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Abstract
Diagnosing nozzle faults in high-end industrial printers, such as the ones

developed by Canon Production Printing (CPP), remains challenging due

to the interplay of fluid dynamics and mechanical actuation. These systems

rely on self-sensing signals that are often subtle and nonlinear, complicating

both detection and interpretation. However, accurate and timely diagnosis is

essential to maintain print quality, minimize waste, and reduce maintenance

effort. This thesis investigates hybrid fault diagnosis methods that integrate

model-based and data-driven techniques to improve detection reliability and

generalization, particularly for piezoelectric inkjet systems. Traditional fault

detection approaches in this context often rely on rule-based thresholds applied

to features extracted from self-sensing signals. Although these methods can be

effective, they are typically sensitive to variations in operating conditions. In

contrast, model-based techniques use simplified system dynamics to generate

residual signals that reflect deviations from expected behavior. In this thesis,

we propose a hybrid framework that addresses the Fault Detection and Isolation

(FDI) problem from a frequency domain perspective. By learning from signal

characteristics, the method avoids the need for manually defined thresholds

and predefined reference signatures. Instead, it uses classifiers trained to dis-

tinguish between different fault types and improve the adaptability to unseen

cases. Building on this framework, the second part of the thesis addresses

Fault Estimation (FE), aiming to reconstruct how faults evolve over time. A

linear model-based estimation scheme is developed in both discrete-time and

continuous-time forms. Even though this approach simplifies certain nonlinear

dynamics, it provides useful fault tracking results, particularly for moderate

fault levels. The evaluation on synthetic datasets shows that the proposed FDI

and FE methods offer interpretable and reasonably accurate results. However,

challenges remain when applied to physics-based data, particularly due to

nonlinear effects, variable initial conditions, and numerical sensitivity.

Keywords— Fault Detection and Isolation (FDI), Fault Estimation (FE),

Piezo Self-sensing, Inkjet Printing, Frequency Domain, Model-based Diagno-

sis, Nozzle Failure.
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List of Symbols

This section provides a comprehensive list of the mathematical symbols and nota-

tions used throughout this thesis. Each symbol is accompanied by a brief description

of its meaning or role in the context of the analysis.

Symbol Description / formulation

Vr, Vn Volume of the restrictor and nozzle, respectively.

V̇r, V̇n Flow rate through the restrictor and nozzle.

V̈r, V̈n Rate of change of flow rate (i.e., fluid acceleration) in the restrictor and nozzle.

u Input voltage applied to the actuator.

b Actuator constant representing voltage-to-flow influence.

ρ Density of the ink.

µ Dynamic viscosity of the ink.

Lr, Ln Lengths of the restrictor and nozzle.

Ar, An Cross-sectional areas of the restrictor and nozzle.

Vch Volume of the ink channel.

c Speed of sound in the ink.

Bact Compliance of the actuator (often given by manufacturer).

Ir, In Inertance of the restrictor and nozzle; represents resistance to changes in flow
due to fluid inertia. Which can be approximated as:

Ir = ρLr

Ar
, In = ρLn

An
,

Rr, Rn Fluidic resistance of the restrictor and nozzle, based on fluid viscosity and
geometry. Which can be approximated as:

Rr = 8µLr

πr4
n

, Rn = 8µLn

πr4
n

Bt Total compliance of the system (actuator + compressible ink volume). Which
can be approximated as:

Bt = Bact + Vch

ρc2

Table 1: Symbol definitions and descriptions of physical model of CPP printers
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1 Introduction

Fault diagnosis plays a critical role in ensuring the reliability and safety of mod-

ern engineering systems, particularly as equipment becomes increasingly complex

and industries demand higher levels of operational dependability. Early diagnosis

of faults is crucial to minimize downtime, reduce maintenance costs, and prevent

catastrophic failures. This importance is particularly evident in control and sys-

tems engineering, where faults in sensors, actuators, or processes can significantly

degrade system performance or compromise safety.

The combination of model-based and data-driven fault diagnosis methods has emerged

as an effective approach for identifying root causes, facilitating predictive mainte-

nance, and extending the operational life of critical assets. High-end industrial

printers developed by Canon Production Printing (CPP) face challenges in detect-

ing and isolating nozzle failures in ink channels, a crucial factor in maintaining print

quality and operational efficiency.

CPP, a subsidiary of Canon located in Venlo, The Netherlands, specializes in ad-

vanced industrial printing systems [1]. As part of the NWO Digital Twin program

[2], this thesis explores a hybrid fault diagnosis framework that integrates data-

driven techniques with physical models. The objective is to support proactive and

automated health management in high-precision printers.

CPP employs high-precision inkjet technology in its printers to ensure exceptional

print quality and accuracy. More broadly, high-precision inkjet technology enables

the deposition of materials such as inks, polymers, and biomaterials with remarkable

precision at the micron or nanometer scale [3]. This capability allows for uniform

deposition, consistent layer thickness, and precise placement of materials [3].

Beyond printing, high-precision inkjet technology is applied in various fields, includ-

ing electronics, medicine, and bioprinting. Examples include thermal inkjet technol-

ogy used in personalized medicine [4], nanostructured thin films and inkjet-printed

micro-electrodes for sensing applications [5], and complex 3D biological structures

in tissue engineering [6].

Despite these advancements, fault detection and quality assurance in printing sys-
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1 Introduction 2

tems remain a challenge. Traditional approaches, such as visual inspection and test

charts, are still widely used. Although effective to some extent, these methods often

delay fault detection and contribute to material waste.

Such inefficiencies arise from the time-consuming process of analyzing printed test

patterns and physical limitations, such as the need to position a scanner module

downstream of the printheads to detect errors after printing [7, 8].

These delays increase material waste in two ways: test charts consume ink and

media without contributing to the final product, and late fault detection leads to

accumulation of defective prints, which must be reprinted.

Piezoelectric actuators play a critical role in modern drop-on-demand (DoD) inkjet

printing systems. When equipped with the appropriate sensing circuitry, these ac-

tuators can be used not only for actuation but also as self-sensing elements, allowing

real-time monitoring of the jetting process and early detection of nozzle faults [9].

Techniques such as Piezo Actuator leverage this self-sensing capability to identify

failures such as air bubble entrapment, electrical faults, or nozzle blockages, without

relying on external imaging systems. This allows for faster fault detection and

compensation, helping to maintain image quality and reduce downtime. However,

challenges remain in interpreting self-sensing signals and linking signal anomalies to

the physical causes of faults. These challenges motivate the development of more

intelligent and robust fault detection methods for next-generation printing systems.

Beyond printing, piezoelectric self-sensing has been applied in various domains for

structural health monitoring and fault detection. Examples include detecting avian

influenza viruses [10], assessing concrete beam conditions [11], monitoring aerospace

structures [12], and identifying damage in 3D textile composites [13]. In many of

these systems, piezo signals are converted into the frequency domain to extract

diagnostic parameters using threshold-based methods or advanced neural networks.

Piezoelectric self-sensing devices are also widely used in wearable electronics to mon-

itor health by tracking heartbeat, blood pressure, and muscle activity, helping with

fitness and medical diagnosis [14, 15]. They support environmental monitoring by

detecting air and water pollutants, especially in remote or harsh environments, with-

out requiring external power [15]. Vibration-based energy harvesting is increasingly
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1 Introduction 3

used in wearable and implantable Internet of Things (IoT) devices, enabling their

deployment in smart city applications [14, 15]. In robotics, these sensors enable tac-

tile sensing and gesture recognition for human-machine interaction [14]. In medicine,

they support self-powered pacemakers that generate energy from body motion while

monitoring cardiac activity [15]. In civil engineering, they help monitor the struc-

tural health of bridges, roads, and dams, providing early warnings of stress or dam-

age [15].

In current CPP systems, fault detection primarily relies on threshold-based clas-

sification using data signals [16]. Although effective, these methods do not fully

capture the underlying physical changes associated with faults. To address this,

[17] propose integrating physical system models with piezo self-sensing signals. This

hybrid approach aims to improve the accuracy and robustness of fault detection and

classification in printer nozzles.

The current method [17] relies on manual energy-based thresholds and linear regres-

sion for fault diagnosis. This thesis builds on that work by analyzing piezo signals

in the frequency domain to extract fault-relevant features within specific frequency

bands. These features are then integrated into a hybrid classification framework.

In this approach, manual thresholding is systematically replaced by adaptive algo-

rithmic methods, with the goal of improving the precision of fault diagnosis and

addressing limitations in earlier methods.

Based on these developments, this thesis addresses the following research question.

How can the performance of fault diagnosis in high-end industrial printers be

improved by analyzing piezo self-sensing datasets using a hybrid model in the

frequency domain?

This research extends current work on fault detection and isolation [17] toward fault

estimation. The overall aim is to enhance system reliability and support real-time

applications.

This report is organized as follows: Chapter 2 introduces the CPP printing system

and defines the research problem, including a detailed overview of ink channel dy-

namics, common fault types, and the motivation for this study. A physics-based

Master of Science Thesis A. Amini



1 Introduction 4

system model is presented to support the problem formulation.

Chapter 3 (Part I) focuses on Fault Detection and Isolation (FDI). It begins with a

review of relevant literature and industrial practices, followed by the proposed FDI

methodology, frequency-domain feature evaluation, performance analysis, and both

simulation and experimental results. The chapter is followed by a transition chapter

4.1 that introduces the shift from fault detection to fault estimation.

Chapter 4 (Part II) addresses Fault Estimation (FE). It presents a literature review,

describes current methods, and introduces the proposed estimation technique, which

is evaluated using simulation and experimental data.

Chapter 5 summarizes key contributions from both parts of the study, while Chap-

ter 6 presents the final conclusions and discusses the broader implications of this

research. Future work directions are also outlined. Supplementary results and ex-

tended metrics are included in Appendices.

Master of Science Thesis A. Amini



2 Problem Statement 5

2 Problem Statement

Canon Production Printing printers, such as the varioPRESS iV7 series, are equipped

with advanced components designed for industrial-scale precision and efficiency. Key

parts include the print belt, ink supply system, and printheads. Each printhead con-

tains thousands of ink channels, allowing high-quality and detailed output for pro-

fessional applications. These ink channels, shown in Figure 1, are the fundamental

units of the printing process and are crucial for consistent performance and reliabil-

ity [18, 19]. They are the primary focus of this study and are hereafter referred to

as the system.

Figure 1: The printer is broken down into parts, with each part being smaller and
located within the one to its left. The ink channel, which is the smallest part,
is further divided into subcomponents, whose names are provided. The sequence
indicates approximately how many of each subsequent component are contained
within the preceding one. One printer contains hundreds of thousands of nozzles,
each of which must be evaluated multiple times per second, highlighting the massive
scale and complexity of the data involved [18, 19].

2.1 Ink Channel Dynamics and Faults

Each ink channel is connected to an Ink Inlet Channel that supplies ink. Ink flows

from the Ink Inlet Channel through a restrictor and into the ink chamber. A piezo-

electric actuator, controlled by the printhead electronics, then moves the ink from the

chamber through the nozzle. When an electrical charge is applied to the actuator,

it deforms, changing the volume of the ink chamber. This mechanical deformation

generates a controlled pressure wave that expels a droplet [20].

Following actuation, residual mechanical oscillations remain in the ink chamber.

In turn, these left over oscillations after exciting the ink in the chamber, deform

the piezo actuator, generating a small current that can be monitored to assess the
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2 Problem Statement 6

health of the system. In this study, the resulting electrical signal is referred to as

the self-sensing signal, which provides valuable insight into the internal dynamics

of the ink channel. By monitoring these signals, it is possible to evaluate the health

of the jetting process and detect common faults such as air bubble entrapment or

nozzle blockage.

The printing process is highly precise, with droplet placement resolutions reaching

up to 1200 dots per inch (DPI), corresponding to a spacing of approximately 21µm

between droplets. After actuation, the piezoelectric actuator functions as a sensor

by measuring the flow conditions in the ink chamber. These measurements generate

self-sensing signals that are essential for monitoring the performance and reliability

of the system.

Although ink channels are engineered for high precision and reliability, they remain

susceptible to certain faults. These include:

• Electrical faults: such as short circuits, open circuits, or poor electrical

contacts within the piezo actuator or sensing components.

• Nozzle faults: for instance, air bubbles, dirt particles, or dried ink can cause

partial or complete blockages [21]. Dirt particles may become trapped in the

ink chamber, creating air bubbles in the nozzle. A partially dried ink layer on

the nozzle plate can also lead to air entrapment [22].

