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Abstract—Camera systems are widely used for surveillance 
in the security and defense domains. The main advantages of 
camera systems are their high resolution, their ease of use, and 
the fact that optical imagery is easy to interpret for human 
operators. However, particularly when considering application 
in the defense domain, cameras have some disadvantages. In 
poor lighting conditions, dust or smoke the image quality 
degrades and, additionally, cameras cannot provide range 
information. These issues may be alleviated by exploiting the 
strongpoints of radar. Radar performance is largely preserved 
during nighttime, in varying weather conditions and in dust 
and smoke. Furthermore, radar provides range information of 
detected objects. Since their qualities appear to be 
complementary, can radar and camera systems learn from 
each other? In the current study, the potential of radar/video 
multimodal learning is assessed for the classification of human 
activity. 

Keywords—multimodal learning, radar, video, human 
activity classification, micro-Doppler 

I. INTRODUCTION

Classification of human activity is an important asset in 
the defense and security domains. The activity or behavior a 
human exhibits may (partly) reveal someone’s intent. 
Someone strolling on a parking lot may be just on his way to 
his car or someone may be scanning the cars for possible 
valuable items to steal. Physical behavior of a person, e.g., 
walking speed and walking pattern, may reveal the actual 
intent. 

In the civil security domain, cameras are widely used for 
surveillance; CCTV systems can be found in city centers, in 
malls, on parking lots, in train stations, on airports, etc. This 
widespread use of cameras in the civil domain is motivated 
by their ease of use and the fact that optical images are easy 
to interpret for humans, avoiding the need for extended 
operator training. Moreover, optical imagery allows the 
application of facial recognition. This is a crucial asset 
regarding the prosecution of possible offenders, although it 
may arouse privacy issues in some situations.  

Cameras do have some disadvantages, in particular when 
considering defense applications. The quality of 
(daylight) camera imagery degrades in poor lighting 
conditions, smoke and dust. Furthermore, an image 
sensor does not provide information about the range to a 
subject.

These issues relate directly to the strongpoints of radar 
sensors. Radar systems provide the range and velocity of 
detected subjects, have all-weather capability and maintain 
performance in smoke or dust. Radar imagery is however 
typically unsuited for recognition and difficult to interpret by 
a human operator. 

Since their strengths and weaknesses appear to 
complement each other, a natural question seems to be: Can 
radar and camera systems learn from each other? 

In literature multimodal learning has been used in 
different applications. For example the fusion of video data 
with laser range measurements for autonomous navigation 
[1]. Multimodal learning is also used to achieve robust 
speech recognition using the video data only in absence of 
the audio signal by fusing the video data of a speaking 
person and the related audio signal [2]-[4].  Extending the 
previous approaches, in this paper, we particularly 
investigate the use of multimodal learning for radar and 
optical sensors for human activity classification. 

In the current study it was investigated whether the 
classification of human activity can be improved when 
feeding corresponding video and radar data to a neural 
network based classifier, as compared to performing 
classification using either the video data or the radar data. If 
indeed there is some performance improvement using a 
multimodal neural network, the next question to be 
addressed is whether this improvement is maintained when 
one of the sensor modalities is absent or delivers data of 
degraded quality (for instance during the nighttime when a 
daylight camera cannot provide suitable data, whereas the 
quality of the radar data is preserved). To gain insight in the 
process of multimodal video/radar learning, visualization 
techniques have been applied to identify the pixels in the 
images that are exploited by the neural network for 
classification. 

The concept of multimodal learning is explained in more 
detail in the following section. Subsequently, in Section III 
the radar and video measurements and the resulting data sets 
are described. These data sets were used to assess the 
potential of radar/video multimodal learning. The design of 
the multimodal network architecture and the obtained results 
are discussed in Section IV. Finally, the conclusion is given 
in Section V. 
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II. MULTIMODAL LEARNING

Modality refers to the way the environment or events are 
perceived. Different types of sensors, e.g., acoustic, optical, 
and RF sensors, perceive the environment in different ways 
and are therefore referred to as different modalities. 
Multimodal convolutional neural networks (CNNs) are 
networks that are able to jointly interpret data from different 
modalities [5]. Within a network architecture, the integration 
of the data coming from various modalities may be done at 
different levels. The different levels of integration considered 
in this work are presented in Fig. 1. 

