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Chapter 1

Introduction

Scattering theory is the study of the effect that a medium or object has on an incident wave.
This phenomenon has attracted the attention of physicists and mathematicians, and their
investigations have led to a range of techniques that are used in applications to seismics,
acoustics, medical imaging and optics, among other disciplines (see [8], [11]).

In these applications it is often required to determine the features of an object or medium,
such as its shape or material parameters. Such features are difficult to measure directly, but
they can be reconstructed from the observation of waves scattered by the object or medium,
if the incident wave is known. Problems of this form are called inverse scattering problems. An
intermediate step to the solution of these problems are direct scattering problems, where the
incident wave and the properties of the scatterer are given (or can be estimated) and one is
interested in finding the scattered wave.

The fundamental equation describing scattering problems of acoustic waves is the Helmholtz
equation:
—Au(z) — k¥ (2)u(z) = f(2), (1.1)

where v and f are complex-valued functions and the wavenumber k£ = w/c is a function
of the spatial variable. In this thesis we will study the numerical solution of the linear sys-
tem of equations arising from the discretization of Helmholtz” equation, motivated by its

applications to scattering problems in seismics.

1.1 Seismic Imaging and Migration

In exploration geophysics it is important to have an accurate image of the inner layers of the
earth. For this purpose, a technique known as migration is usually employed. Acoustic waves
generated from a source placed on the surface of the earth are shot through the subsurface,

3
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Figure 1.1: Obtaining seismic information for subsurface imaging. Hydrophones streaming from a
3-D seismic ship record the reflection of sound waves as they bounce back from the earth’s subsurface.
(Hutchins et al. (Eds), World Oil’s 4-D Seismic Handbook, Gulf Publishing, 1997.)

and the difference between reflection times is recorded. This method allows to obtain infor-
mation of the earth’s layers up to 6000m below the surface. The data is processed afterwards
using a technique known as migration. For an extensive presentation of the method, see the
book by Bleistein, Cohen and Stockwell [4].

1.2 Scattering of Acoustic Waves

Let us consider acoustic waves propagating in R? through an inhomogeneous medium, such
as a fluid. If pp(z) and c(x) are the density of the medium and the speed of sound respec-
tively, depending only on space, and y is a damping coefficient, this propagation is modelled
by the wave equation

*p(x, t) Ip(z,1)
o2 ot

= ¢(z)po() div [ Vp(z, t)] , (1.2)

1
po(x)
where p(z,t) is the pressure disturbance on the medium (representing the wave) at point
z € R3 and time t € R. If the waves are time-periodic, i.e., have the form

p(z,t) = Re [u(x)eiith
with frequency w > 0 and u(z) a complex-valued function only depending on the space

variable, equation (1.2) can be reduced to the Helmholtz equation

—Au(x) — 0(6072)2 (1 + Z%) u(z) = 0. (1.3)
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In free space, ¢ = cq is constant and there is no damping, so v = 0. We define the wavenumber
k and the index of refraction n as

2
_ v __% el
k= o and n(x) = ) (1 +zw> ,

equation (1.3) then takes the form
—Au — k*nu =0, (1.4)

where n is a complex-valued function with Re [n(z)], Im [n(z)] > 0. Also, we assume that the
inhomogeneous medium is bounded, that is, there is a € R such that n(z) = 1 forall x € R3

with ||z|| > a. From this assumptions, we have that
Q={2zcR: ||z <a}

is our domain of interest. Further, we assume that there are no wave sources in ). We will
treat here the cases of a point source and a plane wave. In the first case, we have an incident
spherical wave p! of the form

etkllz—=z||

1 ,
pl(z,t) = ——— Re [e*l#=21!] " corresponding to u’(x)

EEE IERE

where z is a point source outside 2. In the second case, the incident plane wave is

p!(x,t) = Re [e*02=%1] " corresponding to u!(x) = 0%,
where 0 is a unit vector representing the direction of the wave. Each type of wave is a solution
to the Helmholtz equation
—Au—K*u=0

in Q. The perturbation introduced by the medium is represented by the index of refraction
n, and it produces a scattered wave u®. The total field u = u! + v° satisfies the Helmholtz
equation (1.4) outside the sources. We require an additional condition to ensure a unique
solution to the problem. As we expect that the scattered field behaves as a spherical wave
propagating far away from the medium, we require that u” satisfies the Sommerfeld radiation

condition
ou’ (x)

or

uniformly in all directions. We can now formulate the direct scattering problem.

—iku®(x) = O(1/r?) as r = ||z|| = oo, (1.5)

Direct Scattering Problem for Acoustic Waves: Let the wavenumber £ > 0, the index of refrac-
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tion n = n(z) with n(x) = 1 for ||| > a, and the incident field u be given. Determine the
total field u that satisfies the Helmholtz equation (1.4) in R? outside the source region, such
that the scattered field u° = u — u! satisfies the radiation condition (1.5).

In most applications, only information about the wave at far distances from the source can
be measured. The behavior of the wave at far distances is known as the far-field pattern, that
we now introduce. Let u : R® — C be a solution of the direct scattering problem for some

incident field u!, wavenumber k and refraction index n. Let
S? ={z eR3: |z| = 1}.
The far-field pattern uc : S? — C is defined as

]{22

Uoo(T) = A

/ In(y) — e~ vu(y) dy.
yeN

The inverse scattering problem can now be (informally) stated.

Inverse Scattering Problem of Acoustic Waves: Determine the index of refraction n from knowl-
edge of the far-field patterns u,, corresponding to various known incident fields u! and
different wavenumbers k.

Details on the conditions for the existence and uniqueness of solutions to both problems can
be found in [24]. We remark that in order to solve the inverse problem it is required to solve
several instances of the direct problem, often for a range of frequencies w (consequently,
for a range of wavenumbers k). In the rest of this thesis, we will focus on solving the direct
problem numerically, keeping in mind that this is an intermediate step for many applications
in which the solution of the inverse scattering problem is sought.

1.3 The Numerical Solution of Helmholtz’ Equation

Helmholtz” equation (1.1) can be discretized using finite-differences leading to a linear sys-
tem of the form
Au=f.

For a high degree of accuracy, it is required that the number of grid points grows at least
quadratically in the wavenumber, leading to a very large system of equations. For
2-dimensional problems, direct methods such as the LU factorization can be used, but for
3-dimensional problems the size of the matrix is too large, and direct methods lead to exces-
sive fill in due to the large bandwidth of the matrix [11]. Alternatively, the use of iterative
methods for Helmholtz problems has been proposed.
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The iterative solution of Helmholtz” equation has been a subject of research since the early
1980’s. Because of the large size of the matrix A and its sparsity, methods based on Krylov sub-
spaces are convenient. The article [2] by Bayliss, Goldstein, and Turkel is the first work in this
direction. There, the conjugate-gradient-like method known as CGNR is proposed to solve
the Helmholtz equation. Later on, iterative methods based on ADI (alternating-direction-
implicit) schemes, domain decomposition, and multigrid, among others, were introduced.
The reader is referred to the article [11] by Erlangga for a full survey. All these methods,
however, have a limited range of application and no standard method for the Helmholtz
equation has been developed. Ideally, the number of iterations of such a method would be

independent on the wavenumber, or only mildly dependent.

The main difficulty in obtaining an efficient solver for the Helmholtz equation is the eigen-
value distribution of the matrix A, which is not favorable for Krylov subspace methods. As
a remedy for this, various preconditioning methods have been investigated, since a well-
designed preconditioner can convert the system into an equivalent one with better spec-
tral properties. In this area, the use of a shifted Laplace operator as a preconditioner for the
Helmholtz equation has attracted much interest, beginning with the work of Giles and Laird
[25] and more recently with the complex shifted Laplace (CSL) preconditioner introduced by
Erlangga, Osterlee and Vuik in [13].

In [14] Erlangga and Nabben propose a multilevel Krylov (MK) method to solve boundary
value problems, and extend it further to incorporate multigrid preconditioners in a Multi-
level Krylov Multigrid (MKMG) method that can be applied to Helmholtz” problems precon-
ditioned by the CSL [15]. A variant of this method has been further studied theoretically and
experimentally in [31] by Sheikh, Lahaye and Vuik. These methods are the starting point of

our work.

1.4 Scope of the Thesis and Overview

In this thesis the analysis of the methods proposed in [15] and [31] is extended. We intend to
compare the theoretical aspects of both methods, which have shown good numerical results,
with a nearly constant number of iterations for a range of wavenumbers. For this, we per-
form rigorous Fourier analysis on a Helmholtz model problem, and study the distribution of
the eigenvalues with respect to the various parameters. The analysis proposed here clarifies
some aspects of the two-level method that have been observed before only through numer-
ical experiments, and gives theoretical evidence for the suitability of the MKMG method to

solve Helmholtz problems with large wavenumbers.

In chapter 2 we shortly review the subject of iterative and multigrid methods. In chapter 3 we
formulate the 1-dimensional discrete Helmholtz problem that we will analyze, and discuss
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some of the preconditioning methods that have been used for general Helmholtz problems.
In chapter 4 two versions of a two-level preconditioner are studied using Fourier analysis.

In the last chapter we discuss some conclusions and propose further directions of research.



Chapter 2

Iterative Methods for Linear Systems

In this chapter we review the subject of iterative methods for solving linear systems, with
an emphasis on Krylov subspace methods and preconditioning. We also present shortly the
multigrid method. We refer the reader to the books by Saad [29] and Van der Vorst [35]
for a complete treatment of iterative methods, and the books by Trottenberg et al. [34] and
Briggs et al. [7] for a full presentation of the multigrid method. The survey article [3] gives a

historical overview of these methods.
2.1 Basic Iterative Methods

Given a linear system of equations
Az =10 (2.1)

where A € CV*N and b,z € CV, we can find an approximate solution by constructing a
sequence Ty, Z1, . . . beginning from an initial guess z( and with each z,, obtained by solving
a system related to (2.1). Writing A in the form A = B — C for a pair of matrices B, C, we
have that (2.1) is equivalent to

Bx =0+ Cx. (2.2)

This suggests an iterative scheme of the form
Bxpy1=b+Czx,, n=0,1,... (2.3)
If the matrix B is nonsingular we have

Tpy1 = B b+ Cxy)
=B '+ (I —-B 1Az, (2.4)
=Tp + B_lrnu
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where r,, = b — Ax, is the residual at the n-th iteration. For such a scheme to be efficient it is
necessary that the matrix B is easily invertible.

