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Abstract
Weather generators (WGs) based on temporal resampling algorithms are not able to generate new
extremes with the same or a higher temporal resolution as the historical data series of the thus far
observed precipitation. This is problematic for catchments with a time of concentration shorter than the
resolution of the used data and conflicts with the increasing occurrence of more local, short duration
extremes not yet observed.

In this thesis, it was researched if spatial permutation of precipitation could provide a solution to
these problems by introducing historical events from related locations into the area of interest. The
generated precipitation series were expected to have a larger variety of precipitation events compared
to the historical data, thereby representing the current changing weather patterns better and being more
suitable for small basins. This is beneficial for insurance companies, governments and aid organisa-
tions which rely on long term precipitation series to generate event catalogues and risk predictions.

To develop, improve and widen the knowledge about the effects of spatial permutation, four different
questions were formulated for a case study on spatial permutation in the Rhine basin. A literature study
showed that precipitation regimes in Europe can be defined based on spatial and temporal variability,
precipitation amounts and the influence of controlling factors like atmospheric circulations, topography
and climate change. This information was used to built three permutation models. The first model
shifted historical precipitation fields over fixed distances and directions. In the second model this fixed
approach was replaced by semi-random vectors including spatial and temporal correlation. The last
model used a vector approach with vectors conditioned with historical wind data. The effect of each
model on the Generalized Extreme Value (GEV) distributions, the cumulative distribution functions
(cdfs) and the main characteristics of precipitation for different basins and aggregation times was deter-
mined. The July 2021 Meuse flood was used as example to show the working method of each model
visually and to better understand the effect of each permutation model on individual extreme events.

The results showed that spatial permutation did influence precipitation patterns, characteristics and
statistics. Strongest changes in extreme precipitation events were seen for small basins and short ag-
gregation times. The permutation direction and distance were important determinants for the outcome
of each model. Precipitation permutation with semi-random vector fields was shown to be a promising
method which allowed for the inclusion of both spatial and temporal correlation. However, the model
had a high sensitivity to the initial and boundary conditions. Wind based vector fields were able to repli-
cate the most important historical precipitation characteristics while at the same time generating new
extremes. Yet, a clear trade off was visible between similarity of the historically observed and modelled
precipitation characteristics and the number of new extremes introduced.

With the knowledge obtained, it can be concluded that spatial permutation is a promising method to
generate more divers precipitation time series for the Rhine basin. Both semi-random and wind-based
vector permutations can already be used to generate new precipitation series as long as the initial
and boundary conditions are chosen carefully. To improve the results, a fusion of spatial and temporal
relations and a physically wind-based vector generation method is advised. In addition, possibilities are
seen in a combination of the currently used temporal resampling algorithms and a spatial permutation
approach. The outcomes of these suggestions are not known yet. Nevertheless, it is expected that a
better understanding of spatial permutation, on top of the results presented in this thesis, can advance
the current methodologies used to generate long term precipitation series. Therefore, it is hoped that
this research provides the incentives to explore spatial permutation of precipitation patterns in more
detail and in such, contributes to a more accurate risk profile for the livelihoods of people worldwide.

Keywords: weather generators (WGs), spatial permutation, extreme precipitation, Rhine basin
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Résumé
Les générateurs stochastiques de temps (GT) basés sur des algorithmes de rééchantillonnage tem-
porel ne sont pas capables de générer de nouveaux extrêmes avec une résolution temporelle identique
ou supérieure à celle des séries de temporelles historiques de précipitation observées jusqu’à présent.
Ceci est problématique pour les bassins versants dont le temps de concentration est plus court que la
résolution des données utilisées et n’est pas compatible avec l’apparition croissante de phénomènes
extrêmes plus locaux et de courte durée qui n’ont pas encore été observés sur la période historique,
liée au changement climatique.

Dans cette thèse, nous avons cherché à savoir si la permutation spatiale des précipitations pouvait
apporter une solution à ces problèmes en introduisant des événements historiques provenant de lieux
connexes dans la zone d’intérêt. Nous nous attendons à ce que les séries de précipitations présentent
davantage de variabilité par rapport aux données historiques et représentent ainsi mieux les régimes
météorologiques changeants actuels. Un tel modèle est important pour les compagnies d’assurances,
les gouvernements et les organisations en charge de la coordination de la réponse aux désastres
naturels qui s’appuient sur des séries de précipitations à long terme pour générer des catalogues
d’événements et des prévisions de risques.

Pour développer, améliorer et approfondir les connaissances sur les effets de la permutation spa-
tiale, quatre questions différentes ont été formulées pour une étude de cas dans le bassin du Rhin.
Une étude documentaire a montré que les régimes de précipitations en Europe peuvent être définis
sur la base de la variabilité spatiale et temporelle des quantités de précipitations et de l’influence de fac-
teurs de contrôle tels que les circulations atmosphériques, la topographie et le changement climatique.
Ces informations ont été utilisées pour construire trois modèles de permutation. Le premier modèle,
cette approche fixe a été remplacée par des vecteurs semi-aléatoires incluant une corrélation spatiale
et temporelle. Le dernier modèle a utilisé une approche vectorielle avec des vecteurs basés sur des
données historiques de vent. L’effet de chaque modèle sur les lois d’extremum généralisée (GEV), les
fonctions de distributions cumulative (cdfs) et les principales caractéristiques des précipitations pour
différents bassins et temps d’agrégation a été déterminé. La crue de la Meuse de juillet 2021 a été
utilisée comme exemple pour illustrer visuellement la méthode de travail de chaque modèle et pour
mieux comprendre l’effet de chaque modèle de permutation sur les événements extrêmes individuels.

Les résultats ont montré que la permutation spatiale influence effectivement les modèles, les carac-
téristiques et les statistiques des précipitations. Les changements les plus importants dans les événe-
ments de précipitations extrêmes sont observés pour les petits bassins et les temps d’agrégations
courts. La direction et la distance de la permutation sont des facteurs déterminants pour les résultats de
chaque modèle. La permutation des précipitations avec des champs vectoriels semi-aléatoires s’avère
être une méthode prometteuse qui permet d’inclure la corrélation spatiale et temporelle. Cependant,
le modèle reste très sensible aux conditions initiales et aux conditions aux limites. Les champs vec-
toriels basés sur le vent ont permis de reproduire les caractéristiques historiques les plus importantes
de précipitions tout en générant de nouveaux extrêmes. Toutefois, un compromis doit être déterminé
entre la similarité des caractéristiques des précipitations historiquement observées et modélisées et le
nombre de nouveaux extrêmes introduits.

