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Abstract

This study tackles an important issue in evaluating the reliability of confidence intervals
in causal forests by examining how data characteristics and hyperparameters influence actual
coverage rates compared to theoretical benchmarks. Using synthetic data sets with polyno-
mial treatment effects, Sobol sampling, High-Dimensional Model Representation (HDMR),
and comprehensive grid searches, the study assesses causal forest performance in different
data contexts.

A primary discovery is the identification of a practical limit for reliable confidence interval
coverage: When the sum of confounders and effect modifiers exceeds 4, coverage rates drop
considerably below 80%, even for simple treatment effect functions. This limitation remains
steady despite substantial increases in computational resources.

The examination of hyperparameters revealed that the most influential parameters are
the maximum tree depth and the balance tolerance in splits, which demonstrate substantial
changes in performance, both of which performed best at their maximums (unlimited and
0.5, respectively). Other key suggestions involve increasing the training data fraction per
tree from 0.45 to 0.5, keeping the minimum impurity decrease threshold at 0.0, and utilizing
at least ≈ 2400 trees to meet theoretical expectations.

In addition, this paper did not identify any noteworthy interaction between tree count
and sample size. As a result, both of these characteristics can be optimized independently
of each other.

These findings provide systematic guidelines for practitioners to assess when causal for-
est confidence intervals are reliable and how to optimize them, bridging the gap between
theoretical guarantees and practical performance.

1 Introduction
Machine learning algorithms usually aim to predict output or outcomes based on given inputs.
However, in many fields, such as healthcare, predicting outcomes is not enough, as it is often
necessary to estimate the causal effects of particular interventions, also called treatments (e.g.,
what would change if a treatment were to be administered to a patient or not). Simply predicting
outcomes rather than understanding causality can lead to harmful decisions (e.g., a model could
predict poor outcomes for patients without recognizing that those patients might already have
been in a worse-off position, leading to inappropriate withholding of treatments).

These causal effects have typically been measured using the average treatment effect (ATE) of
a given intervention, which only measures the expected difference in outcomes between treated and
untreated populations throughout the sample. However, there is growing interest in predicting
not only ATE, but also the conditional average treatment effect (CATE), which is how treatments
affect different subpopulations differently. Understanding heterogeneous effects would greatly aid
healthcare workers, allowing for personalized predictions, such as which patients would benefit the
most from a given treatment. Without this understanding, there is a risk of applying treatments
to subgroups of people for whom the treatment is ineffective or harmful.

When dealing with observational data, researchers have to deal with various issues, such
as confounding variables that affect both the treatment assignment and the outcome (e.g., more
seriously ill people are more likely to receive treatment and less likely to recover) [1]. This problem
breaks the independence between treatment assignments and outcomes, allowing machine learning
algorithms to identify associations instead of causations accidentally. This is why algorithms that
can account for such challenges are needed.

Random forests, introduced by Breiman [2], are a machine learning technique widely used for
prediction due to their flexibility and capacity to manage complex nonlinear interactions between
variables. Building upon this framework, Wager and Athey proposed Causal Forests [3], a method
for heterogeneous treatment effect estimation that represents the first variant of random forests
to provide proven asymptotically valid confidence intervals. Building on the work by Wager and
Athey [3], Athey et al. [4] advanced the field by creating Generalized Random Forests (GRF),
a framework that not only generalizes causal forests through local moment conditions but also
offers a more computationally efficient implementation, solidifying GRF causal forests as the
standard for causal inference with random forests while preserving theoretical guarantees of valid
confidence intervals.
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However, despite the theoretical foundations and practical improvements, a significant gap
in the literature became apparent. There are few studies exploring the behavior of confidence
intervals in causal forests when exposed to different data characteristics or how different hyper-
parameters affect the coverage intervals. This is in part due to the fact that the main body of
research is focused on prediction accuracy or optimizing hyperparameters for prediction accuracy
rather than uncertainty quantification, such as the study by Saito and Yasui [5]. Systematic evalu-
ations of the model showed that the actual coverage rate of the confidence intervals is significantly
lower than expected, despite theoretical guarantees [6].

This discrepancy is alarming because, for practical applications, it is essential for practitioners
to know how to adjust the hyperparameters to optimize for coverage rates and discern when the
confidence intervals can be trusted. Moreover, although existing studies examine performance
across different levels of noise, sample size, and dimensionality, a more thorough investigation
into data characteristics, such as the relationship between the specific numbers of confounders,
effect modifiers, instruments, or the type of treatment effect function, has not yet been conducted.

The relationship between data characteristics, sample size, and number of trees is also poorly
understood. The theoretical framework suggests that, for the confidence intervals to hold, a
sufficient number of trees is necessary to make the Monte Carlo noise negligible [4], [7]. However,
it is unclear how this requirement interacts with other factors, such as the size of the training
dataset.

This study aims to fill these gaps by providing a comprehensive empirical analysis of the influ-
ence of various data characteristics on coverage rates in causal forests. It also assesses the effect
of hyperparameters on coverage rather than point-estimate accuracy, addressing the following
question:

What factors affect the actual coverage rates of the confidence interval estima-
tion in causal forests, and what are the optimal configuration parameters for differ-
ent data scenarios when limited to polynomial treatment effect functions of low or
medium order (1–5), low to high confounding strength (1–10), and low to medium
dimensionality (1–21)?

1. How sensitive is the confidence interval coverage rate of causal forests to the number of
confounders, instruments, effect modifiers, polynomial treatment effect complexity, and
confounding strength? When does achieving 95% coverage become unfeasible?

2. Which hyperparameters individually influence the coverage rate of the confidence interval
and in what manner do they exert this influence?

