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1 Introduction 

During this thesis research laminated bamboo connections were tested to measure the capacity of doweled 

connections and evaluate the probability to predict this capacity using design formulas already available for timber. 

Although laminated bamboo is an engineered product, the base material (bamboo) remains a natural product and a 

variance in test results is to be expected. In order to get an accurate measurement of the actual capacity of a 

connection in laminated bamboo and also determine the standard deviation of these test pieces, a large amount of 

test pieces need to be fabricated and tested. 

To test and fabricate a large number of test pieces of course takes a lot of time and material. For this, a solution was 

sought and found in testing more than one connection per test piece. Usually a test piece is, on one end, equipped 

with a connection that will be loaded until failure and on the other with a connection that will be made stronger. This 

way, one knows on beforehand which connection will fail and one can place all measuring equipment so that only 

the weaker connection is examined. This is of course the easiest way to go about testing the capacity and 

deformation of a connection. However, this is also costly since every test piece can be used only once. To increase 

the efficiency of all tests and to make better use of the available material, all test pieces used in this research were 

designed and equipped with two identical connections. This decision lead to a doubling in the amount of connections 

that could be tested using the same amount of testing material. That same decision however also had two 

downsides. The first one being that, on beforehand, it was not known which of the two connections would break and 

so, per test piece, two connections had to be measured. The second, and maybe more problematic one, being that 

when one of the two connections failed, the test ended and only the capacity of the first failed (and thus weaker) 

connection was known. When taking the average capacity of all these weaker connections without taking into 

account that half of all connections are, at least, stronger, one could be misled into thinking the tested material is 

weaker than in reality. A method should thus be conceived by which the stronger half of the connections is also 

taken into account when determining the capacity of the connections from the obtained test results. 

 

1.1 Goal 

For the determination of the average capacity of all connections, both the stronger half and the weaker half of all 

connections need to be considered. Since the actual capacity of the stronger half cannot be measured and the only 

knowledge about this capacity is that it will, at least, be higher than the capacity of the weaker half (i.e. the failed 

connections), it is necessary to perform a study into statistics and probabilistic design. Through this study a method is 

sought by which the average capacity can be determined based solely upon the weaker half of all tested connections. 

 

1.2 Plan of action 

To be able to evaluate the average capacity of all connections by using only the test results that were obtained from 

the weaker half of all connections, knowledge about statistical analysis and probabilistic design is necessary. This 

knowledge is to be obtained by performing a literature study. For this literature study use will be made of the 

available courses and corresponding study material at TU Delft. By researching statistics, a way will be sought by 

which the average capacity of all connections can be determined. 

 

1.3 Reading guide 

First 2 - Train of thought will explain the exact problem faced when analysing the test results more clearly and will give 

an idea on how to overcome this problem. Using this idea, chapter 3 - Determination of the actual average capacity will 

start off by making a few assumptions after which a formula is devised by which the problem could be solved. Since 

the formula is based on assumptions, the calculated values will not be entirely correct. Chapter 4 - Estimation error will 

explain why. Knowing the incorrectness of the formula, chapter 5 - Simulation using Excel will perform a simulation of 

the tests done in this research and give a final remark on the way the test results should be interpreted and analysed. 
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2 Train of thought 

By testing all test pieces to failure, exactly half of all connections will break and data will be obtained from which the 

capacity of the weaker half of the connections can be determined. 

For the determination of that capacity all test results are assumed normally distributed. This normal distribution will 

then have an expectancy μz (‘z’ as is ‘zwak’) that will be taken as the average of the measured maximum forces 

during testing and a standard deviation that will also be calculated from the same test results. In doing this a 

distribution is obtained that is valid for the weaker half of all connections. It has to be noted that this approach is not 

entirely realistic. The reason for this will be discussed in 4 - Estimation error. 

Knowing that the found average capacity is based upon exactly half of all connections and that all ‘missing’ data 

belongs to stronger connections it is possible, by making a few assumptions, to make an estimate of the average 

capacity of all connections (i.e. it is possible to shift the normal distribution of the weaker connections in such a way 

that a distribution for all connections can be obtained). 