Forts de cette étude, il est possible de conclure que la permutation spatiale est uneméthode promet-
teuse pour générer des séries temporelles de précipitations plus diversifiées pour le bassin du Rhin.
Les permutations vectorielles semi-aléatoires et basées sur le vent peuvent d’ores et déjà être util-
isées pour générer de nouvelles séries de précipitations, à condition que les conditions initiales et
limites soient choisies avec soin.
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Pour améliorer les résultats, une fusion des relations spatiales et temporelles et une méthode de
génération de vecteurs basée sur le vent physiques sont conseillées. En outre, des possibilités sont
envisagées dans une combinaison des algorithmes de rééchantillonnage temporel actuellement util-
isés et une approche de permutation spatiale. Les résultats de ces suggestions ne sont pas encore
connus. Néanmoins, nous pouvons nous attendre à ce qu’une meilleure compréhension de la permu-
tation spatiale, en plus de résultats présentés dans cette thèse, puisse faire progresser les méthodolo-
gies actuelles utilisées pour générer des séries de précipitations à long terme. Par conséquent, nous
espérons que cette recherche incitera à explorer plus en détail la permutation spatiale des modèles
précipitations et contribuer ainsi à la détermination d’un profil de risque plus précis dans l’intérêt des
populations.

Mots clés : générateurs météorologiques (GT), permutation spatiale, précipitations extrêmes, bassin
du Rhin.
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1
Introduction

Climate change influences the intensity and frequency of extreme precipitation events. As a result,
storms with a duration and depth exceeding the thus far historical observed values are recorded at
more and more locations [1]. A recent example of such a storm is the deep, stationary depression
called ’Bernt’ causing the July, 2021 flood covering parts of Germany, Belgium and The Netherlands.
In total 240 people lost their lives and the economic damage was estimated to be 38 billion euros.
Thereby, the flood was ranked as the second most expensive natural disaster of 2021 [2].

The fact that a flood could cause such damage in some of the world’s wealthiest and most techno-
logically advanced countries sparked the interest of society. Companies, governments and researches
are looking into how current practices and tools can be improved to reduce the impact of future disas-
ters. The focus is two-sided. On the one hand, measures are investigated which reduce the impact
of a storm, such as the Dutch ”Room for the River” project which aims at giving rivers the possibility
to retrieve their meandering behaviour. On the other hand the attention has been drawn to flood risk
profiles which are used by insurance companies, governments and aid organisations. These profiles
are generated with the help of hydrological-hydraulic models.

Hydrological-hydraulic models are models which combine weather data with the characteristics of
water flow, conveyance, sub-soil and landscape characteristics. They are used to determine the proba-
bility, frequency and impact of floods resulting from different types of extreme precipitation events. On
top, they are employed to calculate the characteristic storms and floods belonging to different return
periods. To do so the input weather data must be of sufficient length which is especially important for
extreme and rare events. Therefore, long precipitation series with an accurate reconstruction of pre-
cipitation dynamics and statistical characteristics are necessary to make a credible description of the
flood risk present in an area [3].

The most commonly employed method to reconstruct the required long-term precipitation series are
weather generators (WGs) [4]. WGs are a group of models which produce long-term synthetic weather
series based on historical data and re-sampling algorithms. The advantages of these models are that
they can produce rainfall series applicable to different catchments, can generate times series much
longer than the length of the observed data and can be used for catchments for which not much data are
present. In addition, they are used to produce ’design storms’ which generation is less computational
intensive due to the assumption of uniformity in time and space. This can speed up the hydrological-
hydraulic modelling process [5].

The large drawback of the use of these ’design storms’ is that they do not generate new and more
extreme events at the time resolution of the historical data of a certain location. They also do not
account for the high degree of spatial and temporal variability which is observed during extreme rainfall
events [5]. Yet, it is especially this variability together with the heterogeneous state of the catchment
which determines the final flood response and the corresponding flood risk of an area.
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Fed by observations of changing frequencies of more local and extreme precipitation events in our
present-day climate, the interest into new methods to generate long term synthetic weather series at
a larger spatial scale is sparked. Several papers are published which show the first results of new
temporal re-sampling methods [6], [7], which are proven to shown satisfactory results. However, with
regard to the spatial scale, most methods are limited to a local scale [8] or focus on large areas with
long times of concentration in which most variability originates frommulti-day events. Nevertheless, it is
mostly the basin scale which is relevant with regard to the interrelated and international risk- and finance
dependencies. As such, it becomes important to know what the influence of the spatial component is
on long term precipitation series generation.

Objective

Therefore, this MSc thesis has as goal to look into the effects of including spatial variability explicitly
in generating long term precipitation series. It will do so by developing a method which can be used
to apply spatial permutation over a basin size area. As case study, the Rhine basin is used due to
its central position in Europe and the large economic and social values associated with Rhine basin
floods. The research builds on the vast amount of research done into WGs, temporal re-sampling and
recent initiatives into small-scale spatial re-sampling [8]. The results of the different steps in the devel-
opment processes of the permutation model will be analysed with extreme value analysis, correlation
coefficients and compared to the current extreme value statistics and physical boundaries of the catch-
ment under consideration. Based on the conclusions drawn, the knowledge obtained from the spatial
permutation models can be used as input for the next generation flood risk models.

To be able to reach the goal of this MSc thesis as described above, the following main objective
was formulated:

“To develop amethod to include, improve and widen the knowledge and understanding of the effects
of spatial permutation of historical precipitation data on the generation of precipitation time series for
the Rhine basin.”

In order to reach the main objective, several questions and sub-questions are defined.

1. How can the annual precipitation regimes above the Rhine basin be defined in terms of temporal
and spatial characteristics?

I. What are the temporal and spatial characteristics of a precipitation regime?
II. What are the main factors influencing the characteristics of a precipitation regime?
III. Which macro-scale precipitation regimes can be distinguished in Europe?
IV. What are the macro-scale precipitation regimes covering the Rhine basin?

i. What are the spatial and temporal characteristics of these precipitation regimes?
ii. What are the main factors influencing the characteristics of these precipitation regimes?

2. How does spatial permutation of historical gridded precipitation series influence the extreme pre-
cipitation patterns and statistics in the Rhine basin?

I. How do extreme value statistics and precipitation patterns in the Rhine basin change when
historical gridded precipitation series are shifted in space?

II. What is the effect of basin size on the influence of spatial permutation on the extreme pre-
cipitation patterns and statistics?

III. What is the effect of the duration of the rainfall event on the influence of spatial permutation
on the extreme precipitation patterns and statistics?

IV. What is the effect of shifting direction and distance on the extreme precipitation patterns and
statistics?
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3. How can a semi-random vector approach be used to spatially shift historical gridded precipitation
series over the Rhine basin?