These faults degrade print quality, resulting in visible defects such as ink splashes

or unprinted areas (white lines) [23]. Nozzle-related faults are not only the most

common but also the most relevant from both control and maintenance perspectives.

In contrast to electrical faults, which are often permanent, nozzle faults are typically

repairable.

As a result, this research focuses on nozzle faults, as they represent a category

of failures where diagnostic insights can enable meaningful corrective actions. A

detailed classification of the faults considered in this study is provided in Appendix

A.

An effective fault diagnosis is essential to maintain high print quality, reduce waste,

and control operational costs. Additionally, consistent output enhances user satis-
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2 Problem Statement 7

faction and contributes to the competitiveness of the technology. Early detection,

isolation, and estimation of faults enable the system to compensate for failed nozzles

and maintain stable performance.

2.2 Motivation, Challenges, and Objectives

CPP’s industrial printing systems operate at an exceptional scale and speed, with

hundreds of thousands of nozzles evaluated at microsecond intervals. This oper-

ational complexity presents a diagnostic challenge, particularly in detecting and

responding to faults with sufficient accuracy.

One of the most promising opportunities lies in the use of piezoelectric actuators as

self-sensing elements. These actuators, which already serve as the system’s means

of droplet ejection, also produce measurable electrical signals during their recovery

phase. These self-sensing signals reflect the internal dynamics of the ink channel

and can, in principle, support real-time monitoring without the need for additional

hardware. However, interpreting these signals in a generalizable and robust way,

especially under realistic operating conditions, remains a significant challenge.

At the same time, practical incentives drive the need for improved diagnostics. The

most common faults are those affecting the nozzles, which are typically not perma-

nent and can often be resolved through compensation or cleaning. Unlike electrical

faults, nozzle faults are generally recoverable if detected early. This creates a strong

case for developing diagnostic systems capable of identifying such faults in real time.

Existing methods for fault detection primarily rely on external inspection tools

such as test charts or downstream scanners. These techniques are not only time-

consuming but also reactive in nature; faults are detected only after they have af-

fected the printed output. Moreover, the inspection process itself consumes material

and introduces waste. These inefficiencies further highlight the potential benefit of a

model-informed, signal-based diagnostic approach that can anticipate faults before

visible defects occur.

To address these issues, this thesis aims to develop a comprehensive diagnostic

framework that performs fault detection, isolation, and estimation (FDI+E) for

CPP systems using piezoelectric self-sensing signals. The research is guided by the
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2 Problem Statement 8

following objectives:

• Fault detection: Identify whether a given measurement corresponds to a

healthy or faulty state (binary classification).

• Fault isolation: Determine the type of fault present once a faulty condition

is detected (multi-class classification).

• Fault estimation: Track the evolution of the fault over time and assess its

severity.

Achieving these objectives presents several technical challenges:

• Small Time and Space Scales: The system operates on microsecond time

scales and micrometer spatial dimensions, complicating both data acquisition

and real-time analysis [24].

• Same Sensor and actuator: The piezoelectric element serves as both the

actuator and the sensor. As illustrated in the plot below, during the actuation

phase, an input signal is applied to the system; however, the output signal

cannot be acquired at that moment due to the element’s dual function. After

this, there is a short delay, and then the actuator switches to sensing mode.

At that point, it can detect and record the system’s response. This sequen-

tial operation prevents simultaneous access to input and output data, which

introduces limitations and increases the complexity of system identification.

Input
Output

Figure 2: Schematic illustration of the sequential operation of the piezoelectric ele-
ment, which alternates between actuation and sensing. The plot conceptually out-
lines three distinct phases: actuation, a brief transition delay, and sensing. This
figure is intended for illustrative purposes and does not depict measured data.

• Absence of a System Model: No system model is available at the start.

The system must be modeled directly from data as part of the diagnostic

process.
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2 Problem Statement 9

Despite these challenges, this research benefits from access to a large set of simulated

data, labeled according to known fault classes. Such data enables the development

and validation of supervised learning methods under controlled conditions. In con-

trast to real-world scenarios, where the cause of a fault is often identified only after

the fault has occurred, simulation provides ground truth that facilitates the extrac-

tion of discriminative features and the evaluation of classification performance.

Once the proposed methods demonstrate sufficient accuracy on simulated data, they

are applied to real-world measurements. In selected cases where the presence of spe-

cific faults is known with high confidence, performance is evaluated to assess general-

izability. Demonstrating consistent behavior across both domains builds confidence

in the method’s robustness and supports its potential for use in production environ-

ments.

2.3 Physics Based Model

As discussed previously, one of the key challenges in fault diagnosis for CPP printers

is the absence of an established physical model for the ink channel. To address

this limitation, a simplified model of the ink channel dynamics is constructed as a

foundation for the proposed hybrid diagnostic framework.

This study builds on prior modeling efforts, particularly the work in [17], which

provides a baseline mathematical representation of the ink channel behavior. The

model captures the dynamics of ink flow within the system, driven by a piezoelec-

tric actuator and constrained by the geometry and material properties of internal

components.

The governing differential equations are shown below. These describe the relation-

ship between ink volume changes and input voltage, taking into account inertial,

resistive, and compressibility effects within the restrictor and nozzle regions.

InV̈n + IrV̈r = −2(Vr + Vn − bu)
Bt

− RrV̇r − RnV̇n

InV̈n + RnV̇n = IrV̈r + RrV̇r

(1)

A schematic of the ink channel structure is presented in Figure 3, illustrating the
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2 Problem Statement 10

key components, namely, the restrictor, ink chamber, piezo actuator, and nozzle.

The variables used in the equations correspond directly to these physical elements.

Figure 3: Schematic of the ink channel system, highlighting key physical components
and their correspondence to the parameters used in the dynamic model.

In these equations, Vr and Vn denote the fluid volumes at the restrictor and nozzle,

respectively. The first and second derivatives of these volumes with respect to time

represent flow rate and flow acceleration. The parameters Ir and In capture the

inertial properties of the fluid, while Rr and Rn represent resistive effects due to

fluid viscosity and channel geometry. These parameters are derived from standard

fluid mechanics formulations.

The system’s compliance is modeled by combining the compressibility of the ink

and the flexibility of the actuator (Bact) into a single term, Bt. The input signal, u,

represents the voltage applied to the actuator, and its contribution to the chamber

volume change is scaled by the constant b. A complete list of model parameters,

along with their physical interpretations and approximate expressions, is provided

in Table 1.

Based on (1) the dynamic behavior of the system can be represented in state-space

form, with the corresponding state-space matrices defined as follows:

To support simulation, analysis, and control design, the differential equations (1)

are converted into a state-space form. The resulting system of first-order equations
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is expressed as:



V̇r

V̇n

V̈r

V̈n
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0 0 1 0

0 0 0 1
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IrBt
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0

− 1
InBt

1
InBt

0 −Rn

In
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A



Vr

Vn

V̇r

V̇n


︸ ︷︷ ︸

x

+



0

0
b

IrBt

b
InBt


︸ ︷︷ ︸

Bu

u,

y =
[
0 0 c c

]
︸ ︷︷ ︸

C



Vr

Vn

V̇r

V̇n


︸ ︷︷ ︸

x

(2)

This state-space model provides a compact and analytically tractable representation

of the system dynamics. It forms the basis for designing model-based filters and

generating residuals used for fault diagnosis. The following chapters build on this

model to develop and evaluate the proposed diagnostic framework.
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3 PART I – Fault Detection and Isolation (FDI)

This part of the thesis presents the design, implementation, and evaluation of a

FDI framework for piezo-based industrial printing systems. The aim is to develop a

reliable and interpretable method that can identify and distinguish between different

types of faults using piezo self-sensing signals. This section includes a review of

existing methods, a proposed hybrid approach, methodological details, performance

analysis, and experimental validation.

3.1 Literature Review and Existing Solutions

Several methods have been proposed for fault diagnosis in high-end industrial print-

ing systems. Traditionally, quality assurance has relied on visual inspection tech-

niques using dedicated test charts. Although widely adopted in practice, these ap-

proaches introduce significant delays in detecting faults and often lead to increased

material waste. The delay arises for two main reasons: (1) analyzing printed test

patterns is time-consuming, and (2) scanner modules are physically located down-

stream of the printheads, introducing latency between fault occurrence and detection

[7, 8].

Test charts also consume ink and media without contributing to the final printed

product. Moreover, delayed detection means that more defective prints are produced

before corrective action is taken. These prints must be discarded and reprinted,

which increases ink, substrate, and energy consumption, ultimately affecting the

overall productivity and sustainability of the printing process.

To mitigate these issues, recent work has explored signal processing-based methods

that utilize piezo self-sensing signals [16]. In these methods, key performance indica-

tors (KPIs) are typically extracted in the frequency domain, and faults are detected

using threshold-based techniques.

Although this self-sensing approach enables real-time monitoring and reduces re-

liance on external scanners, it does not provide a complete picture of printing per-

formance. The signals primarily capture the dynamics within the ink channel and

do not reflect how the ink behaves on the substrate, which may be influenced by
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3 PART I – Fault Detection and Isolation (FDI) 13

external factors such as airflow or material absorption. As a result, self-sensing ap-

proaches are often combined with traditional test charts to validate print quality.

However, this combined solution has its own limitations:

• Lack of a Physical System Model: Without a dynamic model of the

system, it is difficult to generalize this method in varying operating conditions

or predict how faults might develop over time. This limits its applicability for

more advanced diagnostic tasks such as fault estimation, areas where model-

based approaches excel.

• Sensitivity to Thresholds: The reliance on fixed parametric thresholds

makes the system sensitive to changes in operating conditions, such as tem-

perature variations, ink properties, or aging actuators. This can result in false

positives or missed detections.

Beyond these methodological limitations, CPP printers also present unique struc-

tural challenges. A particularly important one is the absence of simultaneous input-

output data, which complicates system identification.

This issue stems from the dual role of the piezoelectric actuator in CPP systems, it

acts both as an actuator and as a sensor. During operation, the system is excited

by a short trapezoidal pulse, and only after the pulse ends does the sensor start

recording the response. Because input and output are not measured simultaneously,

it is difficult to apply standard identification techniques that depend on synchronized

data.

To address some of these limitations, recent research by [17] proposes a hybrid ap-

proach that combines model-based and data-driven techniques for fault diagnosis.

This method takes advantage of both domains: Incorporating a theoretical model

of the inkjet system dynamics while simultaneously utilizing real-time self-sensing

signal data. By merging these two sources of information, the method improves

both the accuracy and the robustness of fault detection.The proposed filter is com-

putationally efficient, capable of processing signals in real time, and scalable for

deployment in systems where direct observation is not feasible.
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Since the system lacks available input data during actuation, it is modeled as au-

tonomous in [17], meaning that input signals are not explicitly required. However,

this shifts the challenge to estimating the initial system state, which varies from

measurement to measurement. To approximate the initial state, key parameters,

such as amplitude, frequency, damping, and phase, are extracted from the signals.

These features are then used to reconstruct the initial flow rate and volume. By av-

eraging across multiple measurements, a noise-reduced and representative estimate

of the initial state is obtained.

The piezo self-sensing signal, which is linearly related to the flow rate, enables signal

analysis without converting it into physical quantities, provided the scaling remains

consistent. The complete FDI pipeline is shown in Figure 4.

Figure 4: Overall configuration of the FDI filter, combining model-based residual
generation with data-driven [17].

To establish a suitable model of the system, a grey-box system identification is

performed using real measurements from CPP printers. The identified model forms

the basis for constructing a residual generator, which distinguishes between healthy

and faulty operation. This residual remains near zero during normal operation and

deviates in response to faults. Fault detection is then carried out by applying a

manually defined energy threshold to the residual signal, as illustrated in Figure 5.
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Figure 5: Fault detection process using the model-based residual signal. The offline
section illustrates how the energy threshold τ is determined, which is then applied
to detect faults in the output signal y [17].

The same residual is used in the regression-based fault isolation (FI) step. Here, the

residual from an incoming signal is compared to a set of reference residuals associated

with known fault types. A linear regression model quantifies the similarity, assigning

probabilities to each candidate fault. The fault class with the highest probability is

selected. This procedure is summarized in Figure 6.

Offline

Figure 6: Schematic overview of the design and implementation of FI filter. Residual
signals are compared to reference fault signatures using linear regression [17].

This hybrid framework integrates the robustness of model-based design with the

adaptability of data-driven analysis. It helps address key challenges in CPP sys-

tems, such as autonomous modeling and initial state estimation. However, the

method continues to face several limitations, particularly in fault isolation perfor-

mance across all fault types. Its reliance on manually tuned thresholds and refer-

ence datasets restricts the system to a small number of predefined fault classes and

known fault patterns. In practical applications, only a limited subset of fault types
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is included in the fault isolation module, and the overall accuracy varies between

different fault categories.

