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Abstract

This article considers the relation between the spanning properties of lattice orbits of discrete
series representations and the associated lattice co-volume. The focus is on the density theorem,
which provides a trichotomy characterizing the existence of cyclic vectors and separating vectors,
and frames and Riesz sequences. We provide an elementary exposition of the density theorem,
that is based solely on basic tools from harmonic analysis, representation theory, and frame theory,
and put the results into context by means of examples.
© 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

MSC 2010: primary 22D25; 42C15; 42C30; 42C40; secondary 22D10; 22E40
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1. Introduction

Let G be a second countable locally compact group and let (7, H ) be an irreducible,
square-integrable unitary representation of G, a so-called discrete series representation.
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For a lattice I' C G, we consider the relation between certain spanning properties of
lattice orbits of m under a vector g € H,,

n(Ig={n(y)g:y T}, (1.1)

and the lattice co-volume vol(G/I") of I', i.e., the volume of a fundamental domain of I
The spanning properties that we consider are the existence of cyclic, separating, frame
and Riesz vectors; see Section 3 for the precise definitions.

The notions of cyclic and separating vectors occur primarily in the theory of operator
algebras, in particular, von Neumann algebras, and they provide (if they exist) a powerful
tool in studying the structure of these algebras. The stronger notions of frames and
Riesz sequences, on the other hand, form the core of Gabor and wavelet theory, and
are important in applications as they guarantee unconditionally convergent and stable
Hilbert space expansions.

The central theorem relating the spanning properties of systems (1.1) and the corre-
sponding lattice co-volume is referred to as the density theorem. Under the assumption
that the lattice I" is an infinite conjugacy class (ICC) group, i.e., any conjugacy class
{yvoy =" | ¥ € I'} for yy € I' \ {e} has infinite cardinality, the density theorem provides
the following trichotomy:

Theorem 1.1. Let (w, H,) be a discrete series representation of a second countable
unimodular group G of formal dimension d, > 0. Suppose I' C G is an ICC lattice.
Then the following assertions hold:

(i) If vol(G/I')d, < 1, then m|r admits a Parseval frame, but neither a separating
vector, nor a Riesz sequence;
(ii) If vol(G/I')d, = 1, then | admits an orthonormal basis;
(iii) If vol(G/I')d, > 1, then m|r admits an orthonormal system, but not a cyclic
vector.

(While d, and vol(G/I") depend on the normalization of the Haar measure on G, their
product vol(G/I')d,, does not.)

The density theorem characterizes the spanning properties of the lattice orbits (1.1)
in terms of the lattice co-volume or its reciprocal, often called the density of the lattice.
In the setting of a general unimodular group, the assumption that the lattice is ICC is
essential and cannot be omitted — see Example 9.3 below — although a more general
version of Theorem 1.1 for possibly non-ICC lattices was obtained by Bekka [11]. The
existence claims in Theorem 1.1 are not accompanied by constructions of explicit vectors.

The criteria for the existence of cyclic and separating vectors in Theorem 1.1 are
well-known to be consequences of the general theory underlying the so-called Atiyah—
Schmid formula [3,4,32], and, for certain classes of representations, also a consequence
of Rieffel’s work [71,72]. The stronger statements on the existence of Parseval frames
(part (i)) and orthonormal bases (part (ii)) can also be obtained by similar techniques
as shown by Bekka [10,11]. The statement on orthonormal systems (part (iii)) does not
seem to have explicitly occurred in the literature before.

While the interest in the density theorem is broad and manifold, as it encompasses
operator algebras, representation theory, mathematical physics, and Gabor and wavelet
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analysis, the available proofs rely on advanced theory of von Neumann algebras, and may
only be accessible to a smaller community of experts. This expository article provides an
elementary and self-contained presentation of the density theorem, that is based solely
on basic tools from harmonic analysis, representation theory, and frame theory, and
should be accessible to an interested non-expert. While almost all methods employed
exist in some antecedent form in the different specialized literatures, their particular
combination here makes the basic structure underlying the density theorem transparent;
see Section 1.3. The elementary arguments in this article fall, however, short of deriving
the more general version of Theorem 1.1 by Bekka [11]. We hope that this article
motivates the non-specialist to delve deeper into operator-algebraic methods. We also
expect that the concrete exposition contributes to the study of quantitative aspects of
Theorem 1.1, such as the relation between the distance between vol(G/I")d, and the
critical value 1, and special qualities of the corresponding cyclic or separating vectors,
such as smoothness in the case of Lie groups.

1.1. Context and related work

In the setting of Theorem 1.1, for any non-zero g € H,, the system {7 (x)g : x € G} is
overcomplete, i.e., it contains proper subsystems that are still complete. The fundamental
question as to whether subsystems corresponding to lattices (1.1) remain complete
was posed by Perelomov in his group-theoretical approach towards the construction of
coherent states [65,67]. In fact, a criterion for the completeness of subsystems of coherent
states similar to Theorem 1.1 was posed as a question in [65, p. 226]." These criteria have
been considered for specific systems and vectors in, e.g., [8,36,47,56,60,64,66,69].

The related question as to whether a system (1.1) is a (discrete) frame is at the core
of modern frame theory [20] and has, in particular, a long history in Gabor theory [39].
The existence of a frame vector is also studied in representation theory, in whose jargon
such a vector is called admissible [26,27]. While the mere existence of a frame or Riesz
vector for a given lattice is quite different from the validity of these properties for one
specific vector, there is an interesting interplay between the two problems. In Section 9
we discuss a selection of examples, including one where Theorem 1.1 yields seemingly
unnoticed consequences.

1.2. Projective versions

The density theorem can also be formulated for projective unitary representations
[11,31,37,75], and allows for applications to representations that are square-integrable
only modulo a central subgroup (as in the case of nilpotent or reductive Lie groups).
The proofs that we present work transparently for projective representations and we
formulate the main results in that generality in Theorem 8.1. In the projective setting,

the lattice is not assumed to be ICC, but is assumed to satisfy the weaker Kleppner

' Perelomov uses the term coherent state with a slightly different meaning, as systems are not the full
orbit of a group representation, but parametrized by a homogeneous space to eliminate redundancies. See
[57,58] for the relation between the two notions.
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condition [48], a compatibility condition between the lattice and the cocycle of the
projective representation. The projective formulation greatly simplifies the treatment of
concrete examples such as weighted Bergman spaces and Gabor systems in Section 9.

1.3. Technical comments

The common approach to the density theorem is through the coupling theory of von
Neumann algebras, and a self-contained presentation in this spirit can be found in [10,32].
Although we make no explicit reference to the coupling theory, some of the arguments
we give are simplifications of standard results, as we point out throughout the text. Most
significantly, we circumvent certain technicalities associated with the so-called trace of a
group von Neumann algebra. In finding elementary arguments, we benefited particularly
from reading [2,18,27,51,73].

An important simplification in the proof of Theorem 1.1 occurs in the derivation of
the necessity of the volume or density conditions for cyclicity and separateness, which
also play an essential role in deriving the existence of frame and Riesz vectors. Our
argument is inspired by Janssen’s “classroom proof” of the density theorem for Gabor
frames [42], and underscores the power of frame-theoretic methods. In this article such
argument is pushed further to yield consequences for cyclicity and separateness. While
the necessity of the density conditions for frames and Riesz sequences is an active field of
research [6,28,55], most abstract results are not applicable to groups of non-polynomial
growth. It is therefore remarkable that the particular lattice structure of the systems in
question (1.1) leads to simple and conclusive results.

2. Preliminaries

Throughout the article, the locally compact group G is assumed to be second countable
and unimodular. We fix a Haar measure g on G. Some of the notions below depend
on this normalization, but the main results do not.

2.1. Cocycles and projective representations

A cocycle or multiplier on G is a Borel measurable function ¢ : G x G — T such
that

(i) For all x, y,z € G, o(x, y2)o(y,z) = o(xy, 2)o(x, y);
(ii) For the identity e € G and all x € G, o(x,e) = o(e,x) = 1.

A projective unitary representation (r, H,) of G on a Hilbert space H, is a mapping
7w : G — U(H,) satisfying the following conditions:

(i) The map x — m(x) is weakly measurable, i.e., the map G 2 x — (mw(x)f, g) € C
is Borel for all f, g € H;
(i1) There exists a function o0 : G x G — T such that 7(x)7(y) = o(x, y)m(xy) for
all x, y € G;
>iii) mw(e) = 1.
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In this case, the map o in (ii) is uniquely determined and it is a cocycle. A projective
unitary representation with cocycle o is called a o-representation.
Common examples of a representation space H, are Hilbert spaces of real-variable
or complex-variable functions; see Section 9 for a detailed discussion of some examples.
Given two o-representations (71, Hy,) and (w2, Hy,), a linear operator T : Hy —
H, is said to intertwine m; and m, if

Tmi(x) =m(x)T, for all x € G.

If a bounded linear operator T : H,, — H,, intertwines 7 and 75, then T* : H,, —
H, interwines m and ;.
See [30,54,82] for background on cocycles and projective representations.

2.2. Square-integrable o -representations

Let (7w, H,) be a o-representation of G. For f,g € H,, the associated matrix
coefficient is defined by C, f(x) = (f, w(x)g) for x € G. The o-representation (7, H)
is called square-integrable if there exists a norm dense subspace D C H, such that

Cof =(f,m()g) € LX(G), f €M, geD. 2.1
The o-representation (A7, LX(G)) given by
QEMF)®) =0(,y 'F(y™'x),  FelL*G), x,y€G,

is called the o -regular representation and satisfies the covariance property or intertwining
property:

Co(mM X)) =0 (3, y ' 0)C fO %) = (AEGICo f)(x), x,y € G, (2.2)

forall f e H,, g€D.

A o-representation (w, H,) is called irreducible if the only closed 7 (G)-invariant
subspaces of H, are {0} and H, and is said to be a discrete series o-representation
if it is both square-integrable and irreducible.

Given a discrete series o -representation (i, H ), there exists a unique number d, > 0,
called the formal dimension of m, such that the orthogonality relations

/(;(ﬂ(x)fl, g (m(x) fo, g2) dinc(x) = d ' (f1, f) (g1, &2) (2.3)

hold for all fi, f>, g1, &2 € Hx.

