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1 | Abstract

Proper diagnostics are essential in the combat against severe diseases which mainly have
big impacts in remote areas in poor countries. A focus direction within the NC4I group at
DCSC, Delft University of Technology, is the development of new imaging modalities and
the design and implementation of smarter algorithms for improved detection of parasitic
diseases. The first part of my research exploits hyperspectral imagery (HI) as new potential
imaging modality of thin blood smears that could highly improve on preparation time, labor
intensiveness and use of materials. HI retrieves both spatial and spectral information of
the observed objects simultaneously, thus providing the ability to discriminate near similar
constituents within the blood smear. In doing so, it enables the possibility of label-free
detection. In this thesis, the development and building of such a system is addressed and
carried out. In the context of malaria, it is shown that HI is promising and lays a profound
foundation for further exploration. The design and evaluation of improved generalizing neu-
ral networks characterize the essence of the second and larger part of the research. Several
group-equivariant networks are evaluated and compared with conventional convolutional net-
works which shows that efficient and redefined integration of weights can help build smarter
and more robust classifiers for the detection of parasites. In group-equivariant networks,
re-interpreting the way feature maps are connected to one another manifests in the devel-
opment of convolutional stages that equivary under an increased amount of transformations
besides merely translations. It is shown that enlarging the heuristic of that transformation
group (the extra amount of transformations the operations are equivariant under) signifi-
cantly contributes to better performance without necessarily increasing the size or changing
the architecture of the networks. Compared to the aforementioned baseline (conventional
convolutional stages), the best network (being equivariant under 16 equidistant rotations
and mirror reflections) improves approximately 2-fold on all relevant performance metrics,
among which are accuracy, sensitivity, specificity, precision, and the F1-score which are
common measures in the classification of malaria. The networks were tested on the Rajara-
man database [3]. Furthermore, the pre-trained models are used as classifiers for a different
database extracted from the microscope build by AiDx medical [4]. At least for this spe-
cific database, it is shown that the more realistic transformations the pre-trained networks
equivary under, the more robust they are.
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2 | The burden of malaria

This chapter should serve as detailed introduction to the research topic by disclosing the
need for improved malaria diagnostics. I will do so by first introducing the current burden
of malaria. The second part is about the history and current state-of-the-art diagnostic
methods and their advantages, limitations and opportunities. Autonomous detection will
be highlighted separately as one such an opportunity, solving some of the process’ inherent
problems simultaneously. Its main features and challenges will be highlighted. Finally,
some eye-catching alternative methods including the concept of hyperspectral imagery will
be introduced. After reading this chapter, my hope is that you, the reader, have noticed
the relevance and importance of both the subject, thus the need for creativity and in-depth
research in the development of decent diagnostics.

2.1 Malaria worldwide
Malaria is still a significant contributor of severe illness and death worldwide. Annually,
between 350 and 600 thousands people have died and between 200 and 250 million cases
have been diagnosed in between 2010 and 2018 according to the World Health Organization
(WHO)1. Furthermore, most of the deaths (90%) and cases (85%) are found in Africa among
which the number of deaths is clearly highest for children under the age of 5. Consequently,
the mortality is enormous: between 1.7 and 2.4 per thousand of diagnosed within the African
area between 2010 and 2018. This shows that there is too many victims still suffering
everyday. On the other hand, a vast decrease in the number of deaths and mortality in
Africa brings hope and proves that we are on the right track [9, 10].
Moreover, rural areas are those hit hardest. Although explanations of this phenomenon differ
among researchers, one argument is repeatedly mentioned: better health facilities in most
urban settings is highly correlated with lower morbidity and mortality. Most likely, it means
that in many rural areas it lacks well established local implementation of both diagnostic
tools, proper treatment and prevention. [11, 12, 13, 14, 15]. Next section lays emphasis on
diagnostics specifically and how this can be improved locally as well. Before we move there,
I will introduce the life cycle of malaria parasites, the types of parasites that currently exist
and how the it expresses itself. This knowledge can help design and build smart diagnostic
tools and sophisticated treatment plans that are effective, robust, cheap, less complex and
less labour intensive.

1These are the ones caused by P. falciparum which is the main contributing type of the malaria parasites
in both the amount of cases and deaths.
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Figure 2.1: Annual deaths (left) and death rates (right) due to P. falciparum. Children
under the age of 5 are most sensitive. Mortality in Africa is decreasing significantly over
the last decade by 35%. Moreover, the areas outside Africa are, in terms of regulating
their mortality, doing worse eventhough their absolute number of deaths have decreased
as well.

There exist 5 known variants of malaria parasites in order of significance: Plasmodium
falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae and Plasmodium
knowlesi. I will not elaborate on each type individually but one should know that for effec-
tive treatment it is beneficial to know what type is present. The molecular structure and
spatial appearance enable diagnostic tools to discriminate between these types [16, 17]. The
pathogenesis for these types are, at higher level, identical. For every type, the parasite’s
distributors are, as one should know, mosquitos. A female Anopheles mosquito inoculates
the parasites into the blood vessels while performing its regular sting. The sporozoites, the
stage of the parasites just after injection, are now present in the blood. They first enter
the exo-erythrocytic cycle which occurs in the liver which boils down to an alteration of the
state of the parasite. The sporozoites mature in schizonts that will eventually rupture and
release merozoites. Most will abandon the liver and will enter the eryhtroytic cycle in the
blood. In this cycle, the victims are red bloodcells, also named erythrocytes. The merozoites
can infiltrate the erythrocytes who provide a platform for the merozoites to undergo asex-
ual multiplication. The infiltrated erythrocytes become fully occupied playgrounds which,
depending on the occupation level, evolves from immature (also called the ring stage) to
mature trophozoites and eventually a schizont. The cycle ends with the disruption of the
schizont, consequently releasing fresh merozoites in the vessels. Some merozoites will reshape
into sexual erythrocytic stages. Gametocytes are formed which can be either female or male.
If ingested by a mosquito it enters the sporogonic cycle. Female and male gametocyte can
form ookinetes that evolve into oocysts. Similar to the schizonts, oocysts disrupt and release
sporozoites. The cycle is complete and the mosquito can now carry the parasite to another
person [18, 19]. The cycle is visualized in Fig. 2.2.

Symptoms range between fever, chills, sweats, headaches, nausea, vomiting, body aches and
malaise. These are barely specific and are highly overlapping with symptoms from different
sources. Consequently, relying on clinical diagnosis only will never be enough. More se-
vere forms of malaria can cause the failure of organs or abnormalities in the patient’s blood
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or metabolism. Severe malaria manifests in many forms including neurological defects, ane-
mia, hemoglobinuria, respiratory problems, abnormalities in blood coagulation, acute kidney
injury, hyperparasitemia, metabolic acidosis, hypoglycemia, nephrotic syndrome, hyperreac-
tive malarial splenomegaly, etc. Many of these are relentless and attribute to immense pain
or even death [16, 17]. Precise and reliable diagnostic tools, efficient treatment plans and
rigorous prevention are key to help people and especially children in need.

Figure 2.2: Pathogenesis of the infiltration and ingestion of malaria parasites. There is
three distinct cycles within: the exo-erythrocytic, erythrocytic and sporogonic cycle. The
exo-erythrocytic cycle marks the evolution of sporozoites into merozoites and primarily
takes place in the liver, the erytrocytic cycle resembles the infiltration of erythrocytes
and formation of sexual gametocytes within the blood vessels and the sporogonic cycle
remains for the production of fresh sporozoites which takes place in the mosquito. [5].

2.2 Diagnostics
Diagnostics is the discipline or practice of diagnosis, that serves for identification or charac-
terization of the object or process searched for. In the case of malaria, proper diagnostics
identify whether or not a person is infected in the first place, what type of malaria parasite it
is infected with and what the stage of that infection is. Throughout the last 150 years, many
of such tools have been developed, maintained and revised, all having their advantages and
limitations. The type of tool used in healthcare facilities depends specifically on the avail-
ability of educated personnel, accessibility of equipment, costs and regulations [20, 21, 22].
Consequently, the type of diagnostics is often depending on the location it is used. Espe-
cially, as mentioned earlier, providing decent diagnostic tools in rural areas is essential. In
my opinion, the following list resembles the most important criteria in developing proper di-
agnostics: accuracy of test, ability of species discrimination, quantification of parasitaemia,
expenditures, labour intensiveness, complexity of test, local implementation possibilities, ro-
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bustness and test duration. In the next section, I will take some time to evaluate the most
prominent and promising methods bases on those criteria. Some explicit quality measures
should be explained that can help the assessment. Sensitivity is the probability of a posi-
tive sample to test positive, specificity the probability of a negative sample to test negative
and the limit of detection, or LoD, is the detectable parasite threshold. Consequently, high
sensitivity and specificity provide low numbers of misdiagnosis and a low LoD enables early
stage detection. Therefore, diagnostics with a high sensitivity, high specificity and low LoD
are wanted. Let us focus on the diagnostic methods which can be categorized as shown in
Fig. 2.3.

Figure 2.3: Categorization diagram for malaria diagnostic methods. On a high-level,
three distinct categories exist. Clinical diagnosis is merely diagnosing on the basis
of present symptoms of the patient, parasitic detection is focussed on detecting the
parasite or parts of it and by-product detection is based on detecting either products
that the parasites produce as well as products the patients themselves produce. Para-
sitic detection’s sub-categories include morphological and nucleic acid based detection
methods and by-product detection include antigen and anti-body based methods. Some
specified methods are not discussed in my research such as micro-assay, serology, flow
cytometry, ACC and MS.

Morphology
Light microscopy, LM, has been the most widely accepted diagnostic tool worlwide. The di-
agnosis relies on the examination of blood smears under a microscope, magnifying and thus
increasing the morphological detail we can see. Often, staining is used, allowing for visual
distinction, consequently making the parasites traceable and their structure observable. The
technique is established and versatile, enables for detection of different species, additively
provides quantification of parasitaemia, has high sensitivity and specificity and has relatively
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low expenditures per test. On the other hand, well educated personnel is needed, tests are
subjective, starting costs are high, sample preparation is time consuming and the method is
highly complex. Although the method is among the most reliable and robust, disadvantages
often obstruct the usability in remote areas. [23, 24]. In laboratory settings, fluorescene
microscopy, or FM, has shown to be a alternative morphological method that is both rapid
and sensitive. It was developed to simplify and enhance conventional LM and partly suc-
ceeded. The technique uses fluorescent dyes that bind to the parasite’s DNA which, under
an epi-fluorescent microscope, creates sufficient contrast, allowing for easy identification of
parasites. Eventhough some argue it should, in endemic areas, be the preferred diagnostic
method, there is some disadvantages. It is unable to reliable discriminate between species,
it requires specialized instrumentation and educated personnel, the method is complex and
the costs are high. In addition, quality control is nearly impossible since the stains fade over
time [25, 26, 27, 28, 29, 30].

Nucleic Acid Detection
Since the 90s, molecular diagnostic techniques were developed that amplify genetic material
of the parasites. Nowadays, polymer chain reaction, or PCR, is the reference standard as
tool for confirmation in well-developed healthcare facilities. Highest scores for sensitivity
and specificity at low levels of parasitaemia and the ability to discriminate between all
species makes the technique exclusive. On the contrary, it is no routinely implemented in
developing countries since it is lacking standardization, in need of highly educated personnel,
time consuming, costly and is in need of a constant power supply [31, 32, 33, 34]. There
are extensions of PCR that achieved similar results while being less technically complex,
significantly reducing the test duration and are more cost-effective. Loop mediated isothermal
amplification, or LAMP, does amplify DNA with high specificity, efficiency and rapidity
under isothermal conditions. This method is simpler and easier to perform [35, 36, 37, 38].
Quantitative nucleic acid sequence-based amplification, QT-NASBA, shows similar results as
LAMP but has the added feature of distinguishing sexual and asexual stages of the parasite,
therefore contributing to the knowledge in which phase the patient is in [39, 40].

Rapid Diagnostics Tests
Above-described techniques are time-consuming and generally not locally implementable. As
argued, this is a problem for people living in the periphery. The problem of accessibility of
diagnosis for everyone has been addressed with the emerging of rapid diagnostics tests, RDTs,
that are all based on the same principle, the detection of malaria antigen. These methods
are simple, have no starting costs, are easy to perform, are in no need of accomplished
doctors and are easily transported everywhere. The drawbacks are being unreliable in specie
discrimination, not being able to quantify the parasitaemia and a high LoD. Furthermore,
researchers disagree about the sensitivity and specifity ranging between 60% and 99% [41,
42, 43].

Evidently, I showed that their exist, on the one hand, diagnostic methods such as LM or
PCR, with high performance thus being able to discriminate between species, quantify the
parasitaemia and are both sensitive and specific for low LoDs while, on the other hand,
RDTs that show a tremendous decrease in duration of test and ability for implementation
in low-resource settings. It looks that if both ’sides’ lack each others benefits. The concept
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of smart diagnostics tries to engage that challenge, that is developing diagnostics that have
high performance and being able to distribute and implement it at any location by being
smart. In LM, one of these breakthroughs is the concept of autonomous detection in which an
algorithm determines the results which has the perspective of solving some of its limitations
by decreasing complexity, labour intensiveness and duration of test while maintaining or
even increasing performance.

2.3 Autonomous detection
In this section, I will state the importance of interplay between the human brain and the
digital brain, also known as the computer, in developing smart diagnostics. As mentioned in
[20], accurately testing drug-resistance, measuring drug-effectiveness and identifying the dis-
ease’s stage are essential in addition to merely the diagnosis of malaria. Therefore, it becomes
clear-cut that non-subjective and standardized methods that accurately count parasites are
called upon. As shown, the outcome and applicability of LM depends on the experience and
competence of the personnel. In the detection stage, a computer’s objectiveness can help im-
prove this method examination: a computer that, on the basis of algorithms, determines the
properties interested in. This is what we call autonomous detection. Over the last decade,
literature reveals its ability to flourish in the near future by many convincing and promising
results. Its main advantages could be its reduction of workload and costs, and its ability to
provide more reliable and standardized interpretation of blood films [44, 45]. Although it
seems very promising, no clear indicator can (still) be subtracted that determines the cur-
rent state-of-the-art. This can be attributed to small data sets and incomplete evaluations.
Please have a look at the process of conventional LM in which the digital doctor’s assistant
comes into play (Fig. 2.4).
The second part of the report dives deeper in making the artificial detection machines smarter
and more robust. Autonomous detection will in future times be able to solve some of the
present problems at hand but there is, elsewhere in the process, room for improvement as
well. Next section elaborates on some interesting alternative practices among which is the
concept of hyperspectral imaging.

2.4 Opportunities
A genuinely brilliant idea was the adoption of smartphones in the process. They are equipped
with excellent optical and sensory hardware compared to their price. Moreover, even in
remote areas in Africa, people have up-to-date smartphones that could subsequently, besides
normal use, be used as part of the diagnostics device. This idea has been exploited over the
last years and seems auspicious [46, 47, 48, 49]. It allows for small embodiments, ease of use
and reduction in starting expenditure, thus providing advantages of the use in rural areas
over other devices. Its major limitation is the spatial resolution and the observable field but
pixel sizes are getting smaller and sensor surfaces bigger as we speak.
Another interesting alternative technique is mass spectrometry. The diagnosis grants detec-
tion of heme molecules that, during the growth of parasites within the red blood cells, were

18



Figure 2.4: Overview of conventional steps taken in light microscopy and specifically its
examination which in this case is autonomous. The high-level steps are self-explanatory.
Five subsequent steps should be taken in autonomous detection. Data acquisition con-
stitutes the retrieval of digital images. Pre-processing transforms (e.g. cleans, normal-
izes) the raw images such that it gets denoized, becomes relevant and its redundant
information thrown away. Segmentation partitioned the image into multiple objects,
which, in the case of malaria, is the segmentation of individual erythrocytes. Arguably
the hardest part is the determination of features that are used to discriminate between
infected cells, determine the species and infiltration stage. This process is called feature
selection. Classification is the final stage and classifies, based on the features, individual
cells.

sequestered into molecular crystals (hemozoin). During the process of infiltration, the heme
molecules detach from the hemoglobin, consequently creating a volume of highly concentrated
and purified biomarker. Hemozoin (also called malaria pigment) strongly absorbs ultraviolet
light contributing to the vaporization and ionization of individual heme molecules. Laser
desorption mass spectrometry, LSDM, detects these isolated heme molecules. The method
provides high throughput, is among the most rapid, is automated and has a low LoD. On
the other hand, it is expensive and highly complex [45, 50].
LSDM shows tremendous decrease in sample preparation, which could become crucial in
the design of smart diagnostics. High performance methods have prolonged sample prepa-
ration, e.g. because amplification (for PCR) and the process of staining (for LM) are time
consuming as the inherent chemical reactions are time-consuming. The imaging modality
that is introduced next, which is the one exploited in this research, takes advantage of the
fact that parasitic material and other constituents in the blood are inherently different by
nature. This fact should enable discrimination by only looking at it if sufficient detail is
provided. Providing sufficient detail is hard though. For example, as humans we only take
a combination of three spectral receptors that determine the final color2. Computer sensors
observe in the same fashion denoting the individual spectral sensors as R, G and B being
most sensitive, for as we see it, the colors red, green and blue respectively. Even though
this provides proper detail in the colors we can discriminate, it can be tremendously boosted
by having more of these sensors. Hyperspectral imaging can provide many (more) of these
sensors (think of 100 instead of 3). It is our hope that providing enough spectral detail

2It is obviously more complicated. A detailed explanation is described in 3.2
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one could enable accurate diagnostics that are similarly used as LM without the need for
staining. Theoretically, the concept is extraordinary and could improve much on duration of
test. Furthermore, chemical waste and labour intensiveness could be reduced significantly.