The objective of this research is to extend the existing approach by addressing these

shortcomings. Specifically, it aims to improve the generalizability and scalability

of fault isolation by reducing dependence on offline fault signatures and manually

defined thresholds. The goal is to support more fault types and enable FDI under

a wider range of conditions. In doing so, the proposed method seeks to improve

diagnostic speed and consistency while reducing reliance on prior knowledge.

3.2 Proposed Solution

This section presents a hybrid framework that integrates model-based and data-

driven techniques to improve FDI in piezo-based printing systems. The proposed

approach aims to address known limitations of existing methods by combining a

time-domain model of the system dynamics with frequency-domain analysis of fea-

tures extracted from the output signals.

This dual-domain strategy offers two main advantages. First, it eliminates the need

for manually tuned, energy-based thresholds commonly used in traditional fault

detection. Second, it removes the dependency on pre-computed residuals associated

with specific, known fault classes.

For the classification and isolation of faults, two machine learning algorithms are

used: K-Nearest Neighbors (KNN) [25] and Random Forest [26], both of which

are well-established in the machine learning literature. These classifiers operate on

frequency-domain features derived from the system’s output signals. By avoiding

fixed thresholds and pre-defined reference datasets, the method shows greater po-

tential to generalize to previously unseen fault types, which is particularly valuable

in real-time industrial applications where operating conditions may vary.

To enhance the framework’s adaptability, multiple feature extraction methods are

evaluated. Additionally, a comparative analysis is conducted between using raw

output signals and residual signals as classifier inputs. The aim is to identify the

configuration that yields the most reliable fault diagnosis performance under realistic

industrial scenarios.
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3.3 Methodology and Results

This section describes the methodology used to evaluate the proposed hybrid FDI

approach and presents results comparing classification performance based on raw

signals and model-based residuals.

Figure 7 provides an overview of the experimental process used to generate the

datasets for training and evaluation. The process begins with the extraction of Key

Performance Indicators (KPIs) from raw simulation data (Box 1). In total, seven

KPIs are computed: DC Offset, Dominant Frequency, Damping Ratio, Amplitude,

Phase, Energy, and Magnitude.

Figure 7: Overview of the data generation and processing pipeline for FDI exper-
iments. Raw signals are processed using a feature extraction method proposed by
CPP [16]. Residual filters are then applied to generate a second dataset based on
residual signals. This results in two datasets: one using features from the raw signal
(KPI_Y), and one from the residuals (KPI_R).

The feature extraction method used in this study is based on the approach proposed

by [16], which assumes that the input signals are primarily sinusoidal. Accordingly,

the method extracts features that characterize periodic behavior. It does not capture

non-sinusoidal patterns such as transients, noise bursts, or other irregularities. As

a result, the method is most effective when the measured signals, and by extension,

the residuals, exhibit predominantly sinusoidal characteristics, which may not hold

true under all real-world fault conditions.

In this context, the assumption of sinusoidal behavior is considered reasonable. Ac-

cording to technical input from Canon, the faults of interest in the targeted printing

systems tend to produce self-sensing signals with sinusoidal structure. Additionally,
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the residual filters are designed with imaginary poles to promote the generation of

sinusoidal residuals. Therefore, the feature extraction approach is well aligned with

the nature of both the raw and residual signals observed in this application.

In the next stage of the process (Box 2), model-based filters are applied to the

raw signals, and KPIs are extracted from the resulting residual trajectories. This

yields two datasets: KPI_Y, based on features from raw signals, and KPI_R, based

on residuals. These datasets are evaluated and compared in Section 3.3.1 to assess

their effectiveness for fault classification.

3.3.1 Comparison of Raw and Residual Data for Classification

This section compares classification performance using features extracted from raw

signals versus those from residual signals. Two machine learning algorithms, KNN

and Random Forest, are applied to evaluate which combination of data representa-

tion and classifier yields the highest accuracy for FDI.

Table 2 summarizes the results. For the fault detection(FD) task, the dataset in-

cludes only faulty and healthy signals. The fault isolation(FI) task includes the

healthy class as well. This inclusion is intentional, as the objective is to evaluate

FDI in a single step. The classifier is expected to determine whether a signal is faulty

and, if so, assign it to the corresponding fault class. This integrated FDI setup sim-

plifies computation and enables faster, more efficient decision-making features that

are valuable in real-time systems.

The dataset design ensures class balance and supports a fair comparison of model

performance across classifiers and input representations.
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Signal Type
FD Accuracy (%) FI Accuracy (%)

KNN Random Forest KNN Random Forest
KPI_Y 98.22 99.32 88.30 94.36
KPI_R 94.42 94.16 79.33 78.53

Dataset (Simulation)

Number of Healthy Samples 2,500 500
Number of Faulty Samples 2,500 250 per class
Number of Fault Classes 10 10

Total Samples 5,000 3,000

Table 2: Classification accuracy for FD and FI using raw signals (KPI_Y) and residual
signals (KPI_R), evaluated with KNN and Random Forest. Results are reported for
simulation datasets, along with dataset structures.

As shown, both classifiers perform well, especially with features derived from raw

signals. The best FD accuracy of 99.32% and FI accuracy of 94.36% are achieved

using Random Forest on KPI_Y.

These results suggest that raw signals retain more relevant information than residual

signals, enabling more accurate classification in both FD and FI tasks. Full confusion

matrices and additional performance metrics are provided in Appendix B.

In the classification setup, faulty nozzles are defined as the positive class, while

healthy nozzles are treated as negative. This aligns with typical fault detection

conventions, where the presence of a fault triggers a positive prediction.

From an operational perspective, CPP prefers minimizing false negatives, even at

the cost of increasing false positives. A false negative, misclassifying a faulty nozzle

as healthy, can lead to undercompensation, producing a visible white line in the

printed output. In contrast, a false positive results in overcompensation for a healthy

nozzle, which may introduce a slightly darker line, typically less noticeable and more

acceptable to end users [27].

For this reason, a conservative strategy that favors false positives helps maintain

higher perceived print quality. The classifier behavior observed in this study sup-

ports this preference, with the false negative rate remaining low across most fault

categories.

In particular, the Random Forest model trained on KPI_Y performs well for FD .

It achieves an F1-score of 99.32% for the fault class, with low false positive and
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false negative rates. In FI, Most fault types are classified with accuracy above

93.00%, including Empty Channels, Fully Blocked Nozzles and Deeply Dried Nozzle,

which are identified perfectly. A drop in F1-score is observed for subtle faults like

Partially Blocked and Intermediately Dried Nozzles, though overall accuracy remains

acceptable.

These findings support the use of raw signal features for nozzle fault classification

and confirm that the approach offers robustness across a range of fault types.

It is important to note that, in real-world settings, fewer than 1% of all measured

signals are faulty. However, because industrial systems often include tens or hun-

dreds of thousands of nozzles, the likelihood of encountering faults during regular

operation is high. For example, with 100,000 active nozzles, even a fault probability

of 0.001% per nozzle leads to frequent fault occurrences at the system level. In this

context, the ability to isolate these rare faults with high precision becomes highly

significant, as it ensures minimal disruption and supports confident decision-making

in the diagnosis of nozzle faults.

Once a faulty nozzle is identified, compensation is performed immediately by ac-

tivating neighboring nozzles to cover the affected area. Although compensation

is initiated regardless of the specific fault type, identifying the root cause is still

valuable. It supports long-term maintenance decisions such as cleaning or nozzle

deactivation when needed.

A further discussion of the residual signal dataset and its limitations follows in the

next section.

3.4 Performance Analysis

This section examines the factors contributing to the lower classification performance

observed when using residual-based features compared to raw signal features. By

analyzing the frequency content of residual signals using Fast Fourier Transform

(FFT), the goal is to assess whether relevant information is lost during residual

generation and how this affects FD. Additionally, the analysis explores which fault

classes benefit more from either raw signals, residuals, or both, thereby clarifying

the complementary strengths of each approach.
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To evaluate frequency-domain characteristics, it is essential to understand how dom-

inant frequency features are extracted and integrated into the KPI datasets. Figures

8 and 9 present a representative raw signal and its FFT spectrum. The dominant

frequency, as shown in the spectrum, is included as one of the KPIs in the dataset.

Figure 8: Time-domain plot of a randomly
selected raw signal and its corresponding
KPI_Y.

Figure 9: FFT spectrum of signals
shown in Figure 8, showing the ex-
tracted dominant frequency used as a
KPI.

The comparison of the raw signal and its extracted version, KPI_Y, shows that the

reconstructed signal retains the main structure of the original. In the time domain,

this similarity reflects that the signal is primarily composed of a single dominant

frequency component. In the frequency domain, this becomes clearer, as most of

the spectral energy is concentrated around a single peak. This confirms that the

KPI extraction method, adapted from the approach in [16], focuses on dominant

frequency content and assumes that signals are predominantly sinusoidal.

3.4.1 Improving Classification via Filter and Frequency Analysis

This section investigates the limitations observed in the residual-based dataset and

outlines a filtering strategy aimed at enhancing classification accuracy. As illustrated

in Figure 11, the confusion matrix highlights several fault classes with reduced clas-

sification performance comparing to the raw dataset (KPI_Y).

To understand the root cause of these misclassifications, Table 3 presents the mean

dominant frequencies of each fault class. The analysis indicates that the residual
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generation process removes important high-frequency content for the Empty Chan-

nel faults, which appears to limit the classifier’s ability to distinguish these classes

reliably.

In contrast, for fault classes such as Air Bubbles, Partially Blocked Nozzles, and

Dried Nozzles, the classification difficulty seems to stem from insufficiently distinc-

tive features, rather than high-frequency loss. These classes often exhibit overlap-

ping frequency characteristics, which remain challenging to separate even before

residual processing.

Figure 10: Confusion matrix for raw
dataset (KPI_Y) using KNN.

Figure 11: Confusion matrix for the
residual-based dataset (KPI_R) us-
ing the KNN classifier. Misclassified
classes are highlighted in red.

Fault Class Mean Frequency (KHz)
OK signals 237.150
Healthy Nozzle 237.170
Empty Channel1 2124.400
Empty Channel2 1423.400
Mature Air Bubble 357.450
Intermediate Air Bubble 330.780
Small Air Bubble 189.720
Fully Blocked Nozzle 166.350
Partially Blocked Nozzle 200.480
Slightly Dried Nozzle 225.130
Intermediately Dried Nozzle 212.730
Deeply Dried Nozzle 189.650

Table 3: Mean frequency (in kHz) of each fault class extracted from raw signals.
Fault classes with significantly higher frequencies,such as Empty Channel 1 and 2,
are highlighted in bold.

Master of Science Thesis A. Amini



3 PART I – Fault Detection and Isolation (FDI) 23

The red boxes in Figure 11 highlight the fault classes where the residual-based

dataset demonstrates poor classification performance. To recover critical spectral

information, a modified residual filter is introduced. This new design incorporates

additional imaginary poles targeted at three frequency ranges: (1) the dominant

frequency of Empty Channel 1, (2) the average frequency of Mature and Intermediate

Air Bubbles, and (3) the mean of Partially Blocked, Slightly Dried, and Intermediately

Dried Nozzles.

However, directly adding imaginary poles introduces instability into the filter design.

To mitigate this, a loop-shaping procedure is applied. The Bode plot is used to assess

the stability and ensure that the modified filter maintains adequate gain and phase

margins. The inclusion of proportional (K) and integral (I) terms helps achieve a

stable filter configuration suitable for practical implementation.

The results of this modification are evaluated in three ways:

1. Confusion Matrices: Figure 12 shows the confusion matrix of the original

residual-based dataset (KPI_R). Figure 13 presents the results after applying the

modified filter. The improvement in classification accuracy is especially evident for

previously underperforming fault classes.

Figure 12: Original confusion matrix
for residual-based dataset (KPI_R) us-
ing KNN.

Figure 13: Confusion matrix for mod-
ified dataset (KPI_R_Modified) using
KNN. Improved isolation is evident.

2. Bode Plots: Figures 14 and 15 show the frequency responses of the original

and modified filters. The modified design introduces the desired frequency selectivity

while preserving stability.
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Figure 14: Bode plot of the original
residual filter (KPI_R).
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Figure 15: Bode plot of modi-
fied residual filter (KPI_R_Modified).
Loop shaping ensures stability.

3. Fault Isolation Accuracy: Table 4 summarizes the improvement in classi-

fication performance for both KNN and Random Forest classifiers. The modified

residual dataset (KPI_R_Modified) achieves a notable increase in fault isolation ac-

curacy, approaching the performance of the raw dataset (KPI_Y).

