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ABSTRACT

Target search in an obstacle filled environment is a practically relevant challenge in robotics that has a huge
impact in the society. The wide range of applications include searching for victims in a search and rescue
operation, detecting weeds in precision agriculture, patrolling borders for military and navy, automated cen-
sus of endangered species in a forest etc. An efficient target search algorithm provides a data acquisition
platform with least human intervention, thus improving the quality of life of humans. This thesis aims at
introducing a general path planning algorithm for UAVs flying at different heights in an obstacle filled envi-
ronment, searching for targets in the ground field. An adaptive informative path planning (IPP) algorithm
is introduced that simultaneously trade off between area coverage, field of view, height dependent sensor
performance and obstacle avoidance. It plans under uncertainties in the sensor measurements at varying
heights, and is robust against wrong target detections. It generates an optimal fixed horizon plan in the form
of a 3D minimum-snap trajectory that maximizes the information gain in minimum flight time by providing
maximum area coverage, without any collision with the obstacles. The resulting planner is modular in terms
of the mapping strategy, environment complexity, different target, changes in the sensor model and optimizer
used. The planner is tested against varying environmental complexities, demonstrating its capability in han-
dling a wide range of possible environments. The planner outperforms other planners like non-adaptive IPP
planner, coverage planner and random sampling planner, by demonstrating the fastest decrease in map error
while flying for a fixed time budget. A proof of concept for the algorithm is provided through real experi-
ments by running the algorithm on a UAV flying inside a lab environment, searching for targets lying on the
ground. All the targets were successfully found and mapped by the algorithm, demonstrating its applicability
in a real-life target search problem.

Ajith Anil Meera
Delft, August 2018
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1
INTRODUCTION

This chapter aims at providing an introduction to the target search problem in a search and rescue operation.
Motivated by the huge impact that an efficient target search algorithm can make on the society, the require-
ments of the algorithm are defined along with the problem statement for the thesis. This chapter lays the
theoretical foundation for the approach followed in the thesis.

MOTIVATION
The increasing impact of natural and man-made disasters on the urban population has led to a growing de-
mand for efficient search and rescue operations that can search a calamity zone and find all the victims in the
least amount of time. However, the random nature of these disasters makes the search and rescue operation a
challenging problem. In many cases, the size of the affected area is so large that finding all the victims within
a given amount of time is not possible for the rescue team. Moreover, most of the calamity regions are dan-
gerous for humans to directly intervene. These limitations have given way to robotic systems that now act as
an extension for the search and rescue team to reach out to locations inaccessible to humans at a much faster
rate. These systems include snake-like robots like IRS Soryu, crawler robots like Terminatorbot [1], hexapod
robots like RHex [2], Unmanned Aerial Vehicles (UAVs) etc. They have successfully been used even in large
scale disasters like the terrorist attack on the World Trade Centre, hurricane Katrina, etc [3]. However, the
control and inspection tasks using these systems are done manually by humans, limiting their widespread
use by emergency response teams worldwide as a standard protocol. Making these systems autonomous and
reliable would decrease human intervention, thus improving the efficiency of the workforce. Rescue opera-
tions are a race against time, and each saved minute could be exploited to save more victims. Therefore, the
research towards autonomous search and rescue operations is vital.

According to the 2005 World Disaster report [4], over 900,000 people have been killed from 1995 to 2004 by
urban disasters. Almost 80% of the survivors of urban disaster are surface victims [5], who lie on the surface
of the rubble and can easily be observed by a aerial vehicles flying over the disaster site. Therefore, deploying
a UAV to autonomously scan a disaster area would increase the quality of the rescue operation. With the
advent of portable fast computing machines, UAVs are now capable of running more complex algorithms.
The agile manoeuvering capabilities along with its rapid scanning capabilities makes the UAV one of the best
and fastest data acquisition platforms available. Therefore, a UAV based initial search is the best way to find
most number of victims in a disaster site, in a minimum amount of time.

A UAV based search operation is constrained with a low flight time due to battery restrictions. Moreover,
the UAV should be capable of ensuring its own safety during the flight. The lightweight and fragile structure
prone to destruction via collisions, the low endurance or performance in tough environments like proximity
to a burning buliding, etc, pose serious problems for its operation on a disaster site. Therefore, an algorithm
that not only scans for humans in an area, but also incoorporates battery restrictions, collision avoidance and
risk avoidance, is essential for safe performance.

The search and rescue algorithm for a UAV can be formulated as a constrained optimization problem
where the objective is to maximize the target detection, given the budget constraints for flight time or battery
power. The output of the algorithm should be an optimal path for the UAV to fly and take measurements.
This motivates the problem to be an Informative Path Planning (IPP) problem, which is discussed in the next

1



2 1. INTRODUCTION

section.

INFORMATIVE PATH PLANNING
The IPP problem seeks to maximize the information gathered from the surroundings, subjected to a mobility-
related budget constraint. The IPP problem can be formulated as:

P∗ = argmax
P∈ψ

O[MEASURE(P )], (1.1)

s.t . cost (P ) ≤ B ,

where P is the path out of all possible paths ψ, O defines the information objective function or the informa-
tion quality of the data collected, measur e(P ) obtains the discrete measurement along the path P , cost (P )
provides the corresponding travel cost (e.g. time, fuel, or energy) and B is the cost budget [6]. IPP aims at
choosing an optimal information-rich path within a path budget so as to cover the target area. For a search
and rescue scenario, the objective function would represent the measure of the quality of information denot-
ing the presence or absence of a victim in the environment.

A clear distinction exists between the objectives of IPP, shortest-distance path planning [7] and coverage
path planning [8]. While coverage path planning aims at covering the target area completely [8], IPP aims at
choosing an optimal information-rich path within a path budget so as to cover the target area. Unlike the
shortest-distance path planning problems, IPP is not goal-directed and typically chooses a path with larger
path length. Shortest path planning problems can make use of algorithms like Dijkstra’s algorithm because
of the modularity of the objective function (usually Euclidean distance). This means that the sum of the ob-
jective value of two segments is equal to the objective value of the concatenation of the two segments. Many
information theoretic objective functions exhibit submodularity - intuitively, the property of diminishing re-
turns [9]. This encodes the property that the measurements are less informative if other measurements were
taken close-by. Therefore, the information gathered in the future is strongly dependent on the prior trajec-
tories of the robot, which is not the case with modular objectives [10]. This property differentiates IPP from
other path planning algorithms in terms of the objective function.

Figure 1.1: System architecture for informative path planning.

The nature of the gathered information can range from phenomenon monitoring like temperature, pres-
sure, algae growth etc, to application specific searches like search for victims, military surveillance etc. The
information thus gained could be of critical use to the community in terms of research, industrial application
or social benefits. The information is represented in the form of an information map, which is the resulting
output of an IPP planner. A system architecture of an IPP planner is shown in Figure 1.1. The target detector
collects information from the environment, identifies the target, and fuses it with the map, depending on the
UAV position. The planner keeps track of two maps, one for localization and the other one for information
storage. These maps are used by the planner in deciding the next best path in the environment that can max-
imize the information gain and improve the quality of the map. The robot moves along the planned path and
take measurements during its flight at a measurement frequency. The objective of the planner is to generate
the UAV path that would eventually result in a map that is close to the ground truth. The error in the infor-
mation map would be higher if the measurement uncertainties of the target sensor is not considered while
mapping and planning. Therefore, it is imperative that the measurement uncertainty is modelled accurately.
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MEASUREMENT UNCERTAINTY
The measurement outcome from the target sensor could be of two types depending on the phenomenon be-
ing observed. If the phenomenon being observed only results in discrete measurements like the presence or
absence of a human at a location in the environment, then the outcome can be treated as a discrete random
variable. Similarly, if the phenomenon being observed takes a continuous value like temperature, pressure or
radiation measurements, then the outcome can be treated as a continuous random variable. The measure-
ment uncertainty related to a continuous random variable can be expressed as the variance of the normal
distribution by approximating the sensor to follow a Gaussian noise model. The discrete random variable for
a classifier based target sensor can be approximated to follow a Bernoulli distribution. A Bernoulli distribu-
tion is a discrete probability distribution which takes the value 1 with probability p and the value 0 with the
probability 1−p. The expected value of a Bernoulli random variable X is given by E [X ] = p, while the vari-
ance representing the uncertainty is given by V ar [X ] = p(1−p). Uncertainties related to the measurement
outcome should be incorporated into the mapping and planning strategies depending on the nature of the
target sensor used.

REQUIREMENTS
This thesis aims to introduce a general 3D path planning algorithm for target search using a UAV that can
search, map and plan in an obstacle filled environment with uncertain measurements from the sensor. The
algorithm should meet the following requirements:

• Provide complete coverage of an area,

• Find all the targets in the field,

• Adhere to the time budget constraint of the UAV,

• Plan a dynamically stable 3D path,

• Ensure collision avoidance with the obstacles,

• Avoid high risk areas in the environment.

CONTRIBUTIONS
The main contributions of the thesis include:

• The introduction of a modular 3D path planning algorithm that solves a target search problem using
UAV in an obstacle filled environment by accounting for measurement uncertainties.

• The introduction of a layered optimization approach for adaptive IPP, that optimizes the search space
using Bayesian optimization, and optimizes the UAV path using standard optimizers for maximal in-
formation gain. The adaptive planner is robust against wrong detections and is beneficial for a target
search problem.

This chapter dealt with introducing the target search problem in a search and rescue operation, motivated
by the huge impact that the algorithm can make in the society. The IPP scheme that cater to the requirements
of the algorithm was summarized. The next chapter provides a brief introduction to different types of IPP
methods found in literature, and compares them against the method followed in this thesis.





2
RELATED WORK

IPP has been used for solving a wide range of real life problems including environment monitoring [11–13],
exploration [14–16] and sensor placement problem [17, 18]. While in the operations research community,
a discrete version of IPP is known as Orienteering Problem [19] and Travelling Salesman Problem [20], in
robotics community it was a subset of a large class of active perception [21] problems. With the advance-
ments in fast computing machines and portable on-board processing devices, IPP literature has seen an ex-
ponential growth in academia. These advancements have enabled the use of IPP in a continuous domain to
plan paths for a robot that gathers data from the environment. IPP can be broadly classified based on three
criteria: adaptiveness, greediness (myopic property) and continuity. An IPP method could be adaptive or
non-adaptive, myopic or non-myopic, and continuous or discrete. The IPP algorithm introduced in this the-
sis is adaptive, non-myopic and continuous. The following sections discuss each classification and contrast
each of it against the approach followed in this thesis, demonstrating that the algorithm is the most suitable
IPP algorithm for target search using UAV in a 3D environment.

ADAPTIVE AND NON-ADAPTIVE IPP
The IPP algorithm can be simplified by assuming the independence between the information theoretic ob-
jective function and the actual value of the measurement taken at a location. This renders the IPP algorithm
with a computationally cheaper way of solving the IPP problem - by planning the path a pr i or i . The objec-
tive function depends only on the sampling location and not on the measurement taken at the location. This
class of IPP problem, which is more explorative in nature, is known as a non-adaptive (offline) IPP problem
[22–24]. However, many mobile sensing applications require an exploitative and adaptive (online) planning
scheme that accounts for the latest measurements from the underlying field [25–28]. For a search and rescue
robot, multiple measurements are beneficial when a human target is detected than when it isn’t. Such adap-
tive planners could combine exploration and exploitation in their planning scheme. Although adaptive IPP is
more computationally expensive than non-adaptive IPP, it performs better in terms of information gain [29–
31]; the benefits of adaptivity are well known in literature [32]. It is proved that if a problem satisfies adaptive
sub-modularity, then a simple adaptive greedy algorithm is guaranteed to be competitive with the optimal
policy [33]. Therefore, it is evident that an adaptive planner is more suitable than a non-adaptive planner for
target detection using UAV. The planner introduced in this thesis is an adaptive planner, which theorectically
yields better performance than a non-adaptive planner.

MYOPIC AND NON-MYOPIC IPP
Early methods in IPP concentrated on approximation algorithms that yield sub-optimal solutions. Greedy
strategies [34] that choose the locations that have the maximum information gain at the current instant and
do not consider future information gain are called myopic IPP methods [27, 35]. Greedy approaches could
also have a finite look ahead where the maximal information gain locations are greedily selected at each step
in the planning horizon. The submodularity property of the objective function was proved to significantly
reduce the computation time for greedy algorithms [36]. The recursive greedy algorithm [37] is one such
popular IPP approach that recurses over possible points in the path to provide near-optimal solutions at
quasi-polynomial computation time. [18] has shown that for the sensor placement problem, the pure greedy
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6 2. RELATED WORK

algorithm gives results that are within 95% of the optimal solution with a risk of arbitrarily bad solutions.
Greedy approaches with limited look ahead time [35, 38] have shown to have shorter computation time but do
not provide any optimality guarantee due to the limited planning horizon. A myopic strategy is a good option
in situations where it is the characteristic of the monitored target that it mainly occurs in large colonies; the
algae or fish monitoring system can look for large colonies or schools myopically. Although myopic strategies
might work for some cases in the IPP setting because of its maximal information gain objective, it runs with a
risk of obtaining bad solutions.

Non-myopic IPP approaches, on the other hand, have a look ahead and plan to optimize future infor-
mation gains without greedily selecting locations at each step in the planning horizon [39–42]. In real-world
applications, non-myopic methods were shown to outperform myopic ones in terms of running time and
information gain [40]. The planner in this thesis considers a finite horizon greedy solution as the intial solu-
tion for the optimization routine. Starting with an initial myopic solution, the optimizer evaluates an optimal
non-myopic solution for the problem. This approach ensures the performance guarantee of a myopic solu-
tion which then gets refined by the optimizer to yield an even better non-myopic solution.

CONTINUOUS AND DISCRETE IPP
Early works discretized the search space before solving the IPP problem, while recent works focus on solving
it in a continuous space. Most of the discrete IPP solutions use a graph or tree based combinatorial method.
The recursive greedy algorithm [22, 37, 43], and the branch and bound technique [42] stand out in the discrete
IPP framework. Branch and bound method was shown to significantly reduce the computation time realtive
to the brute force method, therefore enabling the use of larger graphs.