The simplest iterative scheme is Richardson’s iteration, where B = I and C =1 — A. If Ais
splitted in the form A = D — L — U, where D is the diagonal part of A, and the matrices —L
and —U are the strict upper and strict lower diagonal parts of A, we obtain the Jacobi method

when B = D and C = —(L+U), and the Gauss-Seidel method when B = D—Land C = —-U.

For a parameter w € (0, 1) we can form the splitting
wA=(D—-wlL)— (wU + (1 —w)D),

from which the Succesive Over Relaxation (SOR) method is obtained. Equation (2.4) shows
that for all these basic methods the iterates can be obtained by a fixed point iteration of the
form

Tnt1 = Gap + f, (2.5)

for a matrix G and a vector f. If the method is convergent, equations (2.2) and (2.3) show
that lim,,_, 2, = , so the sequence of iterates converges to the solution of the system.

Recall that for a matrix G € CV*V the spectral radius p(G) of G is defined as
p(G) = max{|A| : \is an eigenvalue of G}.

The following theorem ([29], theorem 4.1) gives a necessary and sufficient condition for the

convergence of a basic iterative method.

Theorem 2.1. Let G be a square matrix with p(G) < 1. Then I — G is nonsingular and the iteration
(2.5) converges for every f and xo. Conversely, if for every f and xq the iteration (2.5) converges,
then p(G) < 1.

2.2 Krylov Subspace Methods

An alternative approach to solve the linear system
Az =10

is based on projections. In a projection method, we start with an initial guess zp € R and
then construct a sequence of approximations x1, z2, . . . requiring that each z,, lies in an affine
subspace

Ty € 2o + Sp. (2.6)
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A unique z,, can be determined if n linear constraints are fixed. These can be set by requiring

that the residual r,, = b — Az, is orthogonal to some n-dimensional subspace C,;:
b— Az, L C,. (2.7)

The subspaces S,, and C,, are called the search and constraint subspaces respectively. Let
S = [s1,...,8,) and Cp, = [c1,...,c,] be matrices of size N x n whose columns form bases
for the search and constraint subspaces S, and C,,. Condition (2.6) can be reformulated as

Tp = xo + Spyn, for some y, € C" tobe determined,
and (2.7) leads to

0=C(b— Azy)
= Crb— Cr Axg — CrAS,yn
= CrrY — Cx ASyyn.

Hence, in the n-th step of the method, the projected system
Cr ASpyn = Crro

is solved. We say that the method is well-defined at step n if the matrix C}; AS,, is nonsingu-
lar. The following result provides conditions under which the method is well-defined ([29],
proposition 5.1).

Theorem 2.2. A projection method is well-defined at step n if A, S,,, and C,, satisfy one of the two
following conditions:

(i) A is positive definite and S,, = C,,.

(ii) A is invertible and C,, = AS,,.

The family of projection methods known as Krylov subspace methods uses search subspaces of
the form
Kn(A,ro) = span{rg, Arg, ..., A" ry},

these are called Krylov subspaces. A key property of these methods is that the n-th iterant can
be written in the form

an = 20 + p(A)ro,

where p is a polynomial of degree at most n — 1. This is a crucial property that is used for the
convergence analysis of Krylov subspace methods, that we will review later.



12 Chapter 2. Iterative Methods for Linear Systems

2.2.1 The Conjugate Gradient Method

The Conjugate Gradient (CG) method, introduced by Hestenes and Stiefel in 1952 [21], is the

method based on the choice of search and constraint subspaces
STL — CTL — ’Cn(A,T(]),

with the additional requirement that the matrix A should be Hermitian positive definite
(HPD). This choice leads to the following optimality property for the n-th iterant:

Tr—x = min xr — 2.8
o= walla = _anin e =yl 8)

where || - || 4 is the norm induced by the inner product
(v,w) 4 = vT Aw.
The CG algorithm is given below.

Data: A HPD matrix A € CV*¥, and vectors b, zy € CV.
begin
ro :=b— Axg, po := 70,
for k =0,1,... until convergence do
ay = (1, 71) / (AP, Pr);
Th41 1= Tk + QkPk;
et =10 — g Apy;
Bkz = (Tk+1vrk+1)/(rk’ Tk>;
Pt o=+ By
end
end

Algorithm 1: CG Method

2.2.2 The GMRES Method

In the GMRES method, the choices of search and constraint subspaces are S,, = K,, and
Cn, = AK,. The method was proposed in 1986 by Saad and Schultz [30], and does not require
any additional properties of the linear system. Moreover, an optimality property for the
residual of the n-th iterant holds:

ol = ||b — Azp|| =  min b— Ayl|.
Irall = b= Aw| = _min (b= 4|

The GMRES algorithm is given below.
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Data: A matrix A € CV*N and vectors b, zy € CN.
begin

ro :=b— Axg, v1 :=ro/||roll;

Let H,, € Ctmtxm [ .—;
forj=1,2,...m,...do

fori=1,2,...,jdo
‘ hij :== (Avj, v;);
end
bj1 1= Avj — 3214 hijvj;
hjvij = 195l
Vi1 = Vj11/hjv1y;
end

Ym := argmin, [|Ber — Hpyll;
T 2= 20 + VinYm;
end

Algorithm 2: GMRES Method

2.2.3 The BiCG Method

The Biconjugate Gradient (BiCG) method was first proposed by Lanczos in [26] and in an
alternate form by Fletcher in [18]. The method works for general nonsigular matrices, and
results from projecting in each iteration onto the search subspaces S,, = K, (A, (), orthogo-
nally to the constraint subspaces C,, = K,,(A*, (). The choice of the adjoint matrix A* for the
constraint subspaces leads to the solution of a dual linear system A*# = b which is usually
ignored. The BiCG method is implemented in algorithm 3.

Data: A matrix A € CV*V and vectors b, zy € CN.
begin

ro = b— AJI(), Po ‘= To,

Choose r with (15, 70) # 0, p§ =7
for k = 0,1, ... until convergence do
o = (15, 15)/ (Apk, P} );

Th+1 = Tk + QkPk;

Tyl = Tk — apApg;

Thy1 = Tk — QA" py;

Bj = (1, 1)/ (a5

Pk+1 = Tk+1 + BDks

Prg1 *= Thy1 T Bepy

end

end

0

4

Algorithm 3: BiCG Method



14 Chapter 2. Iterative Methods for Linear Systems

2.2.4 Convergence of Krylov Subspace Methods

In this section we review the convergence estimates for the CG and GMRES methods. Since
the iterants of the BiCG method do not satisfy an optimality property, the convergence of this
method is more difficult to analyze. Recall that given a nonsingular matrix A with maximum
and minimum eigenvalues (in modulus) A™** and Amin e spectral condition number of A
([29], p. 45) is given by

_ ey

K(A) = [ (2.9)

We have previously noted that the n-th iterate in a Krylov subspace method has the form
z, = xo + p(A)ro,
for a polynomial p(A). Combining this with the minimization property of the CG method

r—x = min x —
| nlla yeKn(Amo)H ylla,

and using the optimality properties of the Chebyshev polynomials, the classical convergence
estimate for CG is obtained. The following bound for the error of the n-th iterate of the CG
method in the A-norm holds:

k(A) —1

VEA)+1

One should keep in mind that this bound only gives a worst-case estimate for the error for all

|z — xn|la <2 |l — xola- (2.10)

possible eigenvalue distributions on the interval [\™® \m2%]. Moreover, this bound for the
error shows that a small condition number leads to a faster convergence of the CG method,
but it does not show that a large condition number leads to slow convergence, as explained
in [27]. The next theorem ([30], proposition 4) gives a convergence estimate for the GMRES
method.

Theorem 2.3. Let A be a diagonalizable matrix with A = X AX ! where A = diag(\1,. .., \n) is
the diagonal matrix of eigenvalues of A, and let

(") = min max |p(A
€ nin m x [p(Ax)],

where 11,, is the space of all polynomials of degree less or equal to n with value 1 at the origin. Then,
the norm of the residual of the n-th GMRES iterate satisfies the inequality

lrall < € a(X) 7ol
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If the spectrum of A is contained in a disk in the complex plane not containing the origin,
centered at C' with radius R, one has the following bound for the quantity (™) from the
previous theorem (see [27])

This implies that a fast convergence can be expected when the spectrum is contained in a
small circle far from the origin. However, we remark that the convergence of GMRES applied
to a linear system cannot be predicted in general by the spectrum of the matrix, in view of
the result in [19], where it is shown that any nonincreasing curve of relative GMRES residual
norms is attainable for a matrix A having any prescribed eigenvalues.

2.3 Preconditioning

We have seen that the eigenvalues of a matrix play an important role in the convergence of
Krylov subspace methods. The idea behind preconditioning is that a linear system can be
transformed into an equivalent one which has a better eigenvalue distribution and is easier

to solve. If M is a nonsingular matrix, the linear system
Az =b

is equivalent to
M~YAz = M~ 1. (2.11)

The matrix M is said to be a (left) preconditioner, and it should be easily invertible and ap-
proximate A in some sense. The system (2.11) can now be solved using a Krylov subspace
method. In practice the matrix M ~! is not computed explicitly, and products of the form
u = M~ Av that need to be formed during the iterative process are obtained by computing

t=Av, u=M"'t. (2.12)

Alternatively, a right preconditioner can be used, leading to the equivalent system

The convergence of a Krylov subspace method applied to (2.11) now only depends on the
eigenvalues of M1 A. In view of the discussion on the preceding section, an improved con-
vergence can be obtained if the eigenvalues of this system are more clustered and bounded
away from zero. Hence, for a preconditioner to be useful we should at least require that
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k(M~1A) < k(A) holds.

2.4 The Multigrid Method

The multigrid method goes back to the work by Fedorenko [17], and was further developed
by Brandt [5], and Hackbush [20], among others, to solve linear systems arising from the
discretization of partial differential equations. We outline here its main ideas.