Dataset FI Accuracy (%)
kNN Random Forest

KPI_Y 88.30 94.36
KPI_R 79.33 78.53

KPI_R_Modified 90.10 91.23

Table 4: Comparison of fault isolation accuracy for raw data (KPI_Y), original resid-
ual based dataset (KPI_R), and modified residual based dataset (KPI_R_Modified).

These results demonstrate that targeted filter modifications can improve the clas-

sification accuracy. The revised design brings residual-based classification closer to

the performance achieved with raw signal features, while preserving the benefits of

model-based residual generation.

3.4.2 Per-Class Analysis: Raw vs. Residual Datasets

This section compares the per-class classification performance of the raw dataset

(KPI_Y) and the modified residual-based dataset (KPI_R_Modified) using KKN clas-

sifier. The confusion matrix for the raw data appears in Figure 35 (Appendix), while

the corresponding matrix for the residual dataset is shown in Figure 13. The analy-

sis focuses on the diagonal elements of each matrix, which represent the percentage
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of correctly classified samples for each fault class. A summary is presented in Table

5.

Class CM (Correct) (%) Better Classification
Raw Data Residual

OK signals 92.80 91.60 KPI_Y
Healthy Nozzle 88.40 93.20 KPI_R
Empty Channel 1 100.0 87.20 KPI_Y
Empty Channel 2 100.0 75.20 KPI_Y
Mature Air Bubble 84.00 100.0 KPI_R
Intermediate Air Bubble 91.20 96.00 KPI_R
Small Air Bubble 97.20 96.40 KPI_Y
Fully Blocked Nozzle 100.0 100.0 The same
Partially Blocked Nozzle 78.40 80.00 KPI_R
Slightly Dried Nozzle 86.40 90.80 KPI_R
Intermediately Dried Nozzle 51.20 71.60 KPI_R
Deeply Dried Nozzle 90.00 99.20 KPI_R

Table 5: Per-class comparison of classification accuracy for raw data (KPI_Y) and
modified residual data (KPI_R_Modified) using KNN. Highlighted rows indicate
major focus of this section.

Several observations emerge from Table 5:

• Empty Channel 1 and 2 are better classified using raw data, which suggests

that important distinguishing components are not preserved in the residual

signal.

• Mature Air Bubble and other classes show improved performance with

residual-based features, likely due to the updated filter structure that better

captures their frequency characteristics.

• Fully Blocked Nozzle achieves identical performance in both datasets, in-

dicating its features are well preserved regardless of the representation.

These results highlight the trade-offs involved in using residual generation for fault

classification. Although the residual filter improves performance for several fault

types, it also introduces limitations for others by filtering out useful frequency con-

tent. The next section investigates these effects in more detail through spectral

analysis of selected classes.
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3.4.3 Impact of Frequency on Classification Performance

As illustrated in Figure 11, the residual-based dataset shows limited classification

performance for certain fault classes, particularly those highlighted in red. To in-

vestigate this relationship more closely, three representative fault types and their

corresponding mean frequencies are selected for further analysis: Empty Channel 1

(2124.4 kHz), Mature Air Bubble (357.5 kHz), and Fully Blocked Nozzle (166.4 kHz).

These cases reflect distinct classification patterns and help explore how frequency

content influences model performance.

The spectral analysis reveals different behaviors across these faults when comparing

raw and residual signals. For the Empty Channel 1 fault, the raw signal exhibits

dominant peaks around 2031 kHz and 2246 kHz, closely surrounding the expected

mean. In contrast, the residual signal shows a dominant peak at approximately

215 kHz, suggesting that significant high-frequency content is lost during residual

generation. This frequency shift likely contributes to the reduced classification ac-

curacy observed for this class in the residual-based dataset.

For the Mature Air Bubble fault, the residual signal retains a dominant frequency

around 215 kHz, which remains reasonably close to the expected 357 kHz. Mean-

while, the raw signal spans a broader frequency range (roughly 293–410 kHz), which

may dilute class-specific features. In this case, the more focused spectral content of

the residual signal appears to support improved classification.

In the case of the Fully Blocked Nozzle fault, both datasets show dominant peaks

near the expected fault frequency, 176 kHz in the raw data and 215 kHz in the

residuals. As a result, both representations yield similar classification performance.

Overall, these findings illustrate how the preservation or distortion of fault-specific

frequency components directly influences the classification success of different faults.

Additional spectra and figures supporting these observations are provided in Ap-

pendix D.
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3.4.4 Summary

This analysis shows that classification performance in fault diagnosis closely depends

on the spectral properties of the input signals and the design of the residual filter.

By modifying the filter to better preserve relevant frequency components, the classi-

fication accuracy of the residual-based dataset improves, especially for fault classes

previously misclassified. The per-class comparison confirms that raw signals tend

to perform better for faults characterized by high-frequency content, while residual

signals are more effective for identifying faults with dominant low-frequency behav-

ior.

Although the raw dataset requires less computational effort and avoids the need

for filter design, the residual-based approach offers advantages in specific cases. As

indicated in Table 5, more fault classes benefit from residual-based classification

than from raw data, despite the additional complexity involved.

This indicates that the choice between raw and residual datasets should not be based

solely on computational cost, but must critically consider the frequency content of

the fault signals. Residuals are particularly effective at enhancing fault detectabil-

ity for low-frequency faults by suppressing irrelevant dynamics and disturbances,

aligning with principles outlined in recent model-based diagnosis research [28, 29].

For faults that involve higher-frequency features, however, raw signals often preserve

key information more effectively, as filtering may attenuate important components.

In such cases, raw signal-based classification may offer more reliable results.

Overall, this section emphasizes the value of frequency-aware feature extraction and

filter design. Understanding the spectral characteristics of fault signals is essential

for selecting an appropriate strategy, whether residual-based or raw-data-based, to

improve fault isolation under varying conditions.
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3.5 Simulation and Experimental Results

After addressing the missing frequency components in the residual-based dataset,

the proposed FD and fault FI framework is evaluated on both simulated and real-

world datasets.

As discussed earlier, the real-world dataset contains only a limited number of labeled

fault classes. This limitation mainly arises from practical challenges in accurately

labeling real data. In many cases, the exact fault type is not known at the time

of occurrence and can only be inferred retrospectively, introducing some degree of

uncertainty into the ground truth.

To support reliable validation, this study uses simulated datasets with known ground

truth. These datasets cover a broader range of fault types and enable a controlled

evaluation of the classification framework. In contrast, the real-world dataset pri-

marily contains drying faults, as these are easier to reproduce experimentally and to

interpret in the context of fault estimation. Due to the limited size of the real-world

dataset,80% is allocated for training and the remaining 20% for testing.

Tables 6 and 7 summarize the classification accuracy for simulated and real datasets

respectively. They compare the performance of raw signals (KPI_Y) and modified

residual signals (KPI_R_Modified) using two classifiers: KNN and Random Forest.

All results presented are based on the test set.

Signal Type
FD Accuracy (%) FI Accuracy (%)

KNN Random Forest KNN Random Forest
KPI_Y 98.22 99.32 88.30 94.36

KPI_R_Modified 98.68 98.74 90.10 91.23
Dataset

Number of Healthy Samples 2,500 500
Number of Faulty Samples 2,500 250 per class
Number of Fault Classes 10 10

Total Samples 5,000 3,000

Table 6: FD and FI accuracies on the simulation dataset using raw signals (KPI_Y)
and modified residual signals (KPI_R_Modified), evaluated with KNN and Random
Forest classifiers. Dataset statistics are included below.
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Signal Type
FD Accuracy (%) FI Accuracy (%)

KNN Random Forest KNN Random Forest
KPI_Y 98.33 100.00 91.11 93.33

KPI_R_Modified 98.33 98.33 93.33 93.33
Dataset

Number of Healthy Samples 100 100
Number of Faulty Samples 200 100 per class
Number of Fault Classes 2 2

Total Samples 300 300
Train/Test Split 80% / 20% 80% / 20%

Table 7: FD and FI accuracies on the real-world dataset using raw signals
(KPI_Y_Real) and modified residual signals (KPI_R_Modified_Real), evaluated
with KNN and Random Forest classifiers. Dataset statistics are summarized be-
low.

The results show that the proposed method performs reliably across both datasets.

High FD and FI accuracies are achieved for both raw and residual signals, indicating

the framework’s ability to generalize across different nozzle sources.

In particular, the real-world dataset achieves slightly higher accuracy in some cases.

This is likely due to the reduced complexity of the classification task, given the

smaller number of fault classes. Confusion matrices corresponding to these results

are provided in Appendix C for further analysis.

3.6 Summary and Conclusion

This part of the thesis presents the development and evaluation of a framework for

FDI in piezo-based industrial printing systems. The approach integrates frequency-

domain feature extraction with classification techniques and is designed to operate

efficiently under real-time constraints.

The proposed method extends previous work in several ways. A two-stage FDI

structure is implemented, where the system first detects whether a signal is faulty

and then identifies the most likely fault type. Compared to earlier approaches

based on the time domain and threshold, this method shifts the analysis to the

frequency domain and incorporates multiple features, such as frequency, damping,

amplitude, phase, DC offset, energy, and magnitude, extracted from raw signals or

residuals. These features serve as input for classifiers such as KNN and Random
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Forest, allowing improved discrimination between fault classes.

The framework is evaluated using both simulated and real-world data. Classifica-

tion accuracy is generally higher for features extracted from raw signals, particularly

when fault characteristics involve high-frequency components. In contrast, residual-

based signals provide advantages in isolating faults dominated by low-frequency

dynamics. Targeted filter modifications further improve the classification perfor-

mance for the residual dataset, narrowing the performance gap between the raw

and residual signal representations.

Despite these improvements, the results also highlight several challenges that remain

open for future work:

• Residual signal information loss: Although residuals are commonly used

in model-based FDI, this study shows that they can lose critical high-frequency

components, especially in fast or subtle fault types. Enhancing the residual

filter design or combining raw and residual features may improve performance.

• Sinusoidal assumption: The current feature extraction method uses a fixed

set of features based on sinusoidal assumptions. Although suitable for most

self-sensing signals in this context, such assumptions may not hold in all real-

world conditions. Future work could explore adaptive or learned features rep-

resentations that better reflect the variability of real-world signals.

• Dependence on predefined features: The current approach relies on a pre-

defined set of frequency-domain features. Although this simplifies the process,

it may lead to the loss of useful information. For example, only the domi-

nant frequency is extracted, even when multiple relevant components exist.

This can limit the model’s ability to capture the full behavior of the sys-

tem. Moreover, the optimal feature set may vary depending on the fault type.

Future research could investigate adaptive or data-driven feature extraction

techniques that preserve more of the signal’s richness.

• Generalization to unknown faults: The system performs well on known

and labeled fault types, but may struggle with unseen or unlabeled faults.

Since real-world environments often involve evolving fault conditions, future

Master of Science Thesis A. Amini



3 PART I – Fault Detection and Isolation (FDI) 31

work could explore anomaly detection, semi-supervised learning, or clustering-

based methods to improve robustness and adaptability.

Overall, the proposed FDI framework demonstrates promising results in terms of

accuracy and computational efficiency, particularly for known and well-characterized

faults. The insights gained from this work guide the next phase of the thesis, where

the focus shifts from fault detection to fault estimation, reconstructing how faults

evolve over time using model-based techniques.
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4 PART II – Fault Estimation (FE)

Fault estimation extends the tasks of FDI by focusing on quantifying how faults

develop over time. In this part of the thesis, system-theoretic methods are com-

bined with piezo self-sensing measurements to estimate both the magnitude and

evolution of faults in CPP printers. The objective is to evaluate appropriate esti-

mation techniques and assess their potential for application in real-world industrial

environments.

4.1 Transition from FDI to Fault Estimation (FE)

With the FDI system developed and evaluated, this thesis now turns to the next

phase: Fault Estimation. This transition is both logical and necessary, as the FE

component builds directly on the output of the FDI framework.

The process begins by passing the full dataset to the FDI block, which simulta-

neously determines whether each signal is faulty and, if so, assigns it to a specific

fault class. This single-step approach is designed to operate with low computational

complexity, making it well-suited for high-throughput or real-time applications.

To extend the diagnostic capabilities of the system, this work introduces a fault

estimation block that follows the isolation step. The FE block is responsible for

tracking or estimating the fault behavior over time. Unlike FDI, which apply uni-

formly to all fault types, estimation must be tailored to the characteristics of each

specific fault class.

