The impact of implementing electric Ground Support Equipment (eGSE)
on the capacity and demand of GSE fleets at airports
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Abstract

Airports and airlines are examining and committing to the electrification of Ground Support Equipment (GSE). To be
able to estimate the required quantity of eGSE, the charging requirements of eGSE, the change of airport electricity
requirements, and the scheduling possibilities of eGSE charging for the existing turnaround procedures, a model was
developed to simulate and optimize the GSE operations at airports. This was done by means of a Task Scheduling
Problem (TSP), that is optimized using Mixed-Integer Linear Programming (MILP). A case study was performed on
KLM’s GSE fleet at Amsterdam Airport Schiphol. Based on this, it was concluded that there is no difference in the
capacity that can be achieved for GSE types that can last an entire day on a single battery charge. However, another
group of GSE types experiences battery depletion before the day concludes, requiring measures to maintain the capacity.
The results indicate the model’s suitability for strategic decision-making. Next to that, the model is effective on an

operational level. The use of the model has the potential to make the use of resources in the operation more efficient.

Keywords: electric ground support equipment, airport operations, ground handling, multi-objective
optimization, vehicle scheduling, fleet optimization

sector needs to reduce GHG emissions, like COg,
and the emission of air pollutants from fossil fu-
els. According to Kirca et al. (2020) aircraft oper-
ations are accountable for the majority of the avi-
ation carbon emissions. Hence, there are a num-
ber of projects going on to achieve technological
advancements to introduce low emission aircraft
(Brelje and Martins, 2019). And while aircraft
dominate the carbon emissions in the aviation sec-
tor, Ground Support Equipment (GSE) also has
a share (Kirca et al., 2020). GSE supports the
turnaround process of aircraft between the arrival
and departure at an airport (National Academies

1. Introduction

In 2017, the aviation sector was the second
most important source of Greenhouse Gas (GHG)
emissions in the transport sector after road traf-
fic (European Commission, 2021), and it seems
that these environmental problems will continue,
as the current traffic growth is outpacing fuel
efficiency improvements and reductions of emis-
sions from other sectors (European Union Avia-
tion Safety Agency, 2022). To mitigate climate
change and control temperature rise, the aviation
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of Sciences, Engineering, and Medicine, 2015).
Besides their contribution to carbon emissions
(National Academies of Sciences, Engineering,
and Medicine, 2015), GSE is known to have a sig-
nificant contribution to the NO, pollution (Kirca
et al., 2020). In 2012, GSE accounted for 13% of



NOjy at all airports in the US (Benosa et al., 2018).
According to Alruwaili and Cipcigan (2022) and
Kirca et al. (2020), one path to cut airport re-
lated GHG emissions is to use low or zero-emission
GSE and provide infrastructure provision for sup-
porting decarbonization solutions since much of
the GSE is at present powered by diesel or petrol
fuel. Yim et al. (2013) estimated that electrifica-
tion of GSE could avert 28% of the early deaths,
caused by airport emissions in the UK. Hence, to
reduce both carbon and air pollutant emissions
from GSE at airports, airports and airlines are
examining and committing to the electrification
of GSE (Kirca et al., 2020; Francfort et al., 2007).

A number of challenges arise as a fully elec-
trified fleet of GSE is realized. The two main
challenges pertain the significantly longer charg-
ing time compared to refueling conventional fossil-
fueled vehicles and the increased burden on the
electric grid (Gulan et al., 2019). Electric versions
already exist for a number of, especially smaller
GSE types, but these are still being developed for
other larger vehicles (Timmermans, 2023). For
the early stage decision making of different stake-
holders, such as 1.) airport operators, 2.) ground
service providers, and 3.) airline companies, it
is therefore important to be able to estimate the
required quantity of electric GSE (eGSE) types,
the charging requirements of eGSE, the change of
airport electricity requirements, and the schedul-
ing possibilities of eGSE charging for the existing
turnaround procedures. Therefore, the primary
focus of the research is the development of a model
that can be used to gain insight into the opera-
tional requirements for the implementation of an
eGSE fleet at airports.

This paper is organized as follows: Section 2
reviews the relevant literature. The conceptual
framework is explained in Section 3. After that,
the problem formulation is provided in Section 4.
In Section 5 several measures to improve the solv-
ability are discussed. The model is applied in a
case study for KLM Royal Dutch Airlines at Ams-
terdam Airport Schiphol (AAS) in Section 6. The
results are discussed in Section 7. Finally, con-
clusions and future research lines are provided in
Section 8.

2. Literature review

This section presents a review of the existing lit-
erature on operations research that is considered
relevant for this research. Section 2.1 discusses
different works on the optimization of operations.
Next, Section 2.2 reviews different works on en-
ergy management, including topics like charging
(scheduling), and charging infrastructure as well.
Most of the works being reviewed focus on GSE.
However, some works focusing on (commercial)
Electric Vehicles (EV) are included as well. After
that, the scope is widened in Section 2.3, which
looks into other related problems in the aviation
industry. Finally, a comparison of the different
works is provided in Section 2.4.

