, and with open boundary conditions (blue dots). (b) Same as (a) but for a non-Hermitian system with left
hopping tL = e−1 different from right hopping tR = e1. In (a) and (b), k ϵ[0,2π). (c) Spatial distribution of all
the system eigenvectors in a periodic Hermitian system. Darker color indicates higher density. (d) Same as (c)
but for a non-Hermitian system (tL = e−1, tR = e1). (e) Spatial distribution of all the system eigenvectors in a
Hermitian system with open boundary conditions. (f) Same as (e) but for a non-Hermitian system (tL = e−1,
tR = e1).

the cases where the spectra of the non-Hermitian Hamiltonian are real and the time-
evolution is unitary, which occurs in the presence of P T symmetry, the combination of
spatial parity (P ) and time-reversal symmetry (T ). When a non-Hermitian Hamiltonian
H and P T share a finite number of eigenvectors, the spectrum of H is real. P T -
symmetric non-Hermitian systems are realizable in classical optical frameworks with
non-Hermitian potentials, due to the correspondence between the Schrödinger equation
and the wave equation in optics [35]. Experimental realizations of P T -symmetric non-
Hermitian optical systems include waveguide and cavity setups [36–38], fiber optical
setups [39], meta-materials [35] and microwave systems [40]. Electronic circuits also
lend themselves to the realization of P T -symmetric non-Hermitian models with the use
of amplifying and attenuating LRC components [41]. More recently, circuits were also
used to simulate non-Hermitian models without P T symmetry [42–46], in light of the
properties unique to non-Hermitian Hamiltonians.

One such phenomenon unique to non-Hermitian systems is the radical difference
between the spectrum of an infinite or periodic system and the spectrum of a finite, open
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system. In Hermitian systems, whether a system has periodic or open boundaries has little
effect on its spectrum [Fig. 1.4 (a)] or on the spatial distribution of its modes [Fig. 1.4 (c)
and (e)]. In non-Hermitian systems, both the spectrum and spatial distribution strongly
depend on the boundary conditions [47]. The eigenvalues of periodic 1D non-Hermitian
Hamiltonians are complex and form closed loops on the complex plane [Fig. 1.4 (b)]. The
eigenvalues of a finite non-Hermitian chain are also complex, but form a 1D line entirely
enclosed in the spectrum of the corresponding periodic system [Fig. 1.4 (b)] [48]. This
extreme sensitivity to boundary conditions demonstrates that non-Hermitian systems do
not follow the near-sightedness principle, which requires electronic states to only react to
changes in their local environment [49]. The absence of the near-sightedness principle
results in non-Hermitian responses differing greatly from Hermitian responses, the most
well-known example of which is the non-Hermitian skin effect.

1.4.2. THE NON-HERMITIAN SKIN EFFECT AND NON-HERMITIAN TOPOLOGY
Consider a non-Hermitian Hamiltonian modeling a tight-binding 1D chain whose hop-
ping to the right is larger than its hopping to the left, resulting in a preferred hopping
direction. This preferred hopping direction has a profound consequence for the distri-
bution of modes of the system. If the system is periodic, the modes of the system have a
tendency to spread out evenly over the sites of the chain [Fig. 1.4 (d)]. If the system has
open boundaries, then all of the modes of the system at any energy will accumulate at
the boundary that lies in the preferred hopping direction [Fig. 1.4 (f)]. This phenome-
non is known as the non-Hermitian skin effect (NHSE). The NHSE occurs generically in
non-Hermitian systems with a preferred hopping direction in 1D, 2D, 3D, and potentially
systems of arbitrary dimension [50, 51].

Both the surface modes of topological systems and the NHSE only exist in the presence
of open boundaries or impurities. This similarity prompted the question as to whether
the NHSE was a topological phenomenon, whether a quantized bulk invariant could
predict which boundary would host the NHSE, and whether it could provide a topological
explanation for why all of the modes of the system were delocalized to the edge. The
spectrum of a periodic 1D chain winds around each of the open system eigenvalues
an integer number of times [Fig. 1.4 (b)]. The winding number of a non-Hermitian
Hamiltonian H(k) evaluated at an energy E is given by [48]:

W (E) =
∫ 2π

0

dk

2πi

d

dk
log(det(H(k)−E)). (1.7)

Taking E to be each eigenvalue of the open system, the winding number has a given sign
for each eigenvalue. The sign of the winding number dictates at which boundary of the
open 1D chain that eigenstate will accumulate. Since a bulk quantity predicts the position
and quantity of modes at each boundary, the NHSE was deemed topological and fulfilled
a modified bulk-edge correspondence, where all of the bulk modes are delocalized to the
edges of the system .

1.4.3. LOCALIZATION PROPERTIES
The transition of non-Hermitian systems from periodic to open boundary conditions
involves the delocalization of all of the modes in the bulk to the system boundaries [Fig. 1.4
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(d) and (f)]. The transition between a Hermitian and non-Hermitian system with open
boundaries is also accompanied by the same delocalization of the bulk modes to the edge
[Fig. 1.4 (e) and (f)]. This delocalization of all bulk modes is robust to disorder, so long
as the non-Hermiticity of the bulk and the preferred direction of propagation is globally
preserved [52–54]. This is in direct contrast to one-dimensional disordered Hermitian
systems, where localization is generally expected to occur even in the presence of weak
disorder [1]. Even when the disorder is sufficient to stop ballistic propagation of modes
in a non-Hermitian system, transport through the disordered material persists through
hopping between localized resonances [55, 56]. As long as the non-Hermitian system is
capable of amplifying the signal, the system is able to delocalize in any dimension [57].

Due to the difference in Anderson localization properties disorder between Hermitian
and non-Hermitian systems, a separate scaling theory of localization was devised [57],
which relies on two-parameter scaling as opposed to one-parameter scaling (dependence
of conductance on length scale L). The second parameter involved in non-Hermitian sca-
ling is the hopping asymmetry γ. For γ sufficiently large, the scaling flow of conductance
as a function of L is modified and diverges away from 0 to ∞ [Fig. 1.5].

Figuur 1.5: Two-parameter scaling of non-Hermitian localization. The renormalization-group flow is shown
according to the conductance GR from the left to the right and the conductance GL from the right to the left.
The system size L increases along with the arrows. Figure reproduced with permission from [57].

1.5. THIS THESIS
The study of topological systems is closely tied to symmetry analysis. A 2D regular crystal
structure possesses exact spatial symmetries, and such symmetries have been found to
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protect topological phases of matter, giving rise to protected propagating edge modes.
Crystal surfaces that break the bulk spatial symmetries protecting the topological phase
will not host topological edge modes. Amorphous systems appear to possess no spatial
symmetries at face value, but they are not so far removed from an isotropic continuum:
amorphous systems are isotropic on average, having average reflection and continuous
rotation symmetry in 2D. The combination of these average spatial symmetries, if they
could protect a topological phase, would therefore result in a phase that is insensitive to
surface orientation. In Chapter 2, I present 2D amorphous systems which host topological
insulator phases and have delocalized gapless edge modes on any surface orientation.
Since the symmetries protecting the phase are only present on average, the topological
phases are statistical topological insulator phases. This means that 2D amorphous topo-
logical phases protected by spatial symmetries exist in all symmetry classes that possess a
1D topological phase.

Extending the study of amorphous topological phases to 3D is as simple as searching
for statistical topological insulator phases. Similarly to the approach explained in Chapter
2, one searches for strong or statistical topological insulator phases in 2D. These corres-
pond to the gapless surfaces of 3D statistical topological insulators. However, one rather
quickly encounters conceptual difficulties even for the class with the least amount of
constraints, class A (no non-spatial symmetries, see Table 1.1). While it is possible to
generate a Hamiltonian from any given set of constraints, difficulties arise in the inter-
pretation and realization of the physical system it represents. Until now, it was an open
question whether a 3D inversion-symmetric system could exist without time-reversal
symmetry. Although it was not guaranteed that these symmetries should only appear
together, common ingredients for breaking time-reversal symmetry like magnetic fields,
magnetic moments or currents also break inversion symmetry, since they are axial vec-
tors. The realization of an inversion-symmetric medium without time-reversal symmetry
therefore cannot rely on conventional time-reversal symmetry breaking methods. In
Chapter 3, we present an isotropic system with scalar time-reversal symmetry breaking.
The time-reversal symmetry breaking mechanism relies on virtual hopping processes
through states forming a chiral magnetic texture perpendicular to the atomic bond. Time-
reversal symmetry is broken independently of the orientation of the bond, while inversion
symmetry is preserved. This means that this system is realizable not only as a crystal
with a regular structure, but also as amorphous systems. The surface of the amorphous
system is akin to a disordered critical mirror Chern insulator, whose transport properties
have been the subject of debate. In particular, there have been contradictory numeri-
cal and analytical results as to whether the doubled disordered Chern insulator model
localizes in the critical phase [58–64]. Using network model analysis and investigating
large system sizes to resolve this long-standing question, the doubled disordered Chern
insulator is found to localize, with a large localization length. A natural question arises:
are the average spatial symmetries of the amorphous system capable of protecting the
modes from localization? The results of the amorphous network and the regular network
coincide, and in both cases the doubled model localizes, which demonstrates that the
spatial symmetries do not affect the scaling properties of the system.

While general disorder in Hermitian systems can be used to stabilize topological edge
modes, in non-Hermitian systems disorder has the power to disrupt the very notion of
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bulk-edge correspondence. The modes of the non-Hermitian skin effect (NHSE), that
is to say all of the modes of a 1D non-Hermitian system with a point gap, have been
considered topological modes due to their appearance at the boundaries of the system
and the identification of a bulk topological index predicting their appearance. Further,
in the presence of moderate Hermitian disorder, the NHSE persists, similar to how a
Hermitian topological phase is robust to disorder that does not exceed the magnitude
of the bulk gap. However, non-Hermitian systems differ from Hermitian systems in
the fact that they do not obey the near-sightedness principle. This principle states that
areas of a system sufficiently far from a perturbation are not affected by it. Hermitian
topological phases exemplify this principle, as topological edge modes can be locally
shifted or destroyed (in the case of crystalline topological insulators), but the edge modes
far from that perturbation will remain affected. Non-Hermitian systems demonstrate the
violation of the near-sightedness principle by the very phenomenon of the NHSE, which
is tantamount to the sensitivity of all of the modes in the system to a local change in the
boundary conditions, not just the modes close to the boundary. Following the existence
of this sensitivity, in Chapter 4 I demonstrate that a single non-Hermitian impurity in
the bulk of 1D and 2D systems has the ability to attract all of the skin modes from the
boundary to itself. This violates bulk-edge correspondence, since the bulk topological
marker predicting the presence of the skin modes at the boundaries of the system is not
affected by the presence of the impurity. Therefore, the characterization of the NHSE
as a topological phase is made more tenuous, since it is only valid in the translationally
invariant case where disorder is absent.

The extreme sensitivity of non-Hermitian modes to all local system details makes
the study of non-Hermitian disorder extend beyond conventional Anderson localization,
and yields new delocalization phase transitions that have no Hermitian counterpart. In
Chapter 5 I further investigate non-Hermitian systems beyond a topological framework
and explore dynamic phase transitions of non-Hermitian in systems with general disorder.
In a non-Hermitian disorder landscape, a wave packet scatters inelastically and acquires
various components that are eigenstates of the disordered system. These eigenstates are
amplified or suppressed at rates that are dictated by the imaginary parts of the correspon-
ding eigenvalues. As the wave packet evolves in time, the fastest amplified modes will
dominate the dynamics of the system. The convergence of the initial wave packet to the
maximally amplified wave packet is universal in the presence of moderate disorder. As a
result of this phenomenon, non-Hermitian dynamic phase transitions differ from those
observed in static studies of non-Hermitian systems. I demonstrate the existence of a
transition between two propagating phases that is unique to non-Hermitian dynamics,
and which is only realizable in the presence of disorder.
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2.1. INTRODUCTION
Materials with a quasiparticle band gap in the bulk host protected edge states if they
have a nontrivial topology. To determine whether an insulator or a superconductor is
topological, one first determines the symmetry class of the quasiparticle Hamiltonian in
this material, and then evaluates the topological invariant of the Hamiltonian’s symmetry
class [1, 2]. The topological invariant stays constant as long as the symmetry is preserved
and the bulk stays gapped. While the specific properties of the surface states depend
on details of the edge, they may not be removed by any symmetry-preserving surface
perturbation due to the bulk-boundary correspondence.

The classification of topological phases started with the Altland-Zirnbauer classes, ba-
sed on discrete onsite symmetries: particle-hole, time-reversal, and chiral symmetry [3, 4].
Topological crystalline phases were also classified [5–8], protected by crystal symmetries.
The bulk-boundary correspondence, however, does not apply to all edges in this case:
spatial symmetries such as reflection are broken by certain edge orientations [9] and the
edge states may become gapped, as seen in the top panels of Fig. 2.1.

When perturbations are introduced to a system with nontrivial topology, the topo-
logical phases may be destroyed if the symmetries are affected. Perturbed symmetries
present on average are able to provide topological protection [10]. Disordered systems
that support topological insulating phases with one exact symmetry and one or more
average symmetries are called statistical topological insulators [11]. The surfaces of statis-
tical topological insulators are delocalized and pinned to the midpoint of a topological
phase transition, or critical point. A crystal surface that respects a crystalline symmetry
on average is still able to host crystalline topological phases.

Unlike crystals, which break continuous rotation symmetry even on average, amorp-
hous systems lack long-range order and are therefore on average compatible with conti-
nuous rotations. Strong topological, metallic and insulating phases as well as topological
superconductivity have been studied in amorphous systems both theoretically [12–18]
and experimentally [19–21].

In this work, we devise topological insulator (TI) phases in amorphous systems that
rely on the presence of two average spatial symmetries: reflection symmetry and conti-
nuous rotation symmetry. The presence of both reflection symmetry and average con-
tinuous rotation symmetry promotes the protection of a crystalline topological phase
to every edge orientation. We thus demonstrate that even though the topological pha-
ses presented here have crystalline or quasi-crystalline counterparts, only amorphous
systems have guaranteed protection for all edge terminations. This study exposes the
potential for realizing topological phases protected by average spatial symmetries that
don’t rely on macroscopic edge details.

The structure of the manuscript is as follows. In Sec. 2.2 we define the basic premise
of spatial symmetries in amorphous systems. In Sec. 2.3 we study isotropic continuum
systems and identify the symmetry groups containing reflection symmetry that protect
gapless edge states. In Sec. 2.4 we construct amorphous tight-binding models, numeri-
cally demonstrate critical edge transport, and compare with a similar system on a regular
square lattice. Finally, we formulate bulk topological invariants of our systems in Sec. 2.5.
We conclude in Sec. 2.6 that amorphous models relying on spatial symmetries as well as
one or more exact onsite symmetry to protect a topological phase are statistical topologi-
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Figuur 2.1: The zero-energy local density of propagating modes of the class D 8-band model in crystal and
amorphous systems; darker site color indicates higher density. Insets: dispersion relation (top) and momentum-
resolved spectral function (bottom) corresponding to straight and tilted edge terminations. The effective lattice
constant of the amorphous system a is given by a = 1/

p
ρ, where ρ is the density of sites in the system. Plot

details in App. 2.A.

cal insulators, provided the disorder of the amorphous system does not close the bulk
gap.

2.2. SPATIAL SYMMETRIES IN AMORPHOUS MATTER
Despite locally breaking all spatial symmetries, amorphous matter is generated by a
highly symmetric ensemble of Hamiltonians. Specifically, the occurrence probability of
any configuration is invariant under the action of any element of the Euclidean group.
Furthermore, all structural correlations must decay sufficiently fast with distance. These
conditions require care to satisfy and cannot be fulfilled by gradually moving sites from
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their crystalline positions. While there are several ways to simulate amorphous matter,
we focus on tight-binding models defined on random graphs. The simplest way to create
an amorphous array of site positions is choosing a sample of uncorrelated points in space.
In order to reduce the fluctuations of the coordination number, we use a sphere-packing
algorithm described in App. 5.B instead.

The physics of amorphous systems obeys locality and homogeneity in the sense that
the bulk Hamiltonian is generated by a local rule [22, 23]. We require that the onsite and
hopping terms only depend on the local environment: the configuration of atoms within
a finite radius of the site or bond in question. For our toy models we take an even simpler
case, where terms in the Hamiltonian only depend on the relative spatial positions of the
orbitals:

〈r,n| Ĥ
∣∣r′,m

〉= Hnm
(
r− r′

)
, (2.1)

where |r,n〉 is the n’th orbital on the site at position r. While this restriction is not essential,
it makes defining the models easier. Onsite terms have r−r′ ≡ d = 0, meaning all onsite
terms in the bulk are identical. More generally, we allow H (d) to be a random matrix
whose distribution only depends on the hopping vector d to account for sources of
disorder not captured by the underlying random graph or the simplified local rule. In this
case we demand that the disordered ensemble is invariant under each spatial symmetry,
whereas the onsite symmetries are obeyed exactly by each ensemble element.

An isotropic amorphous system has average continuous rotation symmetry under
simultaneous rotation in spin and real space, meaning that terms in the Hamiltonian
with a rotated local environment are related as:

U (φ)H(d)U (φ)−1 = H(R(φ) ·d) (2.2)

with U (φ) = exp
(
iφSz

)
, Sz the onsite spin-z operator, R(φ) = exp

(
iφLz

)
, Lz = σy the

generator of two-dimensional real space rotations. Simultaneous invariance under con-
tinuous rotation and one reflection symmetry implies reflection invariance with any
normal vector. The symmetry constraint imposed by a reflection operator with normal n̂
is:

UMn̂ H(d)U−1
Mn̂

= H(RMn̂ ·d) (2.3)

where RMn̂ = 1−2n̂n̂T is the real space orthogonal action reversing the component in
the n̂ direction. Commutation relations of Sz , UM and onsite symmetries are listed in
App. 2.C.

All previous considerations of this section apply to homogeneous and isotropic sys-
tems deep in the bulk. The vicinity of the edges of the system are, however, distinguishable
from the bulk through the local environment, and have lower symmetry. Hence we allow
the Hamiltonian to depend on the distance from the edge and the orientation of the edge.
For example, near an infinite edge along the y direction such that the system terminates
for x < 0 we let

〈r,n| Ĥ
∣∣r′,m

〉= H edge
nm

(
r− r′, x̂ · r+ r′

2

)
. (2.4)

such that limx→∞ H edge (d, x) = H (d). This local rule preserves average translation invari-
ance along the edge, but may break the continuous rotation symmetry (2.2) of the bulk. A
straight edge still preserves average reflection symmetry with normal parallel to the edge,
so we demand that H edge satisfies (2.3) with fixed x and n̂ = ŷ .
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2.3. CONTINUUM SYSTEMS
In the long wavelength limit an amorphous system is homogeneous and isotropic, resem-
bling a continuum. We therefore start our analysis by studying continuum models with
reflection and continuous rotation invariance. First we study the 1D edge theory to iden-
tify symmetry groups capable of protecting gapless edge modes. Next we construct 2D
bulk models in these symmetry classes, and finally we demonstrate that straight domain
walls host gapless modes as expected.

2.3.1. SYMMETRY GROUPS PROTECTING GAPLESS EDGES
In order to find continuum models with gapless edges protected by reflection symmetry,
we perform a systematic search of the Altland-Zirnbauer symmetry classes. For each class,
we start with a minimal 1D Dirac Hamiltonian that respects the onsite symmetries. If mass
terms are allowed in this Hamiltonian, i.e. it is trivial with only the onsite symmetries,
we add a reflection symmetry. The Hamiltonian is a candidate model if the reflection
symmetry protects the gapless edge by removing all mass terms.