I. Which parameters and methodologies are needed to develop a semi-random vector ap-
proach?

II. What is the sensitivity of the outcomes to the different parameters and the methodology?
III. How do extreme value statistics and precipitation patterns change when historical gridded

precipitation series are shifted in space with a semi-random vector approach?
IV. What is the influence of basin size, direction and duration on the extreme value statistics

and precipitation patterns obtained with a semi-random vector approach?

4. How can historical wind data be used to generate a physically based vector approach which shifts
historical gridded precipitation series over the Rhine basin?

I. How can wind data be used to condition displacement vectors to move historical gridded
precipitation series over the Rhine basin?

II. How well does the shifted precipitation patterns maintain the main temporal and spatial char-
acteristics of the historical precipitation patterns?

III. How do extreme value statistics and precipitation patterns change when historical gridded
precipitation series are shifted in space with wind based displacement vectors?

IV. What is the sensitivity of the outcomes to the assumptions made in the methodology?
V. What is the influence of basin size, direction and aggregation time on the extreme values

statistics and precipitation patterns obtained with a wind based shifting approach?

Report structure

This report starts in Chapter 2 with an overview of the historical developments in the field of WGs.
Based on literature research, the past and current knowledge is summarized in order to position this
research into the correct context. In Chapter 3 an elaboration is given about the ’Materials & Methods’
which are used to answer the different research questions. The data preparation, modelling steps
and the statistical analysis performed are explained in different sub-sections for each type of model.
Subsequently, the results are presented in Chapter 4 including a discussion of the results on model
level. The general discussion is presented in Chapter 5 and focuses on the comparison of the results
of the different models, The report closes with Chapter 6 which summarizes the answers to the sub-
questions and main objective. References are provided at the end of the report as well as additional
information captured in the appendices.
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Literature review

With an estimated damage up to 600 million euros in The Netherlands alone, the recent flood in the
Meuse basin has renewed the interest into flood risk assessment strategies [9]. At the base of all these
strategies lies a large variety of combined hydrological-hydraulic models. A common characteristic is
their dependence on environmental forcing factors of which one of the most important are precipitation
data [10].

In early approaches to determine flood risk frequencies, precipitation statistics were derived with
the help of an event-based approach. Statistical parameters were fit to point rainfall observations and
used to obtain local peak discharge distribution functions [11]. Successive research has extended this
application of stochastic methods to hydrological models which rely on long precipitation series [12].
To estimate the probabilities associated with rare and extreme events, data series with lengths up to
10,000 years are sometimes needed. This requirement is problematic since no historical records of
this length are available.

A solution to this problem can be found in the creation of synthetic weather series by Weather
Generators (WGs). WGs exist in many forms which vary in complexity. The most intuitive WGs are
physically based models which estimate weather variables from physical relationships between one or
multiple known characteristics. An example is the numerical Weather Research and Forecasting (WRF)
model which generates weather series based on the physical relation between radiation, wind speed,
surface thermodynamics and moisture content [13]. The disadvantage of physically based models is
that their computational costs often exceed the available resources for risk modelling. Besides, they
rely on sufficient and well distributed data within the system of interest. In absence of these data, results
can become inaccurate, biased and limited by the imposed initial and boundary conditions [14].

Weather generators based on Artificial Intelligence (AI) partly fill this gap. AI models can deal
with non-linear, uncertain, and irregular data. Artificial Neural Networks (ANN) can deduce patterns in
various ranges of data which can subsequently be used to create new precipitation series. However,
it was also concluded that the type of ANN used, and the temporal scale of interest determine the
outcome of the model [14]. So far, no frameworks are known to determine the most appropriate AI
model for a certain area thereby leaving the choice for an ANN up to the researcher.

Despite the promising development in the field of AIWGs, themost commonmethod to develop long-
term rainfall series up to today is by means of Stochastic Weather Generators (SWGs). SWGs treat
precipitation as a stochastic process which can be described by mathematical parameters. Depending
on the type of SWG, a chosen probability distribution is applied to simulate precipitation occurrence,
spatial distribution and intensity over a predefined time step, e.g. monthly, daily, or sub-daily [12].

4
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The advantage of stochastic methods compared to, for example methods which re-sample historical
data into new weather time series, is the possibility to generate new daily extremes. Serinaldi & Kilsby
(2014) [15] showed that the use of model approaches including fat/heavy tailed distributions created
over dispersion within the models. This allowed for simulation of more extreme events without the
need of including supplementary random fields. Difficulties remain, however, in capturing the spatial-
temporal dynamics of precipitation events, especially over large geographic areas. Nevertheless, a
spatial coherent representation of precipitation is indispensable for well-defined and realistic flood risk
scenarios. Precipitation amounts and occurrence at various locations are correlated. The degree of
correlation depends on distance, but also on the climatology and orography [16]. WGs should capture
the spatial correlation to produce credible weather data.

Within the last decade, several approaches are studied which intend to capture the spatial correla-
tion in the produced weather data. A univariate Markov process for multi-site precipitation occurrence
including spatial correlation was developed by Breinl et al. (2013) [6] but could not produce new precip-
itation fields which accurately reflected the seasonal variability of rainfall. Gaussian probability density
functions were fit to the covariance values of the Danube basin. Applying the continuous distributions
of rainfall amounts and occurrence was used to generate new precipitation patterns. The inclusion of
the covariance values guaranteed that the relation between time and space was maintained while still
generating new random precipitation events. Though the model performed well, a tendency of overes-
timation for precipitation sums and aggregates was observed. Recently, an auto-regressive model in
which precipitation was modelled as a censored latent Gaussian process was applied to Europe. The
spatial correlation was proven to be low for most cells (<0.5). Yet, the correlation structure of highly
correlated locations was underestimated [7].

Applications of WG models to basin scale areas are rare [7]. Nevertheless, this scale becomes
more and more important considering the interconnected disaster financing, insurance regulations and
climate adaptation strategies in the European Union (EU). Single flood-events have been shown to
cover large parts of a basin and thereby affecting multiple countries simultaneously. As such, not only
the local but also the surrounding weather patterns become relevant to determine flood risk [3]. More
insight into the spatial dependency of these basin scale events is necessary to answer questions about
probabilities, the accuracy of events catalogues and impact forecasts, which gained renewed attention
because of the July 2021 Meuse basin flood.

Therefore, the development of a WG, which captures both the temporal and spatial dependency
of extreme rainfall events over a larger area, will be an advancement for a better understanding of
flood risk. The WG should capture the local dynamics of an extreme event, while at the same time
representing the climatology of the wider region within the physically possible boundaries. A valid WG
should be able to reproduce the stochastic structure of observed precipitation series [17]. In this way,
the WG can be applied as input for the future generation of basin wide flood risk assessment models.