The architecture on the left depicts decision-level fusion. 
The radar and video data are essentially considered 
independently resulting in two classification results. Only a 
final stage is added in which the individual classification 
results are aggregated in some way to obtain the overall 
classification result. By using this decision-fusion 
architecture, the individual CNNs for the video and radar 
data are trained and validated separately and thus cannot 
learn from each other. 

The architecture in the middle shows feature-level fusion. 
In this case, CNNs are applied independently to the radar and 
video data to obtain features, but all features are then fed to a 
single (fully-connected) neural network to obtain the overall 
classification. By using this architecture, the individual radar 
and video data CNNs may learn from each other in the back 
propagation stage, if the weights are adapted on the basis of 
the overall classification result. 

Finally, the architecture on the right depicts data-level 
fusion. By using the data-fusion architecture, the video and 
radar data are simultaneously fed to a single CNN. 
Potentially, data-fusion allows deep exploitation of the 
correlation (or complementarity) between the different 
modalities. A drawback of this architecture is that the video 
and radar images need to be of the same size (expressed in 
image pixels). Another drawback of the architecture is that it 
requires the convolutional stages to have the same 
parameters which is not necessarily the optimal feature 
extraction process for the individual modalities. 

Fig. 1. Schematic block diagrams of three multimodal fusion approaches. 
Here “CNN” indicates the convolutional and pooling layers of the 
CNN used for feature extraction, whereas “Neural network” refers to 
the fully connected layer(s) (including a softmax layer) used for the 
final classification. The three output classes are denoted by “N,” “R,” 
and “B.” 

To assess the added value of video/radar multimodal 
learning, it should be analyzed what information is actually 

exploited for feature extraction by the individual CNNs. Do 
the CNNs exploit complementary information or do they 
exploit similar information from the video and radar data? In 
the latter case, the added value of the multimodal approach 
may be limited. For this assessment the gradient-weighted 
class activation mapping (Grad-CAM++ [6]) visualization 
method is applied. With the aid of visualization methods, 
such as Grad-CAM++, a saliency or heat map can be 
generated, which contains a coarse localization of the parts 
of the feature maps which contribute to the class score. A 
saliency map mitigates the black-box nature of CNNs and 
highlights the image pixels that are actually used for feature 
extraction and classification, e.g., [7], [8]. 

III. MEASUREMENT SETUP AND DATA SETS

To assess the potential of multimodal learning for human 
activity classification, measurements were conducted with a 
compact radar system and a high-definition camera, see 
Fig. 2. The test subjects walked toward the measurement 
setup starting at around 40 m range, with a typical walking 
speed of about 1.5 m/s, resulting in measurement runs of 
about 20 s. The measurements were conducted on different 
days both in the morning and the afternoon. The weather 
conditions were similar during the different measurements, 
but the lighting conditions varied depending on the time of 
day. 

Measurements were made of (a) people just strolling, i.e., 
walking without luggage or objects in their hands (class N), 
(b) people carrying a relatively heavy backpack (class B),
and (c) people holding a weapon-like object with both hands
(class R). These three cases (N, R and B) are assumed
representative for different types of human activity, as
persons carrying heavy items may be regarded suspect in
particular situations (such as a person carrying a crowbar on
a parking lot). It should be noted that the test subjects
inclined to swing their arms when not carrying the object.

A total of thirty-five test subjects were available. Each 
test subject performed the activities twice; as a result 210 
measurements are available for training and validation. 

Fig. 2. Human activity measurement setup with a high-definition camera 
and a compact radar system. 

A. Radar

For the radar measurements the AMBER frequency
modulated continuous wave (FMCW) radar was used. 
AMBER operates in X-band and for these measurements the 
range resolution was 1.5 m. Since the focus is on the micro-



Doppler signatures of the test subjects, the range resolution 
was relatively coarse to ensure that a test subject is contained 
within a single range resolution cell (including swinging 
arms and legs). For the current study, it is assumed that the 
gait and body motion change if a person carries a heavy item. 
If this difference in gait and/or body motion can be 
recognized in the person’s micro-Doppler signature, it can be 
determined whether the person carries a heavy item or hefty 
backpack. 