2.1. Optimization of operations

Scheduling GSE for airport operations is of-
ten treated as a VRPTW (Vehicle Routing Prob-
lem with Time Windows). Ip et al. (2013) ad-
dress this problem with a hybrid assignment ap-
proach for multiple non-identical vehicles. A sim-
ilar approach is taken by Padrén et al. (2016),
who break down the VRPTW into distinct prob-
lems for each vehicle type, using Constraint Pro-
gramming (CP) to minimize waiting time and
total turnaround completion time. Padrén and
Guimarans (2019) improved this work to re-
duce computational times. For baggage tugs,
Wang et al. (2021) formulates the problem as
a Mixed-Integer Linear Programming (MILP)
model. When focusing on aircraft turnaround
tasks and staff routing, Gok et al. (2022) treats
the problem as a Resource-Constrained Project
Scheduling Problem (RCPSP) and uses CP for
team routing decisions. Another VRP formula-
tion is presented by Bao et al. (2023), who estab-
lish a mixed operation model for aircraft towing
tractors with time windows. Van Oosterom et al.
(2023) also focus on the dispatching of a fleet of
electric aircraft towing tractors. They propose a
two-phased MILP program. The first phase takes
care of the routing of the towing tractors. In the
second phase, the towing tractors are scheduled
for aircraft towing tasks or battery recharging. In
the context of military aircraft handling, Zhang



et al. (2022) suggest using an RCPSP instead of
a VRP. They focus on resource allocation for job
scheduling, emphasizing the maximization of re-
source utilization within time windows and con-
straints, rather than optimizing driving paths or
times. Different scheduling algorithms are intro-
duced by Kuhn and Loth (2009), including one
MILP problem based on solving static vehicle
scheduling problems within a moving time win-
dow. Lastly, in the work of Chen (2022), the
main goal is to create an automated task allo-
cation optimization mechanism. Here, an auction
mechanism for task allocation is implemented.

VRPs are used in various contexts beyond GSE.
Song et al. (2019) tackle a VRPTW problem
to optimize vehicle routes for customer service.
Arias-Melia et al. (2022) deal with a more com-
plex Vehicle Sharing and Task Allocation Prob-
lem (VSTAP) problem, including vehicle sharing,
using a heuristic approach for solving larger in-
stances.

2.2. Energy management

Multiple studies address the energy manage-
ment of GSE. Rensen (2013) develops a frame-
work to assess airport design choices. His work
analyzes GSE requirements, distance, operational
time, and energy consumption. Gulan et al.
(2019) presents an charging algorithm for fully
electrified airports, using an scheduling algorithm
based on variable pricing. Charging priority is
assigned based on State of Charge (SOC) and
availability of GSE. Kirca et al. (2020) develops a
Multi-Input Multi-Output Airport Energy Man-
agement (MIMO-AEM) model for understanding
eGSE charging requirements and scheduling. The
model optimizes GSE usage, battery pack sizes,
and gate scheduling.

For EVs, Clemente et al. (2014) tackles the inte-
gration of EVs with the power distribution prob-
lem, focusing on coordinated charging to prevent
grid disruptions. Keskin et al. (2021) presents a
Electric Vehicle Routing Problem with Stochastic
Waiting Times (EVRPTW), addressing queuing
and recharging times at charging stations using a
two-stage MILP program with a simulation-based
heuristic.

2.3. Related problems in the aviation industry

Francfort et al. (2007) compare eGSE with con-
ventional GSE, demonstrating that eGSE yields
lower operating costs at select U.S. airports. Han-
nah et al. (2012) create a decision support tool
to assess carbon-neutral growth strategies at air-
ports. van Baaren (2019) conduct a feasibility
study for fully electric towing systems, finding
that they are technically and operationally viable
with substantial fuel and emissions savings, al-
though cost and logistical challenges remain. Sz-
najderman et al. (2022) develop an integrated
model for GSE and associated emissions, con-
sidering loading and unloading stages, and air-
craft service types, accurately replicating GSE
movements. Bosma (2022) created a capacity
model study for sustainable aircraft refueling ser-
vice vehicles. And lastly, van Amstel (2023) and
Horstmeier (2023) contribute to the field of elec-
tric aviation, by optimizing infrastructure and
charging scheduling while minimizing costs and
addressing renewable energy integration and var-
ious aspects of electric aviation adoption, charger
types, and spatial considerations. These works
provide an interesting look at the electrification
of airports in general from a different perspective.

2.4. Comparing the existing works

The previous sections have discussed different
works that are considered relevant for this re-
search. An overview of the works on GSE, with
a comparison on different aspects, is provided in
Table 1. Here, the focus of the studies is denoted
by an icon, referring to ”optimization of opera-
tions” (o), "energy management” (C42); ”oper-
ational costs” (&), or “environmental impact”
(&)). In addition, a distinction is made between
works that consider GSE or not. It stands out
that the vast majority of works that consider GSE
only look at one or a few GSE types, and in the
works that consider several GSE types, the differ-
ent properties of these GSE types are not taken
into account. In some works, several GSE types
are divided into a number of categories with sim-
ilar properties.