3
Materials & Methods

In this chapter, the data andmethodologies used to answer the research questions are explained. Each
sub-chapter concerns a separative research question. A summary of all the steps and their relations
can be seen in the flowchart at the end of this chapter introduction (figure 3.1).

In the first sub-chapter, the structure of the performed literature review is explained. The focus
of this review is to find out which different precipitation regimes exist in Europe and how factors like
wind, pressure regions and topography influence these patterns. A more detailed attention is paid to
precipitation and environmental factors in the Rhine basin, since this is the area of interest of this study.

Sub-chapter two focuses on the development of research model1 1 which is based on fixed spatial
permutation. This model has the goal to determine whether spatial permutation does alter precipitation
occurrence and statistics in different catchments compared to the historically observed data and can
therefore be considered as a sensitivity study. Input data of the model consisted of historical precipi-
tation values on a daily basis. The generated precipitation fields were compared with the historically
observed precipitation by means of the Anderson-Darling test and the Pearson correlation coefficient.
On top, the July 2021 flood was visualized in order to determine the effect of research model 1 on the
total amount of rainfall simulated over the affected areas.

In sub-chapter three, the data and methodologies behind the more complex research model 2 are
explained. The purpose of research model 2 is to see if semi-random state-space correlated vectors
can be used to shift precipitation in a credible way. Artificial temporal, spatial and boundary conditions
were determined to create the vectors. By varying the conditions, several iterations were made to
determine the sensitivity of the final precipitation fields to the initial assumptions made. The data and
statistical tests to analyse the difference between the modelled and observed precipitation are similar
to research model 1, but extended with an analysis on the methodology itself. The sensitivity of the
model to the chosen initial vector field, the direction of the methodology and the weighting factors
used was examined. With the obtained information conclusions were drawn about the influence of the
assumptions on the final vector and precipitation fields created.

In the last sub-chapter, the focus is put on model 3 which is the final and most complex model of this
research. The motivation behind model 3 is to investigate whether it is possible to move precipitation
with vectors which are conditioned based on historical wind speeds and directions observed over the
Rhine basin. Therefore, in addition to the historical precipitation data, daily mean wind speeds in north-
south (v) and east-west (u) direction and historical wind angles were used.

1The indication ’research model’ is used in this report to indicate that the permutations applied in the model are based on
methodological choices instead of physical observed quantities, e.g. wind, which can be used to condition displacement vectors.
The goal of each research model is to determine the working principles, sensitivity, challenges and advantages which the taken
modelling method entails.

6
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Conditioning displacement vectors for precipitation based on historical wind date was considered as
an appropriate next step to shift precipitation more objectively, since the natural movement of precipita-
tion is to a large extent determined by wind directions and speeds [18] [19].The analysis of the results
consisted of two steps. First, the temporal and spatial correlation, and the mean difference between
the modelled precipitation fields and the historical fields were compared on a monthly and seasonal
basis and visualised. Next, the same statistical procedure as described for research models 1 and 2
was performed on the newly created precipitation values.

A final important note to make with regard to the methodology behind each model, is that the tem-
poral order of the historical gridded precipitation series is maintained in all cases. As such, changes
observed in the resulting statistics, analysis and comparisons can be solely attributed to spatial permu-
tation. Generated time series which exceeded that duration of the historical time series consisted of
multiple repetitions of the historical time series. No changes in the underlying order of the precipitation
events were made.
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3.1. Literature review

The aim of the literature research was to get more insights into the basic mechanisms of precipitation
formation and movement in Europe in order to answer the sub-questions of research question one.
Google Scholar was used as main search engine. No restrictions on publication datum were applied
since early research into generally accepted atmospheric phenomena was deemed to be of importance
for the overall understanding. Search terms varied based on the sub-question under consideration.

In total, 22 papers were selected with publication dates between 1999 and 2021. From each paper,
the abstract, introduction and conclusion were read. Main points were summarized and if necessary
some further reading into the data andmethodology was done. The acquired information was combined
into a literature review which can be found in section 4.1.

3.2. Research model 1: fixed spatial permutation

Model 1 is a research model based on fixed spatial permutation. The model has been used to answer
the sub-questions set for research question two. The main goal of the research model was to deter-
mine if spatial permutation of precipitation influences extreme rainfall statistics compared to historical
observed statistics, and what the effect of catchment size and the duration of the rainfall is on the
obtained results.

3.2.1. Methodology research model 1

Research model 1 is based on fixed spatial permutation. Fixed spatial permutation was in this case
defined as: ’one uni-directional permutation which is fixed for the whole record length of the historical
observations’. Permutations were chosen to be uniform and independent to isolate the effect of shifting
on the statistics from other potentially determining variables, like the shape of the low pressure area
and topography.

The following equations described how fixed spatial shifting, as defined above, is applied to ERA5
reanalysis precipitation data.

P (t, x, y) = s(Pr (t, x, y) , P r′ (t, x, y)) (3.1)

Pr′ (t, x, y) = Pr (t, x+Dx (l,d) , y +Dy (l,d)) (3.2)

In which, P is the modelled precipitation value [mm/day], t is the time [days], x is the longitude
coordinate [degrees], y the latitude coordinate [degrees], s refers to a selection function, Pr is the
historical precipitation value [mm/day], Pr′ is the shifted precipitation value [mm/day] and Dx and Dy

are the permutation functions with which the historical coordinates were perturbed in both x (longitude)
and y (latitude) direction, respectively. Bold parameters indicate scalars which are varied for different
iterations in the modelling process.

For research model 1, the permutation functions Dx and Dy are based on the parameters l and
d. They determined the permutation length [degrees] and direction, respectively, over which histori-
cal precipitation was shifted. For both length and distance, different values were examined. Values
considered for length l were one, two, three, five and ten pixels, which is equivalent to 0.25, 0.5, 0.75,
1.25 and 2.5 [degrees], respectively. The analysed values of length l were chosen such that the effect
of small (one pixel), medium (five pixels) and large (ten pixels) permutations could be compared with
each other. Also, it allowed for analysing the differences a shift of only one pixel made by comparing
the precipitation values resulting from either one, two or three pixels with each other.
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For the permutation direction d each half-wind direction of the wind rose, i.e. north, north-east, east,
south-east etc. was examined. The modelled precipitation series consisted of all values corresponding
to a fixed value of l and the eight possible values of d. As such five data sets with a length of 378 years,
i.e. eight times 42 years of shifted data plus one time 42 years of the historical data, were created for
further analysis. A visual representation of the permutation methodology with l = 0.25 [degrees], i.e.
one pixel, is shown in figure 3.2.

Figure 3.2: Schematic representation of the permutation mechanism employed in research model 1. Blue striped cells indicate
cells included in the new shifted time series. The red star is the location of interest. The black solid line shows the initial grid

boundary, while the blue striped line indicate the shifted grid boundary.

