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Abstract—We are investigating the possibility of using mono-
lithic scintillator blocks as detectors for small animal positron
emission tomography (PET). These detectors consist of several
cm3 of scintillating material, read out by one or more avalanche
photo-diode (APD) arrays. The entry point of an incoming gamma
photon is estimated from the distribution of the scintillation
light over the APD pixels. To optimize the detector design, the
influence of different design parameters is investigated using
Geant4 simulations. To make it possible to study the influence of
individual design parameters on the intrinsic spatial resolution of
the detector, the use of a performance measure is proposed that
is independent of the algorithm used to estimate the entry point,
namely the Cramér–Rao lower bound on the estimation of the co-
ordinates of a point source of light inside the crystal. To illustrate
the use of this method, the influence of optical transport inside the
detector is investigated for different detector designs, surface fin-
ishes and APD pixel sizes. A comparison with resolutions obtained
from simulations involving beams of 511 keV annihilation photons
indicates that this approach gives valid results.

Index Terms—Cramér–Rao lower bound, depth-of-interaction,
Geant4 Monte Carlo simulations, monolithic scintillator blocks,
positron emission tomography (PET).

I. INTRODUCTION

I N recent years there has been an increase of interest in small
animal positron emission tomography (PET). Small animal

PET requires a high spatial resolution and, especially when dy-
namic studies are to be performed, a high sensitivity [1]. In order
to achieve the required resolution, most current designs use ar-
rays of small scintillation crystals coupled to position-sensitive
photomultiplier tubes (PMTs). Although in principle the reso-
lution can be increased in this design by decreasing the dimen-
sions of the crystals, much sensitivity is lost because of the dead
space between the crystals occupied by reflective material for
optical separation. Additional dead space may exist between
the detector modules, which may, for example, be dictated by
the relatively large size of the position-sensitive photomultiplier
tubes. Finally, increasing the length of the crystals in order to
increase the sensitivity requires correction for the depth-of-in-
teraction (DOI), since otherwise the resulting parallax error will
decrease the resolution outside the center of the scanner.
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Fig. 1. Three examples of detector design. A 20� 10� 10 mm LSO crystal
read out on one side by an APD array (a), a 20 mm thick tapered LSO crystal
read out by two APD arrays (b), and a 20� 20� 20 mm LSO crystal read out
on six sides by single APDs (c).

Monolithic scintillation detectors can avoid these problems.
These detectors consist of a continuous scintillation crystal read
out by position sensitive photo-detectors. The Philips CPET
system is, for example, based on this type of detector, although
without DOI correction [2]. Designs with DOI correction have
also been investigated [3]–[5], but these are either too compli-
cated or have insufficient spatial resolution for small animal
PET.

The detectors we are investigating consist of several cubic
centimeters of scintillating material coupled on one or more
sides to avalanche photo-diode (APD) arrays. Three examples
of this detector are shown in Fig. 1. The coordinates of the entry
point of an incoming gamma photon are estimated from the light
distribution on the pixels of the APD arrays. This can be done
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by either a statistical method or neural networks. Before estima-
tion can take place, the algorithm is first trained using measured
light distributions produced by annihilation photons with known
entry points.

Compared to detectors using arrays of small crystals, the
proposed monolithic scintillation detectors have several advan-
tages. First of all, the detection efficiency is increased because
the dead space between the crystals in a crystal array is avoided
and because the dead space between the detector modules can
be minimized due to the small size of the APD arrays. They are
also easier to manufacture. Furthermore, integration with MRI
devices may become possible because of the use of APD arrays
instead of PMTs.

Measurements on this type of detector show that the intrinsic
detector resolution is comparable to that of detectors using ar-
rays of small crystals [6]–[8]. However, the resolution obtained
in measurements is always determined by a large number of fac-
tors, such as the shape of the monolithic scintillator, the crystal
surface finish, the width of the beam used in the measurements,
electronic noise and the algorithm used to estimate the coor-
dinates of the entry point. This makes it difficult to determine
the individual effect of each of these factors on the resolution.
Understanding these influences can make optimization of the
design more efficient. Monte Carlo simulations mimicking the
measurements can help, since certain parameters can be varied
more easily in a simulation than in an experiment. Furthermore,
influences that are unavoidable in experiments, such as elec-
tronic noise, can even be left out completely if one wishes to
study solely the effect of other parameters. However, even in
such simulations the resolution still depends on the estimation
algorithm used. When for example a better spatial resolution is
found for a crystal whose surfaces are polished than for an un-
polished crystal, it is not known if this is because this specific
estimation algorithm works better for crystals with polished sur-
faces or that the polished crystal is inherently better. Perhaps the
detector would perform even better with an unpolished crystal
with a different estimation algorithm.