2.5 Research question and proposal

2.5.1 Hyperspectral imaging as novel imaging modality in the di-
agnosis of malaria

Hyperspectral imaging (HI) is an emerging modality in many booming domains, among
which are surveillance, food quality control, agriculture and forensics [51, 52]. Moreover, it
starts to mushroom in many medical applications, of which mostly developments lie within
improved diagnostics [53]. Medical HI (MHI) offers a great potential for non-invasive inves-
tigation of tissue as it retrieves inherently more precise spectral responses. It is (mostly)
assumed that during the disease’s progression, absorption, scattering and fluorescence char-
acteristics change. These characteristics are possibly faster detected and/or discovered if
MHI is used instead of conventional (RGB or monochrome) vision.

For above-mentioned reasons, MHI could potentially be deployed as label-free detection
technique in the diagnosis of malaria. Albeit theoretically a profound direction, there are
many technicalities that need to be looked at and solved, among which are the machine’s cost,
acquisition (process and time), aberration-corrective capacity, spectral purity, calibration and
many more. In the context of malaria, the setup’s cost is arguably the most important as
standardized HI systems are very expensive. The costs for a complete microscope-integrated
HI system (standardized) usually range between 45.000e and several hundred thousands
[54]. In order to deploy this modality for improved malaria diagnostics, these numbers have
to drastically decrease. In doing so, many trade-offs and smart element choices must be
done in order to address the other mentioned technicalities as well. The first part of my
research is about the exploration of this technique. Consequently, it tries to answer the
below-mentioned research question:

Could an optimized off-the-shelf, low-cost microscope-integrated
hyperspectral imaging system be used as novel non-invasive diag-
nostics tool for improved detection of malaria parasites?

Part I addresses this question and lays emphasis on its needed physical background in Ch. 3
and the design, building and evaluation in Ch. 4. Unfortunately, time and data constraints
did not allow to create proper hyperspectral imaging databases of many unlabeled samples.
The idea was to use these databases as training and test sets for enhanced and generalized
computer algorithms that could learn themselves how to discriminate parasitized from non-
infected red blood cells. Although these databases were not created, the design and building
of smart neural networks capture the essence of the second part of the research.
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2.5.2 Towards smarter classifiers in the diagnosis of malaria
In poor countries, classification of blood films is usually done manually. This could be sig-
nificantly enriched by the use of smart computer algorithms that do the job digitally. These
computer algorithms could objectify and fasten the process. Furthermore, it could reduce
cost as less-educated personnel could do the job accordingly. The second part of my research
is about the exploitation of the operations in deep neural networks and how, if smartly
designed, they could benefit overall performance metrics, such as accuracy, sensitivity and
specificity. It moreover lays emphasis on the robustness of these models compared to more
conventional operations, in this case, convolutions. It is significant as types of retrieving
data and blood films themselves will differ depending on the type of setup, its configuration,
the person’s blood and the way the blood films are prepared. Part II of the research focuses
on answering the following research question:

How must the operational stages in deep convolutional networks
be manipulated such that smaller-sized and more robust models
are found that improve on the state-of-the-art in malaria classification?

Ch. 5 provides the necessary background on how to create smarter operations in convo-
lutional neural networks. The essence of Ch. 6 is to make the reader accustomed with
the design, training and implementation of deep learning networks. Evaluation of several
equally-sized networks is done in Ch. 7 in which the models are trained on a well-known
online available malaria database. Robustness of the pre-trained models is checked on a
more specific database. Ch. 8 finalizes with an in-depth discussion and conclusion.

Fig. 2.5 gives an overview on how to place each part and its chapters in the process of
diagnosis.

Figure 2.5
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Part I

Hyperspectral Imaging
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This part is dedicated to the concept of hyperspectral imaging (HI) and my implementation
of a specific one. HI is an imaging modality that additionally retrieves spectral informa-
tion on top of what a conventional microscopy retrieves, namely the 2D morphology. For
every spatial location (pixel), HI tries conducts the individual spectral responses. Where
standard 2D imagery provides information on either one (monochrome) or maximally three
spectral bands (RGB), HI provides information among many spectral bands. In doing so,
HI could enhance the search for specific constituents, identification of materials and help
uncover processes. Although processing and analyzing the tremendously large data sets is
computationally excessive, HIs versatility, availability of contemporary fast processors, and
the rise of data science, high-resolution (both spatial and spectral) HI becomes more popular.
It plays a vital role in monitoring of farmland, food processing, surveillance, mineralogy etc.
Especially the fact that HI enables accurate distinction between closely related materials by
means of their spectral response, made this concept interesting for label-free detection of
malaria. The part is comprised of 2 chapter in which the first (Ch. 3) provides the neces-
sary theoretical background on light and optics. Ch. 4 closes with the design, building and
evaluation of an off-the-shelf, low-cost hyperspectral imaging system.
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3 | Physical background

3.1 Light and optics
Optics is the study of light and how it interacts with other materials. This branch of physics
has contributed to many applications, including the developments in imaging. Among the
first breakthroughs in that domain, microscopes and telescopes enabled the observation of
detail at scales far from perceptible with the human eye alone. This section focuses on the
theory of light and specializes in Koehler aligned microscopes.

3.1.1 Geometrical optics
In geometrical optics, light is assumed a particle. It travels in straight lines and changes
direction if it hits upon a surface (reflection) or is entering a new type of medium (refraction).
The incident angle of the light path, the angle upon which it interacts with the surface or
medium, determines how it reflects or refracts and is, for reflection, given by

θ1 = θ2 (3.1)

and is, for refraction, known as Schnell’s law, given by

sin θ1

sin θ2
= n2

n1
(3.2)

in which θ1 and θ2 are the incident and outgoing angles of the light path, both measured
w.r.t. the normal of the surface at which it enters (see Vol 1, Ch. 26 in [55] and see Fig. 3.1).
This knowledge was used in the development of many optical elements, such as the lens. The
material a lens is build of (mostly some type of glass) has a high refractive index (n = 1.50, air
- n = 1). Consequently, upon entering the medium, a light path changes direction according
to Schnell’s law. The lens’ shape is developed in such a way that it, approximately, obeys the
following three pillars: (1) all particles that travel in parallel to the optical axis are refracted
such that they cross the back focal point, (2) all particle that cross the lens at the optical
axis have unchanged direction, and (3) particles that have equivalent incident angles meet
at the back focal plane (for clarification of the pillars and terms see Fig. 3.1). The discovery
of the lens was astonishing because it facilitated the ability to create images by seizing the
opportunity to redirect light coming from an object such that it gets focused elsewhere. In
paraxial ray approximation, in which is assumed that rays are only travelling under small
angles ([56]), the distance between the image and lens, si, is retrieved as
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1
f

= 1
so

+ 1
si

(thin lens equation) −→ si = sof

so − f
(3.3)

in which f is the focal length of the lens and so the distance between lens and object (see
Vol 1, Ch. 26 in [55]). The planes that comprise object and image are referred to as the
object and image plane respectively.

Figure 3.1: Geometrical optics: Schnell’s law and the thin lens.

Geometrical optics allows us as well to grasp the concept of magnification (see Vol 1, Ch. 26
in [55]): the transversal magnification, MT , - the ratio between the height of the object, ho,
and image, hi - is equal to the ratio of both distances, that is

MT := hi

ho

= si

so

. (3.4)

Magnification is the main contributor to observe besides what the naked eye is possible to
perceive, and therefore a key property in all microscopes.

3.1.2 Physical optics: numerical aperture and spatial resolution
Geometrical optics is not able to explain all phenomena in optics, e.g. interference, the way
sunglasses work (polarization), resolution, etc. Many researchers in the domain have to be
accustomed with the theory, or part of it, that explains these phenomena: physical optics.
Physical optics treats light as waves, in which the electric and magnetic field develop in the
direction of propagation (same as the arrows in Fig. 3.1), moving away from the source, but
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having their forces pointing orthogonally to that direction (and orthogonally to each other as
well). In time and space, both forces oscillate in sinusoidal fashion around the origin (zero).
As a consequence of this ever changing field, depending on the location and time the light’s
intensity is measured1, the output might differ. In physical optics, the field as function of
time and space determines the intensity measured. In theory, it could be that a person, being
encircled with point sources that emit light in all directions, does not perceive or observe
any of the light as the sum of all fields is exactly nothing at the location he or she is at. This
is in a nutshell the concept of interference in which the resultant field, the superposition
of two or more waves, is either cancelled (destructive interference; the example), reinforced
(constructive interference) or somewhere in between.

Another phenomenon in optical physics, which highly depends on interference or, as Richard
Feynman finds, is exactly the same, is that of diffraction (see Vol 1, Ch. 30 in [55]). It
occurs when light waves hit upon an opening or bend around a corner. The diffracting
object, which, in the case of a lens, is its aperture, effectively becomes a secondary source.
Due to the interference of waves, a collimated flat wave entering an ideal lens will not be
focused exactly in the back focal plane, but its intensity instead be spread out around that
focus point. The intensity map, or the out-blurred point, depends on the the size and shape
of the aperture, which for a circular aperture is referred to as the Airy Disk. The variation
in intensity for a given angle θ of the Airy Disk is computed as

I (θ) = I0

(
2J1 (kD sin θ)
kD sin θ

)2

(3.5)

in which k = 2π/λ, D the radius of the circular aperture and J1 a bessel function [57]. The
equation tells us that the smaller the size of the aperture, the larger the spot size. Let it sink
in that diffraction happens for every point that is focused, creating possible overlap between
Airy Disks arising from different points. If the Airy Disks of two near-separated points in the
image plane have "too" much overlap, they become indistinguishable. The distance between
two just-resolvable points is the optimal spatial resolution. The Rayleigh criterion specifies
resolution as the point at which the first-order minimum of the first point coincides with
the maximum (which is the focus point) of the second point. For a circular aperture, this
translates to

dλ = 1.22 λ

n sin θout

(3.6)

in which θout is the half angle of the cone that emanates the lens (see Vol 1, Ch. 30 in [55]).
The denominator in the given fraction is a wide-used term in optics, called the numerical
aperture, or NA [58]. Rewritten in terms of the NA, the spatial resolution for a single lens
is given by

dλ = 1.22 λ

NA
. (3.7)

1
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Consequently, optical elements that have relatively large NAs achieve higher resolution.
Practically, such elements, e.g. objectives or condenser lenses, having high NAs are harder
to manufacture as their complexities generally increase, hence making them more expensive
and often larger [58].

3.1.3 Bright-field microscopy and koehler illumination

Microscopy is the science of the investigation of micro-scaled objects and processes. A
microscope is the apparatus that provides us an enlarged view of these tiny constituents by
a smart interplay of (mostly many) optical elements. Microscopes are either designed to
create a magnified image on our eye’s retina or on the sensor of a camera. There are many
types of microscopes that, for example, differ in the way they illuminate their samples e.g.
bright-field, dark-field, and phase contrast microscopy (for more details see Light and Video
Microscopy by Wayne [59]). This section focuses on bright-field microscopy that is aligned
in an optimal manner (mostly paraphrased from [59]).

One of the most important and fundamental techniques in light microscopy was published
in 1893 by August Koehler [60]. His technique for improved illumination of the specimen,
later named as Koehler illumination, is still implemented in most of the conventional light
microscopes. There is three main features of a proper Koehler aligned microscope that are
beneficial in optimal imaging: improved resolution, uniform concentrated sample illumina-
tion and easy interplay between contrast and resolution.

The optimal resolution dλ, using the Rayleigh criterion, for a light microscope is computed
as

dλ = 1.22λ
NAobj + NAcond

(3.8)

in which NAobj and NAcond are the NA of the objective and the condenser side respectively
[61]. As mentioned earlier, improved overall resolution is realized with increased NA, which
in this case holds for both the condenser and the objective side. As we will see, Koehler
illumination significantly increases the NAcond in most cases, therefor increasing the resolu-
tion. In the following, its general optical scheme is explained on the basis of which the main
features will be proved.

The illumination path consists of several optical elements: light source, collector lens, field
diaphragm (iris), field lens, condenser diaphgram (aperture) and condenser lens. Fig. elab-
orates on the exact placement of these elements. Taking a look at the source’s light rays
residing from 3 distinct points within the filament, one observes that the points are all
focused in the front focal plane of the condenser lens at different locations, resulting in dif-
ferently angled collimated beams (beam pencils). Furthermore, the intersection of the beam
pencils is in the back focal plane of the condenser lens, which by design is the location of the
sample. This will hold for every point in the source. This has two direct implications: the
sample is uniformly illuminated and all the light is condensed, being concentrated in a small
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area centered around the optical axis 2. The size of the beam pencils depend on the ratio
between the field and condenser lens, which we call the condenser magnification, Mcond,

Mcond = Fcond

Ffield

(3.9)

in which Fcond and Ffield are the focal lengths of the condenser and field lens respectively.
Usually, the aim is to have a large demagnification (Mcond ≪ 1 −→ Fcond ≪ Ffield), to focus
all the light on a tiny spot for which its diameter should ideally align with the FOV.
As mentioned, increasing the NA at the condenser side results in better overall resolution.
Koehler illumination does so by smartly designing the ratio between the focal lengths of the
field and collector lens and the use of a powerful condenser lens (Fcond small). This ratio
between field and collector lens is called the field magnification, Mfield,

Mfield = Ffield

Fcol

(3.10)

in which Fcol is the focal length of the collector lens. In an optimal configuration, the height
and width of the image of the source in the FFP of the condenser should equal the size of
the condenser:

D̂(i)
source = M̂fieldDsource = Dcond −→ M̂field = Dcond

Dsource

(3.11)

in which Dcond is the diameter of the condenser lens, Dsource is the diameter of the source and
D̂(i)

source is the optimal diameter of the source’s image. The configuration is optimal in the
sense that the condenser’s limited NA is reached without wasting optical power. Moreover,
it should be known that the NA is limited as

NAcond ≤ 2 arctan
(
Dcond

2Fcond

)
. (3.12)

Practically, it often means in a microscopic setting that high-NA condenser lenses are gener-
ally small to ensure the possibility of a very small focal length that lives outside the interior
of that lens. In a non-ideal setting, in which the image of the source in the FFP of the
condenser is (too) small, the NA is computed as,

NAcond = 2 arctan
(
MfieldDsource

2Fcond

)
. (3.13)

Since the conjugated focal planes of the sample and field iris reside at the same locations
along the optical axis, the field iris’ image can be seen in the sample plane. It should be noted
that closing and opening the field iris does alter uniformity of illumination. The diameter of
the iris directly determines the (circular) region that is illuminated on the sample. Often,
this region ideally aligns with the FOV at the sample side. Given the diameter of the FOV
at the sample side, DF OV,sample, the optimal diameter of the field iris is computed as,

2In ?? it will be seen that depending on the FOV at the sample side and the diameter of the source, one
has to put constraints on the minimal diameter of the field lens to assure "perfect" uniform illumination
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D̂field = DF OV,sample

Mfield

. (3.14)

Lastly, changing the condenser aperture directly changes resolution and contrast: resolution
is enhanced with opening and contrast is enhanced with closing the aperture. This easy in-
terplay between resolution and contrast is highly beneficial in many microscopic applications
and the exact settings depend on what is evaluated. In terms of the field magnification, the
diameter of the source and the numerical aperture of the objective side, the resolution is
computed as,

dλ = 1.22λ
NAobj + 2 arctan

(
MfieldDsource (2Fcond)−1

) (3.15)

3.2 Spectral characteristics
By looking, feeling, smelling, and tasting, we, as humans, can discriminate between many
different objects, materials, and processes. We use our eyes to distinguish lions from cheetahs,
use our hands to feel different textures and temperatures, use our noses to discriminate soy
from fish sauce and use our taste buds to distinguish between different types of apples. In this
research, I am interested in that first mentioned sensor: the human eye and the capability to
see. How is it possible that we can discriminate between millions of different objects? Let us
have a closer look at the eye: its main components are the pupil and the retina. The pupil
is a lens that focuses light on your retina which captures that light and the retina is a layer
of sensory neurons which consist mainly of photo-receptors that respond to light. These
receptors generate electrical pulses that via the optic nerve connect between your eye and
brain where these signals are being processed. There is 4 type of photo-receptive cells and
they are placed everywhere on the retina: 3 type of cone cells and one type rod cell. Different
cone cells react differently to colors and rod cells are sensitive to the amount of light. More
scientifically, cone cells are wavelength sensitive and thus allow the perception of color and
rod cells are intensity sensitive thus allowing the perception of brightness. Moreover, since
the combination of brightness and color are measured at different locations on the retina
corresponding to different locations in space, our brain is able to reconstruct space as it
does. It is that specific combination, the ability of perceiving spectral responses for many
locations simultaneously, that enables classification of millions of objects, observing different
environments and discriminate human postures. It has enabled humans to discriminate
between ripe and rotten fruits, between shallow and deep waters, horses and zebras, and
calm and vibrant places. Although the capacity of seeing is extraordinary, it clearly has
it limits. These limits are best quantified in terms of the spatial and spectral resolution,
which are measures of detail. Spatial resolution is defined as the closest distance at which
two points can be distinguished and spectral resolution as the closest distance between two
distinguishable pure colors. While spectral resolution can be enhanced by having more
cone cells, spatial resolution could, theoretically though, be enhanced by increasing the area
density of the cells. While the latter does not substantially differ among people, the former
however is. By far most people have three types of cone cells (trichromacy), but some have
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a lower number: 2 for dichromacy or "color blindness" (4 - 6% of the population), 1 for
monochromacy (1 in 25.000 - 35.000 people) and 0 for total blindness (0.5 - 0.6%) [62]. On
the other hand, there is a significant part of humanity blessed with having an increased
number of cells, namely 4 (tetrachromacy). According to Jay Neitz, PhD, an ophthalmology
professor at the University of Washington, trichromats are able to discriminate between
1 million colors, while tetrachromats a stunning 100 million [63]. Further increasing the
number of cells or, in digital imaging, the number of channels, allows for improved vision of
color. Hyperspectral imaging is exactly using that property. The following subsections focus
on the interactions between light and matter which form the foundation of why there is the
ability to distinguish non-self-emitting objects in the first place.