Based on the five data sets generated, analysis of the model results was performed. The one, two
and three pixels shifted data sets were used for the creation of the cumulative distribution function (cdf)
and fitted to a Generalized Extreme Value (GEV) distribution. The five and ten pixels shifted data sets
were used to study the behaviour of the model when limits were increased to larger values. All data
sets were analysed by means of statistical tests (see section 3.2.3).

3.2.2. Data research model 1

Precipitation data

Total precipitation [m] from 1979 to 2021 was extracted from ERA5 reanalysis data set from the climate
data store of the Copernicus climate change service website [20]. The spatial coverage of the initial data
set was -0.25 to 16.25 degrees longitude and 43.75 to 55.25 degrees latitude, roughly corresponding to
the Rhine basin. The resolutions of the initial data set were 0.25◦x 0.25◦for the horizontal component
and 37 pressure levels for the vertical component which cover pressure levels from 1,000 to 1 hPa.
However, to handle data more efficiently, the vertical component of the data set was aggregated to
one mean value in the vertical. In addition, the temporal resolution was up-sampled to daily values
since this time step was deemed suitable for capturing the main precipitation dynamics over the Rhine
basin while at the same time eased the further data handling. The final data set contained daily total
precipitation values expressed in [mm/day].

Catchment and basin shapes

To determine the effect of catchment size on the results of precipitation permutation, shapes of Euro-
pean countries and hydro basins were used to clip data to different areas of interest. The countries
shape file was obtained from the Natural Earth website [21]. Subsequently, a new shape file was cre-
ated containing all countries on the European continent except Russia, since this country will not be
part of the study area. A third shapefile was created only containing the countries covering the Rhine
basin.
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Figure 3.3: The Rhine basin and its sub-catchments

For the hydro basins, the shapes of the Rhine basin and its 23 sub-catchments were downloaded
from the Food and Agriculture Organisation of the United Nations (FAO) [22]. Subsequently, the co-
ordinate reference system (crs) of the shapes was set to EPSG:32632 - WGS 84/UTM zone 32N to
be able to calculate the total area of the different catchments in the local reference coordinate system.
For further analysis, three catchments at different locations and with different sizes were selected and
saved as separate shape files. The catchments chosen were: the Ijssel, the Moselle (merging the
shapes 1 and 2 together, see figure 3.3) and the whole Rhine basin.

3.2.3. Analysis research model 1

Quantification of statistical similarity between historical and modelled precipitation values

Quantification of the statistical similarity between the historical and modelled precipitation values was
done with the Anderson-Darling (AD) test. The AD-test is a statistical test which can be used to deter-
mine whether a certain sample is drawn from a defined probability distribution. AD-test statistics can
be either positive or negative. The lower the statistics, the more likely it is that two samples come from
the same distribution,

Application of the AD-test to the precipitation values obtained from research model 1 was done
with two purposes. First, the test was used to compare the cumulative distribution function (cdf) of the
observed precipitation data with cdf of the shifted data. Low AD-test statistics indicated a high likelihood
that two precipitation regimes came from the same climatology.
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High values indicated that precipitation permutation led to a new climatology in the region. This
could indicate a violation of the physical limits and possibly the need to define a boundary to the length
l over which precipitation can reasonably be shifted.

The second purpose of using the AD-test was to quantify the goodness of fit of the Generalized
Extreme (GEV) distribution to the historical and shifted data. The AD-test adds more value to the tails
of the distribution and is therefore a suitable test to use for extreme events. Low AD-values indicated a
good agreement between the fitted GEV-distribution and data. By performing the AD-test on the GEV
distributions of different catchments and aggregation times, it was examined how the statistics of the
shifted values differed from the historical values. Comparing the shifted data between catchments and
aggregation times was used to see the influence of size and aggregation time on the obtained results.

For both cases, the AD test statistics was implemented with the scipy.stats.anderson_ksamp() func-
tion [23]. Critical values of the AD-test can be found in table 3.1. Note that α values above 0.25% will
result in negative AD-test statistics.

Table 3.1: Critical values for the Anderson-Darling test including significance [%] with which the null-hypothesis: ’The samples
come from the same distribution’, can be rejected.

Critical values of the Anderson-Darling test

α [-] 0.25 0.1 0.05 0.025 0.001 0.0005 0.0001

Test statistics [-] 0.325 1.226 1.961 2.718 3.752 4.592 6.546

Correlation between historical and shifted precipitation maxima under different circumstances

The Pearson correlation coefficient was used to quantify the correlation between the historical and
shifted annual maxima for different catchments, durations and shifting distances l. A high correlation
between maxima indicated that maxima did not differ a lot. By applying the Pearson correlation co-
efficient to different combinations of catchments, durations and shifting distances, it was examined to
what extent these factors influence the generation of maxima which differ compare to the historical data.
Besides, the correlation coefficient was employed to show over which distance rainfall events correlate
and if direction and basin size influenced the correlation. Outcomes of this process helped to get a first
feeling about the distances over which precipitation could be shifted. To automate the calculation of
the correlation coefficient, the scipy.stats.pearsonr() was used [24].

3.3. Research model 2: random based vector permutation

Model 2 is a research model which moved precipitation based on generated semi-random vector fields.
This research model was built to answer the sub-questions asked under research question three. The
main purpose of the research model was to determine whether artificial vector fields can be used
to generate new precipitation patterns. In addition, the research model was used to determine the
sensitivity of a vector based approach to assumptions made in the methodology about the initial and
boundary conditions. It was expected that a semi-random vector based approach would move rainfall
more credible compared to a fixed permutation approach, but that the final results would highly depend
on the conditions set. Therefore, knowledge about the controlling parameters of the random vector field
was essential to determine whether and how this approach could be used to generate vector fields on
a physical basis in model 3. An overview of the codes used for research model 2 can be found in
appendix I.1.
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3.3.1. Methodology research model 2

The working mechanism of research model 2 is based on the same methodology as presented for re-
search model 1 (see section 3.2.1). However, instead of using fixed permutations based on a chosen
length l and direction d, the permutations equations Dx and Dy of research model 2 were altered to
generate state-space correlated vector components. The generation of these components was con-
trolled by the spatial and temporal averaged vector components of the grid cells neighbouring the cell
of interest. In addition a range r [degrees] was defined to set the variability between the spatial aver-
aged component and the newly selected component. A maximum lengthm [degrees] was used to set
the upper and lower limits of the vector components. The resulting modelling equations are as follows:

P (t, x, y) = s(Pr (t, x, y) , P r′ (t, x, y)) (3.3)

Pr′ (t, x, y) = Pr (t, x+Dx (r,m) , y +Dy (r,m)) (3.4)

Dx (r,m) = U(max (p̄ (t, x)− r,−m) ,min (p̄ (t, x) + r,m)) (3.5)

Dy (r,m) = U(max (q̄ (t, y)− r,−m) ,min (q̄ (t, y) + r,m)) (3.6)

In which, U is an uniform distribution which limits are determined by r and m, p̄ is the spatially
and temporally averaged horizontal vector component [degrees] and q̄ is the spatially and temporally
averaged vertical vector component [degrees]. Bold parameters indicate scalars which are varied over
different iterations in the modelling process.