The main disadvantage of discrete IPP is that it is not scalable due to the large graphs and trees that
arise; it consumes higher memory and at the same time makes optimization hard and slow. Moreover, the
choice of density of the graph largely influences the optimization procedure; fine discretization makes the
optimization slow, while course discretization makes the solution sub-optimal. Furthermore, continuous IPP
provide smooth trajectories for UAVs which are beneficial for its smooth flight dynamics, whereas discrete IPP
provide only distinct via-points in space with no further path information. Therefore, continuous IPP is more
suitable than discrete IPP for target detction using UAV. The planner introduced in this thesis is a continuous
IPP planner which generate 3D minimum snap polynomial trajectories that cater to the flight dynamics of the
UAV. The discrete IPP methods on the other hand generate straight line paths with sharp turns that induce
jerks during the flight, thus decreasing the quality of the measurement.

Continuous IPP consists of a large number of approaches and hence demands further classification for a
detailed analysis and comparison. Moreover, the approach followed by the thesis belongs to the continuous
IPP, therefore demanding a detailed study. Continuous IPP can be classified into three major groups: control
or policy learning, sampling-based IPP and trajectory optimization. The following subsections define each of
these approaches and compare them against the approach followed in this thesis.

CONTROL OR POLICY LEARNING

Control learning IPP learns a particular strategy that maximizes the information gain from the environment.
The curiosity based visual exploration scheme for Autonomous Underwater Vehicles (AUVs) [44], mutual
information based control policy for SLAM [15], reactive control policy [45] are some examples. A provably
stable adaptive controller that can learn the locations of dynamic events in the environment was introduced
by [46]. Finite-horizon model predictive control methods for IPP [47–49] work better than myopic methods,
but do not provide performance guarantees beyond the horizon depth.

The problem of policy learning in environment monitoring IPP can easily be formulated as a Partially Ob-
servable Markov Decision Process (POMDP) [50]. POMDP methods have been used in very small problems in
IPP [51]. [52] showed that POMDP has potential in search and rescue operations using UAVs when compared
to greedy strategies, but at the expense of high computation time. However, using general POMDP solvers in
a continuous IPP problem will lead to large numbers of continuous variables, which would lead to an even
larger belief space, making it almost intractable for solving in real-time in a UAV with on-board processing.
Although reinforcement learning techniques demonstrate some hope in IPP frameworks [53–55], they are far
from being applied in a real-time active perception problems. Therefore, policy learning is not the most suit-
able solution for target search using UAV. The approach in this thesis differs from control or policy learning by
the fact that there is no policy learning involved. Instead a standard optimizer is used to optimize the objec-
tive function to perform an active perception task. This renders the algorithm with the capability to perform
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online planning and active perception without any large training time.

SAMPLING-BASED IPP
Another approach to learn a phenomenon is to randomly sample locations in the environment to make mea-
surements and then connect the samples using trees or graphs. This representation is then used to evaluate
the most information rich path for the robot. This type of sampling-based strategies have an advantage of
quickly exploring the search space to achieve a feasible solution [56]. This property has been exploited by a
large amount of IPP literature. The iRRT [57] algorithm based on the Randomly exploring random tree (RRT)
algorithm can be used to solve tracking-based information gathering problems without any asymptotic opti-
mality guarantees. Combining ideas from iRRT, RRT and branch and bound technique, the Rapidly-exploring
Information Gathering (RIG) algorithm [24] solved continuous IPP in a 2D setting with asymptotic optimal-
ity, outperforming the branch and bound method. By combining Gaussian Process and RRT∗ algorithm, [58]
achieved 1200% improvement in RMSE compared to random and greedy strategies in an indoor monitor-
ing task. Combining RRT planner with genetic algorithm [59] yielded better information gathering capabil-
ity. Other sampling based IPP methods include CE-IPP [60], which uses randomly exploring random graphs
(RRG) and cross entropy (CE), asymptotically near-optimal RAOr algorithm [61], ReASC algorithm [28], which
outperforms myopic algorithms, BRM [62] algorithm, based on probabilistic roadmaps, CA-RRT [63] which
works with a known cost map (hence unsuitable for exploration tasks), RRC [64] etc. Sampling based IPP
has also been used for information gathering in exploration-based IPP [14, 65]. Energy-optimal paths for an
AUV under strong ocean currents were planned by [66] using simulated annealing and swarm optimization.
However, their model does not account for uncertainties while decision making.

Promising solutions were provided by recent papers by utilizing the advantages of a Monte Carlo Tree
Search (MCTS) algorithm into the IPP problem [67–69]. They provide anytime solutions that are robust to
uncertainties in a Bayesian framework [70]. However, the applications concentrate on ground robots and
hence deal with a two-dimensional search space.

Despite its success, sampling-based IPP methods have a disadvantage in high dimensional search space
due to their probabilistic completeness. The method finds a solution if one exists, given sufficient runtime of
the algorithm - which could be infinite [71]. This might not be readily feasible for applications like search and
rescue where time is a crucial element [3]. Therefore, sampling-based IPP is not the most suitable solution for
target search using UAV. However, the approach followed by this thesis makes use of a finte horizon random
sampling based IPP method to evaluate the initial myopic solution for the optimizer. This strategy takes
advantage of the quick search-space exploration capability of a sampling based IPP method to reach an initial
solution, within few iterations. Therefore, the algorithm makes use of the advantage of sampling based IPP
methods and later improvizes it using standard optimizers to yield an even better solution.

TRAJECTORY OPTIMIZATION
In IPP literature, some recent methods stand out by adopting a different approach in solving continuous IPP
problems in a 3D setting. These methods parametrize the path of the UAV in a 3D environment and use
advanced hyper-parameter optimization algorithms to tune these parameters such that the resulting path is
optimal for information gathering. They are shown to successfully solve more complex problems than the
previous IPP methods and are therefore promising.

Bayesian optimization (BO) [72] is one such method, a scalable and parameter-free algorithm [73] which
is widely used to find the maximum of expensive cost functions. It sets a prior over the objective function and
combines it with evidence to obtain a posterior function. The next best measurement location is then se-
lected based on the utility that takes into account both exploration (sampling from areas of high uncertainty)
and exploitation (sampling areas likely to offer improvement over the current best observation [74]). BO has
been successfully used in IPP; environment monitoring [75] by optimizing parameters of a continuous spline
path [76], reward based active classification for agricultural mapping [77], active perception and smooth nav-
igation [78]. Very recent works [79, 80] have solved the continuous IPP problems in a POMDP framework
using BO and MCTS. However, the action space is still discrete and limited, and the work was done in a 2D
trajectory space. BO in a POMDP framework was solved in a continuous action and state space by [81]. How-
ever, the method was done for a ground robot in a 2D search and trajectory space. Real-time capabilities of
these methods in a 3D search and trajectory space are unclear.

Another approach is to use standard evolutionary strategy based optimization techniques to plan the
robot trajectory. One such method is Covariance Matrix Adaptation Evolution Strategy (CMAES) which can
be used for continuous polynomial trajectory fitting in constrained spaces [82]. CMAES is one of the most
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Table 2.1: Overall review of major IPP papers

Reference Algorithm Search space Traj. space
Discrete IPP [37] Recursive greedy Graphs & trees - -

[42] Branch and bound 2D 2D
Control strategy [84, 85] CSQMI based control 3D 2D

[53] iGP-SARSA(λ) 2D 2D
Sampling based IPP [24] RIG 2D 2D

[14] Next best view planner 3D 3D
[67] MCTS 2D 2D
[60] CE-IPP 2D 2D

Trajectory optimization [76] BO 2D 2D
[6] CMA-ES 2D 2D
[13] CMA-ES 2D 3D

powerful evolutionary algorithms for real-valued optimization and has recently been shown to successfully
work on 3D trajectory space in the continuous IPP setting [6, 12, 13]. The method was shown to outperform
classic IPP algorithms like branch and bound, BO and RIG in terms of information gain and computational
time, thus demonstrating the capabilities of the method in active perception tasks for UAVs. However, it is
applicable only for navigation in convex and obstacle-free environments. Moreover, being a quasi parameter
free [82] and a derivative free method, CMAES is a black box optimizer [83]. This implies that no knowledge
about the way in which the best path is chosen by the optimizer would be unknown to the user, making it
hard to reason about the result obtained.

In summary, trajectory optimization methods are suited for UAVs because they take into consideration
the continuity and smoothness of the trajectory, which is imperative for the flight dynamics of the UAV. These
methods employ state-of-the-art optimization techniques that are global optimizers. However, they are more
of “black-box” optimizers with less control parameters, when compared to sampling-based IPP or control-
learning IPP. This thesis makes use of a trajectory optimization strategy to plan a 3D polynomial trajectory by
using a finite horizon sampling based myopic solution as an initial solution for the optimizer. Both CMAES
and BO were used as the optimizer, demonstrating the modularity of the algorithm.

This chapter dealt with providing a brief introduction of IPP literature. The most suitable strategy for
target search using UAV was found to be a non-myopic and adaptive strategy. Trajectory optimization in a
continuous IPP setting was found to be the most suitable IPP method. Therefore, the thesis adopts a continu-
ous IPP strategy by selecting a continuous path and optimizing it for maximum information gain. The search
space is considered to be a 2D ground plane, while the trajectory space is considered to be a 3D environment
with obstacles. Table 2.1 gives a an overall review of the major IPP papers along with the algorithm and the
dimension of search space and trajectory space.

The layout of the thesis is as follows. The modelling of the field, environment, sensor etc, will be covered
in Chapter 3, while the mapping strategies used by the algorithm will be detailed in Chapter 4. Chapter
5 describes the main planning strategy used by the algorithm, and illustrates its working with the help of
examples. The algorithm will then be benchmarked against other planners in Chapter 6. The algorithm will
be tested against different environments, optimizers, objectives etc in this chapter. Chapter 7 will deal with
the real experiments with a UAV flying in a lab environment, running the algorithm. Finally, Chapter 8 will
provide a conclusion to the thesis, and will provide the possible future works in the algorithm.
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MODELLING

Modelling the real-world is imperative for planning to act sensibly in it. Active perception tasks often require
this model of the world to optimize the next best location for data acquisition. To know where to observe,
it is important to know what could be observed. This is essentially captured by a representative model of
the phenomenon. This section deals with modelling various aspects of the planner including the target or
phenomenon under observation, the environment through which the UAV has to fly and the human detection
sensor.

SIMULATION ENVIRONMENT
The algorithm is completely implemented in C++ in a Robotics Operating System (ROS) environment. Gazebo
is used to model the environment (shown in Figure 3.1) in which the model of an AscTec Firefly flies around
through the planned path and captures images. Rvi z is used as a visualization platform for the planned path.
M AT L AB is only used for plotting saved data and for generating the necessary plots from the results.

Figure 3.1: A 30mx30m environment in Gazebo with a building of dimension 10mx4mx26m.

MODELLING THE FIELD
The phenomenon being observed by the UAV in an environment is generally expressed in the form of a map. A
map is updated by using the measurements gathered by the UAV from the environment, and provides relevant
information for planning and decision making. The environment map can be discretized and represented
as a mesh grid. Each cell in the map contains some information about the presence of the target in it. If
the presence of a target in a cell could provide some information about the presence of the target in the
neighbouring cells, the cells in the grid are correlated. This property is applicable for phenomena which
occurs as a cluster - school of fish in sea, algae growth etc. The cells in the grid can be independent of each
other if the presence of a target in the cell does not influence the presence of target in the neighbouring
cells. Depending on the underlying assumption of independence or interdependency between each cell in

9
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the map, the map can be represented as an Occupancy Grid (OG) or as a Gaussian Process (GP) respectively.
In this thesis, both the modelling approaches were considered. The GP assumes a continuous and correlated
model of the field, while OG assumes an independent and discrete model of the field. Correlations within
the phenomenon being observed motivates a GP model of the field, while an uncorrelated phenomenon
motivates the use of an OG map. The following sections introduce the implemented modelling strategies.

GAUSSIAN PROCESS
GP is a nonparametric Bayesian technique that places a prior distribution over the space of function to be
evaluated. It uses the set of observed samples to estimate the value of the unobserved areas in the input space
[86]. A GP models spatial correlations in the map in a probabilistic and non-parametric manner [87]. The tar-
get map is assumed to be a continuous function in 2D space ζ : ε→ R, where ε ⊂ R2 is a point on the map ζ

under consideration. GP is fully characterized by the meanµ= E [ζ] and the covariance P = E [(ζ−µ)(ζT −µT )].
The continuous 2D function of the environment being mapped can therefore be expressed as ζ ∼ GP (µ,P ).
This representation of the field embeds our best estimate of the field being observed in the form of the mean
µ, and the correlation between different points on the map in the form of P . µ can be interpreted as the best
estimate of the probability of target occupancy in the cell. The covariance matrix P captures the interdepen-
dency between different points in the map. This is particularly important in cases where the phenomenon
being observed usually appears in the form of clusters. Groups of victims at a particular location in a disaster
site and highly concentrated metallic content in an underground mine detection task are few examples for
correlated data in the field being observed.

In monitoring tasks where the prior information about the field is available, the information can be
blended into the GP model as an initialization in the form of a pre-trained kernel K (X , X ), which is the n ×n
matrix of covariances evaluated at all the pairs of training points. With the fixed-size environment discretized
at a certain resolution with n training locations X ⊂ ε, we can predict the prior map in n∗ test locations
X ∗ ⊂ ε. Each element k(xi , x j ) of K (X , X ) is defined by the covariance function or the kernel, which is the
key ingredient of the GP. The kernel encodes all the assumptions about the map ζ that is being modelled. If
the cells xi and x j are close to each other, then their map values are assumed to be similar to each other.
This similarity between the cells are embedded in the kernel. The most frequently used kernels in literature
are squared exponential, Matern kernel and periodic covariance function. The isotropic Matern 3/2 kernel
function common in geostatistical analysis and spatial statistics, is used to describe the field. It is defined as
[87]:

kM at3(x, x∗) =σ2
f

(
1+

p
3d

l

)
exp

(
−
p

3d

l

)
, (3.1)

where l and σ2
f are the hyperparameters representing the lengthscale and signal variance respectively, and d

is the Euclidean distance between inputs x and x∗. l represents the smoothness of the function describing
the map; small l represents a function which changes quickly while large l represents a very smooth function.
σ2

f is the scaling factor that determines the variation of the function value from the mean. The set of fixed

hyperparameters θ = {σ2
n ,σ2

f , l } represents the control relations in the GP and can be optimized using vari-

ous techniques like maximizing the log-marginal likelihood of the data [87]. The training can be done with
previously acquired maps to match the properties of the map ζ at the required resolution.