In this paper we propose the use of a performance measure,
that is independent of the estimation algorithm, namely the
Cramér–Rao lower bound on the estimation of the coordinates
of a point source of light inside the crystal. Since this mea-
sure gives the lower bound on the variance in the estimated
coordinates for any unbiased estimation algorithm, it does not
depend on the estimation algorithm used. This makes it possible
to better understand the influence of different design param-
eters on the resolution. After introducing the Cramér–Rao
lower bound, we will illustrate it with results obtained from
simulations in which the geometry, surface finish and pixel
size is varied. Finally, we will compare these results to actual
resolutions obtained using a simple estimation algorithm on
simulated data.

II. CRAMÉR–RAO LOWER BOUND

In the monolithic scintillator detectors the entry point of an
impinging annihilation photon is estimated from the distribution
of the scintillation light over the pixels of the APD arrays using
a learning algorithm (for an example see Section III.B) that has

been trained using light distributions produced by annihilation
photons with known entry points. By estimating the entry point
of the annihilation photon the DOI is intrinsically corrected for.

When the annihilation photon deposits its energy in one point
inside the crystal, the light distribution is determined by the ,
and -coordinate of this interaction point. In that case, the es-
timation algorithm can be considered to estimate the , and

-coordinate of the interaction point, from which the entry point
is calculated using the angle of incidence. In a PET scanner this
angle may be derived from the positions of the two detectors
firing in coincidence, as is explained in more detail in [8]. In re-
ality, the energy of an annihilation photon will not always be de-
posited in a single point, due to the occurrence of Compton scat-
tering, X-ray fluorescence, etc. The estimation algorithm will
still estimate one entry point, which can be considered to be
based on a kind of average interaction point. Even though there
may be some blurring in this case, the estimation of entry point
can again be considered to be based on the estimation of an in-
teraction point. Therefore, it seems reasonable to assume that
the ability to estimate the , and -coordinates of single point
sources of light is a good indicator of the ability to estimate the
entry points of realistic events.

For the case of a single point source of light, it is possible
to derive the Cramér–Rao lower bound on the estimate of its
coordinates. This lower bound equals the smallest value of the
standard deviation that any unbiased estimator of the parameters
of interest (in this case the coordinates of the point source) can
achieve, given a statistical model of the observations (in this case
the simulated light distributions). In the following derivation of
the statistical model, it is assumed that the annihilation photon
deposits all of its energy at position inside the
crystal. The number of optical photons emitted is assumed to
follow a Poisson distribution with mean . is the light yield
of the scintillator at 511 keV.

Assume that APD pixels detect the optical photons emitted
by the point source, and that pixel detects a fraction of the
optical photons. Then, the number of detected optical photons
on a pixel will follow a Poisson distribution and be independent
of the number detected on the other pixels. The probability of
detecting photons on pixel is therefore given by

(1)

where is the quantum efficiency of the APD array. The likeli-
hood of the pixels detecting photons is
given by

(2)

Using this likelihood function the information matrix is defined
as [9]

(3)
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The Cramér–Rao inequality, which gives the lower bound on the
covariance matrix of an unbiased estimator, then states that

(4)

where is the estimator of the coordinate [9]. The lower
bound on the variances on , and are given by the three
diagonal elements of this matrix.

Using the likelihood function as defined in (2) and (1), the
elements of the information matrix become

(5)

with and equal to , or . From this equation follows that

(6)

which shows that the variance is inversely proportional to the
number of photons emitted and the quantum efficiency.

To evaluate these expressions for a given point in the crystal,
the expectation value of the fraction of photons that reaches each
pixel, and the first derivative of this fraction to each of the
coordinates must be known. Both can be estimated using op-
tical Monte Carlo simulations. When a large number of optical
photons are tracked through the detector after emission from
the point source, the expectation value of the detected fraction
can be calculated for each pixel by dividing the number of de-
tected photons by the total number of emitted photons. The par-
tial derivatives of this fraction can be determined by doing the
same simulation for points located in the , and direc-
tion from . The derivative is then found by numerical
derivation. For example, the partial derivative to is estimated
by

(7)

The partial derivatives to and can be calculated in a similar
way.