To set up the modelling process, an initial field was generated. This initial field started with a semi-
random horizontal and vertical permutation in the north-west corner of the grid. These permutations
were determined by using equations 3.5 and 3.6, respectively, with a value of zero for both p̄ and
q̄. Subsequently, the top row and first column of the grid where filled with permutations based on
equations 3.5 and 3.6 with the permutations of the preceding row and column cell set as values for p̄
and q̄. Next, the other grid cells were filled based on the same equations, but p̄ and q̄ were determined
by the spatially averaged value of the permutations of the three cells north and the cell west of the cell
of interest. This was done since the permutations south and east of the cell of interest were not known
yet.

To derive the spatially averaged value for p̄ and q̄, fixed weights were used. These weights were
based on the rationale that neighboring cells in parallel with the direction of the permutation are more
influential for the new permutation. This arbitrary assumption was made based on the empirical obser-
vation that wind vectors close to each other exhibit a similar direction and speed in most cases. The
resulting weights for p̄ were: 1, 1.25, 1 and 1.5, for the three cells north and the cell west (see figure
3.4), respectively. For q̄ weights of 1, 1.5, 1 and 1.25, for the cells north and west were used, respec-
tively.For the last column of the initial field, no cell in the north-east corner of the cell of interest existed.
Therefore, the value of p̄ and q̄ was solely based on the permutations of the cells neighboring the cell
of interest in the north-west corner, the north and the west.

After the initial field was filled, subsequent permutations were determined based on spatial-temporal
averaged values for p̄ and q̄. An arbitrary weights vector, based on the same empirical observation as
explained above, was assigned to calculate the average value of the neighboring permutations in the
previous time step. The weights assigned were: [0.75, 1, 0.75], [1.25, 1.5, 1.25], [0.75, 1, 0.75], for
the cell north-west till south-east, respectively in case of p̄ (see figure 3.4). For q̄, the weights slightly
differed because the direction of q̄ is 180◦shifted compared to the p̄. The weighting vector used for the
q̄ was therefore: [0.75, 1.25, 0.75], [1, 1.5, 1], [0.75, 1.25, 0.75]. As a result, permutations in line or
parallel with the direction of the component of interest had more influence on the final value of p̄ and q̄.
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Figure 3.4: Example of the calculation procedure executed in order to generate the new Dx (r,m) for at time t = t in a
centrally located cell. The blue striped cell is the cell of interest. Values shown in white cells are values calculated according to

the same procedure but at an earlier point in the process. The grid is filled from north-west to south-east.

The final values of p̄ and q̄ used for Dx and Dy in equations 3.5 and 3.6 were determined by taking
the mean value over the average permutation of the previous time step and the current time step. The
new permutation was drawn randomly from the uniform distribution U limited by the parameters r and
m. The full procedure as described above and which can be seen in figure 3.4 was repeated for each
cell for a time series of 42 years to ease the comparison with the historical data series.

Table 3.2: The different parameter combinations tested for the semi-random vector based approach of research model 2.
Range r [degrees] defined the variation around either p̄ and q̄. The maximum absolute length was determined by m [degrees].

Parameter

m [degrees] r [degrees]

Vector T1 1.25 0.25

Vector T2 1.25 0.75

Vector T3 2.50 0.25

In addition, different combinations of the controlling variables r andm of the permutation equations
Dx and Dy were tested. This resulted in three different vector types T1, T2, and T3 with distinct
combinations of r and m (see table 3.2). The values for m were chosen such that the different vector
types could be compared to the five and ten pixels shifted data of research model 1.
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For each vector type eight series of 42 years of permutation fields were generated. These permu-
tation fields were used to generate new coordinate fields. Each grid cell contained a set of latitude and
longitude coordinates which referred to the new location from which the shifted precipitation value Pr′

was selected. This value was obtained by means of linear regression and was imposed on the original
coordinates of the grid cell resulting in a new precipitation field filled with the modelled precipitation
values P for each cell. An example of the result with r = 0.75 [degrees] and m = 1.25 [degrees] can
be seen in figure 3.5. The observed loss of spatial correlation in the modelled precipitation field (mid-
dle figure) can be related to the high value of r which allows for much temporal and spatial variation
between neighboring permutations and thereby a loss of spatial coherence. As such, the difference
between historical Pr and modelled P precipitation values became larger as well (right figure).

Figure 3.5: Visual representation of the outcome of research model 2 for vector type T2 at February 14, 1997 in the Rhine
basin. From left to right: historical precipitation, modelled precipitation and difference between the two patterns.

3.3.2. Analysis research model 2

Quantifying similarity between historical and modelled precipitation values

The Anderson-Darling test and the Pearson correlation coefficient were used to quantify the extent to
which the different vector types, i.e. T1, T2 and T3, were able to generate new extremes compared to
the historical observed precipitation values Pr. In addition, the influence of aggregation time and basin
size on the generated precipitation extremes was examined for each vector type in the same way as
described for research model 1.

Sensitivity of the model to the used methodology

The goal of the sensitivity analyses performed on research model 2 was to determine the influence of
the choices made in the methodology on the resulting semi-random permutation fields and the final
precipitation values. In total, three different features which are described in subsection 3.3.1 were
tested. These features were:

1. The initial permutation field
2. The weighting factors
3. The direction of permutation generation in the current time step

During the sensitivity analysis only the feature tested was changed while all other parameters and
calculation methods remained as described in subsection 3.3.1. The base precipitation values were
taken from the historical data of the year 2021 for all sensitivity analyses. The range r and length m
were fixed for all analyses at a value of r = 0.25 and m = 1.25. An overview of the used code can be
found in appendix I.2.

The initial permutation field

Three different variants of initial permutation fields were tested to determine the influence of the
initial field on the generated precipitation means of the different basins. Variants of initial permutation
fields tested were:
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• Ten varying initial permutation fields produced with the methodology described in subsection
3.3.1.

• One fixed initial permutation field.
• An initial permutation field filled with zeros.