For a search and rescue operation, there is no prior information available about the field and hence, the
values at xi ∈ X are initialized with a constant prior mean. However, from the available real map of the
environment from Goog le M aps for example, certain regions in the field which are occupied by the buildings
could be identified. These regions are least likely to contain humans. The search is restricted within surface
victims who lie on the field so that they are visible from a flying UAV. Therefore, a very low initial constant prior
can be used at these locations. The covariance is then calculated using the classic GP regression equation [88]:

P = K (X∗, X∗)−K (X∗, X )[K (X , X )+σ2
n I ]−1K (X ∗, X )T , (3.2)

where K (X , X ∗) denotes the n×n∗ matrix of the covariances evaluated at all pairs of training and test points,
P is the posterior covariance, and σ2

n is a hyperparameter representing the noise variance. The diagonal
elements of covariance matrix are the variances of each point on the map, which is the uncertainty associated
with the mean at that point on the map. Therefore, trace of the covariance matrix P represents the total
variance or uncertainty of the map.

Figure 3.2 shows the initial GP mean and variance for an environment shown in Figure 3.1 with a grid
resolution of 0.75mx0.75m. It can be observed from Figure3.2a that the mean is lower at cells closer to the
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(a) GP mean (b) GP variance

Figure 3.2: Field shown in Figure 3.1, initialized with a GP prior µ= 0.1 at unknown locations

obstacle, than those that are far. This results from the continuous model of the field that uses a GP. It can
also be observed that the value of variance at the corners and edges are higher due to higher uncertainty at
boundaries, which is the characteristic of a GP. The uncertainty at the location where there is a building is
observed to be low, which can be accounted to the assumption that surface victims are not present inside the
building.

It should be noted that the GP has a disadvantage of increasing computation complexity with observa-
tions taken. The computation complexity of GP is cubic in the number of points observed O(n3) [89], and
hence is not preferred if large number of observations are to be made on the field.

OCCUPANCY GRID
The most commonly used map representation for planning in robotics is the occupancy map. The field can
be represented as a 2D occupancy grid [90] m where each cell is associated with a Bernoulli random variable
that represents the probability of target occupancy. The probability distribution of the map is given by the
product over the cells as shown in Equation 3.3, where p(mi ) is the probability of the cell to be occupied by
the target (human), and 1−p(mi ) is the probability of the cell to not be occupied by the target.

p(m) =∏
i

p(mi ) (3.3)

The cells mi are assumed to be independent of each other, which is not an accurate assumption due to the
presence of the same target in multiple cells. However the factorization simplifies the estimation of posterior
probability of the map, enabling the use of a binary Bayes filter to estimate the occupancy probability for each
grid cell. The log-odds representation is used to denote the probability that each grid cell is occupied, and is
given in Equation 3.4.

l (mi ) = log
p(mi )

1−p(mi )
(3.4)

The probability can be retrieved back by using Equation 3.5.

p(mi ) = 1− 1

1+e l (mi )
(3.5)

This approach decreases the computational complexity of the occupancy grid update and at the same time
increases the precision of the calculation due to smaller round-off errors. Similar to the previous section,
an unknown prior can be set as an initialization for the occupancy probability. The known locations in the
environment like the buildings can be initialized with a low probability for human occupancy.

The information entropy or Shannon’s entropy is defined as the average rate at which information can be
generated by a stochastic source of data [91]. It defines the uncertainty related to the estimate for occupancy
of the grid and is defined as:

H = ∑
m∈M

p log p + (1−p) log(1−p), (3.6)
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(a) Human occupancy probability (b) Entropy of the field

Figure 3.3: Field shown in Figure 3.1, initialized with a OG prior µ= 0.1 at unknown locations

where p is the probability for the cell to be occupied by the target. Entropy is the minimum if the occupancy
probability is either 1 or 0, and is maximum if the occupancy probability is 0.5. Therefore, entropy represents
uncertainty associated with the current occupancy probability of the cell.

Figure 3.3 shows the initial OG values and the entropy for an environment shown in Figure 3.1 with a grid
resolution of 0.75mx0.75m. It can be observed from Figure 3.3a that the occupancy probability is discrete
and does not decrease with respect to distance from the obstacle, owing to the independence of the cell
occupancies. From Figure 3.3b, it can be observed that entropy is the lowest at the building as we are certain
that there are no humans there, while it is maximum at other locations.

ENVIRONMENT MODELLING
The environment in which the UAV flies is often complex and may feature various obstacles like buildings,
trees etc. In addition, there are regions in the environment which are detrimental to the flight, regions on fire
for example. Modelling the environment is therefore crucial to avoid such regions and ensure flight safety.
Moreover, obstacles in the environment limit the field of view (FoV) of the UAV and hence should be con-
sidered while mapping. A sample urban environment with housing in close proximity to a chemical/nuclear
reactor is shown in Figure 3.4. During a man-made disaster at the reactor, the UAV should not cross into the
critical radius of the danger zone. It is however supposed to map the area in the danger zone that is not occu-
pied by the reactor. This section deals with modelling the environment by taking these factors into account
so as to aid the planning and mapping strategies described in the coming chapters. As illustrated in Figure
1.1, there are two map representations: one is the 2D information map of the field that was detailed in the
previous section, while the other is the 3D obstacle map that will be discussed in this section.

OBSTACLES AND DANGER ZONES
The obstacles in the environment are assumed to be opaque and rigid. This implies that the obstacles com-
pletely limit the FoV of the UAV and at the same time provide complete rigidity in case of a collision. The dan-
ger zone is defined by a central location and a critical radius. The region is assumed to be a high cylindrical
obstacle during the path planning, while the region is treated as transparent while mapping. For simplicity,
the obstacles are approximated to the closest volumetric shape. The buildings are modelled as a cuboid that
can enclose them, while the trees are modelled as an enclosing sphere. Figure 3.5 shows the Rvi z visualiza-
tion of the environment. Note that the size of the reactor in Figure 3.5b is slightly larger than in Figure 3.5a
because of the critical radius. Additionally, the boundaries of the environment and the ground are treated as
a plane obstacle, which is not shown in Figure 3.5b.

ESDF MAPS
A UAV flying in an obstacle filled environment must know the information about the closest obstacle to it,
so as to avoid a head-on collision. A well known representation in robotics is the Euclidean Signed Distance
Function (ESDF) which is defined as the distance from a point in the free space of the environment, to its
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(a) Top view (b) Isometric view

(c) Front view

Figure 3.4: An urban environment with a dangerous reactor near the housing in Gazebo

(a) The environment in Gazebo. (b) Rvi z visualization of environment.

Figure 3.5: Modelling the environment using simple geometric shapes
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closest obstacle. In case of points inside an obstacle, it is the distance to the closest free space in the environ-
ment, with a negative sign. Therefore, the ESDF measure is positive if the point is outside the obstacles, while
it is negative inside an obstacle, and zero on the boundary of an obstacle. In order to decrease the computata-
tion time for planning, we create an ESDF map of the environment as a preprocessing step, and query from
it while planning. This representation of the environment is particularly convenient to use because checking
the sign of the ESDF value at a point determines if the point is in the free space or inside an obstacle.

(a) Top view. (b) ESDF map at height = 20m.

(c) ESDF map at height = 10m. (d) ESDF map at height = 5m

Figure 3.6: ESDF map plotted on horizontal planes at different heights.

The voxbl ox package [92] is used to generate the ESDF map for the sample environment. Figure 3.6
shows the ESDF map slices at different heights. The red region is the region which is farthest from any obsta-
cle, while blue regions are inside an obstacle. It can be noted that as the height decreases, the obstacles in the
environment appear in the ESDF map as expected. A UAV planning a path using such a map would prefer to
stay close to the red regions to avoid any possible collisions. The next section deals with the usage of ESDF
maps to generate a penalty function to model collisions for planning.

ARTIFICIAL POTENTIAL FIELD
Artificial potential fields [93] are a well known approach in robotics for global path planning in an obstacle
filled environment. We make use of potential fields to create a penalty function for the proximity of the
planned path to an obstacle or boundary, by also considering the UAV dimesions. We use two most frequently
used potential fields in literature: hard constraint and logistic function. The hard constraint penalty function
penalizes in case of a collision and does not penalize if there is no collision as given in Equation 3.7, where
x = ESDF (U AV _pose) is the ESDF value queried at the position of UAV, Ccol l i si on(x) is the penalty function,
and xU AV is the size of the UAV.

Ccol l i si on(x) =
{

0 if x ≥ xU AV
2 ,

−1 otherwise.
(3.7)

The logistic function penalizes collision in a softer way depending on how close the UAV is to the obstacle.
A combination of a logistic function and a linear function is used so that the penalty increases closer to the
obstacle, while it decreases smoothly outside the obstacle to zero. The penalty function is defined as given in
Equation 3.8.
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Figure 3.7: Artificial potential field with
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(a) Logistic+linear penalty. (b) Hard constraint penalty.

Figure 3.8: Artificial potential fields corresponding to the ESDF map in Figure 3.6d.

(a) Logistic+linear penalty. (b) Hard constraint penalty.

Figure 3.9: Artificial potential fields corresponding to the ESDF map in Figure 3.6c.
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Ccol l i si on(x) =
−1+0.8x if x ≤ xU AV

2 ,
1

1+exp−10
(

x− xU AV
2

) −1 otherwise. (3.8)

Figure 3.7 shows the comparison between the nature of both potential fields used. It can be observed
that the penalty is zero if the UAV is away from the closest obstacle, while the penalty is negative otherwise,
representing a punishment for collision. It should be noted that the Equations 3.7 and 3.8 represent a discon-
tinuous function, and the discontinuity can be observed at x = xU AV

2 in Figure 3.7.
Figure 3.8 shows the artificial potential field for the ESDF map given in Figure 3.6d. It can be observed

from Figure 3.8a that the penalty increases inside the obstacle, while it stays the same for Figure 3.8b. It can
be noted that flying around at a height of 5m yields high penalty because of very small gaps to pass in between
the obstacles. However, flying around at a height of 10m yields much lower penalty as can be observed from
Figure 3.9. Therefore, when collision avoidance is considered, there is a preference for the flying height of the
UAV depending on the environment. In the following section, the human detection sensor is modelled for
varying heights. The objective is to determine if the sensor prefers a certain height for best performance.

SENSOR MODELLING
The model of a sensor is essential to determine the quality or usefulness of the observations while mapping,
and to determine the location of maximum information gain while planning. Without a sensor model, the
quality of information to be gained from a location in the environment would be unknown. It is useful in pre-
dicting measurements and making decisions to yield the best path for data acquisition. Most often, the sensor
measurements are noisy and have an uncertainty associated with each measurement. The formal definition
of measurement uncertainty with respect to continuous and discrete random variable is defined in Section
1.3. Accounting for such uncertainties is crucial for a planning algorithm to ensure robustness. For exam-
ple, if a sensor which gives measurements with high uncertainty is used, the algorithm should adapt such
that multiple measurements are taken at the same location. Therefore, sensor modelling is crucial for plan-
ning. This section deals with modelling a human detection sensor and evaluating the correlation between
the sensor performance and the altitude, so that it can be used for planning and mapping in the upcoming
chapters.

Figure 3.10: True positive detections by YOLO.

HUMAN DETECTION SENSOR

Currently available human detection sensors are based on different types of information - temperature or im-
ages for example. An image based human detection framework was selected to detect and locate the humans
in the scene. However, the algorithm is modular and can incorporate other sensors, given that it provides the
detected locations. Single Shot MultiBox Detector (SSD) [94] and You Look Only Once (YOLO) [95] are the
state-of-the-art deep learning based object detectors that can detect several objects in the image including
humans. Histogram of Oriented Gradients (HOG) [96] is a widely used human detector that uses a gradient
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(a) False positive detections by YOLO. (b) False negative detections by YOLO.

Figure 3.11: The YOLO human detection marked with blue bounding box

based descriptor to train a linear Support Vector Machine (SVM) based human classifier. The human detec-
tors currently available are biased towards humans in the upright position. However, in a search and rescue
operation, they could be found in abnormal poses, and might be occluded by the debris. Therefore, human
detectors trained on disaster dataset would be the most suitable detector for the application. However, there
is a literature gap in this area.

The human detectors available as opensource C++ packages were experimented on the images captured
from Gazebo. YOLO Tiny 2.0 demonstrated the best performance on the images with the least processing
time. Therefore, YOLO Tiny was selected as the human classifier for the thesis. It should be noted that the
planner is modular and hence can be replaced with a different sensor. Figure 3.11 shows the detected bound-
ing box around the human mannequins in an image captured by a flying UAV. It can be noted that in Figure
3.10, the detections are near perfect which are true positive detections. However, YOLO is not perfect and
might give false positives and false negatives as shown in Figure 3.11a and 3.11b respectively.

Some of the false negative detections by YOLO can be filtered out based on the size of the detected hu-
man. For example, if a bus is detected as a human, a size matching will be performed and the detection will
be labelled as a non-human one. The size of the detection can be evaluated by performing the coordinate
transform from the image plane to the ground plane. Figure 3.12 shows the effectiveness of this method in
removing the majority of false positive human detections.

Figure 3.12: Giant human detections by YOLO marked by red are classified as non-human detections.

PERFORMANCE OF YOLO AT DIFFERENT ALTITUDES
The performance of the classifier should be evaluated at different altitudes for planning a path for data acqui-
sition in 3D space. An increase in altitude increases the coverage, while decreasing the size of human in the
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captured image. Therefore, there should be a tradeoff between accuracy of the sensor and the coverage while
planning. This section deals with formulating a height dependent sensor model for mapping and planning.

It can be observed from the previous section that YOLO is not a perfect human classifier. There is an
uncertainty associated with each output from YOLO. Images captured from low altitudes contain humans
with high resolution and is less noisy. However, images captured from high altitudes contain humans with
low resolution, and is more noisy. Previous modelling approaches for a height-dependent sensor model uses
artificial uncertainty curves [12], assuming that the uncertainty increases with respect to height and saturates
beyond a certain height. We use the same model to determine the uncertainty of measurement at a given
height, given by,

σ2
s,i = A(1−e−Bh), (3.9)

where σs,i is the noise variance expressing uncertainty in measurement, h is the measurement height
and A and B are positive constants. The behavior of the image captured from a UAV at different altitudes is
essentially captured by Equation 3.9.