Suppose that we look for a solution to the system

Apup, = fa,

where Aj, € RV*Y corresponding to the discretization of a PDE on a uniform grid Q, with
grid size h. Let ug be an initial approximation to the exact solution 4, and eg = @ — g the
initial error. If a basic iterative method (such as the methods from section 2.1) is applied to
compute a sequence of approximations u, ug, ..., only the high frequency components of
the error e, = @ — u,, will decrease after a few iterations. More precisely, if {¢;}Y_, is the
orthonormal basis of Fourier modes in RY, the error can be written in the form

N
en =3 a"or = oo+ Vo,
k=1

low high

for some coefficients a](fn), where we have splitted the sum into "high” and low” frequencies

corresponding to the frequencies of the Fourier modes. The high frequency error decreases

rapidly, and after a few iterations we have

<

> af) b

low

Z a;(qn) o

low

This is known as the smoothing property of basic iterative methods, and for this reason these
methods are called smoothers in the context of multigrid methods. Since the low frequency
components of the error @ — u, remain and they cannot be decreased by the smoother, the
convergence stagnates. In order to overcome this problem, the smooth error can be trans-
ferred to a coarser grid Qy C €2, where the low frequency components of the error are now
"visible” as high frequency ones, and a basic iterative method can be used effectively to solve
the error equation. A correction is then computed on the coarse grid, and interpolated back
to the fine grid. A recursive application of this idea on increasingly coarse grids leads to the
multigrid method.
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2.4.1 Basic Components of Multigrid

Setting up a multigrid method requires several basic components: A choice of smoothers, a
sequence of grids, and the corresponding transfer operators between them. We begin with a
simple two-grid scheme for a 1-D model problem. Consider two equidistant grids 25, 2y on
the domain Q2 = (0, 1), where }, has gridsize h = 1/n and Qg C ), is obtained by standard
grid coarsening, so H = 2h. We also need intergrid transfer operators I}, I (restriction
and prolongation), and the discretization matrices A;, and Ay for a PDE problem on the fine
and coarse grid. We will write & = SMV (A, b, () for the result of applying v iterations of a
basic iterative method (smoother) to solve the linear system Az = b with the initial guess z.
Algorithm 4 is a simple implementation of the two-grid method with v, presmoothing steps

and v, postsmoothing steps.

vp < TGM" 2 (Ap, fr, vn)-

begin

Presmoothing

Vp = SMVl (Ah7 fh7 Uh)~

Coarse grid correction:

Set rp, := fn, — Apvp, and restrict it to coarse grid rg = I,flrh.

Solve exactly the error equation ey := Ay 'y

Prolongate the coarse error to the fine grid e;, := I ﬁ,e g and correct vy, < vy, + ep,.

Postsmoothing
vy = SM"(Ap, fn, vp)
end

Algorithm 4: Two-grid Method

The two-grid method can be extended by applying the same idea recursively, on a sequence
of grids Qp, 2 Qgp, O -+ D Qomy,. This leads to a multigrid V-cycle, which is an intermediate
step in the construction of more complex methods. The following two algorithms implement
the V-cycle and the full multigrid method.
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v < VP (Ap, fho on)-
begin

Presmoothing

'Uh == SMlll (Ah7 fh7 Uh)'

if on coarsest grid then
| goto Postsmoothing
end

else
Coarse grid correction
Setry, := fr, — Apvn, fon :i= Iﬁhrh, vop, := 0.
van < V33, (Azn, fon, van)
Correct vy, < vy, + Ighvgh
end

Postmoothing
vp = SM"(Ap, fh, vn)
end

Algorithm 5: Multigrid V-cycle

Vp < FMG}VL(A}“ fh, Uh).
begin
if on coarsest grid then
Set Vp = 0.
goto V-cycle
end

else
Coarse grid correction
Set fo, = Iﬁhrh, Vop, = I%hvh,
vop, < FMGY, (Aan, fon, van).
h
Correct vy, < vy, + I3}, vap,.
end

V-cycle vy, = V¥ (A, fr,vn)
end

Algorithm 6: Full Multigrid Cycle



Chapter 3

Numerical Methods for the Helmholtz
Equation

In this chapter we formulate our Helmholtz model problem and discuss some of the methods

that are used for solving linear systems arising from Helmholtz model problems.

3.1 Discretization of the Helmholtz Equation

We introduce now the discretization of the Helmholtz problem in a bounded domain with a

source term
—Au—ku=f inQ CR% (3.1)

The boundary conditions to be imposed should mimic Sommerfeld’s radiation condition
(1.5), adapted to the domain €2, to ensure that waves are traveling in the outwards direction
and there is no artificial reflection of waves. The following first-order absorbing boundary

conditions have been proposed in [10]:
Onu — tku = 0 on 0f). (3.2)

The discretization of problem [(3.1), (3.2)] leads to a complex-valued matrix, which is complex-
symmetric (A=AT but A # A*) and indefinite, i.e., has positive and negative eigenvalues. We
will only treat the case of Dirichlet boundary conditions

u =0 on 01, (3.3)

as the matrix arising from the discretization of [(3.1), (3.2)] is non-normal, and cannot be

analyzed with the techniques we use here. However, the results from our analysis will also

19
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be useful for the complex Helmholtz system, since the preconditioning methods that we
study have shown in general better results for the complex Helmholtz systems [13], and the
properties and location of the spectrum of the preconditioned systems are similar. Hence,
in terms of convergence analysis, the Dirichlet problem can be considered as a worst-case

version of the Sommerfeld problem

We will focus on the following Helmholtz model problem:

1-Dimensional Helmholtz Model Problem. Given a source function f(x) and a wavenumber £,

find the wavefield u such that
d?u

- 5(@) = K*u(w) = f(2) forz € (0,1), (3:4)

Equation (3.4) can be discretized on a uniform grid €2, with meshwidth » = 1/n and grid-

points xg, ..., x, where x; = ih. A finite difference approximation of second order on the
grid is given by the stencil
1
[An] = ﬁ[ -1 2—-x* 1],

where k = kh. After elimination of the unknowns corresponding to the boundary points,
the discrete problem is reduced to a linear system of equations

Apup, = f, 3.5)

where

Ap = — . _ S (3.6)

0 . 0 -1 2—x?

has size (n—1) x (n —1). To obtain an accurate representation of the wavefield u on the finite
grid, at least 10 gridpoints per wavelength should be used [1]. A time-harmonic wave with

wavenumber & has a wavelength A = 27/k, so the number p of gridpoints per wavelength

equals
_A_ 2
Py T
and we have the restriction
p > 10, or equivalently, kh < 7/5. (3.7)

A more restrictive bound on the quantity h?k? is also required to avoid instability [22], how-
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ever, we will only enforce (3.7) since we are mostly interested in the iterative solution of the

system.

When k? is larger than the smallest eigenvalue of the Laplace operator —Ay,, the discrete
Helmholtz operator has both positive and negative eigenvalues, making it indefinite. We can

calculate these eigenvalues explicitly. Recall the basis of Fourier modes in R"~*
Vi={vy:1<1<n-1},

where
v = sin(lrz) = [sin(lrh), sin(2l7h), . . ., sin((n — 1)lxh)]T,

these are the eigenvectors of the discrete Laplace operator —A; with corresponding eigen-
values

A(=Ay) = %[2 ~2cos(inh)] ,forl=1,...n— 1. (3.8)

To check this we compute the entries of the matrix-vector product —A,v!, using the trigono-
metric identity sin(« + ) — sin(a — ) = 2sin(«) cos(f):

[~Ap'); = nz:l[—ﬁh]jkvfc
=
= = sin(in( = Db) + 2sininjh) = sinin(j + D)
- %[2 sin(lmjh) — 2sin(lmjh) cos(lwh)]
_ %[1 — cos(lmh)] sin(Imjh)

= %[1 — Cos(lﬂh)][vl]j

Also note that

AU—A) = %[2 — 9cos((n — )rh)] = 2+ 2cos(irh), forl =1,...,n/2 — 1,
and ) ) )
A2 — 51 = cos(n/2)mh)] = S5 [1 — cos(m/2)] = .

We have then that the eigenvalues of the discrete Helmholtz operator A, are
1
M(Ay) = ﬁ@ — 2cos(Imh) — K2), forl =1,...n — 1. (3.9)

The plots from figures 3.1 and 3.2 show the spectrum of the Helmholtz system for several

values of the wavenumber £, the number of gridpoints per wavelength p and x = kh.
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Figure 3.1: Spectrum of Aj, for p = 10 and x = 0.628
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Figure 3.2: Spectrum of Aj, for p = 15 and x = 0.418

From the formula for the eigenvalues of the 1-D Helmholtz operator of our model problem
one can obtain some insight that applies also for higher dimensional Helmholtz problems
and their corresponding discretization matrices, since the spectrum of such matrices is simi-

lar. Note that the sign of the eigenvalues equals the sign of
2 — 2cos(Imh) — k*h?.

For a fixed wavenumber £, increasing the grid size h may change the sign of an eigenvalue.
This poses a difficulty for the error correction steps in multigrid methods: Even if high fre-
quency components of the error are well resolved on coarse grids and reduced by smoothing
steps, the correction may be added with the wrong sign. The same phenomenon also occurs
when multigrid is used for other indefinite and nearly singular problems [6]. Another draw-
back for the use of multigrid methods in Helmholtz problems, discussed in [16], is that using
standard smoothers to dampen oscillatory modes of the error leads to amplification of the
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smooth modes. A possible solution which is proposed in [9] is to incorporate Krylov sub-
space methods as smoothers on the intermediate grids.

3.2 The Shifted Laplace Preconditioner

The use of a shifted Laplace operator of the form
M(/BlvﬁQ) = _A - (61 - Z.ﬁQ)k'Q? 517182 S Rv

as a preconditioner for the Helmholtz equation was first initiated by Giles and Laird, who
proposed using a Laplace preconditioner with a real shift in [25]. More recently, Erlangga,
Osterlee, and Vuik considered a more efficient complex shifted Laplace (CSL) preconditioner
in which the imaginary part of the shift is nonzero. The main advantage of using such an
operator is that the imaginary term adds damping and allows multigrid methods to be effec-
tive for the inversion of the preconditioner, while the spectrum of the preconditioned system
becomes suitable for the use of Krylov subspace methods.