3. How do tree count and sample size interact to affect confidence interval coverage rates in
causal forests?

This study makes a contribution by pinpointing a practical limit at which the reliability of
coverage rates experiences a substantial decrease (at 4 combined confounders/effect modifiers),
rendering it impractical to achieve the expected values. It also offers empirical recommendations
for hyperparameters concerning confidence intervals instead of focusing on prediction accuracy,
and revealed no significant interactions between the number of trees and the amount of training
data.

2 Background
In order to address the research question at hand, it is necessary to understand the theoretical
aspects of the estimation of the heterogeneous treatment effect, the causal forests, and the various
methods used in this study.

2.1 Heterogeneous Treatment Effect Estimation
2.1.1 Formalization

Causal inference can be formulated using the potential outcomes framework [8]. For each unit
i, potential outcomes are described as Y

(0)
i and Y

(1)
i , indicating observations under control and

treatment conditions, respectively. The treatment effect for an individual is given by τi = Y
(1)
i −
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Y
(0)
i , although only Yi = WiY

(1)
i + (1 − Wi)Y

(0)
i can be observed, where Wi ∈ {0, 1} denotes

whether the treatment was applied to the unit i.
The Conditional Average Treatment Effect (CATE) is defined as:

τ(x) = E[Y (1) − Y (0)|X = x] (1)

CATE encapsulates the variation of treatment effects throughout the covariate space X, thus
enabling heterogeneous causal inference.

2.1.2 Necessary assumptions for Observational Data

To draw valid causal inferences from observational data and estimate the CATE, researchers
must rely on key assumptions to compensate for the lack of randomization. The following three
assumptions are fundamental for identifying causal effects [9]:

1. Unconfoundedness: The assignment of treatment is independent of the potential out-
comes given the observed covariates. This assumption ensures that there are no unmea-
sured confounders, factors that influence both treatment assignment and outcomes. In the
absence of unconfoundedness, any estimated treatment effect may be biased due to omitted
variable bias, which is particularly important in the context of CATE estimation, since any
violations could mix genuine treatment heterogeneity with omitted variable bias.

2. Positivity: Every individual has a positive probability of receiving the treatment or not.
This assumption is crucial to ensure that comparisons can actually be made across treatment
groups for all subpopulations. In the absence of positivity, estimating causal effects for
individuals in covariate regions where only one treatment is observed becomes impossible,
which directly affects CATE estimation by creating regions where τ(x) cannot be reliably
estimated due to insufficient overlap between treatment groups.

3. Stable Unit Treatment Values Assumption (SUTVA):

(a) The assignment of treatment to units does not interfere with the outcome of other
units. This prevents spillover effects that would violate the independence of units.

(b) There are no hidden variations of treatment. This rules out multiple, unaccounted-for
versions of the same treatment that could yield different effects.

SUTVA is essential to ensure that the treatment effect is well defined and solely attributable
to the treatment assigned, and, for heterogeneous treatment effects, it ensures that τ(x)
depends only on individual characteristics and not on interference or hidden treatment
variations.

Similarly to all techniques for estimating CATE from observational data, Causal Forests also
rely on these assumptions being valid.

2.2 Causal Forests
Causal forests, as introduced by Wager and Athey [3], build on random forests [2] by using
"honest" trees to estimate heterogeneous treatment effects. An "honest" tree uses the outcome
variable Yi either for splitting or leaf estimation, but not both, thus allowing valid statistical
inference. A method for constructing "honest" trees is employing double sample trees [3], where
the training data is split into two halves, one used for structure and one used for estimation. The
procedure can be explained as follows:
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Procedure: Double-Sample Trees for CATE Estimation [3]

1. Subsampling and Partitioning:
• Draw a random subsample S ⊂ {1, . . . , n} of size s without replacement, where

n is the size of the training dataset.
• Partition S into disjoint sets I and J where |I| = ⌊s/2⌋ and |J | = ⌈s/2⌉

2. Tree Structure Construction (using J-sample):
• For splitting, use features Xi and treatments Wi from both I and J samples,

and Yi from J-sample only
• Select splits that maximize variance of τ̂(Xi) for i ∈ J
• Continue while valid splits are possible (i.e., until splitting would create leaves

with < k observations from either treatment group)
3. Leaf Effect Estimation (using I-sample only):

• For leaf L containing test point x, the estimated CATE is the difference in mean
outcomes between treated and control units.

The Causal Forest analyzed in this paper is based on a more sophisticated iteration of the
Causal Forests developed by Wager and Athey [3], known as General Random Forests (GRF) [4].
While the original causal forests are specifically designed for estimating treatment effects, the
GRF adopts a broader mathematical approach known as "local moment conditions," allowing it
to address a wider range of problems, not just causal inference.

However, the aforementioned procedure is "almost equivalent to a generalized random forest
[...], the only substantive differences being that they split using the exact loss criterion rather
than [the] gradient-based loss criterion, and let each tree compute its own treatment effect esti-
mate rather than using the [adaptive] weighting scheme" [4], where gradient-based loss criterion
serves as a computational optimization technique to estimate the splitting criterion, and adaptive
weighting scheme aims to reduce the bias stemming from employing local moment conditions in-
stead of direct CATE estimation. Although these implementation specifics impact computational
performance and might affect point estimates, they do not fundamentally change the core method
or the confidence interval construction, which are the main focus of this investigation and thus
will not be elaborated on in this section.