Table 1: A comparison of different studies that include the modeling of GSE operations.
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Includes all common GSE types v v v
- Number of GSE types included 1 0 7 0 1 3 0 6 1 6 0 6 16 0 3 8 1 11 1 16
- Considers GSE types individually v vV v v v v v v v v v v
GSE turnaround operations v v Y v v v v v v v v v v Y v
- Task allocation v v v v v Vv v v v v v v v
- Travel time between locations v v v v v Vv v v v v v v v v v Y v
- Service time window v v v v v v v v v v v v
- Service time at aircraft stand v v Vv v v v v v Vv v v v v v v
- Individual service times v v Y v v v v v Y v v v v Vv v
- Energy consumption of vehicles v v v v v v v v v v v
Considers eGSE v v v v v v v v v v
- Considers mixed fleets v v v v v
- Charging (scheduling) v v v v v v v v
Determines number of vehicles v v v v v v v v
Number of vehicles as an input v vV v v v v v v v Y

3. Conceptual framework

The airport forms an essential part of the air
transport system, as it is the physical site at which
a modal transfer is made from the air mode to the
land modes or vice versa. It accommodates for the
interaction of the two other major components of
the air transport system, namely: the airline and
the user. An airport is designed to enable an air-
craft to, if required, unload and load passengers,
cargo, and crew (Ashford et al., 2013). These
events form the essential parts of the turnaround
process of an aircraft. The turnaround process
describes all operations for preparing an aircraft
for the flight. Aircraft depend on GSE to per-
form the required processes, such as cleaning, ma-
neuvering and refueling (National Academies of
Sciences, Engineering, and Medicine, 2015). Air-
ports that service many yearly passengers must
have ground handling service provider(s) that can
supply the handling of those passengers and the
servicing, maintaining, and engineering of aircraft

(Ashford et al., 2013).

The turnaround process is performed during
the Ground Time (GT). It starts when an air-
craft reaches its parking position at the Actual
In Block Time (AIBT) and lasts until the air-
craft is ready to depart at the Actual Out Block
Time (AOBT) (Schmidt et al., 2016; More and
Sharma, 2014; Horstmeier and de Haan, 2001).
This is the case for flights that are made ready
for take-off immediately after arrival. In gen-
eral, the servicing time depends on the aircraft
type, the number of passengers, the cargo to be
(un)loaded as well as the business model of the
aircraft operator (Schmidt et al., 2016). An ef-
ficient and reliable aircraft turnaround is an es-
sential component of airline success, which allows
them to maintain schedules (Schmidt, 2017; Vi-
dosavljevic and Tosic, 2010). In 2019, 32.6% of
all flight delays were caused by problems regard-
ing the turnaround of aircraft at airports (Perfor-
mance Review Commission, 2022). In 2021, this
share, which also includes delays related to pro-
tective COVID-19 measures, has risen to 47.5%.



The turnaround time has hence become a very
important key parameter in determining the prof-
itability of an airline (More and Sharma, 2014).
Each type of GSE has specific properties, ac-
tivities, and duty cycles. Largely based on the
available ACRP reports (National Academies of
Sciences, Engineering, and Medicine, 2012, 2015)
about GSE, it is possible to classify the GSE types
based on their use case: 1.) ground power/air
conditioning, 2.) aircraft movement, 3.) aircraft
servicing, 4.) passenger (un)loading, and 5.) bag-
gage/cargo handling. The operation of GSE is a
function of several parameters that can vary con-
siderably from airport to airport. They influence
the type, number and operation (service time) of
GSE. A distinction can be made between 1.) op-
erational characteristics, 2.) aircraft characteris-
tics, and 3.) airport infrastructure (ICAO, 2020).
Operational procedures determine the types and
amounts of GSE services required. The aircraft
characteristics influence the stand allocation and
often the handling procedures involving GSE.
And in terms of airport infrastructure, different
aircraft stands exist. They can exhibit consider-
able differences in terms of location and technical
equipment available, which influence the number
and operations of GSE. They may also differ for
reasons of dedicated usage (e.g. whether a stand
is used for cargo aircraft or for passenger aircraft).
As part of noise abatement, night curfews
on aircraft operations exist at many airports
throughout the world (Ashford et al., 2013). Con-
sequently, many airports only use (the majority
of) GSE during the day, meaning they eGSE can
and must be charged at night. The consumption
of and the way in which the small GSE vehicles
are used makes it possible to only have to recharge
these vehicles at night, as they can be used for a
complete day on one full battery charge. And if
it turns out to be necessary, opportunity charging
can be used during the day (Timmermans, 2023).
Other, larger GSE vehicles, must be charged dur-
ing the day. With these vehicles, the challenge
still lies in battery capacity and the limited space
and weight that can be spend on batteries. These
vehicles therefore have a greater downtime than
their diesel equivalents (Timmermans, 2023).

It has become apparent that there are many
differences between the GSE types required for
servicing aircraft at an airport. In order to use
the proposed model as widely as possible, the
model will therefore distinguish between a num-
ber of groups with GSE types that share the same
properties. Based on literature research and in-
terviews, a number of essential components that
are important when modeling GSE operations at
an airport can be defined. The literature research
shows that there are only a few works that con-
sider multiple GSE types and none of the works
that do this do include all details that are as-
sumed to be essential based on the literature re-
search. The smaller GSE types currently do not
pose a major challenge in the field of charging.
This could possibly be the case in the future for
the larger GSE types. Therefore, the model will
mainly focus on simulating and optimizing the
GSE operations and the associated energy con-
sumption. A follow-up study could then focus on
a possible charging strategy based on this energy
consumption. In the same way, an addition could
be made in the future that would allow mixed
fleets to be considered. Including the above ele-
ments results in a contribution as shown in the
last column of Table 1. Because the literature re-
view also shows that the nature of the operations
to be simulated often leads to a computationally
complex problem, extensive attention will also be
paid to improving the solvability of the model.