For our 1-D model problem, the eigenvalues of the preconditioned system can be computed
explicitly and the effect of the choice of the shift parameters can be analyzed. Let Aj, be the
Helmholtz matrix for our model problem, and M}, (3, 5,) the finite-difference discretization
matrix of the 1-D shifted Laplace operator with homogeneous boundary conditions. The
preconditioned matrix is
i ~1
An,(81,82) = My, (5, p,) An-
The set of eigenvectors of this matrix is the set V}, of Fourier modes, and their corresponding
eigenvalues are
2 —2¢; — K2

liA _ — _
A (Ah,(ﬂl,ﬁg)) = 5 _ 261 — HQ(ﬁl — 7;,62)7 forl = 1,2, R 1. (310)

Figures 3.3 to 3.5 show the spectrum of /lhy( 3,,8,) for several values of the parameters k, , 51
and f3>. Note that most of the eigenvalues are clustered around 1, but some of them have
small magnitude and are close to zero. Also, the number of small eigenvalues increases
for larger k, and the clustering improves when more gridpoints per wavelength are used.
Moreover, the eigenvalues are located on a circle, which is independent of the wavenumber

k. The following theorem is a special case of theorem 3.2 in [36].
Theorem 3.1. For every r, 31 and By # 0, the eigenvalues of the preconditioned matrix Ay g, s,
given by the expression (3.10) are located on the circle

=P =12,

with center ¢ = (%, 1;5§1> and radius r = 5,/1+ %
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Figure 3.3: Spectrum of Ah,(l,of)) for k = 0.628

Proof. From the expresion for A (A, 5, 5,) = Re Al + i Im X we get
Re A +iIm N][2 — 2¢; — K2(B1 — iB2)] = 2 — 2¢; — K2

Multiplying the left hand side, and equating the real and imaginary parts of both sides of the
equation:

ReM(2 — 2¢; — k261) — Im A (K262) = 2 — 2¢; — K?
Im \(2 — 2¢; — K2B1) 4+ Re Ay (k2 62) = 0.

From the second equation we obtain

Re \!

2 — 20 = K231 — K2 Py ——
Cl ’%ﬁl &6QImAl>

substituting in the first equation and multiplying by —Im \; we get
K2Ba(Re A)? + k262 (Im A2 — k2B Re Ny + £2(B1 — 1) Im A = 0.

Dividing by %8, and completing the squares gives the equation of the circle

L 1)’ L =B\ 1, (1-p5)?

O]

The previous theorem and the convergence bounds from section 2.2.4 can be used to find
near optimal values of the shift with respect to the number of Krylov iterations, as is done in
[36] for GMRES, and validated experimentally. The choice of parameters (51, 52) = (1,0.5)
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Figure 3.5: Spectrum of flh7(170.25) for k = 100

is considered to be near optimal in terms of number of Krylov iterations and is the standard

choice in the literature.

One should also take into account the difficulties explained in section 3.1. In particular, if the
imaginary shift is too small, one obtains a Helmholtz-like operator which cannot be inverted
using multigrid. The trade-off between the constraint on the shift for a small number of
Krylov iterations and the requirement for multigrid convergence can be understood from a
closer inspection to formula (3.10). The following analysis is proposed in [16]. If 3; = 1 and

B2 is small, a Taylor expansion of (3.10) in the variable (3 gives

so in order to have the spectrum clustered in an arc around (1,0) and bounded away from
the origin we must require
Be <  min |2 —2¢ — K.
=1,...,n—1

=1,...,
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If & = kh is fixed, given a wavenumber £ let

d(k) = min |2 —2¢ — K.

I=1,....n—1

We show the dependence of this quantity with respect to the wavenumber k in figure 3.6.

107"

——d(k)
-2 N —1/k

107

10°

. . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500

Figure 3.6: Illustration of how small the shift 5> should be chosen in the CSL to obtain a precondi-
tioner that bounds the spectrum away from the origin.

We can see from the plot that the condition > < 1/k must be met to have a good precon-
ditioner. If this condition is met, for increasing values of £ the multigrid convergence will
deteriorate, indicating that that a different preconditioning technique is needed to overcome
this problem.

3.3 Deflation and Multilevel Methods

3.3.1 Deflation

Deflation is a technique to deal with the deterioration in the speed of convergence of Krylov
subpace methods due to the presence of small eigenvalues. To describe this technique we
consider a linear system of the form

Ax =10 (3.11)

Our goal is to remove the components of the residual corresponding to the smallest r eigen-
values, that are responsible for the slow convergence. Let Z,Y € R™*" be full rank matrices,
where r < n. We define the (left) projection matrix Pp

Pp=1—-AZE'YT where E=YTAZ. (3.12)
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and the corresponding right variant
Qp=I1—-ZE'YYTA. (3.13)

The matrix Z is called the deflation matrix, and, since E is similar to the coarse grid matrix of
multigrid or domain decomposition methods, we call it the Galerkin matrix. If we apply the
projection Pp on the left to (3.11) we obtain the deflated system

PpA = Ppb.

The following theorem explains the effect of the projection matrix on (3.11).

Theorem 3.2. Let A € R"*" be a nonsingular matrix and Z,Y € R™" full rank matrices, with
r < n. If Pp and Qp are defined as in (3.12) and (3.13), then

1. PhA = AQp.
2. PpAZ = 0.

3. If {\1, A2, ..., Ay} C C are the eigenvalues of A ordered increasingly in magnitude, and the
columns of Z are the eigenvectors of A corresponding to the smallest r eigenvalues, we have

U(PDA) - {07 )‘7‘4—17 )\TL}7
And for arbitrary Z and Y,
0(PpA) = {0, trs1, - s fin}

Proof. The first and second parts follow from a direct computation. For the rest, see lemma
3.1 from [14] and theorem 3.1 from [15]. O

Part 4 of the previous theorem shows that the small eigenvalues are removed from the spec-
trum by the deflation preconditioner, and the remaining eigenvalues may be shifted, unless
eigenvectors are used in the deflation matrix Z. To solve the original system we use the

following procedure. Let z* be the solution to (3.11), and write it in the form
¥ =(I—-Qp)x*+ Qpzx™.

We have
(I—Qp)x* =ZE'YTAx = ZE~ YT,

as F is a smaller system that can be inverted with less work, it only remains to compute

Qpz*. Moreover, in view of the equality AQp = PpA, if  is a solution of the deflated
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system
PpAz = Ppb (3.14)

we have
AQpz = PpAi = Ppb = PpAx* = AQpzx*

hence QpZ = @ pz* and we have reduced our problem to computing . The deflated system
(3.14) is singular but consistent (i.e., there exists at least one solution), and can be solved

using a Krylov subspace method.

If A is symmetric positive definite one typically sets Z = Y. The resulting deflated system
is positive semidefinite and can be solved by CG [23]. For arbitrary A, Z and Y the deflated
system has to be solved using a general method, for instance, GMRES. In any case, the orig-
inal system has been replaced by the deflated system (3.14) which is expected to converge
faster, because the small eigenvalues have been removed.

Note that if a large deflation subspace is used the matrix £ should be inverted using iterative
methods, hence for the method to be effective the computation of Pp should be insensitive
to an inaccurate computation of E~!. This is not always the case, as shown in [28] for SPD
systems. A full analysis of this and other aspects of deflation is given in [33].

3.3.2 Multilevel Krylov Methods

To begin our discussion of multilevel methods, we consider a more general version of the
deflation preconditioner in which a standard preconditioner is incorporated. Suppose we
want to solve (3.11), and let A = M~'A and b = M ~'b. For full rank matrices Z,Y € R"*7,

the corresponding projection operator is
Pp=1-AzZE'YT, (3.15)

where £ = YT AZ is the coarse grid matrix. In order to solve the deflated system

using an iterative Krylov method, the Galerkin coarse matrix £ should be inverted. Natu-
rally, one can apply the same method and deflate the coarse system. If this technique is used
recursively, a multilevel Krylov (MK) method arises. In principle, there are no restrictions
for Z and Y, other than the requirement that they should be full rank matrices. Possible
choices of the deflation matrices Z and Y that have been studied are transfer operators from
geometric multigrid methods (see [14] and [15]) and matrices based on algebraic multigrid
considerations (see [12]).
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It was remarked earlier that the computation of Pp may be sensitive to an inaccurate compu-
tation of E~!. Adding a shift term to (3.12) leads to an alternative projection preconditioner
that is more robust in this sense. This preconditioner has the form

Py=T1—-AZE"WYT + \,ZE7YYT = Pp+ M\ ZE~'YT, (3.16)

where E = YTAZ and ), is the largest eigenvalue of A (or an estimate for it). Strictly
speaking, the operator Py is not a projection (P% # Py), but it is classified as such because it
projects some of the eigenvalues of A to an appropriate value for acceleration of convergence.
For right preconditioning, the operator

Qn=1-ZE"%YTA+ X\, ZE7'YT. (3.17)

is used. The following theorem explains the effect of these projection-type preconditioners.

Theorem 3.3. For a nonsingular matrix A € R™™ and full rank matrices Z,Y € R"*", the follow-
ing properties hold:

1. If Pp and Py are given by (3.15) and (3.16), and

U(PDA) = {Onu’?“-f-la .. 7“71}7

then
o(PNA) = { )y frg1y -+ in )

2. If Py and Qy are given by (3.16) and (3.17), we have:

We have then that the smallest r eigenvalues are not shifted to 0 but to an estimate of the
largest eigenvalue ),,. In the general case (Z and Y arbitrary) one needs to take into account
that the remaining n —r eigenvalues of Pp A can also be shifted, and ),, should be scaled by a
factor w. If GMRES is used as a Krylov solver, it is preferable to use the right preconditioner
(3.17) since it computes the actual residual during the iteration, unlike the left preconditioner
(3.16) which calculates a preconditioned residual that is not useful to terminate the iteration.

The right preconditioned GMRES solves the system
AQN T = l;a

or, with A = AM 1,
AM™'Qn& = b, where u = M~'Qna (3.18)
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Since in every iteration of GMRES a different preconditioner is used, a modified version of
algorithm 2 known as flexible GMRES (FGMRES) is used, which allows variable precondi-
tioning [32]. Algorithm 7 is an implementation of the FGMRES method with right precondi-
tioning to solve (3.18).

Data: A matrix A € CV*V, and vectors b, zy € C", an estimate for the largest
eigenvalue A\, € C, and a scaling factor w € R.
begin
Compute ro = b— Al‘o, ,3 = H?“()HQ, V1 = 7“0/5.;
forj=1,2,...kdo
z; = Qnvj;
w = AM’lxj;
fori=1,2,...,5do
hij = (w,v;);
w = w — hj;v;.;

end

hj1j = [lw]. ;

Vj41 = w/hj+1j.;
end

Set Xk = [.’El . l‘k] and ﬁk = {hij}lgigj—i-l;lgjgk-;
Compute yj, := argmin, [|fe; — Hyyll and xy, := 0 + M~ Xpyp;
end

Algorithm 7: FGMRES preconditioned by M and Qy

The first line of the outer iteration of algorithm 7 requires that we compute z; := Qyv;. We
have

xj=(I—ZE YA+ wh\,ZE'YT ),
=v; — ZEYYT

where v/ = (A — w\,I)v;. Let s = Avj and v}y = YT (s — w,v;). Then
Tj=vj — ZEA_IU%.
To compute vp = EA_lv}?, we solve the Galerkin system
Euvp = vh, (3.19)

and prolongate the solution to obtain t = Zvg. Finally, we compute z; = s — t. Algorithm 8

is a more detailed version of the two-level method.