To highlight the micro-Doppler signature, spectrograms 
were generated of the measured radar data. An example 
spectrogram excerpt of each activity is presented in Fig. 3. 
These examples include approximately one human gait 
cycle. From an earlier study it was already concluded that the 
swinging arms or the lack thereof (in the case the person is 
carrying an object in both hands) is the most distinguishing 
feature [8]. This can be seen in the examples, in the case the 
person is strolling or carrying the backpack, the spectrogram 
exhibits an ‘arc’ related to the (lower) arms’ motion 
(indicated by the black arrows). When both hands of the test 
subject are engaged, this arc is absent (indicated by the black 
circle). 

Fig. 3. Examples of measured spectrograms for the test subject strolling 
(N) (top left), the test subject carrying an object in both hands (R) (top
right) and the test subject carrying the backpack (B) (bottom). 

B. Video

The video recordings were made using a high-definition
camera with a frame rate of about 13.5 frames per second. A 
single shot detector (SSD) [9] was applied to the individual 
frames in the video recordings to detect the test subjects. 
The area within a bounding box, i.e., the image pixels related 
to the person, is then extracted from the frame. Due to the 
test subjects walking from an initial range of 40 m toward the 
radar, the bounding boxes differ in size. As the test subjects 
approach the measurement setup, the bounding box size 
increases. However, for the CNN all input images need to be 
of the same size. Consequently, all extracted subimages were 
resized to a width of 64 pixels and a height of 128 pixels.  

The SSD has a high detection rate (of the order of 90%) 
and a low false alarm rate. Nevertheless, in some frames the 
test subject was missed or an object was labeled as a person. 
These frames were deleted from the data set manually. 

C. Training and Validation Set

As mentioned, spectrograms were generated from the
radar measurements. From a spectrogram, an excerpt was 
selected of 1.28 s long, ensuring that at least a single human 
gait cycle is included. This spectrogram excerpt was paired 
with the video frame corresponding to the start time of the 
spectrogram excerpt. The maximum synchronization error 
between the start time of the spectrogram excerpt and the 
actual time of the corresponding video frame is 0.01 s. In 
total over 40,000 of such video/radar data pairs were 
available for training and validation. The data pairs of 28 
randomly selected test subjects were used for training and the 
data pairs of the remaining seven test subjects were used for 
validation. Thus the training and validation sets were 
mutually exclusive in terms of the test subjects. 

IV. NETWORK ARCHITECTURE AND RESULTS

The application of CNNs for classification of persons or 
objects in pictures and video is already well-established, e.g., 
[10]. Recently, CNNs have also been successfully applied to 
classify human activity based on radar micro-Doppler 
signatures [7], [11], [12]. The idea of fusing video and radar 
data using CNNs in a multimodal setup is however novel. 

Keras [13] with TensorFlow was used to implement the 
CNNs  and the multimodal topologies. First two models were 
optimized for the two modalities separately, the single 
modality models are discussed in Section A and the related 
results in Section B. Saliency maps for the unimodal 
implementations are discussed in Section C and D. In 
Section E the multimodal fusion architectures and results are 
discussed. 

A. Convolutional neural network architecture

The model parameters were devised based on a grid
search. The radar CNN consists of four convolutional stages 
(alternately a convolutional layer and max pooling layer) 
with 5x5 kernels. The amount of kernels at each stage is 20-
30-40-50 respectively. The (sub)optimal CNN for the video 
data  also had four convolutional stages with kernel size of 
3x3. However it uses a double convolutional layer at each 
stage. With the amount of kernels at each stage 16-32-64-128 
respectively. Both the radar and video classifier use two fully 
connected layers with 500 neurons each and a softmax 
function is used to perform the final classification.  

B. Single modality results

The classification performance of the single modality
implementations are shown in Table I. Two scenarios are 
taken in consideration, classifying just the N and R class (the 
first row) and classifying all three classes. The classifier for 
the video outperforms the radar classifier for both scenarios. 