Although it is in theory possible to derive the lower bound
on the estimation of the entry point of an annihilation photon,
thus taking Compton scatter and X-ray fluorescence into ac-
count, this is not practical. The likelihood has to be derived di-
rectly from simulations, since the number of photons detected
by the APD pixels will no longer be Poisson distributed and in-
dependent. This would take a huge amount of simulation time
and would make it necessary to do all calculations numerically
thereby loosing the clarity of the method.

The Cramér–Rao theory gives the lower bound on the stan-
dard deviation in each of the coordinates. In case of perpendic-
ular incidence of the annihilation photon, only the lower bound
on the and -coordinate are of importance. However, when the

photon has an incident angle, the lower bound on the -coordi-
nate determines how well the parallax error can be avoided. It
appears that the results for the lower bound on the standard de-
viation of the -coordinate are often representative for the other
coordinates as well, and therefore we will primarily focus on
this coordinate. However, when the lower bound on any of the
other two coordinates shows interesting behavior, this will of
course be discussed.

III. METHODS

A. Cramér–Rao Simulations

The Cramér–Rao lower bound has been calculated for a
three-dimensional grid of points in a number of different
geometries and for several different surface finishes. The
simulations needed to calculate the functions have
been performed using the Monte Carlo code Geant4 [10]. With
this code it it possible to simulate the transport and interac-
tions of the gamma photons, the scintillation process, and the
transport of the optical photons, but for the calculation of the
Cramér–Rao lower bound only the transport of optical photons
is needed.

In order to reduce computation times, use has been made of
symmetry in the detector where possible. For example, all ge-
ometries investigated are symmetrical in the and -direction.
The lower bound therefore needs to be calculated for only one
quadrant of the crystal. By mirroring these results the lower
bound for the remainder of the crystal is found. For every point
source position 1.7 million photons were tracked, and a value of
0.5 mm was chosen for to calculate the derivative using (7).
This value is a compromise between the bias (for large ) and
the standard deviation (for small ) in the estimate of the deriva-
tive and was determined from preliminary simulations.

Five different geometries have been used in the simulations.
In the description of these geometries, the crystal surface facing
the center of the scanner is called the front surface.

• A 20 10 10 mm LSO:Ce crystal with a front and
back surface of 20 mm 10 mm read out on the back side
by an APD array. This design is shown in Fig. 1(a).

• A 20 10 20 mm LSO:Ce crystal with a front and
back surface of 20 mm 10 mm read out on the back and
front side by an APD array. The increased thickness of
the crystal in this geometry increases the probability of an
interaction of an 511 keV annihilation photon from 58% to
83% [11].

• A 20 mm thick tapered LSO:Ce crystal, with a 20
mm 10 mm front surface and a 20 mm 14 mm back
surface, see Fig. 1(b). Both surfaces are read out by an
APD array. Because of the taper, this shape eliminates
almost all dead space between the crystals if they are
placed in a ring. The dimensions of this geometry will be
written as 20 14(10) 20 mm .

• A 20 10 20 mm LaBr :Ce crystal read out on the
back and front side by an APD array. An advantage of
LaBr is the high light yield (61 000 photons/MeV) com-
pared to LSO (26 000 photons/MeV) [11], since, as fol-
lows from (6), the lower bound on the standard devia-
tions is inversely proportional to the square root of the
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number of emitted photons per event. However, the density
is smaller than that of LSO (5.3 g cm versus 7.4 g cm
for LSO) causing the interaction probability of an annihi-
lation photon to be only 61% [11].

• A 20 20 20 LSO:Ce crystal read out on all sides
by single-pixel APDs. This design is shown in Fig. 1(c).
LeBlanc and Thompson [12] have already reported on sim-
ulations on a similar design. The APDs have a surface of 20
mm 20 mm. The active area is 16 mm 16 mm, which
leaves a gap of 2 mm round the edge. The timing and en-
ergy resolution could benefit from the fact that almost all
light is collected in this design. Since there are no reflec-
tions inside the crystal for this design (see the discussion
of the optical model below), the Cramér–Rao lower bound
can be calculated from the solid angle of the APDs seen
from the point source position. The solid angles and the
lower bound are therefore calculated numerically for this
design.