4. Problem formulation

4.1. Model setup

The problem at hand will be described as a
Task Scheduling Problem (TSP). According to
Bunte and Kliewer (2009), an optimal schedule is
characterized by minimal fleet size and/or min-
imal operational costs. These elements are at
the heart of the problem. In literature, MILP
is widely used to solve TSPs and VRPTWs Bao
et al. (2023); Keskin et al. (2021); Kuhn and Loth
(2009); Clemente et al. (2014); Wang et al. (2021);
Song et al. (2019). Its modeling capability and
the availability of good solvers make that MILP



is a powerful tool for planning and control prob-
lems Earl and D'Andrea (2005). Therefore, the
problem at hand will also be solved using MILP.

Within the model there are 1.) parking tasks,
2.) flight tasks and 3.) logistics tasks. The prop-
erties of the task types are explained in the work
of Timmermans (2023). Two parking tasks are
defined for each parking location. The parking
task from where a vehicle starts runs from the
beginning of the day to the end of the day. This
makes it possible for a vehicle to leave a park-
ing location throughout the day. The parking
task where a vehicle ends is defined at the end
of the day. The flight tasks arise from the flight
schedule and the turnaround tables of the aircraft
types. The earliest time (ET;) and latest time
(LT;) of a flight task i define the time window
within which the task must be executed. The task
time (7'7;) follows from the turnaround table as
well. It always holds that T7T; < LT; — ET;. The
demand (DEM;) and energy consumption (EC)
of a flight task depend on the aircraft type and
the GSE type. One flight may result in multiple
flight tasks, based on the required number of ve-
hicles and how long the aircraft is on the ground.
The location of a flight task is an aircraft stand. It
is therefore possible that there are several flight
tasks with the same location if 1.) in the flight
schedule several flights are handled on one aircraft
stand and/or 2.) several vehicles of one type are
required to handle one flight. The logistics tasks
may be used by a vehicle to refill or empty its
storage compartment. They are therefore only
necessary for GSE types with a so-called logis-
tics function. In this paper, the logistics tasks are
placed prior to a flight task in terms of time win-
dow. This makes it possible for a vehicle to go
to a logistics task to refill before a flight, if neces-
sary. The model in this paper can therefore only
be used for vehicles that have a decrease in load
when servicing a flight.

4.2. Rolling horizon approach

To reduce the computation time for the opti-
mization problem at hand, a rolling horizon is im-
plemented. Kuhn and Loth (2009) use a rolling
horizon for the scheduling of GSE as well. Algo-

rithm 1 explains how it is applied in the context
of this research. Here C'T" is the current time and
IT is the set of flight tasks that still need to be as-
signed. The set of all flight tasks is A. Each itera-
tion set F'is defined as the set of flights ¢ € Il that
have an earliest time (E7;) that is within the next
t forward Minutes from the current time (CT'). The
optimization problem is then solved, which uses
the data from the vehicles k£ € K and the flight
tasks ¢ € F' to perform the assignment of tasks.
The assigned flight tasks with a start time (s;)
that is within the current time and the time step
at which the update takes place, t,pdqte, are added
to set €. Here, it holds that typdate < tforwara- The
execution of the flight tasks in €2 is fixed and re-
moved from set II. The overall task list is updated
and the current time is increased with t,p4ate. Af-
ter this, set F' is defined again, based on the new
CT. This process repeats until IT = ().

Algorithm 1: Rolling horizon approach

CT <+ 0

M+ A

while IT # () do

F«{iell: ET; < CT + tforward}

Solve: optimization problem using data
regarding all k € K and ¢ € F

Q< {ieF:s <CT+typdate}

Assign: all tasks in €

IT+II\Q

Update: overall task list together with

vehicles states and SOC
10 CT «+ CT + typdate

[S NV VI

© oW N o

4.3. Mathematical model

The notations used in this paper are shown in
Table 2. In the sets used in the model, a distinc-
tion is made between numerical sets and modeling
sets. For the modeling sets, the model formula-
tion sometimes uses one or more subscripts, which
indicate a subset. Three subscripts can be distin-
guished: 1.) S (start), for the tasks that need
to be used as start tasks, 2.) B (between), for
the tasks that can be used in between, and 3.) E
(end), for the tasks that need to be used as end
tasks. For example, Pg is a subset of set P, i.e.



Table 2: Notations used in this paper.

Set Description
R+ Set of all positive real numbers
RS Set of all positive real numbers including 0
Ng Set of all positive integers including 0
P Set of parking tasks
F Set of flight tasks
L Set of logistics tasks
T Set of all tasks (P U F U L)
K Set of all vehicles (K nused U Kused)
K Set of vehicles that have not been used yet
unused (Kunused C K)
K Set of vehicles that have been used in a
used previous run (Kseq C K)
K Set of vehicles that are used and depleted
depleted (chplctcd g Kuscd)
Index Description
i Index for current task 1T
J Index for the next task jeT
k Index for vehicle ke K
Parameter Description Domain
ET; Earliest time of performing task ¢ R
LT, Latest time of performing task 4 R+
TT; Required time for task 4 R
D;; Distance between task ¢ and j R
1% Travel speed of vehicles R*
RT, Time at which vehicle & becomes Ry
ready
ST, Starting task of vehicle k T
SL; Starting load of vehicle & R
EP, Ending. parking task of vehicle k p
in previous run
LOC; Location number of task ¢ Ng
TN; Task name of task ¢ -
DEM,; Demand of task i Rar
C Capacity of vehicles Ng
R Logistics refilling time constant Rt
M Big M for time constraints Rt
Q Big M for capacity constraints Rt
Variable Description Domain
Whether a vehicle travels from task
Tij e {01}
1 t0 7
Yi Whether task i is visited {0,1}
2, Whether vehicle k is used {0,1}
S; Starting time of servicing task i R
w; Waiting time at task i R
Load quantity of a vehicle after "
ai Np