Precipitation means were compared at times 1, 2, 4, 7 and 14 days, 1 and 6 months, and 1 year after
the start of the simulation. At each time, the coefficient of variation (cv) was calculated by dividing the
standard deviation of the ten iterations by their mean. With the obtained values it could be concluded
whether or not the initial field influenced the precipitation means generated and at which moment in
time this effect was diminished.

Information about the influence of the initial permutation field on the generated precipitation values
could be used to determine whether the model had a spin up time. If so, the results would indicate
a time at which the results could be considered independent of the initial field. Besides, the variant
which showed the least influence on the final precipitation values could be considered as the most
suitable initial field for further development of vector based permutation models according the proposed
methodology.

The weighting factors

Weights were used to generate the new value for p̄ and q̄ based on past and current surrounding
values as shown in figure 3.4. As such, the weights determined the final values of the permutations
which create the semi-random vector fields. To test the sensitivity of the model, different combinations
of weights were tested. The combination tested are shown in figure 3.6 in which the parallel and
perpendicular matrices are depicted for p̄. For q̄ these matrices turn 90◦in agreement with the changing
direction from east-west (p̄) to north-south (q̄). The initial permutation fields used for all iterations were
similar.

For each vector generated, the maximum annual precipitation for different aggregation times was
calculated to determine whether different weights influence precipitation extremes. If extremes were
shown to be influenced by the weights assigned without a physical explanation, it could be concluded
that weights should be chosen as neutral as possible, i.e. all similar. In addition, the average latitude
(row) and longitude (column) correlation between the producedDx (t, x) andDy (t, y)was computed for
several distances to see how weights altered the dependency between permutations. In the ideal case,
latitude and longitude correlation would be similar and only vary with the randomness of the model.
If weights appeared to force certain differences in correlation, it indicated that in further development
weights should be omitted, be chosen with a physically substantiated reasoning or set all similar.

The direction of vector generation in the current time step

The calculation of Dx (t, x) and Dy (t, y) was executed from left, e.g. the most north-west grid
cell, to right, e.g. the most south-east grid cell. As such, the new permutation depended more on
the three known permutations at its north side and at its west boundary. This methodological choice
could potentially create a high latitude correlation and directional bias in the permutation fields. To
test whether this was the case, two different variants of permutations were created. The first variant
started from a fixed initial permutation field but only the past permutations were used to calculate the
new permutations. This eliminated the potential bias introduced by using the three cells north and cell
at the west boundary in the current time step. The second variant started from an initial permutation
field filled with zeros and only the past permutations were used to calculate the new permutations. This
prevented both the potential bias of the current time step and the bias introduced in the procedure of
creating the initial field to influence the results. Comparison of the latitude and longitude correlation
between the two variants, and the correlation values obtained from the original methodology were used
to determine whether a directional bias was present in the generated permutation fields.
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Figure 3.6: Weighting vectors used for the sensitivity analysis of the convolution matrices. Parallel and perpendicular matrices
are shown for p̄. The matrices for the q̄ are opposite since the parallel and perpendicular direction changes from east-west to

north-south.

If a directional bias originating from the methodology was proven to be present, a change in the
methodology should be applied. Subsequent models should not show any directional preference which
cannot be explained by natural phenomena. Other options should then be explored such as iterating
two times over a vector field or using only the surrounding past values in the calculations process.

Extent of variation

To determine the extent to which research model 2 was able to generate clear variation in extremes,
1,000 times one year of data was generated based on themethodology as described in subsection 3.3.1
and with different combinations of weights and initial field as tested in the sensitivity analysis. From
the historical data, the date of the maximum precipitation in the Ijssel, Moselle and Rhine catchments
were derived. These dates were used to select the maxima on the same date from each iteration. A
histogram was made with the 1,000 extracted values to visualize the extent to which the model was
able to generate variation compared to the historical observed maxima.

3.4. Model 3: wind based vector permutation

Model 3 is a wind vector based model. The goal of this model was to determine if precipitation per-
mutation can be done with displacement vectors based on observed historical wind data. Analyses of
the model and its results was done to answer the sub-questions of research question four. The moti-
vation to use wind data as starting point was that wind direction and speed is an important factor for
precipitation movement. By using the observed wind vectors it was possible to include both local speed
and directional limits to the displacement vectors based on a physically substantiated reasoning. The
model framework of model 3 was comparable with research model 2, but the lessons learned resulted
in some methodological changes which are explained in the subsections below. An overview of the
codes used for model 3 can be found in appendix II.
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3.4.1. Methodology model 3

The methodology of model 3 is an extension of the methodology presented for research model 2. Yet,
instead of semi-random state-space correlated vectors, permutations are imposed with displacement
vectors. Displacement vectors are vectors which are conditioned based on the historical wind vector
field V⃗h and a selected proxy vector V⃗p. To select V⃗p, a subset of V⃗h was used which fulfilled the required
temporal and spatial characteristics. The resulting displacement vector was decomposed in a horizontal
permutation Dx

(
V⃗p

)
[degrees] and a vertical permutation Dy

(
V⃗p

)
[degrees]. The permutations were

used to select the location from which the modelled precipitation value P was selected. The equations
belonging to this process can be seen below.

P (t, x, y) = s(Pr (t, x, y) , P r′ (t, x, y)) (3.7)

Pr′ (t, x, y) = Pr
(
t, x+Dx

(
V⃗p

)
, y +Dy

(
V⃗p

))
(3.8)

V⃗p = s(V⃗h

(
tm, V⃗hc (t, x, y) ,±f

)
) (3.9)

In which tm [month] is the month corresponding with the time t [day] of the historical wind vector of
a specific grid cell, V⃗hc (t, x, y) is a historical wind vector of a specific grid cell at time = t, longitude = x
and latitude = y and f [-] is a fraction of the monthly standard deviation of the wind angle and speed of
V⃗hc (t, x, y). Bold parameters indicate scalars which are varied over different iterations in the modelling
process.

To select a proxy vector V⃗p based on the historical wind vector V⃗hc (t, x, y) of one particular cell, a
subset of the historical vector field V⃗h was made based on two requirements:

I. Each vector in the subset must have been observed in the month tm to which the time t of the
historical wind vector V⃗hc (t, x, y) belonged.

II. The vector length and angle of each selected vector should fall within a subspace around the
length and angle of V⃗hc (t, x, y) which limits are defined by the fraction f of the monthly standard
deviation of the wind angle and speed of V⃗hc (t, x, y).

The temporal component of these requirements was used to enable a seasonally dependent con-
ditioning of the displacement vectors. The fraction f was the only scalar in model 3 and was varied
between 0.05 and 0.5 [-]. As such, the extent of the subset from which V⃗p could be chosen was varied.
In figure 3.7 an example of a subset of historical wind vectors with f = 0.05 selected based on the
historical wind vector V⃗hc (t = 10, x = 11.5, y = 46.75) observed in the Italian city Vahm at January 11th,
1980, is shown. The figure indicates that for this day and location, 17 historical wind vectors fulfill the
requirements as explained above.