The model that has been used to simulate the optical inter-
actions at surfaces is the UNIFIED model, which has been de-
scribed by Levin and Moisan [13]. This model is implemented
in Geant4 [14]. In this model a surface consists of small micro-
facets, whose normals have a random angle, , with the overall
surface normal. The angles follow a normal distribution with an
expectation value of zero and a standard deviation of , which
is therefore a measure of surface roughness. In our case, the sur-
face is covered on the outside by a reflective cladding with a
refractive index that is equal to that of air. If the cladding is re-
flective, it reflects the optical photons diffusely.

A number of different surface finishes were investigated. We
simulated two types of polished surfaces. One was clad in Teflon
(reflectivity 95%) and one in an absorbing material (reflectivity
0%). The same types of cladding were also used for a rough
surface. The polished surface was modelled with a of 0.1
and the rough surface with a of 6.0 . These values were taken
from Moisan et al. [15]. As an extreme case we also studied a
specularly reflecting surface. The specularly reflecting surface
reflects 100% of the optical photons with the angle of reflection
equal to the angle of incidence.

In the Cramér–Rao simulations only the refractive indices and
the light yield of the scintillating materials are needed. For LSO
these are 1.82 and 26 000 photons/MeV respectively and for
LaBr 1.88 and 61 000 photons/MeV [11], [16]. The optical
coupling between the APD arrays and the crystal has been as-
sumed to be perfect. This means that all optical photons reaching
the crystal-APD surface are absorbed by the APD array. Fur-
thermore, the quantum efficiency of the APD array has been as-
sumed to be equal to one, since at the moment we are only in-
terested in the effect of the light transport on the resolution. Fur-
thermore, the quantum efficiency has no influence when com-
paring results from one scintillator to each other, since it is then
only a constant factor according to (6).

In our measurements we have been using the Hamamatsu
S8550 APD array [6]. The size of the pixels on this array is
1.6 mm 1.6 mm and the center to center distance between the
pixels is 2.3 mm in both directions. All of the results presented
in this paper for the different surface finishes and for the dif-
ferent detector geometries are based on this APD array, except

for the 20 20 20 crystal that is read out by six single APDs.
In order to investigate the influence of the APD pixel size on
the detector performance, the lower bound for the 20 10 20
LSO crystal was additionally calculated for four different pixel
sizes. Besides the aforementioned pixel size the following sizes
were investigated: 1.1 mm 1.1 mm with a pitch of 1.8 mm,
3.9 mm 1.6 mm with a pitch of 4.6 mm in the -direction and
2.3 mm in the -direction, and 3.9 mm 3.9 mm with a pitch
of 4.6 mm. The numbers of pixels on these arrays are 10 5,
4 4, and 4 2 respectively. In all cases, the pixels are sepa-
rated by a 0.7 mm dead region.

B. Simulations Using Beams

The results obtained for the Cramér–Rao lower bound were
compared to results from simulations that resemble the mea-
surements done in our group [6] and in Brussels [7], [8]. In these
simulations a beam of 511 keV gamma photons having a diam-
eter of zero is stepped in steps of 250 m over the center of the
crystal in the and -direction. The number of photons detected
by each APD pixel was recorded for 400 events for every beam
position. Electronic noise was not modeled.

In order to calculate the spatial resolution the entry point of
each of the simulated distributions is estimated using the re-
mainder of the distributions as training data for our estimation
algorithm. The distribution for which the entry point has to be
estimated is compared using least squares to each of the distri-
butions in the training set. The entry point of the distribution in
the training set giving the smallest least squares value is used
as the estimate of the entry point. The full width at half max-
imum (FWHM) and the full width at tenth maximum (FWTM)
of the histogram of all the errors, defined as the distances be-
tween the true and estimated entry points, of the scan are used
as a spatial resolution measure. More information on the esti-
mation algorithm and beam measurements has been presented
elsewhere [6].

IV. RESULTS AND DISCUSSION

A. Cramér–Rao Results

1) Surface Finish: Fig. 2 shows the cumulative distribution
of the Cramér–Rao lower bound on the -coordinate inside the
20 10 20 mm LSO crystal for the different surface finishes
described in the previous section. For example, more than 80%
of the crystal volume has a lower bound smaller than 0.4 mm
for all surface finishes. The five surface finishes show little per-
formance difference for the lower bound on the -coordinate.
Similar results were obtained for the -coordinate. The lower
bound on the -coordinate is slightly higher for the specularly
reflecting surface than for the other four, more realistic, surface
finishes. The surface finish, therefore, seems to have little to no
influence on the spatial resolution of the detectors. The polished
Teflon clad surface finish is, therefore, used in the comparison
of the different detector geometries. This is motivated by the
fact that the use of a Teflon wrapped crystal will yield larger
and more constant signal amplitudes, which may improve the
timing characteristics and the energy resolution of the detector.