visiting task ¢

Ps C P, and it contains all task indices of parking
tasks that need to be used as start tasks. If no
subscript is indicated, the entire set is meant (e.g.
Pspp = P). After each optimization, the mod-
eling sets P, F, L, Kynuseds Kusea and Kgepieted
are updated as part of the rolling horizon. Af-
ter each optimization during the rolling horizon,
a number of parameters are updated based on the
previous optimization. This concerns parameters
RTk, STk, SLk, EPk, and LOC’Z

The objective function consists of five parts: 1.)
the total number of vehicles used, 2.) the total
distance traveled by all vehicles (in km), 3.) the
number of times vehicles went to a logistics task,
4.) the sum of the starting times at the flight tasks
and 5.) the total waiting time of vehicles at a lo-
gistics task. Objective function components 1 and
2 are used to optimize actual scenarios and com-
ponents 3, 4 and 5 are used to help the MILP’s
solver converge to a solution. Depending on the
goal of the optimization, the weighting factors \;
to A5 can be used to determine the proportions
of the five objective function components. How-
ever, the weighting factors A3 to A5 must be rel-
atively small so that they do not influence the
optimization of the first two objective function
components.

min A1<zzk> o (U2, ) (z)

keK i€T jET i€F
—_——— ———
objl obj2 obj3
+ A4 Z ZIZ‘]‘ +As5 <Z wz>
i€T\L jEL ieL
obj4 obj5
Subject to
Y; = Zl’ij V] S TBE (G].b)
€T
Yi = Ziﬂz‘j VieTs (G1b)
JET
Zl’ih = Z.Thj Vh € Tp (G?))

i€T JeT



i€l

@<l VieT (G4b)

JET
Tij = Vi € T, j S TS (GG&)
T = Vi € TE, ] e’rT (G6b)
Tij = 0 Vi € Ts, ] € TE <G7>

Constraints G1b and Glb connect z;; to ;.
Constraint G2 ensures that z; = 1 if vehicle k
is used for a task in F. Constraint G3 ensures
the flow conservation for tasks in Tg. Constraints
G4a and G4b ensure that task j can only be vis-
ited once and task ¢ can only be left once, respec-
tively. Constraint G5 ensures that vehicles do not
drive from task ¢ to task i. Constraints G6a and
GO6b ensure that a vehicle can not enter a start
task and leave an end task, respectively. Con-
straint G7 ensures that a vehicle can not travel
from a start to an end task.

s; > ET;
s; < LT;

VieT
VieT

(G8a)
(G8b)

Dy
S]ZSz—f—TE—FU}Z—f— VJ —M(l—ZEZ])

Vi,jeT, i4j
(G9a)

D;;
SJSSZ—FTE—F'LU@—F VJ —|—M(1—.I'Zj)
Vi,jeT, i#]
(G9b)

D;; , :
8; = (RTk + 7j) Tij VieT, i= 5Ty,

k= LOC; (G10)

Constraints G8a and G8b ensure that visiting
a task can not start before ET; or after LT, re-
spectively. Constraints G9a and G9b ensure that
a vehicle can not start with task 7 before arriving
at task 7. Constraint G10 ensures that a vehi-
cle does not start the servicing of task j before it
arrives there (when traveling from starting task

i).

2k S 2l Vk Kunused7 le Kused (Gll)
2 =0 Vk € Kdepleted (Gl?))

Constraint G11 ensures that unused vehicles
can only be used if all previously used vehicles are
used again. Constraint G12 ensures that an end
parking task can only be used if the vehicle that
ended there in a previous run is used in the cur-
rent run. Constraint (G13 ensures that depleted
vehicles are not used.

y=1 VieF (F1)
s;>ET, VieF (F2a)
s; <LT,—TT, YieF  (F2b)

Constraint F1 ensures that all flight tasks are
performed. Constraints F2a and F2b ensure that
performing task ¢ can not start before E'T; or end
after LT, respectively.

¢ < q¢—DEM; +Q (1 — z;5)

VieT, j€¢T\L, i#j (Lla)
¢ > ¢i—DEM; — Q (1 — ;)

VieT, jeT\L, i#j (Llb)
¢ > C—Q (1 — zy)

VieL, jeT\L (L2)
g < SLy VieT,, k=LOC; (L3b)

Constraints L1la and L1b ensure that the load
of a vehicle at task j is equal to the load at task
¢ minus the demand of task j. Constraint L2 en-
sures that a vehicle leaves the logistics task with
a full load. Constraints L3a and L3b ensure that
vehicle k£ leaves the starting task with a load of

SLy.
w; > R(q — q;) — M (1 — zy5)
VieT, jelL (L4)
Vie L (L5)
Constraint L4 ensures that the waiting time at
a logistics task is R minutes per load unit that

is added. Constraint L5 ensures that a vehicle
leaves a logistics task before LT;.

si +w; < LT;



qi < VieTl (LG)
Tij = 0 Vi € L, j S F, TNZ 7£ TNJ (L8>
T = 0 Vi € L, ] epP (Lg)

Constraint L6 ensures that the load of a vehicle
can not exceed the vehicle’s capacity. Constraint
L7 ensures that vehicles do not drive from one
logistics task to another. Constraint L8 ensures
that vehicles can only drive from a logistics task
to its corresponding flight task. Constraint L9
ensures that vehicles can not drive from a logistics
task to a parking task.