The formal dimension d, > 0 depends on the choice of Haar measure on G, and
in certain concrete settings, such as real Lie groups, it can be explicitly computed. The
book [17] treats nilpotent Lie groups while [49,59] treats semisimple Lie groups. Explicit
expressions of d,; for the simplest examples of such groups are also provided in Section 9.

See [74,75] and [59, Appendix VII] for more on square-integrable representations.

2.3. Fundamental domains and lattices

Let I" € G be a discrete subgroup. A left (resp. right) fundamental domain of ' in
G is a Borel set 2 C G satistying G =I'- 2 and y2Ny'2 =@ (resp. G = - I" and
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Ry N Ry =@)forall y,y € I' with y # y'. If 2 is a left (resp. right) fundamental
domain, then 27! is a right (resp. left) fundamental domain. The discrete subgroup
I' € G is called a lattice if it admits a left (or right) fundamental domain of finite
measure. Equivalently, a discrete subgroup I’ is a lattice if and only if the quotient G /I
admits a finite G-invariant regular Borel measure. Any two fundamental domains have
the same measure, and thus, we may define the co-volume of I' as vol(G/I") := ug({2).
This depends of course on the choice of the Haar measure for G.

Standard examples of lattices are Z¢ € R and SL(2, Z) € SL(2, R). The lattice Z¢ is
co-compact in RY, ie., R? / 74 is compact, while SL(2, Z) is not co-compact in SL(2, R).

See [68] and [12, Appendix B] for more on lattices and fundamental domains.

2.4. ICC groups and Kleppner’s condition

Let I" be a discrete countable group and let o : I' x I' — T be a cocycle. An element
yo € I' satisfying o (yo, ) = o(y, yp) for all elements y € I' commuting with yy is
called o-regular. The pair (I', o) is said to satisfy Kleppner’s condition if the conjugacy
class C, == {yvoy~' | y € I'} of any o-regular element y, € I"\ {e} is infinite. The
group I" is called an infinite conjugacy class (ICC) group if any conjugacy class C,,, for
1o € I' \ {e} is infinite. Any ICC group I satisfies Kleppner’s condition for any cocycle
0:GxG—T.

2.5. Von Neumann algebras

Let H be a separable complex Hilbert space. A net (7, )y of bounded linear operators
T, € B(H) converges in the strong operator topology (SOT) to an operator T € B(H)
if T,f — Tf in the norm of H for all f € H, and it converges in the weak operator
topology (WOT) if (T, f, g) —> (T f, g) for all f, g € H.

A subalgebra A C B(H) is called a von Neumann algebra if A is self-adjoint,
ie., A = A* contains the identity / and is weakly closed in B(#). The commutant
M’ of a set M C B(H) is the class of all bounded linear operators that commute with
each operator of M, i.e.,

M ={TeB#H): TS=ST, VS € M}.

By von Neumann’s density theorem (see, e.g., [22, 1.3.4, Corollary 1]), it follows that if
A C B(H) is a self-adjoint algebra containing the identity, then A" := (A’) is contained
in the strong closure of A in B(#). In particular, the double commutant .A” is the smallest
von Neumann algebra containing .4 and equals the strong and weak closure of .A. Thus,
for every operator T € A", there exist a net of operators of 4 converging to 7 in the
SOT topology. Moreover, by Kaplansky’s density theorem (see, e.g., [22, 1.3.5, Theorem
3]), the net may be assumed to be uniformly bounded in operator norm.

For a family of operators A C #H and a vector g € H, the closed linear span of
Ag ={Ag : A € A} in H is denoted by [Ag] := span.Ag.

Given a von Neumann algebra A € B(#) and an orthogonal projection Px onto a
closed subspace K C H, the space K is invariant under A, i.e., A(K) C K, if and only
if P € A’. This observation is known as the projection lemma. For more background
on von Neumann algebras, see [22,30,44].
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2.6. Partial isometries and the polar decomposition

Let 4 and K be complex Hilbert spaces. A bounded linear operator U : K — H
is called a partial isometry if U is an isometry when restricted to the orthogonal
complement N'(U)* of its null space N'(U). The subspace N'(U)* is called the initial
space of U and the range R(U) of U is the final space of U, i.e., the image of N'(U)*
under the isometry U | pr L

A linear operator T : dom(T) C H — K is densely defined if its domain dom(7) is
a norm dense subspace in ‘H and is called closed if its graph G(T) :={(f, Tf) | f € H}
is closed in H & K. For a closed, densely defined linear operator T : dom(7) C H — K,
its adjoint is denoted by T* and its modulus by |T| := (T*T)"/?. The operator |T]| is
defined by Borel functional calculus and has domain dom(|7|) = dom(7"). The polar
decomposition of T is uniquely given by

T =Ur|T|=IT"|Ur,

where Uy : H — K is a partial isometry with initial space AN (T)* = R(|T|) and final
space R(T). For more details and background, see, e.g., [24, VI, Section 13].

3. Orbits of square-integrable representations

Let (7, H,) be a square-integrable o -representation of a countable discrete group I
on a separable (complex) Hilbert space H,. For a vector g € H,, we consider the orbit
n(I")g of g under (7, H,), i.e.,

a(lg = {n(y)g 1y € F}.

We treat the system m([")g as a family indexed by I' and allow for repetitions.
3.1. Cyclic and separating vectors

A vector g € H, is called cyclic or complete if [w(I")g] = H,. By von Neumann’s
density theorem, the vector g € H,; is cyclic if and only if [7([")"g] = H,. A vector
g € H is called separating for w(I')” if T € w(I")” and Tg = 0 imply 7 = 0, that is,
if the map n(I")" > T +— Tg € H, is injective.

A vector g € H, is separating for 7 (I")” if and only if [ ()Y g] = H,. Indeed, if
[7(I"Yg] # H, then the projection Px onto K := [ (") g] is in w(I")” and Px # I.
Thus I — P # 0 and (I — Px)g = 0, showing that g is not separating for 7 (I")".
Conversely, if [7(I"Yg]l = H, and T € 7w (I")" issuch that Tg = 0,then 0 = STg = T Sg
for all S € #(I"), and hence T = 0 since 7 (I")'g is norm dense in H,.

Intuitively, a vector g € H, is cyclic if the corresponding orbit 7 (I")g is rich enough
so as to provide approximations for every vector in H,. On the other hand, if g is
separating for 7t (I")”, then 7 (I")” cannot be too rich, because 7(I")' > T + Tg € H,
is injective.

The central question of this article is the relation between the existence of cyclic and
separating vectors on the one hand, and the co-volume of I" within a larger group G. As
a key tool, we consider certain strengthened notions of cyclicity and separation.
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3.2. Frames and Riesz sequences

A system 7 (I")g is called a frame for H, if there exist constants A, B > 0, called
frame bounds, such that the following frame inequalities hold:

Allf 13, < Y WLTMNP < BIf Iy, feHx. 3.1

yel’

A vector g is a frame vector if m(I")g is a frame. A system m([")g forming a frame is
complete by the first (lower) bound in (3.1). The second of the frame inequalities (upper
bound),

LT < BIf I3, f €M, (32)

yel’

is known as a Bessel bound. A vector g satisfying (3.2) is a Bessel vector. Note that the
definition concerns 7 (I")g as an indexed family. Two indexations of the same underlying
set can have, for example, different frame bounds. The frame bounds of a given frame
and indexation are of course not unique.

The Bessel condition (3.2) is equivalent to the frame operator

Ser i He = Ha, Serf =Y (f.7())T(1)g

yel’

being well-defined and bounded. The full two-sided frame inequality (3.1) is equivalent
to the frame operator being a positive-definite (bounded, invertible) operator on H,. A
frame m(I")g for which the frame bounds can be chosen as A = B = 1 is called a
Parseval frame, because it gives the identity

113, =Y WAxP  f €Ha.
yel’

Equivalently, 7(I")g is a Parseval frame for H, if and only if its frame operator S, r
is the identity on H,. Whenever well-defined and bounded, the frame operator S, r
commutes with 7(y) for all y € I'.

Remark 3.1 (Turning a frame into a Parseval one). An arbitrary frame 7 (I")g can be

turned into a Parseval frame by considering g := S 71F/Zg Indeed, if 7(I')g is a frame,

then S, is a positive operator, and, therefore, g is well-defined. Moreover, since S, 1/ 2

also commutes with each 7 (y), for f € H,,

g[‘f Z f JT(]/)Sg 1/2 )JT()/)Sg yzg_S;I/Z gFSg 1/2f f
yel’

showing that 7 (I")g is a Parseval frame for H,.

A system m(I")g is called a Riesz sequence in ‘H, if there exist constants A, B > 0,
called Riesz bounds, such that

> cyn(y)g

yel

Allel%, <

< Bllcl%. ¢ =(c))yer € ).

7T
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A duality argument, shows that a Riesz sequence satisfies the Bessel bound (3.2).
Moreover, a Riesz sequence is linearly independent and w-independent, and hence cannot
admit repetitions. A vector g yielding a Riesz sequence w(I")g is a Riesz vector.

A complete Riesz sequence m(I')g is called a Riesz basis for H,. Equivalently, a
system 7 (I")g is a Riesz basis for H, if it is the image of an orthonormal basis under a
bounded, invertible operator on H,. If w(I")g is a Riesz basis for H,, then 7 (I")g and
rr(F)S;ng = S;lprr(]")g are biorthogonal sequences in H,, i.e., (7 (y')g, S;lpn(y)g) =
8y, fory,y el.

It will be shown in Proposition 5.2 that, under Kleppner’s condition, if 7([")g is a
Riesz sequence, then g is separating for 7 (I")".

Remark 3.2 (Turning a Riesz sequence into an orthonormal one). If w(I")g is a Riesz
sequence in H,, then it is a Riesz basis for [7(I")g] and hence the frame operator
Se.r : [mIg]l — [m(")g] is well-defined and bounded. The biortogonality of the
systems 7 ([")g and n(F)S;}g yields that

—1/2 / —1/2 ’ — /
(S, (8. S, P (n)g) = (r(y)g. S, pn(v)g) =8y vV €T,
showing that n(F)S;}/Zg = S;%zn(F)g is an orthonormal sequence in H.