As was previously shown in [8], the radar classifier has 
difficulties to distinguish the N and B class. The overall 
classification performance in this case is 62.6%. The 
confusion matrices in Fig. 4 emphasize this, the radar 
classifier is however still able to distinguish the R class with 
a high degree of accuracy, which is also the main 
contribution to the overall classification performance. The 
confusion matrix for the video data shows a high 
classification accuracy for the R class as well, which is most 
likely related to the clear visibility of the object in the video 
frames (see Fig. 5).  



 

 

TABLE I.  UNIMODAL CLASSIFICATION PERFORMANCE (RESULTS ARE 
IN %). COLUMN ‘VIDEO’ AND ‘RADAR’ CONTAIN THE RESULTS FOR THE 
VIDEO AND RADAR MODALITY  RESPECTIVELY. 

Set of classes 
Modality 

Video Radar 

{N,R} 95.2 88.9 

{N,R,B} 87.0 62.6 

 

Fig. 4. Confusion matrix for the radar classifier (left) and video classifier 
(right). ‘N’ refers to a person strolling, ‘R’ to a person carrying an 
object with both hands and ‘B’ to a person carrying a backpack. 
Classification results are in %. 

Due to the cold weather during the recordings some 
people walked stiffly with their arms besides their body, due 
to the reduced arm motion this behavior can result in an 
absence of the previously described arc in the spectrograms, 
this behavior slightly explains the confusion between the 
nothing and the rifle class. Furthermore occasionally a 
person grabs the strap of the backpack whilst walking, 
therefore reducing the arm motion.  

C. Saliency maps video 

The result of the Grad-Cam++ saliency maps has been 
superimposed on video frames obtained from the SSD in 
Fig. 5. The images are classified correctly with a certainty 
over 0.99. An effort is made to give a fair representation of 
the saliency maps observed on the data set. The first row of 
the saliency maps illustrates the general findings, the second 
row more questionable saliency maps. Red regions indicate 
the most relevant regions for a correct classification.  

In case of the person strolling the pixels around the lower 
arms and hands have high saliency. This suggests that the 
arms hanging loose next to the torso are an important feature 
to classify a person strolling. In case of the person carrying 
the object, the pixels around the hands and the object have 
high saliency, indicating that the presence of the object in 
front of the torso is the key feature. For the person carrying 
the backpack the pixels around the strap of the backpack 
have high saliency, thus rightly contributing to the 
classification. The free hand also has high saliency, but is on 
its own not discriminative for the class activity. The same 
type of information is used to separate the person carrying an 
object or a person just strolling: are the arms loose next to 
the torso or engaged in some way. For these two classes the 
multimodal approach may have added value. The person 
carrying a backpack however shows similar features as the 
person just strolling, the backpack strap however is not a 
feature directly visible in the radar spectrograms (it might 
indirectly be observed due to a changed gait). If it is not 
possible to extract any information on the particular activity 
the multimodal approach may only have limited added value. 

For the person carrying a backpack the main feature of 
interest in the video data is the presence or absence of the 
straps of the backpack. For a significantly heavy backpack 
the micro-Doppler signatures (see  Fig. 3) are also expected 
to change. However, the impact of the backpack (of 10 kg) in 
this setup does not seem to be significant enough as there is 
no clear noticeable difference in the micro-Doppler 
components. Which is emphasized by the inability of the 
radar classifier to distinguish the Nothing and Backpack 
class. 

The second row of images in Fig. 5 are also classified 
correctly, in these images the feet are seemingly a relevant 
feature. It is unclear how the feet can contribute to the 
classification and whether this is a desired property, although 
some frames have been cropped (by the SSD) such that the 
feet are no longer visible, this can cause the feet to contain 
some information about the position of the person and the 
objects in question.  Furthermore the saliency map on top of 
the person carrying an object shows that the background has 
high saliency. This does however not contain any 
information about the activity and is therefore an undesired 
property.  

 

Fig. 5. Saliency maps with a correct classification (certainty over 0.99) 
superimposed on the corresponding video frame, for a person just 
strolling (left column), a person carrying an object with both hands 
(middle column) and a person carrying a backpack (right column).  