5. Model solving

Although mathematically correct, the model’s
solvability can be substantially improved by sev-
eral measures. Powerful software packages can
solve MILP-problems efficiently for problems in
which the number of binary variables is of rea-
sonable size (Earl and D'Andrea, 2005). A ma-
jor disadvantage of MILP is its computational
complexity. The NP-complete nature of many
scheduling problems, and MILP-models in gen-
eral, precludes their being solved within a rea-
sonable time (Roslof et al., 2002). According to
Earl and D'Andrea (2005), the computational re-
quirements can grow significantly as the number
of binary variables needed to model the problem
increases. Darvish et al. (2020) state that the ef-
fectiveness of solving optimization problems using
a brand-and-bound/cut algorithm relies mainly
on its mathematical formulation. Therefore, sev-
eral improvements are implemented such as model
tightening, increasing the model density, and
breaking model symmetry.

5.1. Model tightness

The constraints below are mathematically re-
dundant, but improve the solvability by enforcing
variable upper bounds on each continuous vari-
able to tighten the feasible region.

s; < ETy+ M (1 —y;)
s < ETj+ M (1 —y;)

Vi € Py
Vi € Pg

(T1)
(T2)

Counstraint T1 forces a vehicle to start at ET
at the start P task that is used. Constraint T2
forces a vehicle to arrive at its end P task at ET.

5.2. Model density

Although there is nothing wrong with the
model formulation from a mathematical point of
view, the model does contain a lot of binary vari-
ables that could never be part of a feasible solu-
tion due to the constraints in the model. This
makes that the model is currently quite sparse.

In a similar way to the chain decomposition ap-
plied in the work of Hooker and Natraj (1995), by
filtering the (i, j)-pairs based on the constraints of
the model, it is already possible to omit a large
number of (7, j)-pairs from the model in advance.
This reduction does not affect the availability of
potentially optimal solutions in the model, be-
cause only those decisions that are infeasible due
to the constraints are omitted from the model.
The reduction can go up to > 85%. Let T be the
set of tasks, and Gy be the set of all pairs (i, j),
ie. Go={(i,j) | i,j €T }. Then, the steps to
reduce the (1, j)-pairs are:

Gi=Go\{ (1,)) | i,) € Goi=J }

G2 :Gl\{ (27])| Za] € Glai €L7j GF,
TN, # TN}

Gs =G \{ (4,)) |1, € Ga,j €Ts }
Gy=G3\{ (4,)) |1, €G3,i€Tg }

Gs =G4 \{ (4,)) | i, € Gy,i,j €L}
Ge=Gs5\{ (i,4) |i,jeGs,ic€ L,je P}
Gr=Ge\{ (4,)) |i,j€Gs,i €Ts,j €T }
GS—G7\{ (4, 7) ‘ i,j € G, ET, + TT, +

D;;
= > LT, - TT; |

The set Gg represents the filtered combinations
after applying all the specified conditions.



To further reduce the number of variables in the
model, logistics tasks are only created for vehicles
with a logistics task. For vehicles without a logis-
tics task it holds that L = (). The decision vari-
able ¢; and the "logistics task constraints” are also
only added to the model if necessary. The above
actions result in a lower computational load in
two ways: 1.) when creating the model there are
fewer constraints and variables that have to be in-
cluded, and 2.) because the optimization problem
is smaller, it can be solved faster.

5.3. Model symmetry

Degeneracy in MILP problems occurs when the
optimal solution to the problem lies at a point
where one or more of the binary variables can
take on different values while still maintaining
the same optimal objective value. In other words,
there are multiple feasible solutions that all yield
the same objective function value. These solu-
tions are called symmetric. When degeneracy oc-
curs, it means that the search space for finding the
optimal integer solution is more complex and may
require additional computational effort to explore
all possible integer combinations. It has been a
topic of interest since the invention of the simplex
method (Gamrath et al., 2020). By augmenting
the model with suitable symmetry-breaking con-
straints, the structure of the model can be con-
siderably improved by reducing the extent of the
feasible region that must be explored (Sherali and
Smith, 2001).

In the developed model, degeneracy is resulting
from the possible combinations to assign vehicles
to a sequence of tasks. For a given vehicle set
with | K| vehicles, there are

K|
Ny
possible options to select N, vehicles from the
fleet. Second, among the selected vehicles, there
are N,! options to allocate the sequences of tasks

to the vehicles. Combining both types of symme-
try results in

_ [K]!
- NJ(K] = N)!

(1.3 = (
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() 1
N,) " NJM(K| = Ny)
equivalent solutions.