The underlying model of YOLO is a deep neural network which is essentially a black box classifier. There-
fore, it is not a trivial task to model the way in which YOLO performs. Although YOLO is supposed to be a scale
invariant object detector, it fails to classify the humans correctly in an image taken from beyond a particular
height in the environment. Moreover, the classifier was observed to not detect the humans correctly when
the image was taken at a very low height. The most probable reason for this is the absence of such images
in the training dataset. This intuition from the real experiments with the classifier led to the idea that the
performance of YOLO is in fact height dependent.

The most frequently used performance metric for an image based classifier is precision, recall and F1
score. Precision is the fraction of correct human detection among all the detctions made by the classifier,
while recall is the fraction of correct human detections among all the humans in the ground truth. F1 score
combines precision and recall into a single metric, which is the harmonic mean of both measures.

pr eci si on = tr ue posi t i ve

tr ue posi t i ve + f al se posi t i ve
(3.10)

r ecal l = tr ue posi t i ve

tr ue posi t i ve + f al se neg ati ve
(3.11)

F 1 scor e = 2×pr eci si on × r ecal l

pr eci si on + r ecal l
(3.12)

It should be noted that the ground truth is based on the location of humans placed in the field. Therefore,
the performance metrics are evaluated after transforming the pixels from the image plane to the ground plane
and then comparing it against the ground truth of the discretized field. This implies that the number of grid
points in the field that are visible from a particular height increases with height, even though the number of
pixels in the images remain the same.

We propose to model the performance of the classifier based on experiments on a realistic simulated
environment. 100 flights were simulated in the environment shown in Figure 3.1 with a human mannequin
placed below the UAV. The UAV takes off from a height of 2m, directly above the human mannequin and flies
to a height of 26m vertically, while capturing images. F1 score is evaluated after transforming each image
to a sub map on the field. Figure 3.13 shows the mean F1 score along with one standard deviation shown
in red. It can be observed that the performance of the classifier increases with height, reaches a maximum
and then decreases to zero, staying zero beyond the saturation height. Therefore, it can be concluded that
the performance of the YOLO as a human classifier is height-dependent, and that there is a saturation height
beyond which the classifier fails completely. The classifier has a preferred height for operation that maximizes
its performance. Therefore, it is crucial that the planner simultaneously trades off between accuracy, coverage
and obstacle avoidance to plan the path.

Based on the experimental results shown in Figure 3.13, a height-dependent inverse sensor model for de-
tecting humans correctly while using YOLO was proposed as a normal distribution till the saturation height:

P (human = 1|z = 1) =
Pmax e

−0.5
( h−hopt

σ1

)2

if h < hsat ,

0.5, otherwise
(3.13)
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Figure 3.13: F1 score of YOLO on images captured at different heights. The plot shows the mean and
standard deviation of 100 flight experiments.

where P (human = 1|z = 1) is the probability for the cell to contain a human if the prediction is a human at
an altitude h, hopt is the height of maximum F1 score in Figure 3.13, hsat is the saturation height at which
F1 score drops to minimum, σ1 is the standard deviation of the F1 score curve approximated as a normal
distribution, and Pmax is the maximum probability achievable. Similarly, a height-dependent inverse sensor
model for YOLO to misclassify humans is also proposed:

P (human = 1|z = 0) =
1−

[
(1−Pmi n)e

−0.5
( h−hopt

σ1

)2]
, if h < hsat

0.5, otherwise
(3.14)

where P (human = 1|z = 0) is the probability for it to be a human if the prediction is not human at altitude
h, and Pmi n is the least probability misclassify humans, that the sensor can attain. The curves for both the
sensor models are shown in Figure 3.14 where Pmax = 0.95, hopt = 10m, hsat = 20m, σ1 = 10 and Pmi n = 0.1.

Figure 3.14: Proposed height dependent inverse sensor model for YOLO.
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The sensor works best when it simultaneously produce the highest correct human classification and the
lowest human misclassifications. The sensor performs worst when both the probabilities approach unknown
classification probability of 0.5. It can be observed from Figures 3.13 and 3.14 that the sensor performs the
best at almost the same altitude of 10m. Moreover, in both figures, the sensor performs worst beyond a
saturation altitude or at a very low altitude. Therefore, the sensor model shown in Figure 3.14 closely repre-
sents the experimental results in Figure 3.13 and can be used for planning. However, it should be noted that
the constants in the sensor model formulated in this section should be adapted to the environment under
consideration. The results in Figure 3.14 have a close resemblance to the artificial probability curves for an
agricultural weed classifier in [13], except for the decreasing performance of YOLO that was observed in the
experiments when the altitude is very low. The proposed sensor model is directly used by the mapping and
planning strategies in the next chapters.

In summary, this chapter dealt with the modelling the various components that are necessary for the
planner. The field was modelled using two methods: GP and OG. A GP represents a correlated field while an
OG represents a non-correlated field. The environment was then modelled using ESDF maps to represent the
obstacles and danger zones. Artificial potential functions were used based on the ESDF maps to model the
penalty for collision with the obstacles. The YOLO object detector was used as a human classifier, for which
a height-dependant sensor model was formulated based on simulated experiments of UAV flight. It was ob-
served that both collision avoidance and sensor performance have a preferred altitude for flight, based on
the environment. This motivates the use of an IPP based approach for target detection since the information
gain from the environment is strongly dependent on the altitude. The next chapter deals with the mapping
strategy used by the algorithm so as to fuse the measurements taken by the UAV into the map so as to bring
out a meaningful representation of humans in the field.



4
MAPPING

The map captures all the information that is required for planning, and is very valuable for many applications,
thereby demanding accuracy in its estimation. Mapping is the process of fusing the sensor measurements
onto a map that we are interested to build. In our case the map is the representation of the field with the
presence and absence of humans clearly indicated in it. The objective is to fuse the output of YOLO into the
field in a probabilistic manner so that the uncertainty related to each measurement is also taken into account
while mapping. Updating the map should increase the belief in the map so that it matches with the ground
truth of humans in the field, provided a good sensor performance. The output of the algorithm is a map
that will be passed to the search and rescue team at the end of the flight, so that the detected victims can be
given immediate medical attention. Therefore, it is imperative that the output of the planner is as accurate
as possible, which mainly depends on the mapping strategy followed. Therefore, mapping serves as a crucial
step in automated search and rescue using UAV. This chapter deals with evaluating the FoV of the UAV flying
in an environment filled with obstacles, and then updating the map from the measurements acquired.

(a) Measurement from the camera at altitude = 22m.
(b) FoV shown in yellow and

obstacle in green.

Figure 4.1: Identification of the qualifying cells for map updation in the field.

FIELD OF VIEW
In an obstacle rich environment, the UAV has a restricted visibility of the field. Determination of FoV is there-
fore necessary for proper mapping and planning. The field is first discretized into cells of uniform size. All
the pixels in the captured image is then projected onto the ground plane, including those pixels representing
the obstacles (grey portion in Figure 4.1a). It is then transformed into the corresponding grid coordinate in
the field. This yields a subset of the field which is currently visible by the UAV assuming that there are no ob-
stacles. The procedure to evaluate the FoV involves filtering out those grid points whose visibility is blocked
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by the obstacle. This problem is generally solved in robotics using a ray casting method where the line join-
ing the UAV location and the grid point on the ground is finely discretized and checked for collision with
any obstacle. However, the computational complexity of the ray casting method on an image of dimension
m ×n pixels and a discretization size of p points (practically more than 250 for 30m×30m environment) on
the line joining the UAV position and the projected pixel on the ground, is O(mnp). A computationally faster
alternative using ESDF maps is proposed. Let rU AV be the radius of the smallest sphere that can enclose the
UAV, Rg (xg , yg , zg ) be the projected pixel on the ground, and R0(x0, y0, z0) be the position of the UAV. The next
point can be sampled from the line connecting R0 and Rg by using the ESDF value at the previous point to
move along that line from R0 towards Rg . This is possible because the ESDF value represents the minimum
distance to an obstacle and hence we can be sure that there is no obstacle close to it within a radius equal to
the ESDF value. Therefore skipping all the points in between and jumping towards Rg along the line would
not result in a collision. In a loop, it only takes a few iterations i (practically 4) to determine if the ground
is visible or not, compared to 250 for the ray casting method. The computational complexity is drastically
reduced in case of planning where the FoV should be calculated on at least k (practically more than 40) im-
ages to plan a path. Therefore the computational complexity is reduced from O(kmnp) to O(kmni ), where
i << p, when compared to the discretized ray casting method. The pseudocode to check the ground visibility
is given in Algorithm 1.

Algorithm 1 Function to check if a ground point is visible from a UAV.

1: function ISGROUNDVISIBLE(R0 ,Rg ,ESDF)
2: Initialize di st Incr = 0.05
3: if UAV is already close to obstacle then
4: di st Incr = rU AV . throw the point out of the obstacle

5: Initialize u = di st Incr
||R0−Rg || . scale the increment

6: while u<1 do . until we reach the ground point
7: next_poi nt = (1−u)R0 +uRg

8: mi n_di st = ESDF (next_poi nt )
9: if next_poi nt has low ESDF value then

10: if next_poi nt is not close to ground then
11: return false
12: else
13: return true
14: Increment u by mi n_di st

||R0−Rg || . jump towards the ground point

The pixels are successfully projected onto the map, and those points on ground that are blocked by the
obstacles are filtered out. However, we do not want to update the cells in the field if only a few pixels project
into the cell. It should be updated only if a number of pixels reach a consensus over the measurement. This
uncertainty happens on the pixels that are at the corners and edges of the image. Therefore, hashing opera-
tion is performed on each pixel by considering the grid cells as a bucket to fill in the pixels. Once the number
of pixels mapping onto the cell is beyond a particular threshold value, the cell is considered as qualified to be
updated, else the cell is discarded from being updated.

The algorithm is applied to identify the qualified grid points in the field for updation, and an example is
shown in Figure 4.1. Figure 4.1a shows the image captured by the UAV where the grey section is an obstacle.
Figure 4.1b shows the FoV of the UAV in yellow. It can be observed that grass in Figure 4.1a has the same
pattern as the yellow patch in Figure 4.1b. This shows that the FoV calculation is correct and that Algorithm
1 works correctly as expected. The next section deals with fusing the sensor information in the FoV onto the
map, for both continuous and discrete mapping scenarios.

SEQUENTIAL DATA FUSION
In the previous section, an algorithm to evaluate the FoV of the UAV was presented. Fusing the data in the
FoV onto the map in a probabilistic manner, while considering the sensor uncertainties described in Section
3.4, is important to produce an accurate map of the field. This section presents two types of sensor fusion
algorithms: one for the continuous mapping for the GP detailed in Section 3.2.1 and the other for a discrete
mapping for the OG detailed in Section 3.2.2.
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KALMAN FILTER UPDATE
This section deals with the data fusion for a GP using recursive filtering based on Kalman Filter (KF). Given
a uniform initial mean µ− and spatial correlations P− given in Equation 3.2, the map p(ζ|X ) ∼ GP (µ−,P−)
is used as a prior onto which new sensor measurements are fused. Let z = [z1, ..., zm]T denote the m inde-
pendent measurements for the human occupancy given by YOLO at all the points [x1, ..., xm]T ⊂ X in the FoV
evaluated in Section 4.1. The maximum a poster i or i estimator is used to fuse the measurements z with the
prior map p(ζ|X ), as formulated as:

argmax
ζ

p(ζ|z, X ) (4.1)

(a) Environment with 2 humans. (b) YOLO at height = 5m. (c) YOLO at height = 15m.

(d) Initial GP mean. (e) GP mean after fusing figure 4.2b (f) GP mean after fusing figure 4.2c

(g) Initial GP variance. (h) GP variance after fusing Figure 4.2b. (i) GP variance after fusing Figure 4.2c.

Figure 4.2: KF update using YOLO output at different heights on a GP map.

The posterior density p(ζ|z, X ) ∝ p(z|ζ, X )×p(ζ|X ) ∼GP (µ+,P+) is computed directly by applying the KF
update equations [88]:

µ+ =µ−+K v (4.2)

P+ = P−−K HP−, (4.3)

where K = P−H T S−1 is the Kalman gain and v = z − Hµ− and S = HP−H T +R are the measurement and
covariance innovations. H is an m ×n matrix representing a linear sensor model that intrinsically selects the
FoV {ζ1, ...,ζm} observed through z, and R is a diagonal m ×m matrix of the height dependent variances σ2

s,i
associated with each measurement zi . Therefore, H controls which cells in the map should be updated, and
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R controls the influence of these measurement on map updation. If the image is captured at low altitudes, the
associated uncertainty in measurement is lower from Equation 3.9, which has higher influence on the map
updation. An image captured at high altitudes has a lower influence on the map updation due to the high
uncertainty associated with the measurement. Each time a new measurement is registered, Equation 4.2 and
4.3 are used to sequentially fuse the measurement onto the GP map.

Figure 4.2 shows the KF update procedure using the YOLO output on the GP map. The environment is
the same as Figure 3.11, with 2 human mannequins placed in it as shown in Figure 4.2a. Figure 4.2d and 4.2g
shows the initial mean and variance of the GP. The UAV flies to a height of 5m and 15m to capture images
which YOLO uses to generate Figure 4.2b and 4.2c. KF update is done to fuse the YOLO output to the intial
GP map. The mean after KF update on the initial mean at 5m and 15m are shown in Figure 4.2e and 4.2f
respectively. Similarly, the variances are shown in Figure 4.2h and 4.2i.

It can be observed from Figure 4.2e and 4.2f that the non-human detections are updated with low value
(blue color), while the human detections are updated with a high value (red/green) color. This demonstrates,
how our mapping strategy is succeeding in revealing the field after taking a measurement. However, it can
be noted that the false positives and false negatives are also fused as such into the map. Since YOLO failed to
find a human in Figure 4.2c, the corresponding location is updated as non-human in Figure 4.2f. Therefore,
looking only once at a particular location is not a good strategy towards building an accurate map.

It can be observed from Figure 4.2h and 4.2i that the variance decreases as more measurements are taken.
However, a slight difference can be noticed in the amount of variance reduction. The variance reduced to a
lower value in Figure 4.2h (darker blue color), while it is decreased to a slightly higher value in Figure 4.2i
(lighter blue color). This is because of our height-dependent sensor model given in Equation 3.9. A measure-
ment made at a lower height reduces the uncertainty or variance of the map more than that can be reduced
at a higher height. The obstacle cells are not updated in Figure 4.2f and 4.2i, although they are found in Figure
4.2c. This demonstrates that our FoV Algorithm 1 works as expected by not updating the obstacle cells and
the cells behind it.