To accelerate the convergence, the Galerkin system corresponding to the matrix £ can be
solved using a projection preconditioner. Using this technique recursively leads to a multi-
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Data: A matrix A € CV*¥ and vectors b, zy € CV, an estimate for the largest

eigenvalue M\, € C,and a scaling factor w € R.

begin
Compute ro=b— Axg, 5 = HT‘()HQ, V] = TU/B.;
forj=1,2,...kdo
s = AM_lvj.;
Restriction: v}, := Y7T(s— wS\nvj).;
Solve for vg: Fug = Vs
Prolongation: t := Zvg. ;
Ty =0V — t.;
w = AM‘la:j.;
fori=1,2,...,jdo

| hij = (w,05)

end

wi=w— Y 1_; hijvj;

hjtij = [wl.;

Vj4+1 = w/hj+1j.;
end

Set Xk = [{1}1 N l‘k] and .ﬁk = {hij}lgigj—l-l;lgjgk-;
Compute yj, := argmin, [|fe; — Hyyll and xy, := 20 + M~ Xpyp;

end
Algorithm 8: FGMRES preconditioned by M and Qv
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level Krylov (MK) method.

We will now focus on the MK method with approximate Galerkin matrices, following [15].
When applied to Helmholtz problems, the preconditioner M is the shifted Laplace precon-
ditioner, which is inverted using one multigrid iteration. Therefore, M ! is not explic-
itly available for building the Galerkin matrix E=YTAM'Z. Using the approximation
M=t~ Z(YTMZ)~1YT we obtain the approximate Galerkin matrix

E=YTAzZ=yTAM 1z
~YTAZ(Y"MZ)"'Y'Z = AyM,;* By

where Ay = YTAZ, My = YIMZ, By = YT Z are the Galerkin matrices associated to A,
M and I. The Galerkin system (3.19) now reads as

ApgMp'Brog = v, (3.20)

Further, a projection preconditioner can be applied to this system. To describe the full multi-
level method, we update our notation and let A1) = A, M) = M, 7202 = Zand Y (1) = Y.
With this notation, we have

where

4@ _ y 2T 40) 70.2)

M®@ — y@2)7 1) 7(1.2)
B®@ — y1.2" (1) 7(1.2).

The matrix A® is the second level Galerkin matrix associated with A = AM AW~ If

A is sufficiently small, the system
A(ﬂvg) = (vjy)®@

can be solved exactly, otherwise it is solved using a Krylov subspace method. In the latter
case a shift operator can be applied to A(?), namely

O® =1 -z Ay EIT 4@ 4 ,@5@ 223 4@y @7
where A®) = Y(23)" 4(2) z7(23) and the resulting linear system

AR @7 BAQRIGE — AP 52 = (4),)@),
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where v! R = Q3 Nv R , is solved by a Krylov method. If the same procedure is used for the
system corresponding to A®) we arrive at the multilevel Krylov method.

Suppose that we use m levels, so that at level m — 1 the Galerkin problem is sufficiently
small to be solved exactly. Algorithm 9 (algorithm 1 in ([15]) implements the multilevel
Krylov method.

3.3.3 The Multilevel Krylov Multigrid Method

We close this chapter with a discussion of the multilevel Krylov multigrid method. The
MK method presented before requires several preconditioner solves that can be done using
multigrid, as it is the case when the method is combined with the CSL to solve Helmholtz
problems. Consider a sequence of grids €y D s --- D €, with corresponding intergrid
transfer operators

I G(9)) = G(Qj41)  (restriction)

Ijjﬂ :G(Qj4+1) = G(Q;) (prolongation)

In this setting, if a linear system corresponding to M = M ](W)G is to be solved on the finest grid
0l using multigrid, the Galerkin matrices associated with the coarse grid correction steps are

(G+1) 3, G+D) fG+1)

)
Myre = Iy My 1)

For the multigrid method, the matrices I; i ;+1 should be chosen to represent accurate
processes of restriction and interpolation of smooth functions. On the other hand, the only
requirement for transfer operators (Z(7+1) Y (J+1)y in the MK method is that they have
full rank. Since the multigrid transfer operators satisfy this requirement, they can be incor-
porated into the MK method, leading to a multilevel Krylov multigrid (MKMG) method.

Hence, in the MKMG method we have

MO =)

If m levels are used for the MK method, and in level j we use a multigrid V-cycle (algorithm
5, section 2.4) with m — j levels for the preconditioner solve, we obtain a method that can be
schematically represented as in the figure.



34 Chapter 3. Numerical Methods for the Helmholtz Equation

Initialization:;

Forj=1,set AV = A, MW =M, Bi(l) =1, construct Z(::¥) and choose 2D and w®). With
this information, A1) = AWM and Q are in principle determined.;

For j =2,...,m, choose ZU~19) and YU~1J) and compute

AU = y =19 4G-1) 7(G-1.3)

M@ = yG-19)" pp) 7G-1.3)
BW = y-19)" [ z(G-14)

which define
AW — A0 )™ BG)

Forj=2,...,m—1,setw® and A9 and define

Q) = [ — ZU—L) AW Yy U1 (46D _ 030

Iteration phase:;
begin;
J=1
Solve AW MM M) = p, 4D = MO~ () with Krylov iterations by computing;
o) = M),
1
50 = AW,
t(l) = 8(1) — w(l)}(\,’(@l)v(l)/
Restriction: (v},)® = Y (1:2)"¢1);
if j = m then;
pm) = Am) ™ p(m),
else;
J=2
Solve A@ M@~ B@y?) — (14,)@) with Krylov iterations by computing;
v = MO B@y();
2
5@ = 4@y,
t(2) = 8(2) — w(Q)S\gf)U(Q),
Restriction: (v};)®) = Y (23)T1(2);
if j = m then;
(m) _ A(m)

SR
=3
Solve A®N®) " BOpE) = (41,)®);
Interpolation: v§2) =Z (2’3)”;‘? ;
q(g) = U(Q) — U§2),’
w® — M(z)*13(2)q(2);
p(2) — A(Q)w(Q)’
Interpolation: vgl) =7 (1’2)U532 )
q(l) — U(l) — 'Ugl),'
w® = MO ¢,
pD = AWy,
end;

Algorithm 9: Multilevel Krylov method with approximate Galerkin matrices
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Chapter 4

Fourier Analysis of the Preconditioned
1-D Helmholtz Equation

In this chapter we return to the Helmholtz problem on (0, 1) with homogenous Dirichlet

boundary conditions

d’u 9
— 5 —Ku=f(z), 2€(0,1) (4.1)
u(0) =u(1) =0, 4.2)

where k£ > 0, f and u are the wavenumber, source function and unknown field respectively.
We will study two variants of the two-level version of the MK method based on multigrid.
Our goal is to obtain a block diagonal decomposition of the two preconditioned systems,
together with explicit formulas for its eigenvalues, to be able to establish the effect of the

distinct choices of the parameters.

Let us recall the discretized version of our model problem from section (3.1). A finite-
difference approximation of equation (4.1) on a uniform mesh €, with gridsize h = 1/n,
leads, after elimination of the boundary conditions, to a linear system of equations of the

form
Apup = f, (4.3)

where
Ay = —Ap, — K1

The discrete complex shifted Laplace (CSL) operator is given by

My, (51,6,) = Dn = k*(B1 — iB2)1, (4.4)

37
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so the Helmholtz system preconditioned by the CSL is

-1
A (81,82) = Mh,(51,52)Ah- (4.5)

We assume that n = 2m for some integer m > 1 and consider the coarse grid Qg C €y,
where H = 2h. Let I} and I}, be two-grid transfer operators (we will give and an explicit
choice for these operators later). We will analyze two different preconditioned Helmholtz
systems based on two-grid deflation. The first variant is proposed in [31]:

-1
Mh7(/31752)Ph7HAh (4.6)

where P, j; the deflation preconditioner from (3.12) corresponding to Ay, Z = I, Y = IH.

The second variant is the two-level version of MKMG from [15]:

Ph7H7(617132)Ah,(ﬁ1752)7 (4'7)

with P, ;7 the deflation preconditioner from (3.15), corresponding to Ah7( 1.8y £ = I}y, and
Y = I}

4.1 First Variant of the Two-level Preconditioner

We choose I and I to be the restriction and prolongation operators given by full weighting
and bilinear interpolation. Since the dimension of the space of grid functions on Q isn/2—1,
we have that

IR o R

Ify  RY2 5 R
In stencil notation, the restriction operator can be represented as
H 1
Unl=401 2 1], (4.8)

with this choice we have 1% = (I/1)T. The deflation operator P, iy : R"™} — R™"/271 is

defined as

Ph,H =1- Ath,H7 where Qh,H = I,{IA;III}IL{ and AH = I]I;IAhI]};LI (49)
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Since A, and Q) g are symmetric
Ply =1 — QuuAn. (4.10)

The operator resulting from applying the CSL preconditioner to the multigrid deflated sys-
tem is

-1
Mh,(ﬁl7ﬂ2))Ph’HAh' (4.11)

We will, however, focus our analysis on the operator

T ar—1 T A
Bh,,81,8,) = Ph,HMh7(51752)Ah = P, g An (81,8 (4.12)

as a consequence of our analysis we will see that the operators in (4.11) and (4.12) share the
same spectrum

_ T ~
O-(th(lﬂh/BQ)Ph’HAh) = O-(PhﬂHAhv(Bl 7ﬂ2))7

since both can be block-diagonalized in the basis of Fourier modes. We will obtain a block
diagonalization of By, 7 (s, 3,) and an explicit formula for its eigenvalues. We recall the eigen-

pairs (\{(=Ay), v') of the discrete Laplace operator —A}, from section 3.1:

M(=Ap) = (2 — 2cos(inh)), (4.13)
forl=1,...,n—1. (4.14)

n—1

vl = sin(lnz) = [sin(imhj)]i =y,

The n — 1 eigenvalues of the discrete Helmholtz operator A; and the CSL preconditioner,

corresponding to the same eigenvectors, are given by

1

M(Ay) = 5(2 =20 - ), (4.15)
1 ,
N(My) = 55(2 = 20 = 5 (5L — i),
fori =1,...,n — 1, using the notation ¢; = cos(Iwh). In consequence, the eigenvalues of the
operator Ah’(ﬁh@) are
i 2 —2¢; — K
N (An,(81,82)) = (1=1,2,...,n—1). (4.16)

220 — k*(By — if2)

A block decomposition of the deflation operator P,z: y can be obtained by reordering the set

of eigenvectors in the form

Vi = {0 )| 1=1,...,n/2 =1} U {v™?}.
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The deflation operator has a block representation in the basis V}, that we write as
Py =Pl ) i<i<ngo
Where the [—th block is given by
(P’ =1 = (I5) (Aj) ™ (1;)' 4,
The blocks of the prolongation operator are given by

(1+a)

, 417
—(1 — Cl) ( )

1
= =
(k) =

for1<l<mn/2-1,and
(If)"? = 0.