To break the first type of symmetry, a con-
straint based on the work of Adulyasak et al.
(2014) can be used: constraint S1 ensures that
vehicle k£ can only be used if vehicle k — 1 is used.

vk € Kunused \ min (Kunused) (Sl)

To resolve the second symmetry issue, a hierar-
chical constraint inspired by Darvish et al. (2020)
can be used: constraint S2 ensures that if task
j € Ty is serviced by vehicle k, then at least one
other task j* € Tpg, with j/ < j, must be per-
formed by vehicle £ — 1.

j—1
E xi/j/

j’=minTp

K"
(IK] = No)!

'Nu! =

2 < Zp—1

Tij <
j

vj € TB) ke Kunused \ min (Kunused> )
K e Kunuseda K =Fk— 1, 1= STka il = STk’
(52)

Both constraints are valid inequalities and
strengthen the model formulation. These con-
straints can only be used if all vehicles in the fleet
are homogeneous and start at the same location.
If this is not the case, a more optimal solution
could be prevented by one of the symmetry break-
ing constraints. The constraints are therefore only
applied in the model if this is possible without ex-
cluding optimal solutions.

6. Model application

To validate the model, a sensitivity analysis and
a case study were conducted based on the GSE
fleet of KLM Royal Dutch Airlines that is op-
erating at Amsterdam Airport Schiphol (AAS).
To this extent, the MILP-problem was coded in
PyTHON and solved using GUROBI. This paper
includes the validation for a GSE type without a
logistics function (belt loader) and a summary of
the results for a GSE type with a logistics function
(water truck). We refer to Timmermans (2023)
for the complete model validation.



6.1. Instances generation

The following datasets were used to generate
the instances:

e Flight schedule: the used flight schedule was
provided by KLM and based on the TATA
Busy Day definition. Based on this defini-
tion, July 13 2023 was selected as the TATA
Busy Day. Filtering the flight schedule on
airlines that are handled by KLM resulted in
a flight schedule with a total of 735 Air Traf-
fic Movements (ATMs) by fourteen different
aircraft types. The ATMs were matched with
each other to create a flight schedule.

Task information: The turnaround tables
available at KLM for the various aircraft
types were used to create the flight tasks. For
aircraft types for which no turnaround table
was available, a comparable aircraft type was
used. A distinction was made between sep-
arate arrivals, separate departures and full
turnarounds.

Distances: the aircraft stands and parking lo-
cations are divided over 35 location groups.
These location groups were based on a docu-
ment used by KLM. It also includes the dis-
tances between the location groups and based
on this the shortest distance between all com-
binations of location groups were calculated.

Vehicle data: spec sheets by TLD (2023) and
Charlatte (2017) were used for the belt load-
ers and spec sheets by Vestergaard (2023)
and Orientitan Ground Support Equipment
(2019) were used for the water trucks. The
calculation proposed by Kirca et al. (2020)
was used for the energy consumption of both
vehicles. An average speed of 15 km/h was
assumed for the driving speed.

For the sensitivity analysis, the objective func-
tion as discussed in Section 4 was first normalized.
In this way, the sensitivity analysis is performed
across the relevant range of the objective values.
Only the first two sub-objectives were considered,
which focus on minimizing the number of vehicles
used and the distance driven.

11

6.2. Results for the belt loaders

Figure 1 shows the results of the sensitivity
analysis for the belt loaders. A distinction is made
between the total number of vehicles used in a day
and the maximum number of vehicles required
within a 30-minute time window. A number of
interesting solutions are:

e Solution 6 with (A1, Ag) = (0.70,0.30): This
is the solution that requires the least num-
ber of vehicles, with the lowest total traveled
distance (48.773 km) based on this number
of vehicles. In this case, a total of 37 vehicles
are used during the day. These vehicles are
also all needed at the peak time.

Solution 10 with (A1, A2) = (0.50,0.50): This
solution shows that with 37 vehicles during
the peak a lower total traveled distance of
40.733 km can also be achieved. A total of
41 vehicles is used during the day.

Solution 18 with (A, Ag) = (0.001,1.00):
This is the solution with the lowest total trav-
eled distance (24.620 km). This requires a
total of 52 vehicles. During the peak, 41 of
these vehicles are used.

Pareto front belt loaders
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Figure 1: Two Pareto-fronts for the sensitivity analysis
of the multi-objective optimization for the belt loader op-
erations. The numbered labels next to the data points
correspond to a combination of A\; and As.



In general, there is a trend that shows that the
use of more vehicles results in a lower total trav-
eled distance. Because this type of GSE only op-
erates at the aircraft stands, the vehicles can often
remain idle nearby. The figure also includes solu-
tions that are not in the Pareto front. Analysis of
the results has shown that these solutions include
inefficiencies that arise from the use of the rolling
horizon approach. In these scenarios, a ”choice”
is made for certain vehicles in one optimization
run that is optimal at that moment. However,
this choice appears to be generally not optimal
in the optimization runs in the remainder of the
rolling horizon approach.

Solution 6 from Figure 1 is used for the model
validation. Figure 2 shows how many vehicles are
needed at each time of the day. The average uti-
lization rate of the vehicles is approximately 21%.
Here, the utilization rate is calculated as the to-
tal time that a vehicle is busy with (driving to) a
task, divided by the time in one day (24 hours).
This shows that there is room for charging in be-
tween. A total of 210 kWh was used to execute
the task schedule. Of this, 182 kWh (86%) was
used to perform the tasks on the aircraft stands,
i.e. running the conveyor belt, and 29 kWh (14%)
was used for driving a total distance of 48.773
km. This makes clear that most of the energy
consumption for the belt loaders cannot be opti-
mized, because the flight tasks have to be carried
out anyway. If desired, the 29 kWh can be re-
duced by using more vehicles, as can be seen in
Figure 1. None of the belt loaders had an depleted
battery at the end of the day.