This section demonstrated the mapping strategy used to fuse the measurement onto the GP map, consid-
ering the measurement uncertainty and the FoV. In the next section, the mapping strategy to fuse the YOLO
output onto a OG in a probabilistic manner using Bayesian inference will be discussed.

BAYESIAN INFERENCE
This section aims at defining the mapping strategy for OG in a probabilistic manner so that the YOLO output
can be fused into the map. The standard OG mapping strategy [97] uses Bayesian inference to fuse the sensor
data onto a OG map in a probabilistic manner. For each cell mi ∈ M in the FoV at time t , we perform a
log-likelihood update, given an observation z from YOLO, as:

l (mi |z1:t , x1:t ) = l (mi |z1:t−1, x1:t−1)+ l (mi |zt , xt )− l (mi ), (4.4)

where the first term in the right hand side is the recursive term, the second term is the log-likelihood inverse
sensor model and the third term is the map prior. The inverse sensor model is the log odds of the probability
P (human = 1|z = z) and is given by Equations 3.13 and 3.14. If YOLO detects a human in one of the cells
in the FoV, the corresponding cell is updated with the probability P (human = 1|z = 1) corresponding to the
UAV altitude using Equation 3.13, for the inverse sensor model. If YOLO detects no human in the cell, the
corresponding cell is updated with the probability P (human = 1|z = 0) using Equation 3.14 for the inverse
sensor model. After taking repeated measurements at the same location, the map is expected to converge to
the ground truth.

Figure 4.3 shows the Bayesian update of the OG using YOLO outputs at different heights. The OG is initial-
ized with a prior probability of 0.1, assuming that the field doesn’t have any humans. It can be observed from
Figure 4.3e and 4.3f that the YOLO update is correctly fused into the map. The entropy of the map is decreased
after mapping, in the regions where no humans are detected. This is due to the increasing confidence of not
having a human in the cell, given that our prior was a probability of 0.1. However, the entropy increases at
the region where a human is detected. This can be accounted for a higher human occupancy in a cell where
our initial belief was to not have a human. This dilemma increased the entropy at those locations in Figure
4.3h and 4.3i. Since the objective is to decrease the entropy of the map so that the uncertainty is minimized,
multiple measurements at those locations are necessary.

A clear distinction can be observed between the map update followed by OG and GP by comparing Figure
4.2e and 4.3e. The surrounding cells of the detected humans are also updated as humans in a continuous
manner in Figure 4.2e, while only those cells where a human is detected is updated in 4.3e. This can be
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attributed to the interdependency and independence of the cells in GP and OG respectively. Therefore, both
the mapping strategies work as expected.

(a) Environment with 2 humans. (b) YOLO at height = 5m. (c) YOLO at height = 15m.

(d) Initial OG occupancy probability. (e) OG probability fusing Figure 4.3b. (f) OG probability fusing Figure 4.3c.

(g) Initial OG entropy. (h) OG entropy after fusing Figure 4.3b. (i) OG entropy after fusing Figure 4.3c.

Figure 4.3: Bayesian update using YOLO output at different heights on a OG.

This chapter dealt with the mapping strategies followed by the GP and OG fields in fusing the sensor
measurements sequentially. The maps were updated in a probabilistic manner by taking into account the
uncertainty of the measurement, on both the OG and GP. The concepts detailed in this chapter will be used
to plan the most informative path for the UAV in the next chapter. The next chapter deals with planning a 3D
path to find all the human victims in the field in the least possible time.





5
PLANNING

The objective of this chapter is to introduce a path planning algorithm such that the resultant path is the
most informative one to find humans in the field, in the least possible time. Moreover, it should be collision
free, and should cater to the dynamics of a smooth and jerk free path. This chapter treats this problem as
an optimization problem with information gain, coverage and collision avoidance as the objective, and flight
time as the constraint. Section 5.2 deals with converting the problem into an optimization problem, while
Section 5.1 deals with parameterizing the polynomial path to be planned. The initial solution required for
the optimization is evaluated in Section 5.4. The uncertainty reducing objective function that is used for the
optimization process is discussed in Section 5.3. This section introduces two informative planning strategies:
one for continuous mapping using a GP, and the other for discrete mapping using a OG.

TRAJECTORY PARAMETRIZATION

A polynomial trajectory ψ is parameterized by a sequence of N control waypoints to be visited by the UAV,
defined as C = [c1, ...,cN ], where the first waypoint c1 represents the current UAV location. The polynomial
trajectory connects these control points using N −1 k-order spline segments for minimum-snap dynamics
as given in [98]. The trajectory ψ represents the fixed-horizon path for the UAV for data gathering. A sample
trajectory in a complex obstacle filled environement from Figure 3.5a is shown in Figure 5.1. Depending on
the measurement frequency of the sensor, the measurement locations along the path ψ can be evaluated,
based on which the predictions about the informativeness of the path can be estimated.

Figure 5.1: A sample minimum-snap polynomial trajectory in Rvi z. The path avoids all obstacles.
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PLANNING AS AN OPTIMIZATION PROBLEM
The definition of the standard IPP problem given in Equation 1.1 requires an information theoretic objective
function for optimization. However, we require an additional term for collision avoidance in the objective
function. Therefore, we reformulate the objective function as,

P∗ = argmax
P∈ψ

k1Oi n f or mati ve +k2Ccol l i si on

t f l i g ht
, (5.1)

where Oi n f or mati ve is the information-theoretic objective, t f l i g ht is the flight time, Ccol l i si on is the penalty
for collision defined in Section 3.3.3, and k1 and k2 are scaling constants. It should be noted that Ccol l i si on

is always non-positive and hence it reduces the objective, while the information gain is always positive and
hence always increases the objective. Therefore, the objective function is maximum when Ccol l i si on is zero,
Oi n f or mati ve is the maximum, and t f l i g ht is the minimum.

Algorithm 2 Function to solve the IPP problem for target search using a UAV.

1: function I PP _SaR ()
2: Create ESDF map
3: Initialize the field
4: if not landing condition then . Replan until the map cannot be further improved.
5: C =Opti mi zePath(R0,ESDF )
6: Fly along the path
7: Take measurements
8: Update map at measurement locations
9: Update R0

The objective function can be optimized by standard state-of-the-art optimizers like the CMAES or Bayesian
Optimization detailed in Section 2.3.3, such that it results in a 3D collision free, polynomial path as described
in Section 5.1. It is important that these optimizers can handle constrained optimization such that the re-
sulting path completely lies inside the environment. We use a two step optimization technique, where a
suboptimal finite horizon greedy intial solution is evaluated and is used as an initialization point for the
global optimizers. Algorithm 2 describes how the IPP problem for search and rescue is solved, while Algo-
rithm 3 demonstrates our optimization strategy. Section 5.4 describes the coarse layered search that is used
to evaluate a greedy initial solution for the optimization.

Algorithm 3 Function to perform optimization.

1: function OPTIMIZEPATH(R0 ,ESDF)
2: do
3: Ci ni t i al =Gr eed yLayer edSear ch(R0,ESDF ). . Greedy layered search
4: C =C M AES(Ci ni t i al ,ESDF ) . Black-box optimization
5: while not i sCol l i si onF r eePath(C ,ESDF )
6: return C

UNCERTANITY REDUCTION AS THE OBJECTIVE
Many IPP approaches use uncertainty reduction as the objective to solve the IPP problem [12, 13]. This is
inspired by the concept that the less uncertain we are about our map estimate, the better the output map. The
information gain in these cases is the net uncertainty reduction of the map, assuming that a measurement is
made at a location. For a GP map, the information gain is defined as the reduction in variance of the map:

Oi n f or mati ve = Tr (P−)−Tr (P+), (5.2)

where Tr (.) denotes the trace of the matrix, P− is the prior covariance, and P+ is the posterior covariance
given by Equation 4.3. For a OG map, the information gain is defined as the reduction in entropy of the map:

Oi n f or mati ve = H(M−)−H(M+), (5.3)

where H(M−) and H(M+) are the prior and posterior entropy of the map, which was defined in Equation 3.6.
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Algorithm 4 Function to check if the path is collision free.

1: function ISCOLLISIONFREEPATH(C ,ESDF)
2: sampled_poi nt s = SampleF r omTr a j ector y(C , sampli ng _ f r equenc y)
3: for each point in sampled_poi nt do
4: if ESDF (sampled_poi nt ) < rU AV then
5: return false
6: return true

COARSE LAYERED GREEDY SEARCH
This section deals with evaluating an initial path for the standard optimizers. We follow a greedy/myopic
strategy where we evaluate the next best viewpoint best_pose by randomly sampling the viewpoints Rr and

from different horizontal planes, and simulating a predicted map update for a measurement at that view-
point. For a GP, the predicted map update is done such that the mean is kept constant, and the covariance is
updated as per Equation 4.3, according to the sensor model at that height given by Equation 3.9. This follows
the assumption that the best estimate of what we are going to observe next is actually the GP mean at that
location. However, the uncertainty at that location would be reduced according to the sensor model. For an
OG, the map is updated depending on the current occupancy of the cell. The expected value of a Bernoulli
distribution is the occupancy probability of the cell, as mentioned in Section 1.3. If a cell has an occupancy
probability of more than 0.5, the predicted map update is done as per the equation 4.4, with the sensor model
given in Equation 3.13, assuming that a human is going to be detected. While the cell is updated with the sen-
sor model given in Equation 3.14, if the occupancy probability is less than 0.5. This follows the assumption
that the best estimate of what is going to be observed is the current occupancy probability itself. The update
prediction is conditioned on the most probable value, given the current state of the cell.

Algorithm 5 Function to perform the greedy search.

1: function GREEDYLAYEREDSEARCH(R0 ,ESDF)
2: Initilize empty queue Ci ni t i al .
3: Insert R0 into Ci ni t i al .
4: for i = 1 : N −1 do
5: next_best_vi ew poi nt = NextBestV i ewPoi nt (Ci ni t i al [i ],ESDF )
6: Insert next_best_vi ew poi nt into Ci ni t i al .
7: Update map at next_best_vi ew poi nt .

8: return Ci ni t i al

Equally spaced nl ayer number of horizontal planes are defined from which nr and number of points Rr and

are randomly selected such that all those points are directly visible from the simulated current UAV pose
Rcur r ent . This can be achieved by adapting the algorithm 1 such that instead of ground visibility, the visibility
of Rr and from Rcur r ent can be checked. A simulated map update is performed on all these viewpoints, and
the information gain Oi n f or mati ve associated with the measurement is calculated for all the points. The in-
formation gain could be a decrease in variance for a GP map as given in Equation 5.2, or a decrease in entropy
for an OG map as given in Equation 5.3. The viewpoint that gives the best Oi n f or mati ve out of all the nr and

randomly chosen points is chosen as the next best viewpoint. Algorithm 6 shows how the next best viewpoint
can be evaluated.

The best viewpoint thus calculated is then inserted into the queue of initial control points Ci ni t i al , where
the first member of the queue is the current pose of the UAV. The process is iterated until all N initial control
points are evaluated. It should be noted that the fourth best viewpoint is evaluated on the map that has
already been sequentially updated with the predicted map update at the third and second best viewpoints
in Ci ni t i al . This makes our planner a fixed horizon planner, where we take into account all the possible
measurements that could sequentially update the map during the flight. The algorithm to perform the layered
greedy search is described in Algorithm 5.

This section dealt with evaluating the initial control points for a myopic solution that can initialize the
standard optimizers. These points effectively represent a polynomial path presented in Section 5.1, and pro-
vides a greedy solution to the IPP problem. The sampling based coarse search helps in quickly searching the
visible environment and reaching a myopic solution. This aids the performance of the optimizer in fine tun-
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Algorithm 6 Function for greedy next best global viewpoint selection.

1: function NEXTBESTVIEWPOINT(Rcur r ent ,ESDF)
2: Initialize max_ob j ect i ve to 0.
3: Initialize best_pose to Rcur r ent

4: Define nl ayer equally spaced horizontal planes.
5: for i=1 to nr and do
6: do
7: npl ane = i mod nl ayer . plane number
8: Randomly sample a point Rr and from plane npl ane .
9: while not isPointVisible(Rr and ,Rcur r ent ,ESDF )

10: Simulate a map update at Rr and .
11: Calculate Oi n f or mati ve

12: if Oi n f or mati ve >max_ob j ect i ve then . if better viewpoint is found
13: Set max_ob j ect i ve =Oi n f or mati ve

14: Set best_pose = Rr and

15: return best_pose

ing the solution to evaluate a non-myopic solution. The next section deals with finding an optimal solution
for the problem using standard optimizers.

PATH OPTIMIZATION

The aim of this section is to show that it is possible to solve the target search problem formulated in the
thesis using state-of-the-art optimizers, by refining the initial solution evaluated by the coarse greedy search
given in previous section. The objective function formulated in Equation 5.1 is however a very complicated
objective function that is highly non-linear and is influenced by a number of factors like the sensor model,
type of map, obstacle shapes and sizes, penalty function for collision avoidance, FoV at a location, minimum-
snap dynamics of the path, initial greedy search solution, measurement frequency of the sensor, current state
of the field, length of the horizon etc. Even the basic version of a discrete IPP problem is a hard optimization
problem, which is often proposed to be at least NP-complete [18] or NP-hard [23]. This motivates the use
of state-of-the-art black-box optimizers, that do not have many tuning parameters. Therefore, we use two
state-of-the-art optimizers to solve the problem: CMAES and BO.

Algorithm 3 shows the two steps in optimizing the path. The output path from the optimizer is checked
for possible collisions to ensure safety of the UAV. Algorithm 4 demonstrates how the collision check for a
path works. The optimization is repeated in case it results in a path that is not collision free.

(a) Environment with two buildings. (b) Top view of the path taken.

Figure 5.2: Paths planned by a UAV for a flight time of 130s in the environment in Figure 5.2a.
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The algorithm was run on a UAV in the Gazebo environment with dimensions 30m×30m×26m as shown
in Figure 5.2a. The UAV flight started at location (−10,0,13) and lasted for 130s. A GP map was used for the
field, and uncertainty reduction was used as the objective, which was then solved by the CMAES. A new path
is planned once the UAV has completed the previously planned path and has taken measurements. These
paths were recorded during the flight and was plotted in M atl ab, which is shown in Figure 5.2b. It can be
observed that all the planned paths for the UAV are collision free. Moreover, the paths adhere to the bound-
ary constraints and do not cross the environment dimensions. The gap between the two buildings was also
explored and mapped by the algorithm, demonstrating the effectiveness of the algorithm in searching for
victims in between them as well. The paths are planned such that measurements can be taken at different ac-
curacies. This behaviour arises from different tradeoffs that are handled by the optimizer within the planner.
Multiple measurements at varying heights should be taken at the same location to increase the map accu-
racy. Figure 5.3a illustrates that the planned path considers different heights for data acquisition, depending
on the current state of the GP field. Therefore, the influence of the height-dependent sensor model is clearly
visible in the planned path.