3.2.1 Light-matter interactions
Most of this subsection is paraphrased from QED: The Strange Theory of Light and Matter
by Richard Feynman [64]. If a particle obstructs the light path, light interacts with it. Light-
matter interactions are categorized in 4 major levels: transmission, absorption, scattering
and emission. Transmission is the pass-through of light, as if it does not see the particle,
absorption is the process in which light is engrossed in the particle, scattering is the return
of light in a different direction, and finally, emission is the spontaneous release of some of
the particle’s energy in the form of radiation. Transmission, absorption and reflection only
occur if incident light, hitting the matter, is present while emission solely occurs based on
the particle’s interior status. Fig. 3.2 depicts all four.

Figure 3.2: Light-matter interactions in general. From left to right: absorption, (in-
)elastic scattering, transmission and emission.

At the atomic level, electrons "live" at discrete quantum mechanical energy levels. An atom
is able to interact with a photon that has the energy that either equals or surpasses the gap
between such energy levels. If it does, the atom is said to "absorb" the photon while moving
up the electron to a higher energy level. On the other hand, atoms can as well emit photons
while simultaneously letting a or a multiple of electrons fall down to a lower energy level.
These two mechanisms that take place at the atomic level are the main building bricks to
all mentioned light-matter interactions.

At the larger, molecular, scale, absorption manifests in the conversion of photon energy
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into thermal motion or molecular vibrations. For example, absorption can occur if the
frequency of the wave equals the energy of the free vibrations of an elastic molecular structure.
Degree of absorption deeply correlates with the electronic structure of the molecules (and
atoms), wavelength of the incident light, tissue thickness and temperature. On the contrary,
scattering occurs at frequencies that are clearly different than those of the natural vibrations
of the molecules. There is two distinct forms of scattering, one in which the energy of the
scattered photon equals that of the incident photon (elastic), and one which bounces back a
photon having a different frequency (inelastic). Elastic scattering happens more often: it is,
in most cases, a million times more likely to occur.

What interactions, or mechanisms, occur in the applications one is investigating can be
beneficial. At least having the knowledge of what types of interactions are dominant can
be of great use in understanding and explaining certain observations. In the context of
microscopy, it can help in the design of a proper optical scheme. In the next, I will discuss
those interaction that are predominant in biological tissues, specifically thin blood smears.

3.2.2 Light-tissue interactions in blood
In bright-field microscopy, the sample, sometimes referred to as the field, is usually illumi-
nated from beneath. Only that portion of light that propagates, in one way or the other,
through the sample can be observed at the image plane. Consequently, photons that un-
dergo specular reflection at the boundaries of the glass slide(s) are not present at the sensor.
Furthermore, in the case of malaria infected thin blood smears, spontaneous emission is very
weak and thus negligible as well [6].

Whole blood consists of many components, such as red blood cells, white blood cells,
platelets, and blood plasma. The haematocrit, the volume percentage of red blood cells
in whole blood, in healthy adult blood specifically is between 40 and 45 % depending on
gender (40 in case of women and 45 in case of men) (see Background section in [6]). Including
the specific structure they obey, and the components they are build up from make them prime
targets for light to interact with in especially the visible and near-infrared range. Practically,
all those interactions are due to haemoglobin. Haemoglobin, the protein responsible for the
transport of oxygen and carbon monoxide, alternates between different appearances depend-
ing on what it carries. Oxy-haemoglobin (bound to oxygen), HbO2, and de-oxy-haemoglobin
(unboud to oxygen), Hb, are most abundant among all types [6]. Oxygen saturation, S (O2),
is the volume percentage of oxy-haemoglobin compared to the total amount of haemoglobin,
thus computed as

S (O2) = [HbO2]
[HbO2] + [Hb]

. (3.16)

On the bottom of Fig. 3.3, HbO2 and Hb the absorption and (elastic) scattering coefficients
are plotted as those interactions most predominant. It is observed that, throughout the
applied spectral range, one is not significantly inferior or dominant over the other for both.
A natural question arises: "How do these interactions attribute to what is observed, thus
seen and captures by the camera? Moreover, how should they be interpreted?". First of all,

34



Figure 3.3: Light-tissue interactions in whole blood. At the top, the predominant
interactions are sketched: transmission, scattering and absorption. The middle elab-
orates on both type of scattering that occurs (left) as well as the main component
of erythrocytes, namely haemoglobin (right). The bottom shows the absorption and
scattering coefficients for HbO2 and Hb. Here, the resolution is 2nm until 600nm and
5nm upwards the spectrum. All data is directly copied from the tabulated data in the
Appendix of [6].
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it should be mentioned and noted that it are those interactions in the first place that make
it possible to (visually) observe the specimen. In a proper microscopic setup, the sample
is homogeneously illuminated with light coming from many angles. This means that if the
sample stage is uninhabited we will observe a uniform bright field. If on the other hand
tissue is present, some light is absorbed or scattered in which the amount depends on the
exact substances, thus molecular structures, it comes across. Logically, this depends on the
summation of all (molar) absorption and scattering coefficients of those individual molecules.
In bright-field (transmission) microscopy, one consequently observes simultaneous differences
in absorption and scattering of the whole scene. More specifically, it is the absorption that
eventually provides the differences in the morphological and spectral landscapes. Scattering
slightly diffuses the propagation of light since, even for thin blood smears, it usually scatters
more than once (multiple scattering).

3.2.3 Dispersion and chromatic aberration
Strictly speaking, the refractive index for most materials is wavelength dependent. Different
colors therefore refract differently upon entering a new medium (see Schnell’s law, Eq. 3.2,
and add n = n (λ)). Technically, this phenomenon is known as dispersion, as it basically
disperses light in several directions (see the single lens in Fig. 3.4). For most transparent
materials the following inequality constraints hold,

1 < n (λred) < n (λgreen) < n (λblue) . (3.17)

For a thin lens (see description in Eq. 3.3), light originating from the object plane will
consequently be focused at slightly different spots depending on the wavelength (can be both
longitudinal as transversal). All lenses that make use of refractive media (in which the light
travels through transparent media different than air), are prone to this phenomenon, which
is known as chromatic aberration. For many optical setups, it is crucial to correct therefor.
Longitudinal chromatic aberration, or LCA, occurs if light is focused at different depths
along the optical axis. Correction is mostly done using achromatic doublet (achromats) or
triplet (apochromats) lenses. Achromats perform what is called primary LCA correction:
two different wavelengths are focused on the same spot on the optical axis. They are mostly
comprised of a positive and negative lens with different refractive index. Apochromats deploy
secondary LCA correction - three different wavelengths are focused on the same longitudinal
spot - which mostly manifests in the use of three separate lenses. Fig. 3.4 illustrates all
differences.

3.2.4 The electromagnetic spectrum and spectral purity
The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic
radiation and their respective wavelengths and photon energies. It ranges from photons
having extremely high frequencies and small wavelengths (gamma rays: hundreds of Eta
Hertz at several pico-meters) to extremely low frequencies and very long wavelengths (long
radio waves: several Hertz at tens of thousands of meters). The classes of light of which
optics is mostly concerned with are the near-ultraviolet (100nm - 400nm), the visible (400nm
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Figure 3.4: Chromatic aberration in lenses due to dispersion. On the left three types
of lens configurations are sketched: the single lens (top), the achromatic doublet lens
(middle), and the achromatic triplet lens (bottom). In optical terms, 656.3nm (red) is
referred to as ’C’ light, 587.6nm (yellow) as ’d’ light, and 486.1nm (blue) as ’F’ light.
For the single lens, only ’d’ light is perfectly focused, while achromats do so for ’F’
and ’C’. Apochromats do so for all three. On the left, the focus shifts are given for all
intermediate wavelengths. In terms of overall performance in VIR-region, apochromats
usually obtain the highest degrees in LCA correction.

- 700nm) and infrared (700nm - 3000nm) regions. In microscopy, the visible region, or VIR,
is usually most interesting as we, humans, are able to perceive most of its signals. In order
to capture as much information of the samples as possible, the source of a microscope should
optimally emit light from all over the VIR region. Halogen lamps are among the most reliable
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and broad spectra possible. Like all incandescent light bulbs, a halogen lamp produces a
continuous spectrum of light, from near ultraviolet to deep into the infrared. Furthermore,
its lifetime is relatively long. The spectrum is depicted in Fig. 3.5.

Figure 3.5: Spectrum of a Halogen lamp.

In laser optics as well as hyperspectral imaging, it is often important to have a pure spectrum
instead. It is a quantification of the monochromaticity of a given light spectrum - the
"narrowness" of that particular spectrum - and is referred to as the spectral purity. Spectra
coming from a laser source or emitted from a monochromator (see Sec. 4.2.1) are mostly
Gaussian-like distributed for which the full-width half-maximum is a common metric to
measure the spectral purity of the signal - the distances between both half-maxima. In multi-
modal and hyperspectral imaging spectral purity ranges mostly between one and several tens
of nano-meters. Spectral purity is further illustrated in Fig. 4.4.

38



Figure 3.6: Spectral purity as measure for the monochromaticity of a light’s spectrum.
Here, the spectral purity of the frequency is given. Please note that the report uses the
wavelength.
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4 | Design and realization of a hyper-
spectral imaging system

This chapter focuses on the development of a hyperspectral imaging (HI) system in a
transmission-microscopic context as novel investigative tool for thin micro-scaled biologi-
cal samples. The first section focuses on the concept of HI systems and its categorizations,
the second on the development of our own setup after which it is evaluated and discussed in
the final section.

4.1 Hyperspectral imaging systems

Depending on the application, HI systems are different in how they retrieve the data. Three
distinct acquisition modes can be identified: the spectral scanning mode, here referred to
as staring mode, the spatial scanning mode and a snapshot mode. Systems that scan the
2D morphological landscape along different wavelengths are called staring methods. Usually,
these methods have a spectral filter somewhere in their scheme that enables the visualization
of the spatial structure for a specific narrow spectral band while filtering all other light
out. In many cases, electro-optical filters such as liquid crystal tunable filters (LCTF) or
acousto-optical tunable filters (AOTF) are used for this which are either placed within the
illumination path or in the light path emanating the specimen. In case of the spatial scanning
mode, the most used is Pushbroom that scans along a line in the spatial grid and retrieves
these pixel’s spectra simultaneously. It uses a dispersive device that is placed in the path
emanating the sample which focuses that single line on a 2D camera in which the wavelengths
are spread along lines of pixels on the camera’s sensor that are orthogonal to the direction
of the scanned line, therefore filling the space of the sensor. While moving along all adjacent
lines, it creates a growing pack of 2D images. Whiskbroom is similar in that it spatially scans
as well. Its difference resides in the fact that it scans, instead of lines, along individual points,
therefore scanning along two directions. A snapshot retrieves all data in one instance. Fig.
4.1 provides an overview of all four methods and elaborates on the retrieved data in more
detail. For microscopical-integrated HI setups it is beneficial to implement a staring mode
because scanning along the spatial domain is magnified as well - as the precision of scanning
decreases linearly with magnification - and the slits or holes need to be smaller, making them
harder to be manufactured. The way data is retrieved and organized is explained in Fig.
4.2.
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Figure 4.1: Categorization of HI systems [7].

Figure 4.2: Data retrieval in HI. In the top-left corner, the set containing all images at
specific wavelengths is given. Instead of representing it as a set of features, the images
get stacked in what is called a 3D-hypercube (bottom-left). Every pixel is therefore
associated with a spectral response for which some are sketched on the right. The
matrix representing all individual spectral responses in its columns is referred to as the
voxel-set representation.
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4.2 Design and realization of the optical scheme
The microscopic setup that is developed is illustrated in Fig. 4.3. It comprises five distinct
parts, or stages: (1) source, (2) illumination path, (3) sample stage, (4) objective, and (5)
camera. Following subsections will discuss and explain all stages separately. The setup’s
discussion and conclusions are done in the final section of the chapter.

Figure 4.3: Overview of the optical scheme: staring scanning hyperspectral imaging
microscope. Light travels from A to B in which it chronologically follows the route
through the source, the illumination path, the sampling stage, the objective and is
arriving at the camera - all highlighted in bold. Sub-stages that are together fixed
in space are outlined in black: the sub-stage condenser, the sub-stage sample and the
capturing sub-stage.

4.2.1 Source
The source consists of three components: a halogen lamp, a monochromator and an optical
fiber. The halogen lamp is used as primal light source. It emits a broad spectrum of light,
is consistent among many wavelengths, is reliable and has a relatively long life expectancy.
The halogen lamp is coupled to a monochromator that enables the selection of specific
wavelengths the setup is working at. It uses dispersion as its working horse and tunes by
rotating a blazed grating that is in the light path. The angle at which the first order light
rays emanate that element depend on the wavelength. If a small hole is placed at the end
of the light path, it is, as a consequence, possible to capture a narrow spectral range of the
primal source’s spectrum. Visual assistance is given in Fig. 4.4 (on the left). The peak’s
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location is the wavelength the monochromator is tuned at. As exit slit, an optical fiber is
used such that it is easily mountable and exchangeable with the other parts of the setup.
It furthermore has the benefit of emitting a two-dimensional symmetrical cone of light, for
which, most likely, the brightness is Gaussian-distributed. Obviously, by changing the size
of the entrance slit or diameter of the fiber, the spectral purity of the signal changes - the
peak becomes relatively narrower/wider and lower/higher. The difference in spectral purity
for two specific slit settings is measured and given in Fig. 4.4 (on the right). Increasing the
spectral purity comes at an inevitable cost, namely the brightness of the emanated signal.
The second configuration is chosen, providing a high enough spectral resolution. Proper
sample illumination is essential to make optimal use of the light.

Figure 4.4: The source and spectral purity of its extension. On the left, the source is
illustrated in which the outputted band is tuned by rotating the blazed grating. An
optical fiber is coupled to the output of the monochromator and. The amount of light
and spectral purity highly depend on the chosen configuration - size of entrance slit and
fiber diameter. Spectral purity is measured for two configurations as indicated on the
right. Part of the measurements are shown in the range of 600 - 620 nm. Furthermore, a
Gaussian fit is used to approximate the mean and full-width half-maximum (FWHM) for
every selected wavelength measured at. Least-squares using the Levenberg-Marquardt
algorithm is used as optimizer [8].

4.2.2 Illumination path
Having an extended source that produces brightness-depressed cones of light, it becomes
essential that the illumination part is optimized in the sense that all the light is focused
on the samples field of view. Furthermore, it should be optimized such that the sample is
homogeneously illuminated, preferably with light directed from different angles. In achieving
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this, the path is aligned using Koehler aligment (see Sec. 3.1.3 and Fig. 4.5). If correctly
aligned, the sample is homogeneously illuminated by a converging set of plane waves that
each arise from different points of the source, thereby improving and squeezing out maximal
lateral and axial resolution. The Koehler aligned subsystem consists of a multiple of lenses
and diaphragms: the collector lens that collects all the light from the source, a field lens that
creates an, in our case enlarged, image of the source in the front focal plane of the condenser
lens. The condenser than focuses differently angled collimated beams on a small area around
the optical axis. The sources image should ideally be as large as the opening aperture of
the condenser lens such that its numerical aperture limit is reached without wasting optical
power. By aligning the field iris with the front focal plane of the field lens, it is conjugated
with the sample. Changing its diameter is immediately visible in the sample plane and helps
aligning the setup. The condenser aperture on the other hand, if placed in the front focal
plane of the condenser, can be used to tune between spatial resolution and contrast: opening
the diaphragm results in a higher working NA and thus allows for improved resolution, while
decreasing the diameter allows for better contrast. The condenser sub-stage - the condenser
lens and aperture - can be moved manually across all axes, allowing easiness and handiness
of use. The height (z direction) is manipulated with a circular knob and the others, x and
y directions, are tuned using an precise XY-stage (cage-system fit).