We can now obtain the 1 x 1 blocks of the Galerkin coarsening matrix Ag:

1

Ay = D AT = o

21 = ¢f) = s*(1+ ),

for 1 <1 <n/2and (Ay)"? = 0. A block decomposition of the operator Qy, s is given by
(@n)' = (Inm) (A" ) (I

More explicitly:

14 ¢
—(1—a)

(1+¢)? —(1—c12),]
—(1-¢) (1-e)? |

(Qnn)"

2h2 1
[2(1—05) —ﬁ2(1+cl2)] 4

[1+Cz —(1—61)}

[4(1 —c?) —h22k2(1 + cl?)]

From which we get

Q) = | s ]

=) -2+ | -1-) 1-a?

(1+¢)? _(1_c§)]1[2(1—cl)—ﬂ2
h2

1
- [4(1 —c}) =2k (1 + cf)} (2 =1)(2=2q—K*) (q—1)*242¢ —K?)

0

0 2(1 4+ ¢;) — K2
(1+a)*(2—2¢—rK%) (2 —1)(2+2¢—K?) ] '

|
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The blocks of P,Z 7 can now be computed:

(PLp)" =1-Q) A,

%[0] CQhHAﬂ
_ 1 (a—12%2+2¢—k%) (1—c})2+2¢—k?)
C| (F-1)(-2+2c -k (1+c)?(—-2+2¢—KY) |

where C' = 4(1 — ¢}) — 2k*(1 + ¢}). The I-th block of the operator By, y (5, ,) is given by

2 2 2—2¢c;—K>
1 (a—=1)2%*2+2¢—-+r%) (1—g¢ 2)(2 + 2¢; — K2) 20— (B1=iB2) 0 i
H,(B1,82) — ¢ (Cl2 —1)(-242¢ — /{2) (1+ Cl) (=24 2¢ — kK ) 0 42+2C2l‘_f’21:2l(_5f*i52))

Each block CB! (51,8,) Nas a zero eigenvalue and another eigenvalue given by the formula

22(c? = 1) + K28 — iB) (1 + ) (4? — (k2 — 2)?)

l —
MO B, m,(51,82) = 4¢2 — (K2(B1 — ifBy) — 2)2 ’

l=1,...,n/2—1.

Recalling that C' = 4(1 — ¢}) — 2k?(1 + ¢7), we have the following expression for the nonzero
eigenvalues of By, i (s, 5,)

! D(cy, K, B1, B2) +iE(c, K, 1, B2)
A (Bh’H(IBl’BQ)) (Claﬁ ﬁlaBQ) (Cla aBla;BQ)

(4.18)

where

D(er, k, B1, B2) = [2+ 2 — K2)[2 = 2¢ — K2][2 = Biw? — (2 + Bik?)),

E(c, K, B, Bo) = —Par?[2 + 2¢; — K*][2 — 2¢; — K2][1 + ¢F), (4.19)
F(ar, 5, B, 2>=[cl<2+m )+ 17 = 2[Ac} +21(k" + Bor) + BT + 55 — 4],

G(cr, 5, Br, B2) = 2Bk [B16” — 2][2 — K> — (2 4 7).

The spectrum of the system B}, ;(3, g,) is shown in figures 4.1 and 4.2 for several values of
the shift parameters i, f2 and k. One can see that most of the eigenvalues are clustered
around (1, 0), with some small eigenvalues and some negative eigenvalues as well. For high
wavenumbers, the eigenvalues move closer to zero and to the left half of the complex plane,
and large eigenvalues appear. Also, the spectrum is more clustered for smaller , hence for

a larger number of gridpoints per wavelength. This is shown in figure 4.3.



42 Chapter 4. Fourier Analysis of the Preconditioned 1-D Helmholtz Equation
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Figure 4.1: Nonzero part of the spectrum of By, p(1,0.5) for x = 0.628

4 4 4
2 2 2
E o . LI ... - 1 E o ., .,._\\“‘. g o \\
-2 -2 )
42 2 0 2 4 -47 -2 0 7 4 -4z 2 0 7 4
Re Re Re
(a) k = 500 (b) k£ = 1000 (c) kK = 10000

Figure 4.2: Nonzero part of the spectrum of By, p(1,0.5) for £ = 0.628

The formula for the eigenvalues in (4.18) can also be written in the form

N(Bpw) = }7241—6‘2 [(DF + EG) + i(EF — DG)], (4.20)

from which we can obtain the real and imaginary parts of the nonzero eigenvalues

DF + EG)

Re[)\l(Bh,H)] = (F,Qwa (4.21)
Im[\ (B, i) = m. (4.22)

Figure 4.4 and 4.5 show some plots of the real and imaginary parts of the eigenvalues for the

preconditioned system By, ;7 (1,0.5) and different wavenumbers.

For fixed parameters «, 81, 52, the modulus of the eigenvalues of the preconditioned system
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Figure 4.3: Nonzero part of the spectrum of By, p(1,0.5) for & = 150
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Figure 4.4: Real part of the eigenvalues of By, i (1,0.5) for £ = 0.628

B, 1 is given by N(c;), where N is the function

N (c) _ D(C, K,ﬁl,ﬁz)Q +E(075751752)2
B o F(C, R, Bl,,BQ)Q +G(C,K/7/81’52)2.

This function has a unique zero at Cy = 1 — %2, which is the unique common zero of the func-
tions D and E, and an infinite discontinuity at Co, = 4/ g;:z corresponding to the common
zero of F' and G. We have then: \)\Z(Bthy(ﬁh/BQ))\ ~ 0 for ¢ ~ Cy and |)\l(Bh’H7(/31’52))| — 00

for ¢; = C«. Following these observations, we can study the dependence of the magnitude

of the eigenvalues with respect to the wavenumber. Given fixed parameters «, 51 and S,
for a wavenumber k£ € R we denote the maximum and minimum (in magnitude) nonzero

eigenvalues of the preconditioned system B, p (g, 3,) by

ANB(k) = max{|\'(Bpag): 1 <1 <n/2—1}, (4.23)
NB (k) = min{ |\ (B g)| : 1 <1 <n/2—1}, (4.24)
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Figure 4.5: Imaginary part of the eigenvalues of B}, y(1,0.5) for k = 0.628

where the number of points n = n(k) of the discretization satisfies the restriction imposed
by k, thatis, kK = kh = k/n, and we have omitted that the system B depends of i, 52 and «
for clarity. We have the following result.

Theorem 4.1. Let k, 31, 52 be fixed. Then the extreme eigenvalues (4.23), (4.24) of the preconditioned
system By, 13, 8,) Satisfy:

lim A5 (k) = oo, (4.25)
k—o0
lim B (k) = 0. (4.26)
k—o00

Proof. We first show that that (4.25) holds. Consider the function Np for the parameters
K, B1, B2. Clearly Np(c;) = |N(By, ,(s,,8,))| for b = 1/n satisfying the restriction of x and
for every [ with 1 < [ < n/2 — 1. From the expressions for F' and G we can see that the
function Vg has an infinite discontinuity at Cc = %jr:z, and it is clear that 0 < C, < 1.
Choose k sufficiently large so that ¢, /,_; < Cx < c1, with n = n(k). This is posible since

c1 = cos(m/n) — land ¢, /5y = cos(m/2 — m/n) — 0asn — oo (hence as k — o0). Since Np
is a rational function, we can choose n (and k accordingly) such that Np is monotonically

increasing on [Cs, — 7, Cs) and monotonically decreasing on (Cwo, Coo + 7|. Now let I* be

n?

such that ¢;« 1 < O < ¢+, with 1 < I* < § — 1. Since the function f(z) = cos(z) is Lipschitz

continuous with Lipschitz constant C' = 1 it follows that

|y — eprqq| = | cos(I* mh) — cos((I* + 1) 7 h)]

< |mh|=mn/n.
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Itis clear that ¢j«, 1 € [Coo — £, Cs + Z] and we have
+ n n

NE(k) = mass(X (B o )] 1< 1< /2 1)
= max{Np(¢) : 1 <1 <n/2 -1} = max{Np(c), Np(cr+1)},

that is, the eigenvalues By, 1 (5, 3,)) corresponding to the ¢; closest to the infinite disconti-
nuity of N have the largest modulus. Since

max{Np(c;+), Np(ci=11)} > max{Np(Csx — 7/n), Ng(Coc + 7/n)},

and the right hand side can be made arbitrarily large by choosing n large enough (and &
large enough), the conclusion follows. For the limit (4.26), a similar analysis can be done for
Cy and the function 1/N. O

An immediate consequence is that for fixed parameters x and 5 = [ — i the effective

condition number max
g™ (k)

N (k)

Condpg(k) =

of the preconditioned Helmholtz system By, y, (3, 3,) grows unbounded asymptotically with
respect to the wavenumber. In comparison to the CSL system, in which the largest eigen-
value is bounded and the smallest eigenvalue goes to zero as the wavenumber increases,
one should expect that this effect is more pronounced for the deflated system (see corollary
4.2).