In this thesis, the FE method focuses on one representative fault class: the drying

nozzle. This class is chosen due to its practical relevance and dynamic behavior. The

output of the FDI system provides the necessary fault class labels, which serve as

input to the FE module. Together, these components form an end-to-end framework

that begins with classification and concludes with fault signal reconstruction.

The next sections present the development, implementation, and evaluation of this

estimation method. Figure 16 summarizes the complete framework, from FDI to

class-specific FE.
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Figure 16: Overview of the complete framework from FDI to FE. The FDI blocks
classify signals efficiently, while the FE block reconstructs the fault behavior for a
selected fault class.

4.2 Literature Review and Existing Solutions

Fault estimation methods are commonly divided into two major categories: observer-

based techniques and regression-based (or data-driven) approaches [30, 31]. Observer-

based methods are more traditional and widely used when system dynamics and

noise characteristics are well understood. These methods rely on constructing dy-

namic estimators, such as Luenberger observers, or unknown input observers, that

reconstruct internal states and faults based on system models.

Regression-based techniques, on the other hand, estimate faults directly from mea-

sured signals using algebraic relations or statistical inference. These methods are

often preferred when a full system model is not available, or when the relationship

between inputs, outputs, and faults is too complex to be captured analytically. Com-

pared to observer-based methods, regression approaches may offer greater flexibility

in handling nonlinearities and complex data patterns.

A representative regression-based fault estimation method is proposed in [29], which

combines model-based residual generation with nonlinear regression. The system

is modeled using a discrete-time differential-algebraic equation (DAE) framework

that captures both dynamic and algebraic relations between internal states, known

signals, and fault inputs. The general form of the model is expressed as:

H(q)[x] + L(q)[z] + F (q)
[
fa + E(z)fm

]
= 0 (3)
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Here, x represents the unknown internal states and disturbances, z includes known

signals (inputs and measurements), and fa and fm denote additive and multiplicative

faults, respectively. The nonlinear function E(z) captures the way multiplicative

faults interact with the known signals. The term fa + E(z)fm captures both types

of faults and is referred to as the aggregated fault signal. The shift operator q

advances a discrete-time signal by one step, i.e., qx(k) = x(k + 1), and is used to

express system dynamics in difference form.

The objective is to design a filter that maps the known signals z to an estimate

f̂ of the actual fault vector f = [fa, fm]T , such that the estimation error remains

bounded:

∥f(k) − f̂(k)∥2 ≤ C(Cz, Cf , k − k0) (4)

Here, C is an explicit bound on the model 3, the parameters CZ and Cf are functions

of measurement z and fault signal f, k0 denotes the time the fault occurs and k is

the current time.

This solution is structured into three main blocks, illustrated in Figure 17:

1. Fault Detection Block: Estimates the aggregated fault signal.

2. Pre-filter Block: Applies a linear transfer function τ to reduce dynamic

mismatch between the regressor (e) and the residual (r):

r = τ
[
fa + E(z)fm

]
τ−1r =

[
fa + E(z)fm

] (5)

3. Fault Isolation Block: Isolates fa and fm using a nonlinear regression:

f̂ = e† · r (6)

Although the final estimation step appears linear, the regressor e includes the

nonlinear term E(z), making the regression implicitly nonlinear with respect

to the fault variable. This careful design allows accurate isolation of fault

components.
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Figure 17: Block diagram of diagnosis filter.

Compared to traditional observer-based approaches [30, 31] and optimization-based

methods [32], this method is lightweight and computationally efficient. It avoids

iterative optimization and relies only on matrix multiplication and pseudo-inverse

computation, making it highly suitable for real-time implementation in industrial

systems such as Canon’s high-speed printers.

However, the method assumes access to accurate input-output data and well-defined

nonlinear mappings. These assumptions may not always hold in real-world settings.

In contrast, the method proposed in this thesis is based on a linear, physically in-

terpretable system model tailored to Canon’s inkjet dynamics. It avoids reliance on

complex nonlinear mappings, improving transparency and allowing better integra-

tion with control strategies. This makes it more practical for industrial applications

that require robustness, clarity, and low computational overhead.

4.3 Proposed Solution

This section presents the proposed fault estimation framework developed for CPP

printers. The approach focuses on estimating the progression of faults over time,

with particular attention to the nonlinear influence of multiplicative faults on the

system dynamics.

4.3.1 Problem Formulation

The first step in developing an effective estimation method is to understand the

nature of faults present in CPP systems. As outlined in Appendix A, this work

considers only multiplicative (parametric) faults. These faults differ from additive

faults in that they alter the system’s internal dynamics rather than introducing

external disturbances. As a result, they typically lead to nonlinear system behavior,

which complicates the design of conventional estimators or observers [29].
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Among the various types of multiplicative faults, this thesis specifically focuses on

faults caused by nozzle drying, referred to as dry nozzle faults. To make the esti-

mation of such faults tractable, it is assumed that the fault signal varies slowly over

time or is approximately piecewise constant such that the fault can be considered

constant for the duration of the signal. This common assumption simplifies the

estimation problem while still capturing the key behavior of the fault.

The underlying system is modeled as an autonomous continuous-time dynamic sys-

tem, as described in Section 3.1. Since no simultaneous input-output data are avail-

able in CPP printers, due to the piezoelectric actuator acting both as the actuator

and sensor, this formulation avoids the need for external control inputs. However, it

also means that the system’s initial state must be estimated manually. This is typi-

cally done by extracting representative signal features, such as amplitude, damping,

and frequency, from prior measurements and using them to reconstruct a consistent

initial state across simulations.
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Experimental analysis indicates that a dry nozzle fault primarily results in an in-

crease in the parameter Rn, which represents flow resistance due to ink viscosity.

All other parameters remain unchanged. This implies that only the (4, 4) element

of matrix A is affected. Consequently, Rn is chosen as the primary fault variable in

the estimation model.

Given that only one parameter changes under fault conditions, the system can be

modeled as:

ẋ = Ax + ∆Ax (8)
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where ∆A contains non-zero elements only at position (4, 4):

∆A =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ∆Rn

In


(9)

To separate the fault from the system dynamics, the model is rewritten as:

ẋ = Ax + BfE(x)fm (10)

where Bf is a fault input matrix, E(x) is a nonlinear function of state x4, and

fm = ∆Rn

In
. The system becomes:

ẋ = Ax +
[
0 0 0 1

]T

x4 · ∆Rn

In

(11)

Because the fault term is state-dependent, it introduces nonlinear behavior into the

model, which poses a challenge for estimation.

This thesis uses three different datasets, summarized in Table 8. Each dataset serves

a specific purpose in evaluating the proposed methods under varying levels of realism

and complexity.

Dataset Description
Synthetic Data Simulated data generated from identified linear system dynamics.

Used to validate models under controlled, noise-free conditions.
Physics-Based Data Data derived from nonlinear physical equations representing Canon

printer systems. Provides more realistic dynamics while retaining a
model-based foundation.

Real Data Measurement data collected directly from Canon printers operating
under real-world conditions.

Table 8: Summary of the three datasets used in this thesis.

4.3.2 Observability & Validation of Identified Linear Model

A central challenge in estimating fm is that x4 is not directly measurable. Since the

system output is a linear combination of x3 and x4, the internal states are not fully
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observable. Furthermore, standard state observers cannot be used, as the fault acts

as an unknown input.

To address this, a reformulated state-space model is introduced by combining the

first and second states to create an observable system:


V̇r + V̇n

V̈r

V̈n
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V̇n
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x

(12)

To evaluate the adequacy of the linear model, this study compares synthetic data

with real data. Figure 18 shows the relationship between dominant frequency and

damping ratio for both the identified model and the fault data collected from CPP

printers. The close match between the system dynamics of model and real data

suggests that the identified linear model sufficiently captures the system’s behavior

under fault conditions and can be used to develop the estimation framework.

Damping

Fr
eq

ue
nc
y

Healthy
Faulty

(a) Simulated data from the linear
model.

(b) Real data under fault conditions.

Figure 18: Comparison of the Frequency–Damping relationship for simulated and
real data.
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4.3.3 Design of the Unknown Input Observer (UIO)

Standard observers typically assume that all system inputs are known. As a result,

their estimates can become biased when unknown disturbances or faults are present

[32]. In contrast, UIOs are specifically designed to decouple the influence of unknown

inputs from the state estimation process [33]. This makes them particularly well

suited for fault-tolerant estimation in systems like Canon printers, where faults

influence internal states without direct control inputs.

Figure 19 illustrates the conceptual difference between a standard observer and a

UIO.

Figure 19: Block diagram comparison between a standard observer and an UIO.

The faulty system of CPP printers, using the observable model (12) is described in

state-space form as follows:

ẋ(t) = Ax(t) + Bf fmx3(t)︸ ︷︷ ︸
f(t)

,

y(t) = Cx(t),

(13)

where x(t) ∈ Rn is the system state vector, f(t) = fmx3(t) represents the unknown

input (fault), Bf ∈ Rn×1 is the fault input matrix, and C ∈ Rp×n is the output

matrix. Since the system operates autonomously, no control input is included.

The UIO is designed to estimate the system’s internal states x̂ using only the output

signal y, while rejecting the unknown input f(t). The observer reconstructs the state

x3, which plays a key role in computing the nonlinear term E(x) and estimating the
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fault magnitude fm. The observer structure is defined as:

ż = Fz + Ty,

x̂ = z + Hy
(14)

where z ∈ Rn is the observer’s internal state and the matrices F, T, H must be

designed such that the estimation error is insensitive to the unknown input [33]. To

eliminate the effect of the unknown input, the estimation error is defined as follows:

e = x − x̂ = x − z − Hy. (15)

Differentiating and substituting x = e + z + Hy the system dynamics, we derive the

following.
ė = ẋ − ż − Hẏ,

= Ax + Bff − Fz − Ty − HCẋ,

= (A − HCA)e + (A − F − HCA)z

+ (AH − T − HCAH)y + (I − HC)Bff..

(16)

To ensure robustness, the estimation error ė must remain bounded and ideally con-

verge to zero. This is achieved by eliminating the influence of z, y, and the unknown

input f(t) from the error dynamics. To decouple the error from the fault input, the

following condition is imposed:

(I − HC)Bf = 0 ⇒ HCBf = Bf . (17)

Once the matrix H is determined to satisfy the decoupling condition, the observer

matrices F and T are selected to ensure stable and consistent error dynamics. Specif-

ically, the matrix F is defined as:

F = A − HCA, (18)

This choice eliminates the dependence of the estimation error ė on the internal

observer state z. If ė depends on z, the internal dynamics of the observer may

introduce additional estimation errors. By removing the z-term, the error dynamics
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become simpler, more predictable, and easier to stabilize.

Similarly, to eliminate the term (AH − T − HCAH)y. from the error dynamics, the

following condition is imposed:

T = AH − HCAH. (19)

This ensures that the output correction term Hy evolves in a way that matches

the system’s natural behavior. As a result, the observer’s output-based correction

more accurately reflects the system dynamics, improving estimation quality and

simplifying the observer structure. However, in many practical applications, it is

common to simplify this design by approximating:

T = AH. (20)

This approximation makes the injection matrix T consistent with the nominal dy-

namics as seen through the correction gain H, while avoiding unnecessary compen-

sation terms. It is a practical and widely accepted approach in the literature.

The matrix H is determined using the Moore–Penrose pseudoinverse, expressed as

H = Bf (CBf )†. This formulation is valid under the condition that rank(CBf ) =

rank(Bf ), ensuring that the influence of the unknown input on the state is observable

in the output.

The final UIO structure, as presented in (14), enables estimation of the full system

state x̂, independently of the fault signal f(t). Once the relevant state (e.g., x3)

is estimated, it can be used to compute the nonlinear fault term E(x)fm for fault

reconstruction.

The performance of the proposed UIO is illustrated in Figure 20. The estimated

states closely follow the true system states, even in the presence of an unknown

fault input. The high fit percentage demonstrates the effectiveness of the UIO for

the application.
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Figure 20: State estimation results using the UIO. (dashed lines) track the true
system states (solid lines), confirming robustness to the unknown fault input.

4.3.4 Modeling Considerations and Estimation Framework

A key modeling challenge in fault estimation arises from the transition between

continuous- and discrete-time representations. The Canon printer system is origi-

nally described in continuous time, where the multiplicative fault, represented by

a variation in the parameter ∆Rn, affects only a single entry in the system matrix

A. This localized effect allows for clearer interpretation of fault influence in the

continuous domain.