For more on frames and Riesz bases, see, e.g., the books [15,83].

3.3. Bounded operators and Bessel vectors

The coefficient operator and reconstruction operator associated with (I")g are given
respectively by

Corf={fin(18),cps f€MHa, (3.3)
and
Dyrc=Y ¢,m(1)g, ¢ =(c)yer € coo(D), (34)
yel

where coo(I") € C!" denotes the space of finite sequences on 1.

Recall that w(I")g is called a Bessel sequence if there exists B > 0 such that (3.2)
holds. In this case, the coefficient operator is well-defined and bounded as a map from
H, into £2(I"), and its adjoint D, r is well-defined and bounded from (D) into H.,.

The space of Bessel vectors is denoted by B,. The assumption that (;r, ) is square-
integrable in the sense of (2.1), together with the uniform boundedness principle, yields
that the space B, is norm dense in H.

3.4. Coefficient and reconstruction as unbounded operators

In the sequel, we treat the coefficient mapping (3.3) and reconstruction mapping (3.4)
as operators from domains and on images in which they do not necessarily act as bounded
operators.
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The coefficient operator C, r, with domain
dom(Cy.p)=={f € Hx : Corf € t*())}

is given by f +— ((f, m(¥)g))yer and well-defined from dom(C, r) into (D).
The reconstruction operator D, r, with domain

dom(D, 1) == {c € 62([') ' Af e H, ch(n(y)g,h) =(f,h), Yh € Bn}

yel’
(3.5)

is given by D, rc = f and well-defined from dom(D, r) into H,, where f € H, is
the vector occurring in the domain definition (3.5). Note that f is uniquely determined
since B, is a dense subspace in H,,.

For simplicity, we also sometimes write

Dy rc = Z ¢, (y)g;
yel’
the series is however a formal expression for the vector f in (3.5).
The following result provides basic properties of the (possibly) unbounded coefficient
and reconstruction operators.

Proposition 3.3. Let (w, H,) be a square-integrable o -representation of a countable
discrete group I'. Let g € H, be an arbitrary vector.

(i) The coefficient operator C,  : dom(C, ) — (), Corf=Ufim(Y)g)yer is
a closed, densely defined operator.

(ii) The reconstruction operator Dy r : dom(Dg r) — Hz, Dg rc = f, is a closed,
densely defined operator.

Proof. (i) The map C, r : dom(C, ) — () is densely defined since the dense space
of Bessel vector B, C dom(C, r). To show that Cy p is closed, let f, — f in H, with
fu € dom(Cy ) and assume that C, r f, — cin 2(IN asn — oo. By Cauchy—Schwarz,

ICo.r fu(¥) = Cor fFW = [ fo = [ W = 1fn = flln g3, — O

as n — 00, yielding that ¢ = C, rf. This shows that Co rf € £2(I"), and hence
f € dom(C, ).

(ii) Note that the map D, r is densely defined since the space of finite sequences
coo(I") € dom(D, ). To show that D, r is closed, let (c®Yeny C dom(D, r) be such
that ¢® — ¢ in €*(I") and f; := Dy pc® — f for some f € H, as k — oco. Let
h € B, be arbitrary. Then,

(¢, Corh)p =D Wimy)g, h) = (fi h).
yel
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Since Cqrh € X(I") as h € By, it follows that (c®, Ce.rh)ary — (¢, Cqrh) as
k — o0, and hence
— 1 (k) — 1 —
Do cmig.h) = lim (e, Corh)po = lim (fi. h) = (f.h).
yel
Thus ¢ € dom(D, r) and D, rc = f, which shows that D, r is a closed operator. []

Remark 3.4. For a general frame { f;};c; in an abstract Hilbert space H, the coefficient
operator f +— ({f, fi))ies 1s always closed, but not necessarily densely defined, on its
canonical domain. The reconstruction operator (c¢;)ic; > Y_;; ¢i f; may fail to be closed
on the domain

iel

{c =(¢))iel € EZ(I) : Zc,-f,- converges in the norm of 7—[},
iel
see [14]. Crucially, in (3.5) and part (ii) of Proposition 3.3, we define the series in a
suitably weak form.

3.5. Uniqueness for the extended representation

Given ¢ = (¢} )yer € 0*(I'), define the operator
T(e): Br > Hpr (g =Y cym(y)g. (3.6)
yel’

Note that w(c) = Zye rcym(y) is well-defined since the series representing 7 (c)g
converges unconditionally in H, by the Bessel property.

In the notation of (3.6), conjugating the operator (c) simply corresponds to (twisted)
conjugation of the corresponding sequence c.

Lemma 3.5. Let (7, H, ) be a square-integrable o -representation of a countable discrete
group I'. Let ¢ € €>(I"). Then, for all y € T,

() (n(y) =w@7(y)e),
where

@7y =a(y=" ¥y (r Yy, v ey, v,y eT. (3.7

Proof. Let y € I' be fixed. The identity 7 (y)m(y)w(y)* = o(y,y)o(yy'y~1 y)
m(yy’'y~") holds for any y’ € I'. Therefore,

rTEm(y) =Y cpoly, Yolyy'y L ymyy'y ™)
y'ell’

= Z ¢y-1,,0 (v v Y VIo G Ty, (3.8)
y'ell

where the second equality follows from the change of variable y’ > y 3’y ~!. Combining
the identity

oy, y 'YV v,y H=ol.y Yo Yy v
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with

1

o,y Yoy Y)Y =o(r,y ) =0, v)a(y v, v,

yields that o (y, y ~'y'V)o(y’, v) = o(y =1, y)o(y~'y'y, y~!) for all y’ € I'. Inserting
this in (3.8) gives
ATE@T W) =D ¢y, oy Yoy Ty vy ()
y'ell
=Y Or0e), 7 (),
y'ell
as desired. [l

Under Kleppner’s condition (see Section 2.4), we have the following important
uniqueness result.

Proposition 3.6. Let (, H,) be a square-integrable o -representation of a countable
discrete group I'. Suppose that (I, o) satisfies Kleppner’s condition. Suppose ¢ € €>(I)
is such that w(c) =0 on B,. Then ¢ = 0.

Proof. The proof is divided into four steps.
Step 1. (Invariance of kernel). Let ¢ = ], be the unitary action of I" on £2(I'") given
by (3.7). Define the closed subspace

K= {c et I') : n(c)g=0, Vge B,,} = ﬂ N(D, 1)

geBx

of ¢3(I"). The space K is ¢ (I")-invariant. Indeed, for ¢ € K, by Lemma 3.5,

<n(z9(y>c)g, h> = <Z cym(y )T (y)'e, n(y)*h> =0

y'el’
for all y € I" and g, h € B,. Moreover, the space K is AS.(I")-invariant: For y € I" and
gv h e BT[7

<” (A%(»)e)g. ”> =Y oy Ve, (yg. h)

y'el’
=Y oy, Yoy, ey (x(y)m(y)g, h)
y'el’
= <Z cym(y)g, n(y)*h> =0,
y'el

where the second equality follows from the change of variable ' > yy’.
Step 2. (Minimal fixed point). Let ¢ € K be arbitrary and consider the norm-closed
convex hull co(?(I")c) in the Hilbert space /. Then there exists a unique d € co(9(I')c)
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of minimal norm. By uniqueness, the vector d must be ¥ ([")-invariant, that is,
dy =o', vy 'y, yil)dy—ly/y, forall y,y eI (3.9)

Therefore, |d| is constant on conjugacy classes.
Step 3. (o-regularity of non-zero entries). Let ' € I" be such that d,» # 0. Suppose
y € I' commutes with y’. Then, by (3.9),

0#dy =a(y,y)oyy'y™ v)d,, -1 =0y, yNo (v, y)d,, (3.10)

and, therefore, o (y, ') = o(y’, y). Thus y’ is o-regular.

Step 4. (Vanishing coefficients on regular classes). By Step 3, if y € I is such
that d, # O, then y is o-regular, and by Kleppner’s condition, the conjugacy class
C, is infinite, unless y = e. On the other hand, by (3.9), |d| is constant on C,, while
|d| € €2(I"), and therefore C, must be finite. We conclude that d, = 0 for all y € I"\ {e}.
Moreover, since d € K, also d, = 0, and hence d = 0.

Step 5. (Conclusion). The above shows that for an arbitrary ¢ € K, we have 0 €
co(@(I")c). Since (¥(y)c). = ¢, for all y € I', it follows that ¢, = 0, = 0. The A7.(I)-
invariance of K now yields that ¢, = o(y =", y)(A7.(y ")c), = 0 for all y € I'. This
completes the proof. [l

Step 2 in the proof of Proposition 3.6 is an application of the minimal method for
ergodic theorems [2, Section 10].

For the Heisenberg projective representation (i, L*(RY)) of a lattice I' < R* (see
Section 9.2), an alternative proof for the uniqueness result of Proposition 3.6 can be
given using the uniqueness of coefficients in Fourier series, see [34, Proposition 3.2]. In
that setting, the statement of Proposition 3.6 is true even without Kleppner’s condition,
while in general it is not, e.g., for I' = SL(2,Z) and a holomorphic discrete series
representation 7w of SL(2, R), cf. Example 9.3.

4. Improving spanning properties
4.1. Mackey-type version of Schur’s lemma
We will repeatedly use the following folklore result.

Proposition 4.1. Fori € {1, 2}, let (7;, Hx,) be o-representations of a locally compact
group G. Suppose that T : Hy — Hy, is a closed, densely defined operator intertwining
(w1, Hgr,) and (72, Hy,); that is, the domain and range of T are respectively w1(G) and
15(G)-invariant, and

Tmi(x)=mx)T, xeG.
If
T=U|T|

is the polar decomposition of T, then |T| : dom(T) — Hr, commutes with (71, Hy,)
and the isometry U : N(T)* — R(T) isometrically intertwines (1, Hy,) and (72, Hx,).
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Proof. Note that 7;(x)* = o(x, x~Dm;(x~!) and let t(x) = o(x,x" ) € T for x € G.
Using that 71 (x)*T* = T*m,(x)* for all x € G, a direct calculation entails

T*Tm(x) = T*m()T = T T (0)m(x ™)' T = t()m Y T*T = m(x)T*T,

showing that 7*T intertwines (71, Hy,). The operator |T'| is obtained from T*T by Borel
functional calculus, and thus also commutes with (71, Hz,), €.g., see [24, Theorem
12.14]. Using this, it follows directly that

Umi(0)|T| = U|T|mi(x) = m(x)U|T],

whence (U (x)—m(x)U)|T| = 0 for x € G. Hence (Um (x)—m(x)U) = 0 on R(|T}).
Since R(|T|) is dense in N'(T)* = R(|T|), the desired conclusion follows. [

Mackey-type versions of Schur’s lemma for representations of x-algebras can be found
in [24].