A visual display of the described normal distributions is given in Figure 1 - Normal distributions of all connections (Red: weak, 

Blue: total, Green: strong). 

 

 
Figure 1 - Normal distributions of all connections (Red: weak, Blue: total, Green: strong) 

In the figure above a sketch is given of the normal distributions that could result from testing. On the horizontal axis 

the capacity of a connection is shown and on the vertical axis the chance that a connection will have that capacity. 

The red graph represents the data received from the tests done in this research. The green graph shows the missing 

data that would have been received from the strong connections if they were loaded until failure. When combined, 

the two graphs would result in the blue graph that represents the normal distribution of all connections. 

Usually to obtain this blue graph one would test all connections and just calculate the mean and standard deviation 

from the test results. Since in this research only the weak connections can be loaded until failure and thus only the 

red graph can be obtained, another way to obtain the blue graph has to be devised. Also, as can be seen in the figure, 

the standard deviation σ does not necessarily have to be the same for all three graphs. 
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3 Determination of the actual average capacity 

In the previous chapter the difficulties in determining the average capacity for all connections have been explained.  

In this chapter a solution to this problem is given and a way to determine the average capacity of all connections 

from test data, based upon only the weaker half of all connections, is devised. It should again be noted that the 

assumptions made to come to this solution are not entirely correct (this is discussed in 4 - Estimation error). The 

solution given here is only exactly correct when the measurements from testing would be exactly normally 

distributed and the coefficient of variation would be a constant (which is not the case, as can be seen in the 

simulation done in 5 - Simulation using Excel). 

 

When determining the normal distribution of the weaker half of all connections (the red line in Figure 1 - Normal 

distributions of all connections (Red: weak, Blue: total, Green: strong)), the expectancy μz is taken as the average capacity of all 

weaker connections. This means that exactly 50% of all weaker connections have a capacity lower than the value μz 

and exactly 50% will have a value that is higher than μz. Having this information and knowing that the weaker half of 

the connections makes up for exactly 50% of all fabricated connections one can conclude that, when looking at the 

average capacity of all connections (μtot), the value of μz will be such that exactly 25% of all connections will have a 

lower capacity than μz and 75% will have a higher capacity. The same can be said for the distribution and the average 

capacity μz of the strong connections (only this value will have a 25% chance of exceedance instead). A visual 

explanation of this is made in Figure 2 – Cumulative distribution function of all connections (Red: weak, Blue: total, Green: strong) 

where the distribution function of all connections is shown. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 – Cumulative distribution function of all connections (Red: weak, Blue: total, Green: strong) 

Given this information, now a way can be sought by which the known μz can be translated into a value for μtot. The 

following formula can be derived directly from the figure above and should indirectly give a relation between μz and 

μtot. 

 

 𝑃𝜇𝑡𝑜𝑡
(𝑥 ≤ 𝜇𝑧) = 0.25 (1) 

 

Now to further analyse this relation the normal distribution needs to be standardized. Usually this is done by 

subtracting the expectancy of the distribution (μtot) from the considered x-value (μz). After that one would divide by 

the standard deviation σtot. However, in this case σtot still remains unknown. In order to overcome this obstacle one 

has to consider that the desired average value μtot corresponds to the same material as the value μz. Although it is a 

different ‘batch’ with a different standard deviation, since the material is the same, it is assumed to have the same 

coefficient of variation. Because the coefficient of variation is a material parameter and not a ‘batch’ parameter, it 

should be the same for every connection (of the same type) made with the same material. The coefficient of 

variation gives a relation between the expected value μ and the standard deviation σ in the following manner: 

0.25 
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 𝐶𝑂𝑉 =  
𝜎

𝜇
  (2) 

By making use of the relation above the standard deviation σtot can be expressed as a function of the COV and the 

average capacity of all connections μtot. Entering this relation in the first formula, the normal distribution can be 

standardized. 