Figure 4.5: Koehler aligned setup.

4.2.3 Objective and camera
The capturing sub-stage of the system consists of an objective, a tube lens, and a camera. The
objectives used are plan- apochromats that highly correct for chromatic aberration along the
region we are interested in, highly correct for spherical aberration and have high numerical
aperture ranging from 0.75 to 1.25, depending on its magnification and type of immersion.
Specific magnifications used are 20, 40 and 63. A monochrome IDS CCD camera is adopted
in the setup. The pixel size is 1.25 micron, which is among the smallest industrially accessible,
has 4912 and 3684 pixels in width and height respectively (18MP) and has a pixel depth of
12-bit. Camera read-out was done using Python.
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4.3 Evaluation and discussion
On the resolution The imposed resolution of the system is computed as in which both
the numerical aperture on the condenser side as well as that of the objective side are vital
(please see Eq. 3.15). In order to achieve a high enough resolution in the spectral range of
interest ( 400 to 700 nm), elements in the illumination part should be chosen smartly such
that that the condenser sides NA is high enough as well. The resolution for different system
settings given the smallest possible objectives NA (=0.75) are plotted in Fig. 4.6. On the
left, the ratio between the field and collector lens, the field magnification, is given and on
the bottom the size of the source. We aim for an optimal resolution that is smaller than 0.6
micron. Therefore, it is chosen to have a source that is approximately 2 mm in diameter
which is attained by placing a diffuser behind the exit of optical fiber. The magnification of
the field is chosen to be 200/30 (see huge red marker in the figure).

Figure 4.6: Spatial resolution of the setup for various configurations. The spatial
resolution, dλ, is theoretically computed according to the top-noted equation. Here,
NAobj , λ and Fcond are fixed (underlined in red) and the magnification of the field,
Mfield, and the diameter of the source, Dsource, are used as configuration parameters
(underlined in blue). Green dots denote the region with sufficient spatial resolution
while the red-dotted legion is the non-optimal domain.
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Furthermore, it is observed that the field lens has a relatively long focal length. Consequently,
the setup is developed with a horizontal optical axis that contains most of the elements
comprised in the illumination path and a vertical one that contains the other sub-stages of
the system in order to make the setup handable. Practically, it is found that the system
works in the spectral range between 400 and 700 nm in which 4nm is used as spectral
resolution, thus providing 76 channels. Some calibrated1 examples of Giemsa-stained blood
films are provided in Fig 4.7 for 2 wavelengths. Although spatial resolution is decreased if
compared with other high-end microscopes, it remains sufficient for the clear-cut distinction
of the parasites on the basis of their morphological features, e.g. trophozoites, the ring stage
of the P. Falciparum malaria parasite, is easily detected (especially observe the huge ring in
the center patch).

Figure 4.7: Calibrated images of Giemsa-stained thin blood smear films for several
wavelengths. Crops are taken from the whole FoV which is approximately 15 times
as big, thus containing about 500 erythrocytes in total. A plan-apochromat objective
with 20X magnification is used.

Versatility, interchangeability and easiness of use The setup can be used for all
transmission-microscope-made samples and is tweaked and optimized in a fast and user-
friendly manner. The most crucial movements, the displacement of sub-stage condenser and
capturing stage, are done with well-workable precision stages that are tuned with proper
knobs. The system is either used as conventional microscope or as HI microscope in which
interchanging between both can be done efficiently as coupling and decoupling of both sources
takes a minimal amount of time. Depending on the application, the examiner can without

1calibration is done using Iraw−Idark

Iref −Idark
, in which Iraw is the measured signal, Idark the signal measured

with closed-off camera and Iref a reference image without sample.
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much effort choose the brightness, select the wavelength, trade between resolution and con-
trast, alternate between specific cameras, and control the region of the sample that is focused.
The setup is photographed and given in Fig. 4.8.

Figure 4.8: Hyperspectral imaging microscope: the real setup.

On the cost Compared to standardized setups, the cost of the setup is significantly low-
ered: approximately between 5.000e and 13.000e depending mostly on the camera and
objective. The plan-apochromat objective is the main contributor (for Leica, ranging be-
tween 3000e and 9000e). It is though found that plan-apochromats are near-essential as

48



their highly corrective property for chromatic aberration and spherical aberration makes the
process more reliable without the need of refocusing every wavelength iteration.

Remarks and potential improvements The main disadvantage, although optimally
illumination-aligned, is low-brightness, obstructing high-end performance in spatial resolu-
tion, spectral resolution and the perceptible spectrum - the spectrum of light the system is
able to measure at. The spectrum between 300 and 400 is especially interesting in many bio-
logical processes and is expected to be informative for malaria as well. Inevitably, the primal
source’s (halogen lamp) spectrum peak is usually centered somewhere around 600 - 800 nm
and is much depressed in the aforementioned region. A source which is less dimmed in those
regions could be beneficial. Having a more powerful source on the other hand is profitable
as well, as increasing the brightness along the whole spectrum improves the spatial resolu-
tion along the whole domain as well. Furthermore, it could potentially increase the spectral
resolution because modifying the source settings, that is decreasing the sizes of entrance slit
and fiber diameter, can be done without a disastrous fallback in spatial resolution.

Adapting to a different configuration (field magnification and extended source diameter)
could squeeze out the last boost in spatial resolution, but at a cost. In moving the red circle
in Fig. 4.6 deeper into the interior of the green-dotted territory, one either has to increase
the diameter of the source or the magnification of the field. Increasing the diameter of the
source reduces some brightness and enlarging the magnification of the field is tantamount to
a more powerful condenser lens or a less powerful field lens. Both options are cumbersome
as both lay harder practical constraints: (1) sample gets very close to the condenser or (2)
the setup’s vertical part will become substantially longer.

Retrieving data for many spectral bands is time-consuming since the wavelength should be
manually tuned every single instance. This process could be enhanced by automating the
capturing process in which independent motors are coupled to both the monochromator knob
and fine-tune focusing knob. A natural feedback system that, on the basis of the current
state of the camera, has the ability to refocus in combination with a stepper-motor that
autonomously increases the wavelength could enhance and, more important, speed up the
process significantly.

A serious disadvantage of plan-apochromats and lens-comprised objectives is that they never
perfectly correct for chromatic differences. Especially if larger perceptible spectra are re-
quired, chromatic aberration becomes substantial in the spectrum’s peripheries. A reflective
objective, only using parabolic mirrors to change the beams of light, could benefit the setup.
Drawbacks are serious flaws in brightness, increased spherical aberrations and reduction in
NA.

Sequel A natural question arises: Is the developed HI system good enough for non-invasive
detection of parasites in thin blood-smears? Definitely supplementary steps are to be taken
in order to answer that. A proposal of steps (including those already taken) is given in Fig.
4.9.
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Part II

Towards Smart Generalizing
Networks
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The topic of Part I was the design and evaluation of a new potential imaging modality for the
retrieval of data. As mentioned in the introduction, time and the lack of proper unstained
samples made it impossible to generate large enough databases for being pushed further in
the diagnosis chain (for the chain, see Fig. 2.5). This part is dedicated to the ending of
that chain: classification. The intermediate steps (pre-processing and segmentation) will be
shortly mentioned but not exploited (see sec. 7.1). For several years, deep learning algorithms
have propelled in many medical domains in which the segmentation and classification of
malaria has become one of lately [65, 3]. Those networks are often very large in size and
no clear indication of their robustness towards other specific malaria databases is sketched
yet. Most of the networks deploy relatively simple operations, such as convolutions or fully-
connected layers, which could be one of the reasons why they have to be so deep. An idea
is to increase the complexity of the operations such that a-priori knowledge is induced in
these operations instead. The field of geometric deep learning is such an example, in which
realistic geometric properties of the objects of interest are being mold into the operations
(think of physical transformations the objects can freely undertake without changing what
they are, such as rotations, reflections, scaling, etc.). This part is about the design and
evaluation of several of those operations and how they contribute to overall performance on
the well-known Rajaraman database [3]. Furthermore, robustness of the pre-trained models
is checked on a database extracted from the microscope developed by AiDx Medical [4].
Unfortunately, the models have not been tested on hyperspectral data for above-mentioned
reasons. Ch. 5 focuses on all the necessary theory to build the operational stages that are
being implemented in deep models described in Ch. 6. The used databases, performance
metrics and results are described in Ch. 7. At last, Ch. 8 discusses and concludes the
findings.
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5 | Generalizing operations in neural
networks

This chapter captures the essential theory on smart neural network’s layers that will be used
to build and train deep networks in later chapters of this part. Most of the readers must
be familiar with the idea of neural networks or at least the impact they have had over the
last two decades. Extreme improvements have changed and benefited tasks ranging from
language-processing to those associated with the monitoring of farmlands, and surveillance
to those needed in the medical sector. In those tasks it becomes more and more precious
to additionally develop networks that are both generalizing as well as small, or as I will
sometimes refer to in combination: smart. In my opinion, a well-generalizing network is
best described as it being equipped with the power to capture relevant information. Within
those networks it therefore learns important aspects while it discards non-relevant features
that manifests itself in (mostly) the condition this important information is in. Generalizing
networks will be fundamental in the design and implementation of robust systems and in
systems that could be used for a variety of tasks simultaneously. Small on the other hand
is two-fold: small in terms of allocated memory and small in terms of complexity. More
specifically, this chapter will be about the design of generalizing operations for the use in deep
networks (see Ch. 6). It asks from the reader to be equipped with a proper mathematical
background as it touches upon several complex domains such as group theory. It is divided
in 2 sections. First the basic artificial neural network is described. Section 2 touches upon
the core in which several equivariant operations will be explained in detail which will be the
building bricks for the networks designed in the next chapter (6).

5.1 Artificial neural networks

Neural in artificial neural network, or ANN, originates from the association with the human
brain. Although ANNs discard, in my opinion, many complexities necessary for the tasks
real networks of neurons are able to collaboratively perform, it is understandable why it has
been given its name. An ANN is in essence a collection of interconnected nodes in which
those nodes and interconnections biologically mimic neurons and synapses respectively. Here,
nodes are associated with a value and connections with a function. Interconnected nodes are
thus able to exchange data determined solely by the functions that prescribe the connections.
As you will find out, the ability of ANNs to adapt the function’s parameters and thus the
whole communication protocol between all nodes creates the possibility to learn.
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The common architecture of ANNs consists of an input layer, several hidden layers and an
output layer (see 5.1). The amount of hidden layers and nodes per individual layer are
architectural hyperparameters and will be discussed in more detail in the later chapters. As
ANNs have to learn (from data) they are restricted with the ability to input data. This is
done at the input layer in which those nodes exactly represent the data. Furthermore, it
needs to have the ability to evaluate the current state of the network. This is done at the
output layer in which the combination of values of nodes is somehow checked with what
the network ideally should have produced, also known as the ground truth. The network is
completed by the interpositioning of hidden layers between in- and output layers. It should
be noted that all connections are uni-directional as information should always stream from
in- to output1. This has the direct consequence that nodes in the l th-layer are exclusively
determined by those in the previous, (l − 1)th-, layer (and the way they are connected).

Figure 5.1: General structure of the artificial feedforward neural network.

The flowthrough of data from input to output layer is usually referred to as the forward pass
or feedforward. In most general form, the values of the nodes residing in the hidden and
output layers2 are computed as

al
u =

∑
v∈Nl−1

f l
u,v

(
al−1

v

)
(5.1)

in which the subscripts u and v represent the node numbers in the (superscript) l th-layer
or (l − 1)th-layer respectively. Furthermore, N describes the set of all nodes present in the
indicated layer. At last, the function f l

u,v determines how a specific node from the (l− 1)th-
layer passes its information to the node in the l th-layer. Computation of the node’s values
is done layer per layer in which one starts at the input and subsequently walks through the

1One should recall that other types of interconnections are possible: cycles, bi-directional, etc. Neverthe-
less, in my thesis work I will stick to these type of network, often called feedforward neural networks.

2Remember that the nodes in the input layer reflect copies from the injected data and do no need to be
computed.
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hidden layer in incremental order until reaching the output layer: the feedforward is then
completed.

The interconnections, represented by f , normally consist of a linear and a non-linear part.
The non-linear part is crucial if realistic properties must be learned [66]. As first step, a
specific node is computed as an affine combination of the nodes that pass information to
it. The second step forwards this intermediate output through a non-linear function which
is equivalent for all nodes. By expanding eq. 5.1 as suggested the nodes are computed as
follows

al
u = h

 ∑
v∈Nl−1

wl
u,va

l−1
v + bl

u

 (5.2)

in which the w’s and b are the weights and bias, and h an arbitrary predefined non-linear
scalar function, called the activation function. The vector containing all node values simul-
taneously is easily retrieved as

al = h
(
W lal−1 + bl

)
(5.3)

in which the matrix W l and vector bl consist of all the weights and biases of the l th-layer
respectively. Having chosen the architecture and activation function, the state of the network
depends only on the weights and biases. Updating these parameters allows the network to
learn from samples that are accompanied with their ground truths, or labels.

A natural question arises on how to update the parameters such that the network gets
increasingly better. Two steps remain: (1) evaluating the "goodness" of the current state
of the network and (2) updating the parameters accordingly. Evaluation is done with a
function that measures how the output relates to the ground truth. This cost function, fC ,
obeys the logical convention that it generates a small value if truth and output are nearly
similar and vice versa. Ideally, the ground truth and output are almost equivalent: in this
case the prediction and/or estimation of the network is nearly perfect. The cost (value), C,
is computed as

C = fC

(
aL, y

)
= fC

({
wl, bl

}
l=1,2,...,L

, y
)
.

(5.4)

Here, y is the (set of) label(s) associated with the input data and L is the amount of
layers3. If the cost function and activation function are continuously differentiable w.r.t. its
parameters, a proper way to update them is in the direction of the negative gradient:

θk+1 = fU (∇fC (θk) ,θk)
= θk − ϵ∇fC (θk) .

(5.5)

3Closely paying attention reveals that this is not entirely true: the first layer is by convention the first
hidden layer. Therefore, the total amount of layers, including the input layer, becomes L + 1. Furthermore,
the input layer is the 0th-layer.
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Here, k represents the current iteration, ϵ the step size or learning rate, and θ a vectorized-
collection of all parameters. An ingenious approach to compute these gradients efficiently
is based on the concept of backpropagation which is properly worked out in several good
test books such as Dive into Deep Learning (Sec. 4.7 to be precise) [67]. The idea resides
in the fact that the cost entirely depends on the last layer, the last layer only on the layer
before that and so on. Therefore, without loss of information, the gradient of the last layer’s
parameters can be computed first. After having computed those derivatives, the gradient
of the second to last layer’s parameters can be computed. This procedure ends if the first
layer is reached. It is efficient because the computed gradient in a certain layer is used in
the computation of the next (thus posterior) layer. The full training procedure is depicted
in Fig. 5.2.

Figure 5.2: Update procedure for artificial feedforward neural networks.

In Ch. 6 more emphasis is laid on the choice of activation and cost function, hyperparameters
such as the size of the network and the learning rate, and more advanced learning/updating
procedures. In this section, I provided the most general organization of ANNs which is a
basis for almost every network that is used elsewhere. Although these networks are able to
learn complex tasks, they do no yet incorporate useful knowledge. The next sections will
focus on the inclusion of this knowledge by interconnecting the weights in a smarter manner.
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5.2 Equivariant operations

In a general ANN, nodes between consecutive layers are all connected. Therefore, fully con-
nected layers exchange information among all nodes. One might think that such a property
of the network is ideal, but in many cases it is nonetheless far from optimal. Arguably, in
some cases it might be beneficial but in many domains it is not. At least not in the domain
we are interested in: computer vision.

In this field, data is tantamount to images. Images are 2D-projected observations of the
real, 3D, world. Mathematically, images live and are captured in a two-dimensional discrete
world, mostly denoted as

Z2 =
{

(x, y)
∣∣∣∣x, y ∈ {. . . ,−2,−1, 0, 1, 2, . . .}

}
: (5.6)

the two-dimensional lattice of the Euclidean space, R2. Every such 2-tuple, or in under-
standable language pixel or point, in this grid contains a spectrum for which its heuristic
depends on the way the data is retrieved: for monochrome one channel is associated with
every pixel, for RGB three and for hyperspectral images this is N (≫ 3).

If such an image is fed into a general ANN, all inherent structure of the image is not used.
It is important that you fully grasp why this is true. In this context, which is that of im-
ages, structure is the way in which the pixels are organized. For example, every pixels has
4 orthogonal neighbors (horizontal and vertical) and 4 diagonal neighbors. Moreover, some
pixels are close to each other and some are far apart. The human ability to discriminate
objects through vision is largely contributed by the fact that the brain mechanism incorpo-
rates the structure in the discrete scene it captures with its eyes. This provides, for example,
the ability to learn how to associate structured signatures such as lines, circles, rectangles,
and more complex shapes and combinations thereof with specific objects. Since consecutive
layers in general ANNs are fully connected, they do not incorporate the hierarchical patterns
that are present in the image. These networks are in many computer vision related tasks
prone to overfitting and moreover need to be much wider and deeper to establish a similar
performance as other smarter networks.