D. Saliency maps radar  

In Fig. 6, measured spectrograms and corresponding 
saliency maps are shown of a person just strolling with his 
arms swinging and a person carrying an object with both 
hands. These results were obtained for a CNN trained to 
distinguish between these two classes only for the current 
implementation (right two columns) and a CNN with a larger 
last convolutional layer (left two columns). As it was also 
known from the earlier study, [8], that it is difficult to 
classify the person carrying a backpack on the basis of radar 
spectrograms (including the backpack class resulted in the 
overall saliency maps to look like noise), this class was 
omitted from this assessment. In case of the strolling person, 
the area where the arc of the moving arm is (cf. Fig. 3) has 
high saliency, which is most clearly visible in the top left 
figure in Fig. 6. In case of the person carrying the object, the 



response to the torso has high saliency. This assessment 
confirms the notion that the arm motion or lack thereof is the 
key feature to distinguish a person just strolling from a 
person carrying an object in radar spectrograms (given that a 
person just strolling typically swings his/her arms). Due to 
the rescaling of the saliency maps, with the dimensions of the 
last convolutional layer, the resulting saliency maps are not 
always clear as is illustrated by the two columns at the right. 

Fig. 6. Saliency maps superimposed on the spectrograms. Right two 
columns show the results for the current implementation and the left 
two columns for an architecture with larger feature maps at the last 
convolutional layer. Images show a person just strolling (N)(top row) 
and a person carrying an object with both hands (R)(bottom row). 

E. Multimodal classification performance

The results of the multimodal fusion strategies are
presented and discussed in the order of the fusion depth in 
the following sections. 

1) Data-level fusion
The data-level fusion architecture was implemented by

adding the spectrogram excerpt as an additional channel to 
the video CNN. The results of this procedure are presented in 
Table II. There is no significant difference between the 
implementation of this early fusion strategy and the classifier 
for just the video input (see Table I). The radar input either 
just introduces noise into the feature extraction process or the 
model seemingly learns to ignore the radar input. 

TABLE II. DATA-LEVEL FUSION CLASSIFICATION PERFORMANCE. 
RESULTS ARE IN %. 

Set of classes Classification Accuracy 

{N,R} 95.5 

{N,R,B} 87.0 

2) Feature level fusion
The feature level fusion architecture was implemented by

concatenating the single modality implementations after 
feature extraction and training and validating this model 
from scratch. In Table III the overall classification accuracy 
of the feature-level fusion is presented when the model is 
trained with distorted data (removing either the radar or 
video frame during training with a 1/3 chance) or when both 
modalities are present (without distortion). The columns 
‘Vid’ (Video) and ‘Rad’ (Radar) indicate whether the video 
or radar, or both, are used in the validation stage.  

When dropping modalities (‘with distortion’ column) the 
relevance of the individual modalities is similar to the 
unimodal trained models, this shows the possibility to make 
such neural networks more robust to missing modalities. In 
case the models are trained with both modalities present 

(‘without distortion’ column) the overall architecture seems 
to prefer the data from the video as removing it only reduces 
the classification by 0.1%. More interestingly the 
performance of the model trained with both modalities 
present for the three class classification (set {N,R,B}) shows 
an improvement in classification accuracy when the radar 
input is removed, it improves from 86.9% to 87.2%.  

In Fig. 7 the confusion matrices for the feature-level 
fusion model validated with a single modality or both 
modalities present are presented. As the radar classifier part 
is not able to distinguish the N and B class the overall 
classification accuracy reduces. This suggests that the radar 
model trained for all three classes learns bad features from 
the data and therefore starts introducing noise into the model 
leading to a worse classification accuracy. Most likely the 
radar model trained on all three classes starts to recognize the 
peculiarities of the training data set such as noise and 
specific human gaits.  

Overall the data from the video recordings was found to 
be dominant in the classification process, which is likely also 
related to the architecture design. The feature vector obtained 
from the video data is larger than the vector for the radar data 
this is expected to introduce a bias towards the video data. It 
is expected that the classification performance can be further 
improved by further optimizing the multimodal architecture.   

TABLE III.  FEATURE-LEVEL FUSION CLASSIFICATION PERFORMANCE  
VALIDATED WITH JUST VIDEO ‘VID’, RADAR ‘RAD’ OR BOTH (VID+RAD). 