2.2.1 Confidence Intervals

Generalized Random Forests utilize the bootstrap of little bags [4] to compute confidence intervals
by providing variance estimations for predictions. This methodology bypasses the complexities of
conventional bootstrap methods that would require the regeneration of the entire forest by taking
advantage of the subsampling that is naturally part of the forest construction process. The core
insight is that distinct trees, each trained on different sub-samples, inherently reveal insight into
how estimates might fluctuate with different training datasets.

A naive approach might be to calculate the variance of single-tree predictions. However,
this would mix two separate sources of variation: (1) true sampling uncertainty, showing how
predictions would shift with different datasets, and (2) Monte Carlo noise due to the finite number
of trees used.

The bootstrap of little bags strategy addresses these issues by grouping trees and applying a
variance decomposition that distinguishes between-group variation, indicative of sampling uncer-
tainty, from within-group variation, which is characteristic of Monte Carlo noise [10].

The variance estimation procedure works as follows:

1. Little Bag Construction: Partition the B trees into groups of size ℓ, creating G = B/ℓ
groups. Each group represents an independent "experiment" using different half-samples
of the training data. By employing half-samples, an ideal equilibrium between sample size
and independence is accomplished, which is essential for estimating variance.

2. Variance Decomposition: The variance is estimated by measuring how much between-
group estimates vary, while correcting for the finite number of trees within each group by
subtracting a scaled version of the within-group variance, thus isolating the true sampling
uncertainty:
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V̂BLB(x) =
1

G

G∑
g=1

(τ̂g(x)− τ̂(x))2︸ ︷︷ ︸
Between-group variance

− 1

ℓ− 1
· 1

G

G∑
g=1

1

ℓ

∑
b∈g

(τ̂b(x)− τ̂g(x))2︸ ︷︷ ︸
Within-group correction

(2)

Here, τ̂g(x) = 1
ℓ

∑
b∈g τ̂b(x) is the average treatment effect estimate within group g, and τ̂b(x) is

the estimate from individual tree b.
In addition, under the assumptions specified by Athey et al. [4], the treatment effect estimates

are asymptotically Gaussian and unbiased [4], thus enabling the construction of valid confidence
intervals (95%).

τ̂(x)± 1.96

√
V̂BLB(x) (3)

2.3 Sobol’ Sampling
To systematically investigate how causal forest confidence interval coverage rates are affected by
various data characteristics and their interactions, it is necessary to efficiently explore a mul-
tidimensional parameter space. This exploration presents a sampling challenge: with multiple
parameters each taking various values, a comprehensive grid search becomes computationally
prohibitive, while pure random sampling may leave important regions of the parameter space
inadequately covered due to clustering and gaps.

Sobol sequences, first introduced by Sobol’ in 1967 [11], address this challenge through deter-
ministic quasirandom sampling designed to systematically cover multidimensional spaces. These
sequences demonstrate a more uniform distribution of sample points across the parameter space
compared to random sampling [12], [13]. The method works by following a predetermined pattern
that places each new sample point in the location that best fills the gaps left by previous points.

In addition, empirical comparisons have demonstrated the superiority of Sobol sequences over
alternative sampling methods. Tarantola et al. [14] conducted systematic comparisons across
multiple test functions and found that "in almost all cases investigated here, the Sobol’ design
performs better" than Latin Hypercube Sampling — another widely used sampling technique,
which divides each parameter dimension into equal intervals and ensures one sample per interval —
with the results indicating that "the Sobol’ design was consistently superior." Similarly, Sudret et
al. [15] showed that Sobol sequences "performed globally better in all the numerical experiments"
compared to Monte Carlo and Latin Hypercube sampling approaches.

Furthermore, Sobol sequences provide reduced variability in parameter space coverage be-
tween different sampling runs, while being significantly more reproducible than Latin Hypercube
Sampling [16].

For these reasons, Sobol sampling was utilized to efficiently traverse the vast multidimensional
parameter space.

2.4 High-Dimensional Model Representation (HDMR)
To address the research question on the sensitivity of coverage rates of causal forest confidence
intervals to different data characteristics, it is essential to perform a sensitivity analysis. This
analysis helps to assess how individual parameters and their interactions impact the variability of
model performance. However, using standard methods such as Sobol analysis presents substantial
computational challenges, as these traditional approaches generally require a large number of
model evaluations, which are not feasible due to the resource-demanding characteristics of causal
forest experiments. This is why an alternative was needed that can perform accurate sensitivity
analyses with fewer data points.

High-Dimensional Model Representation (HDMR) [17] addresses these limitations and enables
efficient sensitivity analysis through a metamodeling framework using hierarchical decomposition.
This metamodeling approach means HDMR builds a simplified mathematical approximation (sur-
rogate model) of the complex causal forest behavior, allowing the analysis of sensitivity without
running the full expensive simulations repeatedly. Rather than directly sampling the parameter
space extensively, HDMR constructs this surrogate model using systematic expansion:
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f(x1, x2, . . . , xd) = f0 +
∑
i

fi(xi) +
∑
i<j

fij(xi, xj) +
∑

i<j<k

fijk(xi, xj , xk) + . . . (4)

where f0 represents the mean output, fi(xi) captures the independent effect of parameter
xi, fij(xi, xj) represents interactions between parameters, and higher order terms account for
complex parameter interactions [18].

An important setting for this approach is max_order, which restricts the decomposition to
the specified order. Higher values detect higher-order interactions; however, it is worth noting
that increasing this value also requires more samples for valid results.

The method returns sensitivity indices that represent what percentage of the variance can be
explained by the parameter in question.

Compared to classical approaches like Sobol indices, HDMR is often more efficient and requires
fewer samples [18]. In addition, according to SALib’s documentation, a sensitivity analysis library
in Python, "HDMR becomes extremely useful when the computational cost of obtaining sufficient
Monte Carlo samples are prohibitive, as may be the case with Sobol’s method." [19]

The SALib implementation incorporates bootstrap resampling to provide confidence intervals
for sensitivity indices, enabling robust uncertainty quantification [19].