Next subsections describe and design layers in which some image patterns are successfully
integrated. More specifically, layers will be designed such that realistic transformations
are preserved by design. This domain is sometimes referred to as geometric learning. If a
particular layer preserves a specific transformation, say a rotation, it is said to be equivariant
under that transformation. The exact mathematical definition will be discussed later but it
is this property that must be proved for the layers that will be explained. Preservation of
translations is the feature of convolutional layers which are explained in 5.2.1. Extending
by the inclusion of the preservation of 90-degree rotations and mirror reflections, group
convolutional layers are explained in 5.2.2. 5.2.3 and 5.2.4 dive deeper in which the concept
op steerability is used to fulfill the need for an increased number of rotations the layers are
equivariant under.
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5.2.1 Convolutions
A tool that is often used in the altering of images is the convolution operator. The two-
dimensional discrete convolution between two function f and g, both specified on Z2, (f, g) :
Z2 → RC , is defined as

[f ⋆ g] (x) =
∑

y∈Z2

f (y) g (y − x) (5.7)

in which x combines both spatial coordinates, and C is the amount of channels of the input
image (f) and kernel (g) it convolves with (Sec. 6.12 in [67]). Furthermore, we use ⋆ to
indicate the convolution4. Discrete convolutions are best explained schematically which is
done in Fig. 5.3.

Figure 5.3: Two-dimensional discrete convolution. For every new pixel in the convolved
image on the right a dot product between the input image (left) and filter (green) are
taken: this scalar value is allocated at the central position of the filter. Moving around
the filter and letting its center coincides with the whole domain of the image, the new
altered image is retrieved.

Using convolutions in ANNs is relatively easy. The kernels (g) must be seen as carriers
of the weights that are to be learned. Consequently, (1) the amount of weights decreases
tremendously and (2) the weights are shared at nearly every position (up to edge effects).
(1) Every new pixel (new node in the next layer) is only interconnected to its neighbouring
pixels in the input image (depending on the size and shape of the kernel). (2) Since the
kernel slides over the domain of the image, every new pixel is interconnected in equivalent
fashion w.r.t. to its neighbouring pixels in the input image.

By design, a convolution produces a new, altered version of the image with only one channel:
[f ⋆ g] : RK → R. In networks that employ convolutions it is beneficial to have a feature
space that has a multitude of channels: a stack of features (Ch. 6 in [67]). Obviously, a
two-dimensional kernel will not work in this case and needs deepening (see the colored filters
in 5.4). Every such filter generates one output feature. The amount of output features

4Precise readers may notice that the definition is not entirely consistent with literature: convolutions
employ x − y instead of y − x which is formally know as the correlation operator. The use of the ⋆ must
become clear as well as it is mostly associated with the correlation operator.
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is therefore equivalent to the amount of used filters. The set of filters is referred to as
the filter bank. To summarize, the convolutional layer convolves the input feature map,
f : Z2 → RCl−1 , with the filter bank, Ψl, a set of C l filters ψi : RCl−1 → R such that

[f ⋆ ψi](x) =
∑

y∈Z2

Cl−1∑
c=1

fc(y)ψi
c(y − x) i ∈ 1, 2, . . . , C l. (5.8)

For visual clarity, Fig. 5.4 depicts what is happening.

Figure 5.4: Convolutional layer in a CNN.

A nice property of convolutional ANNs, or CNNs, is their translational equivariance. First,
we define the concept of equivariance. Equivariance is a notion for functions and is stated
as follows. A function or map Φ is said to be equivariant under the transformation group G
and the domain X if,

Φ([π(g)](x)) = [π(g)′](Φ(x)) ∀(x, g) ∈ (X , G) (5.9)
in which π(g) is the operator form of the group transformation g [68]. In words, it means
that first transforming x and map it is equivalent to first map it and than transforming it.
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π(g) and π(g)′ do not necessarily be equivalent, they only have to linearly represent G, that
is they have to obey

π(gh) = π(g)π(h) ∀g, h ∈ G. (5.10)
Since we are concerned with transformations of feature maps the group action is further
defined as

[π(g)f ] (x) =
[
f ◦ g−1

]
(x) = f

(
g−1x

)
. (5.11)

Here it basically states that a transformation of the feature map is the same as the feature
map that looks at the transformed coordinates, which is computationable if the action is
defined. For CNNs specifically, we define the translational or shift action acting on a feature
map as

[π(t)f ] (x) = f
(
t−1x

)
= f (x− t) . (5.12)

It is easy to prove that for every 2-tuple of translations (t, s) the combinatory action obeys
Eq. 5.10 because

[π(t)π(s)f ] (x) = [π(t)f ] (x− s)
= f (x− s− t)
= f (x− u) u← s+ t

= [π(u)f ] (x)
= [π(st)f ] (x) .

(5.13)

It remains to prove that the convolutional layer in Eq. 5.8 is equivariant under shifts of the
input. To reduce clutter, the amount of in- and output channels are held to a minimum. We
show that

[[π (t) f ] ⋆ ψ] (x) =
∑

y∈Z2

[π (t) f ] (y)ψ(y − x)

=
∑

y∈Z2

f(y − t)ψ(y − x)

=
∑

y∈Z2

f(y)ψ(y − (x− t)) y + t← y

= [f ⋆ ψ]
(
t−1x

)
=
[
[f ⋆ ψ] ◦ t−1

]
(x)

= [π (t) [f ⋆ ψ]] (x)

(5.14)

and hence the proof (see also Section 5 in [69]).

5.2.2 Group convolutions
Eventhough the conventional convolution is by far the most used operator in many models,
networks still have to be huge (in depth and/or width) in order to achieve proper perfor-
mance. Instead of changing the networks architecture (by somehow increasing the amount
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of layers), the stages themselves can be adapted. This is exactly what T. S. Cohen and M.
Welling did by introducing group-equivariant convolutional networks (G-CNNs) [69]. Be-
sides translations, G-CNNs exploit other realistic symmetries of the sampling lattice as well.
The working horses are the group convolutions, or G-convolutions, that again increase the
degree of weight sharing. Depending on the specific implementation used, feature maps in
G-CNNs are equivariant under those newly imposed symmetry transformations. Specifically,
they designed G-convolutions that were able to learn features that equivary under 90-degree
rotations and mirror reflections besides being equivariant under shifts only - that famous
property of the CNN. This section lays emphasis on a visual interpretation first and finalizes
with the mathematical proof. Especially the latter is a mere reformulation of that which
Cohen and his colleagues describe in the earlier mentioned article. Furthermore, slightly ex-
tended versions of both visual interpretation and proof are found in the blog I wrote earlier
this year [70].

Visual interpretation

Consider a cactus in Fig. 5.5. We will denote a (pure) rotation and a (pure) reflection as
r() and m(). For brevity we forget about the brackets and perform both separately on the
object (see what happens in the figure). Extending this further, we allow every possible
combination of r and m applied sequentially. For example we can apply a reflection first,
followed by two rotations. Not surprisingly, some combinations lead to equivalent poses
the object can adapt to (e.g. rm = mr3 and r = e). In a Cartesian sampling grid, the
possible orientations are limited to eight. The ingenious idea is to generate graphs in which
the nodes denote the possible poses and the connections between them the transformations.
These graphs are depicted in Fig. 5.5 on the right, in which a red arrow symbolizes a rotation
and a blue line a reflection. We define the group p4 as the group that includes all rotations
and the group p4m that includes all rotations and mirror reflections.

Mathematicians call these graphs representations of the groups if they obey to some specific
rules which are more subtle than will be explained [71]. The idea is that the graph is
perfectly symmetrical in some sense. From your perspective the graph is identical no matter
the location you are at: sequentially taking a red, a blue, a red and a blue path will lead
you back to your initial position. Understanding how graphs can illustrate groups will help
you understand the way G-convolutions work and thus are implemented. Moreover, it will
help you understand the proof later on.

The procedure is as follows. Start with a simple square image as input for the first G-
convolution: the group p4 is considered. First, the input is transformed to every possible
pose (being four in this case) after which you perform conventional convolution to every
one of them with the same filter, creating four transformation-dependent stacks of feature
maps. The main idea is to allocate every such feature map in the aforementioned graph
according to the transformation it had to undertake. To reduce computational overhead, the
filter is transformed, generally being much smaller, instead of the input, providing a similar
outcome. Fig. 5.6 sketches this map.
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Figure 5.5: Visual interpretation of the group P4 and P4M. The group P4 comprises
all possible combinations of 90-degree rotating actions (thus having dimension 4), while
the group P4M includes the possibility of mirror reflections on top of that (thus having
dimension 8). The graphs or webs on the right provide the roadmaps on how to move
from one patch to the other: a 90-degree rotation in clockwise direction is achieved by
following a red arrow and a mirror reflection by following the blue pathway.

Figure 5.6: First G-convolution.

Observe that the first G-convolution (P4ConvZ2) adds an extra dimension that resembles
the group elements. Visually, it means that the individual feature maps will be placed at
different locations. The overarching feature map, or output signal, is said to be structured.
The specific locations at which stacks of features are placed are referred to as patches. Now,
what happens if the inputs for the next group equivariant convolution is the structured
feature map? Or, in other words, how do G-convolutions work on their group elements? The
idea is similar in which an identically structured feature map is outputted. Two vital tools
are needed to wholly understand what happens: the transformation of a structured object
and the dot-product between two structured objects. The transformation of a structured
object undergoes two actions in parallel: individual transformation of the data on every node
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and following the arrows that indicate that transformation. In the case of a rotation, all
data should be (1) individually rotated and (2) moved to the a different node by following
one red arrow. People often call this final step permutation: the individual nodes permute
locations.The dot-product of two (identically) structured objects is the pointwise summation
of the results of the conventional convolutions that are taken if we overlay both there graphs.

Figure 5.7: Two vital operations on group structured signals. Transformation of group
structured signals (bottom) and the dot-product between two structured ones (top)

The full G-convolution (P4ConvP4) is defined next. First, a structured filter is created in
which at every node the weights are independent (same used as in the previous two illus-
trations). We transform the structured filter for every group element, thus creating four
differently transformed structured filters. We separately take the dot-product between these
filters and the structured (input) feature map, thus creating four (unstructured) output ob-
jects. Finally we allocate them in a structured feature map according to the transformations
the structured filter had to undertake. The P4ConvP4 is illustrated below.

Proof

So the idea is to find a group, whatever a group is, for which a function is defined, the
G-convolution, that renders that function equivariant under all group actions. A symmetry
transformation leaves the structure of the object invariant: e.g. if a square is rotated by 90
degrees, its structure is preserved and merely its orientation changed. For squares there is
8 such orientations. By applying one or more symmetry transformations, every orientation
that preserves structure can be obtained. By definition, a symmetry group, G, is defined as
a set of symmetry transformations, (a, b, ...), including a binary operation on (g, h) −→ gh
that obeys the following rules:
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Figure 5.8: Full G-convolution.

1. Closure: if g and h belong to G, gh does as well
2. Associative: (gh)i = g(hi) for all g, h, i in G

3. Identity: there exists an element e in G such that ge = eg = g for all g in G

4. Inverse: for every element in G there exists an inverse that is also an element of G
(5.15)

In this context, convenient parameterizations for the group p4 and p4m are,

gp4(r, u, v) =

cos(rπ/2) − sin(rπ/2) u
sin(rπ/2) cos(rπ/2) v

0 0 1

 (5.16)

and

gp4m(m, r, u, v) =

(−1)m cos(rπ/2) −(−1)m sin(rπ/2) u
sin(rπ/2) cos(rπ/2) v

0 0 1

 (5.17)

in which r is the parameter that expresses rotations, m reflection and (u, v) translations -
m, r, (u, v) ∈ {0, 1}, {0, 1, 2, 3},Z2. Observe that the group p4m is simply an extension of
the group p4. The group operation is defined as the matrix multiplication, that is

gp4(r, u, v)x =

cos(rπ/2) − sin(rπ/2) u
sin(rπ/2) cos(rπ/2) v

0 0 1


u

′

v′

1

 . (5.18)
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in which (u, v) is the original location in the sampling grid. Please prove for yourself that they
indeed obey the four rules. We will use these groups to define the G-convolutions. We have
already shown in Eq. 5.14 that conventional convolutional layers are equivariant for the shift
operations. As we will see in the definition of the full G-convolution, we must deal with group
actions that work on group elements (remember that the sampling grid is part of that group,
a subset). This is solved by replacing x, an element of the sampling grid, with h, an element
of G. To understand what happens if a transformation works on a group element, visual
interpretation becomes to some degree necessary, or at least helpful. Generally speaking (read
for both the groups), h has 3 coordinates - 1 transformation coordinate (pose/orientation)
and 2 translation coordinates (x). This new dimension was clarified with the introduction
of a graph in which every node resembles a different pose or orientation which indicates the
transformation coordinate. If a transformation is applied to a function on one of the groups,
all three coordinates (can) change. As a matter of facts, I already provided an example with
the transformation (specifically rotation) of a structured object in Fig. 5.7. In this case the
four images allocate themselves by following 1 red arrow while simultaneously undergoing a
90-degree rotation. The G-convolution for the first layer is found by replacing the translation
by a more general transformation, g, that belongs to G:

[f ⋆ Φi](x) =
∑

y∈Z2

Kl∑
k=1

fk(y)Φi
k(y − x)

=
∑

y∈Z2

Kl∑
k=1

fk(y)Φi
k(t−1x)

=
∑

y∈Z2

Kl∑
k=1

fk(y)[LtΦi
k](x).

(5.19)

The new feature map is a function on the discrete group G. For the full G-convolution we
must replace y with h (an element of the group G). The full G-convolution is defined as

[f ⋆ Φ](x) =
∑
h∈G

∑
k

fk(h)Φk(g−1h). (5.20)

For both layer types we can prove that they equivary for all group actions. The main step
in the proof is the replacement of h by uh such that

[Luf ] ⋆ Φ](g) =
∑
h∈G

∑
k

fk(u−1h)Φk(g−1h)

=
∑
h∈G

∑
k

fk(h)Φk(g−1uh)

=
∑
h∈G

∑
k

fk(h)Φk((u−1g)h)

= [Lu[f ⋆ Φ]](g).

(5.21)

Similarly we can prove that individual feature maps for a conventional convolution are not
equivariant under rotation because
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[Lrf ] ⋆ Φ](x) =
∑

y∈Z2

∑
k

fk(r−1y)Φk(y − x)

=
∑

y∈Z2

∑
k

fk(y)Φk(ry − x)

=
∑

y∈Z2

∑
k

fk(y)Φk(r(y − r−1x))

=
∑

y∈Z2

∑
k

fk(y)Lr−1Φk(y − r−1x)

= [Lr[f ⋆ Lr−1Φ]](x).

(5.22)

which states that the convolution of a rotated feature map is the same as rotating the
convolution of the original feature map with an inverse rotated filter. It means that the
stack of feature maps can be equivariant if the CNN learns rotated copies of all filters, but
the individual feature maps will not.
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5.2.3 Steerable convolutions

Steerable representations

This section is a reformulation of Cohen’s work in his article Steerable CNNs [72]. For
convolutional stages, scalar addition and multiplication of the input signal, f : Z2 → RC ,
are allowed. Therefore, the set of signals of this signature is a linear space F (f ∈ F). Note
that every layer, depending on the amount of in- and output channels has its own feature
space F l which will be often suppressed to reduce clutter. In order to grasp the concept
of steerability and more specifically steerable representations, two distinct compositions of
the feature space are mentioned. The most well-known comprises the space as a stack of
feature maps while the other as a bundle of feature fibers (Fig. 5.9). Every such fiber, Fx,
is the column of values at a specific position, x, having length C. Thus, without loss of
information, the signal could be interpreted as composition of feature vectors f(x) that live
in the fibers Fx.

Figure 5.9: Decomposition of linear feature spaces in convolutional layers. It can be
seen as a depth-stack of two-dimensional feature maps (green indicates one such feature
or as a bundle of fibers (yellow indicates one such fiber).

Again, we will be concerned with group transformations G that act on points in Z2 in which
the operation will be denoted as π(g) in similar fashion as previous sections. The group
action is found in Eq. 5.11. Furthermore, the group actions should commute (thus obey
Eq. 5.10). The feature space equipped with the set of linear commuting transformations is
known as a group representation and its package denoted as the 2-tuple (F, π). If we define
a convolutional network Φ : F → F ′, "the feature space F ′ is said to be (linearly) steerable
w.r.t. G, if for all transformations g ∈ G, the features Φf and Φπ(g)f are related by a linear
transformation π′(g) that does not depend on f . So π′(g) allows us to "steer" the features in
F ′ without referring to the input in F from which they were computed." [72]. It is not hard
to see that π′(g) must also be a group representation as well5 since

π′(gh)Φf = Φπ(gh)f = Φπ(g)π(h)f = π′(g)Φπ(h)f = π′(g)π′(h)Φf. (5.23)

For clarification, Fig. 5.10 provides a visualization. The theory can be generalized, but
for simplicity we will stick to discrete representation groups that thus consist of a finite
amount of transformations. For purposes that will become clear, the group is divided in a
part that comprises the newly added transformations (rotations and reflections), H, and a

5At least in the span of the new image that is created through the convolutional operator Φ.
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part associated with the translations, Z, such that G = {H,Z}. It remains to show that
filter banks constructing H-steerable output fibers that are fed as kernels in the convolution
construct G-steerable feature spaces. Therefore, (H-)equivariant filter banks are developed
first and subsequently I will prove by induction that the feature spaces constructed with
such filter banks are steerable w.r.t. the whole representation group.