 

 𝑃𝜇𝑡𝑜𝑡
(𝑍 ≤

𝜇𝑧 − 𝜇𝑡𝑜𝑡

𝐶𝑂𝑉 ∗ 𝜇𝑡𝑜𝑡

) = 0.25 (3) 

 

Using tables for normal distributions a value for ‘Z’ can be sought that corresponds to the exceedance chance of 75% 

(i.e. the undershoot chance of 25%). This is done in Figure 3 - 75% exceedance value for 'Z'. 

 

 
Figure 3 - 75% exceedance value for 'Z' 

The value for ‘Z’ that corresponds to the 75% exceedance chance is now determined (note that in the figure actually 

the 25% exceedance is determined so a minus sign needs to be incorporated into the calculations). Substituting the 

found value in the formula yields a relation in which μtot is the only unknown value remaining. The formula can now 

be solved for μtot. 

 

 −0.67452 ≤
𝜇𝑧−𝜇𝑡𝑜𝑡

𝐶𝑂𝑉∗𝜇𝑡𝑜𝑡
 

 −0.67452 ∗ 𝐶𝑂𝑉 ∗ 𝜇𝑡𝑜𝑡 ≤ 𝜇𝑧 − 𝜇𝑡𝑜𝑡  

 1 − 0.67452 ∗ 𝐶𝑂𝑉 ∗ 𝜇𝑡𝑜𝑡 ≤ 𝜇𝑧  

Through the use of the obtained formula, the found capacity of the weaker connections can now be used to give an 

estimate for the capacity of all connections. A simulation using Excel showed that this formula gives a slight 

overestimation of μtot. The overestimation is however small for COV values below 0.1. 

 𝜇𝑡𝑜𝑡 ≤
𝜇𝑧

1 − 0.67452 ∗ 𝐶𝑂𝑉
 (4) 

 

 
 

𝑃𝜇𝑡𝑜𝑡
(𝑍 ≤ 0.67) = 0.7486 0.67 +

0.68 − 0.67

0.7517 − 0.7486
(0.75 − 0.7486) = 0.67452 

𝑃𝜇𝑡𝑜𝑡
(𝑍 ≤ 0.68) = 0.7517 
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4 Estimation error 

In the previous chapter a formula is derived by which the actual capacity for all connections could be estimated. This 

chapter will describe the correctness of this estimation. 

 

In order to check the validity of the derived formula Mr. A. Hensbergen of the EWI faculty at TUDelft was consulted. 

Mr. Hensbergen teaches the course ‘WI2031TH  - Kansrekening en statistiek’. In this consult he showed that the 

estimation of the average capacity through the derived formula does not yield the exact value. The reason for this is 

the assumption that the measured capacities of the test pieces are normally distributed is not entirely correct. 

When looking at all connections, the capacities are normally distributed with expectation μtot and variation σtot. By 

equipping every test piece with two of these connections and only measuring the weaker of these two connections 

the test results are not normally distributed anymore. In other words: if connection 1 would be N(μtot,σtot) distributed 

and connection 2 would be N(μtot,σtot) distributed then MIN(1,2) ≠ N(μz,σz). 

A more realistic representation of the distribution of the measured test results is given in Figure 4 - Realistic distribution of 

test results. 

 

 

 
 
Figure 4 - Realistic distribution of test results 

The above figure displays a distribution in which the weaker connections are no longer normally distributed. Since 

the test results are always based upon the minimum of two normally distributed connections, the distribution of 

these minima will show a long tail for values below μtot and a sharp drop for values above μtot. 

What we can say about the test results is the amount of measurements that fall below (or above) the value for μtot. 

This is done by stating that the chance of a test piece (consisting of two connections) having a capacity below μtot is 

equal to 1 minus the chance of the capacity being higher than μtot. The capacity of a test piece is higher than μtot only 

if both connections are stronger than μtot. The chance of this happening is 50% times 50%. 