Thus, SALib’s implementation of HDMR was selected because of its computational efficiency
and provision of confidence intervals for identifying the most influential parameters affecting
causal forest performance.

3 Methodology

3.1 Data Generating Process (DGP)
This research employs a polynomial data-generating process provided by the supervisor that
generates synthetic observational datasets with known causal structure. The DGP creates data
where the true treatment effect function follows a polynomial form of controllable complexity,
allowing systematic evaluation of causal forest performance under varying data characteristics
including the following parameters pertinent to the paper:

• Polynomial degree – Controls treatment effect complexity
• Confounding strength – Determines the magnitude of confounding bias
• Number of confounders – Variables affecting both treatment and outcome
• Number of instruments – Variables affecting only treatment assignment
• Number of effect modifiers – Variables interacting with the treatment effect

3.2 Exhaustive Grid Search
To comprehensively examine the parameter space and address certain aspects of the questions,
an exhaustive grid search methodology was employed when needed. This involved creating all
conceivable combinations of the defined parameters to assess causal forest performance based on
three metrics: mean squared error, confidence interval coverage rate, and width. Each experimen-
tal setup was executed multiple times with different random seeds to ensure statistical reliability
and account for Monte Carlo variability in data generation and model fitting. Unless indicated
otherwise, each simulation was conducted 3 times, which provided low enough standard errors
for coverage rates in most cases (<1%).

3.3 Causal Forest Implementation
This paper analyzes the implementation of Causal Forests using EconML’s CausalForest class,
which makes available the following hyperparameters with the following defaults:

• n_estimators: Number of trees in the
forest (default: 2500)

• criterion: Function used to measure the

quality of a split (default: ’mse’)
• max_depth: Maximum depth of the trees

(default: unlimited)
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• min_samples_split: Minimum number
of samples required to split an internal
node (default: 10)

• min_samples_leaf: Minimum number of
samples required to be at a leaf node (de-
fault: 5)

• min_weight_fraction_leaf: Minimum
weighted fraction of the total sample
weight at a leaf node; if no sample weights
were provided, all samples have the same
weight (default: 0.0)

• min_var_fraction_leaf: Minimum
variance fraction at leaf (default: unset)

• min_var_leaf_on_val: Whether the
variance constraint is enforced on the val-
idation sample; enabling this breaks hon-
esty (default: False)

• max_features: Number of features to
consider when looking for the best split
(default: ’auto’ which is equivalent to 1,
or all features)

• min_impurity_decrease: Minimum de-

crease in impurity required to split a node
(default: 0.0)

• max_samples: Fraction of the training
data used to grow each tree (default:
0.45)

• min_balancedness_tol: Tolerance for
how balanced splits must be (default:
0.45)

• honestness: Enables honest splitting by
using separate samples for splitting and
estimation (default: enabled)

• inference: Enables variance estimation
for inference on treatment effects (default:
enabled)

• fit_intercept: Whether to include an
intercept in the treatment effect model
(default: enabled)

• subforest_size: The number of trees
within each sub-forest employed in the
bootstrap-of-little-bags calculation (de-
fault: 4)

Unless specified otherwise, these default values were used.

3.4 Methodology per sub-question
This segment outlines the methodology corresponding to each sub-question. While beyond the
scope of this section, it is important to note that the configurations for the DGP for the second
and third sub-questions were chosen based on the results of the first sub-question. Specifically,
six pivotal points were selected within the Confounders × Effect Modifiers space: (1, 1), (2, 2),
(2, 0), (1, 2), (0, 2), (0, 1). The polynomial degree, number of instruments, and the strength of
confounding were set at 3, 1, and 1, respectively.

3.4.1 Sub-question 1 – Data Characteristics Sensitivity

Sobol sampling was used to investigate the parameter space with 1536 (before excluding invalid
combinations) samples over the following five parameters:

Parameter Range Argumentation for Range
Polynomial degree {1, 2, 3, 4, 5} These ranges were chosen to reflect low

to moderate polynomial degrees
Confounding strength (0, 10] This spectrum was selected to align

with what is typically referred to in the
literature as low to high confounding
strength

Number of confounders {0, 1, 2, 3, 4, 5, 6, 7, 8} These ranges were chosen to reflect low
to medium dimensionality due to com-
putational reasons

Number of instruments {0, 1, 2, 3, 4, 5, 6, 7, 8}
Number of effect modifiers {0, 1, 2, 3, 4, 5, 6, 7, 8}

Configurations are deemed invalid if both the count of instruments and confounders is zero,
or if both the count of confounders and effect modifiers is zero.

Subsequently, HDMR with a maximum interaction order of 2 was utilized to evaluate the
sensitivity of coverage rates to quantify the contribution of each parameter and their interactions
to model performance variability, in order to identify the most influential parameters for further
analysis.
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To determine practical limits on coverage rate performance, a grid search was performed for
the two most significant parameters: expanded range (0–15) for confounders and effect modifiers,
while fixing other parameters (polynomial degree=2, confounding strength=1, instruments=1).
Subsequently, another grid search was performed on the same parameters but with more resources
(5000 trees, 100000 data points) and a sparser grid ({0, 3, 9, 12, 15}×{0, 3, 9, 12, 15}) to study how
coverage rates behave with increased computational resources during training. These grid searches
identified a very limited subsection of the search space for which a coverage of more than 60%
was achieved, and for which an extensive grid search was performed: 0–4 Confounders × Effect
Modifiers while varying polynomial degree ∈ {1, 2, 3}, confounding strength ∈ {0.5, 1.0, 1.5, 2.0},
and instruments ∈ {0, 1, 2, 3, 4}.