Figure 5.10: The principle of steerable filters

Equivariant filter banks

Is filter bank is intuitively seen as a linear map Ψ : F → RC′ in which C ′ is the feature-stack
size of the next layer. If allocated at a specific6 position, x, it thus produces a C ′-dimensional
feature fiber. In this view, the correlation or convolution operator produces fiber per fiber
which are retrieved by the dot-product of the filter bank with translated copies of the f ∈ F
in which the filter bank is represented by a matrix of size C ′ × C · kx1 · kx2 . Here kx1 and
kx2 are the kernel sizes in both orthogonal directions of the sampling grid. Consequently, we
have to find some representation ρ of H that acts on the output fibers such that the filter
bank is H-equivariant such that

ρ(h)Ψ = Ψπ(h) ∀h ∈ H. (5.24)

If the representation π allows us to steer F , the output of the convolution is steerable as
well if some ρ is found that satisfies the equivariance constraint. It remains to find the space
of maps that satisfy this equivariance constraint which is denoted as Hom (π, ρ). Maps that
live in such a space are also called intertwiners. The linear equivariance constraint renders
this space of admissible filter banks to be a vector space. Therefore, any linear combination
of intertwiners results in an intertwiner. A basis can thus be computed offline in which the
coefficients are the parameters that are learned in the network:

Ψ =
∑

i

γiψi (5.25)

6
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in which ψi and γi are the basis elements and their corresponding weights respectively. In
the next section (Sec. 5.2.4), specific H-equivariant filter banks are designed that work for
any finite number of equally spaced rotations.

G-steerability of the whole feature space

It is shown how to parameterize filter banks such that π and ρ intertwine. At last, I will
show that H-steerability of the individual fibers leads to G-steerability of the output feature
space. Before the proof is shown, the group actions are specifically mentioned below, in
which all actions are matrix multiplications with the augmented version of x (in which a
homogeneous coordinate is added to make it applicable).

translation t ∈ Z
[
I T
0 1

]
·−1
−→

[
I −T
0 1

]

reflection or rotation r ∈ H
[
R 0
0 1

]
·−1
−→

[
R−1 0

0 1

]

general element g ∈ G
[
R T
0 1

]
= tr

·−1
−→

[
R−1 −R−1T

0 1

]

explicit translation by x x ∈ Z
[
I x
0 1

]
·−1
−→

[
I −x
0 1

]
.

(5.26)

It is immediately observed that the correlation operator is defined as:

[Ψ ⋆ f ] (x) = Ψπ
(
x−1

)
f (5.27)

which again states that the filter bank acts on translated copies of the feature maps. The
following equality will be necessary and follows directly from the definition of the group
actions:

(tr)−1 xr =
[
R−1 −R−1T

0 1

] [
I x
0 1

] [
R 0
0 1

]

=
[
R−1 −R−1T

0 1

] [
R 0
0 1

]

=
[
I R−1x−R−1T
0 1

]
= R−1x−R−1T

=
[
R−1 −R−1T

0 1

]
· x

= (tr)−1 · x.

(5.28)

Transforming the feature space by an element of the representation group and convolve it
with an H-equivariant filter bank leads to
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[Ψ ⋆ π (g) f ] (x) = [Ψ ⋆ π (tr) f ] (x)
= Ψπ

(
x−1

)
π (tr) f

= Ψπ
(
x−1tr

)
f

= Ψπ
(
rr−1x−1tr

)
f

= Ψπ (r) π
(
r−1x−1tr

)
f

= ρ (r) Ψπ
(
r−1x−1tr

)
f

= ρ (r) Ψπ
((

(tr)−1 xr
)−1

)
f

= ρ (r) Ψπ
(

(tr)−1 · x
−1)

= ρ (r) [Ψ ⋆ f ]
(
(tr)−1 · x

)
= ρ (r) [Ψ ⋆ f ]

(
g−1 · x

)
.

(5.29)

This result is remarkable and shows that if we define π′ as

[π′ (g) f ] (x) = ρ (r)
[
f
(
g−1x

)]
(5.30)

the output feature space is G-steerable: Ψ ⋆ π′ (g) f = π′ (g) Ψ ⋆ f . This has happened
through an important construction known as the induced representation in which π′ (g) is
naturally induced by the representation ρ of H. It is sometimes denoted as π′ = IndG

Hρ.
Even more remarkable is the fact that the induced representation is nearly similar as a
simply transforming the output of convolution: the only difference resides in the presence
of the factor ρ (g) which tells you how to mix the channels in the end. Fig. 5.11 gives a
illustrative example.

Figure 5.11: Visual clarification of steerability of the whole domain.
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The reader may ask how to design such filters. The next section develops a specific im-
plementation which was first designed and implemented in Learning Steerable Filters for
Rotation-Equivariant CNNs [73].

5.2.4 Steerable filter design
By recapping the information of previous sections, it is concluded that if the observed images
naturally adapt to specific poses for which the outcome of the network should be similar,
incorporating this knowledge in the network is highly beneficial. The more of these poses are
taken along in the symmetry group the network is equivariant under, or the output feature
spaces have the ability to be steered in, the smaller the so called hypothesis space becomes.
Say we aim to fit a model, M : I → L, in which I and L are the image and label space
respectively, and if the model is structured such that its equivariant under the proposed
symmetry group G, the hypothesis space shrinks to

M̃ : I/G→ L/G (5.31)

in which (·) /G denotes the quotient space resulting from collapsing equivalent images in an
orbit to a single point. This section conveys the explanation and prove of layers that develop
rotationally steerable filters, being steerable in an arbitrary finite number of equally spaced
rotations around an orbit which are subsequently fed into a group convolutional layer. These
networks are referred to as SFCNNs and were first developed in [73]. The initialization of
such a network is not in the scope of this research, but is should be noted that this is not
trivial. A proper implementation is given in the paper above.

Learning steerable filters

In order to design rotationally steerable filters, a set of fixed fundamental functions {Ψq}K
k=1

should span the filter bank space. By specifically expanding Eq. 5.25, the filter bank should
satisfy

ρ (θ) Ψ (x) =
K∑

k=1
γk (θ) Ψk (x) ∀θ ∈ (−π, π] (5.32)

in which ρ (θ) is the transformation action associated with a rotation of θ around the orbit
and will for simplicity be denoted as ρθ. An easy basis is given by a set known as the circular
harmonics:

Ψk (r, ϕ) = τ (r) ejkϕ. (5.33)

By design, it follows that

ρθΨk = e−jkθΨk. (5.34)

thus making the representation steerable for any arbitrary angle θ. It can only be utilized if
the set is discretized in both k and τ . Furthermore, the Gausian radial part τ (r) is further
specified which results in the final set of admissible fundamental functions:
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Ψkm = τm (r) ejkϕ

= e
−(r−m)2

2σ2 ejkϕ k ∈ {1, 2, . . . , K} ,m ∈ {1, 2, . . . ,M}
(5.35)

limited to the point at which aliasing occurs: angular frequencies k (depending on m) are
held therefor to a maximum. The filter bank is now defined as the stack of such a set
associated with individual weights that are learnable:

Ψ̃ (x) =
M∑

m=1

K∑
k=1

wmkΨmk (x) wmk ∈ C. (5.36)

The complex phase allows rotating the atomic filters w.r.t. each other, but such a system
can be steered as a whole by phase manipulation of the atoms via

ρθΨ̃ (x) =
M∑

m=1

K∑
k=1

wmke
−jkθΨmk (x) (5.37)

in which we define the single orientation as its real part

Ψ (x) = Re
[
Ψ̃ (x)

]
. (5.38)

Rotational equivariant layers

The concept is to fed these filter banks into a group convolutional layer which creates |G|
(:the heuristic of the group) patches that associate with every proposed rotation it should
be equivariant under. It should be clear from previous section on GCNN that the first group
convolutional convolves over the trivial field and adds a rotational coordinate, Φ0→1 : Z2 →
Z2×Θ, and that the full group convolution convolves over all patches, Φ : Z2×Θ→ Z2×Θ.
Here Θ is the set of equidistant orientations:

Θ =
{

0, 2π 1
Λ
, 2π 2

Λ
, . . . , 2πΛ− 1

Λ

}
(5.39)

in which Λ = |G| is the amount allowed orientations and a choice for the designer.

The un-activated output signal is defined as

z
(1)
ĉ (x, θ) =

C∑
c=1

(
ρθΨ(1)

ĉc ⋆ fc

)
(x)

=
C∑

c=1

(
Re

[
M∑

m=1

K∑
k=1

wĉcmke
−jkθΨmk

]
⋆ fc

)
(x)

= Re
[

C∑
c=1

M∑
m=1

K∑
k=1

wĉcmke
−jkθ [Ψmk ⋆ fc] (x)

]
.

(5.40)

It states that the next pre-nonlinearity feature can be computed as a linear combination of
all individual convolutions with the fundamental orientations. Rotational weight sharing is
reflected by phase manipulation of the weights:
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wĉcmke
−jkθ. (5.41)

To conclude, the activated output feature is computed by adding a bias and the introduc-
tion of a pointwise non-linearity as. Fig. 5.12 provides a visual clarification for both the
fundamental filters as well as the computation of the un-activated output signal.

a
(1)
ĉ (x, θ) = σ

(
z

(1)
ĉ (x, θ) + b

(1)
ĉ

)
(5.42)

in which σ and b denote the non-linear function and bias respectively.

Figure 5.12: First group-equivariant convolutional stage of the SF-GCNN.

For the full group convolution one is concerned with maps that act on the semi-direct group
R2⋊θ that besides spatial coordinates is equipped with a coordinate that reflects the discrete
set of rotations. A full group convolution in the continuous sense is given by
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(Φ ⊛ ζ) (g) =
∫

G
ζ (h) Ψ

(
h−1g

)
dλ (h) (5.43)

in which λ (h) is a Haar measure. The full group convolution that acts on the input feature
space can be expanded as,

z
(l)
ĉ (x, θ) =

C∑
c=1

[
Ψ(l)

ĉc ⊛ a(l−1)
c

]
(x, θ)

=
C∑

c=1

∑
ϕ∈Θ

∫
R2
a(l−1)

c (x, θ) Ψ(l)
ĉc

(
(u, ϕ)−1 (x, θ)

)
du

=
C∑

c=1

∑
ϕ∈Θ

∫
R2
a(l−1)

c (x, θ) Ψ(l)
ĉc

(
ϕ−1 (x− u) , θ − ϕ

)
du

=
C∑

c=1

∑
ϕ∈Θ

∫
R2
a(l−1)

c (x, θ) ρϕΨ(l)
ĉc (x− u, θ − ϕ) du

=
C∑

c=1

∑
ϕ∈Θ

[
ρϕΨ(l)

ĉc (·, θ − ϕ) ∗ a(l−1)
c (·, ϕ)

]
(x)

=:
C∑

c=1

∑
ϕ∈Θ

[
RϕΨ(l)

ĉc (·, θ) ∗ a(l−1)
c (·, ϕ)

]
(x) .

(5.44)

in which RϕΨ (x, θ) := ρϕΨ (x, θ − ϕ). The reader must now be familiar with such operations.
Again, on the group, the filters are defined as

Ψ(l)
ĉc (x, θ) = Re

[
M∑

m=1

K∑
k=1

wĉcmkθΨmk

]
(x) (5.45)

in which θ in the weights reflects the orientation coordinate. Expanding Eq. 5.44 further
concludes on the un-activated feature:

z
(l)
ĉ (x, θ) =

C∑
c=1

∑
ϕ∈Θ

[
Rϕ

[
Re

[
M∑

m=1

K∑
k=1

wĉcmkθΨmk (·)
]]
∗ a(l−1)

c (·, ϕ)
]

(x)

=
C∑

c=1

∑
ϕ∈Θ

[
Re

[
M∑

m=1

K∑
k=1

wĉcmkθ−ϕe
−jkϕΨmk (·)

]
∗ a(l−1)

c (·, ϕ)
]

(x)

=
C∑

c=1

∑
ϕ∈Θ

[
Re

[
M∑

m=1

K∑
k=1

wĉcmkθ−ϕe
−jkϕ

[
Ψmk (·) ∗ a(l−1)

c (·, ϕ)
]]]

(x) .

(5.46)

It becomes once more clear that implementation can be done in clear separate steps: spatial
convolution (indicated in red), rotations (indicated in orange) and linear combinations (in-
dicated in olive green). Adding a bias and point-wise linearity in similar fashion as before,
the activated output feature is easily computed by

a
(l)
ĉ (x, θ) = σ

(
z

(l)
ĉ (x, θ) + b

(l)
ĉ

)
. (5.47)
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6 | Design, training and implementa-
tion of deep networks

In order to classify thus predict if a segmented red blood cell is infected or not, it either
has to be done manually or computer-based. The design of the latter is the core of this
chapter in which a deep learning model is designed into which the operations described in
the previous chapter are being implemented.

6.1 Deep learning: residual networks
The group convolutions will be implemented in a residual network architecture, popularly
known as ResNets [74]. The main property of this type of architecture is the flowthrough of
residuals that prevents vanishing gradients in networks that are (said to be) deep, providing
the ability to compute these gradients at near precision. Furthermore, the architecture allows
the direct interchangeability of conventional convolutions with layers that have an increased
amount of transformations under which they equivary without the necessity to change other
parts of the network while remaining invariant as a whole. Ergo, it makes it a suitable
architecture to test performance for different operations that were developed in Ch. 5.

6.1.1 The residual block
ResNets consist of residual blocks in which the input data at the start splits and parallelly
flows through two branches that merge again in the end. The branches are asymmetric
in which one performs minimal action and the other provides all the essential operations
that comprise all learnable weights1. The residual block is the main building brick for every
ResNet: the bricks are generally piled up, forming a (high) 1-brick-wide building in which
the data falls from the uppermost sky lounge to the ground floor in feedforward mode and
elevates back up to the top in the backward propagation step. Fig. 6.1 depicts the most
general form. Since every residual block is equivariant if its individual operations have that
feature, a stack of those remains equivariant as well.

Even though the bigger pictures is sketched, it needs specifications. Relevant questions could
1As one will see, this is not entirely true as the branch that performs minimal action is sometimes equipped

with a ([1x1]) convolution which is necessary if grid downsampling and/or channel expansion is wanted. In
this case, the branch consists, although being nearly negligible, of some parameters.
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Figure 6.1: General form of the residual unit, or residual block (fenced by yellow
rectangle). A ResNet is the consecutive follow-up of many residual blocks (left). The
input parallelly flows through two independent lanes: the operation branch and residual
branch. Nearly all learnable weights and thus operations are located in the operation
branch while the data has negligible resistance in the other: the residual branch exclu-
sively conveys trivial operations.

be for example about the amount of residual blocks, the amount of channels per convolution,
the initiation and/or ending of the network, the type of batch-normalizations, activations,
and pooling, expansion and/or downsampling throughout the network. All answers are
reflected in the choice of both architectural and function hyperparameters. First of all, the
answers are highly correlated with the application it is used for, the amount of computer
memory and power you have access to, the maximum training time you wish the network
to converge in and, unfortunately, the experience you have. In time, you will gain better
intuition of what to use in what situation, and until this day it is hard to provide profound
arguments how to do so. Secondly, and more important, this research is not dedicated to
the choice and evaluation of such parameters. Therefore, model hyperparameters are chosen
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that will not differ between implementations2. In the remainder of this section, an explicit
implementation is described that is used in this research.

Every operation branch in a residual block consists of Ncl convolutional layers, in which
batch-normalization and (non-linear) activation always follow after in that respective order.
The final, thus Ncl-th, activation is allocated slightly different in that the output of the
residual branch is first added instead. In my case, the residual branch either performs an
identity mapping or 1x1 convolutions if downsampling of the image domain and/or expansion
of the amount of feature maps is needed.

6.1.2 Encoding the network
It has been shown that expanding the network, that is the increment of the amount of
feature channels, at several points in the network benefits performance [74]. That part of
the network that diverges in terms of width is called the encoder. In ResNets, those changes
in width are reflected in residual layers which are stacks of equally wide residual blocks.
Each residual layer conveys Nrb residual blocks and performs feature expansion and domain
downsampling in its first block only. More specifically, except for the first residual layer,
residual layers start with a residual block that reduces the size of every feature’s domain
(stride/pooling is 2) and increases the amount of channels (expansion is 2)3. The amount of
consecutive residual layers is denoted as Nrl. To wrap up the encoding part, it remains to
initiate the network. This is the follow up of an initial convolution (usually equipped with a
relatively large kernel, e.g. 7x7 or 9x9), a batch-normalization and an activation. Here, the
initial convolution acts on the image input field which, depending on the type of input (e.g.
monochrome, RGB, hyperspectral), has Nin input features.