Regarding the smallest nonzero eigenvalue of the preconditioned system By, 1,3, 5,), in the
proof of theorem (4.1) we have shown that, for sufficiently large £, we can approximate
AR (k) by Np(c) with ¢ ~ Cp. This also holds for the minimum eigenvalue )\‘;{i“(k) of the
CSL preconditioned system A and the corresponding function N 4(c), defined analogously
from formula (4.16). Therefore, we can compare the minimum nonzero eigenvalues of each

system by calculating the asymptotic ratio

)\r{lin k N
L= lim ;‘nn( . ale)
k—oco )‘B (k}) c—Co NB(C)

(4.27)
and obtain an estimate of the form

AT () &~ LNB™ (k)

for large wavenumbers k. We would like to have L < 1 for at least some choice of the param-
eters 31, B2, k, as this would imply that the deflation operator removes the small eigenvalues
of the spectrum and does not shift the remaining eigenvalues closer to zero. A computation
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I = M(’%a 617/82)
N(H761762)’

M(r, By, B2) = 42k (B15° — 2)% + [BT + B3 + 2(B1 — 1)&® + (26152) "]
N(r, 1, B2) = 4[(B1 — 1)* + B3)(4(k* — 4)* + 4B1(k — 2)(r* — 4K% +8)
+ (87 + B2)* (s — 457 4 8))).

shows that

where

Figure 4.6 shows that fixing 51 = 1 we have that L > 1 only for very small values of /3.
For the standard choice of 5 = 0.5 the the smallest eigenvalue of the deflated Helmholtz
system is approximately 3 times larger (in modulus) than the smallest eigenvalue of the CSL
preconditioned system. Choosing a larger 5> leads to an improvement since it shifts the
smallest eigenvalue further from the origin (L ~ 0.15). Note that a large shift 52 is more
convenient for the inversion of the preconditioner. The small values for which L > 1 are not

used in practice because they are not suitable for multigrid convergence.
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Figure 4.6: Asymptotic Ratio of Minimum Eigenvalues L for 3, = 1

Given &, 81, 2 fixed parameters, we denote by Cond 4 (k) the condition number of flh7 3. We

have the following corollary.

Corollary 4.2. For all , 51, B2

Cond 4(k) < Condp(k) as k — oc.



4.1. First Variant of the Two-level Preconditioner 47

Proof. From the limits (4.25) and (4.27) we have, for k sufficiently large:

)\rgln(k,) < 1 < Aléla,X(k) [)\Z}ln(k)] '

N5 (k)

Hence, as £k — o
A A (k) < (R
A‘};m(k) - AR(k)

One can see from the plots that, for fixed parameters «, 31, 2 and wavenumber £, the spec-
trum of By, i s, 3, may contain negative eigenvalues. From formula (4.21) for the real part of
the eigenvalues we have that

)\Z(Bth’wl’ﬁQ)) < 0if and only if ¢; € (Cp, Cx),

where Cp =1— %2 and Cy, = 1/ 2%, this implies that the number of negative eigenvalues is

2+ K27/
independent of the parameters 5: B2 and only depends on h and «. For a fixed wavenumber
k, we can study the dependence of the number of eigenvalues on the parameter «, hence, on
the number of points per wavelength p, since k = 27/p. Figure 4.7 shows that the fraction
of negative eigenvalues increases for larger values of p, with approximately one third of the

nonzero eigenvalues being negative for large values of p.

Fraction of Negative Eigenvalues of a Helmholtz Matrix Preconditioned by the CSL and Deflation
0.35

o3 //fﬁ/JJ\/

/Jf

/‘/\/\/‘/\/\/‘/\,

o I
= o I
@ o &

Fraction of Negative Eigenvalues

o

0.05-

.
30 40 50 60 70
Number of Points per Wavelength

Figure 4.7: Fraction of negative eigenvalues of the preconditioned matrix B}, ,(1,0.5) for k& = 100
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4.2 Second Variant of the Two-Level Preconditioner

We now turn now our attention to the second variant of the two-grid preconditioner. Given
a discrete Helmholtz system A, and a discrete CSL operator M}, (3, s,) corresponding to the
shift parameters (31, 52), let flm 31,8.) be the Helmholtz operator preconditioned by the CSL,
as in the previous section. We study here the two-grid deflation preconditioner built from
/lhj( 31,8.), that is, the preconditioner ]5,17 H,(81,8.) given by

Pr i 81,82) = 1 = An,(81,6:) @n,H,(81,82)

where Qhﬁ,(ﬁh@) = IIZA;I,I(ﬁl,BQ)II? and AH,(ﬁl,Bz) = I,?Ah,(/gl&)][}}]. The preconditioned
system has the form

Bh,1,(81,8:) = PhH,(81,8:) Ah,(81,62)-

We will obtain a block decomposition of Bh, H,(81,3,) s in the previous section, from which we
will be able to compute the eigenvalues of the preconditioned operator. Recall the reordered
basis of Fourier modes

Vh = {(Ulvvn_l) ‘ | = 1, . ,n/Q — 1} U {,Un/Z}’

The preconditioning matrix has a block representation in this basis

~

Al
Ph,(81,82) = [Ph,H,(,Bl,BQ)]lglgn/Z

where each block has the form

Hl _ Al hl/ Al —1/7H\I
Ph7H7(51752) =1- Ahv(,@1ﬁ2)(IH) (AH7(51752)) (L)'

Using the block representation of the restriction and prolongation operators I and I}, from
(4.17) we compute the 1 x 1 blocks of the coarse-grid operator Ag:

Al (g +1)%(2—2¢ —K?) (g — 1)%(2 — 2¢; — K?)
) T 42 20— (B~ iB2)R?) | A2+ 2~ (B — iB)R?)

(I=1,....,n/2 1)

and AZ/Z = 0. After some computations, we get that the 2 x 2 blocks of the two-grid precon-
ditioner are

(Cl+1)2(2+26171€2) (1—012)(2—261—52)
Pl _ 1| 10t -Gt 1220 (Bi—iB)r?)
hH,(81,82) — 7 (1—c?)(2+2¢,—K2) (1+¢)2(2—2¢,—r2) )

4(2+2¢—(B1—if2)k?)  4(2—2c;—(B1—iB2)K?)
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where
7 (e +1)%(2 —2¢; — K?) (g — 1)%(2 — 2¢; — K?)
4(2 — 201 — (,@1 - iﬁg)/ﬂQ) 4(2 + 201 — (61 — iﬁQ)K/Q)’
fori =1,...,n—1and Pg/Hz 3 = 1. From this we have that the 2 x 2 blocks of the
,H,(B1,62)

preconditioned system are given by

w

Al ~ _

I (Cl - 1)2 (012 - 1)
Pr (81,82 A (81,82) = 7 7

(2—-1) (1+¢%)

9

Hl
By 1,(61,65)

where

W =4c? — (k* —2)%,
Y = 16¢ +4(2 — (81 — iBa)w?)2.

The eigenvalues of Eﬁb H(p1,p,) “@n now be computed. Each block has a zero eigenvalue and
an eigenvalue given by the formula

~ D(er, k) + iE(cr, k)
(B =2 Y l=1,...,n/2 1.
Ot = F (g ) 4 1) /

where
D(cr, k) = 41 + A[2 4 2¢) — K2][2 — 261 — k2[4 — 4¢? — 4B81K% + B126% — B2K1],
E(cr, k) = 8Bak%[1 + c2)[2 4 2¢; — K22 — 2¢; — K2][2 — B,
Fle, k) = Fi(e, &) + Fa(ar, k),
(1, 1) = A[16¢] + (57 = 2)(B1s” — 2)(4 = 4B1s” + (5 — 365)x")]

—16¢}[4 — 2(3 + B1)&% + (B2 + B1 — B2)KY,
Fy(cr, k) = Acf[16(81 — 1)r” + 8(83 + 361 — A7)k
+2[(81 = 5)B7 + (5 — 361)83)K° + (B7 — 34193)x° — 16],
G’(cl, K) = él(cl,/i) + ég(cl, K),
Gh(ar, k) = 4Bk [4c] (261 + 1)R% = 2] + [2 = w7][12 — 128157 + (357 — 53)r"]],
Goler, k) = 4Bar2c2[8(28, — 3)K% + 2[(10 — 381)B1 + BEk* + (B2 — 382)kS — 16).

Figures 4.8 and 4.9 show the spectrum of Eh, H,(81,8) for several values of the parameters.
Most of the eigenvalues are clustered around (1, 0) and there are only few eigenvalues close
to the origin. This holds even for large wavenumbers (k = 500) and the minimum number

of gridpoints per wavelength p = 10, corresponding to x = 0.628.
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Figure 4.8: Nonzero part of the spectrum of Bh7H,(1,0.5) for k = 0.628
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Figure 4.9: Nonzero part of the spectrum of Bhﬂ,(l,oﬁ) for k = 0.628

Remarkably, the eigenvalues appear to lie on the same circles as the eigenvalues of the ma-
trix 121,%( 81,8,)- We were not able to establish this property analytically from the formulas,
but varying the shift (51, 52) strongly indicates that this holds. In consequence, there are
no negative eigenvalues and the maximum eigenvalue is bounded in modulus by 1 for all

wavenumbers.

The plots in figure 4.10 show the dependence of the spectrum with respect to the parameter
. They clearly show that a smaller ~ leads to a more clustered spectrum. In figure 4.11 we
show that using 20 gridpoints per wavelength suffices to obtain a clustered spectrum up to

very large wavenumbers (k = 5000).