4.2. From cyclic vectors to Parseval frames

We show the existence of Parseval frames 7 (I')g whenever mw admits a complete
vector.

Proposition 4.2. Let (7, H,) be a square-integrable o -representation of a countable
discrete group I'. Let h € H, be arbitrary. Then there exists g € H, such that w(I')g
is a Parseval frame for [mw(I")h]. In particular, if 7 is cyclic, then there exists a Parseval
frame 7w (I')g for H.

Proof. We split the proof into two steps.

Step 1. (Unitary intertwiner). For h € H,, the map C, r : dom(Cj,.r) € H, — £>(I)
is closed and densely defined by Proposition 3.3. Moreover, Cj, r intertwines 7 and A%
by the covariance property (2.2). Thus the partial isometry U : N(Cy, Nt = R(Chr)
of the decomposition C, r = U|Cy | intertwines 7 and A% by Proposition 4.1.
Since N(Cj,.r)* = [w(I)h], it follows that U : [xw(I)h] — R(Cp.r) is a unitary
intertwiner.

Step 2. (Parseval frame). Let P : ¢*(I') — ¢*(I') be the orthogonal projection
onto K = R(C,,r). Then Px € A%.(I') by the projection lemma, and A%.(I")Pxé., =
PicA%(IM)8, satisfies

113, = 1P f13, = > 1P f. A ()8

yell

= Y UAAGOPRSIP,  f ek,

yel’

showing that A7.(I")P§, is a Parseval frame for K. Since U is unitary, the system
a(IU*PS, = U*AL(I")Pé, is a Parseval frame for the span [7(I")h]. [
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The construction of the unitary operator in Step 1 above is standard, e.g., see [70,73].
It is also used, for example, in [7,27,31].

4.3. From separating vectors to orthonormal sequences

The following result complements Proposition 4.2 with a similar result for separating
vectors and orthonormal sequences. In contrast to Proposition 4.2, the result requires the
assumption that Kleppner’s condition is satisfied.

Proposition 4.3. Let (7, H,) be a square-integrable o -representation of a countable
discrete group I'. Suppose that (I', o) satisfies Kleppner’s condition and that 7 (I")"
admits a separating vector. Then there exists g € H, such that w(I')g forms an
orthonormal sequence in H,.

Proof. For an arbitrary n € H,, the map D, r : dom(D, r) — H is a closed, densely
defined operator by Proposition 3.3. The proof will be split into three steps:

Step 1. (Auxiliary operator 7(c)). For a fixed ¢ € ¢>(I'), consider the auxiliary
operator 7 (c) : dom(7(c)) — H,, with domain

dom(7 (c)) == {g €My |3f €Hy ¢ ch(ﬂ(l/)g,m = (f.h), Vh Br:},
yel’
defined by 77(c)g = D, rc. Note that B, € dom(7(c)) and hence 7 (c) is densely defined.
A similar argument as in part (ii) of Proposition 3.3 shows that 77 (c) is a closed operator.
Step 2. (D, r is injective for separating n). We show that D, r is injective if n € H,
is separating for 7 (I")". For this, let ¢ € dom(D,, ) be such that D, rc = 0. Then,
n € dom(7(c)). Let T € n(I"), g € dom(7(c)) and h € B, be arbitrary. Then

(TR()g, h) = ) cylm(y)g, T*h) = ) ¢, (x()Tg, h) = (F()Tg, h),
yel’ yel’
and Tg € dom(7(c)). Hence, 7(c)Tg = T7(c)g by density of B,. Let 7(c) = J|7(c)|
be the polar decomposition of 7(c). Then also TJ = JT by Borel functional calculus,
see, e.g., [45, Theorem 6.1.11], and thus J € w(I")". Since 0 = D, rc = 7 =
[(7 (c))*|Jn, it follows that both Jn € R(7(c)) and Jn € N(|(F(c))*]) = R(7(c))*, and
thus Jn = 0. The separateness of n € H,, yields J = 0, hence 7(c) = 0. In particular,

> eylm(y)g. h) =0

yell
for all g, h € B;. By Proposition 3.6, it follows that ¢ = 0. Thus D,  is injective.

Step 3. (Isometric intertwiner). Since D, r : dom(D, r) — H, intertwines A7, and

m, it follows by Proposition 4.1 that U : () = ./\/(D,],[‘)J‘ — R(D, r) in the
polar decomposition D, r = U|D, r| intertwines A7 and 7. Therefore, the system
(U, = ULT(I')3, is an orthonormal basis for R(D, r), thus an orthonormal
sequence in H,. U
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5. Expansions in the von Neumann algebra

5.1. Expansions

The following theorem provides, under Kleppner’s condition, a Fourier-type series
expansion for every operator in 7 (I")".

Theorem 5.1. Let (w, Hy) be a square-integrable o-representation of a countable
discrete group I'. Suppose that (I', o) satisfies Kleppner’s condition. Then, for every
operator T € w(I")", there exists a unique ¢ € (D) such that T = 7 (c) on By, ie.,

Tf=) c,n(y)f. f€Bs. (5.1)

yel’

Proof. The uniqueness claim follows from Proposition 3.6. For the existence claim,
consider the space

A={rm)=Y c,m(y)|ceco)p Cr(l), (5.2)

yel’

where coo(I") C C! are finite sequences on I'. The space A is a self-adjoint algebra
containing 7(I') C U(H,). By von Neumann’s density theorem, the von Neumann
algebra s (I")” is the SOT closure of A. To provide (5.1) for arbitrary T € 7 (I")", we
first construct a vector-valued orthonormal sequence.

Step 1. (Existence of vector-valued orthonormal sequence) Let n = (nx)reny be a
sequence of vectors n; € H, such that {n; : k € N} is norm dense in H,. Consider the
direct sum H := @%N H, = £>(N, H,) and the associated direct sum o -representation
(@D, cny . H) of I, given by

D) f =@@) foren. = foren € H.

neN

The associated von Neumann algebra (B, 7(I"))” consists of operators T € B(H)
acting as

T(fidken = (Afidren, (5.3)

for some A € w(I').

We claim that n = (mq)ken is a separating vector for (€D, 7 (I7)”. Indeed, if
T € (P, 7(I")” annihilates 7, then, for A as in (5.3), An, = 0 for all k € N, and, by
density, A = 0, which implies 7 = 0.

The space of Bessel vectors Bg, of the direct sum (€D, .y 7, H) is norm dense in H
since it contains {(8; xh)ren : h € By, j € N}. Therefore, Proposition 4.3 is applicable
to obtain a vector ¢ = (gx)ken € H such that (B, . 7 (I"))g is orthonormal in . Hence,

el = | S emoe] =2 | X ermms 54
vel' 4 keN  yel’ "
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for all ¢ € £>(I'), and, in particular,
gl = Nl =1. (5.5)
keN

Step 2. (Strong closure of A). Let T € w(I")". By von Neumann’s and Kaplansky’s
density theorem, there exists a bounded net (7,)ycs of operators 7, € A such that
Ty LN T. Let g = (gkeny € H be as in Step 1 satisfying (5.4) and (5.5). Select

sequences ¢@ € coo(I") C £*(I") such that T, = m(c'®)). Then, for each o € A,

2
el =" ” PR Ao H = T,
keN

keN = yel e

2 2 2
< ITullZ, D Nkl < sup I Twll2, < oo
keN a’eA

By the Banach—Alaoglu theorem, we may pass to a subnet and assume that ¢(®) L ¢ for
some ¢ € £2(I).
Let f € B; and h € H, be arbitrary. Then ((w(y) f, h))yer € £(I"), and, thus,

(Tufoh) =) @ h) — Y ey (TS h).

vel yel
On the other hand (7, f, h) —> (T'f, h). Hence, w(c) = T on B, as desired. [

5.2. Coherent Riesz sequences are generated by separating vectors
As a first application of Theorem 5.1, we show the following.

Proposition 5.2. Let (w, H,) be a square-integrable o -representation of a countable
discrete group I'. Suppose that (I', o) satisfies Kleppner’s condition. If m(I')g is a Riesz
sequence in H, then g is separating for w(I")".

Proof. Suppose that 7 (I")g is a Riesz sequence in H, and assume that T € = (I")”
annihilates g. By Theorem 5.1, there exists a sequence ¢ € £(I") such that T = m(c).
Since 7w ([")g is a Riesz sequence, we have g € B, and, therefore,

2
0=ITgl3, = | D] = lelp
yel’ Ho

Thus ¢ = 0, and, therefore, T = 0, as desired. [
5.3. Doubly invariant subspaces

As a second application of Theorem 5.1, we show that H, does not admit so-called
doubly invariant subspaces.