6.1.3 Decoding the network
As the network should have the ability to classify images, convergence at some points is
mandatory. The part that does exactly that is commonly referred to as the decoder. Intu-
itively, the decoder can be seen as the part that learns what combinations of two-dimensional
features (comprised in the output of the last residual layer) belong to which class: it decodes
how the features should be mixed for every class. Therefore, the decoder typically consists
of fully connected layer (allowing every linear (activated) combination of features). More
specifically, it conveys two such layers which both consecutively activate their outputs. As
the classification should be invariant under transformations of the input, the final output
features must be shrinked to scalars before the first fully connected layer. To do so, it first
undergoes point-wise anti-aliased average pooling of the whole sampling domain (global) and
subsequently point-wise maximum pooling (global). The remaining stack of scalar-valued
features can now be fed into the first fully connected layer.

2The amount of channels per convolutional layer will though differ per implementation. This accounts
for the total amount of trainable parameters which should be held at the same value. A detailed discussion
is provided at the end of this section (see 6.1.5).

3Observe that by definition of the entrance domain and width, those in the next residual layers follow
directly: therefore, they do not need specification.
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6.1.4 Overall architecture
An overview is given in 6.2. Furthermore, all model hyperparameters including their choices
are summarized in Tab. 6.1.

Figure 6.2: Overview of a residual network. The initial layer (red block) conveys an
initial convolution that maps between the input field and the field over which the
(G-)convolution convolves and subsequently normalizes the batches and activates the
remaining signal through an pointwise activation function. The output of the initial
layer is fed into the most crucial part of the network which consists of (many) consec-
utive residual blocks (green and yellow). After every Nrb residual blocks, the signal is
expanded in terms of channels while simultaneously the domain is downsampled (green
blocks). After exiting the last residual layer, the decoder lets the signal converge into a
vector from which the predicted classes are extracted. This final element conveys two
fully connected layers both directly followed by pointwise activations.

80



Table 6.1: Models hyperparameters

Table 6.2: Architecture

Explanation Symbol Value
kernel size of initial filter kI

x 7
kernel size of filters kx 5
Amount of hidden nodes in decoder NH 250
Amount of residual blocks per residual layer NRB 2
Amount of convolutions per residual block NCL 2
Amount of residual layers NRL 4
Amount of input fields Cin 32
Spatial domain of the input HW in varied

Table 6.3: Function

Explanation Symbol Value
Activation function ν ReLU/ELU
Batch-normalization BN
Average pooling avgpool Average anti-aliased pooling of whole spatial domain
Global pooling globpool Global pooling over all patches (H = G/Z2)

6.1.5 Remarks

Size of the networks

In order to evaluate the proposed operations, networks are tested that have the same ar-
chitecture and the same size. I would like to emphasize that architecture and size are
inherently different. Size is solely determined on the amount of learnable parameters. Size
clearly depends on the architecture but it does as well on the type of operations. Recall that
G-convolutions use filters that are structured and thus have an increased amount of weights
compared to conventional convolutions (if the amount of channels and kernel sizes remain
unchanged). In a conventional convolutional layer the amount of learnable parameters is
retrieved as

SCNN
l = k2

x · C l−1 · C l (6.1)

in which kx is the size of the filter (usually 3 or 5). For a G-convolutional layer this amount
linearly increases with the heuristic of G, |G|:

SG-CNN
l = |G|·k2

x · C l−1 · C l. (6.2)

To account for this increase, the amount of channels is instead reduced accordingly by |G|1/2,
as downsizing the filter domain is undesirable. In case of steerable filters, the amount of
learnable parameters is computed as

SSF-CNN
l = |G|·|W |·C l−1 · C l. (6.3)
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Here, |W | connotes the measure for the amount of fundamental filters. Correction is done
similarly in which the channels are reduced by (|W |/(|G|k2

x))1/2. Tab. 6.4 provides a sum-
mary of the above and provides the design choices and their consequences.

Table 6.4: Size and relations between operations.

CNN p4(m)-CNN SF-CNN
Amount of parameters
per layer, l k2

x · C l−1 · C l |G|·k2
x · C l−1 · C l |G|·|W |·C l−1 · C l

Relations between
implementations Choose: kx,

{
C l
}

C l → ⌈
(

Cl

|G|1/2

)
C l → ⌈

(
|W |

|G|k2
x

1/2
· C l

)

Explicit choices kx, C l: see Tab. 6.1 kx, C l: see Tab. 6.1
|G|: see Sec. 5.2.2

kx, C l: see Tab. 6.1
|G|, |W |: Sec. 5.2.4

Total parameters
ResNet-18 or RN18 1.91M 1.90M (all) 1.90M (all)

Batch-normalizations

Depending on the input distribution of the mini-batches (e.g. differently retrieved data or
non-normalized batches), machine learning algorithms behave and update differently. The
covariate shift refers to this change. Accelerating the training process by reducing this
covariate shift through normalizing the activations of each layer is the concept known as
batch-normalization, or BN. Practically it computes both mean and variance of the mini-
batch’s signal while allowing scales and shifts of its normalized counterpart in its computation
in the form of learnable parameters. The output, yi, is retrieved as

yi = γx̂i + β := BNγ,β (xi) i = 1, . . . ,m (6.4)

in which B = {x1, . . . , xm} represents the mini-batch comprised of m (batchsize) signals, x̂i

the normalized version of xi, and γ and β the learnable parameters for the scale and shift
respectively. Although debate around "why BNs are working" is still in its midst, it is shown
that is enhances the procedure in most cases [75].

6.2 Training the networks
Training of neural networks is a challenging task. It involves the choice in cost-function, op-
timizer and other training-hyperparameters, such as the learning rate and length of training.
Following subsections are about those choices.

6.2.1 Cost function
Comparing and validation are essential for training. In 5.1 and especially Eq. 5.4, I explained
how prediction and/or estimation can be measured w.r.t. the ground truth, or label, of the
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sample using a cost function. In this research, cross-entropy is used as measure,

fC

(
x : aL, y

)
= − log

(
ex[y]∑
j ex[j]

)
= −x[y] + log

|y|∑
j=1

ex[j], (6.5)

which is a combination of (1) SoftMax that maps the logits (output feature vector of the
ANN) to probabilities that associate with every class and (2) an entropy function that
evaluates all contributing probabilities based on a logarithmic measure (see Fig. 6.3). This
objective function is continuously differentiable which is necessary for the back-propagation,
is not complex, and, most important, works appropriately for classification purposes [76].

Figure 6.3: Visualization of the cross entropy loss: infected and uninfected red blood
cells.

6.2.2 Activation function
Activation in CNNs make it possible to learn non-linear relationships between in- and output,
therefore being crucial in the process. As specified in Tab. 6.1, the non-linear rectified linear
unit, or ReLu, is used as activation function:

ReLU(x) = max (x, 0) . (6.6)

The main benefits are immediately apparant: (1) easiness of computation and (2) gradient
is very consistent without second-order effects. Therefore, it makes the network relatively
fast and provides a useful gradient direction [77]. In theory, the major drawback is the
uncontinuity of the gradient at 0 which is 0 if approached from the left and 1 if approached
from the right. In practice though, one can safely disregard such phenomena as digital
computers are prone to numerical errors: it is unlikely that the evaluation at the point 0
truly returns 0. There are many "mutations" of this simple function that correct for the non-
differentiability or the fact that values below zero are treated as non-active immediately.
Even though in some cases it could be slightly beneficial to use altered versions, its simple
form mostly performs comparably well [77].
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6.2.3 Sample and batch size
Learning needs observations, actions, facts, etc. In computer vision, networks learn on
the basis of, mostly many, images. As we, humans, and all other lifeforms on earth that
have the ability to see, learn on the basis of just a few images, the best artificial networks
are not even close to achieve such remarkable perfection and need many training samples
instead. Depending on the type and size, well-performing networks that have mere negligible
error rates (<0.1 %, comparable to those of their biological ancestors,) need at least a few
thousands training samples per class. The images upon which networks train are comprised
in the trainset and are referred to as training samples. The same holds for the collection of
images that are used for testing: the testset consists of testing samples. For deep models, both
train- and testset must be huge to achieve state-of-the-art performances. More specifically,
between four and ten thousand training samples is mostly enough to squeeze out optimal
performance. On the other hand, the testset need not be that large: around a thousand
samples render the variance of the outcome imperceptible.

Updating the network for every individual sample separately is time consuming and has
the tendency to get networks stuck in local minima. Bundling many training samples into
batches and update on their average contributions has shown to increase the available com-
putational parallelism, reduce overfitting and increase steps and time of convergence [77].
On the contrary, some research, backed by Yann LeCunn, shows that smaller batch-sizes
have improved generalizing properties [78].

6.2.4 Stochastic gradient descent
Optimizing the updating scheme plays an important role in many training procedures. A
general form, as a function of the gradient, was given earlier in the first line of Eq. 5.5 and
its most simple form in the second line: gradient descent. Gradient descent updates based
on only one training sample at a time. In order to speed up the process, one could draw
randomly picked (i.i.d.) minibatches and compute its average gradient. Statistically, one
obtains lesser biased estimates which, loosely speaking, determine more realistic gradient.
The updating scheme for stochastic gradient descent, or SGD, is given by

θk+1 = θk − ϵk
1
m
∇θk

(
m∑

i=1
fC

(
θ

(i)
k ,y(i)

))
. (6.7)

in which orange and red indicate the averaging and summation over all samples in the
minibatch respectively. m is the batchsize (see previous subsection) and ϵk is the learning
rate that depends on the current iteration. It is necessary to gradually decrease the learning
rate over time since the SGD gradient estimator insurmountably introduces a source of noise.
It means that the gradient will never vanish, even upon arrival at a minimum. Setting the
learning rate "is more of an art than a science, and most guidance on this subject should be
regarded with some skepticism" as Ian Goodfellow states in Deep learning [79]. Instead of
following predefined protocols, he suggests to closely monitor the learning curve: the curve of
the value of the cost, training error and/or testing error as a function of time. He elaborates
that is good practice to closely investigate the rate at which is converges, the oscillatory
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behavior and the general trend the curvature follows. A healthy learning curve in his, and
many other’s, eyes relates to near convergence in the range of 100 iterations, the allowance
of gentle oscillations (huge oscillatory behavior is unwanted) and a declining decreases of the
cost.

6.2.5 On the evaluation of the training process
The previous subsection already touched upon a way to monitor the learning process through
investigation of the learning curve. In many cases, as batch-sizes may differ, time is measured
in epochs. An epoch is defined as the moment at which the whole training set has been used
for updating. Especially in deep learning, the epoch is a proper choice because their numbers
do not get out of hand: between 25 and 300 epochs are common limits on its minimum and
maximum. Setting the learning rate and schedule its value throughout the training procedure
is hard. The learning rate can be held constant, dropped by a factor every few epochs (step
decay), or being controlled by another function in epochs (time-based decay). Furthermore,
more advanced algorithms that look at the "state" the model is in, can be implemented as
well, among which are Adagrad, RMSprop, Adadelta and Adam [80, 81]. Usually though, step
decay is chosen and proven to work really well in most cases [82]. In the previous subsection,
I laid emphasis on the notion of a healthy learning curve which will be more specifically
addressed in the following.

Convergence

The fact that the losses and error rates converge to minima, referred to as convergence, is
a typical property learning curves (need to) have. In doing so they decrease the loss which
(mostly) leads to increments in the models accuracy: the percentage of correct predictions. It
is vital to use "mostly" here as will be clearer soon. Before I elaborate on this, three distinct
curves need mentioning: (1) the loss, (2) the training accuracy/error, and (3) the testing
accuracy/error. Training accuracy is the amount of correct "predictions" of the trainset and
the testing accuracy is the amount of correct predictions of the testset. As the networks learn
from training samples, one usually observes that training errors are lower than those of the
testset. The true "goodness" of a network is therefore best measured on the basis of the testing
accuracy as it is independent of anything the network has already seen. Typically, both have
a similar shape in which that of the testset mimics that of the trainset (only slightly lower).
In those cases, the shape alone should be investigated. (Too) fast convergence is mostly due
to the convergence into "non-optimal" local minima emerging on the higher planes of the
cost’s landscape, while slow convergence leads to undesirable long training procedures. On
the other hand, in cases in which both curves take different shapes, other tools and notions
are needed to understand the network’s behavior.

Overfitting, underfitting and the good fit

In many cases, networks learn too well or, more annoyingly, not enough. Observe the illus-
trative example in Fig. 6.4 in which a line should be found that "best" classifies which region
belongs to which class. As Robert M. Pirsig beautifully describes in Zen: and the art of
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Motorcycle Maintaince, we humans know, based on his abundantly mentioned term Quality,
what should be the right fit, or at least have an idea how it could be sketched or what not
must be chosen [83]. Networks, without the premise that they ever will, have no clue up
till today. Features or properties that play significant roles in the discrimination between
"good" and "bad" fits are therefore hard to explicitly write down.

Figure 6.4: Overfitting and underfitting in machine learning.

A good start though is the division of "bad" into (1) "too well" and (2) "not enough". A
network that learns too much or too specific is said to overfit the data and a network that
does not learn enough is said to underfit it. By comparing the learning curves that associate
with both "bad" types, is has been observed that networks that underfit the data have near
identical curves for train and test while networks that overfit have the tendency to have
a large, with time increasing, gap between the two [79]. Finding the optimal solution, in
our case the best boundary, is one of the hardest tasks in machine learning and deserves
much attention. In earlier parts of this report, I mentioned the term hypothesis space which
is best seen as the space of allowed models the network can adapt to. On the one hand,
one aims to have a large hypothesis space such that options are open and that nothing is
missed. On the other hand, proper generalization could reduce the hypothesis space or make
networks search in the space in a smarter manner. A common name for those strategies is
regularization and is defined as "any modification we make to a learning algorithm that is
intended to reduce its generalization error but not its training error" [79]. There are many
ways to do so that include the incorporation of a priori knowledge, such as its embodiment
in efficient sharing of weights, or include the extra addition of terms in the objective function
that lay soft constraints on the weights [79]. In this context, it becomes even clearer what
the capability of smart operations could be.
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7 | Evaluation and results

This chapter is about the evaluation and results on the classifying models described in Ch.
6. First, the used databases are mentioned in Sec. 7.1. Sec. 7.2 and 7.3 give both the
performance measures the networks are being validated on and the validation procedure
itself. All results are included in the final section (Sec. 7.4).

7.1 Data sets and manipulations

Data is a mandatory ingredient for ANNs to improve on performance. Without it, learning
is hopeless. Ideally, a data set is (1) large, having a few thousands of samples per class, (2) is
properly representing the physical world or whatever is should describe1, and (3) has sufficient
resolution such that details are perceptible. In the case of infected-uninfected classification
of red blood cells, many individual, or segmented, cells (samples) are necessary (for both
classes). Before arrival upon a decent data set, several steps are to be taken upfront. The
diagram in Fig. 7.1 successively conveys data acquisition, the retrieval of the blood films,
pre-processing, such as calibration, noise reduction, and normalization, segmentation, the
cut-out of individual cells, and finally organization, the development of structured data sets.

Figure 7.1: Processing steps in the development of data sets that are comprised of
segmented red blood cells.

1Here, I agree upon the obscurity of the statement. In general, researchers aim to use datasets that
represent all features of certain objects or processes that are needed to wholly describe them such that
the network has the possibility to see all that is potentially necessary. A network that should be able to
discriminate apples from pears is ideally given data of different types of apples and pears, different stages
(ripe, rotten), photographed from different angles, etc.
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Data acquisition is described in mere detail in Part I. Furthermore, other steps were briefly
mentioned before in Ch. 2 and more in-depth discussions will not be done. The next
subsections are about two data sets that are used to evaluate the proposed networks on (see
Ch. 6 for the networks): the Rajaraman and AiDx data sets.

7.1.1 Rajaraman data set
An incredible open-source data set is that which is obtained by researchers at the Lister Hill
National Center for Biomedical Communications (LHNCBC) which is part of the National
Library of Medicine (NLM). In fact, they developed a mobile-integrated microscope device
that runs on a standard Android smartphone. In the Chittagong Medical College Hospital
in Bangladesh they undertook a massive task by capturing images from thin blood smears
from 150 infected and 50 healthy patients which were subsequently examined and annotated
by expert slide readers at the Mahidol-Oxford Tropical Medicine Research Unit in Bangkok,
Thailand [3].

Figure 7.2: Several samples from the Rajamaran data set (left) and AiDx data set
(right).