However, the fault estimation framework adopted in this work, based on [29], oper-

ates in discrete time. This is mainly due to the structure of the regression-based fault

isolation block, which is more tractable and stable when applied to discrete-time

data. Additionally, working in discrete time avoids the need for complex operations

such as deconvolution, which are typically required in continuous-time implementa-

tions.

Although the discrete-time framework simplifies the application of regression tech-

niques, discretizing the system introduces new complications. Specifically, the fault

effect, which is isolated to a single element in the continuous-time matrix A, becomes

distributed across multiple elements in the discrete-time matrix after standard dis-

cretization. This transformation can distort the original fault structure, making it
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harder to interpret and track the fault influence accurately.

To address this challenge, two alternative strategies are proposed:

1. Discrete-Time (DT) Approach: The continuous-time system is fully dis-

cretized, and fault estimation is performed directly on the resulting discrete-

time model. This approach assumes that the essential fault structure remains

preserved during discretization. However, particular care is required to ensure

that the fault’s influence on the system dynamics is not significantly altered

in the process.

2. Continuous-Time (CT) Approach: In this strategy, the system dynamics

are retained in continuous time, and only the system output is discretized. This

allows the regression-based estimation block to operate in discrete time while

maintaining the simpler, more interpretable fault structure of the continuous-

time model. The key challenge here lies in ensuring that the numerical integra-

tion and output sampling are accurate enough to avoid introducing significant

errors.

Figure 21 shows the block diagram of the proposed fault estimation framework. The

goal is to estimate the fault magnitude over time, based solely on observed output

signals and internal state estimates.

Figure 21: Block diagram of the proposed fault estimation architecture.

The framework consists of three main components:

• Fault Detection Block: This block compares the model-based output with

measured signals to compute a residual. The residual reflects the combined

effect of the fault term E(x)fm.
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• Fault Subsystem Block: This block acts as a transfer function that compen-

sates for dynamic mismatches between the true fault input and the observed

residual. It improves fault estimation accuracy by correcting for any distor-

tions introduced earlier in the process.

• Fault Estimation Block: A regression operator is applied to extract the

fault magnitude fm from the residual. This step isolates the fault effect by

leveraging the structure of the fault signal.

Discrete-Time Fault Estimation Approach

In the DT approach, the entire system, including the state-space model and estima-

tion framework, is formulated in discrete time. The main challenge in this approach

lies in discretization of the continuous-time model in a way that preserves the fault’s

structural influence, particularly its effect on the A matrix.

The observable continuous-time model introduced in (12) is extended to include a

fault-dependent term arising from the variation ∆Rn. The faulty system dynamics

is then written as:
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To convert the continuous-time system into a discrete-time model, the matrix ex-

ponential is commonly used. Specifically, the discrete-time system matrix ADT
f is

obtained from the continuous-time system matrix ACT
f using the relationship:

ADT
f = eACT

f ·dt (22)

This relationship arises from the analytical solution of linear time-invariant (LTI)

systems, where the matrix exponential describes the state evolution over a sam-
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pling interval dt. However, when the system matrix includes a fault term ∆A, the

expression becomes:

ADT
f = e(ACT

H +∆A)·dt (23)

Due to the non-commutative nature of matrix multiplication, this cannot be decom-

posed into a simple sum of exponentials, i.e., eACT
H ·dt + e∆A·dt. As a result, the fault

influence, which originally affects only one element in A, becomes distributed across

multiple elements in the discrete-time matrix in a nonlinear manner, complicating

fault estimation.

To address this issue, an approximation is introduced in which only the healthy sys-

tem matrix ACT
H is discretized, while the fault term ∆A is added in as in continuous

form, scaled by dt:

ADT
f ≈ eACT

H ·dt +


0 0 0

0 0 0

0 0 ∆Rn

In
· dt

 (24)

Under this approximation, the faulty system dynamics in discrete time become:

x(k + 1) = eACT
H ·dt︸ ︷︷ ︸

ADT
H

x(k) +
[
0 0 1

]T

︸ ︷︷ ︸
Bf

x3(k)︸ ︷︷ ︸
E(x3)

·∆Rn

In︸ ︷︷ ︸
fm

·dt

y(k) =
[
0 1 1

]
︸ ︷︷ ︸

C

x(k)
(25)

Here, x(k) ∈ R3 denotes the state vector at time step k, and y(k) is the system

output. The term x3(k) represents the third state variable, which is affected by the

fault. The influence of the fault is preserved in the form E(x3)·fm, where fm = ∆Rn

In
.

This approximation is motivated by the Taylor series expansion of the matrix ex-

ponential. By retaining lower-order terms, the effect of ∆Rn remains explicitly

represented and more interpretable in the discrete model. A detailed derivation of

the Taylor-based approximation is provided in Appendix E.

After discretization, all steps in the fault detection and estimation pipeline, including

residual generation and regression, are carried out in discrete time. The complete

Master of Science Thesis A. Amini



4 PART II – Fault Estimation (FE) 46

workflow is summarized in the block diagram below.

Figure 22: Block diagram of the discrete-time fault estimation approach. The entire
system is modeled and processed in discrete time. Special attention is given to
preserving the fault structure during discretization.

Continuous-Time Fault Estimation Approach

In the CT approach, the system is modeled and simulated using its original con-

tinuous formulation. This strategy preserves the localized effect of the fault on the

system matrix A, particularly the influence of ∆Rn on a single matrix element.

Maintaining the continuous-time structure enables a more accurate representation

of the system dynamics prior to any discretization.

The faulty system is represented by the following state-space equations:

ẋ(t) = ACT
H x(t) +

[
0 0 1

]T

︸ ︷︷ ︸
Bf

x3(t)︸ ︷︷ ︸
E(x)

·∆Rn

In︸ ︷︷ ︸
fm

y(t) =
[
0 1 1

]
︸ ︷︷ ︸

C

x(t)
(26)

Here, x(t) ∈ R3 is the system state vector, and x3(t) is the third state, which appears

in the fault term as part of the multiplicative structure. The output y(t) is a linear

combination of the second and third states, in line with the self-sensing measurement

of the Canon system.

During simulation of the CT approach, the output y(t) is sampled at regular inter-

vals to generate a discrete-time signal. This enables the use of discrete-time fault

estimation algorithms without the need to discretize the entire system model. By

avoiding full system discretization, the localized structure of the fault is retained,

which simplifies interpretation and improves isolability.
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A central challenge in this approach lies in accurately discretizing the output while

minimizing numerical integration errors. To achieve this, the system output is inte-

grated using MATLAB’s ode45 solver, which implements an adaptive Runge–Kutta

(4,5) method. During each sampling interval of length dt, corresponding to Canon’s

system sampling rate, the output is simulated over the interval [(k−1)dt, kdt]. The

solver internally uses smaller adaptive time steps, but only the final value at t = k ·dt

is retained. This output sample is used as the discrete-time output.

This procedure ensures that the output is aligned with the discrete-time fault es-

timation framework while preserving the fidelity of the original continuous-time

dynamics. The resulting signal is then processed using the same regression-based

fault detection and estimation steps as in the DT approach.

The overall structure of the CT-based estimation method is shown in the block

diagram below.

Figure 23: Block diagram of the continuous-time fault estimation approach. The
system is simulated in continuous time, and the output is sampled for discrete-time
fault estimation.

4.4 Results on Synthetic Data

This section presents the performance of the proposed fault estimation framework

using synthetic data. Both the DT and CT approaches are evaluated in estimating

a multiplicative fault, and their results are compared across various fault levels.

4.4.1 Description of the Synthetic Dataset

The synthetic dataset is generated by simulating the faulty system dynamics in both

DT and CT, as described in (25) and (26). The objective is to produce a controlled

dataset in which the true fault values are known, allowing for a clear and quantifiable

evaluation of estimation performance.
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The fault magnitudes (fm) used in the simulations are derived from the true fault

values obtained from a physics-based model of Canon printers, as discussed in Sec-

tion 4.5. A detailed explanation of how these values are computed is provided in

Appendix F. Since fm [s−1] is directly proportional to the change in dynamic vis-

cosity, ∆µ, , it serves as a physically interpretable indicator of the drying nozzle

fault.

Each simulation applies a known fm value to the system model,producing a dataset

that contains 49 distinct fault levels. These levels span a wide range of fault severities

in the system’s output.

All simulations are performed using time units in microseconds (µs), with a sampling

interval that matches Canon’s printer hardware, denoted by dt. Although in practice

each measurement may begin from a different initial state, it is assumed in these

simulations that all signals start from the same manually estimated initial condition.

This assumption simplifies the analysis while still reflecting the typical behavior

observed in self-sensing measurements, which the simulations follow over a similar

time period.

This dataset enables consistent and repeatable evaluation of the proposed fault

estimation method under idealized conditions. It helps identify both strengths and

limitations of the approach before applying it to more complex scenarios involving

real-world signals.

4.4.2 Fault Estimation using the DT Approach

The performance of the DT fault estimation method is illustrated in Figure 24 and

Figure 25. In Figure 24 (top), the estimated fault signal fmest (red) closely follows

the true fault fm (blue), with an error on the order of 10−6. The zoomed-in view

highlights this close agreement, demonstrating the estimator’s precision in tracking

fault dynamics.

The lower plot in Figure 24 shows the logarithm of the absolute estimation error,

log(|fm − f̂m|), over time. Initially, the error is relatively large as the estimator

adjusts to the system’s dynamics. However, it quickly decreases and stabilizes,

confirming that the DT estimator adapts effectively after a short transient period.
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Figure 25 presents the estimation accuracy across a range of synthetic signals with

varying fault magnitudes. The x-axis indicates the fault level (0–100), while the

y-axis shows the estimation accuracy in (%) as the average fit during the steady-

state condition of each signal. Although a slight decrease in accuracy is observed at

higher fault levels, all values remain above 99%, indicating robust performance.

One possible explanation for the minor downward drift observed in Figure 24, as well

as the small accuracy drop in Figure 25, relates to the discretization assumptions

described in Section 4.3.4. The method assumes that the fault’s influence remains

unchanged when transitioning from continuous to discrete time. Although this sim-

plifies the modeling, it may neglect nonlinear behaviors, leading to small estimation

biases.

Figure 24: Fault estimation using the
discrete-time approach for a single sig-
nal.

Figure 25: Fault estimation accuracy
across varying fault levels (Dry Nozzle
Level) using the discrete-time approach.

4.4.3 Fault Estimation using the CT Approach

The CT estimation results are shown in Figure 26 and Figure 27. In Figure 26, the

estimated fault signal closely tracks the ground truth, although it exhibits slightly

higher oscillations compared to the DT case. These oscillations are likely caused by

the numerical errors introduced during output discretization.

Figure 27 summarizes the estimation accuracy across multiple synthetic signals with

increasing fault magnitudes. A gradual, approximately linear decline in accuracy is

observed as fault severity increases. Nevertheless, the accuracy remains above 98%

for all tested cases, indicating robustness of the CT method.
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The observed performance drop is attributed to the structure of the CT approach,

where only the output is discretized while the system dynamics remain in continuous

form. This allows for higher model fidelity but introduces numerical challenges,

particularly during signal sampling. Discretization errors may reduce signal quality

and slightly degrade estimation accuracy.

Figure 26: Fault estimation using the
continuous-time approach for a single
signal. The estimated signal tracks the
ground truth with slightly higher oscil-
lation due to output discretization.

Figure 27: Fault estimation accuracy
across varying fault levels (Dry Noz-
zle Level) using the continuous-time ap-
proach. Accuracy remains above 98%,
though a linear drop is observed for
larger faults.

In summary, both methods perform well on synthetic data, each offering different

advantages. The DT approach yields slightly higher fit accuracy, whereas the CT

approach maintains greater structural fidelity to the original model. These findings

suggest a trade-off between numerical implementation and model clarity that may

be important to consider when selecting a fault estimation strategy.
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4.5 Evaluation on Physics-Based Model Data

Following the validation on synthetic data, the proposed fault estimation method is

further evaluated using signals generated by a physics-based model. This dataset

is derived from nonlinear physical equations of Canon printers, better reflects the

dynamics of real-world systems, and thus provides a more realistic benchmark for

evaluating estimator performance.

Compared to synthetic data, the estimation results in the physics-based dataset are

more variable. Although the method provides a reasonable estimation for some sig-

nals, performance degrades for others, even when their overall waveform or frequency

content appears similar. One contributing factor may be the identified linear struc-

ture assumed in the fault estimation model, whereas the physics-based signals exhibit

nonlinear changes in response to fault magnitudes. This discrepancy between the

fault’s true behavior and its linear approximation may contribute to reduced estima-

tion accuracy, especially for more severe faults. Moreover, some underperformance

is observed even at lower fault levels, suggesting that other, possibly unmodeled,

system properties may also play a role.