Consider for example the edge of a class D system, the minimal two-band edge theory
can always be written as Hedge(k) = kτx +mτy with particle-hole symmetry acting as
complex conjugation, P = K . In the absence of additional symmetries this model
describes the edge of a trivial system because it is gapped for any nonzero m. Choosing
a unitary reflection symmetry with UM = τz the symmetry constraint UM Hedge(k)U †

M =
Hedge(−k) forces m = 0. Hence this choice of reflection symmetry protects a single pair of
counterpropagating gapless edge modes, and serves as a candidate for the edge theory of
a topologically nontrivial bulk protected by reflection.

We perform the search of the Altland-Zirnbauer classes using the software package
Qsymm [24]. In classes AII, DIII, CII and C the minimal model of a gappable edge is 4×4,
in the rest of the classes it is 2×2. We fix a canonical form of the onsite symmetries, then
vary the reflection-like symmetry using different products of Pauli matrices σ and τ for its
unitary part, also allowing it to act as an antiunitarity (with complex conjugation) and as
antisymmetry (reversing the sign of the Hamiltonian). This approach tests every possible
reflection-like symmetry up to basis transformations. In this basis, we have U 2

M = +1.
The conventional fermionic reflection operator that obeys U 2

M = −1 is recovered by
multiplying UM with i . This change of the overall phase does not affect the symmetry
constraints on the Hamiltonian and only reverses commutation and anticommutation of
UM with the antiunitary symmetries. For each choice of the symmetry group, we generate
the most general k-linear Hamiltonian. If it does not contain k-independent mass terms
capable of opening a gap at half-filling, we note it as a candidate. When presenting the
results in Table 2.1 we only list one representative of various reflection operators related
by unitary basis transformations. In the rest of the manuscript we focus on the more
natural symmetry groups with unitary reflection symmetry, see App. 2.D for symmetry
groups with reflection antisymmetries.

Because we are searching for phases whose surfaces are driven to a critical point by
spatial disorder, we expect to find protected gapless phases in the presence of strong
disorder in symmetry classes that host nontrivial topological phases in 1D. This requires
the disorder to respect all non-spatial symmetries in a given class exactly, and the spatial
symmetries on average [11]. In this case the additional reflection symmetry forces the edge
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Symmetry class UM UP UT UC

AIII τx - - τx

BDI τx τ0 τx τx

D τz τ0 - -
DIII+ σxτz σ0τz iσzτy σzτxDIII− σzτx

CII σyτy iσyτ0 iσ0τy σyτy

Tabel 2.1: Symmetry representations of 1D models where a unitary reflection symmetry UM protects gapless
edges. σ and τ are Pauli matrices. Only unitary-inequivalent symmetry representations are listed.

to the critical point of a topological phase transition. The result of our search confirms this
expectation, we find unitary reflection symmetries in classes AIII, BDI, CII, D and DIII. We
observe that in all the chiral classes [UM ,C ] = 0, and in all cases [UM ,P ] = [UM ,T ] = 0
except for one of the choices for class DIII where {UM ,P } = {UM ,T } = 0. We denote the
case with commuting reflection DIII+ and the case with anticommuting reflection DIII−
in the following.

When attempting to extend these symmetries to the 2D bulk, we find that these
symmetry representations do not admit a consistent continuous rotation symmetry with
Sz = ±1/2 (see App. 2.C) in a way that allows a gapped bulk, so we double the Hilbert-
space. We perform a systematic search for symmetry representations by taking the tensor
product of each edge symmetry operator with a Pauli matrix, taking Sz as 1/2 times the
product of Pauli matrices and ensuring that the appropriate commutation relations are
maintained. While this search is not exhaustive, it produces gapped bulk models realizing
all the edge symmetry classes. The exact forms of the onsite and spatial symmetries in
the bulk are listed in App. 2.D.

2.3.2. BULK MODELS
We use Qsymm to obtain continuum models in reciprocal space (k-space) compatible
with the bulk symmetry representations found in the previous subsection. The symmetry
constraints have the following form in k-space:

U (φ)H(k)U (φ)−1 = H(R(φ) ·k) (2.5)

UM H(k)U−1
M = H(RM ·k) (2.6)

UC H(k)U−1
C =−H(k) (2.7)

UP H∗(k)U−1
P =−H(−k) (2.8)

UT H∗(k)U−1
T = H(−k). (2.9)

We generate all symmetry allowed terms up to linear order in k in 4-band models for
classes AIII, BDI and D, and 8-band models in classes DIII and CII. We also include one
k2 term to ensure proper regularization in the large k limit (see Sec. 2.5.1). We split the
Hamiltonian into k-independent onsite (or mass) terms and k-dependent hopping terms
as H(k) = H os +H hop(k), see the explicit enumeration of all the terms in App. 2.E.1.

For classes AIII, BDI and D, while the minimal 4-band models have gapped bulk, we
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Figuur 2.2: Domain wall spectra of the continuum models in classes D, CII and class DIII obtained numerically.
For class DIII, the anticommuting case DIII− is represented. With reflection symmetry the boundary spectrum
is gapless (top row), while reflection-breaking terms open a gap (bottom row).

find that these systems are non-generic for the prescribed symmetries. The minimal class
BDI model consists of two decoupled blocks resulting in an additional onsite unitary
symmetry, the class AIII model has an additional time-reversal symmetry, and the class D
model remains decoupled at k = 0 resulting in extra protection for the edge modes. To get
rid of the additional symmetries, we consider a doubled Hamiltonian:

H8×8(k) =
(

H(k) H c(k)
H c(k)† H ′(k)

)
(2.10)

where H is topological, H ′ is trivial, and H c is weak. The forms of the coupling between
the two copies, H c, are listed in App. 2.E.1. We then confirm that the resulting doubled
model remains topological, and the additional symmetries are removed. The 8-band CII
and DIII models have no unwanted symmetries, so they are not doubled.

2.3.3. GAPLESS DOMAIN WALL MODES
To show that the bulk models have the expected edge physics, we obtain the continuum
edge spectra of our models by considering an infinite 2D system with a domain wall. We
assign a spatial dependence to the chemical potential, such that at x = 0 its sign is flipped,
making the system topological for x > 0 and trivial for x < 0. Topological edge modes are
confined to the interface and decay exponentially into the bulk.
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The continuum model Hcont(k) is obtained from (2.10) by replacing ky with a free pa-
rameter k and kx with its real-space form −i∂x . We cast the eigenvalue problem HcontΨ=
EΨ into the form of a system of linear differential equations A(k)∂xΨ+B(k, x,E)Ψ= 0.
We find all the solutions on the left and right side of the domain wall separately, using the
ansatzΨL/R(x) =ψL/R exp(−λL/R|x|) to obtain (A−λL/RB)ψL/R = 0. We solve this genera-
lized eigenvalue problem and concatenate the solutions for ψi

L/R into a single matrix W .
A global solution needs to be continuous at x = 0, and it exists if there is a nonzero linear
combination of the left mode vectors ψi

L that is also a linear combination of right mode

vectors ψi
R. We therefore obtain the edge spectrum by numerically finding points in the

(E ,k) plane where W is singular [25].
This analysis shows that all the continuum models we consider have gapless modes at

the boundary between topologically trivial and non-trivial regions protected by mirror
symmetry, as shown in Fig. 2.2. Any perturbation that breaks the reflection symmetry
opens a gap, even if it preserves all the onsite symmetries. The class D spectrum is
representative of the AIII and BDI spectra. The edge modes of the CII model are doubly
degenerate due to the combination of its reflection and time-reversal symmetries.

2.4. AMORPHOUS SYSTEMS
In this section we demote the exact spatial symmetries of the continuum models to
average symmetries by using tight-binding Hamiltonians on an amorphous graph, and
demonstrate that the topological protection by reflection and continuous rotation sym-
metry persists.

2.4.1. AMORPHOUS TIGHT-BINDING HAMILTONIANS
In order to extract the scaling behaviour of the edges of an amorphous system, we con-
struct real space tight-binding models using the symmetry considerations outlined in
Sec. 2.2. While the problem formally looks very similar to the k-space case replacing k
with d, onsite symmetries behave differently in real space:

UC H(d)U−1
C =−H(d) (2.11)

UP H∗(d)U−1
P =−H(d) (2.12)

UT H∗(d)U−1
T = H(d). (2.13)

Hermitian adjoint reverses hoppings, so H(d) is generally nonhermitian, but obeys a
modified hermiticity condition:

H(−d) = H(d)†. (2.14)

With these modifications, we use Qsymm to generate all symmetry-allowed hopping
terms H hop(d̂) as first order polynomials of the components of d̂. The hopping terms
obtained in this way have a sufficiently general dependence on the bond direction for our
purposes. The onsite terms obey the same symmetry conditions as in k-space, so we use
the same H os as in the previous section. In order to make the Hamiltonian short-ranged
without changing its symmetries, we make the hoppings decay exponentially with bond
length, see App. 2.F. Again we consider doubled models in classes AIII, BDI and D, the
results are listed in App. 2.E.2.
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Figuur 2.3: Critical transport scaling for the 8-band class D amorphous system with onsite disorder. a) histogram
of α for various system sizes L from 93 different amorphous system realizations. In red: maximum likelihood
estimate fit of a half-normal distribution to the data. b) length dependence of σ, the scale parameter of the
half-normal fits. Inset: average conductance g as a function of system size. The dashed lines are the L±1/2 fit to
the scaling data.

2.4.2. TRANSPORT PROPERTIES OF THE AMORPHOUS EDGE

To demonstrate that our amorphous systems are statistical topological insulators, we show
that their transport signatures match those of 1D disordered systems at the critical point
of a topological phase transition. The transmission amplitudes ti are random variables
that depend on the disorder configuration of the system and the conductivity is given by
g =∑

i |ti |2 [26]. At the critical point the transmission amplitude distribution universally
obeys α= arccosh(1/|t |) such that α has half-normal distribution with scale parameter
σ that grows with the edge length L as σ∝p

L [27, 28]. The resulting disorder-averaged
conductance has power-law decay g ∝ L−1/2.

We fit the αi obtained from numerical transport calculations on edges of the class
D amorphous model with various edge lengths for several random realizations of the
amorphous system to half-normal distributions (see App. 5.B). The top panel of Fig. 2.3
shows the histograms of α, and the bottom panel shows that we recover the relation
σ∝p

L for the standard deviation of α and g ∝ L−1/2 for the conductance. Here we use a
model with Gaussian distributed onsite disorder only respecting particle-hole symmetry
to show the critical scaling of the conductance g . We expect that allowing the onsite
terms to depend on the local environment, as is the case for more detailed models of
amorphous matter, would have a similar effect. While we recover the scaling of σ without
onsite disorder, we find that the intrinsic disorder from the underlying random graph
is too weak to detect the conductance scaling at numerically feasible system sizes, see
App. 2.G.
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Figuur 2.4: Band structures of the class D model on periodic crystal strips for different edge terminations and
distance dependences. The left panel shows bands along the reflection symmetric [1 0] edge, and the right panel
shows bands along the [2 1] edge, that breaks reflection symmetry. Transparency of the dispersion bands is
directly proportional to their participation ratio. Plot details in App. 2.A and App. 2.F.

2.4.3. ANALOGOUS MODEL ON THE SQUARE LATTICE
The way we defined our hopping Hamiltonians allows us to use them on any graph,
including regular crystal lattices. This lets us demonstrate that breaking the rotation and
reflection symmetries to a discrete subgroup opens a gap on reflection asymmetric edges.
We calculate the band structures of periodic crystal strips whose edges are terminated
along different directions and inspect the dispersion of the edge modes spanning the bulk
gap.

Using a sufficiently general model on the square lattice that breaks all additional
symmetries beyond the onsite and spatial symmetries we prescribe (see App. 2.F) we find
that reflection-breaking edges on the square lattice are gapped. Fig. 2.4 compares edges
oriented along [1,0] and [2,1], in the first case reflection symmetry of the edge protects
gapless modes, while in the second case it does not.

2.5. BULK INVARIANT
We have demonstrated the robustness of gapless edge modes protected by reflection
symmetry in both continuum and amorphous systems. In this section we give an explicit
invariant characterizing the topological phase without referring to edge properties.

2.5.1. CONTINUUM MODELS
We construct the 2D bulk invariants of the rotation symmetric continuum Hamiltonians
from the 1D invariants of the same symmetry class. This is motivated by the fact that
the Hamiltonian on any 1D line in k-space specifies the Hamiltonian everywhere in the
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2D k-space through rotation symmetry. To relate to 1D invariants defined on a finite
Brillouin zone, we require the Hamiltonian to be sufficiently regularized: the eigenvectors
of H (k) must become independent of the direction of k for the limit |k|→∞. For example,
the quadratic terms of (2.29) dominate the k-space Hamiltonian in this limit, making it
insensitive to the signs of kx and ky . This allows compactification of the R2 momentum
space of the continuum to a sphere S2 by identifying all infinitely far points to a single
point, which we denote k = ∞∞∞. We use a stereographic projection to construct this
mapping from R2 to S2. The Hamiltonian at k = 0, ∞∞∞ is invariant under continuous
rotations [29, 30] as well as under all reflection symmetries. Furthermore, the Hamiltonian
on any line connecting these two points determines the Hamiltonian everywhere on the
k-space sphere. Therefore it is natural to think of the momentum space of an amorphous
material as a spherical Brillouin zone with North and South poles at k = 0,∞∞∞, an axis of
rotation along the ẑ axis, and mirror lines on every meridian.

The invariant in 1D class D is νD1 = sign
[
pf H(k = 0) ·pf H(k =π)

]
where pf denotes

the Pfaffian and H(k) =−H(k)∗ is the class D Hamiltonian in the Majorana basis. This
generalizes to the 2D continuum asνD2 = sign

[
pf H(0) ·pf H(∞∞∞)

]
. This invariant, however,

is only nontrivial if the system has nonzero Chern number, because exp(iπC ) = νD2 [23],
which is not possible with mirror symmetry. To define a new invariant in the presence of a
unitary mirror symmetry whose eigenvalues are invariant under particle-hole conjugation
(UM P =P UM for U 2

M =+1, as is the case for the model studied in the manuscript) we
apply the above formula to the two reflection sectors separately:

νM = sign
[
pf H±(0) ·pf H±(∞∞∞)

]
(2.15)

where H± is the Hamiltonian restricted to the ±1 eigensubspace of UM . The choice of the
reflection sector is arbitrary, as the product of the invariants for the two sectors equals
νD2 =+1.

To prove that a nontrivial bulk invariant corresponds to gapless edge states, we con-
sider a system with a straight edge in the y direction preserving My . Restricting to zero
momentum along the edge (ky = 0) we get a half-infinite 1D system, whose bulk is descri-
bed by H(kx ,0) that is invariant under My for every kx . The bulk invariant derived above
is exactly the reflection-resolved strong invariant of the 1D system, indicating zero modes
at a real space boundary for each mirror sector in the nontrivial phase. These zero modes
correspond to the crossing of the edge modes at ky = 0.

To construct the topological invariant in other symmetry classes, we follow a similar
procedure. The topological invariants of odd-dimensional systems with chiral symmetry
are winding numbers [5]. Therefore, the bulk invariants of the AIII, BDI, and CII classes is
the winding number of a single reflection sector modulo 2. In class DIII+ we construct a
reflection-resolved Z2 invariant analogous to the class DIII Pfaffian invariant. We sum-
marize the resulting classification of topological phases protected by unitary reflection
and continuous rotation symmetry in continuum and amorphous systems in Table 2.2.
Because the topological invariant is an integral along a high-symmetry line in k-space,
these expressions coincide with the topological invariants of reflection-protected phases
in crystalline materials [31–33].
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Symmetry class continuum amorphous
AIII Z Z2

BDI Z Z2

D Z2 Z2

DIII+ Z2 Z2

DIII− 2Z 0
CII 2Z 2Z2

Tabel 2.2: Classification of topological phases in continuum and amorphous systems protected by continuous
rotation and unitary reflection symmetry. The classification does not include the strong 2D invariant that is an
independent Z2 invariant in class DIII−. In all other classes reflection symmetry enforces a trivial strong invari-
ant. For details on how disorder leads to the distinction between the continuum and amorphous classification,
see App. 2.H.

2.5.2. EFFECTIVE HAMILTONIAN OF AMORPHOUS MODELS
Without translation invariance it is still possible to detect the bulk gap closings that
accompany topological phase transitions through the density of states ρ(E ) = N−1 trδ(Ĥ−
E ) of a large finite system with N sites. Fig. 2.5 (a) shows the density of states of the class
D amorphous model as the chemical potential µ is tuned across two phase transitions.
We observe two bulk gap closings, and a small constant density of states in the bulk gap
due to edge states in the topological phase. To gain even more insight, we introduce the
momentum-resolved spectral function

A(k,E) =∑
n
〈k,n|δ(

Ĥ −E
) |k,n〉 , with〈r,n|k,m|r,n|k,m〉 = N−1/2 exp(i kr)δnm , (2.16)

so that |k,n〉 is a plane-wave state localized in the n’th orbital. We use the spectral function
with momentum parallel to the edge to detect edge states in finite samples, as shown in
Fig. 2.1. It is also well defined in the k →∞∞∞ limit: because our amorphous samples are
isotropic and the sites are always separated by a finite distance (see App. 5.B), the relative
phase on each bond in the plane wave converges to a uniform independent random
phase. Fig. 2.5 (b) and (c) show that the two gap closings observed earlier are different:
one occurs at k = 0 and the other at k =∞∞∞.

In order to apply the construction of bulk invariants to amorphous systems, we intro-
duce the effective k-space Hamiltonian [17, 23] Heff(k) =Geff(k)−1 through the projection
of the single-particle Green’s function onto plane-wave states:

Geff(k)m,n = 〈k,m|Ĝ |k,n〉 , (2.17)

where Ĝ = limη→0(Ĥ + iη)−1 is the Green’s function of the full real space Hamiltonian Ĥ .
Fig. 2.5 shows the relation to A(k,E). The spectrum of Heff(k) closely follows the peaks of
the spectral function, especially near the gap closing points. The key properties of Heff are
that it transforms the same way under symmetries as continuum Hamiltonians discussed
before, its gap only closes when the gap in the bulk Ĥ closes [23], and it is properly
regularized in the k →∞∞∞ limit [17]. Hence, the bulk invariants defined for continuum
systems are directly applicable to detecting topological phase transitions in amorphous
systems. We show in Fig. 2.5 (d) for the class D amorphous model that the bulk invariant
is non-trivial (νM =−1) for intermediate values of the chemical potential.
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Figuur 2.5: Topological phase transitions of the amorphous class D model as a function of the chemical potential.
(a) Density of states of a finite amorphous sample. Darker color indicates higher density. (b) Spectral function
at k = 0 of a finite amorphous sample. The spectrum of the effective Hamiltonian is overlaid in red. (c) Same
as (b) but at k = ∞∞∞. (d) Topological invariant νM (solid line). The dashed and dotted lines correspond to
sign[pf Heff+ (0)] and sign[pf Heff+ (∞∞∞)] respectively, offset along the vertical axis for visual clarity.

2.6. CONCLUSIONS AND DISCUSSION
We introduced statistical topological insulator phases in two-dimensional amorphous
systems that rely on average spatial symmetries for protection. We demonstrated that
in the non-trivial phase the edge behaves as a 1D critical system of the same symmetry
class by observing power-law scaling of the transport properties. We found topological
invariants characterizing the bulk, and showed that the critical edge physics is not a result
of fine-tuning, but is protected by the average reflection symmetry that is present on all
straight edges of amorphous samples.

Comparing our results to similar work on higher-order topological insulators in quasi-
crystals protected by eight and twelvefold rotation symmetry [23, 34, 35] raises a natural
question: can the amorphous phases protected by continuous rotation symmetry be
described as a limit of systems with increasingly fine discrete rotation symmetry? It also
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remains an open question how to extend the topological classification to materials with
multiple atom species.