 

 Pz = 1 – Ps = 1 - 0.5*0.5 = 0.75 

 

This means that 75% of the found test results are below μtot and 25% of the found results are above μtot.  

This is displayed in Figure 5 - Distribution of test results. 
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Figure 5 - Distribution of test results 

Although it is known that 75% of all test results fall below the actual value of μtot, for the determination of μtot from 

the obtained test results the distribution formula fz is still necessary. By assuming this formula to be a normal 

distribution in the previous chapter, a graph was assumed that is somewhat wider than the actual graph of fz. This 

wider graph yields a larger coefficient of variation and will eventually give a slight overestimation of the value for μtot.  
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5 Simulation using Excel 

Since all measured capacities of the connections consist of the minimum value of two normally distributed capacities, 

the found values will no longer be normally distributed. 

As already explained in the previous paragraph there is no exact way to determine the exact distribution of the found 

minimum values nor the missing maximum values. To get a better view of the available data and to find a way to 

solve the problem, a simulation was ran using Excel. 

In this simulation the capacity of the upper and lower connection of a test piece was randomly generated from a 

normal distribution. This was done 1000 times. Next, the minimum value and the maximum value out of every 

connection were separated and sorted. In this way two compilations were obtained. One of which consisted of only 

the minimum values and one contained only the maximum values. 

A picture of the simulation is given in Figure 6 - Simulation of two times 1000 random N(100,5) numbers. 

 

 

 
 

 
 
Figure 6 - Simulation of two times 1000 random N(100,5) numbers 

In the above figure the second and third column (‘Number 1’ and ‘Number 2’) are used to randomly generate a 

number from a normal distribution with expectancy 100 and a standard deviation of 5. 

From these two columns the minimum and maximum value is taken and sorted in the next two columns (‘Min(1,2)’ 

and ‘Max(1,2)’). Also the average of all columns was determined and is shown on the first row next to the columns 

(abbreviated by ‘Ave’). 

 

To get and understanding of the distribution of the found minimum and maximum columns and to determine how 

much these distributions actually differ from the original normal distributions two terms are used. These terms are 

the skewness and the kurtosis of the found distributions. With these terms similarity between a random distribution 

and a normal distribution can be expressed. The following definition for these terms is used: 

 

Randomly generated normally distributed N(100,5) numbers MU 100 Sigma 5

Number 1 Number 2 Min(1,2) Max(1,2) Ave(1,2) Ave Min(1,2) Ave Max(1,2)

0.001 100.2788 101.0738 100.2788 101.0738 99.94554 97.24624 102.6449

0.002 105.7763 109.3817 105.7763 109.3817

0.003 97.59007 98.74393 97.59007 98.74393 StDev(1,2) StDev Min(1,2) StDev Max(1,2)

0.004 99.86479 102.5919 99.86479 102.5919 4.859265 4.020494 4.06166

0.005 96.39899 97.65812 96.39899 97.65812

0.006 95.84925 108.1131 95.84925 108.1131 COV(1,2) COV Min(1,2) COV Max(1,2)

0.007 105.299 96.85128 96.85128 105.299 0.048619 0.041343 0.03957

0.008 93.33639 101.0277 93.33639 101.0277

0.009 103.3101 103.4239 103.3101 103.4239 5-perc(1,2) 5-perc Min(1,2) 5-perc Max(1,2)

0.010 103.182 104.8783 103.182 104.8783 91.92776 90.61242 95.94311

0.011 97.97703 109.868 97.97703 109.868 107.9633 103.8801 109.3466

0.012 100.316 100.1269 100.1269 100.316

0.013 101.006 98.13903 98.13903 101.006 Kurt(1,2) Kurt Min(1,2) Kurt Max(1,2)

0.014 100.2331 97.17794 97.17794 100.2331 0.037356 -0.00932 0.089236

0.015 100.1888 99.00291 99.00291 100.1888

0.016 97.26622 101.3125 97.26622 101.3125 Skew(1,2) Skew Min(1,2) Skew Max(1,2)