In figure 4.12 we show the dependence of the spectrum with respect to the imaginary shift 3.
The eigenvalues are more clustered and move away from zero for smaller values of 3,. This,
however, cannot be exploited for Krylov acceleration, since it would affect the inversion of

the CSL preconditioner using multigrid.
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Figure 4.11: Nonzero part of the spectrum of Bh,H7(170,5) for k = 0.314

We compare now the minimum and maximum eigenvalues of the preconditioned matrix
flhy( 31,8,) and the deflated system Bh, H,(81,8)- For fixed parameters x and (1, (2), let

A2 (k) = min{| N (By, g, (5,6,))| - 1 <1< nj2 -1},

m : IR
AR (k) = min{|N(Bp m,(6,,,) : 1 <1 <n/2 -1}
Where the number of points n = n(k) of the discretization satisfies the restriction imposed
by , that is, x = kh = k/n. From our previous discussion, assuming that the eigenvalues of
By, H,(61,8,) lie on the same circles we have Xz**(k) < 1. Now, consider the modulus function

for the eigenvalues of Bh’ H,(81,8) given by

B

NA(C) — \/ﬁ(caﬁ7ﬁlaﬁ2)2+E(C,I€7I61,52)2
F(C7 R, 617/82)2 + G(C, 57/61762)2 '

We have that Ny(c;) = |Al(f3h’H1(51ﬂ2))| for ! = 1,...,n/2 — 1. This function has a unique

zeroat Cy = 1 — which is the unique common zero of the functions D and F, hence

s
PR
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Figure 4.12: Nonzero part of the spectrum of Bh’ H,(1,8,) for k =500

|)\l(f3h7 H,(81,3,))| = 0 for ¢, ~ Cp. Let N; be the corresponding modulus function for the
system A, H,(81,3,), defined from (4.16). To compare the minimum eigenvalues of Ap, ppand

By, i s we calculate, as in the previous section, the asymptotic ratio

. An}in k N -
L= lim g‘lm( ) iy 2l
k—oo AB (k) c—Ch NB(C)

We obtain after some computations that

A k4

L=L(k) = :
(x) 2(8 — 4k2 + k%)

(4.28)

Note that this asymptotic ratio is independent from the choice of the shift parameters (31, 52),
unlike the corresponding ratio for the first variant of the two-level preconditioner that we
computed before. We show a plot of this quantity in figure 4.13.
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Figure 4.13: Asymptotic Ratio of Minimum Eigenvalues L
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We see that for 10 points per wavelength we have that L(0.628) = 0.011, and so )\%‘in(k) is
approximately 1/0.011 ~ 100 times larger than )\i’{in(k) for large wavenumbers k. Since L
decreases very rapidly, setting the number of gridpoints per wavelength to p = 15 leads to

L(0.314) = 0.0006. This explains why the clustering of the spectrum improves so dramati-

cally for high wavenumbers when the number of gridpoints is increased (see figure 4.10).

Since L < 1, we have that

1 < 1
X (1) X )

, for k sufficiently large.

Using the approximation N*™(k) = A7%*(k) ~ 1 for large wavenumbers, we obtain the
property

Cond g (k) < Cond 4(k) as k — oo.
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4.3 Numerical Results

In this section we review the numerical tests from [31] and [15] to validate our analysis.

We focus first on the results of the first variant of the two-grid preconditioner from [31].
Figure 4.14 shows the number of GMRES iterations depending on the wavenumber, for a
1-dimensional Helmholtz problem with Sommerfeld boundary conditions, preconditioned
by the first variant of two-level deflation Py, p,(1,1y) (the shift is (1,1)) and 20 gridpoints
per wavelength. The number of iterations is almost constant for the range of wavenumbers
10 < k < 800 but grows linearly for high wavenumbers (1000 < k£ < 20000). These results

are expected from our analysis on the asymptotic behavior of the extreme eigenvalues.
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Figure 4.14: Number of GMRES iterations to solve the one-dimensional Sommerfeld problem

Table ?? shows the number of iterations for a 2-D problem with constant wavenumber and
Dirichlet boundary conditions, with and without the first variant of two-grid deflation. The
lower diagonal part of the table shows grid resolutions of 20 gridpoints per wavelength
or more. We can see that for a fixed wavenumber the number of iterations decreases as the
resolution increases. This behaviour is also expected from our analysis, since we have shown
that increasing the number of points per wavelength (hence decreasing ) leads to a more
clustered spectrum of the preconditioned system.

In table 4.1 we show the number of GMRE:s iterations for a 2-D Sommerfeld problem, with
the standard shift (1, 0.5) and the first variant of two-grid deflation. Similarly to the Dirichlet
case, increasing the grid resolution leads to a decrease in the number of iterations. Note that,
as we remarked earlier, the Sommerfeld problem requires fewer iterations to be solved.

We turn now our attention to the second variant of the two-grid deflation method from

[15]. In this article, the results were obtained using a left preconditioner that shifts the small
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Table 4.1: Number of GMRES iterations for a 2-D problem with Sommerfeld boundary condi-
tions, for distinct wavenumbers and grid resolutions, using the CSL preconditioner Mj, 1 .5
with/without deflation

Size of the problem £ =10 k=20 k=30 k=40 k=50 Fk=100

32 3/10 8/17 17/31 35/50 52/80 13/14
64 3/10 6/17  10/30 17/47 24/63 221/552
96 3/10 5/17 7130 11/46 15/62 209/220
28 3/10 5/17 6/30 10/45 11/62 90/196
160 3/10 4/17  5/30 8/45 9/62 65/194
320 2/10 3/17  4/30 5/45 6/61 24/193

eigenvalues to 1 (recall section 3.3.3). This two-level preconditioner has the form

A h 3—1 H h 3—1 H
Qnurpe) =1 = TuAg g, gy Th An81.82) T 1a AR (5, ) Ih

where flh,( Br,B2) = AnM,; (161, 5,)- However, the results of our analysis carry over to this case

in view of the spectral properties discussed in section 3.3. Table 4.2 shows that the number of

Table 4.2: Number of preconditioned GMRES iterations for a 1D Helmholtz problem.
Equidistant grids equivalent to 30/15/8 gridpoints per wavelength are used.

k=20 k=50 k =100 k=200 k =500
Standard 14/15/15  24/25/26 39/40/42 65/68/78 142/146/157
Qh,H,(Bl,/Bz)/ piece-wise constant ~ 4/5/7 4/6/10  5/7/14  6/10/20 7/15/37
Qhn,H,(8,,8,), linear interpolation ~ 3/4/5 3/4/7 3/4/8 3/5/10 3/5/12

GMRES iterations is nearly constant for the range of wavenumbers < £ < 500. Here, the pre-
conditioner M and the second level matrix are inverted exactly. Also, the use of piece-wise
constant interpolation leads to a poorer performance compared to the linear interpolation
that we have considered for the theoretical analysis. Note that the number of iterations de-

creases with an increasing number of gridpoints per wavelength, as expected.

Table 4.3 shows the result for the full multilevel MKMG method. Here the notation MKMG(6,6,2)
indicates that 6 iterations of FGMRES are used at the second level , 6 at the third level and 2

for subsequent levels. Note that since it is important to solve accurately at the second level,
the number of iterations there should be bigger. Compared to the results of the two-level
version, more iterations are required, since at the second level the solution is no longer com-
puted exactly. Still, the number of iterations grows only very mildly as the wavenumber
increases. Last, table 4.4 shows the number of iterations of MKMG(8,2,2) and MKMG(8,2,1).
The results are only slightly better in some of the cases than for MKMG(6,2,2).



56 Chapter 4. Fourier Analysis of the Preconditioned 1-D Helmholtz Equation

Table 4.3: Number of GMRES iterations for 1D Helmholtz problems with constant wave
number. p is the number of gridpoints per wavelength. Multilevel Krylov method with
MKMG(6,2,2). MG is shown in parentheses.

p k=20 k=50 k=100 k=200 £k =500

15 11(19) 11(29) 11(43) 15(66) 25 (138)
30 9(18) 11(28) 12(42) 14(68) 22 (136)
60 9(18) 9(28) 12(43) 12(68) 19 (141)

Table 4.4: Number of GMRES iterations for 1D Helmholtz problems with constant wave
number. p is the number of grid points per wavelength’. Multilevel Krylov method with
MKMG(8,2,2) and MKMG(8,2,1) (in parentheses).

p k=20 k=50 k=100 k=200 k=500
15 11(11) 15(16) 19(18) 22(21) 33 (33)
30 10(10) 13(13) 13(13) 15(15) 20 (20)
60 9(9) 13(13) 10(12) 14(14) 17(18)




Chapter 5

Conclusions and Remarks

In this thesis we have studied the numerical solution of Helmholtz equation. Helmholtz’
problems appear in many engineering applications, and lead to very large sparse linear sys-
tems that are difficult to solve due to the unfavorable distribution of the eigenvalues of the

matrix.

We discussed some of the main difficulties in applying different iterative methods to Helmholtz
problems. These methods have a limited range of application, and for increasing wavenum-
bers the number of iterations grows too large. Krylov and multigrid methods were reviewed,
and we presented the shifted Laplace preconditioner and the technique known as deflation.

Using rigorous Fourier analysis we have analyzed two variants of a two-level method that
combines the shifted Laplace preconditioner with multigrid deflation. The analysis was lim-
ited to a one-dimensional Helmholtz problem for Dirichlet boundary conditions. This al-
lowed us to obtain exact formulas for the eigenvalues of the preconditioned Helmholtz sys-
tems, and study the dependence on the spectrum of the preconditioned systems with respect
to distinct parameters: The wavenumber k, the number of gridpoints per wavelength p, and
the shift (51, 52).

The first variant of the two-level preconditioner works well for small wavenumbers (< 500),
since the spectrum of the preconditioned system that one obtains is clustered, on the right
side of the complex plane and bounded away from the origin with a few outliers. For larger
wavenumbers, negative eigenvalues appear, as well as very small and very large eigenval-
ues. The clustering of the spectrum is controlled by the parameter p (more points per wave-
length leads to better clustering), but no choice of parameters removes the large and small
eigenvalues for large wavenumbers. Our analysis suggests that the method is no longer ef-
fective for large wavenumbers, and therefore not scalable, confirming previously reported

numerical tests.

The second variant of the two-level preconditioner works very well for wavenumbers up to

57



58 Chapter 5. Conclusions and Remarks

approximately k& = 5000, using a (reasonable) number of gridpoints per wavelength of p =
20. With this method, the smallest eigenvalues of the Helmholtz system preconditioned by
the CSL are removed and the rest of them are shifted towards the largest one. A nice property
that we could not verify analytically is that the eigenvalues of the system remain on a circle.
As in the first variant, the clustering of the spectrum can be improved by increasing the
number of gridpoints, we have found that p = 20 is enough to obtain a clustered spectrum
with the standard choice of parameters for the CSL preconditioner (1,0.5). If the imaginary
shift 3, is increased, p should be increased as well. Our analysis serves to validate previously
reported results for wavenumbers up to k£ = 500. Since this method leads to very similar
clustered spectra for Helmholtz systems up to very large wavenumbers, we can expect that
even in the multilevel extension the number of iterations is only mildly dependent on the

wavenumber.

As of further directions of research, we think that an analysis of the 2-D Helmholtz problem
with Dirichlet is feasible with the methods of rigorous Fourier analysis. Also, more numeri-
cal experiments should be made for Helmholtz problems with high wavenumbers and more

realistic 2D problems.
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