The thin blood smear data set contains an impressive total of 27.558 segmented and pre-
processed cells. Approximately, there are as many infected as uninfected instances. The
data set will be referred to as the Rajaraman data set: Sivaramakrishnan Rajaraman was
one of the first researchers that evaluated this huge set on a multitude of the most famous
deep learning algorithms that existed at the time, such as ResNet, VGG and AlexNet [84,
85]. Moreover, he stays predominant in the field of automated detection of malaria [65, 3].
Some samples of the data set are provided in Fig. 7.2. Although the exact equipment and
configuration used by the researchers at the LHNCBC is not found, it looks as if high-end
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microscopes were used in the setup providing homogeneous illumination while preserving
high spatial resolution. Detection and segmentation of the cells were done by applying a
level-set based algorithm [86].

7.1.2 AiDx data set
The AiDx data set was captured by the AiDx Assist, specifically the B.02 version, which
is one of the products developed by AiDx Medical in Rijswijk, the Netherlands [4]. It is
a low-cost, reliable and quick ML-assisted diagnostics microscope. It is field compatible
and scalable to a variety of parasitic diseases [4]. The specifications are given in Tab. 7.1.
Although the setup does not perfectly correct for chromatic (and spherical) aberrations,
the relatively cheap equipped setup is designed smartly as can be seen in some segmented
cells filtered from the blood films (see Fig. 7.2). Compared to high-end microscopes, the
spatial resolution is reduced but seems sufficient for the detection of parasites. A U-net-based
method is used to crop out the cells [87].

Table 7.1: Specifications of the AiDx Assist B.02.

Property AiDx Assist B.02
Resolution (camera) [4896 x 3680] or 18MP
Pixel size (camera) [µm] 5.5
FoV (sample) [µm] [664 x 499]
Objective [mag.] 10(/20)
Source LED: 400 - 650 nm
Immersion (type) Oil-immersed sample-condenser
Costs [e] 1065
Remaining weight: 3.2kg

7.2 Performance metrics

7.2.1 Accuracy, sensitivity and specificity
Performance can be measured in a multitude of ways and the measure’s relevance is applica-
tion dependent. In deep learning, and especially classification in computer vision, the most
abundantly used measure is accuracy - the amount of correct predictions. It is highly global
as it quantifies the total amount of correct predictions as percentage of all tested samples,
in which, by design, it discards information per individual class. In applications for which it
is essential that some bound on performance per class must be guaranteed, solely accuracy
as performance indication is not enough. In the diagnosis of malaria, parasitemia - the ratio
of infected cells as of the total - in the range of 0.1 - 1%, which is 1 to 10 in thousand cells,
tends to be the point at which proper treatment is already necessary [88]. As a consequence,
if diagnosis is done at the lower limit of the regime, and say 10.000 cells are examined, it is
crucial that the prediction of the amount of infected cells is near perfect. In this two-class
world - infected-uninfected - two key performance measures are introduced: sensitivity and
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specificity which were earlier mentioned in Ch. 2. Sensitivity is often referred to as true-
positive rate (TPR), recall, probability of detection, or power and specificity as true-negative
rate (TNR) or selectivity. In this report, naming stays consistent: only in the definition of
the F1-score, recall will be used instead. This decomposition of accuracy is done often and
serves as common measure in the development and testing of diagnostic tools. They are
summarized in the confusion matrix in Fig. 7.3.

Figure 7.3: Diagnosis confusion matrix for the logical two-class system: positive-
negative. P is the amount of positives and N the amount of negatives measured.
The subscript indicates whether it is correctly (t) or falsely (f) predicted. In the yellow
boxes, 3 distinct performance measures are denoted - (1) sensitivity, the ability of the
test to correctly classify if an individual is positive, (2) specificity, a similar measure
that does it for an individual that is negative, and (3) accuracy, the overall correctness.

7.2.2 The F-score
Another score that is often used in binary classification is the F-score - the harmonic mean
between precision, the fraction of true positives to be correct, and recall (sensitivity). The
balanced F-score, or F1-score, is computed as

F1 = 2
r−1 + p−1 = 2 · pr

p+ r
= tp

tp + 1
2 (tn + fn)

, (7.1)

in which p and r are precision and recall. Its more generic form, which lets the designer
choose upon the relative weight he or she lays on either precision or recall, expands as

Fγ =
(
1 + γ2

)
· pr

γ2p+ r
= (1 + γ2) tp

(1 + γ2) tp + γ2tn + fp
. (7.2)
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Here, γ represents that weight - recall is considered γ times as important as precision.
This trade-off between precision and recall is a relevant measure for low-detection-limited
diagnostics, such as malaria, because it lays emphasis on the fact that class distribution can
be highly imbalanced.

7.3 K-fold cross-validation
As must be clear by now, data sets are never abundant enough and are often more towards
the other end of the spectrum - being too small and insufficient. Increasing the amount of
training samples is paramount to better performance, but to be able to validate your model
part of the data set is not to be used for training. Cross-validation is a method in which the
validation set can be reduced in size without a desperate fall-back in uncertainty (Section
5.3.1 in [79]). It initializes by segmenting the data-set in k equally sized and randomly
picked cross-sections, hence its reference K-fold cross-validation. The network is separately
trained, using every subset for validation once and its remainder as training data. Although
individually the results are more uncertain, its ensemble is clearly not. In fact, though
depending on k, it actually increases the certainty of that what is measured and is less prone
to large, unwanted, fluctuations during the training procedure. The method is illustrated in
Fig. 7.4.

Figure 7.4: K-fold cross-validation.
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7.4 Results
Networks will be tested that are specified in Tab. 6.4 and 6.1. Both data-sets have square-
resized inputs, having dimension equal to 64 (in both width and height). The batch-size was
chosen to be 64, which is common practice in deep learning. Note that changing the size
of the input or batch does not influences the interior of the networks. On the other hand,
they are, approximately quadratically in input dimension and linearly inverse in batch-size,
correlated with both time of training and allocated memory needed. To increase diversity
of the training set, small random transformations are applied to the training database: data
augmentation. It is chosen make minor alterations in the form of rotations (up to 30 degrees)
and small grid allocations (shifts). Furthermore, random reflections are permitted as well
(both vertically as well as horizontally). Finally all training data is normalized between
equivalent bounds. As the training set is relatively large, online augmentation is preferred,
without letting the set size explode. It is done for every mini-batch individually before being
fed in to the network. The test set is only normalized. For clarity, an overview - hierarchy
and naming - is given in Fig. 7.5.

Figure 7.5: Hierarchy, naming and relevant specifications of the proposed convolutional
networks. The common name, as earlier specified, of the architecture used is called
ResNet-18 (comprised of 18 operational stages), which is abbreviated as RN18. In be-
tween the type and used architecture, the amount of equidistant rotations is mentioned.
Furthermore, an extra "m" reflects the equivariance under mirror reflections.

7.4.1 Rajamaran data set
Concerning the samples in the Rajaraman data set, the error rates (inverse of accuracy) for
both training and test, are plotted in Fig. 7.7 during training for all 7 configurations at every
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epoch, including their best scores. The initial learning rate was 0.05 and discretely decreased
10-fold every 50 epochs. From epoch 150 onward, the learning rate remained constant, being
0.00005, until its ending at epoch 300. SGD, with momentum equal to 0.9, and Cross-
Entropy Loss were used as optimizer and cost functions respectively. Global max-pooling
over the complete discrete set of transformation and global anti-aliased average-pooling along
all features were done at the entrance of the decoder to make networks wholly invariant for
all inherent transformations.

Table 7.2: Results on Rajarman data set for 5 performance metrics. Written in bold
denote the highest scores - red for first, blue for second and black for third place.

Accuracy Sensitivity Specificity Precision F1-score
CNN-RN18 95.62 ± 0.09 95.72 ± 0.11 95.54 ± 0.13 95.55 ± 0.11 95.64 ± 0.11
GCNN-4-RN18 96.87 ± 0.10 97.00 ± 0.10 96.45 ± 0.11 96.68 ± 0.09 96.28 ± 0.10
GCNN-4m-RN18 97.60 ± 0.11 98.21 ± 0.07 97.55 ± 0.08 97.42 ± 0.08 97.82 ± 0.10
SFCNN-8-RN18 96.97 ± 0.10 97.05 ± 0.10 96.84 ± 0.09 96.96 ± 0.06 97.01 ± 0.08
SFCNN-8m-RN18 97.10 ± 0.10 97.52 ± 0.07 97.02 ± 0.10 97.20 ± 0.09 97.36 ± 0.08
SFCNN-16-RN18 97.12 ± 0.07 97.56 ± 0.09 96.57 ± 0.10 97.05 ± 0.11 97.31 ± 0.10
SFCNN-16m-RN18 97.63 ± 0.08 98.34 ± 0.08 96.99 ± 0.09 97.45 ± 0.10 97.90 ± 0.10

Tab. 7.2 provides all outcomes for the (other) performance metrics. All measures were
cross-validately computed for 5 equally-sized cross-sections of the data set - indicated by
mean and standard deviation, µ ± σ. The (best) scores are given in bold. In addition,
Tab. 7.3 shows how the scores are relatively improved compared to the CNN baseline2. It
becomes apparent that all networks perform significantly better among all metrics. More
specifically, all networks improve on any metric by, relatively measured, at least 15%, having
its average approximately between 30 and 40%. In general, the trend between metrics shows
that sensitivity is highest, the F1-score is second highest, accuracy is somewhere in the
middle, precision is slightly below average and specificity is, in most cases, lowest.

Table 7.3: Improvement indicator for group-equivariant operations. The baseline is the
conventional CNN-RN18. The relative percentage increments between the network’s
and the baseline’s error rates are given.

Accuracy Sensitivity Specificity Precision F1-score
GCNN-4-RN18 +28.5% +29.9% +20.4% +25.4% +14.7%
GCNN-4m-RN18 +45.2% +58.2% +45.1% +42.0% +50.0%
SFCNN-8-RN18 +30.8% +31.1% +29.1% +31.7% +39.4%
SFCNN-8m-RN18 +33.8% +42.0% +33.2% +37.1% +38.3%
SFCNN-16-RN18 +34.2% +43.0% +23.1% +33.0% +38.3%
SFCNN-16m-RN18 +45.9% +61.2% +35.5% +42.7% +51.8%

The learning curves seem healthy, without a disastrous display of huge spikes. Furthermore,
they show that for both G-CNN and SF-CNN, the best scores are commonly achieved before
it reaches epoch 100. Especially in the case of SF-CNN, the scores tend to slightly worsen

2More precisely, it gives the percentage of how the error rates have improved: 100 ·
(

1− errorneterrorbase

)
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Figure 7.6: Performance for increasing heuristic. Recall that |p4m| = |c8| = 8 and |D8|
= |C16| = 16.

after the first update of the learning rate (epoch 50). The gaps between the training and
test curves become obvious and grow larger from the primal change in learning rate onward
and seem to grow in the heuristic of the group, thus the number of added transformations.
For both G-CNN and SF-CNN, increasing the number of rotations, and more significantly
by adding reflections, results in better performance. Although G-CNNs have the tendency
to perform, so to say, more efficient per added transformation (see Fig. 7.6), SF-CNNs gets
the better of it if enough weights are shared in its peripheries: the best network (except for
specificity which is third best) is the SFCNN-16m-RN18, being 97.63% (+45.6% compared
to baseline) accurate, having an F1-score of 97.90% (+51.8%), and achieves a sensitivity of
98.34% (+61%).
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7.4.2 AiDx data set
The pre-trained models that were evaluated on the Rajaraman data set are used as potential
classifiers for the AiDx data set. The results on all performance metrics are epitomized in
Tab. 7.4. It should be mentioned that the whole data set is used for validation simulta-
neously because the size is small: no cross-validation is used. In line with the results on
the Rajaraman data set, specificity is relatively low compared to sensitivity. Therefore, in
combination with the unbalancedness of the AiDx data set - approximately 1/10th of the
segmented cells are infected - low precisions and F1-scores are found. Again, the SFCNN-
19m-RN18s outperforms all other models on all metrics.

Table 7.4: Results on AiDx data set for 5 performance metrics for the pre-trained
models on the Rajaraman data set. Written in bold denote the highest scores - red for
first, blue for second and black for third place.

Accuracy Sensitivity Specificity Precision F1-score
CNN-RN18 61.1 84.7 58.5 18.3 30.1
GCNN-4-RN18 62.1 87.2 59.4 18.8 30.9
GCNN-4m-RN18 62.7 87.7 60.0 19.2 31.5
SFCNN-8-RN18 64.9 92.0 62.0 20.2 33.2
SFCNN-8m-RN18 75.0 95.0 72.9 26.8 41.8
SFCNN-16-RN18 70.4 92.9 68.1 22.9 36.7
SFCNN-16m-RN18 91.0 95.5 90.5 51.5 66.9
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8 | Discussion and conclusions

Group-equivariant neural networks, comprised of convolutional stages that additively equiv-
ary under a discrete group of transformations (rotations and mirror reflections), are evaluated
on the Rajaraman data set (Sec. 7.1.1) and subsequently used as classifiers for our own AiDx
data set (Sec. 7.1.2). All are implemented in a residual network architecture (ResNet-18)
and compared with the conventional convolutional stage. The sizes of the networks remained
consistent among all operations.

In terms of overall performance on the Rajaraman data set, it is shown that all non-
conventional networks significantly increase on all performance metrics - accuracy, sensi-
tivity, specificity, precision and the F1-score (see Tab. 7.2 and 7.3). Although the sizes
of the networks are relatively small, that is about 1.90 million parameters, best scores are
all marginally above 97% and for the baseline just above 95.5%. Smaller-sized networks
that have re-interpreted the way feature maps are connected can therefore be adapted in
the process while maintaining a profound margin on top of the limit the WHO prescribes,
which is 95% on both sensitivity and specificity (thus accuracy as well). Interesting research
would be about the implementation of group-equivariant convolutional stages within much
larger networks as well, such as the VGG-19, SqueezeNet or InceptionResNet-V2 which, for
conventional convolutional stages, were evaluated by Rajaraman, Jaeger and Antani [65].

All training curves look healthy and converge mostly within 100 epoch. In most cases it
saturates at a slightly higher platform in which overfitting starts to occur between epoch 50
and 100 (see Fig. 7.7). To boost performance without being prone to end up in relatively
bad local minima, the training procedure could potentially be enhanced by proper choice
of the learning rate scheduler. By many claimed as the most important hyperparameter to
tune, it can significantly increase the time of convergence, the way it converges and the point
it converges to. Grid-search methods to find an optimal starting point and more adaptive
variants instead of predefined curvatures that alter the state of the learning rate throughout
training could be interesting as next step.

In general, increasing the amount of rotations the network’s layers equivary under improves
performance. More significantly though is the addition of mirror reflections. It is for example
observed that the GCNN-4m-RN18 (|G|= 8) performs much better than SFCNN-8-RN18
(|G|= 8) and SFCNN-16-RN18 (|G|= 16). Strangely, it outperforms the SFCNN-8m-RN18
(equivariant under mirror reflections) as well. It could be that GCNNs lays its connections
more profoundly as its filters have lesser constraints while SFCNNs have the tendency that
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their fundamental filters show aliasing effects. A more empirical explanation could be that
SFCNNs, according to its developers, work best if large kernels are used. Instead of using
filters of size 5, larger ones could be tested (e.g. 7 or 9).

Evaluating the pre-trained models on the AiDx data set is encouraging the use of more
generalizing operations as well. Although all networks have increased performance on all
metrics if compared to the baseline, inducing the convolutional stages to equivary under at
least 16 transformations overly outperforms it (see Tab. 7.4). This is an indication that
these operations are more robust toward varying states the blood films can be in or the
way they are being acquisitioned and/or (pre-)processed. Even so, in this particular case,
specificity is just above 90%, making the pre-trained models prone for having a large amount
of false positives which, in the context of a low-needed limit of detection, could result in a
large amount of misdiagnoses (many non-infected patients will be positively diagnosed). In
contrary to what was found for the Rajarman data set, the effect of the way the stages have
built-in equivariance (GCNN vs. SFCNN) seems negligible as performance always increases
with the heuristic of the groups. This may imply that, although the method to induce
equivariance differs, the amount of realistic transformations matters most in determining
the robustness of the ResNet-18 classifier - the more transformations the more robust.

An interesting addition, if too specific data is to be predicted, is to (shortly) train the
pre-trained models on that specific database. In doing so, one could either train on all
parameters, or keep some parts fixed. For example, the encoder part, which is best seen as
feature extractor, could be held fixed while only learning how the features are to be combined
for this specific set, thus solely making the decoder part changeable. This method, also seen
as a way to exploit transfer learning, could reduce on training time compared to the all-
training variant while still improving on performance. As to implement, it is a prerequisite
that training can be done at the location: devices being able to train at and personnel that
is able to properly label.

A main disadvantage of using generalizing operations is their increased computational com-
plexity. Especially if the models are to be implemented on micro-computers (such as a
mobile-phone or Raspberry-Pie), complexity of its inherent operations is ideally held to a
minimum. Finding these limits, or pushing the limits by efficient and redefined implemen-
tation of the proposed networks, would be interesting to delve into.

Introducing a-priori knowledge into neural networks through its manifestation within the
networks operations (stages), has shown to improve on performance for many databases. In
this report it is shown to be promising in the context of discriminating malaria-parasitized
from uninfected red blood cells as well. For further exploration, the domain of implementa-
tion especially needs attention.
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