2) Crystal Geometry: Figs. 3 and 4(a) show the lower
bound on the -coordinate as a function of position in a plane
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Fig. 2. Cumulative distribution of the Cramér–Rao lower bound on the x-coor-
dinate inside the 20� 10� 20 mm LSO crystal for different surface finishes.
The y-axis shows the fraction of the crystal volume for which the lower bound
is smaller than the value given on the x-axis.

Fig. 3. The lower bound on the x-coordinate as a function of position in the
x-z plane in the center of the crystal for the 20� 10� 10 mm LSO crystal
with polished surfaces and wrapped in Teflon.

in the center of the crystal for the 20 10 10 mm and
the 20 10 20 mm LSO crystal respectively. From these
figures it can be seen that the lower bound increases further
away from the APD array and near the edges of the crystal.
Therefore, the thickness of the 20 10 10 mm can not be
increased in order to increase the sensitivity without degrading
the resolution. This is enhanced by the fact that most interac-
tions occur in the front part of the crystal. For example, in a 20
mm thick LSO crystal approximately 70% of the annihilation
photons that interact inside the crystal interact in the first 10
mm. Placing the APD array on the front side of the crystal
could help in this respect. Another solution might be the use of
double-sided readout, as can be seen in Fig. 4(a), which allows
one to increase the crystal size to 20 10 20 mm without
sacrificing position resolution.

The distributions of the Cramér–Rao lower bound on the
and -coordinate in the five detector geometries with polished
surfaces clad in Teflon are shown in Fig. 5. When comparing
Figs. 5(a) and 5(b), it can be seen that the lower bound is higher
in -direction for all geometries except the 20 20 20 mm
crystal. This is caused by the fact that in these geometries the
crystals are twice as long in the -direction than in the -direc-
tion, while the lower bound is higher near the edges. As can be
seen from Fig. 5(c), for the designs that are read out by two APD
arrays the lower bound in the -direction is slightly lower than

Fig. 4. The lower bound on the x-coordinate as a function of position in the
x-z plane in the center of the 20� 10� 20 mm LSO crystal clad in Teflon for
two pixel sizes: 1.6 mm� 1.6 mm (a) and 3.9 mm� 3.9 mm (b).

in the other two directions. Compared to the other designs, the
design read out by only one APD array on the back performs
worst in the -direction. This is probably because the other de-
signs have two APD arrays opposite each other in the -direc-
tion making a better estimation of the -coordinate possible.

The 20 10 10 mm and the 20 10 20 mm crystal
perform approximately equally well when looking at the

-coordinate. The same is true for the -coordinate, but the
20 10 20 mm crystal performs significantly better when
estimating the -coordinate for the reason mentioned in the
preceding paragraph.

Furthermore, the 20 10 20 mm and the
20 14(10) 20 mm crystal show similar perfor-
mance. While the tapered crystal has a slightly higher larger
bound on the -coordinate, it has a slightly smaller lower
bound on the -coordinate. Therefore, adding a taper to the
crystal hardly influences the resolution, in spite of the fact that
the back surface of the tapered crystal is significantly larger
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Fig. 5. Cumulative distribution of the Cramér–Rao lower bound on the x; y

and z-coordinate for the five detector geometries. The y-axis shows the fraction
of the crystal volume for which the lower bound is smaller than the value given
on the x-axis.

than the APD array. This is probably caused by the fact that
the part of the crystal that sticks out is very close to the APD
array, while the resolution improves closer to the APD array as

Fig. 6. Cumulative distribution of the Cramér–Rao lower bound on the x-coor-
dinate for various APD pixel sizes. The y-axis shows the fraction of the crystal
volume for which the lower bound is smaller than the value given on the x-axis.

is shown in Figs. 3 and 4. Another factor could be that there
is less internal trapping of light, since the taper reflects light
towards the back side of the crystal.