Superconductivity is known to exist in amorphous thin films [36]. In the cases where
we found new amorphous topological phases, however, the reflection symmetry commu-
tes with time-reversal and particle-hole symmetry, while the physical reflection symmetry
of s-wave superconductors anticommutes with onsite unitary symmetries. Hence con-
densed matter realizations of these symmetry classes are only feasible in the presence of
reflection-odd (e.g. p-wave) pairing. It is possible that favourable energetics can result in
an effective chiral symmetry, but such materials would be highly fine-tuned. Shiba glass
systems consisting of atoms randomly deposited on surfaces have also been proposed as a
platform for two-dimensional amorphous topological superconductivity [14]. Engineered
systems, so called “topological simulators”, can serve as an experimental demonstration of
the phenomena studied in this work: the amorphous class BDI model could be naturally
realized in disordered acoustic and mechanical meta-materials [37–39], while the other
symmetry classes may be realized in a variety of systems including ultracold atoms [40],
photonic crystals [41, 42], or coupled electronic circuit elements [43].

Our findings pave the way for a new classification of amorphous systems. Because
the symmetry groups generated by continuous rotations are non-abelian in dimensions
d > 2, we expect even richer topological classification in higher dimensions.

2.A. MODEL AND PLOTTING PARAMETERS
The data shown in the figures, as well as the code generating all of the data is availa-
ble at [44]. In this section additional details of the plots are listed, if any, in order of
appearance.

For Fig. 2.1, f from (2.47) is set to 0.2 for o1 and o4 of (2.44). The data was obtained
for systems containing 2500 sites.

The bottom panels of Fig. 2.2 are obtained by adding mirror-breaking terms to the
continuum Hamiltonian models.

Fig. 2.3 is obtained from the class D model with added Gaussian noise terms that
conserve particle-hole symmetry exactly. The amplitude of the noise terms γi is γi

µ =
0.3∗xi with xi a random number from a normal distribution with mean 0 and standard
deviation 1, and µ the chemical potential of the topological sector of the model. The
number of sites in the system vary from 5000 to 50000.

The data presented in Fig. 2.4 and 2.6 is obtained with f = 0.2 or f = 1 (as indicated)
for the hopping terms o1 and o4 of (2.44). The periodic strips all have a width of 100 sites
in the non-periodic direction.

Fig. 2.5 was obtained from a system with 40000 sites.
Fig. 2.7 is obtained with f = 1.5 for the hopping terms t and d of (2.39) of the non-

trivial and trivial sectors of the AIII model respectively, and o4 of (2.40). The class BDI
data is obtained with f = 0.7 for t of (2.41) of the non-trivial sector, and o2 from (2.42).
The class CII data is obtained with f = 0.7 for t1 and t4 of (2.45). The class DIII data is
obtained with f = 2 for o1 and o4 of (2.46). The periodic strips all have a width of 100 sites
in the non-periodic direction.

Fig. 2.8 was obtained from the class D model by setting f = 0.7 for hopping terms t1,
d2 and o4 of (2.43) and (2.44). The number of sites in the system vary from 5000 to 50000.
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Fig. 2.9 was obtained from systems with 100 sites and Fig. 2.10 was obtained from
systems with 2500 sites.

2.B. NUMERICAL METHODS
In the numerical calculations we use hard-disk amorphous structures [21]. To generate a
structure, we randomly add atomic sites in a fixed volume from an uncorrelated uniform
distribution. Treating atoms as hard disks, we reject new sites closer than a fixed distance
to existing sites, and this procedure is performed until the goal density is reached. This
procedure reduces density fluctuations and avoids sites that are very close to each other,
matching the distance distribution function of a realistic amorphous system more clo-
sely than independent uniformly distributed points. We include hopping terms in the
Hamiltonian for bonds connecting each site to a maximum number of N neighbours
falling within a maximum bond length R . The values of N and R are chosen such that the
exponentially decaying hopping amplitudes to further neighbours can be safely neglected,
resulting in a sparse Hamiltonian.

We use the software package Kwant [45] to generate the lattice Hamiltonians and for
transport calculations. The transmission eigenvalues are obtained via the calculation
of the scattering matrix using Kwant. The transmission amplitudes ti are given by the
singular values of the transmission block of the scattering matrix. Pfaffians are calculated
using Pfapack [46]. The numerical density of states, momentum-resolved spectral func-
tion, and effective Hamiltonian calculations are performed using the kernel polynomial
method [17, 23, 47, 48].

2.C. COMMUTATION RELATIONS OF THE SYMMETRY OPERATORS
In real space, conjugating a rotation with a mirror results in a rotation in the opposite
direction:

MR(φ)M−1 = R(−φ). (2.18)

Demanding that there are no nontrivial onsite unitary symmetries, this implies for the
unitary parts that

UM e iφSz U−1
M e iφSz = e iα(φ)

1. (2.19)

Differentiating with respect to φ and setting φ= 0 yields

UM SzU−1
M =−Sz +α′

1 (2.20)

whereα′ = dα/dφ|φ=0. As the spectra of the two sides need to be equal, and the spectrum
of Sz consists of only integer or half-integer values, we find that α′ ∈ Z. Redefining
Sz → Sz − (α′/2)1 the symmetry constraint on the Hamiltonian does not change, and we
find that Sz and UM anticommute. This also implies that the spectrum of Sz is symmetric
and trSz = 0, which is also a sufficient condition for the anticommutation with UM ,
hence we assume trSz = 0 in the rest of the manuscript without loss of generality. Similar
calculation shows that discrete onsite antiunitary (anti)symmetries (particle-hole and
time-reversal) anticommute with Sz , and chiral symmetry commutes with Sz in the
absence of unitary symmetries.
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Symmetry class UM UP UT

A τ0 - -
AI τ0 - τx

D τ0 τ0 -
AII σ0τ0 - σ0τy

C σ0τ0 σ0τy 0

Tabel 2.3: Symmetry representations of 1D models where a reflection antisymmetry (that anticommutes with the
Hamiltonian) with unitary part UM protects gapless edges. σ and τ are Pauli matrices. Only unitary-inequivalent
symmetry representations are listed.

Symmetry class UM UP UT UC Sz

AIII σxτy - - σxτ0
1
2σ0τz

BDI σxτx σ0τx σxτx σxτ0
1
2σ0τz

CII ρyσyτy iρzσyτ0 iρzσ0τy ρ0σyτy
1
2ρzσ0τy

D σxτx σ0τx - - 1
2σ0τz

DIII− ρzσxτz ρxσ0τz iρxσzτy ρ0σzτx
1
2ρ0σyτz

Tabel 2.4: Symmetry representations of 2D bulk models with unitary reflection and rotation symmetry. ρ, σ
and τ are Pauli matrices. The chemical potential terms are µσzτz for the 4-band models, µρzσzτ0 for CII and
µρzσ0τz for DIII.

2.D. DETAILS OF SYMMETRY REPRESENTATIONS

Besides the unitary mirror symmetries listed in the main text, we find several cases where
a reflection antisymmetry (an operator that reverses k and the energy) protects gapless
edge states in continuum models. Since combinations of the reflection-like symmetry
with any of the onsite symmetries is also a reflection-like symmetry providing the same
protection, we omit such repetitions when listing the results in Table 2.3. We consider
the results in classes A, AI and AII an artefact of using continuum models with perfect
translation invariance, and expect that these are not viable for an amorphous system
since they localize in the presence of disorder that makes the reflection antisymmetry
only an average symmetry [49].

The result of the search for 2D symmetry representations compatible with the edge
symmetries is not unique: we pick one of several unitary equivalent choices for each
Altland-Zirnbauer symmetry class. The specific forms of the symmetry representations
that define the models in App. 2.E are listed in Table 2.4.

For the 4-band models, we define the basis space of the unitary parts of the symmetry
operators as the direct product σ⊗τ, with σ and τ as Pauli matrices in sublattice and spin
space respectively, such that the chemical potential terms of the models are µσzτz . For
the 8-band models, the basis space is extended to ρ⊗σ⊗τ, where ρ is also a Pauli matrix.
For the doubled AIII, BDI and D models we extend the symmetries by multiplying with
ρ0 =12.
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2.E. MODEL HAMILTONIANS

2.E.1. CONTINUUM HAMILTONIANS
The onsite Hamiltonians in both the continuum and amorphous bulk models are given
by:

H os
AIII =µσzτz +λσyτz (2.21)

H os,c
AIII =λ1σzτz + iλ2σyτz (2.22)

H os
BDI =µσzτz (2.23)

H os,c
BDI =λ1σzτz + iλ2σyτz (2.24)

H os
D =µσzτz (2.25)

H os,c
D =λ1σzτz + iλ2σ0τ0 (2.26)

H os
CII =µρzσzτ0 +λ1ρzσxτ0 +ρxσ0 · (λ2τz +λ3τx ) (2.27)

H os
DIII =µρzσ0τz +λ1ρyσyτ0 +λ2ρxσxτx +λ3ρzσzτy +λ4ρxσyτ0 +λ5ρyσyτy (2.28)

where the Pauli matrices σ and τ act on the electron-hole and the angular momentum
degrees of freedom respectively. In the doubled models we assign different parameter
values in the two diagonal blocks.

The doubled k-space models have the following hopping terms:

H hop
AIII (k) = tnσzτz (k2

x +k2
y )+ (t1σz − t2σy )τx kx + (t1σz + t2σx )τy ky (2.29)

H hop,c
AIII (k) = (β1σz +β2σy )τx kx + (β1σz +β∗

2σy )τy ky (2.30)

H hop
BDI (k) = tnσzτz (k2

x +k2
y )+ tσz (τx kx +σzτy ky ) (2.31)

H hop,c
BDI (k) = o1σz (τx kx +τy ky )+ i o2σy (τx kx +τy ky ) (2.32)

H hop
D (k) = tnσzτz (k2

x +k2
y )+ t1σz (τx kx +τy ky ) (2.33)

+ t2σ0(−τy kx +τx ky )s +dσx (τx kx +τy ky ) (2.34)

H hop,c
D (k) = i o1σy (τx kx +τy ky )+o2σz (τx kx +τy ky ) (2.35)

+o3σx (−τy kx +τx ky )+o4σ0(−τy kx +τx ky ) (2.36)

The k-space CII and DIII models have hopping terms of the form:

H hop
CII (k) = tnρzσzτ0(k2

x +k2
y )+ t1(ρzσzτz kx +ρ0σ0τx ky )

+ t2(ρzσ0τx kx −ρ0σ0τz ky )+ t3(ρxσ0τ0kx +ρyσzτy ky )+ t4(ρxσxτ0kx +ρyσxτy ky )

(2.37)

H hop
DIII (k) = tnρzσ0τz (k2

x +k2
y )+dρ0σyτx kx +ρ0σ0τy ky )+ t (−ρ0σxτ0kx +ρ0σzτz ky )

+o1(ρyσzτz kx +ρyσ0τ0ky )+o2(ρxσ0τy kx +ρxσyτ0ky )+o3(ρxσzτz kx +ρxσxτ0ky )

+o4(ρyσ0τy kx −ρyσyτx ky ).
(2.38)
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2.E.2. REAL SPACE HAMILTONIANS
For the real-space models the onsite Hamiltonian are identical to the onsite terms found
in the previous section.

The double model hopping Hamiltonians have the form:

H hop
AIII

(
d̂
)= tnσzτz + i tσz (τx dx +τy dy )+ i dσy (τx dx +τy dy ) (2.39)

H hop,c
AIII

(
d̂
)= o1σz (iτx dx + iτy dy )+o2σ0(iτy dx + iτx dy )

+o3σy (τx dx +τy dy )+o4σx (−iτy dx + iτx dy )
(2.40)

H hop
BDI

(
d̂
)= tnσzτz + i tσz (τx dx +τy dy ) (2.41)

H hop,c
BDI

(
d̂
)= i o1σz (τx dx +τy dy )+ i o2σy (τx dx −τy dy ) (2.42)

H hop
D

(
d̂
)= tnσzτz + i t1σz (τy dx −τx dy )

+ i t2σ0(τx dx +τy dy )+ i dσx (τx dx +τy dy )
(2.43)

H hop,c
D

(
d̂
)= i o1σz (τx dx +τy dy )+ i o2σy (τx dx +τy dy )

+ i o3σx (τy dx +τx dy )+ i o4σ0(τy dx −τx dy ).
(2.44)

The 8-band CII and DIII models have hopping terms:

H hop
CII

(
d̂
)= tnρzσzτ0 + i t1(ρzσ0τz dx +ρ0σ0τx dy )

+ i t2(ρzσ0τx dx −ρ0σ0τz dy )+ i t3(ρxσzτ0dx +ρyσzτy dy )

+ i t4(ρxσxτ0dx +ρyσxτy dy )

(2.45)

H hop
DIII

(
d̂
)= tnρzσ0τz + i d(ρ0σyτx dx +ρ0σ0τy dy )

+ i t (−ρ0σxτ0dx +ρ0σzτz dy )+ i o1(ρyσzτz dx +ρyσ0τ0dy )

+ i o2(ρxσ0τy dx +ρxσyτ0dy )+ i o3(ρxσzτz dx +ρxσxτ0dy )

+ i o4(ρyσ0τy dx −ρyσyτx dy ).

(2.46)

2.F. REMOVING ADDITIONAL SYMMETRIES OF SQUARE LATTICE

MODELS
We find that because the nearest-neighbour square lattice is bipartite, it has inherent
sublattice (chiral) symmetry that stabilizes an additional pair of counter-propagating
edge modes at k =π. When studying models on the square lattice, we include second and
third nearest-neighbour bonds to remove this chiral symmetry and the additional modes.

We find that if every hopping decays the same way with the bond length, even the
edges of a crystalline sample that break reflection behave like the edge of a fully isotropic
continuum sample that has protected modes for every orientation close to k = 0. Hence
without changing the symmetry properties we include a different decay constant in the
prefactor for each term:

H hop(d) =∑
i

e− fi ·|d|αi H hop
i

(
d̂
)

(2.47)

where i runs over the linearly independent hopping terms [24] in H hop(d̂) =∑
i αi H hop

i (d̂).
Fig. 2.6 and Fig. 2.7 illustrate the importance of this consideration.
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Figuur 2.6: Band structures of the class D model on periodic crystal strips for different edge terminations and
distance dependences. Top panels are bands along the reflection symmetric [1 0] edge, and bottom panels are
bands along the reflection asymmetric [2 1] edge. Transparency of the dispersion bands is directly proportional
to their participation ratio

∑
i |ψi |4, where ψi is the real space wavefunction of site i of the system. Plot details

in App. 2.A.

The band structures of the chiral class models are all gapped for edge orientations
that break reflection symmetry, as seen in Fig. 2.7. For the class AIII model, Fig. 2.7
shows that the case is similar to the class D crystal bands: the more general distance
dependence (absence of a global prefactor related to the bond lengths before each of
the hopping terms) is required to open the gap along reflection asymmetric edges. For
the class BDI model, the reflection asymmetric edges are gapped even without the more
general distance dependence, as seen in Fig. 2.7, but it does increase the size of the gap.
The situation is similar for the CII model, where the more general distance dependence
of the hopping opens a gap only on reflection asymmetric edges.

2.G. TRANSPORT SCALING
Fig. 2.8 shows the transport scaling of the class D amorphous model without onsite
disorder. The scaling arises from the intrinsic noise of the random graph. The bottom
panel shows that we recover the relation σ∝p

L for the standard deviation of α. The
conductance data in the inset shows that the noise due to the physical randomness of the
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Figuur 2.7: Band structures of the chiral models on periodic crystal strips for different edge terminations and
hopping relations. Solid lines indicate bands recorded along the reflection symmetric [1 0] edge, and dashed
lines along the reflection asymmetric [2 1] edge. The different hopping relations are distinguished by different
values of f from (2.47), see App. 2.F.

amorphous system has a much weaker effect on localizing the modes compared to the
noise originating from terms added to the model as in Fig. 2.3. The conductance relation
g ∝ L−1/2 is not recoverable with the numerically accessible edge lengths, as it is only
valid for g ≪ 1.

2.H. BULK INVARIANT FOR CHIRAL CLASSES

In this section we construct invariants classifying continuum and amorphous systems
protected by continuous rotation and unitary reflection symmetry.
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Figuur 2.8: Critical transport scaling for the 8-band class D amorphous system without onsite disorder. Top
panel: histogram of α for various system sizes L from 59 different amorphous system realizations. In red:
maximum likelihood estimate fit of a half-normal distribution to the data. Bottom panel: length dependence
of σ, the square root of the scale factors of the half-normal fits. Inset: average conductance g as a function of
system size. The dashed line indicates the L1/2 fit to the data.

2.H.1. CLASSES AIII, BDI AND CII
In the presence of chiral symmetry, the band-flattened Hamiltonian Q(k) can be rearran-
ged into two off-diagonal blocks in the basis where C = τz [3, 5]:

Q(k) =
(

0 q(k)
q†(k) 0

)
. (2.48)

As [Sz ,C ] = 0 we can simultaneously diagonalize the two operators and choose Sz = szτz

where sz is diagonal. A mirror operator UM anticommutes with Sz and we fix U 2
M =+1 in

the following, this can always be achieved by choosing its overall phase. A mirror either
commutes or anticommutes with C , here we assume [UM ,C ] = 0 as we found in Sec. 2.3.1
that all symmetry groups protecting gapless edges have this property. In this case UM

takes a block-diagonal form with diagonal blocks m and m′, both of which square to +1
and anticommute with sz , guaranteeing that the spectrum of sz is symmetric. Because
of this, m (also m′) is only nonzero between opposite sz eigenvalues, an appropriately
chosen block-diagonal basis transformation that preserves the form of C and Sz makes it
proportional toσx in each |sz | sector. Hence there is always a basis where m = m′ =σx ⊗1
and the symmetry constraint is m q(k) m−1 = q(RM k).

This allows to decompose q(k) into even/odd mirror sectors q±(k) with respect to a
mirror operator that leaves k invariant [50], and to assign an individual winding number
along a mirror-invariant line:

n± =− 1

2π

∫ ∞

−∞
dk

d

dk
argdet q±(kn̂) (2.49)
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where the sectors are with respect to the reflection operator with normal orthogonal to n̂.
Due to the regularization of the Hamiltonian the integral is along a closed loop, hence
quantized to integers, n± ∈Z. The twofold rotation symmetry C2 = exp

(
i π2 Sz

)
reverses

k and for integer or half-integer spin commutes or anticommutes with UM respectively.
For the integer case this means for the winding numbers that n+ = n− = 0 making the
invariant trivial, while in the half-integer case n+ =−n− meaning that the total winding n
vanishes. So in the half-integer Sz case we can select either one of the reflection-resolved
windings to define a nontrivial topological invariant nM =±n±. As argued in Sec. 2.5.1
this implies the presence of nM zero modes in each mirror sector at k = 0 on any straight
edge. In class CII time reversal symmetry imposes Kramers-degeneracy making nM even.

The winding number invariant we found for continuum systems is integer valued, sug-
gesting that it is possible for the edge to host more than one pair of counter-propagating
modes. In the presence of disorder, however, an even multiple of the minimum number
of symmetry-allowed counter-propagating mode pairs always localizes [11]. In classes
AIII and BDI (CII) this renders edges of systems with even nM (nM /2) insulating, and
those with odd nM (nM /2) indistingushable through transport probes. Therefore, rather
than the winding number nM ∈Z itself being our invariant for amorphous systems, we
identify its parity νM ∈Z2 as the mirror invariant in classes AIII and BDI:

νM = nM mod 2, (2.50)

and the parity of half of nM ∈ 2Z in class CII:

νM = nM

2
mod 2. (2.51)

We calculate the Z2 invariant for the effective Hamiltonian of the amorphous models
in all the chiral symmetry classes as the chemical potential µ is tuned across two topolo-
gical phase transitions, the result is shown in Fig. 2.9. For the numerical calculation we
discretize the integral in equation (2.49) as

nM ≈− 1

2π

∑
i

Imlog

(
det q±(ki+1n̂)

det q±(ki n̂)

)
(2.52)

where ki is a discrete set of k-values in increasing order and with cyclic indexing. To
address numerical integration to infinity, we choose the parametrization k = tan

(
φ/2

)
where φ corresponds to the latitude in stereographic projection ranging from −π to π. We
use 10 evenly spaced values for φ in the numerical calculations, we show the results in
Fig. 2.9.