0.017 99.31782 100.4408 99.31782 100.4408 0.0384 -0.11858 0.206428

0.997 97.46165 90.72377 90.72377 97.46165

0.998 90.46008 97.29551 90.46008 97.29551

0.999 97.83497 89.19316 89.19316 97.83497

1.000 102.4579 94.9712 94.9712 102.4579
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 Skewness quantifies how symmetrical a distribution is around its mean value. 

o A symmetrical distribution has a skewness of zero. 

o An asymmetrical distribution with a long tail to the right (higher values) has a positive skew. 

o An asymmetrical distribution with a long tail to the left (lower values) has a negative skew. 

o The skewness is unitless. 

o The threshold to determine whether a distribution has an acceptable skewness to be classified as 

normal-like distribution varies per research and depends on the application and the, by the 

researcher, desired accuracy. According to George and Mallery (2010), Skewness and Kurtosis 

values between -2 to +2 indicate acceptable measures (Ruegg, 2015). 

o To check whether a distribution is skewed, the mean of the sample can be subtracted from each 

sample value. The result will be positive for values greater than the mean, negative when smaller 

than the mean and 0 if they equal the mean. 

 To compute a unitless measure of the skew each of these differences is divided by the 

standard deviation. What is obtained is called a ‘z’ ratio. The standard deviation of these 

ratios is 1. For each value z³ is computed. After that, the sum of these values is divided by 

n-1, where n is the number of values in the sample. If the distribution is symmetrical, the 

positive and negative values will balance each other, and the average will be close to 

zero. If the distribution is not symmetrical, the average will be positive if the distribution 

is skewed to the right and negative if skewed to the left. The formula Excel uses to 

compute the skew looks like this: 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝛴(𝑋−�̅�)3

(𝑁−1)𝜎3 

 Kurtosis quantifies whether the shape of a distribution matches a normal distribution. 

o A normal distribution has a kurtosis of 0 (mesokurtic). 

o A flatter distribution has a negative kurtosis (platykurtic). Such a distribution has highly dispersed 

values. 

o A more peaked distribution has a positive kurtosis (Leptokurtic). Such a distribution shows a sharp 

peak with relatively fat tails. 

o The kurtosis is unitless. 

o The formula used by Excel to calculate kurtosis is somewhat more elaborate and looks like this: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

𝛴(𝑋 − �̅�)4

𝜎4
−

3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)
 

 Skewness and Kurtosis are graphically shown in Figure 7 - Skewness and kurtosis. 
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Figure 7 - Skewness and kurtosis 

Given the above mentioned definition and limit values for the skewness and kurtosis the two columns with the 

minima and maxima can be further analysed. Using Excel, the skewness and kurtosis for both the maxima and 

minima columns and the original distribution of numbers 1 and 2 were computed. The obtained values are given in 

the bottom two rows of Figure 6 - Simulation of two times 1000 random N(100,5) numbers. 

When looking at these numbers it can be seen that the minima and maxima distributions have a slight skew but it is 

well within the limits of -2 and +2 used by George and Mallery (2010). In terms of the simulated values for the 

kurtosis the difference between the Min. and Max. distributions and a normal distribution are negligible. In the 

simulation depicted here the value for kurtosis of the Min. distribution is even less than the kurtosis of the actual 

normally distributed numbers 1 and 2. The simulation thus shows that the obtained measurements from tests in this 

research (which are represented by the minima column) can be considered normally distributed. 

 

Although it is now shown that the measurements are normally distributed, the average of the measured capacities 

(the minima column) is still lower than the average capacity for all connections (columns 1 and 2). So, in order to 

access the capacity of all connections by only looking at the minima column (the test results), another comparison 

between the three distributions was made. For this comparison the standard deviation for the Min., Max. and 

numbers 1 and 2 was calculated (since it has been shown that they are normally distributed this may now be done). 