3.4.2 Sub-question 2 – Hyperparameter Analysis

For this sub-question, due to the high number of hyperparameters and low computational re-
sources, a full sensitivity analysis with HDMR was not possible. Instead, each hyperparameter
was analyzed independently of the others using grid searches for 6 different configurations of the
DGP.

Hyperparameters that are known to break the honesty (min_var_fraction_on_val, honestness),
disable confidence intervals (inference), or have no effect on confidence intervals (fit_intercept),
as specified in EconML’s documentation [20] were not evaluated. In addition, min_samples_leaf
and min_samples_split were evaluated solely with integer values. This is because they are equiv-
alent to the fractional forms, if the number of samples per leaf or split is divided by the total
sample size (in this case, 25000). The hyperparameter min_weight_fraction_leaf was not as-
sessed, since without any sample weights, it functions the same as min_samples_leaf when given
a fraction.

In this sub-question, to guarantee consistent results with minimal standard errors, all exper-
iments were conducted 10 times, unless specified otherwise, with each of the following hyperpa-
rameters being examined separately:

1. criterion ∈ {"mse", "het"} with 100 repetitions
2. max_depth ∈ {1, 5, 10, 12, 14, 16, 18, 20, 25, 50, 100, 200, 500, 1000, null}
3. max_features ∈ {1, 2, 3, 4} with 100 repetitions
4. max_samples ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35} and {0.4, 0.45, 0.5} with 100 repetitions
5. min_balancedness_tol ∈ {0, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,

0.4, 0.45, 0.5}
6. min_impurity_decrease ∈ {0.0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0}
7. min_samples_leaf ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50}
8. min_samples_split ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50}
9. min_var_fraction_leaf ∈ {null, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0}

10. n_estimators ∈ {4, 12, 40, 120, 400, 1200, 2400, 4000, 6000, 8000, 10000}
11. subforest_size ∈ {2, 4, 5, 10, 20, 25, 50, 100}

For each hyperparameter, these six configurations were tested:
• Confounders × Effect Modifiers ∈ {(1, 1), (2, 2), (2, 0), (1, 2), (0, 2), (0, 1)}
• Number of Instruments = 1
• Polynomial degrees = 3
• Confounding strengths = 1
• Tree count = 2500
• Training sample size = 25000

3.4.3 Sub-question 3 – Tree Count and Sample Size interactions

A grid search was performed for the six points of interest to identify interactions between tree
count, sample size, and data characteristics, with all experiments conducted 10 times:

• Confounders × Effect Modifiers ∈ {(1, 1), (2, 2), (2, 0), (1, 2), (0, 2), (0, 1)}
• Number of Instruments = 1
• Polynomial degrees = 3
• Confounding strengths = 1
• Tree count ∈ {3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}
• Training sample size ∈ {10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 110000, 120000}

8



Figure 1: HDMR sensitivity analysis for coverage rate with maximum interaction order of 2.
The number of confounders, their interaction with effect modifiers, and effect modifiers are the
dominant factors (sensitivity indices ≈ 0.28 ± 0.04, ≈ 0.14 ± 0.03, and ≈ 0.10 ± 0.02), followed
by polynomial degree, its interaction with the number of confounders, and confounding strength
(≈ 0.09 ± 0.03, ≈ 0.04 ± 0.02, and ≈ 0.04 ± 0.01), while all other parameters and interactions
contribute minimally to coverage rate variability (< 0.02).

The starting thresholds of 3000 trees and 10000 datapoints were selected to avoid the unstable
region for lower values due to considerable Monte Carlo noise.

4 Results

4.1 Sub-question 1 – Data Characteristics Sensitivity
Following the initial Sobol sampling, the HDMR analysis identified the number of confounders and
effect modifiers as the most influential factors with respect to the coverage rate of the confidence
intervals, as shown in Figure 1.

As specified in the methodology section, based on the HDMR results, a series of grid searches
was performed on confounders × effect modifiers, the two most influential parameters.

• Grid Search 1: The first grid search that was performed on an extended area (0–15
confounders × 0–15 effect modifiers) indicated that the coverage rates decrease considerably,
falling below 60% when the combined number of confounders and effect modifiers exceeds
4, as shown in Table 1. A complete heat map can be seen in Figure A.3.

• Grid Search 2: This grid search revealed that doubling the number of trees and increasing
the training data fourfold led to improvements under 7% when compared to the previous
grid search’s results, as seen in Figure A.4.

• Grid Search 3: The third grid search revealed that even for simple configurations (con-
founding strength = 0.5 and polynomial degree = 1), the coverage rate drops below 80% as
soon as the number of confounders and effect modifiers exceeds 4, as shown in Table 1.

9



Degree 2, Conf. Strength 1 Degree 1, Conf. Strength 0.5

Confounders/Modifiers Avg. Coverage Max Coverage Avg. Coverage Max Coverage

1 0.94 0.94 0.95 0.95
2 0.92 0.93 0.94 0.94
3 0.76 0.82 0.91 0.92
4 0.64 0.66 0.86 0.91
5 0.51 0.54 0.77 0.78
6+ < 0.50 < 0.50 < 0.70 < 0.70

Table 1: Coverage Rates by Polynomial Degree and Confounding Strength

4.2 Sub-question 2 – Hyperparameter Analysis
The hyperparameter analysis revealed varying behaviors across parameters. Table 2 summarizes
the key statistics for the impact of each hyperparameter on coverage rates. Detailed plots for
all experiments can be found in figs. A.5 to A.15. The following paragraphs summarize notable
behaviors of the average coverage rates of the 6 configurations.