Concerning the LaBr crystal, one would expect the lower
bound to be approximately a factor lower (see
(6)) than that of the corresponding LSO crystal, because all rel-
evant parameters except the light yield are approximately the
same. This is indeed the case. The 20 10 20 mm LaBr
crystal and the 20 20 20 mm LSO crystal read out on all
six sides perform approximately equally well for the -coor-
dinate, but for the -coordinate the performance of the LaBr
crystal is less good. Both designs, however, perform better than
the other designs based on LSO. Close to the APD arrays, the
LaBr crystal performs somewhat better than the 20 20 20
mm crystal, because the small APD pixel size of the 32 pixel
array in the LaBr design results in a better estimation close to
the APD array.

3) APD Pixel Size: Fig. 6 shows the distribution of the
lower bound on the and -coordinate in the 20 10 20
mm polished Teflon clad LSO crystal for various APD pixel
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sizes. When estimating the -coordinate the smaller pixel sizes
perform better, while the larger pixel sizes perform better when
estimating the -coordinate. This can probably be explained by
assuming that the performance for different pixel sizes is a bal-
ance between capturing the shape of the light distribution (small
pixel sizes) and good statistics (large pixel sizes, resulting in
less dead space). When estimating the -coordinate the shape
of the light distribution is important, so smaller pixel sizes
perform better. The -coordinate can largely be determined by
the ratio of the amount light detected on the front surface and
that detected on the back surface. This ratio is determined more
accurately using larger pixel sizes, because large pixels have
less dead space between them. For example, the 1.6 mm 1.6
mm pixels have 60% dead space, while the 3.9 mm 3.9 mm
pixels have only 40% dead space.

Since Fig. 6 does not show in which part of the crystal the
resolution changes as a result of changing the pixel size, Fig. 4
shows the lower bounds on the -coordinate in the - plane in
the center of the crystal for a pixel size of 1.6 mm 1.6 mm and
for a pixel size of 3.9 mm 3.9 mm. In the center of the crystal
and near the APD arrays the lower bounds are approximately
equal in both cases. The lower bound increases especially near
the edges of the crystal if the pixel size is increased. A possible
explanation might be that for a point source of optical photons
near the edge of the crystal most of the light will be detected
by a small number of pixels near the edge. For larger pixels
this number will be smaller, making the determination of the
position more difficult.

B. Comparison With Beam Simulations

In order to check whether the results for the lower bounds can
indeed be used as a meaningful measure of the performance of a
detector, a comparison has been made with resolutions obtained
from simulations using perfect beams. These simulations mimic
the measurements that are currently being performed within our
group [6] and Brussels [7], [8], with the difference that in the
simulations a beam width of zero is assumed and electronic
noise is not modeled. Simulations with a finite beam width show
that the differences between the results presented here and the
measurements, are mainly due to the difference in beam width.

Because the Cramér–Rao results describe the detector’s
ability to estimate the coordinates of a point source of light
at a given location inside the crystal, and the beam results
describe the detector’s ability to estimate the entry point of an
impinging gamma photon, the absolute values of both types of
results cannot be compared directly. Both types of results must,
however, show similar trends if the Cramér–Rao results are to
be used as a performance measure for optimizing the detector
geometry.

Table I shows the resolutions obtained from the beam simu-
lations for the surface finishes investigated. The standard devia-
tions on the FWHM and the FWTM are estimated to be approx-
imately 0.04 mm and 0.06 mm respectively. The results show
no significant differences between the different surface finishes.
This agrees with the results from Fig. 2, where the differences
between the surface finishes were also very small.

The resolutions obtained from the beam simulations for the
different crystal geometries are shown in Table II. The results

TABLE I
SIMULATION RESULTS FOR THE SPATIAL RESOLUTION OF THE 20� 10� 20
MM LSO CRYSTAL READ OUT ON TWO SIDES BY AN APD ARRAY USING

PHOTON BEAMS SCANNED IN THE x-DIRECTION OVER THE CENTER OF THE

CRYSTAL

TABLE II
SIMULATION RESULTS FOR THE SPATIAL RESOLUTION OF THE FIVE DIFFERENT

DETECTOR GEOMETRIES USING BEAMS SCANNED IN THE x AND y-DIRECTION

OVER THE CRYSTAL

agree quite well with the results obtained for the lower bounds
in these crystals: the 20 10 10 mm LSO crystal performs
worst, probably caused by the fact that most interactions occur
furthest away from the APD array, the two 20 mm thick LSO
crystals with double sided read out perform equally well, and
the LaBr crystal performs best. According to the results for
the Cramér–Rao lower bound presented in the previous sec-
tion, the 20 20 20 mm LSO crystal and the 20 10 20
mm LaBr should perform approximately equally well. The
FWHM for the 20 20 20 mm LSO crystal is larger than
the FWHM for the 20 10 20 mm LaBr crystal, but the
FWTM is smaller.