Proposition 5.3. Let (7w, H,) be a square-integrable o -representation of a countable
discrete group I'. Suppose that (I', o) satisfies Kleppner’s condition. Let K < H, be a
closed subspace that is invariant under (") and 7w (I"). Then K = {0} or K = H,.
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Proof. Consider the orthogonal projection Py : H, — H, onto K. Since K is 7w (I")-
invariant, it follows that Px. € 7w (I")” by the projection lemma. Theorem 5.1 then yields
a unique sequence ¢ € £*(I") such that

Pc=m()= )Y cym(y) (5.6)
y'ell
as an operator on 5. Since K is also 7 ([I")-invariant, it follows also that Px € 7 (I").
Therefore Px = n(y)Pxm(y)* for all y € I'. By Lemma 3.5,

TP () = Y @5 () m(y’)
y'el’

The uniqueness of the expansion (5.6) shows that
¢y = @O8()e), =a(y=L, y oy 'yy, y_l)cyqy/y (5.7)

for all y,y’ € I'. Thus |c| is constant on conjugacy classes. We now use Kleppner’s
condition together with the fact that ¢ € ¢*(I"), as in Steps 3 and 4 of the proof of
Proposition 3.6, to conclude that ¢, = 0, for y € I'\ {e}. This shows that either Px =0
or Px = Iy, as claimed. [

Remark 5.4. Proposition 5.3 shows that, under Kleppner’s condition, the center 7 (I")" N
(") of the algebra m(I")” does not contain non-trivial projections, and thus equals
CIyy, . In technical terms: The von Neumann algebra 7 (I')” is a factor. Kleppner’s
condition is also necessary for 7(I")" to be a factor. Indeed, if C,, is a finite non-trivial
o-regular conjugacy class, then the sequence ¢ € £>(I") defined by

1

o= oy, volywy=Ly) ify eCy v =yny
v 0, ify' ¢ Cy,

is well-defined and satisfies ¢,, = o(y !, Yoy~ 'y, yil)CV—Iyry forall y’ € C,, and
y € I', and by Lemma 3.5, one can see that

T = Z cyn(y)en)' Nl

y'eCy,

and that T ¢ Cly, . Therefore (I")" is not a factor. See [48,62] for similar arguments.
For example, 7 (I")" fails to be a factor for I' = SL(2, Z) and 7 being a holomorphic
discrete series representation of SL(2, R), cf. Example 9.3.

6. Existence of cyclic or separating vectors

In this section we investigate how to produce large cyclic subspaces for w(I"). As a
first step, we investigate when the sum of two orthogonal cyclic subspaces, [7(I)g]
and [7([")g,] is again cyclic. The following key lemma shows that this is the case,
provided that the corresponding cyclic subspaces generated by the commutant algebra
a(l'), ie., [7(I")g] and [ (I") g,], are also orthogonal.
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Lemma 6.1. Let (7w, H,) be a square-integrable o -representation of a countable discrete
group I'. Suppose (gi)ker is a countable family of unit-norm vectors g, € H, satisfying
the following simultaneous orthogonality conditions

7()ge L (I)g;, k#J, (6.1)
(g L)y, k#j. (6.2)
Let a € £Y(I) with ay # O for all k € I, and set g := > ke k& Then
[7(Igl = Pl (Mgl (6.3)
kel
[ ('Y gl = @l (I gl. (6.4)
kel

Proof. Clearly, [7(I")g] € @ke ;[ (I")g]. For the other inclusion, let k € I, and note
that the projection Py, onto [Cy = [w (L") gk] is in w(I")” as [w (1Y gx] is w(I")-invariant.
Therefore g, = ak’lP;Ckg € [w(I")g] for all k € I. This gives (6.3). The identity (6.4)
follows similarly, interchanging the roles of 7 (I") and = (I")". O

Proposition 6.2. Let (w, H,) be a square-integrable o -representation of a countable
discrete group I'. Suppose that (I', o) satisfies Kleppner’s condition. Then w admits a
cyclic vector or w(I')" admits a separating vector (possibly both).

Proof. By Zorn’s Lemma, we can select a family (gi)xe; of unit-norm vectors g € H,
satisfying the simultaneous orthogonality conditions (6.1) and (6.2), and maximal with
respect to that property. The set I is countable because H, is assumed to be separable.
Let g .= de argr be as in Lemma 6.1, so that (6.3) and (6.4) hold.
The maximality of (g;)re; implies that

[r(Dgl* N [x (Y gl*t = {0} (6.5)

otherwise, we could choose a unit-norm vector # € [w(I")g]* N [x(I'Yg]t, and extend
the family (gy)ke;- We claim that, in addition,

[T (D)gl* L [x(I) gl (6.6)

To see this, let P; and P, be the orthogonal projections onto [7(I)g] and [7(I") g]
respectively. Then P; € n(I")” and P, € n(I'), and therefore P; and P, commute.
Hence, by (6.5),

R(U — P — Py) = R(U — P)(I — Py) € [w(D)gl* N[ (1) g]* = {0}.

Therefore (I — P;)(I — P») = 0, which implies (6.6).
Note that [7(I)g]* is w(I")” invariant, while [ (I')g]* is m(I') invariant. As a
consequence, the subspaces
Ki=[a@ ([n()'gl")), K= [n)'([n(Yglh)]

are also orthogonal. Indeed, for T/ e n(I'Y, fi € [n(I)'gl*, T € n(IY', fo €
[7(I'Yg]*, the commutativity of 7 and 7’ implies that (T’ fi, Tfa) = (T* fi, (T")* f2)
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= 0. On the other hand, the subspaces I; and K, are doubly-invariant: 7 (I")K; =
a(I'YK; = K; fori = 1, 2. Proposition 5.3 therefore implies that IC; = {0} or K; = H,,
for i = 1, 2. The possibility 'y = K, = H, is excluded (unless H, = {0}) because
K1 L KC,. Thus, either Iy = {0}, or K, = {0}.

If X1 = {0}, then [w(I)'g]+ = {0}, yielding a cyclic vector: H, = [n(I')'g]. If
K, = {0}, then [7(I")g] = H,, which implies that g is a separating vector for 7 (I")”
by the discussion in Section 3.1. [

Lemma 6.1 and Proposition 6.2 are simplifications and adaptions of standard results
on central projections in reduced von Neumann algebras [22, 1.2, Proposition 3].

7. Discrete series representations restricted to lattices

Let G be a second countable unimodular group and let I' C G be a lattice subgroup.
Let (m, H,) be a discrete series o-representation of G, i.e., irreducible and square-
integrable. This section is devoted to orbits of the restriction w|p of (7, H,) to I,
ie.,

n(Ig={n(y)g : y eI}

for some g € H,.

In order to apply the results obtained in the previous sections, it is essential that
the restriction 7| be square-integrable in the sense of (2.1). The following observation
guarantees this.

Lemma 7.1. Let I' C G be a lattice and let (7w, H, ) be a discrete series o -representation
of G. The Bessel vectors By of the restriction 7| are norm dense in H;.

Proof. Using the orthogonality relations (2.3), choose n € H, such that the map
C, Hy — L?(G) is an isometry. Let Px : L>(G) — L*(G) be the orthogonal projection
onto the closed subspace K := C,(H), so that Px € AZ(G)'". It suffices to show that
the space of Bessel vectors of AZ|r is norm dense in K, since, if A7;(I")F is Bessel
in K, then the unitary map C; : K — H, produces a Bessel system in H,, namely
n(ICHF = CrAg(I)F.

To show that the space of Bessel vectors of A | is norm dense in K, let {2 C G be
a left fundamental domain for I' C G and consider the collection

Sq =span{F € L*(G) : supp F C y (2 for some y € I'}.

(Here span denotes the set of finite C-linear combinations.) Since the sets {y 2 :y € I'}
have disjoint supports, any F’ € L*(G) can be written as F’ = Zyer F' - xy0, where
Xy is the indicator function of y {2 and the series is norm convergent by orthogonality.
Hence, S is norm dense in L*(G). Therefore, the image space PxSg, is dense in K,
and it remains to show that PxSg, consists of Bessel vectors for A7;| . For this, note
that if ' € S is such that supp F' € y {2 for some y € I', then the family AZ(I)F
is orthogonal in L?(G), and thus AL P F = PAL(IF is a Bessel sequence in K.
Taking finite linear combinations, it follows that any element of PxSy, is a Bessel vector
for AZ|r, with a finite Bessel constant depending on the coefficients. This completes the
proof. [J
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7.1. Frame bounds and density

The following proposition relates frame bounds (3.1), formal dimension and co-
volume.

Proposition 7.2. Let I' C G be a lattice and let (w, H;) be a discrete series o-
representation of G of formal dimension d, > 0. If m(I")g admits a Bessel bound B > 0,
then d! ||g||%rt” < Bvol(G/I'). Moreover, if m(I')g also admits a lower frame bound
A > 0, then

Avol(G/I') < d;'|gli3, < Bvol(G/DI). (7.1)
Proof. Let {2 C G be a right fundamental domain of I" € G. Then

/G () dpgx) =) /Q I(f, m(xy)e) dug(x)

yel’

= /Q Y @) fa()e) duc(x)

yel’

for f € H,. This, together with the orthogonality relations (2.3), yields

N 15, 1815, = /Q D @y fa()e) due(x).

yel

Thus, if 7(I")g is Bessel with bound B, then d;1||f||%{ﬂ ||g||%_[ﬂ <B/, ||f||%_£”du,c(x),

which shows the upper bound in (7.1). The desired lower bound is proven similarly. [

Remark 7.3. The proof of Proposition 7.2 also works for discrete subgroups I"' C G
having possibly infinite co-volume. However, the lower bound in (7.1) shows that the
restriction 7 | » admits a frame only if /" C G has finite co-volume. The lattice assumption
is in fact even necessary for 7| to admit a cyclic vector [11, Corollary 2].

The idea of periodizing the orthogonality relations by means of Weil’s integral formula
can also be found in [18,51]. Proposition 7.2 will be subsequently substantially sharpened
by eliminating the frame bounds in the conclusion.

7.2. Necessary density conditions

The following result provides necessary density conditions for several spanning
properties. Note that Kleppner’s condition is not assumed in parts (i) and (ii).

Theorem 7.4. Let I' C G be a lattice and let (w,H;) be a discrete series
o -representation of G of formal dimension d, > 0.

(i) If w|r admits a cyclic vector, then vol(G/I")d, < 1.
In particular, if | admits a frame vector, then vol(G/I")d, < 1.
(ii) If | admits a Riesz vector, then vol(G/I")d, > 1.
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(iii) Suppose (I, o) satisfies Kleppner’s condition. If w(I")" admits a separating vector,
then vol(G/I')d, > 1.

Proof. (i) Suppose first that there exists a vector g € H, such that 7 (I")g is a Parseval
frame for H,. Then, vol(G/I)d, = ||g||%_[”, by Proposition 7.2. Since m(I')g is a
Bessel sequence with bound 1, necessarily || g||%{ﬂ < 1. Hence vol(G/I)d, < 1, as
claimed. Second, if 7|, admits a cyclic vector, then it also admits a Parseval frame by
Proposition 4.2.