2.H.2. CLASS DIII
In this section we show that the above invariant, while well defined in classes DIII±, in
class DIII+ it always vanishes, and in class DIII− its parity is determined by the strong
Z2 invariant of class DIII. For class DIII+ we introduce a different Z2 invariant that is
independent of the strong invariant.

We start by deriving general symmetry constraints. We choose the onsite symmetry
representation as C = τz , T = τyK and P = τxK , in this basis the Hamiltonian has
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Figuur 2.9: The bulk invariant ν as a function of the chemical potential µ calculated using the effective Hamilto-
nian for chiral models AIII, BDI, and CII. Top panels: the bulk spectra of the effective Hamiltonians. States at
k = 0 are in red, states at k =∞ are in blue, and states at intermediate k are in varying shades of purple. Bottom
panels: winding number invariants (2.52) obtained by dividing the integration space into 20 (AIII, CII) or 50
(BDI) segments.

the off-diagonal form of (2.48) with q(k) = −q(−k)T [5]. This form of the symmetries
is invariant under basis transformations of the block-diagonal form diag(u,u∗) which
allows to bring spin operator to the diagonal form Sz = diag(sz ,−sz ). For half-integer Sz

the combination C2T leaves k invariant and acts as σz q(k)σz = q(k)T . We find for the
mirror operator that it takes a block-diagonal form M = diag(m,±m∗) where the ± stands
for the commuting ([UM ,P ] = [UM ,T ] = 0) and anticommuting ({UM ,P } = {UM ,T } = 0)
case. As m anticommutes with sz it is only nonzero in the off-diagonal blocks connecting
opposite spin eigenvalues. In a single |sz | ̸= 0 sector sz ∝ σz , and m has off-diagonal
blocksµ andµ†, these can be diagonalized by a basis transformation that in this sector acts
as diag

(
1,µ

)
. For class DIII+ (DIII−) we bring the reflection operator to the form m =σx

(m =σy ) which imposes the constraintσx q(k)σx = q(k) (σy q(k)σy = q(k)). We transform
to a basis where m = σz using u = exp

(
iπ/2σy

)
(u = exp(iπ/2σx )), in this basis q± are

the diagonal (off-diagonal) blocks of q and the C2T constraint reads q+(k) = q−(k)T

(q±(k) = q±(k)T ). In DIII+ this implies det q+(k) = det q−(k)T , meaning that the winding
is the same in both sectors, however, the total winding always vanishes in class DIII, so
the reflection-resolved windings also vanish.

We write the 1D class DIII Z2 strong invariant [5] adapted to the compactified k-space
as

ν= Pf q(∞∞∞)

Pf q(0)
exp

(
− i

2

∫ ∞

0
dk

d

dk
argdet q(kn̂)

)
. (2.53)

This is also the strong 2D invariant, as the k-space sphere only has two time-reversal
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Figuur 2.10: The bulk invariant ν as a function of the chemical potential µ calculated using the effective
Hamiltonian for the DIII model in the commuting (DIII+) and anticommuting (DIII−) cases. Top panels: the
bulk spectra of the effective Hamiltonians. States at k = 0 are in red, states at k =∞ are in blue, and states at
intermediate k are in varying shades of purple. Bottom panels: the DIII Z2 mirror-resolved strong invariant
(2.55) shown for the DIII+ case (in orange). For the DIII− case, the DIII Z2 strong invariant (2.53) is shown in
green, and the winding number invariant is shown in purple.

invariant momenta at k = 0 and ∞∞∞. In class DIII− q has off-diagonal blocks q± and
q+(k) =−q−(k)T for k = 0 and ∞∞∞, meaning pf q(k) = (−1)n(n−1)/2 det q+(k) where n is the
size of a reflection block. Using that q±(k) =−q∓(−k)T for all k, adding and subtracting
the winding iπn+ in the exponential, and noting that the winding of the phase of the
determinant between two points can only differ from the difference in the phases at the
endpoints by a multiple of 2π, we find

ν= e iπnM , (2.54)

showing that the parity of nM , hence the protection of gapless edges in the presence of
disorder, is given by the strong invariant.

We define an invariant for class DIII+ in terms of the reflection-resolved class DIII Z2

invariant:

ν± = pf q±(∞∞∞)

pf q±(0)
exp

(
− i

2

∫ ∞

0
dk

d

dk
argdet q±(kn̂)

)
. (2.55)
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As follows from the relations derived above, the invariant is the same for both sectors and
we define the mirror invariant as νM = ν±. This also shows that in class DIII+ the strong
invariant is always trivial in the presence of reflection symmetry.
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3.1. INTRODUCTION
A three-dimensional (3D) isotropic medium has the highest degree of spatial symmetry.
Unless they are explicitly broken, non-spatial symmetries like time-reversal symmetry
(TRS) are also present in isotropic systems. Removing TRS typically also breaks isotropy,
for example ferromagnets break TRS but also break rotation symmetry along the axes
which are not parallel to the magnetization. Antiferromagnets restore some spatial sym-
metries such as the product of inversion and TRS, but also break rotation symmetry [2].
The spatial symmetries are partially restored in altermagnets [3]—a recently proposed
class of materials combining lack of net magnetization with a spin splitting away from
away from high-symmetry momenta, however even in these materials the magnetic order
is incompatible with full isotropy.

The spatial symmetries of a system are relevant both for defining and protecting topo-
logical phases [4–7]. While initially considered to be susceptible to disorder, topological
systems relying on spatial symmetries were later shown to be protected from localization
as long as the disordered ensemble respects the spatial symmetries [8? , 9]. This protec-
tion by an ‘average’ symmetry, a hallmark of statistical topological insulators, is especially
powerful in isotropic amorphous media. In an earlier work we demonstrated that unlike
their crystalline counterparts—where the spatial symmetry is only preserved by certain
crystal terminations—it is possible to utilize the isotropy of a 2D amorphous medium to
extend the topological protection to any edge of the system [10].

Motivated by the two above considerations, we ask whether it is possible to find a
model hosting a topological phase protected only by spatial symmetries. Because both
TRS and average TRS protect topological phases, we additionally require that the desired
model also breaks TRS on average. By designing a scalar, rather than a vector TRS breaking
order, we answer positively to the above question. Specifically we demonstrate that the
spatial symmetries present in 3D isotropic media protect topological phases, and that the
amorphous realization of such a system is a statistical topological insulator phase.

The organization of the manuscript is as follows. In Sec. 3.2 we formulate an isotro-
pic continuum model where TRS is systematically broken. We present a microscopic
Hamiltonian that replicates this model when assembled into a crystal structure, and we
present results for the amorphous realization of this model. In Sec. 3.3 we demonstrate
the topological nature of our models by formulating bulk invariants, examining surface
dispersions, and analyzing transport of the topologically protected surface modes. As
established in the study of statistical topological insulator phases, we show that the model
localizes when its degrees of freedom are doubled. We conclude in Sec. 5.5.

3.2. SYMMETRY ANALYSIS

3.2.1. CONTINUUM MODEL

In order to guide the construction of a microscopic model, we begin from developing
a minimal continuum model with the desired symmetries using the software package
Qsymm [11]. We follow the procedure outlined in Ref. [10]. We start by generating a
minimal 2D Dirac Hamiltonian. The mass terms present in this minimal Hamiltonian
are capable of gapping out the spectrum. We then search for all of the symmetry repre-
sentations of inversion and continuous rotation symmetry that remove the mass terms
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of the minimal Hamiltonian, thereby ensuring that the spatial symmetries prevent a gap
from opening. These 2D Hamiltonians correspond to the surfaces of 3D topological bulk
models in the same symmetry class. By utilizing the isotropy, we extend the symmetry
representations from 2D to 3D to obtain the 3D bulk phases. The symmetry representati-
ons of the spatial symmetries are listed in App. 3.A, Eq. (3.A.1) and (3.A.2). The resulting
k-space model is of the form:

H4×4(k) = (µ1 + t2k2)σ0(τ0 +τz )/2+ (µ2 + t3k2)σ0(τ0 −τz )/2

+ (−t1 + t4k2)σ ···kτy + (−t0 + t5k2)σ ···kτx ,
(3.1)

where µi are chemical potential terms, ti are the hopping terms, σ and τ are the Pauli ma-
trices, with τ representing the orbital space andσ representing spin space, k = (kx ,ky ,kz ),
and k2 = k ···k .

Limiting the model to terms quadratic in k means a k-dependent transformation of
the form exp

(
iσzφ

)
is capable of removing the relative hopping phases and restoring a

TRS-like symmetry. Therefore, the model includes terms up to k3 in order to remove this
residual symmetry.

Despite lacking TRS, the high degree of spatial symmetry of this model protects the
twofold spin degeneracy of all bands. For a fixed k , the eigenstates of (3.1) are eigenstates
of the angular momentum operator in the direction parallel to k . Mirror symmetry
exchanges states with opposite angular momentum, thereby ensuring the degeneracy of
the spin bands.

3.2.2. MICROSCOPIC IMPLEMENTATION

Based on the symmetry-allowed terms of the continuum model (3.1), we now construct
a microscopic model that preserves isotropy while breaking TRS. The minimal model
contains two orbitals that have opposite inversion eigenvalues, which we choose as an s
and a p orbital. We choose the σ degree of freedom to correspond to the electron spin,
which makes the last four terms of Eq. (3.1) spin-orbit-like, although with an additional
k-dependent phase shift necessary to break TRS. In order to realize these spin-orbit-like
hoppings in a microscopic model, we therefore consider two separate atoms that host
spinful s and px,y,z orbitals respectively, as illustrated in Fig. 3.1(a). For the purpose of
obtaining a minimal model, we separate the p orbitals into p3/2 and p1/2 orbitals with an
atomic spin-orbit coupling, and consider only the lower-energy p1/2,↑↓ subspace.

In order to break TRS, we introduce magnetic atoms between the s and p orbitals.
Hopping between the two atoms occurs through a virtual process via four s orbitals on a
plane perpendicular to the s–p bond axis, located on the middle of the bond [Fig. 3.1(a)].
These intermediate s orbitals each host a magnetic moment, such that together they
form a chiral magnetic texture in the plane that contains them. The curl of the magnetic
texture defines a TRS-odd vector, that combined with the hopping vector r , defines a
scalar quantity (∇∇∇×××M) ··· r . This is the desired source of scalar TRS breaking. Tiling the
space with such s–p bonds restores spatial symmetries, while keeping TRS broken.
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Figuur 3.1: Time-reversal symmetry breaking in a microscopic system with inversion and rotation symmetry. (a)
A bond between s and p orbitals hosting four mid-bond s orbitals (on plane shown in green) that host magnetic
moments. (b) A section of a rock salt crystal structure made from the bond shown in (a). Red lines indicate
nearest-neighbor hopping between s and p orbitals, dashed lines indicate next-nearest neighbor hopping
between s (purple) and p (blue) orbitals, green lines indicate next-next-nearest neighbor hopping between
s and p orbitals. (c) The bulk dispersion relation obtained from the crystal structure shown in (b) along the
high-symmetry points of the face-centered cubic Brillouin zone. Different colors indicate different bands. (d)
Bulk and surface dispersion of a 3D slab of the crystal. Darker color indicates a larger participation ratio. Plot
details are in App. 3.B.

The Hamiltonian of an x-aligned s–p bond is:

Hm = Es
∑
σ

|sσ〉〈sσ|+Ep
∑
i ,σ

∣∣piσ
〉〈

piσ
∣∣+∑

n,σ
(∆ |snσ〉〈snσ|+ ts |sσ〉〈snσ|+h.c.)

+ ∑
i ,n,σ

(
ti n

∣∣piσ
〉〈snσ|+h.c.

)+αL̂p ··· σ̂p +∑
n

B n ··· σ̂n ,
(3.2)

where σ ∈ {↑,↓}, i ∈ {x, y, z}, n ∈ {1,2,3,4}, |sσ〉 are the spinful s orbital states, |snσ〉 are the
mid-bond magnetic sn orbitals,

∣∣piσ
〉

are the px,y,z orbitals, Es/p are the onsite energies of
the s and p orbitals, ∆ is the onsite energy of the mid-bond sn orbitals, α is the magnitude
of the atomic spin-orbit coupling splitting on the p orbitals, σ̂p/n are the spin operators on
the p and sn orbitals, L̂p are the orbital angular momentum operators on the p-orbitals,
B n are the magnetic moments of the sn orbitals. Finally, ti n are the amplitudes of the
sn– pi hopping, determined by whether the hopping between the px,y,z orbitals and the
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sn orbitals takes place via the positive or negative lobes of the p orbitals:

ti n = txδi x + ty zδi y sgn(yn)+ ty zδi z sgn(zn) (3.3)

where yn and zn are the y and z coordinates of the sn orbitals and sgn(0) = 0.
We use the Python software package Pymablock [12] to obtain the effective hopping

tsp between the s and p1/2 orbitals as a second-order perturbation. We find that the
resulting terms have the desired symmetries by substituting in arbitrary parameters. We
demonstrate this result in a limiting case defined by the set of inequalities α≫∆+B ≫
∆−B ≫ Es , Ep −α, ts , tx/y/z , which holds when spin-orbit coupling is large, and hopping
only occurs via the lower-energy virtual level ∆−B . The resulting expression for the
effective hopping amplitude is:

tsp = ts (2tx − i ty z )p
3(∆−B)

iσx . (3.4)

This hopping has a complex hopping phase, which breaks TRS. In order to ensure that the
hopping phase cannot be removed by a global basis-transformation introducing a relative
phase between the s and p wavefunctions, the hopping phase must be distance depen-
dent. This arises naturally due to the different distance dependence of the microscopic
hopping amplitudes from the px and py,z orbitals. Hopping terms along directions other
than x follow from applying rotation operators, resulting in hopping terms proportional
to d ·σwhere d is the hopping vector.

3.2.3. SPIN SPLITTING IN A CRYSTAL
Because the scalar TRS breaking is insufficient to cause a spin splitting in an isotropic
medium, we demonstrate the spin splitting in a crystal structure. We use the s and p atoms
as the basis of the rock salt crystal structure [Fig. 3.1(b)] with full cubic (Oh) symmetry.
In this model, orbitals of the same type are connected by normal hopping, and orbitals
of different types are connected by the complex spin-orbit hopping of (3.4), resulting in
terms off-diagonal in the orbital (τ) space. Because the symmetry-breaking mechanism
relies on the nontrivial distance-dependence of the hopping phase, we include both
nearest-neighbor as well as third-nearest-neighbor s–p hopping [Fig. 3.1(b)]. The tight-
binding Hamiltonian thus takes the form:

Hsalt =
(
µ1 + t1

∑
d 2

e i k ···d 2

)
σ0(τ0 +τz )/2+

(
µ2 + t2

∑
d 2

e i k ···d 2

)
σ0(τ0 −τz )/2

+ i

a

(∑
d 1

e i k ···d 1 d 1 ···σ
)(

t3τ++ t∗3 τ−
)+ i

a

(∑
d 3

e i k ···d 3 d 3 ···σ
)(

t4τ++ t∗4 τ−
)

,

(3.5)

where a is the cubic cell lattice constant, σ± = 1
2 (σx ± iσy ), and similarly for τ±. d 1

runs over the six nearest-neighbor bonds symmetry-equivalent to a
2 (1,0,0), d 2 over the

twelve next-nearest neighbor bonds symmetry-equivalent to a
2 (1,1,0), and d 3 over the

eight next-next-nearest neighbor bonds symmetry-equivalent to a
2 (1,1,1). The terms of

Eq. (3.5) proportional to t1 and t2 are the next-nearest neighbor s − s and p −p normal
hoppings respectively [dashed lines of Fig. 3.1(b)], where t1 and t2 are both real. The
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terms proportional to t3 and t4 are the nearest and next-next-nearest neighbor s–p
hoppings respectively [solid lines of Fig. 3.1(b)], with t3 and t4 complex. This Bloch
Hamiltonian reproduces the symmetry-allowed terms of the continuum model (3.1) in
the long-wavelength limit, aside from an additional cubic anisotropy term and a slight
change of parametrization.

The tight-binding model (3.5) preserves the space group of the rock salt crystal
structure [see App. 3.A]. The spin-orbit-like s–p hopping terms alternate in sign along
the hopping axes in order to preserve inversion symmetry. We select the parameters
µ1 = 0.1, µ2 = 0.2, t1 = 0.3, t2 = −0.4, t3 = exp(0.3i ), t4 = 0.2i exp(0.3i ). The dispersion
relation shows that the spin bands are split away from high-symmetry points and lines
that have at least a rotation and a mirror symmetry, demonstrating that TRS is broken
[Fig. 3.1(c)]. The TRS-breaking terms of our model are next-next-nearest neighbor terms,
which leads to linear TRS-breaking terms intrinsically cancelling out and only cubic terms
remaining. The surface dispersion shows gapless, propagating surface modes within the
bulk gap [Fig. 3.1(d)].

3.2.4. AMORPHOUS REALIZATION

Amorphous systems possess average continuous rotation symmetry, average reflection
and average inversion [10]. Since the scalar TRS-breaking mechanism is independent of
bond orientation, an amorphous realization of the crystal model (3.5) possesses ensemble
isotropy while also systematically breaking time-reversal.

We construct amorphous systems using the same procedure as in Ref. [10], treating
system sites as hard spheres. Rather than simulating an amorphous version of the crystal
defined in Sec. 3.2.3, with two families of atoms and two degrees of freedom per atom, for
simplicity and without loss of generality we simulate one type of atom with four degrees
of freedom. We define a minimal real-space model using Qsymm. To further examine the
extent of topological protection, we also define a model with twice the degrees of freedom
and two protected Dirac cones on the surface in the continuum limit (see App. 3.A for the
full definition of both models). We examine the spectral functions of the minimal model,
and confirm the joint presence of a spectral gap and the lack of spin splitting [Fig. 3.2(a)],
as expected from the symmetry analysis of the continuum model. The surface spectral
function confirms the presence of gapless surface modes within the bulk gap [Fig. 3.2(b)].

3.3. TOPOLOGICAL PROPERTIES

3.3.1. BULK INVARIANTS

To define the topological invariants, we observe that the high spatial symmetry guarantees
that the protected band gap closings only occur at high symmetry momenta: k = 0 and
k =∞∞∞ for the amorphous system. To compute the k-space topological invariant we use an
effective k-space Hamiltonian Heff that we obtain by inverting the single-particle Green’s
function that we project onto the plane wave basis, as described in Refs. [7, 10, 13].

The invariants of 3D statistical topological insulators are constructed from the in-
variants of 2D strong topological phases [9]. The invariant of 2D class A systems is the
Chern number, given by the integral of the Berry curvature over the 2D Brillouin zone at
the Fermi energy. Our 3D class A model relies on mirror symmetry to protect its surface
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modes. Therefore a possible bulk invariant of this model is a mirror Chern number, given
by the difference in Chern numbers of opposite mirror sectors:

CM = 1

2
(C+−C−), C± =

Ó
F±(k)d 2k , (3.6)

where the integral runs over a compactified mirror-invariant plane R2 ∪ {∞∞∞} [10, 13]
(e.g. kz = 0, invariant under the mirror operator kz → −kz with UMz = I exp(iπSz )),
and F± is the Berry curvature of the even/odd (±i eigenvalue) mirror sub-blocks of the
Hamiltonian. The invariant for crystal systems has the same form for a mirror-invariant
plane in the crystal Brillouin zone[4]. However, because both the systems have inversion
and rotation symmetries, the mirror Chern number can also be expressed in terms of
rotation and inversion eigenvalues at high-symmetry momenta. Numerical results and a
further discussion of invariants of the amorphous system are found in App. 3.C.