V. CONCLUSION

In this paper the use of the Cramér–Rao lower bound has been
proposed for investigating the intrinsic spatial resolution per-
formance of PET detector modules. This performance measure
makes a better understanding of the influence of different design
parameters on the spatial resolution possible. Firstly, because
the measure does not depend on the specific algorithm used to
estimate the entry points, secondly because the performance of
a detector can be investigated as a function of all three coordi-
nates, and finally because the influence of individual parameters
can be made explicit. For example, the effect of the number of
primary photons and the quantum efficiency of the APD array
on the lower bound can be directly seen from (6).

In the derivation of the Cramér–Rao lower bound it is as-
sumed that the ability to estimate the entry point of an impinging
annihilation photon is related to the ability to estimate the the
position of a point source of optical photons within the block.
If the lower bound is to be used as a meaningful performance
measure, it should give the same relative ordering of the perfor-
mance of different designs as obtained from beam simulations.
From the results presented in the previous section this does in-
deed appear to be the case.
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In order to illustrate the method, the influence of surface
finish, crystal geometry, and pixel size on the performance were
investigated. For the sake of simplicity, only the influence of
light transport and detection were investigated. From these sim-
ulations a few interesting observations can be made. First of all,
it appears that the surface finish of the monolithic scintillator
crystals has little influence on the intrinsic resolution of the
detector. The polished or rough Teflon clad surfaces therefore
appear to be a good choice, because the reflective cladding may
improve the energy resolution and the timing properties of the
detector.

Several observations can be made concerning the crystal ge-
ometries. First, it can be concluded that LaBr is an interesting
material for further study. Its high light yield improves the
lower bound by approximately a factor of 1.5, but the quantum
efficiency of the APD has not yet been taken into account. This
will have an influence, because the quantum efficiency of the
Hamamatsu S8550 for the peak wavelength of LaBr is smaller
than for the peak wavelength of LSO, viz. 50% compared to
70%. Taking these numbers into account, the improvement is
reduced to approximately , see (6), which
is still substantial. Secondly, increasing the thickness of the
20 10 10 mm crystal in order to increase the sensitivity,
without adding more APD arrays, is not possible without
severely degrading the spatial resolution. Thirdly, tapered
crystals, which could improve the sensitivity when placed
in a ring, perform as well as rectangular blocks. Finally, the
20 20 20 mm crystal read out on all sides by single APDs
seems promising, since it gives a uniform resolution throughout
the detector, but the large area of the APDs in this design
will probably lead to a significant increase in the electronic
noise, because of a larger dark current and increased detector
capacitance. Electronic noise will therefore have to be taken
into account in the model, before any definite conclusions can
be drawn with respect to this design.

From the comparison of the lower bound for the 20 10 20
mm crystal for the different APD pixel sizes it appears that the
smallest pixel sizes perform best regarding the resolution in the

-coordinate, even though the statistics in the number of optical
photons detected per pixel will be worse, and the total number
of detected optical photons is also smaller because of the in-
creased amount of dead space between the pixels. This result
may change when we add electronic noise to our model, because
the electronic noise will have more influence if the number of
detected photons per channel is less.

The method derived in this paper has one important limita-
tion, which is the fact that the influence of Compton scattering
is ignored. This will especially have an influence when different
scintillators are compared to each other. However, when ge-
ometries with approximately the same dimensions and using
the same scintillator material are compared, the influence of
Compton scattering will be the same for all geometries. The
model used to illustrate the method is still relatively simple
and ignores the influence of quantum efficiency and electronic
noise. The quantum efficiency is approximately constant for
a given combination of APD array and scintillator and is fur-
thermore a constant factor in the lower bound (see (6)). There-
fore, when only the quantum efficiency is added to the model,

the conclusions concerning the surface finish, single or double
sided read out and pixel size will not change for the Hama-
matsu S8550 APD array combined with the LSO crystal. How-
ever, as the previous discussion showed, adding electronic noise
to the model might influence some of the conclusions. We are
therefore working on including electronic noise in our models
in order to investigate its influence on the performance.
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