(a) Front view of the path. (b) Side view of the path.

Figure 5.3: 3D trajectories generated by the planner in the environment in Figure 5.2a.

Figure 5.4 shows the variance reduction by the IPP algorithm running on a UAV flying in the environement
shown in Figure 5.5a. The obstacle is as tall as the maximum height of the environment so that the UAV can
only fly around the obstacle and not above it. It can be observed that the variance of the map reduces as
expected after each measurement. Moreover, no obstacle or boundary collisions were observed during the
flight. Therefore, the optimizer successfully solves the IPP objective function and provides a path that leads
to the reduction of uncertainty in the GP map. The output of the algorithm after a flight for 130s is shown
in Figure 5.5b. It can be observed from Figure 5.5 that the humans were correctly detected by the algorithm,
demonstrating the success of the framework.

The same algorithm was run with the OG map on the same environment, and the reduction in entropy of
the map is shown in Figure 5.6. It can be observed that the entropy of the map decreases after each measure-
ment, demonstrating the success of the IPP algorithm in planning an informative path using an OG map. The
output map after a flight time of 130 seconds is shown in Figure 5.7b. It can be noted that all the humans in
the map are correctly identified.

It can be observed from Figure 5.6 that the detected humans appear as high values in the entropy map.
This is because the prior for the OG map is set as 0.1, assuming that there are no humans in the field. However,
as new measurements are made, the occupancy probability increases from 0.1. This results in a net increase
in entropy at those locations. Therefore, the optimizer is rewarded if more measurements are made at those
locations where humans were detected. After several observations, the occupancy probability approaches
1, which results in a very low entropy, making those locations no longer interesting for the optimizer. This
type of planning which is dependent on the measurements taken, is known as adaptive planning. Therefore,
setting a low prior to the OG map, and optimizing the IPP objective for entropy reduction, makes the planner
adaptive in nature during the first few measurements. The GP based planner is not adaptive as can be ob-
served from Figure 5.4. The detected humans do not influence the objective function. It tries to reduce the
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(a) Initial variance. (b) After measurement update 1. (c) After measurement update 2.

(d) After measurement update 3. (e) After measurement update 4. (f) After measurement update 5.

(g) After measurement update 6. (h) After measurement update 7. (i) After measurement update 8.

Figure 5.4: Variance reduction of the map at different stages of the flight.

(a) Environment with 7 scattered men. (b) GP map after a flight for 130 seconds.

Figure 5.5: Comparison of the output GP map from the IPP planner with the real environment.
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(a) Initial entropy. (b) After measurement update 1. (c) After measurement update 2.

(d) After measurement update 3. (e) After measurement update 4. (f) After measurement update 5.

(g) After measurement update 6. (h) After measurement update 7. (i) After measurement update 8.

Figure 5.6: Entropy reduction of the map at different stages of the flight.

(a) Environment with 7 scattered men. (b) OG map after a flight for 130s.

Figure 5.7: Comparison of the output OG map from the IPP planner with the real environment.
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uncertainty of the field without considering the detected humans while planning the next path. However, as
discussed in Section 2.1 an adaptive planner demonstrates better performance than a non-adaptive planner.
In the next section, a layered optimization approach is introduced, which considers the measured detections
for planning the next path.

LAYERED OPTMIZATION FOR ADAPTIVE PLANNING
Consider a scenario where the victims are located in a specific area of the field, instead of being scattered
around like in Figure 5.5a. The GP based planner that aims to reduce the variance would cover the area by
looping around the environment multiple times. However, this is not an efficient strategy for search and
rescue operations, where flight time is of prime importance. The planner should instead aim to cover the en-
vironment once, and then allocate rest of its flight time to search intensively in the region where humans were
detected. This is known as an exploitation strategy. However, the planner should not concentrate on looking
at the detections by avoiding the unexplored regions. This results in possibly missing out some victims from
being detected. Therefore, there should be a fine balance between exploration and exploitation strategies
within the planner. The variance reduction is a pure exploration strategy, which should be blended with an
exploitative strategy for efficient performance. Therefore, a layered optimization approach is introduced in
this section that balances the exploration-exploitation tradeoff. In this approach, the path is optimized using
the CMAES, which simulataneously optimizes the field by using BO.

In BO, the optimal solution of an unknown and costly to evaluate objective function is evaluated by build-
ing a surrogate model of the objective function. The next location in the search space to sample is then
identified by optimizing this surrogate model by using standard optimizers [99]. This process is repeated un-
til the model of the objective function is built with satisfactory uncertainty. The surrogate model in literature
is known as an acquisition function. The advantage of using an acquisition function is that it is much easier
to compute and optimize, than the objective function itself. Moreover, the acquisition functions have a tun-
ing parameter that can be tuned for the application at hand for exploration-exploitation tradeoff. The most
common acquisition functions are:

• Probability of Improvement (PI) [100]

PI (x) =Φ
(µ(x)− g (xbest )−ζ

σ(x)

)
; (5.4)

• Expected Improvement (EI) [100]

E I (x) =σ(x)[ZΦ(Z )+φ(Z )], (5.5)

where

Z = µ(x)− g (xbest )−ζ
σ(x)

• Upper confidence bound (UCB) [101]

UC B(x) =µ(x)+κσ(x), (5.6)

where xbest is the location of the best sample gathered so far, ζ, κ are exploration-exploitation tuning param-
eters, φ is the normal probability density function and Φ is the normal cumulative distribution function. If
the variance is lower than the required level of certainty for a measurement, the aquisition is set to zero.

The acquisition function, therefore, is capable of binding the mean and variance of the GP, into a single
function. The idea is to calculate the acquisition function of the field using the mean and variance of the
GP field, and use this as the information theoretic objective for IPP. This approach would give an acquisition
function which is high at those areas where the mean is high, and also where the variance is high. The UAV
should focus not only on areas with high uncertainty, but also regions with high mean. This idea is illustrated
in Figure 5.8, where the mean is given in Figure 5.8a and the covariance in Figure 5.8b, while the correspond-
ing UCB acquisition function is given by Figure 5.8c. It can be observed that the acquisition function contains
information about both the mean and the variance.

A UAV should plan a path such that it observes the region with highest value of aquisition function. This
measure is quantized by introducing a term acquisition view (AV), which is defined as the sum of all acquisi-
tion values within the FoV of the UAV, formulated as:

AV = ∑
x∈FoV

UC B(x). (5.7)
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(a) GP mean. (b) GP variance. (c) UCB acquisition function.

Figure 5.8: The UCB acquisition function that binds GP mean and variance into one function.

However, maximizing the AV would result in a strategy where the UAV prefers to stay at the maximum height
possible so as to increase the FoV. The preference for a certain flying height for the best sensor performance,
shown in Figure 3.13 is exploited to evaluate the information-theoretic objective function:

Oi n f or mati ve = AV ×
[

1

σ1
p

2π
e
− 1

2

( h−hopt
σ1

)2]
, (5.8)

where h is the altitude, hopt is the height of best sensor performance, and σ1 is the standard deviation of the
curve in Figure 3.13 assuming that it is an approximate normal distribution centred around hopt .

Let θ1 and θ2 be the FoV angles of the camera. The dimension of the rectangular FoV of the camera at
a height h, assuming that there are no obstacles, is 2h tan θ1

2 and 2h tan θ2
2 . Therefore the area of the FoV is

given by:

Ar ea(FoV ) = 4h2 tan
θ1

2
tan

θ2

2
(5.9)

Assuming a constant unit acquisition function in the FoV, Ar ea(FoV ) can be considered as the AV of a uni-
formly discretized grid. Substituting Equation 5.9 in 5.8 and ploting the result with respect to h, for hopt =
10m, σ1 = 7, θ1 = π

4 and θ2 = π
3 results in the curve shown in Figure 5.9.

Figure 5.9: Information-theoretic objective using acquisition function for a simple example.

It can be observed from Figure 5.9 that the objective is maximized at a height different from that of
hopt . There is a fine trade-off between the sensor performance and the FoV that results in a higher preferred
height. Therefore, the new objective function based on acquisition function accounts for the sensor model
and prefers a particular height for data acquisition that balances sensor performance and FoV. Although, the
example under consideration is a simple one without considering any obstacles, and with a uniform acquisi-
tion function, it does expose the idea of a preferred height for the planner for information gathering.
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Figure 5.10: Environment with 7 men placed on one side of the field.

Both planners, one adaptive planner based on acquisition function as the objective, while the other one
a non-adaptive planner based on variance reduction as the objective, were tested on the environment shown
in Figure 5.10. The variances after 120s of flight are shown in Figure 5.11. Figure 5.11a and 5.11b show the GP
variance for non-adaptive and adaptive planner respectively. Both planners successfully found all 7 victims
in the field, but with different uncertainties about their detections. It can be observed that the resultant vari-
ance is mostly uniform in Figure 5.11a, while in Figure 5.11b, the variance at locations where the humans were
detected is the minimum and the variance at locations where there is no human is the maximum. The plan-
ner with variance reduction objective was covering the field repeatedly without considering the detections
into planning, while the planner with acquisition based objective scanned the environemnt once and then
continued scannning those region where the humans were detected. This adaptive strategy in path planning
resulted in a very low variance at locations where there are humans. At the end, the acquisition based planner
is more certain about all the human detections than the variance based planner. The real life benefits of an
adaptive planner is that the target detections are more reliable, increasing its employability in wide range of
applications. It would be of particular importance where the decisions made based on the output map of the
planner has high consequences. A terrorist breach at the international border detected by an IPP algorithm
has high political consequences, and hence demands a highly accurate detection.

(a) Variance reduction as the objective. (b) Acquisition based objective.

Figure 5.11: GP variance after 210 seconds of flight with different information objective.

An adaptive strategy is particularly beneficial, considering the robustness of the path planning algorithm.
After a false positive detection, an adaptive strategy tends to repeat measurements at those locations to con-
firm the presence of the human. The planner takes multiple measurements on all the detections. The fil-
tering out process discussed in Section 3.4.1 in which large human detections were ignored, was removed
to demonstrate the robustness of the algorithm under a poor sensor. Without the filter, large detections are
allowed from the YOLO, resulting in very poor sensor performance. However, the planner is modular and can
handle changes in the sensor model. The parameters of the sensor model were updated and the simulation
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(a) Initial GP mean. (b) After measurement update 1. (c) After measurement update 2.

(d) After measurement update 3. (e) After measurement update 4. (f) After measurement update 5.

(g) After measurement update 6. (h) After measurement update 7. (i) After measurement update 8.

(j) After measurement update 9. (k) After measurement update 10. (l) After measurement update 11.

(m) After measurement update 12. (n) After measurement update 13. (o) After measurement update 14.

Figure 5.12: Robustness demonstrated by the acquisition based adaptive IPP planner, in case of false
positive detections from a poorly performing sensor.
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was run with the adaptive planner on the environment shown in Figure 5.10. Figure 5.12 shows the GP mean
after each measurement update. It can be observed that a large false positive detection was made in Fig-
ure 5.12b. However, repeated sampling on the detected location, enabled by the adaptive sampling strategy,
helped in recovering from the erroroneous map update. Figure 5.12o shows the GP mean after a flight time
of 150 seconds. The map has almost recovered from the large false positive detection, while managing to
successfully detect all humans in the field. However, a poor sensor brings new false positives that the planner
tries to combat through repeated measurements. Therefore, the adaptive strategy using acquisition function
for planning is more advantageous than a non-adaptive strategy in a search and rescue operation.

This chapter dealt with the core path planning algorithm used. The IPP problem was formulated as an
optimization problem, which was then solved using the CMAES and was validated. The possibility of uncer-
tainty reduction as the objective was explored in both continuous and discrete mapping using variance re-
duction and entropy reduction respectively. A layered optimization strategy was then introduced for adaptive
planning to balance the exploration-exploitation tradeoff. The layered optimization that uses BO surrogates
to optimize the field, and the CMAES to optimize the path was found to result in a map with better confi-
dence on all human detections. The robustness of an adaptive strategy for planning was illustrated by using
a poor human sensor and showing that taking repeated measurements on the detections helps to eliminate
the false positive detections from the map. The next chapter deals with benchmarking the algorithm against
state-of-the-art planners by running multiple simulations with varying experimental conditions of realistic
scenarios.
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SIMULATION RESULTS

The previous chapter presented the theory for the proposed IPP planner, while the algorithm is evaluated
in this chapter. This chapter deals with testing the planner against different environmental conditions and
benchmarking the planner against other state-of-the-art planners in a realistic scenario.

FLIGHT PARAMETERS
The environment chosen by each set of experiment is defined at the beginning of each section. The fol-
lowing flight parameters can be assumed for the experiments unless another parameter value is explicitly
mentioned. The flight parameters include a reference speed [98] of 5m/s and a reference acceleration [98] of
3m/s2 with 3 control points defining the parametrized trajectory. The sensor model given in Equation 3.9 is
used for the GP mapping with A = 1 and B = 0.05, while the one given in Equation 3.13 and 3.14 is used for the
OG mapping with hsat = 25.5m, Pmax = 0.95, Pmi n = 0.8, hopt = 15m and σ1 = 20. A minimum flight height
of 2m and maximum flight height of 26m were set. The field is of size 30m ×30m, discretized such that the
dimension of each cell is 0.75m ×0.75m. Each flight trial starts at the location (−10m,0m,13m) in the map.
The FoV of the camera is (45°,60°). The measurement frequency of the sensor is set to a low value of 0.15Hz
to demonstrate that the algorithm works well even with a low measurement frequency.

Figure 6.1: Influence of different penalty functions on uncertainity reduction of GP field.

39
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PENALTY FUNCTION
The two types of potential fields as defined in Section 3.3.3 were considered for collision avoidance. This
section deals with finding the most suitable penalty function that can be applied for collision avoidance so
that the CMAES can deliver the best path in the least amount of time. Two sets of simulations, each containing
100 flight trials and lasting 250s were performed on the environment shown in Figure 5.10, using uncertainty
reduction as the objective. The difference between two sets of simulations is the penalty function used; one
uses a hard constraint given by Equation 3.7, while the other uses logistic constraint given by Equation 3.8.
Uncertainty in the GP map was recorded and plotted against run time, and is shown in Figure 6.1.