Parameter Min Max Mean Range Std. Err.

criterion 0.7328 0.7428 0.7378 0.0100 0.0047
max_depth 0.0860 0.7525 0.6296 0.6665 0.0018
max_features 0.5621 0.7230 0.6295 0.1609 0.0014
max_samples 0.5883 0.7594 0.6838 0.1711 0.0019
min_balancedness_tol 0.0451 0.7561 0.5783 0.7111 0.0016
min_impurity_decrease 0.2211 0.7328 0.4175 0.5117 0.0027
min_samples_leaf 0.5560 0.7530 0.6762 0.1971 0.0014
min_samples_split 0.6264 0.7530 0.7153 0.1267 0.0013
min_var_fraction_leaf 0.1517 0.7413 0.6216 0.5896 0.0041
n_estimators 0.6786 0.8508 0.7602 0.1723 0.0019
subforest_size 0.7285 0.7480 0.7388 0.0195 0.0019

Table 2: Statistics of Coverage Rate Across Different Parameters

The coverage rates for max_depth began at a low point, then steadily rose until the average
stabilized at approximately 0.74 for max_depth = 20.

For each rise in the max_features value, the coverage rates have either stayed constant or
shown improvement.

The max_samples parameter demonstrated a positive correlation with coverage rates. Higher
values consistently improved performance, particularly when exceeding 0.4. As the value increased
from 0.4 to 0.5, the coverage rate and the width of the confidence interval increased by 0.0375
and 0.2522, respectively. A setting of 0.45 achieved the 0.7422 coverage rate and the width of
2.6290, while 0.5 delivered the maximum coverage rate of 0.7594 with broader intervals of 2.7527.

The min_balancedness_tol parameter showed that increasing values improved coverage
rates. Coverage initially increased for values from 0 to 0.1, but then stabilized at approximately
0.74. Between 0.1 and 0.5, the coverage rates remained relatively steady while the width of the
confidence interval decreased from 3.1726 to 2.5676.

The min_impurity_decrease parameter exhibited a negative relationship with coverage rates.
As the values increased from 0 to 1, the coverage rates decreased monotonically, ranging from
0.732 to 0.221.

For min_samples_leaf, optimal performance was observed with values up to 5, beyond which
there was a marked decline in coverage rates. Performance increased marginally from 1 to 5
(difference: 0.012), followed by a noteworthy drop from 5 to 50 (difference: 0.197). Meanwhile,
the mean squared error almost doubled within the same interval (5 to 50). At an optimal value
of 5, the coverage rate was 0.7530.

For min_samples_split, the coverage rate remained quite steady, fluctuating between 0.73
and 0.75 up to 14 samples, after which it experienced a continuous drop to 0.64 for 50 samples.
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Figure 2: Interaction effects of tree count and training sample size on model performance averaged
across six combinations of confounders and effect modifiers.

The min_var_fraction_leaf parameter showed stable behavior until a configuration-specific
threshold was reached, beyond which performance sharply declined. The variability before reach-
ing these thresholds was minimal.

The n_estimators parameter showed complex dynamics across the different metrics. MSE
stabilized relatively quickly between 120 and 400 trees. CI width followed a U-shaped pattern:
starting at 4.4 for 4 trees, increasing to 4.88 for 12 trees, then decreasing monotonically until sta-
bilizing around 2.63 at approximately 2400 trees. The coverage rates exhibited similar behavior,
starting at 0.6786 for 4 trees, peaking at 0.8505 for 40 trees, then relatively stabilizing around
0.7331 for 2400 trees, with diminishing returns reaching 0.7335 at 10000 trees.

4.3 Sub-question 3 – Tree Count and Sample Size interactions
Since all six configurations exhibited similar behavior, results were averaged across configurations
and displayed as a heatmap in Figure 2. On average, increasing the training size from 10000 to
120000, a twelve-fold increase, resulted in an improvement of ≈ 6.1%. However, increasing the
number of trees from 3000 to 10000, a 3.3-fold increase resulted in marginal improvements of less
than 0.2%.

5 Discussion

5.1 Sub-question 1 – Data Characteristics Sensitivity
The sensitivity analysis using HDMR indicated that confounders and effect modifiers have the
most notable impact on the coverage of confidence intervals, followed by polynomial degree and
confounding strength. Unsurprisingly, the number of instruments minimally affects the coverage
rate, likely because partitioning by instruments does not offer any enhancements to the splitting
criterion and, consequently, does not get selected. Although these findings are limited to the
ranges studied, they offer valuable practical advice to practitioners by clearly prioritizing the
importance of various factors when under comparable constraints.

Conversely, a concept that can be broadly applied to all datasets with polynomial treatment
effects is that coverage rates decline considerably once the combined total of confounders and
effect modifiers surpasses 4, thus identifying a practical threshold not yet reported in academic
literature. This threshold seems robust, as enhancing computing power (by doubling the number
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of trees and quadrupling the dataset size to 5000 and 100000, respectively) resulted in improve-
ments under 7%. Combined with the findings of Section 4.3, which show that both the number
of trees and the data points face notable diminishing returns, this implies an intrinsic limitation
rather than a computational one. These results offer practical advice: researchers with more than
four combined confounders and effect modifiers should anticipate considerably reduced reliability
of the confidence intervals and consider alternative methodologies.