(i1) Suppose that 7| admits a Riesz vector. Then, by Remark 3.2, there also exists
g € Hy such that w(I")g is orthonormal. Hence, w(I")g has Bessel bound 1, and,
therefore, by Proposition 7.2, d_; I < vol(G/I").

(iii) Finally, under Kleppner’s condition, if 7 (I")” admits a separating vector, then it
also admits an orthonormal sequence by Proposition 4.3, and we can apply part (ii). O

The idea of relating the orthogonality relations and the frame inequalities for proving
a density theorem as Theorem 7.4 was used in Janssen’s “classroom proof” of the density
theorem for Gabor frames [42]. The use of an auxiliary tight frame to deduce the density
condition can be found in [15, Theorem 11.3.1]. A similar combination of these ideas
have been used in [40]. In this article, these ideas are further refined, implying necessary
conditions for completeness. The arguments for Riesz sequences seem to be new.

7.3. Critical density

This section is devoted to the spanning properties of 7|, for lattices possessing the
critical density vol(G/I")d, = 1.

Lemma 7.5. Let I' C G be a lattice and let (w,H,) be a discrete series o-
representation of G of formal dimension d, > 0. Suppose g € H, is a unit vector
such that w(I')g is an orthonormal system in H,. Then the following are equivalent:

(i) The system m(1')g is complete in H.
(ii) vol(G/Id, = 1.

Proof. That (i) implies (ii) follows from Proposition 7.2.

Conversely, suppose that vol(G/I")d, = 1. Let {2 C G be a right fundamental domain
of I' C G, and {f;, : n € N} a norm dense subset of H.

Fix n € N. By the orthogonality relations (2.3) and the assumption ||gll7, = 1,

d Ml = /G [(for Q) dpg(x) = /Q [(fr T 1)) dipa(x).

yel

Since vol(G/I'd, =1,

0=d, /g 13, diot) —dr Y /Q (for 7GR o)

yel’

= dx /Q (nfnn%{ﬂ =Y WS n(xy)g)ﬁ) dpg(x). (7.2)

yel
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But ZVGF [{(fo, T(xp))* < ”f”%h for any x € {2 by Bessel’s inequality. Thus the
integrand in (7.2) is O for x € 2\ E,, where E, C {2 is a null measure set.
Since UneN E, has null measure, we can choose xy € {2\ UneN E,. Therefore,

D Loy = £ 15,

yel’
holds for all f € {f, : n € N}, and extends by density to all f € H,. Replacing f by
w(xo)f gives Zyep [ f, m(»)e)|* = ||f||H , for all f € H,. This shows that w(I")g is

complete. [J

Proposition 7.6. Let I' C G be a lattice and let (w,H;) be a discrete series
o-representation of G of formal dimension d,; > 0. The following assertions are
equivalent:

(i) The system w(1')g is a Riesz (resp. orthonormal) basis for H.
(ii) The system w(I")g is a frame (resp. Parseval frame) for H, with vol(G/I")d, = 1.
(iii) The system m(I")g is a Riesz (resp. orthonormal) sequence in H, with vol(G/I")d,
=1

Proof. The implications (i) = (ii) and (i) = (iii) follow directly from Theorem 7.4.
(ii)) = (i) First, we show that a Parseval frame 7 (I")g with vol(G/I")d, = 1 is an
orthonormal basis for H,. Indeed, we have || g||%_ln = 1 by Proposition 7.2, and hence

L= (8l = D g7l =1+ Y [z g 7(ne)l’.

yel yel'\{y'}
(7.3)

which shows that (w(y')g,7(y)g) = §,, for all y,y’ € I'. Thus n(I)g is an
orthonormal basis for H,.

Second, if 7 (I")g is an arbitrary frame with vol(G/I")d, = 1, then n(F)Sg lp/zg is
a Parseval frame for H,, and hence an orthonormal basis for H, by the above. But

n(lg = l/zn(F)Sg }/zg, and thus 7 (I")g is a Riesz basis for H.

(iii)) = (i) Suppose 7 (I")g is a Riesz sequence in H,. Then S 1/2

D r)gl —
[7(I")g] is well-defined and bounded. Hence, the system 7 (I")S, o, F g is orthonormal in
‘H, by Remark 3.2, thus complete by Lemma 7.5. As above, n(I")g = Sl/zn(F)Sg lp/zg,
showing that 7 (I")g is a Riesz basis. Moreover, if 7 (I")g itself is orthonormal, then its

completeness follows directly by Lemma 7.5. O

8. Proof of the density theorem
We finally can prove the main result of the article.
Theorem 8.1. Let I' C G be a lattice in a second countable unimodular group G. Let

(mr, Hy) be a discrete series o-representation of G of formal dimension d, > 0. Suppose
that (I', o) satisfies Kleppner’s condition. Then the following assertions hold:
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(i) If vol(G/I)d, < 1, then w| admits a Parseval frame, but w(I")" does not admit
a separating vector. (In particular, w|r does not admit a Riesz vector.)
(ii) If vol(G/I')d, = 1, then | admits an orthonormal basis.
(iii) If vol(G/I")d, > 1, then m|r admits an orthonormal sequence, but not a cyclic
vector. (In particular, 7| does not admit a frame vector.)

Proof. (i) Assume that vol(G/I")d, < 1. Then, by Theorem 7.4, w(I")" does not admit
a separating vector. Combining this information with Proposition 6.2, it follows that |
admits a cyclic vector, and by Proposition 4.2 also a Parseval frame. The “in particular”
part also follows from Theorem 7.4.

(i1) Assume that vol(G/I")d, = 1. By Proposition 6.2, | admits either a cyclic
or separating vector. In the first case, by Proposition 4.2, w|r also admits a Parseval
frame 7 (I')g, and hence an orthonormal basis by Proposition 7.6. In the second case,
by Proposition 4.3, w|r admits an orthonormal sequence m(I")g, which forms an
orthonormal basis by Proposition 7.6.

(iii) Assume that vol(G/I")d, > 1. Then, by Theorem 7.4, | does not admit a cyclic
vector. Combining this information with Proposition 6.2, it follows that 7 (I")” admits a
separating vector, and by Proposition 4.3, also an orthonormal sequence. [

8.1. Proof of Theorem 1.1

The hypotheses of Theorem 1.1 are a particular case of Theorem 8.1. Indeed, an ICC
lattice I" satisfies Kleppner’s condition for any cocycle o, in particular, for o = 1.2 O

A far reaching generalization of Theorem 1.1 without the ICC condition is due to
Bekka [11]; see Section 9.

9. Examples and applications

9.1. The density theorem for semisimple Lie groups

For certain center-free semisimple Lie groups, a lattice is automatically ICC, and
hence Kleppner’s condition is satisfied. For reference purposes, we state Theorem 8.1
in this setting.

Theorem 9.1. Let G be a center-free connected semisimple real Lie group all of whose
connected, normal, compact subgroups are trivial® Let (7w, H;) be a discrete series
o -representation of G of formal dimension d, > 0. Let I' C G be a lattice. Then

(i) If vol(G/I')d, < 1, then 7| admits a Parseval frame, but 7w (I")" does not admit
a separating vector. (In particular, w|r does not admit a Riesz vector.)
(ii) If vol(G/I')d, = 1, then m|r admits an orthonormal basis.

2 1n part (i) of Theorem 1.1, the assertion that 7| does not admit a separating vector means that 7 (I")”
does not admit such a vector.

3 In the jargon of semisimple Lie groups, a group all of whose connected, normal, compact subgroups
are trivial is sometimes referred to as a group without compact factors.
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(iii) If vol(G/I')d, > 1, then m|p admits an orthonormal sequence, but not a cyclic
vector. (In particular, | does not admit a frame vector.)

Proof. A connected semisimple Lie group is unimodular, see, e.g., [50, Corollary 8.31].
Under the additional hypotheses, a lattice I" is an ICC group by [32, Lemma 3.3.1] or
[11, Theorem 2]. Therefore, (I', o) satisfies Kleppner’s condition, and the conclusion
follows from Theorem 8.1. [

As we show in Example 9.3, the conclusion of Theorem 9.1 may fail when the center
of the group is non-trivial. A more general version of Theorem 9.1, that does not require
the ICC condition, was derived by Bekka [11], and applies to semisimple Lie groups with
a possibly non-trivial center [11, Theorem 2], and to a class of algebraic groups over
more general fields. Theorem 9.1 can also be phrased more generally for such algebraic
groups, provided they have a trivial center.

We now illustrate an important instance of Theorem 9.1.

Example 9.2. The group G = PSL(2, R) = SL(2, R)/{—1, I} is a connected simple
Lie group with trivial center [29,81], and acts on the upper half plane
Ct={zeC:3() >0}
through Moebius transforms as
b az+b
GxCts (¢ . Z7) > e CH.
(<c d) Z) cz+d

The measure du(z) = (3(z))2dxdy, where z = x + iy and dxdy is the Lebesgue

measure on C*, is G-invariant. Let PSO(2, R) := SO(2,R)/{—1, I} be the compact
subgroup of rotations. We use the diffeomorphism,

G/PSO(2,R) — C*, 9.1

[m] +— m -, 9.2)

to fix a Haar measure on G/PSO(2, R), and equip PSO(2, R) with a normalized Haar

measure 7 of total measure 1. This fixes the Haar measure g on G as dug >~ dudur.
With this normalization, for measurable E C C*,

uc({meG:m-i € E}) = u(E). 9.3)

In the remainder of this article, the Haar measure on G = PSL(2, R) is always assumed
to have this normalization.

For o > 1, define the measure duy(z) = (3(z))* 2dxdy and the weighted Bergman
space of holomorphic functions A%(CT) := O(C*)N L*(C*, d ), equipped with norm

1£12 = /@ P dua(@) ©.4)
Define j : SL(2, R) x C* — C\ {0} by

jm,z2) =(cz+d)", m= (Lcl Z)z eC . 9.5)
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Then j satisfies j(mymy,z) = j(my, myz)j(my,z) for all m;,my; € SL(2,R) and
zeC .