RESULTS ARE IN %. 

Set of classes 

Validation data 

Without distortion With distortion 

Vid+Rad Vid Rad Vid+Rad Vid Rad 

{N,R} 96.3 96.2 74.0 95.3 92.0 86.7 

{N,R,B} 86.9 87.2 46.2 87.2 86.8 62.2 

Fig. 7. Classification results of feature-level fusion without distortion. Top 
left: validated with just radar data. Top right: validated with just video 
data. Bottom left: validation with both modalities. The classes are: 
‘N’ for person strolling, ‘R’ for a person carrying an object with both 
hands and ‘B’ for a person carrying a backpack. The numbers are 
percentages. 



3) Decision level fusion
As aggregation strategy for the decision-fusion method in

Fig. 1 the average of the individual classifiers is used. The 
models from Table I were used for the single modalities. The 
results of this strategy as well as the unimodal results are 
presented in Table IV for comparison. For just the N and R 
class the overall classification improves by 1.2% up to 
96.4%. A small improvement is observed for the three class 
classification problem, as the radar classifier is not able to 
distinguish the N and B class it does not contribute to the 
classification for these classes. It does however contribute to 
the classification for the R class which is depicted in the 
confusion matrix in Fig. 8. The R class is identified in 99% 
of the cases, albeit there is some confusion. There is however 
no significant difference in the classification performance of 
the feature and decision-level fusion methods. A better 
solution might be to use e.g. a decision tree to first resolve 
the N and R class (allowing for more optimal feature 
extraction) and then use just the video data to resolve 
between the N and B class. 

TABLE IV. CLASSIFICATION ACCURACY OF DECISION LEVEL FUSION. 
THE RESULTS FROM THE UNIMODAL CLASSIFIERS ARE ALSO STATED.  

RESULTS ARE IN %. 

Set of classes 
Unimodal Decision Fusion 

Video Radar Video + Radar 

{N,R} 95.2 88.9 96.4 

{N,R,B} 87.0 62.6 87.3 

Fig. 8. Confusion matrix results of the multimodal architecture with 
decision-level fusion. The classes are: ‘N’ for person strolling, ‘R’ for 
a person carrying an object with both hands, and ‘B’ for a person 
carrying a backpack. The numbers are percentages. 

V. CONCLUSION

Unimodal implementations showed that both single video 
frames and radar spectrogram excerpts can be used to 
discriminate a person just strolling and carrying an object 
with both hands up to 95.2% and 88.9% respectively. On 
basis of just spectrogram excerpts it was not possible to 
differentiate a person carrying a backpack clearly. 

Several possibilities related to the fusion depth of radar 
and video multimodal data were investigated. Both feature-
level and decision-level fusion show the possibility to 
improve the classification accuracy. The feature level fusion 
approach showed that the models can be made more robust 
against missing or distorted modalities by adapting the 
training phase by taking into account the missing or distorted 
modalities. Feature level fusion is expected to improve the 
classification performance when the activities are better 
resolved using the correlation of the single modalities. This 

was not found to be the case for a person carrying a 
backpack. 

Furthermore Grad-CAM++ saliency maps were used to 
identify the relevant features for the different modalities. In 
case of the radar spectrograms the presence or absence of the 
micro-Doppler component related to the lower arms motion 
was identified as key feature. For the single video frames the 
recognition of the objects (metal pole and backpack straps) 
was identified as discriminating feature. In case of a person 
just strolling the presence of the hands hanging loose besides 
the body was identified as key feature. Although the Grad-
CAM++ method gave some insight in the pixel regions 
relevant for the classification it does not give an explanation 
why certain regions are important for classification.  

The data set contains measurements recorded during 
daytime. Preferably, data should also be recorded at night 
time. Although a single shot detector is used which might fail 
to recognize humans in darker lighting conditions training a 
model jointly for detection and classification might improve 
the overall detection and classification performance. Which 
might be a topic for future research. 

Furthermore the current implementation uses only single 
video frames that are associated with 1.28 seconds of radar 
data. During this time however multiple frames from the 
video stream are available, ideally all the data collected up to 
a certain time is used for detection and classification 
simultaneously, and this will be a topic for future research.  
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