Furthermore, as mentioned in the methodology, these findings led to the decision to concen-
trate the following analyzes on 6 specific confounders × effect modifiers ∈ {(1, 1), (2, 2), (2, 0), (1,
2), (0, 2), (0, 1)}. This choice was driven by the rapid degradation observed, thus opting to target
regions nearer to the nominal coverage rates for more useful insights. Furthermore, confounding
strength, polynomial order, and instrument count were fixed at 1, 3, and 1, respectively, given
computational constraints and their relatively small impact on variance.

5.2 Sub-question 2 – Hyperparameter Analysis
Table 3 offers a comprehensive analysis of each parameter, giving practical recommendations
based on their observed effects. These parameters are systematically classified by their impact
range-wise: very low (0.01-0.05), low (0.12-0.20), medium (0.50-0.52), high (0.58-0.60), and very
high (0.66-0.72).

Table 3: Hyperparameter discussion regarding Confidence Intervals

Parameter Impact Observed Effect Interpretation and Recommendation

criterion Very Low Minor variation; effects likely due
to Monte Carlo noise.

No meaningful impact observed on coverage. Default (mse) is
sufficient; no tuning needed.

max_depth Very High Coverage increases with tree depth,
plateauing around depth 20. Shal-
low trees perform poorly.

Shallow trees underfit, reducing confidence interval reliability.
For best results in general, leave unset.

max_features Low Higher values improve or maintain
coverage; no observed degradation.

Including more features when splitting improves coverage by
allowing better modeling of effect heterogeneity. The default
value, which includes all available features, should be generally
safe.

max_samples Low Higher values (≥ 0.4) consistently
improve coverage; peak at 0.5.

Larger sample sizes per tree reduce variance in estimation, lead-
ing to more stable confidence intervals. Recommended to in-
crease to 0.5 for best coverage rate performance.

min_balancedness_tol Very High Strong positive effect; coverage
rates plateau after 0.1, although
widths continue to decrease.

Improves coverage rates by ensuring balanced splits. Setting this
value near the upper limit seems best for confidence intervals
overall. Set to 0.5 for optimal coverage and width performance.

min_impurity_decrease Medium Higher values degrade coverage.
Even small increases from 0 hurt
performance.

This parameter prevents beneficial splits, forcing trees to stop
early and creating large leaves. This violates Specification 1
from Athey et al. [4] by allowing trees to refuse splitting on any
feature when impurity gains are below the threshold, effectively
making the split probability 0 rather than bounded below by
some π > 0 as required, invalidating the theoretical foundation
for confidence intervals. Keep at default (0.0) to avoid degrading
inference quality.

min_samples_leaf Low Best coverage at small values (≤ 5);
higher values sharply reduce perfor-
mance.

Larger leaves average over heterogeneous subgroups, diluting
treatment effects, resulting in worse performance. Default (5) is
adequate; no tuning necessary.

min_samples_split Low Minimal effect until 15 samples;
then moderate decline in perfor-
mance.

Avoid large values as they reduce tree depth and heterogeneity
modeling. Default (10) is adequate; no tuning necessary.

Continued on next page
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Table 3 – continued from previous page

Parameter Impact Observed Effect Interpretation and Recommendation

min_var_fraction_leaf High Threshold behavior shows a sharp
decline after configuration-specific
limits with minimal variability be-
forehand.

This likely stems from mechanisms similar to those in
min_impurity_decrease, with the initial low variability due to
less constraining power for low values. Leave unset for best per-
formance.

n_estimators Low Coverage rate unstable until ap-
proximately 2400 trees when the
theoretical "sufficiently large" re-
quirement is practically achieved;
Diminishing returns beyond this
point

According to Wager and Athey [3] and Athey et al. [4], it is
necessary for the number of trees to be high enough so that
the Monte Carlo noise becomes insignificant for valid confidence
intervals. Use ≥ 2400 trees for best performance.

subforest_size Very Low Minor variation; effects likely due
to Monte Carlo noise.

There was no noteworthy impact detected on coverage. Default
(4) is sufficient; no tuning needed.

5.3 Sub-question 3 – Tree Count and Sample Size interactions
No substantial interactions between the quantity of trees and the size of the training dataset have
been detected. Additionally, it appears that upon reaching the sufficiently large number of trees,
required in order for the Monte Carlo noise to become negligible, further increases lead to only
very minor improvements of less than 0.2%. A similar pattern is observed with respect to the
number of data points; specifically, within the 80000 to 120000 data points interval, the coverage
rates stabilized around 77.6% with variations below 0.2%.

The evidence indicates that although expanding the number of trees and the sample size
improves the coverage rate, these advantages wane over time. Since there are no interaction
effects, the number of trees and sample size can be optimized individually. This independence,
coupled with the diminishing returns, enables practitioners to fine-tune each parameter separately
according to their computational limits and desired coverage rate performance, without needing
to explore exhaustive parameter combinations.

6 Responsible Research

6.1 Ethical Implications
This study tackles a significant deficiency in understanding the dependability of causal inference
techniques, which directly affects evidence-based decisions in healthcare, policy, and other crucial
areas. By pinpointing the circumstances under which causal forest confidence intervals lose their
reliability, this research fulfills an ethical obligation to prevent overconfident causal assertions
that may result in detrimental outcomes. However, it is important to note that this study was
conducted on synthetic datasets, which may not align with real-world datasets. Thus, in order to
safely use these findings with real observational data, it is imperative to first validate this study
with real-world data.