Let z* be defined with respect to the principal branch of the argument: arg(z) €
(—m, ]. Since j(m, z) € C\ R, we can form j(m, z)*, and

Jjmmy, 2)* = A(my, my, &, z)j(my, mpz)® j(my, z)*

for a unimodular function A(m;, m,, o, z). The analyticity of j(m, z) on z, implies that
A(mp, my, @, 7) = A(my, my, ) is independent of z. A projective unitary representation
(), Ai((C*)) of SL(2, R) is therefore given by

(,(m)f)(z) = jm™ ', 2)* f(m™'-2), meSLE2,R), zeC". (9.6)

Let T : G — SL(2,R) be a Borel cross-section of the quotient map, i.e., a Borel
measurable function that chooses a representative; see [53, Lemma 1.1.] or [82, Chapter
5]. Since j(—m, z) = —j(m, ), 7, := 7, o T defines a projective unitary representation
of G on A2(C"), the so-called holomorphic discrete series o-representation. For any
o> 1, (mgy, Ag(@*)) is irreducible and square-integrable of formal dimension

oa—1
d, =
¢ 47
See [74,75] for the details.

Lattices I' € G are known as Fuchsian groups. By the normalization (9.3), we have
vol(G/T") = (D), where D C C* is a so-called Dirichlet fundamental domain for T,
that provides the tessellation Ct = Uy <r YD, up to sets of null measure.

According to Theorem 8.1, the existence of a function g € Ag(@*) such that 7, (I")g
is complete in (resp. frame for, resp. Parseval frame for) A2(C*) is equivalent to the
condition

47

while the existence of a Riesz sequence m,([")g (resp. orthonormal sequence, resp. g
separating vector) in A2(C") is equivalent to the condition

4
vol(G/I') > ——. (9.8)
oa—1
For examples of Fuchsian groups, and formulae for their co-volume, see [9]. W

The following example demonstrates that Kleppner’s condition (or the ICC condition)
cannot be removed as an assumption in Theorem 8.1.

Example 9.3. Let G = SL(2, R), with center Z(G) = {—1, I}. For ¢ > 1, the group
G acts on the Bergman space A2(C™) by the representation 7/, whose action is given by
(9.6). Equip Z(G) with the counting measure and G/Z(G) = PSL(2, R) with the Haar
measure [tg/z normalized as in Example 9.2. The Haar measure on G is then fixed by
Weil’s formula: dpug >~ dug)zduz. By the orthogonality relations of the holomorphic
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discrete series of PSL(2, R), it follows then that, for f € Ag((C*),

[G (f, 7, ) I dingx) = fG Y WA OO duciz(xZ)

- 4
= Q-

where d, = (o —1)/(4s) as in Example 9.2. Thus m,, is a discrete series representation
of G of formal dimension d;,a = (¢ —1)/(8m).

Let I' € G be a lattice such that Z(G) C I',and 2 C G a ~right fundamental domain.
Denote by p : G — G/Z(G) the canonical projection, and I' = p(I"). As Z(G) C T,
x2(x) + xo(—x) = xp2)(xZ), and, therefore, Weil’s formula gives

WG/ = [ xa@ duct) = [ 32 dugze2)
G G/Z(G) N
= 12 (p(2)) = volPSLQ. B)/ T,

as p({2) is a fundamental domain for T in PSL(2, R).
Consider the representation m, from Example 9.2. Since 7, (—I) = =%I, for any
g € AL(Ch),

[,(I"g] = [ra(T)g].
We conclude that there exists g € A2(C") such that 7/, (I')g is complete if and only if

~ 47 I,
vol(G/I') = vol(PSL(2, R)/I") < e E(d”a) , 9.9)

or, equivalently, vol(G/I’ )dj’Ta < 1/2. (This conclusion follows also from Bekka’s
result [11, Example 1], where a different normalizations of the Haar measure is used.)

Therefore, the completeness part of Theorem 8.1 fails for G and I'. Of course, (I', o)
does not satisfy Kleppner’s condition, as the central element —/ € G has a finite
conjugacy class.

Second, note that there does not exist a Riesz sequence in Ai (C*) of the form 7, (I")g,
regardless of the value of vol(G/I"), as the (indexed) system 7/ (I")g is always linearly
dependent: 7/ (I)g = g = *mn,(—1I)g. Hence, also in that respect, the conclusion of
Theorem 8.1 fails for G and I'. N

9.1.1. Perelomov’s uniqueness problem

A set of points A € C* is called a set of uniqueness for the Bergman space A2(C*)
if the only function f € A2(C") that vanishes identically on A is the zero function.
Perelomov [66] studied this question when A is the orbit of a point w € C* through
a Fuchsian group I' in G = PSL(2, R).* The link with lattice orbits of 7, is provided
by the special choice of vector k*)(z) = 227 ~!(a — 1)i%(z — W)™, which has the
reproducing property:

f@ - w) = colcw +d)"(f, T (MKS) 42, f € A2(C"), m € PSL(2, R),
(9.10)

4 Perelomov formulates his results on the unit disk.
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where ¢, € T is a unimodular constant and the notation of (9.5) is used. Hence, A = I'w
is a set of uniqueness for A2(C") if and only if 7,(I)k® is complete in A2(C™).
Perelomov [66] showed that this is the case if

4
#F,vol(G/I") < ——,
oa—1

where F,, = {y € I" : y - w = w} is the stabilizer subgroup of w.’

When #F,, = 1, the sufficient condition for the completeness of (I’ )kfl‘j‘) in Aé((C*)

(9.11) almost matches (9.7), which is necessary for the completeness of any orbit m,(I")g.

For #F,, > 1, a necessary condition for the completeness of 7, (I)k@ in A2(C") almost

matching (9.11) was proved by Kelly-Lyth [46, Theorem 5.4]: if A is a uniqueness set
for A2(C"), then

©.11)

4

Thus, while (7, Aé((C*)) admits a cyclic vector g if and only if vol(G/I") < %, in
the smaller range vol(G/I") < % the specific choice g = k{*) is possible, and in
the range % < vol(G/I') < ;Tﬂl it is not. The completeness of (I’ )kfg‘) when
#F, vol(G/I") = % has recently been shown by Jones [43].

Perelomov’s original work also contains a necessary condition for the completeness
of (I )kfl‘j‘) in Ai((C*), formulated in terms of the smallest weight mg for which the
space of parabolic I'-modular forms on C* is at least two-dimensional [66, Theorem 3]:
if A is a uniqueness set for A2(C"), then

2 - 4
my ~oa—1
As shown in [46, Lemma 5.3],

2 (G/T’
_71 < M < VO](G/F),
mg 1 +#P

(9.13)

where #P denotes the number of inequivalent cusps for I'. Thus the necessity of (9.7) for
cyclicity is stronger than Perelomov’s automorphic weight bound for the cyclicity of one
specific vector (9.13), but weaker than Kelly-Lyth’s (9.12). Under the assumption that
(9.13) fails, Perelomov uses certain /'-modular forms to construct a non-zero function
in Ai((C*’) that vanishes on I"'w. Under the assumption that (9.12) fails, Kelly-Lyth also
provides such function, by calculating the so-called upper Beurling—Seip density of I'w
in terms of the co-volume of I', and by resorting to Seip’s interpolation theorem [78].
While this article gives a very elementary argument for the necessity of (9.7) for the
completeness of 7, (1")g,, we do not have a similarly simple argument for (9.12).

5 In [66, Theorems 3 and 4] Perelomov implicitly assumes that #F,, = 1, the general case follows after
some minor adaptations, as explained in [46, Theorem 5.1]. The case I" = PSL(2, Z) is proved independently
in [47], after observing that the physically-motivated restrictions the authors impose on « play no role in
the argument.
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9.1.2. Frames and Riesz sequences of reproducing kernels

By Theorem 9.1, under (9.7), there exists g € Ai((C*) such that the orbit 7, (I")g is
a (Parseval) frame for A?X (C*). In light of Section 9.1.1, it is natural to ask whether the
specific choice g = k*) also provides a frame. Here the answer depends on whether or
not I" is co-compact (that is, G/I" is compact). Using (9.10), the frame property reads

AlfIRs < 3@ Y 30w If (- w)® < BISIS;. f e ALCH),
yel’

9.14)

for some constants A, B > (. The stabilizer subgroup F, is finite because it is simulta-
neously contained in the discrete set I" and in the compact subgroup myPSO(2, R)m, h
where mpi = w. Hence, we can rewrite (9.14) as a sampling inequality:

ANfI%, < S #F, ) 3@ 1 f@F < B'IfI%. [ e ALCH).

zel'w

9.15)

Based on the characterization of sampling inequalities by Seip [78], Kelly-Lyth showed
that if I" is not co-compact, then I'w never satisfies (9.15), because its so-called lower
Beurling-Seip density is zero [46, p. 44]. Thus, in this case, 7, (I")k*) fails to be a frame
for A2(C*). On the other hand, if I" is co-compact, the lower Beurling-Seip density of
I'w can be computed in term of the co-volume of I" and yields that na(F)kfj‘) is a frame
for Ai((C*) if and only if (9.11) holds, see [46, p. 44].
Similarly, under (9.8), Theorem 9.1 provides g € Ag((C‘*) such that ,(I")g forms
a Riesz sequence in Aﬁ((CJr), and one may wonder if, under the corresponding strict
inequality, the particular choice g = k* is also possible. This is indeed the case if the
stabilizer subgroup F,, is trivial: as shown by Kelly-Lyth [46, Theorem 5.8] by invoking
Seip’s interpolation theorem [78], the system na(F)kfj‘) is a Riesz sequence® if and only
if
4
vol(G/I') > ——.
a—1
If the stabilizer subgroup F, is non-trivial, then m,(I")k'® is not a Riesz sequence,
because it is linearly dependent (as an indexed set). Indeed, (9.10) shows that na(y)kfl‘j‘)
is a multiple of k%> when y € F,. To make the problem meaningful, we can eliminate
repetitions by considering the reduced orbit

Fo(DED = {m, (KX 1y e I},

where I, is a set of representatives of I'/F,. With this correction, [46, Theorem 5.8]
implies that if I" C PSL(2, R) is a Fuchsian group satisfying

4
#F, vol(G/I") > o1
o —

6 In [46, Theorem 5.8], it is shown that the orbit I'w is an interpolation set for Ag((CJr) if and only if
vol(G/I') > ;%1. It is a standard fact that I"w is an interpolation set if and only if 7, (I" )kfg)
sequence; see for example [79, Section 2.5] or [79, Section 3.1].

is a Riesz
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then 77, (I')k® is a Riesz sequence in A2(C*). Thus, in contrast to the frame property,
a Riesz sequence can exist even for lattices that are not co-compact.