After that, the values from all columns were taken and used to make the cumulative distribution graphs shown in 

Figure 8 - Cumulative distribution of the randomly generated N(100,5) numbers. 
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Figure 8 - Cumulative distribution of the randomly generated N(100,5) numbers 

In this figure four cumulative distributions are shown. Since both columns 1 and 2 consist of numbers from the same 

normal distribution, the graphs from these columns (red and blue lines) are directly on top of each other. The graphs 

from the Min. and Max. columns (the grey and yellow lines) are translated horizontally and have a steeper 

inclination. 

The horizontal translations are caused by a shift in the average value from every column (the average for the Min. is 

lower and the Max. is higher). The steeper inclinations are caused by a lower standard deviation the Min. and Max. 

columns. Both the horizontal translation and the steeper inclination could have been expected when looking at the 

values given in Figure 6 - Simulation of two times 1000 random N(100,5) numbers. 

 

To show the shape of the distribution curves another simulation was ran using a total of 100 000 test values. Again 

for these values both the Min. and Max. values were gathered. Then all data was sorted into bins of width 1. The 

resulting amount of values within a bin was set out in a graph. This graph is shown in Figure 9 - Distribution of 100 000 

randomly generated N(100,5) numbers. 
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Figure 9 - Distribution of 100 000 randomly generated N(100,5) numbers 

This distribution graph shows the same behaviour as the cumulative distribution graphs. The horizontal translation 

because of a difference in the found average values and the lower standard deviation of the Min. and Max. columns 

are clearly visible here.  

 

Other things worth mentioning are the areas in which both the Min. and Max. graphs show close resemblance to the 

graphs of numbers 1 and 2. In the cumulative distributions the lower standard deviation causes the steeper 

inclination by rotating the Min. and Max. curves about their average value. Due to this rotating effect the Min. curve 

(grey line) will be close to the normal curve (blue line) in the lower end of the graph and further from the normal 

curve in the higher end. The Max. curve will be further away in the lower end and closer to the normal graph in the 

higher end of the curve. This could mean that, when only looking at the tails of the distributions (i.e. the 5-percentile 

values), the Min. column could be used to give an estimation (lower bound) for the lower 5-percentile of the normal 

distribution and the Max. column could be used to give an estimation (upper bound) of the upper 5-percentile of the 

normal distribution. 

This effect can also be seen by looking at the values for the 5-percentiles in Figure 6 - Simulation of two times 1000 random 

N(100,5) numbers. Here, the first value is the lower 5-percentile and the second value is the higher 5-percentile. It can 

be seen that there is little difference between the lower 5-percentile value of the normal distribution and the 5-

percentile of the Min. values. Also the higher 5-percentile of the normal distribution is close to that of the Max. 

values. 

The 5-percentile value is calculated according to (NEN-EN 14358, 2007). In this norm a formula is given by which the 

5-percentile value of a normal distribution can be calculated. This formula is the following: 

 

 𝑥𝑘 = �̅� ± 𝑘𝑠 ∗ 𝜎 (5) 

 

In this formula �̅� is the expectancy of the normal distribution and σ is the standard deviation. The factor 𝑘𝑠 is 

determined by the amount of test data that is available. The norm employs a confidence level of 75%. Meaning that 

for any number of test series the 5-percentile value for 75% of all series will be equal to (or higher) than 𝑥𝑘. So when 

very little test data is available the factor 𝑘𝑠 will have to be larger in order to be confident that 75% of all batches of 

test specimens have a 5-percentile value equal to or higher than 𝑥𝑘. The values for 𝑘𝑠 prescribed by the norm are 

given in Figure 10 - ks values. 
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Figure 10 - ks values (NEN-EN 14358, 2007) 

In the table above can be seen that the value for 𝑘𝑠 used to determine the 5-percentile value increases significantly 

for a small number of tests. For a number of 30 test specimens and up the value is relatively stable. To examine the 

effect of this larger value for 𝑘𝑠 and to access whether or not it would be possible to say something about the 5-

percentile value of all connections with measurements based solely upon the values from the Min. column, another 

simulation was run. This simulation represents exactly the tests that are done during this research. Each test 

specimen in this research consists of two connections (‘Number 1’ and ‘Number 2’) with a capacity that is normally 

distributed. Every specimen variant was tested a total of 5 times. Since the weaker connection breaks first, only the 

lower of the two capacities can be measured. These values are represented by the Min(1,2) column. The results of 

one of these simulations are shown in Figure 11 - Simulation of two times 5 random N(100,5) distributed numbers. 