It can be observed from Figure 6.1 that the CMAES is capable of solving the IPP problem computationally
faster by using a hard constraint as the collision penalty function. This might be because of the fact that a
complicated penalty function might be computationally expensive for the CMAES to optimize, when com-
pared to a simple hard constraint penalty function. Both penalty functions successfully planned collision free
paths, although they differ slighly in their computation time. The uncertainty for hard constraint drops faster
than that of the logistic constraint. Moreover, the average standard deviation of the 100 variance vs run-time
plots for hard constraint is 18.864, compared to 24.473 for logistic constraint. The mean and standard devi-
ation of the hard constraint penalty function are lower than that of the logistic function. Therefore, the hard
constraint was selected to model the collision penalty in the planner.

ENVIRONMENT COMPLEXITY
In previous chapters, different environments were used to demonstrate the planning algorithm. The plan-
ner should be capable of operating in different environment complexities. Two types of urban infrastruc-
ture is considered: Delft being a small city would be a simpler environment compared to Rotterdam, which
has closely packed high-rise buildings. These real life scenarios are bought into the simulation environment
through a simple and a complex environment. A simple environment has low obstacle density and consists
of obstacles with small height, that do not heavily obstruct the UAV flight. While a complex environment
would contain high rise buildings, packed in the environment with a high density. It complicates the obstacle
avoidance task and limits the FoV. This results in a longer flight time to build a map with sufficient accu-
racy. This section deals with analyzing the performance of the planning algorithm with respect to different
environment complexities.

(a) 5 small obstacles at random locations. (b) 15 small obstacles at random locations.

Figure 6.2: Planned path in an environment with obstacle height=13m and environment height=26m.

Two types of environments are considered: one with obstacles of height 13m and the base of dimension
4m ×4m, and the other with obstacles of height 26m and base dimensions 4m ×4m. The UAV is able to fly
over the obstacles in the first environment, while not in the second environment. The planned path in the
first environment is shown in Figure 6.2, while on the second environment is shown in Figure 6.3. It can be
observed that the UAV prefers flying over the obstacles due to better collision avoidance and better FoV in
Figure 6.2, while it flies in between the obstacles in Figure 6.3. Different obstacle densities were simulated to
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(a) 5 big obstacles at random locations. (b) 15 big obstacles at random locations.

Figure 6.3: Planned path in an environment with obstacle height=26m and environment height=26m.

test the algorithm. The locations of the obstacles are randomly selected in each test flight. Figure 6.4 shows
the average result along with the error bars for 100 flights in each scenario. It can be observed that as the
number of obstacles increases, the initial variance decreases. This is due to the assumption that humans are
not present on the ground where there is an obstacle. Therefore, the initial variance of the field decreases with
the number of obstacles. It can be observed from Figure 6.4 that all the environments result in approximately
the same variance after a run time of 300s. This is due to the fact that the UAV flies over the buildings and
increases its FoV, which helps in quickly reducing the variance.

Figure 6.4: Effect of obstacle density on an environment with small buildings.

Similar experiments were conducted on high-rise buildings that are randomly placed on the field before
each test flight. 100 such test flights were performed and the results are shown in Figure 6.5. Similar to
Figure 6.4, the initial variance decreases with the number of obstacles. However, as the number of obstacles
increases, the planner finds it increasingly difficult to decrease the variance of the field beyond a certain
limit. The main reason for it is the restricted FoV as the UAV cannot fly over the obstacles. Moreover, certain
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regions in the environment remain completely inaccessible for mapping, depending on the complexity of the
environment.

Figure 6.5: Effect of obstacle density on an environment with big buildings.

This section dealt with analyzing the performance of the algorithm with respect to increasing environ-
ment complexity. The results of the simulated test flights under various test conditions illustrate that the
algorithm demonstrates similar performance after some time if the environment consists of medium height
obstacles over which the UAV can fly. However, a decreasing performance was observed as the the envi-
ronment complexity increases if the obstacle heights are too high. This section therefore validates the algo-
rithm in randomly selected environments of varying complexity, demonstrating that it is applicable not just
for a few selected environments. The competitiveness of the algorithm compared to other methods can be
demonstrated through benchmarking, for which an evaluation metric is necessary. The next section deals
with choosing the appropriate evaluation metric for acquisition based adaptive strategy.

EVALUATION METRIC
In the previous sections, variance was used as the evaluation metric to compare the performance of the algo-
rithm against different conditions. Reduction of uncertainty is a good performance metric if variance reduc-
tion is the objective of the planner. However, it might not be the most appropriate evaluation metric for an
acquisition based planner, because the planner cares about both detections and variance in the interesting
regions. Moreover, the end goal of a search and rescue operation is not to reduce the uncertainity of the field,
but to find all victims in the field with accuracy. The final map should represent the ground truth, as closely as
possible. Therefore, an appropriate measure is to evaluate the error between the map and the ground truth.
Formally, it is defined as the Root Mean Squared Error (RMSE). RMSE is usually a very small number and
hence a scaled measure of Root Square Error (RSE) is used, which is defined as:

RSE = ∑
∀ε∈M

[
M(ε)−GT (ε)

]2

, (6.1)

where ε is a grid cell in the map M , and GT is the ground truth map. Figure 6.6 shows the calculation of
squared error from GP mean and ground truth of the environment shown in Figure 5.10. It can be observed
that the squared error corresponding to the undetected human in the bottom left side of Figure 6.6a is very
high in Figure 6.6c. Moreover, the extra grids detected as humans in the bottom right side of Figure 6.6a also
contributes to the squared error in Figure 6.6c. Therefore, the RSE would equally weigh the contribution from
false positive errors and false negative errors in the map, making it a good metric to capture the error in the
map. However, it is important to set the GP prior to the most probable value of the ground truth, to obtain
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the correct RSE characteristics. If the GP prior is set with a high value in an environment with a ground truth
having humans sparsely located, all the cells would have a high squared error, resulting in a high RSE. The
major contribution of the RSE will be from the unobserved spaces in the environment. This would result
in an RSE measure that is biased towards unobserved spaces. However, setting a lower prior would be less
biased towards unobserved space. The main contribution to the RSE would be coming from the unobserved
cells with humans and the false positives in the map. Therefore, setting a high GP prior results in a major
contribution from the unobserved cells, while setting it to a low value results in a major contribution from
unobserved cells with humans and the false positive detections in the map. Therefore, the GP prior is set to
the most probable value, which is a low value, assuming that most of the field is empty.

(a) GP mean. (b) Ground truth. (c) Squared error.

Figure 6.6: Squared error calculated from GP mean and ground truth.

Metrics like the Weighted RMSE (WRMSE) [75] could also be used as an evaluation metric. WRMSE gives
a higher weight for the errors made at locations where the ground truth is high. However, this is equivalent
to biasing the metric towards false negatives or unobserved spaces with humans, and neglecting the false
positive errors to some degree. In a search and rescue operation, false positives and false negatives are both
expensive and important. RMSE treats false positive errors and false negative errors equally. Therefore, RMSE
is preferred over WRMSE as an evaluation metric for benchmarking, presented in the next sections.

Algorithm 7 Function for random sampling planner.

1: function r andom_sampli ng ()
2: Create ESDF map
3: Initialize the field
4: if not landing condition then . Replan until the map can be made no better
5: do
6: Initialize C to R0.
7: Randomly sample a point Rr and from the environment.
8: Insert Rr and to C .
9: while not i sCol l i si onF r eePath(C ,ESDF )

10: Fly through the straight line path.
11: Take measurements.
12: Update map at measurement locations.
13: Update R0.

BENCHMARKS
This section aims at evaluating the performance of the IPP planner against two benchmarks: random sam-
pling and coverage planner. A simple environment with an obstacle at the centre is considered. Multiple
flight trials were simulated with different planners, and the RSE is evaluated after each measurement update.
The results of each planner are then compared.

RANDOM SAMPLING
Random sampling is a good strategy to many problems in robotics. Therefore it was selected as a benchmark
for comparison. A randomly sampled point from the 3D environment Rr and that is visible from the current
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UAV location R0 is selected as the next location to visit. Measurements are taken during the flight towards
that point. The algorithm is summarized in algorithm 7.

(a) Coverage planner at altitude = 5m. (b) Coverage planner at altitude = 15m.

Figure 6.7: Path planned by coverage planner at different heights.

COVERAGE PLANNING
Coverage Path Planning (CPP) aims to determine a path that passes over all the points of an area of interest
while avoiding obstacles [8]. This is a standard solution that is widely used in robotics to provide coverage for
an area in applications like painting robots, automated harvesters, inspection problems, etc. The choice of
coverage planner for a search and operation is apt, in the sense that the objective is to cover a given area and
find all victims in the field. Coverage planning can be applied to a fixed altitude in the environment. Figure
6.7 shows the path generated by the coverage planner in the environment given in Figure 5.10. The start
and end locations of the UAV are set to be (−10m,0m,h) for both the cases, where h is the altitude at which
coverage is done. All the parameters of the flight were kept the same as that of the IPP planner. The orange
box at the centre of the Figure 6.7 represents the obstacle inflated to a size equal to half the length of the UAV.
The green curve is the generated path. It can be observed that as h increases, the paths are further away from
each other. This is attributed to the increasing ground visibility with respect to altitude. While flying through
the generated path, the UAV takes measurements at a constant rate to find all the human victims.

(a) Coverage result at altitude = 10m. (b) Coverage result at altitude = 20m.

Figure 6.8: Quality of coverage planner result at different altitudes.

The performance of the coverage planner may vary with altitude, assuming no overlap in the measure-
ment area. Figure 6.8 shows the end result of coverage planner after 150 seconds of flight. It can be observed
that GP mean is significantly lower than 1. Moreover, at an altitude of 20m, some of the detections are not
strong. Multiple measurements at same location is crucial towards increasing the accuracy of the detection,
which a coverage planner lacks. The coverage planner was experimented at different heights by keeping all
other parameters constant. Figure 6.9 shows the decrease in RSE of the map with respect to flight time of the
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UAV, at different heights. The altitudes higher than hopt were used to analyze the performance of the planner.
It can be observed that as altitude increases, the performance of the coverage planner decreases.

Figure 6.9: Effect of altitude on coverage planner.

Coverage planner would take a very lengthy path at lower heights, as shown in Figure 6.7a, making it
impossible to cover the area in the budget flight time. The choice of altitude for coverage planner is motivated
by the budget flight time. Therefore, the lower heights that does not ensure coverage were not considered.
The height at which the coverage planner performs the best (10m) is selected for the benchmarking in the
coming sections.

BENCHMARKING

This section deals with benchmarking the IPP planner against different objectives (adaptive and non-adaptive),
planners (random sampling and coverage planner), optimizers (BO and CMAES), and sensors (classifiers and
non-classifiers). The objectives under consideration are uncertainty reduction and the acquisition based ob-
jective. The planner is then benchmarked against random sampling method and coverage planner to evalaute
its performance.

Figure 6.10: Comparison of the performance of adaptive and non-adaptive strategies.
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ADAPTIVE AND NON-ADAPTIVE STRATEGIES
This section deals with demonstrating the effectiveness of using an acquistion based objective function in
target search problems, when compared to uncertainty reduction as the objective. Two sets of flight exper-
iments were conducted with the same environment and flight parameters except for the difference in the
objective function: one planner used variance reduction as the objective, while the other planner used UCB
acquisition based objective function. This results in one adaptive planner and one non-adaptive planner.
The environment shown in Figure 5.10 was used for the flights. As illustrated in Section 5.6, the adaptive
planner scans the area and then concentrates on regions of high detections, while a non-adaptive planner
circles around the environment aiming to reduce uncertainty. The average result of 25 experiments each,
along with the standard deviation are shown in Figure 6.10. It can be observed that both planners behave the
same at the beginning and then saturates at different values. The adaptive strategy concentrates on the de-
tections and decreases the error in the map through repeated measurements, while the non-adaptive strategy
fails to do this. Therefore, an adaptive strategy performs better than a non-adaptive strategy in reducing the
RSE of the map, while flying in an environment where the victims are located in some specific region of the
field. However, if the victims are uniformly scattered in the environment, an adaptive planner performs like
a non-adaptive planner.

0 50 100 150

Flight time(s)

4.5

5

5.5

6

6.5

7

7.5

R
S

E

Coverage planner at h=10m

Random sampling

Adaptive IPP planner

Figure 6.11: Comparison of differrent planners with GP map.
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Figure 6.12: Comparison of differrent planners with OG map.
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PLANNERS
Flight simulations were performed with the same flight parameters and same the environment as shown in
Figure 5.10, to analyze the performance of different planners. A GP based continuous mapping was used for
evaluation. Figure 6.11 summarize the results of 25 flights each with different planners: coverage planner
at the best performing height (10m), random sampling and adaptive IPP planner. It should be noted that
the trajectory of coverage planner is 2D, while that of random sampling and IPP planners are 3D. It can be
observed from Figure 6.11 that the adaptive IPP planner quickly reduces the RSE of the map compared to
other planners, demonstrating a very competitive performance.

Figure 6.12 shows the results of a similar experiment conducted on an OG map. It can be observed that
entropy reduction based IPP planner performs better than other planners like random sampling and coverage
planner. Therefore, the IPP planner outperforms other planners both for continuous and discrete mapping
methods.

OPTIMIZERS
In this section, the planner is shown to be modular with respect to different optimizers, that can still solve
the problem. The adaptive IPP planner used in the previous experiments use CMAES as the optimizer. How-
ever, BO is also a very competitive state-of-the-art optimizer, which was shown to solve an IPP problem [76].
B ayesOpt package [102] was used for BO, while l i bcmaes package [103] was used for CMAES. The optmizer
that solves the problem without the need to tune many hyperparameters would be preferred over the opti-
mizer that is hard to tune when the planner is modified slightly.
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Figure 6.13: Performance of the optimizers with variance reduction as the objective.