3.3.2. SURFACE SPECTRUM
As demonstrated in Fig. 3.1(d) for the crystalline system, the high-symmetry surface of
the CM = 1 model hosts a single Dirac cone, and multiple Dirac cones remain protected
for CM > 1. We expect that the high degree of ensemble averaged spatial symmetry of the
amorphous Hamiltonian prevents surface states from being gapped out on any surface
both for the single and doubled model (CM = 1 and 2 respectively). We confirm this by
numerically computing the surface spectral function

A(E ,k) =∑
l

〈k , l |δ(H −E) |k , l〉 , (3.7)

using the Kernel polynomial method[10, 14, 15]. Here H is the real-space Hamiltonian of
a finite slab, l runs over the internal degrees of freedom, and |k , l〉 is a plane-wave state
localized on one surface.

Both the original and doubled amorphous models have a nonzero surface density
of states in the bulk gap, with one or two Dirac nodes located at zero momentum.
[Fig. 3.2(b,c)]. This is a consequence of the nontrivial topology of the effective Hamil-
tonian, or equivalently, of the disorder-avaraged Green’s function. The surface spectral
function in the kx direction probes the topology of the ky = 0 cut of the bulk effective
Hamiltonian, which is invariant under My in the thermodynamic limit. This allows de-
composition into two mirror sectors, each of which is a Chern insulator, resulting in an
edge spectrum with CM pairs of counter-propagating chiral edge states crossing the bulk
gap. The modes with different chirality correspond to different mirror sectors, hence they
are protected from gapping out by disorder that respects the mirror symmetry on average.
The surface states are insensitive to the details of the boundary, and only gap out when
the symmetries protecting the topological phase (rotations and mirrors normal to the
surface) are broken on average [Fig. 3.2(d,e)].

3.3.3. SURFACE TRANSPORT
Reference [9] conjectures that only the Z2 part of the invariant provides topological
protection, or in other words, that only the surface states of systems with odd CM are
protected from localization. In a crystalline system, the surface has an ensemble point
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Figuur 3.2: The (a) bulk and (b)-(e) surface spectral functions of the amorphous models. (b)-(c) The surface
spectral functions of the single Dirac cone model (3.A.4) and the double Dirac cone model (3.A.8). (d)-(e) the
same models as (b)-(c) but with broken spatial (mirror and rotation) symmetries. Plot details are in App. 3.B.

group symmetry, and its localization properties are therefore equivalent to a doubled
Chalker-Coddington network model, which has a localized phase with an anomalously
large localization length [16, 17]. The conjecture, however, was not confirmed for 3D
phases with continuous rotation symmetries, such as our amorphous model. To confirm
the conjecture, we simulate the surface transport properties using amorphous network
models.

We first simulate the transport properties of the regular network model as a baseline
for the comparison. In the presence of disorder that preserves the spatial symmetries
on average, the surface of the crystalline phase is equivalent to a critical Chern insulator.
We simulate its transport properties with the Chalker-Coddington network model on
the square lattice [18]. We fix the aspect ratio of the network to 1 and impose periodic
boundary conditions along the y direction [Fig. 3.3(a)]. The scattering matrices at each
node of the network are random 2×2 matrices sampled from a Haar-distributed U (2)
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Figuur 3.3: Conductivity of translationally invariant and amorphous networks. (a) Schematic of the Chalker-
Coddington model. Dashed links loop in the vertical direction to indicate periodic boundary conditions. Circular
nodes indicate external nodes where modes enter and exit the network. Internal nodes are located at all solid
line crossings. (b) Schematic of the amorphous network. Circular nodes indicate external nodes where modes
enter and exit the network. Nodes internal to the network are located at all line crossings. (c) Schematic of
modes in the doubled model. (d) Average conductivity of the networks as a function of network length and
width L and fits (dashed lines). Results are shown for the Chalker-Coddington (CC) network and amorphous
network, with 1 mode per link (crosses) and 2 modes per link (diamonds). Plot details are in App. 3.B.

ensemble. The conductance through the system is:

G = e2

h

∑
i

Ti , (3.8)

where Ti are the transmission probabilities from the modes entering one side of the
network to the modes exiting on the other side. Since the aspect ratio equals to 1, the
system conductivity g = G . We calculate the average conductivity 〈g 〉 as a function of
system size L and reproduce the known result 〈g 〉 ≈ 0.5–0.6e2/ħ [19] [Fig. 3.3(d)], with the
slow increase as a function of L due to finite-size effects. We investigate the localization
properties of the double Dirac cone model by doubling the number of modes on each
link, as shown schematically in Fig. 3.3(c). This system is expected to localize, based on
both numerical [16] and analytical [17] studies. We draw the 4×4 scattering matrices
of the doubled networks from the circular unitary ensemble and confirm localization at
system sizes of several thousand sites [Fig. 3.3(d)].
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We now simulate the conductance of our amorphous model, in order to determine
whether the average continuous rotation symmetry has an effect on the conductance
properties of the system. We define an amorphous 2D network model in order to simulate
the average rotation symmetry using a fourfold coordinated random graph [13, 20], for
details of the construction of the amorphous network see App. 3.D. We use an annulus
geometry in order to avoid issues constructing the network with periodic boundary
conditions, and numerically calculate the conductance through the bulk from the modes
entering the outer edge to the modes exiting the inner edge of the annulus [Fig. 3.3(b)].
The conductance G is calculated using (3.8), and the conductivity of the annulus equals:

g = 1

2π
G log

(
R

r

)
, (3.9)

where R and r are the outer and inner radii of the annulus respectively. The results for
the amorphous network closely follow the results for the regular network: the single
Dirac cone conductivity falls within the 0.5−0.6e2/ħ range for small L and increases due
to finite-size effects, and the double Dirac cone network localizes [Fig. 3.3(d)]. These
observations confirm that a doubled phase transition is not protected from localization,
even in the presence of average isotropy.

3.4. CONCLUSION AND DISCUSSION
In this work, we found that 3D isotropic systems breaking all non-spatial symmetries host
topologically protected phases of matter. We devised a rotation- and inversion-symmetric
continuum model with broken time-reversal symmetry, and presented a microscopic
realization of this model in amorphous matter with average isotropy. We constructed a
bulk Z invariant—expressible both in terms of symmetry eigenvalues and mirror Chern
numbers—corresponding to the number of protected ungappable surface Dirac cones,
which we numerically demonstrated.

We simulated the transport of our models using both regular and amorphous network
models with random scattering at each node. We found results consistent with critical
scaling, deviations from which are likely due to finite-size effects. Upon doubling the
degrees of freedom in both the regular and amorphous networks, the modes localize
as conjectured in Refs. [9, 16, 17]. Even though any number of surface Dirac cones are
protected from gapping out, only an odd number are protected from localization.

Due to the combination of average continuous rotation symmetry and inversion sym-
metry, the spin bands in the bulk of the amorphous system are doubly degenerate. This
raises the question whether the systematic breaking of TRS leads to a macroscopic change
in the material properties. Enumerating the possible non-dissipative electromagnetic
responses compatible with isotropy and inversion-symmetry, but forbidden by TRS, we
find P ∝ E ×××B , electrical polarization parallel to the Poynting vector. This second-order
response is distinct from the circular photogalvanic effect [21, 22], which only manifests
in systems with broken inversion symmetry, and should therefore be absent in our system.
The combination of these two responses therefore serve as a probe of the scalar TRS
breaking.

A natural further quesion is, what is the classification of isotropic three-dimensional
media with or without inversion symmetry in the other Altland-Zirnbauer symmetry



3.A. MODEL HAMILTONIANS

3

59

classes[23]. The topological invariants outlined in this work remain valid if we also include
TRS besides isotropy and inversion symmetry. Our models are compatible with prescri-
bing TRS with the usual representation T = exp

(
iπSy

)
K , which fixes some parameters,

but does not forbid any topological phases. In this case odd values of CM correspond to
an amorphous strong topological insulator [24], however, the gapless surface Dirac cones
remain protected by mirror symmetry for even values as well. To our knowledge, TRS
does not enrich the classification in the presence of isotropy and inversion symmetry;
and the classification with isotropy, broken inversion and unbroken TRS is the same as
the strong Z2 classification with TRS only. There is, however an interesting possibility that
isotropy and the protection of the surface density of states in a doubled phase prevents
the surface conductivity from going below the metal-insulator critical point, and because
of that guaranteeing that the surface stays metallic. We leave an investigation of these
properties to future work.

Our microscopic model—relying on orbital-selective hoppings through chiral magne-
tic molecules—demonstrates the difficulty of constructing a time-reversal odd, inversion
even, scalar order parameter. In our case the order parameter is P ··· (∇∇∇×××M), electric pola-
rization times bound current. Analyzing an effective field-theory displaying such order
paramater without other symmetry breaking would shed further light on the properties
of this class of isotropic magnetic materials.

3.A. MODEL HAMILTONIANS

We use Qsymm to generate 3D class A models that respect inversion symmetry and
isotropic continuous rotation symmetry, whose symmetry representations are:

UI =σ0τz , Sx = 1

2
σxτ0, Sy = 1

2
σyτ0, Sz = 1

2
σzτ0, (3.A.1)

where UI is the unitary part of the inversion operator, Sx,y,z are the generators of conti-
nuous spin rotations around the x, y, and z axes, and the unitary part of the corresponding
rotation operator is given by U = exp(i n ···S) with n the axis and angle of rotation, and τ, σ
are the Pauli matrices. τ represents the orbital component, and σ the spin component of
the Hilbert space. The resulting model also has reflection symmetry on any 2D plane,

UMx = iσxτz , UMy = iσyτz , UMz = iσzτz , (3.A.2)

where UMx,y,z is the unitary part of the reflection operators on the planes perpendicular
to the x, y and z axes, or in general,

UMn̂ = exp(iπn̂ ···S)τz , (3.A.3)

where n̂ is a unit vector defining the mirror normal. Because of the full rotation invariance,
prescribing one mirror symmetry results in mirror symmetry with respect to any plane.

The generated k-space model is listed in the main text in Eq. (3.1). In real-space, the
model is of the form:
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H onsite
4×4 =µ1σ0(τ0 +τz )/2+µ2σ0(τ0 −τz )/2, (3.A.4)

H hopping
4×4 (d ) = (tn1 + t2d 2)σ0(τ0 +τz )/2+ (tn2 + t3d 2)σ0(τ0 −τz )/2

+ (t0 − t5d 2)σ ···dτy + (t1 + t4d 2)σ ···dτx , (3.A.5)

where tni are normal hopping terms, d = (dx ,dy ,dz ), with di the bond lengths along axis
i ∈ {x, y, z} that connect neighboring sites, and d 2 = d ···d .

When demonstrating that symmetry-breaking gaps out the surface Dirac-nodes, we
introduce a mass term that breaks all symmetries except for continuous rotation around
the x axis:

λ= (σ0 +σx )τy . (3.A.6)

We also construct a doubled model. In k-space, this model takes the form:

H8×8(k) = 1/2(ρ0 +ρz )σ0(µ1(τ0 +τz )/2+µ2(τ0 −τz )/2) (3.A.7)

+1/2(ρ0 −ρz )σ0(µ3(tτ0 +τz )/2+µ4(τ0 −τz )/2)

+ (t0(ρ0 +ρz )/2+ t3(ρ0 −ρz )/2)σ ···kτx

− (t4(ρ0 +ρz )/2+ t7(ρ0 −ρz )/2)σ ···kτy

+ (t1 + i t5)ρ−σ ···kτ−+ (t1 − i t5)ρ+(σ ···kτ−)†

+ (t2 + i t6)ρ−σ ···kτ++ (t2 − i t6)ρ+(σ ···kτ+)†,

where µi are chemical potential terms, ti are the hopping terms, ρ, σ and τ are the Pauli
matrices, k = (kx ,ky ,kz ), and k2 = k ···k . In real space, the model takes the form:

H onsite
8×8 = 1/2(ρ0 +ρz )σ0(µ1(τ0 +τz )/2+µ2(τ0 −τz )/2), (3.A.8)

+1/2(ρ0 −ρz )σ0(µ3(τ0 +τz )/2+µ4(τ0 −τz )/2)

H hopping
8×8 (d ) = 1/2(ρ0 +ρz )σ0(tn1(τ0 +τz )/2+ tn2(τ0 −τz )/2)

+1/2(ρ0 −ρz )σ0(tn3(τ0 +τz )/2+ tn4(τ0 −τz )/2)

+ (i t0(ρ0 +ρz )/2+ i t3(ρ0 −ρz )/2)σ ···dτx

− (i t4(ρ0 +ρz )/2+ i t7(ρ0 −ρz )/2)σ ···dτy

+ (−t5 + i t2)ρ−σ ···dτ−+ (t5 + i t2)ρ+(σ ···dτ−)†

+ (−t6 + i t1)ρ−σ ···dτ++ (t2 + i t6)ρ+(σ ···dτ+)†,

where tni are normal hopping terms, d = (dx ,dy ,dz ), with di the bond lengths along axis
i ∈ {x, y, z} that connect neighboring sites, and d 2 = d ···d . The symmetry-breaking term
for the doubled model is

λ
′ =

(
1 1
1 1

)
⊗

(
1 1
1 1

)
⊗τy . (3.A.9)

3.B. MODEL AND PLOTTING PARAMETERS
In this section additional details of the plots are listed in order of appearance.
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For panel (c) of Fig. 3.1 the Hamiltonian (3.5) was simulated using kwant [25] on
a translationally invariant 3D face-centered cubic (FCC) lattice. Its eigenvalues were
obtained along the high-symmetry points of the FCC lattice, using the parameters µ1 =
0.1, µ2 = 0.2, t1 = 0.3, t2 = −0.4, t3 = exp(0.3i ), t4 = 0.2i exp(0.3i ). For the dispersion
shown in panel (d), a slab was simulated, periodic along the vectors [1,0,0] and [0,1,0],
and with a width of 20 sites in the [0,0,1] direction. The parameters used are the same as
for panel (c).

For panel (a) of Fig. 3.3, the Chalker-Coddington network is composed of four unit
cells in both x and y . For panel (b), the amorphous network was created with an outer
radius of R = 20, an inner radius of r = 4, and a density of 1. The positions of the nodes of
the network underwent a relaxation step where the position of each node is sequentially
averaged over the position of all neighboring nodes. For panel (d), the results for single-
mode Chalker-Coddington network were obtained for 249 different random scattering
matrix configurations, for network sizes of 36, 72, 144, 288, 576, 1152, 2304 and 4608
unit cells, with an aspect ratio of 1. The results for the two-mode Chalker-Coddington
network were obtained for the same network sizes and aspect ratio, and for 269 different
scattering matrix configurations. For the amorphous network, the results were obtained
for 50 outer radii sizes between 101.5 and 102.5, with a fixed outer radius over inner radius
ratio of 1.5, and a density of 0.7. Results for the single mode network were obtained for
500 different amorphous network and scattering matrix configurations, and 300 different
configurations for the two-mode amorphous network. Additional results for the single
mode network were obtained for 5 outer radii sizes between 102.5 and 103, for 100 different
network configurations and scattering matrices.

For Fig. 3.2(a), single-Dirac cone model as defined in Eq. (3.A.4) was used. Its para-
meters were set to µ1 =−1, µ2 = 1, tn1 = 0, tn2 = 0, t0 = 0.5, t1 = 0.4, t2 = 1, t3 =−1, t4 =
0.3, t5 = 0.8 and the additional symmetry-breaking term λ from Eq. (3.A.6) is set to 0.
For panels (b) and (d) the same model as panel (a) was used. Its parameters were set
to µ1 = 1, µ2 =−1, tn1 =−2, tn2 = 2, t0 = 1, t1 = 1, t2 = 1.1, t3 = 1.2, t4 = 1.3, t5 = 1.25
and the additional symmetry-breaking term λ from Eq. (3.A.6) is set to 0. The results
were obtained obtained for k-points between −π and π. For panel (d) and (e), λ is
set to 0.3. For the doubled model as defined in Eq. (3.A.8), the parameters were set to
µ1 = 1, µ2 = −1, µ3 = 1, µ4 = −1, tn1 = −2, tn2 = 2, tn3 = −2, tn4 = 2, λ1 = 0.1, λ =
0.11, λ3 = 0.12, λ4 = 0.123. The amorphous slab was generated in a box of dimensions
200×50×50 and density 0.4.

For panel (a) of Fig. 3.C.1, the model (3.A.4) was used. For all results, the hopping
parameters were set to t0 = 1, t1 = 1.2, t2 = 0, t3 = 0, t4 = 0, t5 = 0, tn1 = −2, tn2 = 2
(terms proportional to k to the power of 2 and higher are set to 0). Since the only hopping
terms are linear in d , in order to ensure that TRS is broken for this model, a different
distance dependence is given for the t1 and t2: t1 exp(−0.3d) and t2 exp(−d), where
d =

p
d 2 is the bond length. The amorphous samples are all contained within a cube of

30 x 30 x 30 sites, with a density of 0.7, and the crystal samples are all 10 x 10 x 10 sites. For
the invariant νM (3.6) the numerical integration over the Brillouin zone of the effective
Hamiltonian was done over a grid of 15 x 15 points.

For panel (b) of Fig. 3.C.1, the model (3.5) was used. The parameters were set to
t1 = 0.3, t2 = −0.4, t3 = exp(0.3i ), t4 = i exp(0.3i ). The Γ and X points of the model are
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Figuur 3.C.1: Conductivity of translationally invariant and amorphous networks. (a) The topological invariants
of the class A model (3.A.4) for amorphous systems (CM defined in (3.6) and νI in (3.C.1)) as a function of
chemical potentials µ1,2. Plots are offset for clarity. (b) The invariant ν̃I of the crystal system as a function of
chemical potentials µ1,2 (3.5). Plot details are in App. 3.B.

(0,0,0) and (0,2π,0).

3.C. ALTERNATIVE BULK INVARIANTS
In addition to the bulk invariant given in Sec. 3.3.1, we identify two alternative expressions.

3.C.1. INVERSION EIGENVALUES
The inversion operator commutes with the spins at the rotation-invariant points k = 0
and k =∞∞∞. Since the SU(2) rotation symmetry commutes with the inversion operator, the
inversion eigenvalues come in degenerate pairs in the case of a spin-1/2 representation,
and in degenerate groups of 2s +1 for spin-s representations. The difference in parity
of the inversion eigenvalue pairs at these rotation-invariant points characterizes the
topological phase:

νI = 1

2
[ι−(∞∞∞)− ι−(0)] , (3.C.1)

ι−(k) =µ−1 (〈n(k)|I |m(k)〉) ,
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where |n(k)〉 are the occupied states of the effective Hamiltonian Heff, and µλ(A) indicates
the multiplicity of the eigenvalue λ in the spectrum of A. We note that in the case of an
operator that only has ±1 eigenvalues, the multiplicity can be expressed through the trace
as Tr A = N −2µ−1(A), allowing to rewrite the invariant as

νI =−1

4

∑
n∈occ

(〈n(∞∞∞)|I |n(∞∞∞)〉−〈n(0)|I |n(0)〉) , (3.C.2)

where we used that the total number of occupied bands is the same at k = 0 and ∞∞∞.