Another limitation relates to the regression-based nature of the estimator. Its per-

formance depends on the conditioning of the associated regression matrix. If the

matrix becomes poorly conditioned, the estimation may become sensitive to numer-

ical noise and less robust.

Overall, the physics-based results help to highlight the method’s limitations in terms

of generalization and robustness. Although the approach shows potential under con-

trolled conditions, these observations point to areas where the model or estimation

framework may require refinement for improved performance in real-world scenarios.

The following figures illustrate estimation results using both DT and CT approaches

for selected signals where the method produced comparatively better outcomes.
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Figure 28: Healthy vs. slightly dried
faulty output. Severely increased damp-
ing is visible.

Figure 29: DT estimation for the corre-
sponding faulty signal. The estimate re-
flects the fault trend with moderate de-
viation (92.94%).

Figure 30: Healthy vs. Intermediately
dried faulty output. Moderate damping
is observed.

Figure 31: DT estimation for the corre-
sponding faulty signal. The result shows
relatively stable alignment with the fault
(99.52%).

Figure 32: Healthy vs. Intermediately
dried faulty output. The waveform re-
mains smooth with moderate damping.

Figure 33: CT estimation for the cor-
responding faulty signal. The estimate
generally follows the trend, though with
more fluctuation (89.38%).

The DT results (Figures 29 and 31) indicate that the estimator follows the main

fault trend with reported accuracies of 92.94% and 99.52%, respectively. However,

Master of Science Thesis A. Amini



4 PART II – Fault Estimation (FE) 53

the estimates show more noticeable deviations and oscillations compared to those

obtained on synthetic data.

Similarly, the CT result in Figure 33 shows that, despite noticeable fluctuations,

the estimated fault remains reasonably close to the true profile, with an accuracy of

89.38%.

4.6 Summary and Conclusion

This part of the thesis has investigated fault estimation techniques for Canon’s

high-end industrial printers, with a particular focus on estimating the progression of

multiplicative fault over time. Two estimation strategies have been developed and

evaluated: DT approach and a CT approach. Both rely on a physically identified

linear model, and the estimators are built using a regression-based structure.

Simulation results on synthetic data suggest that both approaches are able to esti-

mate fault signals with a high degree of accuracy under controlled conditions. In

these cases, where the system dynamics are fully known and the fault follows the

assumed structure, the estimation is reliable and stable. These results indicate that

the linear model, combined with the proposed estimation framework, can be effective

within idealized settings.

However, when the same methods are applied to a physics-based dataset, designed

to better reflect real-world printer behavior, performance becomes more varied. Al-

though fault estimates for some signals remain close to the expected values, others

show clear deviations. These inconsistencies suggest that several practical factors

may influence the estimation, including:

• The system identification process is based on a linear model. Although this

is adequate for controlled, synthetic data, it may not account for the full

complexity of the real printer dynamics.

• The manual initialization of internal states. Since the system is modeled as

autonomous, the initial state must be estimated manually, typically by aver-

aging typical signal features. However, in real-world measurements, signals

often begin from unknown or varying initial conditions. Relying on a single
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averaged estimate across all signals can introduce inconsistencies and reduce

the robustness of the estimation.

• The approximation of fault behavior, which may not fully capture the system’s

response.

• The sensitivity of the regression to signal properties and the conditioning of

the regression matrix. If the matrix becomes ill-conditioned, small changes in

the signal can lead to large estimation errors.

In particular, the discretization method used in the DT approach assumes that

the influence of the fault can be separated from the system dynamics. To make

this feasible, an approximation is introduced where only the healthy part of the

system matrix is discretized. Although this helps preserve the structure needed for

fault estimation, it may introduce modeling errors, especially when the fault has a

stronger or more complex influence on the system behavior.

Similarly, in the CT approach, the system is modeled in continuous time, but the

outputs are sampled at discrete intervals. Despite the fact that this avoids structural

distortion during discretization, it introduces numerical challenges. These include

integration errors, especially when the magnitude of the fault grows.

Taken together, these findings highlight the trade-offs between model simplicity and

estimation robustness. The proposed framework shows promise for applications

where model assumptions are valid and signal conditions are favorable. At the

same time, the results emphasize the need for more flexible and resilient estimation

techniques when moving toward real-world deployment.

Future work may focus on:

• improving model fidelity by incorporating more dynamic effects,

• refining initial state estimation procedures,

• and exploring adaptive or learning-based fault estimation methods that can

better accommodate variability in system behavior.
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5 Summary of Key Contributions

This thesis presents a fault diagnosis framework for high-end industrial inkjet print-

ing systems, with a focus on the detection, isolation, and estimation of nozzle-related

faults. The research is motivated by the need to improve system reliability and min-

imize downtime in Canon Production Printing (CPP) machines, where unresolved

nozzle faults can lead to visible print defects and operational inefficiencies.

In the first part, a modular Fault Detection and Isolation (FDI) system is developed.

Unlike traditional threshold-based methods, which typically rely on residual energy

alone, the proposed approach operates in the frequency domain and extracts mul-

tiple features, such as dominant frequency, amplitude, damping, and phase, from

piezo self-sensing signals. These features are used to train classifiers (e.g., k-Nearest

Neighbors and Random Forest), enabling the system to distinguish between sev-

eral fault types. Experiments on both raw signal data and model-based residuals

indicate that raw signals generally provide better classification performance, par-

ticularly for faults with higher frequency characteristics. The final FDI pipeline is

computationally efficient and designed for real-time deployment.

The second part of the thesis addresses Fault Estimation (FE), with the goal of

reconstructing the fault signal over time. Two estimation frameworks, discrete-time

(DT) and continuous-time (CT), are proposed based on linearized system dynam-

ics. These methods are first validated on synthetic datasets, where they show good

tracking performance under idealized conditions. However, evaluation on more real-

istic, physics-based data reveals important limitations. Estimation accuracy varies

significantly across signals, particularly due to differences in initial conditions, fre-

quency content, and the conditioning of the regression matrix. In some cases, the

simplified multiplicative fault model fails to capture complex system behavior.

Overall, this thesis contributes a unified fault diagnosis pipeline that integrates clas-

sification and estimation using a combination of model-based and data-driven tools.

Although the results highlight the feasibility of applying linear models in controlled

settings, they also underscore the complexity of achieving reliable fault diagnosis

under realistic conditions. The work lays a foundation for future research into more

robust and scalable diagnostic systems for industrial inkjet printing environments.
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6 Conclusions and Future Work

This thesis investigates fault diagnosis in piezoelectric inkjet printers by develop-

ing methods for both fault detection and fault estimation. While the proposed

techniques demonstrated promising results, several limitations have emerged that

highlight important directions for future research.

A primary limitation in the Fault Detection and Isolation (FDI) stage is the re-

liance on sinusoidal-based feature extraction. Although this method performs well

for many fault types, it may fail to capture non-sinusoidal or transient behaviors,

particularly in residual signals, where key diagnostic information is often lost. Fur-

thermore, the use of fixed features, such as dominant frequency or damping, does

not always generalize across varying fault conditions. More adaptive or data-driven

extraction methods may help preserve richer signal characteristics and improve clas-

sification performance.

Another challenge is the system’s dependence on supervised learning, which requires

labeled data for each known fault class. In practical industrial environments, faults

often evolve or appear in forms not seen during training. This limits the system’s

ability to generalize to previously unseen or unlabeled faults. To address this, fu-

ture research should consider semi-supervised, unsupervised, or anomaly detection

approaches that increase adaptability and broaden fault coverage.

A key limitation in the second part of this thesis, which focuses on Fault Estima-

tion (FE), lies in the reliance on simplified linear models to approximate system

dynamics. Although these models have shown adequate performance on synthetic

data, they struggle to maintain accuracy when applied to more realistic, physics-

based datasets. This drop in performance reflects the inherent mismatch between

linear assumptions and the nonlinear behaviors observed in real printer systems.

In particular, nonlinear fault interactions, time-varying parameters, and unmodeled

dynamics introduce estimation errors that the current approach cannot fully ac-

count for. These issues point to the need for more advanced modeling techniques

that better capture the underlying system behavior under fault conditions.

In particular, the discrete-time method assumes that the fault’s influence remains
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constant through discretization, which is not always valid for nonlinear systems.

This assumption introduces distortion and reduces estimation fidelity. The continuous-

time approach, although free from this discretization issue, suffers from numerical

errors introduced during output sampling. These errors become more pronounced

for signals affected by rapid or large-magnitude faults, degrading estimation quality.

A further limitation lies in the handling of initial system states. The current method

applies a single manually estimated initial state across all signals. However, in prac-

tice, initial conditions often vary significantly between measurements. This mis-

match introduces estimation error and limits the generalizability of the approach.

Incorporating adaptive or signal-specific initialization strategies could improve ro-

bustness.

Future work should address the identified limitations through the following direc-

tions:

• Adaptive Feature Extraction: Integrating flexible, data-driven approaches

for feature extraction, particularly from residual signals, may help capture a

wider range of fault behaviors and improve detection sensitivity.

• Generalization to Unlabeled Faults: Employing semi-supervised or un-

supervised learning methods, such as clustering, anomaly detection, or self-

supervised models, could allow the system to detect and adapt to fault condi-

tions not observed during training.

• Nonlinear Modeling: Replacing or augmenting the linear system model

with nonlinear or hybrid models may increase estimation accuracy for complex

and variable real-world faults.

• Robust Initial State Estimation: Automating the initialization process

through observers, optimization techniques, or filtering methods (e.g., Kalman

filters) could improve robustness and generalization across varying conditions.

In conclusion, this thesis presents a complete and modular framework for fault di-

agnosis in piezoelectric inkjet printers. The work integrates model-based and data-

driven methods to support both detection and estimation, using a scalable and
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computationally efficient pipeline. At the same time, the study identifies key limita-

tions related to modeling assumptions, generalizability, and scalability. Addressing

these open challenges remains essential for translating this framework into practical

and reliable diagnostic tools for industrial environments.
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Appendix

A Overview of Fault Classes Used in the Experi-

ments

This experiment considers a broader set of fault classes than those presented in

[34]. As a result, some differences in performance compared to that study are to be

expected. The nozzle fault types used, along with the number of samples allocated

for training and testing, are summarized in Table 9.

All faults included in this analysis are modeled as multiplicative faults. These faults

primarily affect the signal by modifying its amplitude or altering its shape, and serve

as a basis for evaluating the classification and estimation methods proposed in this

work.

Current Faulty Classes Type of fault Numbers of Samples
Training set Test set

OK signals - 250 250
Healthy Nozzle - 250 250
Empty Channel 1 Multiplicative 250 250
Empty Channel 2 Multiplicative 250 250
Mature Air Bubble Multiplicative 250 250
Intermediate Air Bubble Multiplicative 250 250
Small Air Bubble Multiplicative 250 250
Fully Blocked Nozzle Multiplicative 250 250
Partially Blocked Nozzle Multiplicative 250 250
Slightly Dried Nozzle Multiplicative 250 250
Intermediately Dried Nozzle Multiplicative 250 250
Deeply Dried Nozzle Multiplicative 250 250

Table 9: List of fault classes used in the fault isolation experiments. All data are
synthetically generated using a model of the Canon printing system. The table
reports the fault type and the number of training and test samples per class.
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B Confusion Matrices for Simulation Dataset Clas-

sification

This section presents the confusion matrices corresponding to the classification re-

sults summarized in Table 2, for both FD and FI tasks.
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Figure 34: Confusion matrices for FD across two datasets (KPI_Y and KPI_R), using
KNN and Random Forest classifiers. Subfigures: (a) KPI_Y with KNN, (b) KPI_Y
with Random Forest, (c) KPI_R with KNN, (d) KPI_R with Random Forest.
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KNN Random Forest

(a) (b)

(c) (d)
Figure 35: Confusion matrices for FI across two datasets (KPI_Y and KPI_R), using
KNN and Random Forest classifiers. Subfigures: (a) KPI_Y with KNN, (b) KPI_Y
with Random Forest, (c) KPI_R with KNN, (d) KPI_R with Random Forest.

Based on the results in Table 2, the classifier trained on the KPI_Y dataset using

the Random Forest algorithm has achieved the highest accuracy in both FD and FI

tasks. Therefore, the following analysis focuses on this specific configuration.

In this evaluation, the Healthy class is treated as the negative class, and the Faulty

class as the positive class. According to the confusion matrix in Figure 34(b), the

model correctly identifies 2488 out of 2500 healthy signals (True Negatives), with

12 misclassified as faulty (False Positives). Among the faulty signals, 2478 are

correctly classified (True Positives), while 22 are incorrectly predicted as healthy

(False Negatives).