Different variants of CMAES and BO were experimented, with variance reduction as the objective. The
CMAES is quasi parameter free [82] and has two parameters: the step size and the number of offsprings,
while the BO has more than 20 parameters. Moreover, the influence of each parameter on the flight perfor-
mance can be evaluated only after hours of repeated test flights. This restricts the tuning of all BO parameters.
Therefore, default parameters of the B ayesOpt package were used, and the parameters common to both the
optimizers like the number of initial samples and number of iterations were set to the same value so that
both of them consume the same computation time. The best results obtained from both the optimizers were
considered and is shown in Figure 6.13. It can be observed that both the optimizers are successful in solving
the IPP problem. However, the CMAES can be found to be performing slightly better than BO. The final half
of the plot is the relevent part, since, this part is likely to produce the final map that is to be used by the search
and rescue team. The average standard deviation of flights with BO running is 0.3507, while that of CMAES
is 0.2501. Therefore, CMAES optimizer results in a flight that has a slightly better mean and and standard
deviation, when compared to BO for near-default parameters.

The hyperparameters of both optimizers were kept the same and the acquisition function based objective
function was used. Figure 6.14 shows the results of 25 flight trials. BO-BO represents the layered optimiza-
tion approach, where the field is optimized by BO-UCB based acquisition and the path is optimized by BO.
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Figure 6.14: Performance of different optimizers solving the IPP problem with layered optimization.

CMAES-BO represents the layered optimization approach, where the field is optimized by BO-UCB based
acquisition and the path is optimized by CMAES. The resulting flights have an average standard deviation of
0.2707 for CMAES-BO, and 0.4628 for BO-BO. From Figure 6.14, it can be observed that BO finds it hard to
reach the global optimum towards the end for an acquisition based objective, while the CMAES decreases the
resultant RSE to a lower value. It might be possible for the BO to solve the problem by tuning its hyperpa-
rameters. However, the aim of this section is to find the optimizer that is robust to changes in the objective
functions used in the IPP framework, without having to tune its hyperparameters each time. The implication
of this is a generalized algorithm that is robust, and can be applied to different IPP problems without many
internal changes, thus improving the ease of its use from a user’s point of view.
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Figure 6.15: Performance of the optimizers with entropy reduction as the objective.

The hyperparameters of both optimizers were kept the same as in the previous simulations, and the en-
tropy reduction for discrete mapping is used as the objective. Figure 6.15 shows the results of 25 flight trials. It
can be observed that both optimizers are able to decrease the RSE to similar values, with BO having a slightly
better mean. However, CMAES is able to generate flights with very similar performance with an average stan-
dard deviation of 0.2869, when compared to 0.3266 by BO. Therefore, from Figure 6.13, 6.14 and 6.15 it can
be concluded that CMAES solves the optimization problem better than BO, without having to change any hy-
perparameters. This conclusion is in line with the findings in [6], which demonstrated better performance of
the CMAES compared to the BO for an information-theoretic objective. It should be noted that the nature of
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the objective function is dependent heavily on the environment and current state of the field. A reliable op-
timizer that can demonstrate good performance under changes in objective function is preferred for a more
general and modular planner. Therefore, CMAES is a reliable choice for target search problem, compared to
BO.

Figure 6.16: Environment with green blobs on the field.

SENSORS
This section deals with demonstrating the modularity of the algorithm in terms of the sensor used. The aim
is to prove that the planner performs better than other planners for general non-classifier based sensor as
well. An image based color detection sensor that can detect the amount of green color in the captured image
is used for the simulation. Unlike the neural network based classifier, the color sensor gives a continuous
value as the output instead of a binary value. The measurement uncertainty is assumed to have a Gaussian
based noise variance model. The height dependent sensor model given in Equation 3.9 is used as the sensor
model for planning and mapping with A = 0.05 and B = 0.2. Variance reduction in the GP map is used as
the objective, and variance is used as the evaluation metric. The obstacles and the environment boundaries
are the same as that of previous sections. The field is changed to a number of green blobs scattered on a
white background, as shown in Figure 6.16. This could represent an algae growth on the surface of a canal in
Amsterdam, surrounding a building. The aim of the planner is to find the green colored target, by reducing
the uncertainty of the field.
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Figure 6.17: Performance of the planners with variance reduction as the objective for environment in
FIgure 6.16.
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100 flight trials each were performed with the IPP planner, coverage planner and random sampling, and
the results are shown in Figure 6.17. It can be observed that the IPP planner reduces the variance of the
field faster than both other planners. Therefore, it can be concluded that the algorithm outperforms other
planners while using a classifier based sensor, as well as while using a non-classifier based sensor. This gen-
eralizes the planner so that it is employable in a wide range of environment monitoring tasks like temperature
monitoring, gas concentration detection etc.

This chapter dealt with benchmarking the algorithm against various environment conditions, planners,
optimizers, sensors and applications. It was found that using the hard constraint penalty function is favourable
compared to the logistic function. The experiments with different environment complexities conclude that
the algorithm is capable of handling a number of environments with randomly placed obstacles of different
densities. It was found that the adaptive strategy for IPP planner works better than the non-adaptive strat-
egy. The IPP planner demonstrated competitive results when compared to coverage planner and random
sampling. Different optimizers were experimented and the CMAES was found to be the most appropriate op-
timizer for IPP based planner. Finally, a non-classifier based sensor was used to demonstrate that the planner
still performs better than the other planners in terms of the RSE measure. Therefore, it can be concluded that
the algorithm demonstrate competitive results in simulation. It is imperative to show that the algorithm is
still applicable outside the simulation world, to convince the users about its real-life applicability. The next
section deals with real experiments on the UAV flying inside a lab setup with obstacles.
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EXPERIMENT RESULTS

This section aims at providing a proof of concept of the IPP based planner through real experiments. The
algorithm is applied on a UAV that flies in a real environment in search of real humans lying on the floor.
The goal of the UAV is to fly in the environment such that it doesn’t collide with obstacles or cross the envi-
ronemnt boundary, and at the same time find all the humans in the field. The following sections describe the
experimental setup and the results of the test flight.

HARDWARE
A PX4 based custom made UAV called Loon from Autonomous Systems Lab was used as the platform for the
test flight. It uses a dual core Intel nuc-i7, 3.5GHz processor with mRo Pixhawk as the flight controller. The
radius of the sphere that can enclose the UAV is 90cm and is approximated as 1m by the planner to account
for a factor of safety while flying. A downward looking camera, Chameleon 3 (model:CM3-U3-13Y3C-CS) was
used to capture images of size 1280×1024 pixels. The camera captures the images at a maximum frame rate
of 149 FPS and publishes the image as a ROS topic for the planner to use. YOLO2 Tiny was found to perform
the human detection while in flight, at a measurement frequency of 1Hz. All the computations, including the
working of YOLO was performed onboard. A Vicon based motion capture system was used to estimate the
odometry of the UAV. Figure 7.1 shows the UAV used for the experiment along with its components.

Figure 7.1: Components of the UAV used for the experiment.

ENVIRONMENT SETUP
The lab environment under consideration is a 3D space of dimensions 3.4× 3.4× 2m. The relatively large
size of the UAV when compared to the lab environment restricts the size and number of obstacles that can be
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(a) Environment with a black obstacle. (b) Bottom view in Rvi z.

Figure 7.2: The UAV flying in an environement with one obstacle and four human images on the
ground.

placed in the environment. A cuboidal obstacle of size 0.5×0.7×1.3m was placed at the location (0.57m,1.15m).
Four images of a human were printed to the size of an A4 sheet and were placed at different locations on the
ground. Real sized human images/mannequins were not used due to the restrictions in the maximum height
of the environment. Figure 7.2 shows the flight of the UAV in an environment with a black obstacle and four
images of humans spread across the floor.

Figure 7.3: Flow chart for the flight experiment using UAV.

SOFTWARE SETUP

The Chameleon 3 camera output has huge distortions due to the fish-eye effect. Therefore, image rectification
is important to reduce the error while mapping the image onto the ground. The intrinsic matrix of the camera
was evaluated using the K al i br camera calibration toolbox [104], which was later used to perform image
rectification using the i mag e_undi stor t ROS package. The resulting rectified image is then passed on to
YOLO for target detection and mapping. Mapping from the image to the ground plane requires an extrinsic
matrix which is a transformation matrix from the camera frame of reference to the Vicon system. It was
evaluated manually through general coordinate transformation equations. The schematic of the experiment
is shown in Figure 7.3. It can be observed that the UAV odometry and the image captured are the flight
dependent inputs to the system, which are then processed to achieve the information map, which acts as the
final output of the flight.

YOLO2 Tiny was tested against different heights by flying the UAV vertically above a human image. One of
the YOLO target detection output, recorded while in flight is shown in Figure 7.4. It was observed that YOLO
fails to detect the human beyond an altitude of 1m, while it performs the best around a height of 0.6m. The
probability of a human detection to be correct was found to be very high, while the probability of missing
out human detection was also found to be high. Therefore, a good true positive inverse sensor model and a
bad false negative inverse sensor model were assumed for the sensor, which is given by Equation 7.1 and 7.2
respectively.
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P (human = 1|z = 1) =
{

0.95e−0.5
(

h−0.6
0.75

)2

if h < 1,

0.5 otherwise.
(7.1)

P (human = 1|z = 0) =
1−

[
0.7e−0.5

(
h−0.6
0.75

)2]
if h < 1,

0.5 otherwise.
(7.2)

Figure 7.4: YOLO output of an image captured by the UAV while in flight.

The performance of YOLO depends on the yaw angle of the UAV while the image is captured. This can
be attributed to the lack of humans at different orientations in the training dataset of YOLO. Therefore, the
polynomial trajectories for the UAV are generated such that the resultant yaw angle of the UAV is always
constant while in flight. This measure is also crucial towards an easy safety piloting, in case of unexpected
flight behavior of the UAV which could result in a hardware damage. The reference speed of the UAV is set to
a low value of 0.2m/s, and the reference acceleration was set to 0.5m/s2 to avoid motion blur effects.

Figure 7.5: Top view of the path taken by the UAV.

FLIGHT RESULTS
The IPP planner was used to plan trajectories for the UAV and it was commanded to follow the trajectory
while taking mesurements. The measurements made are then fused onto the discrete map. At the end of each
trajectory, replanning is performed and the flight is resumed until the flight time budget of 150s is exhausted.
The data related to the test flight are saved for further evaluations. The UAV took reliable paths that never
collided with obstacles. The top view of the path taken by the UAV is shown in Figure 7.5. It can be observed
that the UAV stays away from the obstacles and the environment boundaries. All points on the path are at
least 0.5m away from the closest obstacle or boundary, which is the radius of the UAV.
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(a) Front view. (b) Side view.

Figure 7.6: Path taken by the UAV in the environment.

Figures 7.6a and 7.6b show the front view and top view of the path. It can be observed that although the
maximum height of the environment is 2m, the UAV is restricted within an altitude of 1m. This is due to the
role of saturation height hsat = 1m in planning. The sensor model given by Equations 7.1 and 7.2 considers
poor performance beyond hsat . Therefore, the paths are planned such that the optimizer avoids those paths
that does not provide any information gain. It can also be noted that the planned path is in a 3D space and
not on a 2D plane as that of a coverage planner, enabling variable resolution mapping. The UAV preferred
a higher altitude at the beginning of the flight for better field of view. However, after covering the area, it
preferred lower heights for better resolution. It can also be observed that the planner prefers an altitude
that is higher when compared to the optimal height for sensor performance, hopt = 0.6m, demonstrating the
trade-off between sensor performance and FoV while planning.
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Figure 7.7: Entropy reduction while in flight.

The objective used for planning was entropy reduction. Figure 7.7 shows the reduction in entropy with
respect to the flight time. Therefore, the optimizer is capable of performing entropy reduction, and the goal
of the planner is achieved through the multi-resolution mapping procedure. Figure 7.8 demonstrates the
success of the algorithm in the target search task. The close resemblance of the ground truth of human occu-
pancy shown in Figure 7.8a, and the state of the map after a flight time of 150s as shown in Figure 7.8b, shows
the ability of the algorithm to find all targets accurately. It can also be observed from Figure 7.8b that the
top right portion remains unmapped. This is an inaccessible space in the environment into which the UAV
does not fit. Therefore, it can be concluded that the algorithm is capable of covering the entire field except
for the inaccessible regions in the field constrained by the UAV size. The algorithm internally identifies the
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inaccessibility of the region and prevents it from violating the collision avoidance rule although it might lead
to a higher information gain. This demonstrates the top priority of the algorithm towards collision avoidance
when compared to the information gain, which is of utmost importance for a data acquisition system.
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(a) Ground truth of human occupancy.
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(b) Map after a flight time of 130 seconds.

Figure 7.8: Comparison of the ground truth and the human occupancy map after the flight.

This chapter demonstrated a proof of concept for the IPP algorithm in solving a target detection task, by
implementing it on a UAV and flying it in a real environment. The optimizer successfully evaluated the paths
by trading off between sensor performance, information gain and coverage, with collision avoidance as its
top priority. The entropy reduction during the flight demonstrated that the mapping strategy is successfull in
delivering what the planner intended to perform in its objective. Moreover, the resulting map closely resem-
bles the ground truth. Therefore, the algorithm is useful in the target detection task and performs realiably in
real experiments.





8
CONCLUSION

The target search problem using a UAV was converted into a general optimization problem that optimizes an
information-theoretic objective to find all the targets in the field. The IPP planner generates a fixed horizon
plan in the form of an optimal 3D minimum-snap trajectory in an obstacle filled environment for maximum
information gain, minimum flight time, maximum coverage and no collisions. The planner caters for un-
certainties and errors in sensor measurements in a probabilistic manner. An adaptive information-theoretic
objective based on acquisition functions in BO was introduced for continuous mapping, which was shown
to outperform the existing objectives like uncertainty reduction in terms of map error. It also outperforms
other benchmarks like coverage planner and random sampling in terms of RSE reduction. The planner was
tested against varying environmental complexities, demonstrating the capability of the algorithm to function
in wide range of environments. The algorithm is modular in terms of mapping strategies, sensor selection,
environment complexities, optimizers used, type of sensor and changes in sensor model. However, it has two
main shortcomings. Firstly, it assumes a known and static environment, which might not be true in all sce-
narios. Secondly, the planner assumes a 2D non-temporal ground field. The algorithm can be improved to
fuse the sensor data from a distance sensor so that it can dynamically update the obstacle map. It can also be
improved to search for spatio-temporal phenomena. Therefore, the future work on the algorithm includes,
planning in a dynamic environment while searching for a target in a temporal 3D field. The algorithm can
also be extended into a distributed algorithm that performs the planning and mapping using a collaboration
of multiple UAVs, covering a very large area.
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