6.2 Reproducibility
Reproducibility-wise, all experiments can be fully replicated due to the fact that all of the ex-
perimental setups (hyperparameters, data characteristics) and methodology are documented in
this paper. In addition, the codebase is published online [21], uses readily available libraries
(for example, EconML and SaLib), and contains the full configurations used for all experiments,
reducing the act of performing the experiments to just running the right command. In addition,
to ensure statistical reliability, all experiments were run multiple times (at least 3 times, but
mostly 10 times, in some cases even 100 times), with different random seeds. The inclusion of
deterministic quasirandom sampling (Sobol sequences) improves reproducibility relative to purely
random sampling methods, allowing for the exact reproduction of parameter space exploration
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across different test runs. Finally, all significant results include standard errors or confidence
intervals.

7 Limitations and Future Work
This research provides substantial takeaways on the reliability of the confidence intervals in GRF
causal forests, but several limitations affect the generalizability of the findings. The research relies
exclusively on synthetic data from a specific data-generating process that provides a polynomial
treatment effect, which may not capture the full complexity of real-world observational data.
The investigation was constrained to specific parameter ranges (confounders, effect modifiers,
and instruments up to 8, polynomial degrees up to 5, and confounding strength up to 10) due to
computational limitations. Higher-dimensional scenarios common in modern applications have
not been rigorously analyzed, although the limit of 4 combined confounders and effect modifiers for
reliable coverage would probably be even more restrictive in complex contexts. The analysis was
limited to binary treatments, while a considerable amount of applications deal with continuous or
multi-valued treatments. Furthermore, because of computational limitations, hyperparameters
were investigated individually rather than holistically, which could result in overlooking significant
interaction effects.

It is recommended for future research on Causal Forest’s confidence intervals to attempt to
rectify these shortcomings in the following ways. Firstly, validation should incorporate synthetic
datasets with a wider range of treatment effect functions, such as exponential, logarithmic, and
discontinuous effects, rather than limiting to polynomials, to validate the generalizability of these
findings. Secondly, investigations should expand beyond binary treatments to include continuous
and multi-valued interventions. Thirdly, a thorough analysis of hyperparameter interactions
should be conducted to enhance the independent analysis done here, capturing key interaction
effects that influence coverage reliability. In addition, developing adaptive hyperparameter tuning
algorithms specifically for coverage rate improvement will equip practitioners with data-driven
methods to achieve optimal confidence interval coverage specific to their applications. Finally,
and most importantly, these findings should be validated on real observational data.

8 Conclusions
This research addressed a critical deficiency in understanding confidence interval reliability in
causal forests by systematically investigating how data characteristics and hyperparameters affect
coverage rates. The main research question focuses on determining the factors (data character-
istics and hyperparameters) that affect the actual coverage rates of confidence intervals and the
optimal hyperparameters to optimize them.

The most substantial finding is the identification of a practical threshold for reliable confi-
dence interval coverage: when the combined number of confounders and effect modifiers exceeds
4, coverage rates decline dramatically below 80% even for the simplest treatment effect function.
This threshold appears robust, as increasing computational resources provided only marginal
improvements. This limitation was not previously documented in the literature and has impor-
tant ramifications for practitioners working with complex observational data with a polynomial
treatment effect.

The hyperparameter analysis also uncovered some notable findings. The most impactful pa-
rameters were maximum depth and minimum balancedness tolerance, which caused the coverage
rates throughout their range to vary by 66% and 71%, respectively. Key recommendations include
using at least 2400 trees to satisfy theoretical requirements for valid confidence intervals, setting
maximum samples per tree to 0.5 and minimum balancedness tolerance to 0.5 for optimal cov-
erage, leaving maximum depth unset to avoid underfitting, and maintaining minimum impurity
decrease at 0.0 to prevent degradation of inference quality. Several parameters showed minimal
impact (splitting criterion, subforest size) and can be left at default values without affecting
coverage rates.

The interaction analysis between tree count and sample size revealed diminishing returns as the
parameters increase, thus providing clear cost-benefit guidance: practitioners can identify optimal
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resource allocation points where further increases in trees or training data yield improvements
that are too small to justify the additional computational cost. The absence of interaction effects
between these parameters simplifies optimization by allowing independent tuning of tree count
and sample size rather than requiring joint optimization.

The identification of coverage rate degradation beyond 4 combined confounders and effect
modifiers, along with the hyperparameter recommendations, may help practitioners arrive at
more informed conclusions when applying causal forests to their observational data.

With the rapid advancement and increasing application of causal inference in healthcare,
policy, and business decision-making, it is essential for practitioners to discern when confidence
intervals are reliable and how to optimize them. This study lays critical groundwork by offering
empirically based insights that connect theoretical assurances with practical dependability while
establishing important practical guidelines that, although requiring validation with real-world
datasets for broader applicability, can help prevent overconfident causal claims and ultimately
serve the goal of more reliable and responsible decision-making.

15



A Additional Charts
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Figure A.3: Performance metrics across varying numbers of confounders (x-axis) and effect mod-
ifiers (y-axis) using 2500 trees and 25000 data points. Coverage rates deteriorate more rapidly
than MSE as the number of confounders and effect modifiers increases.
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Figure A.4: Performance metrics from a grid search using 5000 trees and 100000 data points
across the same parameter space. Despite the fourfold increase in training data and doubled
number of trees, improvements over Figure A.3 were minimal (under 7%). This plot reports
values ± std. deviation.

Figure A.5: max_depth analysis

Figure A.6: max_features analysis
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Figure A.7: max_samples analysis

Figure A.8: min_balancedness_tol analysis

Figure A.9: min_impurity_decrease analysis
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Figure A.10: min_samples_leaf analysis

Figure A.11: min_samples_split analysis

Figure A.12: min_var_fraction_leaf analysis
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Figure A.13: min_weight_fraction_leaf analysis

Figure A.14: n_estimators analysis

Figure A.15: subforest_size analysis
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