Required number of vehicles per 30 minute block

00:00 —+

Time (hh:mm)

Figure 2: The required number of belt loaders per 30 min-
utes.

6.3. Validation for the belt loaders

The data available at KLM showed that the
number of belt loaders as determined by the
model is a bit too high, but in the right order
of magnitude. This is mainly due to the fact that
two belt loaders are used per flight in the model
and in reality this is sometimes one because of 1.)
the amount of baggage on a flight, and 2.) the
availability of resources. The conversations with
KLM also revealed that it is usually not necessary
to charge the belt loaders during the day. This
is confirmed by the solution of the model. The
vehicles were originally purchased with a battery
capacity that should last two shifts to operate a
full day, but due to degeneration there are bat-
teries that have an State of Health (SOH) that is
lower than the 100% used in this model.

6.4. Results for the water trucks

Figure 3 shows the results of the sensitivity
analysis for the water trucks. The vast major-
ity of solutions are not part of the Pareto front.
A trend that can be deduced from this is that
a minimization of total traveled distance in this
case also results in a minimization of the num-
ber of vehicles required. Because the water trucks
first have to go to the logistics location to collect
water, a relatively high initial “fixed” distance is
required to put a new vehicle into use.

Pareto front water trucks
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Figure 3: Two Pareto-fronts for the sensitivity analysis of
the multi-objective optimization for the water truck op-
erations. The numbered labels next to the data points
correspond to a combination of A\; and As.



The task schedule that follows from the model
for solution 10 (in Figure 3) is shown in Figure 4.
New vehicles are added gradually during the day,
because other vehicles get depleted. For many
vehicles, a time window can be identified in which
it would be possible to use opportunity charging.
This would result in fewer vehicles needed in total.

Task schedule of water trucks
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Figure 4: The task schedule for the water truck operations.

A total of 977 kWh was used to execute the task
schedule in Figure 4. Of this, 30 kWh (3%) was
used to perform the tasks on the aircraft stands,
operating the pump, and 947 kWh (97%)
was used for driving a total distance of 152.283
km. This makes clear that most of the energy
can be optimized, by minimizing the total trav-
eled distance. The batteries of 16 water trucks
were eventually depleted (SOC < 30%).

1.e.

7. Discussion

Based on the literature review, it had already
been established that there are many differences
between the GSE types required for servicing air-
craft at an airport. Based on this, the decision
was made to differentiate certain groups of GSE
types in the model that share similar character-
istics, so that the model can be broadly applied.
This decision was made because the literature re-
view also revealed that there are few works that
encompass all GSE types in the research. The re-
sults obtained from the model provide a good in-
dication of the required number of vehicles, energy
consumption, and the possibility of optimization.
However, the validation of the model, in partic-
ular, shows that despite distinguishing between
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certain groups of GSE, there are still differences
in the operation and performance of each individ-
ual GSE type that affect the results. This is where
the desired application of the model becomes rel-
evant. Making a distinction between a strategic
and operational application of the model and the
associated choices allows for an interpretation of
the choices and assumptions that emerged in the
review of the existing works and the contributions
and limitations of this research.

The results of the model developed in this re-
search show that the model can be used for mak-
ing strategic decisions. The vehicle quantities
generated by the model are in the right order
of magnitude, and the total energy consumption
provides sufficient insight for making decisions at
a strategic level. By including all the components
that were assumed to be essential for modeling
GSE operations based on the literature review
and interviews, the current model can already
be used at an operational decision level more ef-
fectively than comparable works that have made
more simplifications and assumptions at this level.

8. Conclusions and future work

From the results of the case study, it can be con-
cluded that the impact of implementing eGSE on
the capacity and demand of a GSE fleet depends
on the type of GSE. For GSE types that can last
an entire day on a single battery charge, there is
no difference in the capacity that can be achieved.
These vehicles can, therefore, be directly replaced
one-to-one compared to their conventional coun-
terparts. This primarily applies to smaller vehi-
cles, and a condition for this is that the vehicles
are not needed at night, which allows them to get
charged again. This is the case at many airports
due to nighttime curfews.

However, there is also a group of GSE types
where the model results show that the vehicles be-
come depleted before the end of the day. To main-
tain the capacity of these GSE types, it is neces-
sary to either 1.) use more of these vehicles, 2.)
charge the vehicles during the day, 3.) use batter-
ies with a higher capacity, or 4.) use vehicles with
a better efficiency. However, it should be noted



that charging the vehicles during the day does
not necessarily results in a maintained capacity,
as this is depending on the possibility to charge.
This is related to the distribution of the tasks over
the day. Using the developed model, it is possi-
ble to determine how many additional vehicles are
needed when there is no daytime charging. For in-
terim charging, an estimate can be made based on
the model results and the concept of opportunity
charging, but optimality is not guaranteed in this
case. Therefore, additional research is required
for these vehicles, including the development of a
charging strategy as part of the scope. The work
of van Oosterom et al. (2023) provides a nice ex-
ample of a method for routing the vehicles and
scheduling them to either perform flight tasks or
battery recharging.
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