While we only consider spin-1/2 representations in the main text, in the general case
it is possible to resolve the eigenstates at k = 0 and ∞∞∞ based on the spin-representation
S. All states along a line n̂k connecting 0 and ∞∞∞ have continuous rotation symmetry
along the n̂ axis, hence the eigenvalues of n̂ ···S in the occupied subspace are well-defined
throughout, and the total number of various spin representations cannot change. The
inversion eigenvalues, however, can change in the process, so we can define the set of
invariants

νs
I =

1

2s +1

[
ιs−(∞∞∞)− ιs−(0)

]
, (3.C.3)

ιs−(k) =µ−1 (〈ns (k)|I |ms (k)〉) ,

where we restrict the inversion operator to the subspace corresponding to the spin-s
representation spanned by the states |ns (k)〉. This results in a ZN classification, of which
the invariant (3.C.1) only probes a Z subset,

νI =
∑

s

(
s + 1

2

)
νs

I . (3.C.4)

This relation also shows that, depending on the spin representation content of the model,
not all values of νI may be realizable. A remaining question is, whether for general s,
νI or the set of νs

I has a bulk-boundary correspondence in amorphous systems. As we
show in the next section (see (3.C.9)), it is a different combination of νs

I that the mirror
Chern invariant probes, nontrivial values of which we expect to protect robust surface
states. The simplest continuum model with trivial νI (or CM ) and nontrivial νs

I has 16
on-site degrees of freedom (4 spin-1/2 and 2 spin-3/2 representations, half of which is
inversion-odd), we leave analysis of the surface physics to future work.

For the crystalline system described in Sec. 3.2.3 we calculate the analogous eigenvalue
parity invariant given by:

ν̃I = 1

2
[ι−(Γ)+ ι−(X )] mod 4, (3.C.5)

where ι is the same as in (3.C.1). The mod 4 results from factoring out atomic insulators
located at other Wyckoff positions. We note that (3.C.5) does not give the full symmetry
indicator classification in space group 225 [26, 27], and theZ invariant given by the mirror
Chern number also remains well defined and contains additional information.
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3.C.2. ROTATION EIGENVALUES
Another way to formulate the bulk invariant relies on the Chern-number being expressible
through the difference in the occupied rotation eigenvalues at the rotation-invariant
points k = 0 and k =∞∞∞ [13, 28]:

C = ∑
n∈occ

(〈n(∞∞∞)|Sz |n(∞∞∞)〉−〈n(0)|Sz |n(0)〉) , (3.C.6)

where Sz is the generator of rotations around the z axis and the Chern-number is calcu-
lated in the kz = 0 plane (other orientations give equivalent results). To formulate the
mirror Chern number, we insert −i Mz , which adds a ±1 prefactor to the mirror-even/odd
states:

CM =−1

2

∑
n∈occ

(〈n(∞∞∞)| i Mz Sz |n(∞∞∞)〉−〈n(0)| i Mz Sz |n(0)〉) . (3.C.7)

In general Mz = I exp(iπSz ), in the spin-1/2 case this simplifies to Mz = iIσz , hence
−i Mz Sz = 1

2 I . Substituting this, we find

CM = 1

4

∑
n∈occ

(〈n(∞∞∞)|I |n(∞∞∞)〉−〈n(0)|I |n(0)〉) =−νI . (3.C.8)

For general spin, using that I commutes with the spin operators, after some algebra we
find

CM =1

4

∑
s

(−1)s− 1
2

∑
ns∈occs

(〈ns (∞∞∞)|I |ns (∞∞∞)〉−〈ns (0)|I |ns (0)〉)

=∑
s

(−1)s+ 1
2

(
s + 1

2

)
νs

I . (3.C.9)

As we saw, in the spin-1/2 case studied in detail, Eqs. (3.6, (3.C.7), and (3.C.1)) are all
equivalent formulations of the same invariant, as demonstrated by their equivalence for
different values of the chemical potential [Fig. 3.C.1(a)].

3.D. AMORPHOUS NETWORK MODEL
In order to ensure four-fold coordination of each node of the amorphous network, we
generate the network following the method described in Refs. [13, 20], which creates a
graph by generating N random lines on a plane, with N chosen from a Poisson distribution
whose mean is set to 2R

p
πρ, with ρ the chosen density of the graph and R the outer

radius of the network. The angle and offset of the lines is uniformly distributed in [0,2π)
and [0,R] respectively. We define the intersections of each pair of lines as a network node.
We ensure the two-in-two-out pattern of propagating modes at each node by orienting
the links in an alternating fashion along each of the straight lines. There is no dependence
of the scattering matrices on the length of the network links.

The graph is cut into an annulus shape by removing all of the nodes beyond the
outer radius R and within the inner radius r . This ensures periodic boundary conditions
along the polar angle coordinate. In order to maintain four-fold connectivity in the
bulk of the graph, the nodes outside of the network that are connected to nodes inside
of the network are changed into sinks or sources, that either absorb modes from the
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network or emit modes to the network. The conductivity of the amorphous network is
calculated by g =G ln(R/r )/2π, with G = (e2/h)

∑
i , j |Si j |2, Si j being the matrix element of

the scattering matrix that connects the incoming modes originating from external sources
beyond the network’s outer edge to the outgoing modes exiting the network from its inner
edge. A relaxation of the graph for visual clarity is optionally performed by averaging each
node position to the center of its neighbors’ positions.
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4
LACK OF NEAR-SIGHTEDNESS

PRINCIPLE IN NON-HERMITIAN

SYSTEMS

An adult Atlantic bluefin tuna weighs about 225-250 kg.

This chapter has been previously published as Helene Spring, Viktor Könye, Anton R. Akhmerov, Ion Cosma
Fulga, Lack of near-sightedness principle in non-Hermitian systems, arXiv:2308.00776. The data shown in the
figures, as well as the code generating all of the data is available at [1].
Own contribution to work: I made the initial observation of non-Hermitian impurities attracting skin effect
modes. I contributed to the theoretical explanation behind this observation and defined the research plan with
co-authors. I performed numerical simulations and wrote the manuscript with input from co-authors.
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In the absence of long-range interactions, local changes made to an insulator have
a local effect. This phenomenon is known as the near-sightedness principle: far from
the perturbation, the properties of the system remain as they were [2, 3]. Topological
insulators, like trivial insulators, obey the near-sightedness principle. The bulk properties
of topological insulators stabilize gapless modes at their boundaries in a phenomenon
known as bulk-edge correspondence (BEC). Symmetry-preserving perturbations at the
boundary that destroy the topological phase will locally shift the position of the boundary
modes but will not remove them.

In non-Hermitian systems, the near-sightedness principle fails. The spectrum and
eigenstates are highly sensitive to boundary conditions: shifting from periodic to open
boundary conditions (PBC and OBC) leads to the bulk modes exponentially localizing
at the new boundaries [4]. This phenomenon is known as the non-Hermitian skin effect
(NHSE). In early works, when the NHSE was discussed from the point of view of non-trivial
topology, it was considered to be a failure of the conventional BEC [5]. More recently,
it was shown that the 1D NHSE is indeed a topological phenomenon, and the location
of the edge modes is predicted by the winding number of the bulk spectrum [6]. In
higher dimensions however, especially when eigenstate accumulation occurs at corners,
multiple invariants have been proposed for different types of NHSE. A recent review has
concluded that understanding the formation of corner skin modes is mostly done on
a case-by-case basis, and that there is no current consensus on the general theoretical
formalism behind it [7].

In the presence of impurities, the failure of the near-sightedness principle in non-
Hermitian systems is further demonstrated. Non-Hermitian impurities are observed
to attract the modes of the system with a localization length that is proportional to the
system size [8–11]. This phase is scale-invariant and is therefore considered distinct from
the NHSE phase.

In this work, we show that an appropriately selected non-Hermitian impurity is
capable of exponentially localizing all modes present in the system, thus challenging the
association between the NHSE and non-trivial topology. We show that when translation
symmetry is broken, the appearance of this effect as well as its position in real space
becomes independent of any bulk topological index. This phenomenon occurs even
when the bulk is fully Hermitian, further highlighting the breakdown of bulk-boundary
correspondence and the near-sightedness principle. In the following, we explore these
features using a simple one-dimensional (1D) model, highlighting first why this effect is
expected to occur, followed by a concrete numerical demonstration. We then show this
effect is also are present in a two-dimensional (2D) model.

The NHSE can be understood in terms of transfer matrices that relates the wave
function at one boundary in a translationally invariant chain to the bulk wave function at
a given energy E [12, 13]: (

ψ(xN+1)
ψ(xN )

)
= T N

B (E)

(
ψ(x1)
ψ(x0)

)
, (4.0.1)

where ψ(xN ) is the possibly multi-component wave function of the N -th unit cell, and
TB (E) is the transfer matrix of one unit cell of the bulk of the chain. In non-Hermitian
systems that host the NHSE, there is a preferred direction of transmission towards the
boundary with the skin effect. The largest eigenvalue λB (E) of the transfer matrix TB (E)
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representing transmission away from this boundary has a modulus smaller than 1, re-
sulting in the largest eigenvalue of the transfer matrix T N

B (E) being |λN
B (E)| ≪ 1. The

magnitude of the eigenvalues of the transfer matrices are therefore directly linked to the
accumulation of modes at a certain site: in non-Hermitian systems, they predict which
boundary will host the NHSE.

Adding an impurity to the system modifies the transfer matrix. The transfer matrix
relating the wave function components on the left side of the chain to those at an impurity
on site N +2 is given by

T (N ,E) = Timp(E)T N
B (E), (4.0.2)

where Timp(E ) is the transfer matrix between the wave function components (ψ(xN ),ψ(xN−1))T

and (ψ(xN+1),ψ(xN ))T . If λimp(E ), the smallest eigenvalue of the impurity transfer matrix
Timp(E), is much larger than λN

B (E), the largest eigenvalue of the bulk transfer matrix
T N

B (E ), then all of the modes of the system will accumulate at the impurity site instead of
the boundary that hosts the NHSE. Therefore the condition for the NHSE to completely
disappear from the system boundary is:

min
E

|λN
B (E)λimp(E)|≫ 1, (4.0.3)

where E is any energy that lies within the boundary defined by the PBC eigenvalues of
the Hamiltonian. Eq. (4.0.3) describes the case where all of the modes have shifted to the
impurity, but the majority of the modes are likely displaced well below this condition.

As a concrete example, we now apply our reasoning to the Hatano-Nelson Hamilto-
nian, a 1D single-orbital non-Hermitian Hamiltonian:

H(m, N ) =
N∑

j ̸=m
tR | j 〉〈 j −1|+ tL | j −1〉〈 j |

+ehimp tR |m〉〈m −1|+e−himp tL |m −1〉〈m|,
(4.0.4)

where the sum runs over the lattice sites j of the system, N is the total number of sites
of the chain, m corresponds to the impurity site, and himp models the magnitude of
the hopping asymmetry that defines the impurity [Fig. 4.0.1 (a)]. himp = 0 results in a
uniform system with no impurity. For simplicity we do not consider onsite terms, and the
non-Hermiticity of the bulk arises from the hopping asymmetry in the bulk, tR ̸= tL .

We observe the effect of a non-Hermitian impurity in this model by tracking the spatial
distribution of modes in the system, in order to determine its effect on the NHSE. An
extensively used method of characterizing the NHSE is the calculation of the real-space
sum of probability densities (SPD) of all eigenstates of a system:

SPD(x j ) =∑
n
|Ψn(x j )|2, (4.0.5)

whereΨn(x j ) is amplitude of the n-th eigenvector on site x j . While the local density of
states is defined for individual energies, the SPD is akin to a local density of states evalua-
ted at all energies of the system. We set tL > tR . In doing so, we realize a non-Hermitian
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Figuur 4.0.1: Breakdown of the correspondence of the skin effect and bulk topology via a non-Hermitian hopping
impurity in the bulk, model Eq. (4.0.4). (a) Schematic of the tight-binding system Eq. (4.0.4) around the impurity
site (in red). (b) The SPD [Eq. (4.0.5)] of a 1D chain of 60 sites in a non-Hermitian system (tR = 0.9 and tL = 1.1)
with a non-Hermitian impurity located at ximp = 30, as a function of increasing impurity strength himp. (c)
Same as (b) for a Hermitian system (tR = 1 and tL = 1). Plot details in App. 5.A.

system where the NHSE appears on the left of the chain, with modes exponentially lo-
calized around site j = 0. In non-Hermitian systems, as himp increases, the skin effect
shifts away from the system boundaries to the impurity site in the bulk, as evidenced by
the change in SPD [Fig. 4.0.1 (b)]. In Hermitian systems (tR = tL = 1), the non-Hermitian
impurity depletes the modes to its left and accumulates them to its right [Fig. 4.0.1 (c)].

We now analyze the model Eq. (4.0.4) in terms of transfer matrices and the condition
Eq. (4.0.3). We first examine the transfer matrix of the system without impurities. The
transfer matrix relating wave functions of different unit cells in the bulk of the chain is
given by:

TB (E) =
(
E/tL −tR /tL

1 0

)
(4.0.6)

As shown in Fig. 4.0.2 (a), the modulus of the largest eigenvalue of TB (E) [Eq. (4.0.6)] is
smaller than 1 for any energy that lies within the limits of the PBC spectrum. This means
that the largest eigenvalue of the transfer matrix connecting increasingly distant points of
the chain will be much smaller than 1.

We now consider the system with an impurity (himp ̸= 0). The transfer matrix relating
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Figuur 4.0.2: Breakdown of bulk-edge correspondence in a system with an amplifying non-Hermitian impurity,
model Eq. (4.0.4). (a) The modulus of the largest eigenvalue of TB [Eq. (4.0.6)] for all energies within the boundary
defined by the PBC eigenvalues (in red), for tR = 0.9 and tL = 1.1. (b)-(c) the smallest ratio of eigenvector
components at the impurity |Ψ(ximp)|2 and the eigenvector components at the left boundary |Ψ(x0)|2 as a
function of the impurity strength himp and impurity position ximp for (b) non-Hermitian (tR = 0.0003 and

tL = 2980) and (c) Hermitian systems (tR = 1 and tL = 1). The bound |λximp−2
B (E)λimp(E)| = 1 [Eq. (4.0.3)] is

shown as a dotted line in (b) and (c), where E is the energy for which the modulus of the wave component at the
impurity is the smallest. Plot details in App. 5.A.

(ψ(ximp),ψ(ximp−1))T to (ψ(ximp−1),ψ(ximp−2))T is:

Timp(E) =
(
ehimp E/tL −e2himp tR /tL

1 0

)
. (4.0.7)

We diagonalize Eq. (4.0.4) for various hopping asymmetry strengths at the impurity loca-
ted at ximp, and extract the components of all the eigenvectors at the boundaryΨn(x0) and
the components at the impurity siteΨn(ximp). The smallest ratio of these components,

min
n

|Ψn(ximp)|2/|Ψn(x0)|2 (4.0.8)

belongs to the eigenstate of the system that is the most localized at the boundary. With
decreasing impurity distance from the boundary and/or increasing impurity strength,
this ratio can be made arbitrarily large [Fig. 4.0.2 (b)], indicating that all of the modes
of the system accumulate at the impurity for a large enough hopping asymmetry at the

impurity. We also calculate λ
ximp−2
B (E)λimp(E), where E is the energy for which the mo-

dulus of the wave function at the impurity is the smallest. We use this expression to
determine the threshold where the eigenvector most localized at the edge starts to shift

towards the impurity, by plotting λ
ximp−2
B (E)λimp(E) = 1. As shown in Fig. 4.0.2 (b), this

threshold aligns with min
n

|Ψn(ximp)|2/|Ψn(x0)|2 = 1, where the most localized eigenstate

is equally present at the system boundary and at the impurity. For a fully Hermitian bulk
(tR = tL = 1), the crossover threshold is located at himp = 0 [Fig. 4.0.2 (c)]. Fluctuations
in min

n
|Ψn(ximp)|2/|Ψn(x0)|2 present in Fig. 4.0.2 (b)-(c) are due to finite-size effects, see

App. 5.A.

We now extend our analysis to higher-dimensional systems. In a general d-dimensional
system, we conjecture that a similar analysis can be performed by examining transfer
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Figuur 4.0.3: Shifting modes via a non-Hermitian impurity in a 2D non-Hermitian system hosting the NHSE.
(a) Schematic of the 2D system with an impurity at the center. Black arrows indicate the direction of transfer
operated by the rectangular transfer matrix TR across the boundary marked by a black dashed line. Red arrows
indicate the direction of transfer of the impurity transfer matrix Timp across the boundary marked by the red
dashed line. (b) SPD [Eq. (4.0.5)] of a 2D non-Hermitian system Eq. (4.0.9) with no impurities. Darker color
indicates a larger SPD. (c) SPD of the same bulk non-Hermitian Hamiltonian with an impurity himp/ximp = 6.
Darker color indicates a larger SPD. (d) SPD at the impurity site as a function of increasing impurity hopping
asymmetry himp/ximp, in a system with tL = tU = e1 and tR = tD = e−1. Plot details in App. 5.A.

matrices in the radial direction. We take 2D systems as an example [Fig. 4.0.3 (a)]. We
consider the following 2D Hamiltonian:

H(mx ,my , Nx , Ny ) =
Nx∑

jx ̸=mx

Ny∑
jy ̸=my

tR | jx +1, jy 〉〈 jx , jy |+ tL | jx , jy 〉〈 jx +1, jy |

+ tU | jx , jy +1〉〈 jx , jy |+ tD | jx , jy 〉〈 jx , jy +1|
+ehimp (tL |mx ,my 〉〈mx +1,my |+ tR |mx ,my 〉〈mx −1,my |

+ tD |mx ,my 〉〈mx ,my +1|+ tU |mx ,my 〉〈mx ,my −1|)
+e−himp (tL |mx +1,my 〉〈mx ,my |+ tR |mx −1,my 〉〈mx ,my |

+ tD |mx ,my +1〉〈mx ,my |+ tU |mx ,my −1〉〈mx ,my |)

(4.0.9)

where the sums run over the coordinate indices of the lattice sites jx , jy of the system,
the impurity is located at ( jx , jy ) = (mx ,my ), and for simplicity we consider the hopping
asymmetry at the impurity himp to be the same in both the x and y directions. There are
four hopping asymmetry impurities, two to the immediate left and right of the impurity
site, and two immediately above and below the impurity site.

In a one-dimensional chain, a transfer matrix argument connecting neighboring sites
is sufficient to track the shifting of the modes towards an impurity [Fig. 4.0.2 (b)]. In
two dimensions, we extend this argument to transfer matrices TR (E) that connect outer
regions of a sample to its inner regions, following the example shown in Fig. 4.0.3 (a):

ψin = TR (E)ψout, (4.0.10)

whereψin are the wave components on the sites that lie immediately within the boundary
denoted by the black dashed line, and ψout are the wave components on sites lying
immediately outside the same boundary. Since the size ofψin is smaller than the size of
ψout, TR (E) is a rectangular matrix.
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In the presence of an impurity at the center of a N ×N lattice, the transfer matrix from
the outer boundaries to the impurity is given by:

T (E) = T1(E)T2(E) · · ·TN /2−1(E)Timp(E), (4.0.11)

where Ti (E ) are rectangular transfer matrices, and Timp(E ) is the impurity transfer matrix
as shown schematically in Fig. 4.0.3 (a). Since the radial transfer matrices are rectangular,
there are wave functions at the edge of the system that inevitably have an exactly zero
weight at the impurity. However, wave functions satisfying generic and not fine-tuned
boundary conditions have weight in all the components, and therefore have a finite
coupling to the impurity. Therefore we expect that in the general case, a non-Hermitian
impurity that amplifies wave functions incoming from all directions should suppress all
NHSE in a finite sample.

We now verify numerically that a non-Hermitian impurity in 2D is capable of at-
tracting all of the modes in the system. We first consider the system with no impurity
(himp = 0). We set tL = tD = 1.1 and tR = tU = 0.9, which results in a NHSE manifesting
at the lower-left region of the 2D system [Fig. 4.0.3 (b)]. By then increasing himp, all of
the modes of the system are attracted to the impurity [Fig. 4.0.3 (c)-(d)]. For Hermitian
systems, a similar accumulation of system modes at the impurity site is observed to occur.