9.1.3. Perelomov’s problem with respect to other special vectors
The functions

W@ =(S2) @+ nen,
Z+1
form a distinguished orthogonal basis for A2(C*). Note that hgl) is a multiple of the
reproducing kernel kfo’) € A2(C") at i discussed in Section 9.1.1.
In the language of Perelomov [65,66], each h'®) is a stationary vector of the subgroup
of rotations PSO(2, R) in G = PSL(2, R): for each r € PSO(2, R), there exists ¢, € R

such that:
RO = A,

as a direct calculation shows. Because of stationarity, given a Fuchsian group I' C G,
the orbit 7, (I")h'® can be reduced by selecting for each y € I just one representative
modulo PSO(2, R), the specific choice being immaterial. The resulting set is a subsystem
of coherent states in the sense of Perelomov [65,66], and it is complete in Ai((C+) if and
only if the orbit 7, (I")h® is.

The coherent state subsystems associated with 4®) can be more concretely described
as follows [13,47]. The subgroup of affine transformations

P = {mx,y - (*{? f?:g) C(x,y) eR x R*} C PSL(2, R) (9.16)
provides representatives for the quotient G/PSO(2, R), since G = P - PSO(2, R) and
P NPSOQ2, R) = {I}. In particular, every m € G can be written as m = m, ,r for
unique m, , € P and r € PSO(2, R). Recall that i € C* is a fixed point of PSO(2, R),
and, hence, (x, y) is x +iy = m, , -i = m - i. Therefore, the coherent state associated
with A can be realized as an affine system:

A, T = (o (me Jh - x + iy € Ti} = [y Ph@(52) 1 x +iy e i)
9.17)

Perelomov’s problem concerns the completeness of Aa(hﬁf‘), I'i) in Ai(C*). While
Theorem 9.1 shows that (9.7) is necessary for completeness, we are unaware of literature
on corresponding sufficient conditions.

We remark that, as G acts transitively on C*, the previous conclusions also apply to
any other base point z € C* in lieu of i. Indeed, if z = m-i with m € G, then each
element of

Au(h®, Iz) = {y_“/zhﬁl“)(i) x4iye Fz} (9.18)

Yy

is a unimodular multiple of an element of 7, (m).Aq (2, (m™'I'm) - i) and vice versa.

Thus, one system is complete if and only if the other is, while vol(G/(m~'I'm))
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= vol(G/TI). In conclusion, Theorem 9.1 gives the following:

4
If the affine system (9.18) is complete in Ai((C*) then vol(G/I") < _711
o —
9.19)

The completeness problem can be alternatively reformulated on the real half-line. The
connection is provided by the Paley—Wiener theorem for Bergman spaces [23,76]: the
Fourier-Laplace transform

Fra= [ st zec,
0
is a multiple of an isometric isomorphism between the weighted L>-space
L*R*, @ Vg = {f : R* — C measurable : / Ot~ Vdr < oo}
R+

and the Bergman space A2(CT). In addition, the special vectors h* correspond under
the isomorphism to multiples of

HY(t) =" e" L V(20), t >0, (9.20)

where L~ is the Laguerre polynomial of degree n € N and index o — 1; see [23]. The
inverse Fourier—Laplace transform thus maps the affine system (9.17) into the system

F A, Tiy = {d2 y P e ™ H®(y) « x +iy e T'i}, 9.21)

in L>(RT, t=@=Ddt) for a suitable d* € C. This yields another equivalent formulation
of Perelomov’s completeness problem. See also [16, Section 8.6].

With a certain physical motivation, part of Perelomov’s work [66] has been adapted
to the special vectors H'® by Abreu, Balazs, de Gosson and Mouayn [1]. Condition-
ally to the existence of modular forms having certain special properties, and under
certain restrictions on o« > 1, [1, Corollary 1] asserts that if (9.21) is complete in
L*(RT, t=@=D gr), then

vol(G/I) < (n + D). 9.22)

On the other hand, Theorem 9.1 provides the sharper bound

8
o —

4
vol(G/I') < pamy (9.23)

which is valid without assumptions on the existence of adequate modular forms, and
for all @ > 1. (Indeed, if (9.21) is complete in L>(R*, t=@~D dt) then [na(F)hff‘)] =
[Ay ('), )] = AZ(CT), and Theorem 9.1 gives (9.23).)’

7 The bound stated in [1, Corollary 1] is (9.22) with « instead of @ — 1. We understand this

as a miscalculation caused by inconsistent normalization of the Bergman space on [1, page 352]. The
result in [1] is (equivalently) formulated in terms of the completeness of the system of functions
(yt)~/2+Lemxi /2 @ (31 12) within L2R*, 1! dr).
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9.2. Heisenberg projective representation and Gabor systems

Let G = R*?. Define the projective representation (7, L2(R¢)) through the action
T@f(O) =T f(—x), =8 eR¥, reR (9.24)

Then 7(z + 7)) = e ()n(Z) for z = (x,&) € R¥ and 7/ = (x', £) € R¥. Thus
the cocycle of (7, LAR?)) is o(z, 7)) = >~ e T. Moreover, 7 is irreducible and
square-integrable of formal dimension d, = 1. For background, and the appearance of
the Heisenberg group, see [25,33].

Systems of the form 7 (I')g, with g € L>(R%) and I' ¢ R* a lattice, are known
as Gabor systems or Weyl-Heisenberg systems, and are important in several branches
of pure and applied mathematics. Gabor systems are sometimes also called canonical
coherent state subsystems in mathematical physics. The literature on Gabor systems
focuses mainly on frames, Riesz sequences, and completeness. Kleppner’s condition for
a lattice I' € R* and the cocycle o reads: for all y € I' \ {0} there exists ' € I" such
that

oy, Yo (y, y) = e n—rv) £,

While for separable lattices I' = aZd x ﬂZd, with o, B € R, Kleppner’s condition
reduces to a8 € Q, an explicit characterization of Kleppner’s condition for more general
lattices is subtle, e.g., see [37,62,63]. Provided that (I', o) satisfies Kleppner’s condition,
Theorem 8.1 shows that w (") admits a frame vector if and only if it admits a complete
vector, if and only if

vol(G/I') < 1; (9.25)
while the condition for the existence of a Riesz vector is
vol(G/I') > 1. (9.26)

In fact, Theorem 7.4 shows that the necessity of the density conditions for completeness,
frames, and Riesz sequences holds without assuming Kleppner’s condition. Direct proofs
of this necessity go back to Baggett [5], Daubechies, Landau and Landau [21], and
Ramanathan and Steger [69], and are also implicitly contained in Rieffel’s work [71,72].

Our proof of Theorem 7.4 is partially inspired by Janssen’s “classroom proof” [42],
which concerns frames and Riesz sequences. Instead of using the frame inequality, as in
Proposition 7.2, Janssen uses the so-called canonical frame expansion

f=) (LS re)m(y)g

yel’

associated with a frame 7 (I")g and frame operator S, r. The coefficients (f, n(y)S;} g)
have minimal ¢> norm among all sequences c such that

f=Y ¢emy)e
yel’

and this property is leveraged to prove (9.25). In contrast, we prove Theorem 7.4
by resorting to the normalization procedure in Proposition 4.2, which applies also to
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complete systems 7 (I")g that may not be frames. Similarly, while Janssen treats Riesz
sequences m(I')g by invoking properties of the corresponding biorthogonal element &
characterized by

(m(y)g, w(yHh) =8, ,, fory,y' eI,

and h € [7(I")g], we use Proposition 4.3 to reduce the proof to orthonormal sequences,
while also treating separating vectors.

As is the case with the necessity of the density conditions, the sufficiency of (9.25)
and (9.26) for the existence of frames and Riesz vectors also holds without assuming
Kleppner’s condition. This deep fact, shown by Rieffel [71,72], and also a consequence
of Bekka’s work [11, Theorem 4], lies beyond the elementary approach presented in
this article. Indeed, Rieffel’s and Bekka’s work require considering not only the operator
algebras 7 (I") and 7 (I")”, but also certain so-called induced algebras, and in this way
fully exploit the coupling theory of von Neumann algebras. We hope that our elementary
introduction motivates the reader to delve deeper into operator-algebraic methods. For
lattices of the form I' = AZ? x BZ¢, with A, B € GL(d,R), Han and Wang gave a
constructive proof of the sufficiency of (9.25) for the existence of frame vectors [38].

9.2.1. Gaussians and Bargmann—Fock spaces

The question of choosing specific cyclic or frame vectors has been intensively studied
for d = 1 and lattices in R? of the form I" = «Z x BZ. In his work on foundations
of quantum mechanics, von Neumann [61] claimed without proof that the Gabor system
m(I")g generated by the Gaussian function

o) =27 14e=? R, 9.27)

is complete in L*(R) if and only if (9.25) holds. Proofs of the claim were given by
Perelomov [64], Bargmann [8], and Neretin [60]. For rational lattices (i.e., ¢ € QQ), the
same claim holds when the Gaussian function is multiplied by a rational function with
no real poles [36].

The related question, under which conditions the Gabor system generated by the
Gaussian (9.27) is a frame for L*(R) or a Riesz sequence was first considered by
Daubechies and Grossmann [19], and fully answered independently by Lyubarskii [52],
and Seip and Wallstén [77,80]:

vol(G/I') < 1,
is necessary and sufficient for the frame property, while
vol(G/I') > 1,

is necessary and sufficient for the Riesz property.

The proofs of Lyubarskii [52] and Seip—Wallstén [77] work with a o-representation
unitarily equivalent to (7, L?>(R)) on the Bargmann—Fock space F2(C) of entire functions
F : C — C having finite norm

112
IFI2, = [ PP dxdy.
C
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As in Example 9.2, the distinguished vector g corresponds under the new representation
to the reproducing kernel, that is, the vector representing the evaluation functional
F — F(0). A simple proof of the density results was derived by Janssen [41].

The characterization of the frame and Riesz property for other vectors g is a topic of
intense study [35].
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