From these results, the model yields an F1-score of 99.32% for the faulty class,
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indicating a strong balance between precision and recall. The False Negative Rate

(FNR) is 0.88%, and the False Positive Rate (FPR) is 0.48%, suggesting that the

classifier rarely misses faults and seldom flags healthy signals incorrectly. Overall,

the results confirm consistent classification behavior with a preference for minimizing

the risk of undetected faults.

Figure 35(b) shows the confusion matrix for the FI task using the Random Forest

classifier on the KPI_Y dataset. Corresponding performance metrics for each class

are presented in Table 10.

Fault Class Accuracy (%) F1-score (%) FNR (%) FPR (%)
OK signals 98.00 96.46 2.00 5.04
Healthy Nozzle 96.00 96.38 4.00 3.23
Empty Channel 1 100 100 0.00 0.00
Empty Channel 2 100 100 0.00 0.00
Mature Air Bubble 93.20 94.34 6.80 4.51
Intermediate Air Bubble 95.60 94.47 4.40 6.64
Small Air Bubble 98.00 98.79 2.00 0.41
Fully Blocked Nozzle 100 100 0.00 0.00
Partially Blocked Nozzle 83.60 82.61 16.40 18.36
Slightly Dried Nozzle 93.20 91.73 6.80 9.69
Intermediately Dried Nozzle 74.80 77.28 25.20 20.09
Deeply Dried Nozzle 100 100 0.00 0.00

Table 10: Performance metrics per fault class using the KPI_Y dataset and Random
Forest classifier. Metrics are based on the confusion matrix in Figure 35(b) and
correspond to the results in Table 2.

Table 10 presents the classification performance across all fault categories. Accu-

racy values exceed 93.00% for most classes, with perfect isolation for several fault

types, including Empty Channels, Fully Blocked Nozzles, and Deeply Dried

Nozzles.

For more subtle faults, including Partially Blocked and Intermediately Dried Noz-

zles, performance declines moderately, with F1-scores of 82.61% and 77.28%, respec-

tively. Still, the model maintains useful performance levels with reasonably low false

detection rates.

As discussed in Section 3.3.1, CPP prioritizes minimizing false negatives, i.e., avoid-

ing missed faults, even at the cost of a higher false positive rate. This is based on

visual print impact:

• A false negative may result in a white or light-colored line.
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• A false positive may result in a slightly darker line.

In practice, darker lines tend to be less noticeable and less disruptive to print quality

than lighter ones. As shown in Table 10, half of the fault classes with non-zero FPR

and FNR exhibit lower false negative rates, reflecting the system’s preference for

conservative fault detection in support of print quality.
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C Confusion Matrices for Real-World Dataset Clas-

sification

This section presents the confusion matrices for both FD and FI tasks based on

real-world signal data. These matrices correspond to the accuracy values reported

in Table 7 and provide a detailed view of classifier performance across different

datasets and classification methods.

The results are shown for both raw signal features (KPI_Y_Real) and residual sig-

nal features (KPI_R_Modified_Real), using two classification methods: KNN and

Random Forest.
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Figure 36: Confusion matrices for FD using real-world data. Results
are shown for raw signal features (KPI_Y_Real) and residual signal features
(KPI_R_Modified_Real), using both KNN and Random Forest classifiers. Sub-
figures: (a) KNN on KPI_Y_Real, (b) Random Fores on KPI_Y_Real, (c) KNN on
KPI_R_Modified_Real, (d) Random Fores on KPI_R_Modified_Real.
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Figure 37: Confusion matrices for FI using real-world data. Results are
shown for raw signal features (KPI_Y_Real) and residual signal features
(KPI_R_Modified_Real), using both KNN and Random Forest classifiers. Sub-
figures: (a) KNN on KPI_Y_Real, (b) Random Fores on KPI_Y_Real, (c) KNN on
KPI_R_Modified_Real, (d) Random Fores on KPI_R_Modified_Real.
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D Frequency Spectrum Analysis of Fault Classes

This appendix provides additional frequency spectra and plots that support the

analysis presented in Section 3.4.3. These visualizations highlight the spectral dif-

ferences between raw and residual signals for selected fault classes, helping to explain

the observed variations in classification performance.

D.1 Empty Channel 1

To investigate the reduced classification performance of the residual-based dataset

for the Empty Channel 1 fault, its FFT spectra in both datasets are analyzed.

Figures 38 and 39 show the frequency-domain representations of the raw and residual

signals.

Figure 38: FFT spectrum of KPI_Y
signals for Empty Channel 1 fault
class.

Figure 39: FFT spectrum of
KPI_R_Modified signals for Empty
Channel 1 fault class.

Table 11 compares the dominant frequency peaks of both datasets to the known

fault frequency.

Fault classes Frequencies (kHz)
Empty Channel 1 2124.400

Raw data [2031.250 , 2246.090]
Residual 214.844

Table 11: Dominant frequency peaks for Empty Channel 1 fault class in raw and
residual signals.

These results indicate that the dominant frequencies in the raw signals align well

with the expected fault frequency, while the residual signals suppress this high-

frequency content. The residual filter introduces its own spectral characteristics,
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which dominate the resulting signal and mask the original dynamics. This spectral

distortion explains the poor classification performance observed in the residual-based

dataset for this fault.

D.2 Mature Air Bubble

In contrast, the Mature Air Bubble fault class is better classified using residual

signals. Figures 40 and 41 show the frequency-domain representations for this fault.

Figure 40: FFT spectrum of KPI_Y
signals for Mature Air Bubble fault
class.

Figure 41: FFT spectrum of
KPI_R_Modified signals for Ma-
ture Air Bubble fault class.

Table 12 provides a comparison of the observed dominant frequency peaks.

Fault classes Frequencies (kHz)
Mature Air Bubble 357.450

Raw data [292.969 , 410.156]
Residual 214.800

Table 12: Dominant frequency peaks for Mature Air Bubble fault class in raw and
residual signals.

Although the dominant frequency of the residual data shifts slightly, it remains

relatively close to the reference value. The raw signal spectrum is broader and less

concentrated, which may reduce the separability of this class. These observations

support the stronger classification results obtained with the residual-based dataset.
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D.3 Fully Blocked Nozzle

The Fully Blocked Nozzle fault achieves similar classification performance in both

datasets. The FFT spectra shown in Figures 42 and 43 confirm this observation.

Figure 42: FFT spectrum of KPI_Y
signals for Fully Blocked Nozzle fault
class.

Figure 43: FFT spectrum of
KPI_R_Modified signals for Fully
Blocked Nozzle fault class.

Fault classes Frequencies (MHz)
Fully Blocked Nozzle 166.350

Raw data 175.781
Residual 214.844

Table 13: Dominant peak Frequencies for Fully Blocked Nozzle Fault Class

The dominant peaks in both the raw and residual signals lie close to the expected

fault frequency. This alignment likely contributes to the consistent classification

accuracy observed across both datasets for this fault class.
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E Taylor Series Expansion for Discretization

This appendix presents the discretization of the faulty continuous-time system ma-

trix ACT
f using a Taylor series expansion. The goal is to justify the approximation

method introduced in Section 4.3.4, where only the healthy part of ACT
f is discretized

in order to preserve the influence of the fault in a tractable form.

The structure of ACT
f is defined as:

ACT
f =


0 1 1

− 1
IrBt

−Rr

Ir
0

− 1
InBt

0 −Rn

In


︸ ︷︷ ︸

ACT
H

+


0 0 0

0 0 0

0 0 ∆Rn

In


︸ ︷︷ ︸

∆A

=


0 1 1

− 1
IrBt

−Rr

Ir
0

− 1
InBt

0 −Rf
n

In



(27)

where Rf
n denotes the faulty value of Rn. To approximate the matrix exponential

eACT
f ·dt, the Taylor series is applied:

eACT
f ·dt = I + ACT

f dt +
(ACT

f dt)2

2! + · · · +
(ACT

f dt)n

n! (28)

Symbolic computation using MATLAB was performed to expand this expression.

For the first-order approximation (n = 1), the matrix becomes:

eACT
f ·dt ≈


1 dt dt

− dt
BtIr

1 − Rrdt
Ir

0

− dt
BtIn

0 1 − Rf
ndt
In

 (29)

In this form, Rf
n appears only in the (3, 3) entry, indicating that the fault influence

remains localized when using the first-order expansion.

For a second-order approximation (n = 2), the result becomes:
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eACT
f ·dt ≈


1 − dt2(Ir+In)

2BtInIr
dt − Rrdt2

2Ir
dt − Rf

ndt2

2In

−dt(2Ir−Rrdt)
2BtI2

r
1 − Ir(dt2+2BtRrdt)−BtR2

rdt2

2(BtIr)2 − dt2

2BtIr

−dt(2In−Rf
ndt)

2BtI2
n

− dt2

2BtIn
1 − In(dt2+2BtRf

ndt)−BtRf
n

2
dt2

2(BtIn)2


(30)

At this order, Rf
n appears in multiple entries: (1, 3), (3, 1), and (3, 3), demonstrat-

ing that higher-order terms distribute the fault effect throughout the matrix in a

nonlinear manner. This distribution complicates the separation of fault dynamics

from the nominal system, making the regression-based structure less transparent.

This observation motivates the use of an approximation approach that isolates the

fault term. Specifically, the fault-related contribution ∆Rn is separated from the

matrix exponential as follows:

eACT
f ·dt ≈ eACT

H ·dt︸ ︷︷ ︸
I+ACT

H dt+
(ACT

H
dt)2

2! +···+
(ACT

H
dt)n

n!

+


0 0 0

0 0 0

0 0 ∆Rn

In
· dt


︸ ︷︷ ︸

∆A

(31)

This formulation retains all relevant terms in the Taylor expansion of the healthy

system matrix ACT
H , while explicitly preserving the fault structure in a linear and

interpretable form. As a result, it supports a clearer implementation of the fault

estimation framework, as expressed by:

ẋ = Ax + BfE(x)fm (32)

The approximation thereby facilitates a more transparent and tractable design for

fault estimation, avoiding the complexity and coupling introduced by higher-order

expansions.
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F Calculation of Fault Parameter fm

This appendix presents the derivation of the fault parameter fm, which quantifies

the influence of a change in nozzle resistance, typically due to variations in ink vis-

cosity, on system dynamics. This parameter is used throughout the fault estimation

framework to represent the impact of multiplicative faults.

The fault parameter fm originates from the change in the (3, 3) element of the

continuous-time system matrix A in (12), caused by a change in the resistance of

the nozzle. It is defined as:

fm = ∆A(3, 3) = −
(

Rn2

In

− Rn1

In

)
= − 1

In

(Rn2 − Rn1) (33)

Here, Rn1 and Rn2 denote the resistances of the nozzle in healthy and faulty states,

respectively, and In is the inertance of the nozzle. The resistance of the nozzle is

modeled using the Hagen–Poiseuille equation, which relates the fluid dynamics to

the geometry of the nozzle and the viscosity of the ink:

Rn = 8µLn

πr4
n

(34)

The parameters are defined as follows:

• µ [kg · m−1 · s−1] is the dynamic viscosity of the ink.

• Ln [m] is the length of the nozzle.

• rn [m] is the radius of the nozzle.

The inertance of the nozzle is calculated using a modified version of the standard

inertance formula, which includes a correction term π
4 rn. This correction accounts

for the short length of the nozzle compared to that of an ideal cylindrical tube, for

which the basic inertance expression is typically derived. This approximation has

been adopted by Canon Production Printing to provide a more accurate estimate

of the nozzle inertance.
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In = ρ ·
(

Ln + π
4 rn

πr2
n

)
(35)

The parameter ρ [kg · m−3] represents the density of the ink. Substituting the

expressions for Rn and In into the definition of fm yields:

fm = − 1
In

(Rn2 − Rn1) = − πr2
n

ρ(Ln + π
4 rn) · 8Ln

πr4
n

· (µ2 − µ1) = − 8Ln

ρ(Ln + π
4 rn) · r2

n︸ ︷︷ ︸
α

·∆µ

(36)

Here, ∆µ = µ2 − µ1 denotes the change in ink viscosity due to a drying fault.

Using the provided physical and geometric parameters, the fault parameter can be

illustrated as follows:

fm = −α · ∆µ [s−1] (37)

This final expression indicates that fm is linearly dependent on the change in dy-

namic viscosity. As viscosity increases, representing a drying nozzle, the corre-

sponding rise in resistance alters the system dynamics through the (3, 3) entry of

the matrix A.
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