We have shown that local non-Hermitian perturbations draw the NHSE into the bulk
of a system, which demonstrates the breakdown of BEC of the NHSE in 1D and 2D in
the absence of translation symmetry. Predicting the position of the skin effect using
topological invariants thus becomes unreliable once translation symmetry is broken. In
real/non-ideal systems, translation symmetry is not guaranteed to be preserved, highligh-
ting the importance of studying non-Hermitian systems in a manner that is sensitive to
local details, such as wave packet dynamics [14], rather than bulk invariants.

The non-Hermitian impurities that we have considered here affect only a few hop-
pings, but they not purely local perturbations, in the sense that global information (the
system size) is required in order to know how strong the hopping asymmetry at the
impurity has to be before attracting all of the modes of the system.

Our work indicates that, owing to lack of a near-sightedness principle, impurities
play a much larger role in non-Hermitian systems than they do in Hermitian ones. This
may prove useful for experiments seeking to produce a non-Hermitian skin effect in
a variety of material and meta-material systems [15–19]. Rather than tailor gain and
loss or nonreciprocity throughout the entire bulk of the experimental system, a single,
non-Hermitian local perturbation would be sufficient to generate the NHSE.

4.A. MODEL AND PLOTTING PARAMETERS
In this section additional details of the plots are listed in order of appearance.

For Fig. 4.0.1, simulations were done for 1D systems composed of 60 sites. The values
of himp used are 0, 0.05L, and 0.25L, for both the non-Hermitian and the Hermitian
systems. For panel (b), the bulk Hamiltonian parameters are tL = e0.1 = 1.1 and tR =
e−0.1 = 0.9. For panel (c), the bulk Hamiltonian parameters are tL = 1 and tR = 1.

For Fig. 4.0.2 (a), simulations were done for 1D systems composed of 10 sites. For
the non-Hermitian system shown in panel (b), bulk parameters tL = e8 and tR = e−8
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were used. The high hopping asymmetry in the bulk is used to reduce the oscillations of
min

n
|Ψn(ximp)|2/|Ψn(x0)|2 that arise due to the penetration of the skin effect into the bulk

(as shown for example in Fig. 4.0.1 (b)). Parameters tL = 1 and tR = 1 were used for the
Hermitian system shown in panel (c).

For Fig. 4.0.3, simulations shown in panels (b)-(d) were performed using 2D systems
composed of 31×31 sites with bulk hopping parameters tL = tU = e1 and tR = tD = e−1

(see (4.0.9)). In panels (b) and (c), the impurity hopping asymmetry is himp/ximp = 0 in
(b) and himp/ximp = 6 in (c).
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5.1. INTRODUCTION
Wave propagation in a strongly disordered medium stops due to Anderson localization
[1]. The latter depends only on macroscopic properties of the medium, such as its
dimensionality, symmetries, and topological invariants. In one space dimension (1D),
for instance, generic disorder will localize all eigenstates, even if the disorder strength is
infinitesimally weak. On the other hand, weak anti-localization becomes possible in two-
and higher-dimensional systems, depending on their symmetries [2]. In such cases, the
full spectrum of a disordered energy-conserving medium contains regions of localized
and extended states, which are separated by mobility edges.

Unlike energy-conserving media, non-Hermitian systems can exhibit fundamentally
different behaviors in the presence of disorder. For instance, in the absence of energy
conservation, it was found that weak disorder does not localize all states, even in 1D
systems [3, 4]. Instead, similar to their higher-dimensional Hermitian counterparts, in 1D
non-Hermitian systems localized and delocalized eigenstates are separated by mobility
edges across which the localization length diverges. A recent work has shown that this
divergence is governed by a universal critical exponent taking the value ν= 1 [5].

One of the practical uses of the theory of eigenstate localization is to predict the
dynamics of individual wave packets. In Hermitian systems, this is straightforward: the
initial wave packet is decomposed into a superposition of states with different energies.
The wave packet components above the mobility edge diffuse through the medium, while
those below the mobility edge stay localized. By contrast, non-Hermitian systems break
energy conservation, such that it is no longer possible to directly describe the wave packet
dynamics by separating it into components with different energies.

Here we demonstrate that the difference between single energies and wave packets is
profound. Because in the long-time limit any wave packet converges to a maximally am-
plified waveform, the asymptotic shape of the wave packet may change discontinuously
when the system parameters are varied. This enables a metal-metal transition between
different unidirectionally amplified phases in addition to the previously known locali-
zation transition. Furthermore, in finite-size systems the fluctuations of the maximally
amplified energy are self-averaging, which results in a critical exponent ν ̸= 1 that is close
to our analytical estimation of 1/2.

The structure of the Chapter is as follows. In Sec. 5.2 we demonstrate the universal
convergence of wave packets in weakly disordered systems to the maximally amplified
waveform. In Sec. 5.3 we study the transition between distinct propagating phases. In
Sec. 5.4 we show that the wave packet single-frequency transition differs from the static
non-Hermitian single-frequency transition. We conclude in Sec. 5.5. All the details of the
numerics are presented in App. 5.A, and to ensure full reproducibility we provide the full
code repository in Ref. [6].

5.2. MAXIMALLY AMPLIFIED WAVE PACKET
Unlike their Hermitian counterparts, one-dimensional (1D) non-Hermitian systems with
no symmetries do not localize in the presence of weak disorder [3, 7, 8]. The different
Fourier components of the wave packet, which are coupled by scattering events, are
amplified at different rates, depending on the value of ϵ, the imaginary part of their energy



5.2. MAXIMALLY AMPLIFIED WAVE PACKET

5

79

0 k0 2π
k [1/a]

0

1

|ψ
(k

)|2
m

ax
|ψ

(k
)|2

0.0 0.2

δ [W ]

0

0.25

v d
ri

ft
[a
·W

]

ε

|R
e(
J

)|

E

ε

|R
e(
J

)|

(a) (b) (c)

(d)

Figuur 5.1.1: Maximally amplified waveforms of disordered Hatano-Nelson systems Eq. (5.2.1), with disorder
in units of the model bandwidth W . Random disorder terms Ui , j with i ϵ {0,1,2} and j the site number (5.2.1)
are sampled from distributions with standard deviation δi . We set δ0 = δ1 = δ2 ≡ δ. (a) Magnitude of the
Fourier components |ψ(k)|2 of a wave packet evolved under HHN for δ= 0.01 (red) and δ= 0.3 (black). The
maximally amplified Fourier component of the system with low disorder is marked by k0. (b) The average drift
velocity vdrift as a function of disorder strength δ, and a the lattice constant. (c) Eigenvalues of HHN for a single
disorder realization with disorder strength δ= 0.08. The point of maximal amplification ϵmax is highlighted with
green. (d) Eigenvalues of a disordered system with disorder δ= 0.15. ϵmax is highlighted in green. Plot details in
App. 5.A.

E + iϵ [4]. The eigenstate whose eigenvalue has the largest positive imaginary component,
ϵmax, is amplified the fastest. This means that any waveform in a weakly disordered
medium converges to the maximally amplified waveform, forming an envelope in Fourier
space around the point of maximal amplification k0.

To demonstrate this we consider a Hatano-Nelson Hamiltonian [3]:

HHN =∑
j

U0, j | j 〉〈 j |+
(
−W

2
e−h +U1, j

)
| j 〉〈 j +1|+

(
−W

2
eh +U2, j

)
| j +1〉〈 j |, (5.2.1)

where the sum runs over sites j of the system, W is a hopping parameter that sets the
bandwidth of the system, h fixes the magnitude of the hopping asymmetry, and Uk, j

are the complex disorder coefficients whose real and imaginary parts are independently
sampled from a normal distribution with zero mean and standard deviation δk . Thus, δk

models the strength of each type of disorder (onsite or hopping).
We time-evolve wave packets numerically by Taylor expanding the time-dependent

Schrödinger equation to first order [See App. 5.B for numerical methods]. For concrete-
ness, throughout the following we consider an initial wave packet that has a Gaussian

profile u(x) = e−i kx e−(x−x0)/2σ2
. This wave packet is initialized at the center of the periodi-

cally wrapped lattice (x0 = 0), with a width one tenth of the width of the lattice (σ= L/10)
and with the same initial velocity (kx =π/2) for all simulations. The wave packet evolving
under the weakly disordered Hatano-Nelson model Eq. (5.2.1) converges to an envelope
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around the point of maximal amplification k0 [Fig. 5.1.1 (a), red curve], where k0 is the
k-point corresponding to the eigenvalue with the largest positive imaginary part, calcula-
ted from the PBC spectrum of the Hamiltonian without disorder. For large disorder, the
waveform acquires a non-universal shape whose center of mass is not guaranteed to be
located around k0 [Fig. 5.1.1 (a), black curve] .

The motion of the center of mass of the waveform in real space defines the drift
velocity of the wave packet, vdrift = ∂t [〈ψ|x̂|ψ〉/〈ψ|ψ〉], with x̂ the position operator. We
evaluate this expression and obtain:

∂t [〈ψ|x̂|ψ〉/〈ψ|ψ〉] = 1

2
〈ψ|∂k

(
H +H †

)
|ψ〉+ i

2
〈ψ|{H −H †,〈ψ|x̂|ψ〉− x̂}|ψ〉, (5.2.2)

where {·, ·} is the anti-commutator and where we normalize the wave function such that
〈ψ|ψ〉 = 1. Details of the derivation of Eq. (5.2.2) are in Appendix 5.C.

The momentum-space non-Hermitian generalization of the current associated with
a Hamiltonian H is defined as J(H) =−∂k H . The first term of (5.2.2) is Re(〈ψ|J |ψ〉) and
for a single Bloch state k0, ∂t 〈ψ|x̂|ψ〉k0 = Re(J)|k0 . For the Hatano-Nelson Hamiltonian
(5.2.1),

J (HHN) =∑
j

i

(
−W

2
e−h +U1, j

)
| j 〉〈 j +1|+ i

(
W

2
eh −U2, j

)
| j +1〉〈 j |. (5.2.3)

At the localization transition, the drift velocity of the wave packet vdrift falls to 0
[Fig. 5.1.1 (b)]. We observe that below the localization transition, vdrift is finite and Re(J )
at ϵmax is also finite [Fig. 5.1.1 (c)], and likewise when the wave packet is localized the
Re(J ) at ϵmax is 0 [Fig. 5.1.1 (d)].

Disorder shifts eigenvalues around in the complex plane, resulting in a different ei-
genstate becoming maximally amplified. Disorder also nontrivially changes the Re(J ) of
these eigenvalues. For strong disorder, the maximally amplified eigenstate is generically
localized and Re(J ) = 0. The maximally amplified state may have nonzero Re(J ) [Fig. 5.1.1
(c)], and therefore be delocalized [Fig. 5.1.1 (b)] or have zero Re(J ) [Fig. 5.1.1 (d)], and the-
refore be localized [Fig. 5.1.1 (b)]. If that state is delocalized, then the system delocalizes.
Likewise if it is localized the system is localized even if other states in the systems are
delocalized, since these states are always less amplified than the state at ϵmax. Fig. 5.1.1 (d)
shows that although delocalized states exist for ϵ< ϵmax, the system is localized because
the maximally amplified state at ϵmax has Re(J ) = 0.

5.3. TRANSITION BETWEEN PROPAGATING PHASES
The expectation that propagating waveforms in non-Hermitian systems always evolve
to the maximally amplified waveform suggests that a transition between competing
propagating phases whose ϵ are close to ϵmax should be possible. Here we construct a
Hamiltonian that hosts states propagating with opposite velocities at an ϵ close to ϵmax:

H8 =
∑

j
U0, j | j 〉〈 j |+

(
W e iφ

2
+U1, j

)
| j 〉〈 j +1|+

(
W e iφ

2
+U2, j

)
| j +1〉〈 j |

+
(

W e iφ

2
+U3, j

)
| j 〉〈 j +2|+

(
−W e iφ

2
+U4, j

)
| j +2〉〈 j |, (5.3.1)
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Figuur 5.2.1: Phase transition between left and right moving wave packets of Hamiltonian H8 Eq. (5.3.1), with
onsite and hopping disorder strength in units of the system bandwidth W . Random disorder terms Ui , j with
i ϵ {0,1,2,3,4} and j the site number (5.3.1) are sampled from distributions with standard deviation δi . We
set δ0 = δ1 = δ2 = δ3 = δ4 ≡ δ= 0.1. (a) Real-space spectra for φ= 0.3 (most transparent), φ= 0 (intermediate
transparency) and φ=−0.3 (most opaque). (b) Rescaled Re(J) of the maximally amplified eigenstate and (c)
vdrift around φ= 0. Insets: scaling function of the slope at the transition and the 95% confidence interval. Plot
details in App. 5.A.

where the sum runs over sites j of the system, W is a hopping parameter that sets
the bandwidth of the system, φ rotates the spectrum in the complex plane, and where
std(Uk, j ) = δk as in (5.2.1). The non-Hermitian generalization of the current J is given by

J (H8) =∑
j

i

(
W e iφ

2
+U1, j

)
| j 〉〈 j +1|i

(
W e iφ

2
+U2, j

)
| j +1〉〈 j |

+2i

(
W e iφ

2
+U3, j

)
| j 〉〈 j +2|−2i

(
W e−iφ

2
+U4, j

)
| j +2〉〈 j |. (5.3.2)

The spectrum of H8 is composed of two lobes [Fig. 5.2.1 (a)]. The eigenstates associa-
ted to the eigenvalues at the top of the left lobe propagate to the left, and likewise those at
the top of the right lobe propagate right, as shown by the sign of Re(J). By continuously
tuning φ through 0, there is a discontinuous change in the eigenvalue with the largest
positive imaginary component [Fig. 5.2.1 (a)] which leads to an abrupt transition between
two different maximally amplified eigenstates. When φ ̸= 0, wave packets are amplified
either predominantly to the left or to the right. The maximally amplified eigenstate of H8

at φ= 0− propagates to the left, and the one at φ= 0+ propagates to the right, meaning
there is a metal-metal transition at φ = 0. This transition is marked by a switch in the
signs of both Re(J ) and vdrift [Fig. 5.2.1 (b)-(c)].

In the presence of disorder and for finite system size, the average of Re(J ) at ϵmax and
vdrift changes linearly in the vicinity of φ= 0, with an intermediate localized point at the
middle of the transition. The slope of this transition increases with system size L (for
Re(J )), and the total number of simulated time steps tmax (for vdrift). We therefore confirm
that the transition between the two propagating phases on either side of φ= 0 does not
go through a localized phase.
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Model Quantity Scaling exponent

H8 (5.3.1) Re(J ) 0.41±0.01
vdrift 0.45±0.03

HHN (5.2.1) vdrift 0.38±0.04

Tabel 5.1: Scaling parameters of the phase transitions shown in Fig. 5.2.1 and 5.3.1.

We examine finite-size scaling of the system at the transition. Due to the shape of
the spectrum of H8 [Fig. 5.2.1 (a)] on either side of the transition, the distribution of E is
bimodal, grouped around two values where ϵ is the largest. The variance of the individual
peaks is the same at the transition pointφ= 0. Their standard deviations dictate the width
of the transition, as φ · t is required to be larger than these standard deviations in order
for one part of the spectrum, and therefore one value of Re(J ) to ‘win’ over the other.

There are several considerations we can make in order to estimate the scaling of
these standard deviations as a function of system size. The variance of the peaks is
equivalent to the variance of the expectation value of the disorder U (x) in the system,
var(

〈
ψ

∣∣U (x)
∣∣ψ〉

) = var(
∫ L

0 ψ
∗(x)U (x)ψ(x)d x). We reach an analytical expression for the

scaling of the variance of the peak by considering that on either side of the transition, the
system contains delocalized phases that behave like plane waves and propagate throug-
hout the system. The modulus of these propagating waves is approximately constant,
|ψ| ∼ const. Therefore the dependence of the variance of the expectation value on system

size L is given by var(L−1
∫ L

0 U (x)d x) = L−2 ·var
(∫ L

0 U (x)d x
)
∝ L−2L = L−1. The standard

deviation of each peak of the distribution of ϵ, and therefore the width of the transition,
scales with 1/

p
L. This leads to the expectation for the finite-size scaling of b(L) to followp

L. This is in direct contrast to the expectation from single-energy studies where the
critical exponent is ν= 1 [5]. However, by construction the H8 model transition is not a
single-energy transition.

We fit vdrift and Re(J ) of Fig. 5.2.1 with the function

a tanh
(
bφ

)
, (5.3.3)

where a, b are functions of system size L for Re(J) fits, and functions of simulation time
tmax for vdrift. We choose b as our relevant scaling parameter, since it measures the width
of the transition. The numerical results for Re(J) at ϵmax show that the scaling is close
to ν = 1/2 scaling as predicted by our analytical estimate [inset of Fig. 5.2.1 (c)]. The
deviation from ν= 1/2 as reported in Table 5.1 is likely due to finite-size effects. Although
we have no analytical argument for the scaling of vdrift, it also appears to be closer to
ν = 1/2 scaling than ν = 1 scaling [see inset of Fig. 5.2.1 (d) and Table 5.1]. App. 5.D
contains further discussion of the bimodal behavior.

5.4. METAL-INSULATOR TRANSITION
The metal-metal transition behaves differently from the single-frequency response, which
raises the question whether the metal-insulator transition is also different. In the presence
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Figuur 5.3.1: Finite-size scaling of the Hatano-Nelson Hamiltonian Eq. (5.2.1), with onsite disorder. Random
disorder terms Ui , j with i ϵ {0,1,2} and j the site number (5.2.1) are sampled from distributions with standard
deviation δi . We set δ1 = δ2 = 0 and label δ0 as δ. (a)-(b) The Hatano-Nelson spectrum for disorder strength (a)
δ= 0.3 and (b) δ= 1.2. (c) Rescaled wave packet drift vdrift at the transition point, collapsed using the relevant
scaling parameter b(tmax) and the irrelevant scaling parameter c(tmax). Inset: fit of the scaling parameter
b(tmax) and the 95% confidence interval. (d) Comparison of vdrift (green) to Re(J) of ϵmax (blue) for system
sizes L = 103. Plot details in App. 5.A.

of non-Hermitian disorder in both the onsite and hopping terms, the metal-insulator
transition of the Hatano-Nelson Hamiltonian is the result of a discontinuous change in
ϵmax [Fig. 5.1.1 (b)-(d)], and the same arguments as the metal-metal transition apply there.
We therefore test whether a transition that does not involve a discontinuous switch of ϵmax

and E matches the single-frequency response. The original Hatano-Nelson Hamiltonian
[3] fulfills this condition. We obtain this Hamiltonian by setting the disorder terms δi of
Eq. (5.2.1) to be 0 except for δ0. Here the maximally amplified state is the last state to
localize, as the mobility edge moves from the largest absolute values of E to the smallest
[Fig. 5.3.1 (a)-(b)].

The shapes of the vdrift(δ) curves of Fig. 5.3.1 do not lend themselves to a tanh fit. The
scaling variable b we choose in this case is the maximum slope during the transition.
We also track an irrelevant scaling variable c to ensure the superposition of the rescaled
curves. The vdrift curves do not fully collapse at the transition [Fig. 5.3.1 (c)]. The scaling of
vdrift is b(tmax) ∝ t 0.38

max. We have no analytical expectation for the scaling of vdrift, however
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we cannot rule out that the different critical exponent is due to finite-size effects and a
finite resolution of the simulation, as demonstrated by the quality of the fit of the scaling
parameter [see inset of Fig. 5.3.1 (c)]. The scaling behavior differs from ν= 1 and is close
to ν= 1/2.

Here Re(J) does not exhibit finite-size scaling and therefore does not show a phase
transition. The phase transition of vdrift is thus ascribable to the non-linear term of
Eq. (5.2.2) since it is absent from the linear term. Re(J ) and vdrift nevertheless both fall to
0 at the same point [Fig. 5.3.1 (d)]. When taking the biorthogonal expectation value to
calculate Re(J ), finite-size scaling does occur [See App. 5.E for discussion].