 

 

 
 

Figure 11 - Simulation of two times 5 random N(100,5) distributed numbers 

In the figure the same values are displayed as for the earlier ran simulation using 1000 random numbers.  

The average values of all columns are again listed on the first row. From a comparison can be seen that, even though 

only a small number of tests was performed, the found average capacities ‘Ave Min(1,2)’ are only slightly lower than 

the actual average capacity ‘Ave(1,2)’. This also holds for other simulations ran using the same model.  

When looking at differences in the 5-percentile values the gap between the numbers can still be considered small. 

The difference between the 5-percentile of the normally distributed numbers 1 and 2 and the 5-percentile of the 

Min. column (lower value) and the Max. column (upper value) are given in the form of percentages next to the 5-

Randomly generated normally distributed N(100,5) numbers MU 100 Sigma 5

Number 1 Number 2 Min(1,2) Max(1,2) Ave(1,2) Ave Min(1,2) Ave Max(1,2)

0.001 100.74 102.16 100.74 102.16 96.51 94.98 -1.59% 98.04 1.59%

0.002 90.57 88.30 88.30 90.57

0.003 97.29 95.02 95.02 97.29 StDev(1,2) StDev Min(1,2) StDev Max(1,2)

0.004 102.72 97.41 97.41 102.72 4.77 4.64 4.89

0.005 93.43 97.46 93.43 97.46

COV(1,2) COV Min(1,2) COV Max(1,2)

0.05 0.05 0.05

5-perc(1,2) 5-perc Min(1,2) 5-perc Max(1,2)

84.76 83.56 -1.42% 86.01

108.25 106.39 110.06 1.67%

Kurt(1,2) Kurt Min(1,2) Kurt Max(1,2)

-0.68 0.45 0.50

Skew(1,2) Skew Min(1,2) Skew Max(1,2)

-0.38 -0.40 -0.87
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percentile values. Since the simulation is only based on 5 test specimens, the shown percentage will, of course, vary 

somewhat when a new simulation is run. By doing a number of simulations could be seen that the difference 

between these 5-percentile values averages around 2% and the difference in the average values of the columns 

averages around 2.5%.  

 

The difference between the average values and the standard deviations of symmetrically loaded specimens was also 

researched by Van Douwen et al. (1958) at the Stevin laboratory at TU Delft. They found that in an experiment where 

always the lower of the two values is found and the test results can be assumed normally distributed (as shown by 

the simulation from Excel), the following relations apply (Van de Kuilen, J.W.G., Blass, H.J, 2004): 

 

 𝑥1 = 𝑥2 + 𝑐1 ∗ 𝜎2 (6) 

 𝜎1 = 𝑐2 ∗ 𝜎2 (7) 

 

In these relations 𝑥1 and 𝑥2 are the average of the whole and tested population, 𝑐1 and 𝑐2 the correction factors for 

the mean and standard deviation and 𝜎1 and 𝜎2 are the standard deviations of the whole and tested population. 

For symmetrically loaded specimens the correction factors are 𝑐1 = 0.68 and 𝑐2 = 1.21 (Van de Kuilen, J.W.G., Blass, 

H.J, 2004). Using these values for the correction factors, the average and standard deviation of the Min. column of 

the Excel simulation can be adjusted to approximate the average and standard deviation of the original distributions. 

The given relations shall be used to determine the average capacity and standard deviation of all bamboo 

connections from the found test results. 
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