5.5. CONCLUSION
We showed that the dominant dynamics are attributable to a single point in the Fourier
space of wave packets, which corresponds to the maximally amplified eigenstate. In
the long time limit and in the presence of disorder, wave packets follow a behavior that
is independent of initial conditions because they converge to the maximally amplified
waveform. Focusing on the metal-metal transition, we presented an analytical argument
that yields an expected value of the critical exponent of ν= 1/2. For transitions between
propagating phases as well as for localization transitions, our numerical results are close
to but do not recoup ν = 1/2, likely due to finite-size effects. Reasonable agreement
between numerics and the analytic estimate is a strong indication that ν= 1/2 is universal
for metal-metal transitions. Our results clearly prove that wave packet transitions in
disordered non-Hermitian media differ from the single-frequency response, ν= 1.

In our simulations we have observed that drift velocity of a wave packet vdrift(tmax)
follows a scaling law similar to the scaling of an eigenstate in a finite system. It is not
obvious that this equivalence is guaranteed, and further studies are required.

The nature of transitions in higher-dimensional non-Hermitian systems remains an
open question. Preliminary results for two-dimensional systems show that the critical
exponent differs from both ν = 1 and ν = 1/2 [App. 5.F]. It is possible that the critical
exponents of non-Hermitian systems are dimension-dependent.

Non-Hermitian systems are naturally realizable in experiment, and non-Hermitian
wave packet dynamics are studied in photonic lattices and electrical circuits [9–11, 11–15].
The transition between propagating phases can be implemented as a switch tuned by a
continuous parameter, with uses in control or sensor systems.

5.A. MODEL AND PLOTTING PARAMETERS
For Fig. 5.1.1 (b), δ is varied between 0.01 and 0.3 in 50 steps, and the average drift velocity
is averaged over 600 different disorder configurations. The spectra of panels (c) and (d)
are calculated for systems composed of 300 lattice sites, and parameter h set to 0.3. For
panels (a) and (b), the wave packet evolution was performed on system sizes of 600 sites,
in steps of d t = 0.01 for 60000 steps. For panel (a) the results displayed in the figure are
taken at the last step of the time evolution. The disorder strength δ is given in units of W
the bandwidth of HHN.

For Fig. 5.2.1, the spectra, Re(J ) and the wave packet results are obtained for systems
with sizes L ∈ {199,238,285,341,408,488,584,698,836,1000}. Results for Re(J ) and wave
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packets are averaged over 2000 and 500 different disorder configurations respectively. The
wave packet evolution was performed in steps of d t = 0.01 for L/d t steps. The tilt angle φ
was varied between −0.1 and 0.1 in the following way: 20 points between −0.1 and −0.03,
100 points between −0.03 and 0.03, and 20 between 0.03 and 0.1. The disorder strength is
set to δ= 0.1 in units of the bandwidth W of the Hamiltonian Eq. (5.3.1).

For Fig. 5.3.1, the parameter h is set to 0.3. Ten different system sizes L are simulated,
L ∈ {199,238,285,341,408,488,584,698,836,1000}. Results are averaged over 500 different
disorder configurations for each value of disorder strength. The wave packet evolution
was performed in steps of d t = 0.01 for L/d t steps, with the values of L as stated above.

For the insets of Fig. 5.2.1 (b)-(c) and Fig. 5.3.1 (c), the error of the scaling fit is shown
using the 95% confidence interval.

For Fig. 5.D.1, panel (a) data is made up of 5000 disorder configurations, for systems
800 sites long. Panel (c) data is made up of 3000 disorder configurations, for systems 800
sites long. Panel (c) data is made up of 2000 disorder configurations, for systems 1000
sites long. Panel (d) data is made up of 3000 disorder configurations, for systems 800
sites long and δ= 0.8. The wave packet results are obtained for time evolution step size
d t = 0.01 and total time steps L/d t .

Fig. 5.G.1 is composed of unscaled data that was obtained and used in Fig. 5.2.1 and
Fig. 5.3.1.

For Fig. 5.F.1, the wave packet evolution was performed in steps of d t = 0.01 for L/d t
steps. Five different system sizes L ×L were simulated, with L ∈ {64,85,113,150,199}.
Disorder strengths were varied between 0.01 and 0.5 in 50 steps. For each disorder
strength, the result is averaged over 400 different disorder configurations.

For Fig. 5.E.1, panel (a) data for δ= 0.01 is composed of 100 different disorder confi-
gurations for systems of 800 sites. Panel (a) data for δ= 0.1 is made up of 1000 disorder
configurations, for systems 1000 sites long. Panel (b) data is made up of 5000 disorder
configurations, for systems 800 sites long and δ= 0.8. For panel (c), results for Re(J ) and
wave packets are averaged over 500 different disorder configurations. The tilt angle φ
was varied between −0.1 and 0.1 in the following way: 20 points between −0.1 and −0.03,
100 points between −0.03 and 0.03, and 20 between 0.03 and 0.1. Results are obtained
for systems with sizes L ∈ {199,238,285,341,408,488,584,698,836,1000}. The disorder
strength is set to δ= 0.1 in units of the bandwidth W of the Hamiltonian (5.3.1). For the
insets of panels (c)-(d), the error of the scaling fit is shown using the 95% confidence
interval.

5.B. NUMERICAL METHODS
The time evolution of the wave packets was calculated using the scaled Taylor expansion
method to first order[16–18], obtaining

|ψ(t +d t )〉 = |ψ(t )〉− i H |ψ(t )〉d t , (5.B.1)

where |ψ(t )〉 is the wave function at time t , d t is the time step, and H is the Hamiltonian
dictating the time evolution. The simulation time t and timesteps d t are in units of the
bandwidth W of the system. We choose d t = 0.01, but we have separately checked that
our results hold also for smaller time steps. In our simulations we initialize the system
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from the same real-space Gaussian wave packet. In order to ensure that the wave packets
do not reach the system boundary, we limit the total number of time steps used for a
simulation to tmax = L/(a ·d t ·vdrift), with L the system size, a the lattice constant and vdrift

the drift velocity of the wave packet for low disorder. Above the localization transition,
tmax is not shortened in order to record instances of ’teleportation’ of the drift center of
the maximally amplified wave packet, which contribute to the average velocity.

The method is based on the following expression for the matrix exponential

e−i t H = lim
N→∞

(
I − i t H

N

)N

, (5.B.2)

where N is the number of time steps. Fixing the time step (d t = t/N ) and the number of
steps (N ) we get an approximation for the time evolution operator as:

e−i t H ≈ (I − i d t H)N . (5.B.3)

The error introduced at each subsequent time step can be estimated using the errors
calculated for Taylor polynomials of the first order as [17, 18]:

δ=
∥∥∥e−i d t H − I + i d t H

∥∥∥≤ d t 2∥H∥2

2

1

1− d t∥H∥
3

, (5.B.4)

where ∥·∥ is any well defined matrix norm, for simplicity we use the spectral norm.
For normalized Hamiltonians ∥H∥ = 1 and d t ≤ 1, the error introduced at each time step
is δ≤ 3d t 2/4.

5.C. ANALYTICAL FORM OF WAVE PACKET CENTER OF MASS DRIFT

VELOCITY
In this section we provide details concerning the derivation of Eq. 5.2.2.

Starting from ∂t [〈ψ|x̂|ψ〉/〈ψ|ψ〉] and using the quotient rule,

∂t [〈ψ|x̂|ψ〉/〈ψ|ψ〉] = ∂t [〈ψ|x̂|ψ〉] · 〈ψ|ψ〉
〈ψ|ψ〉2 − 〈ψ|x̂|ψ〉 ·∂t [〈ψ|ψ〉]

〈ψ|ψ〉2 . (5.C.1)

We first calculate ∂t [〈ψ|ψ〉]. Using

|ψ〉 = e−i t H |0〉, (5.C.2)

〈ψ| = 〈0|e i t H †
, (5.C.3)

we find

∂t [〈ψ|ψ〉] = ∂t [〈0|e i t H †
e−i t H |0〉] (5.C.4)

= 〈0|i H †e i t H †
e−i t H |0〉+〈0|e i t H †

(−i H)e−i t H |0〉 (5.C.5)

= i 〈ψ|H † −H |ψ〉. (5.C.6)
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Similarly for ∂t [〈ψ|x̂|ψ〉],

∂t [〈ψ|x̂|ψ〉] = ∂t [〈0|e i t H †
x̂e−i t H |0〉] (5.C.7)

= 〈0|i H †e i t H †
x̂e−i t H |0〉+〈0|e i t H †

x̂(−i H)e−i t H |0〉 (5.C.8)

= i 〈ψ|H †x̂ − x̂H |ψ〉. (5.C.9)

Substituting these expressions into Eq. (5.C.1), we obtain

∂t [〈ψ|x̂|ψ〉/〈ψ|ψ〉] = i 〈ψ|H †x̂ − x̂H |ψ〉− i 〈ψ|x̂|ψ〉〈ψ|H † −H |ψ〉, (5.C.10)

where we use that 〈ψ|ψ〉 = 1.
We then express Eq. (5.C.10) in terms of the current operator J = i [H , x̂]. Using

Re(J ) =− Im([H , x̂]) = i

2
(〈ψ|[H , x̂]|ψ〉−〈ψ|[x̂, H †]|ψ〉) (5.C.11)

= 〈ψ|(H x̂ − x̂H − x̂H † +H †x̂)|ψ〉, (5.C.12)

we obtain

∂t [〈ψ|x̂|ψ〉/〈ψ|ψ〉] = Re(J )+ i

2
〈ψ|(H †x̂ − x̂H −H x̂ + x̂H †)|ψ〉− i 〈ψ|x̂|ψ〉〈ψ|H † −H |〉.

(5.C.13)

We rewrite the second and third terms of Eq. (5.C.13) as

∂t [〈ψ|x̂|ψ〉/〈ψ|ψ〉] = Re(J )+ i

2
〈ψ|(H †x̂ − x̂H −H x̂ + x̂H † +2〈ψ|x̂|ψ〉(H −H †))|ψ〉

(5.C.14)

= Re(J )+ i

2
〈ψ|((H −H †)(2〈ψ|x̂|ψ〉− x̂)− x̂(H −H †))|ψ〉 (5.C.15)

= Re(J )+ i

2
〈ψ|((H −H †)(〈ψ|x̂|ψ〉− x̂)− (〈ψ|x̂|ψ〉− x̂)(H −H †))|ψ〉

(5.C.16)

= Re(J )+ i

2
〈ψ|{(H −H †), (〈ψ|x̂|ψ〉− x̂)}|ψ〉. (5.C.17)

5.D. MULTIMODAL BEHAVIOR
Here we discuss the shape of the distributions of Re(J ) and vdrift of both the H8 [Eq. (5.3.1)]
and HHN [Eq. (5.2.1)] models around the transition point.

For H8, the distribution of Re(J) of the maximally amplified eigenstate is bimodal
[Fig. 5.D.1 (a)]. The distribution of vdrift is multimodal [Fig. 5.D.1 (c)]. The multimodality
arises from the disorder nontrivially shifting eigenvalues of H8 in the complex plane,
creating two bimodal distributions for vdrift, one on each side of the transition in φ. The
same multimodal behavior is seen in Re(J) of the maximally amplified eigenstate when
using biorthogonal expectation values to calculate J [App. 5.E, Fig. 5.E.1 (a)].

For HHN, Re(J ) does not exhibit a transition [Fig. 5.3.1 (d)], and its distribution close to
the vdrift transition is centered around a small but finite value [Fig. 5.D.1 (b)]. The scaling
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Figuur 5.D.1: Multimodal and bimodal distributions of Re(J ) and vdrift of the Hamiltonians H8 [Eq. (5.3.1)] and
HHN [Eq. (5.2.1)]. For the Hatano-Nelson Hamiltonian (5.2.1), random disorder terms Ui , j with i ϵ {0,1,2} and
j the site number are sampled from distributions with standard deviation δi . We set δ0 = δ1 = δ2 ≡ δ. For the
Hamiltonian H8 (5.3.1), random disorder terms Ui , j with i ϵ {0,1,2,3,4} and j the site number are sampled from
distributions with standard deviation δi . We set δ0 = δ1 = δ2 = δ3 = δ4 ≡ δ. (a), (c) distributions of Re(J ) of the
maximally amplified state and vdrift of the H8 model at φ= 0 and δ= 0.1. (b), (d) distributions of Re(J) of the
maximally amplified state and vdrift of the HHN model at φ= 0 and δ= 0.8. Plot details in App. 5.A.

of vdrift of the Hatano-Nelson model HHN does not exactly follow
p

tmax [Table 5.1 and
Fig. 5.3.1 (d)] but a bimodal distribution is still observed close to the transition [Fig. 5.D.1
(d)]. Close to the transition point, the distribution of vdrift has two peaks, with one broad
peak centered around a finite value, and the other delta function peak around 0. The
vdrift around 0 originates from disorder configurations that result in localization, and the
vdrift with finite velocity originates from disorder configurations where propagation is still
possible.

5.E. BIORTHOGONAL EXPECTATION VALUE

In the results of the manuscript, we calculated Re(J ) of the state m as Re
(〈ψm |J |ψm〉) such

that 〈ψm | = |ψm〉†. In this section we calculate Re(J) of state m as Re
(〈ψm |J |ψm〉) such

that 〈ψm | = |ψm〉−1, that is to say 〈ψm | is the m-th left eigenstate and |ψm〉 is the m-th
right eigenstate. We refer to this Re

(〈ψm |J |ψm〉) as the biorthogonal expectation value of
Re(J ). The behavior of Re(J ) is significantly impacted by this change in expectation value,
as shown in Fig. 5.E.1.

For the H8 model, similarly to Fig. 5.D.1 for low disorder (δ= 0.01) the distribution of
Re(J) of the maximally amplified eigenstate is bimodal [Fig. 5.E.1 (a)]. At finite disorder,
the distribution becomes multimodal, similar to vdrift [Fig. 5.D.1 (c)]. The scaling para-
meter at the transition of the biorthogonally projected Re(J ) scales as L0.44±0.01 [Fig. 5.E.1
(c)].

The Hatano-Nelson model HHN also exhibits bimodal behavior [Fig. 5.E.1 (b)], si-
milarly to the distribution of vdrift [Fig. 5.D.1 (d)]. Close to the transition point, the
distribution of Re(J) has two peaks, with one broad peak around the low-disorder Re(J)
value 1.1, and the other delta function peak around the high disorder Re(J ) value 0. In the
biorthogonal case, the Re(J) of the HHN displays a phase transition. The scaling of the
transition width is found to scale close to

p
L, as L0.55±0.02 [Fig. 5.E.1 (d)], similarly to the
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Figuur 5.E.1: Re(J) results using biorthogonal expectation values for Hamiltonians H8 [Eq. (5.3.1)] and HHN
[Eq. (5.2.1)]. For the Hatano-Nelson Hamiltonian (5.2.1), random disorder terms Ui , j with i ϵ {0,1,2} and j
the site number are sampled from distributions with standard deviation δi . We set δ0 = δ1 = δ2 ≡ δ. For the
Hamiltonian H8 (5.3.1), random disorder terms Ui , j with i ϵ {0,1,2,3,4} and j the site number are sampled
from distributions with standard deviation δi . We set δ0 = δ1 = δ2 = δ3 = δ4 ≡ δ. (a) distributions of Re(J) of
the maximally amplified state of the H8 model at φ= 0 and δ= 0.1 and δ= 0.01 in units of the bandwidth W .
(b) distribution of Re(J ) of the maximally amplified state of the HHN model at δ= 0.8. (c) Rescaled Re(J ) of the
maximally amplified state of the H8 model for δ= 0.1. (d) Rescaled Re(J) of the maximally amplified state of
the HHN model for δ= 0.1. Insets of (c) and (d): scaling functions of the slope at the transition and the 95%
confidence interval. Plot details in App. 5.A.

H8 case.
The Re(J) calculated using the biorthogonal expectation value appears to follow the

behavior of vdrift more closely, but we do not have an argument as to why this would be
the case.

5.F. RESULTS IN TWO DIMENSIONS
We consider the following two-dimensional non-Hermitian model:

HN =
N∑

d=1

Ld∑
j

U0, j |xd , j 〉〈xd , j |+
(
txd ,++ i t ′xd ,+U1,d , j

)
|xd , j+1〉〈xd , j |

+
(
txd ,−+ i t ′xd ,−+U2,d , j

)
|xd , j 〉〈xd , j+1|,

(5.F.1)
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Parameter value

tx,+ 1
t ′x,+ 0
tx,− 0.8
t ′x,− 0
ty,+ 0
t ′y,+ 0
ty,− 0
t ′y,− 1

Tabel 5.2: Parameters used for simulating Hamiltonian Eq. (5.F.1).
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Figuur 5.F.1: Finite-time scaling of two-dimensional non-Hermitian model Eq. (5.F.1) with parameters 5.2.
(a)-(b) The Brillouin zone of (a) the imaginary part of the energy ϵ and (b) the real part of the energy. (c) The
unscaled localization transition of vdrift as a function of disorder. Random disorder terms Ui ,d , j with i ϵ {0,1,2},
d ϵ {x, y} and j the site number (5.F.1) are sampled from distributions that all have a standard deviation of
δ0 = δ1 = δ2 ≡ δ. (d) The rescaled curves of (c). Inset: scaling of the sharpness of the transition. Plot details in
App. 5.A.

where the sum runs over all the lattice sites j and the spatial dimensions d of a N -
dimensional system with L/a = 1

a

∑N
d Ld sites, with a the lattice constant. xd corresponds

to the spatial coordinate in dimension d , and Un,d , j are random disorder terms sampled
from a distribution δn,d . We choose N = 2.

The parameters we use in simulating this model are found in Table 5.2, and yield
the spectrum shown in Fig. 5.F.1 (a)-(b). Wave packets are initialized at the center of the
periodically wrapped lattice (x0 = [0,0]), with a width one tenth of the width of the lattice
(σ= L/10) and with the same initial velocity (kx =π/2,ky = 0) for all simulations.

We fit the function a tanh(bδ+ c) to the localization transition of vdrift as a function
of δ, and extract b(tmax). b(tmax) scales as t 0.63±0.05

max [Fig. 5.F.1 (d)], which differs from
the 1D critical exponents presented in the main text [Table 5.1]. It is not possible from
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Figuur 5.G.1: Unscaled (a1,b1,c1,d1) and rescaled (a2,b2,d2) Re(J) at the point of maximal amplification ϵmax
and vdrift at the transition point, as a function of φ the tilt angle of the spectrum or as a function of disorder δ.
For the Hatano-Nelson Hamiltonian (5.2.1), random disorder terms Ui , j with i ϵ {0,1,2} and j the site number
are sampled from distributions with standard deviation δi . We set δ0 = δ1 = δ2 ≡ δ. For the Hamiltonian H8
(5.3.1), random disorder terms Ui , j with i ϵ {0,1,2,3,4} and j the site number are sampled from distributions
with standard deviation δi . We set δ0 = δ1 = δ2 = δ3 = δ4 ≡ δ. (a1)-(b2) Results for the H8 model Eq. (5.3.1)
used in Fig. 5.2.1. (c1)-(d2) Results for the HHN model Eq. (5.2.1) used in Fig. 5.3.1. Plot details in App. 5.A.

these results to say whether the critical exponent of non-Hermitian systems is dimension-
dependent or not.

5.G. UNSCALED RESULTS
The results for Re(J ) at ϵmax and vdrift shown in Fig. 5.2.1 and Fig. 5.3.1 are rescaled by the
scaling variables b (and c in the case of vdrift). Fig. 5.G.1 contains the unscaled data used
to obtain Fig. 5.2.1 and Fig. 5.3.1, as well as the rescaled data for comparison.

We do not show rescaling of the Re(J) at ϵmax curves of Fig. 5.G.1 (c1), since they do
not exhibit scaling.
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