During the modelling process, similar subsets were generated for each location and time step. From
each subset, one vector was randomly selected as V⃗p. The final displacement vector was constructed
with a length based on ∆V⃗ = V⃗p − V⃗hc (t, x, y). The angle of the displacement vector was similar to the
angle of V⃗p. This process can be seen in figure 3.8 steps one to four.

Next, V⃗p was broken up into a horizontal Dx

(
V⃗p

)
and vertical Dy

(
V⃗p

)
permutation by means of

equations 3.10 and 3.11. Since the resulting permutations were still in [m/s], their values were integrated
over the temporal resolution of the historical data set, i.e. one day, and divided by the number of meters
in one degree latitude/longitude. Projection on the earth’s surface was assimilated to the tangent plane
at the grid cell center.

Dx

(
V⃗p

)
= −|∆V⃗ | ∗ sin(∠V⃗p) (3.10)

Dy

(
V⃗p

)
= −|∆V⃗ | ∗ cos(∠V⃗p) (3.11)
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Figure 3.7: Visual representation of a subset of historical wind vectors selected (green dots) based for the historical wind
vector V⃗hc (t, x, y) (black square) observed at 1980-11-01 in Vahrn, Bozen, Italy [longitude = 11.5, latitude = 46.75].

By adding permutations to the original coordinates of the grid cell, a new position was obtained.
From this position, the precipitation value was derived by means of linear regression of daily precip-
itation values from the historical data set. This process was similar to research model 2. The new
precipitation value Pr′ was plotted on the original coordinates of the cell center. A visualisation of the
process can be seen in figure 3.8 steps five and six.

Figure 3.8: Visual representation of the steps taken to derive the new displacement vector (blue) based on the historical
V⃗hc (t, x, y) (black) and proxy vector V⃗p (green).

The process described above was repeated at the same historical day for all grid cells. As such,
a new coordinate field based on the displacement vectors conditioned with the historical wind data
was created. When the full grid was generated, the next day of the historical wind vector field V⃗h was
used as starting point. The process was repeated till the desired length of the time series was reached.
When the desired length was longer than the amount of days in the historical data set, historical data
was reused. The random selection of V⃗p within the limits set by f and V⃗hc (t, x, y) ensured that the
resulting coordinate fields and thereby precipitation patterns were not repetitive.
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3.4.2. Data model 3

Precipitation data

For the development of model 3, the same precipitation data as described for research models 1 and
2 were used. Not additional changes were made.

Wind data

Historical wind vectors (u and v components of wind in [m/s]) were obtained from raw hourly data from
1979 to 2021 from the climate data store of the Copernicus climate change service website [20]. Data
was retrieved at a pressure level of 850 hPa which is in agreement with the methodology of Huidong
et.al. [18] which studied the relation between regional-scale circulations and the observed clouds in
Ny-Ålesund, Norway. They showed that wind direction had a strong correlation with the presence of
clouds above Norway. At the 850 hPa pressure level this correlation was clearly visible. Assuming that
these clouds are in most cases also responsible for the observed precipitation, a height of 850 hPa can
be considered suitable for wind vector retrieval to steer precipitation movement.

The historical u and v components were converted to wind speeds, i.e. vector lengths, and angles,
i.e. vector directions with the method suggested by the European Centre for Medium-Range Weather
Forecasts (ECMWF) in their ERA5 documentation [25]. The results were stored in a file for later use.

3.4.3. Analysis model 3

Quantifying similarity and variance of historical and modelled precipitation values

The Anderson-Darling test and the Pearson correlation coefficient were used to quantify the extent to
which model 3 was able to generate new extremes compared to the historical observed values. In
addition, the influence of duration, basin and fraction f on the generated extremes was examined. The
methodology behind the AD-test and the Pearson correlation coefficient was similar as described in
the methodology sections of research models 1 and 2. The procedure behind the variation histograms
was the same as well though the amount of repetitions was reduced to 100 to speed up the calculation
process.

Spatial correlation of precipitation

The spatial correlation coefficient was used to validate to what extent the correlation observed in the
historical precipitation fields was maintained in the generated precipitation fields. The mean spatial
correlation of each grid cell to its 5x5 surrounding grid cells was calculated for each of the four seasons.
The months belonging to each season were in agreement with the Gregorian calendar and defined for
the Northern hemisphere. The correlation coefficient was based on the whole data series corresponding
to one season. For each grid cell in the 5x5 grid, a Pearson correlation coefficient with the center grid
cell was calculated. The final spatial correlation value of the center grid cell was set to be the average
of the correlation coefficients with all 24 surrounding cells. No spatial correlation coefficients for the two
boundary rows and columns of the study area were calculated. These values could introduce unwanted
noise in the spatial correlation field since they required assumptions about the unknown data outside
the study area. Differences between correlation values were visualised by subtracting vector correlation
values from historical correlation values for each grid cell for each season. The results were plotted
and analysed visually.
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Temporal autocorrelation of precipitation

The temporal autocorrelation coefficient was calculated to examine how well model 3 was able to main-
tain the historical autocorrelation between precipitation values for each grid cell. Values for the autocor-
relation were determined for each season, in which the months belonging to a season are as defined in
subsection 3.4.3. Lags of one, three, five and seven days were tested. At the end of each season, the
time lags resulted in the introduction of new values which originally belonged to another season. How-
ever, since human introduced seasonal boundaries are no strict natural boundaries for abrupt changes
in weather patterns, this was not seen as an issue. Shifts at the end of the data series resulted in seven
NaN values which were omitted from the calculation of the final autocorrelation coefficient.



4
The results and model discussion

In this chapter, the results of the research are presented and discussed. Each sub-chapter deals with
another research question which is connected to a distinct research approach as defined in chapter 3.
The first sub-chapter presents a summary of the literature review which had as main goal to define the
different precipitation patterns in Europe, their influencing factors and to give a more detailed descrip-
tion about the precipitation regime in the Rhine basin. The second sub-chapter deals with the results
of research model 1 to answer the question whether spatial permutation did influence extreme rainfall
statistics and how basin size and aggregation time influenced the results. The third sub-chapter dis-
cusses the results of research model 2 which was used to determine whether a vector-based approach
could be used to shift precipitation and which variables and steps were most determining for the final
results. The final sub-chapter of this chapter presents the results of model 3. The results were used
to answer the sub-questions of research question four which were centered around the question if his-
torical wind data could be used to spatially shift precipitation without violating the main characteristics
observed in the historical precipitation series.

4.1. Literature review of European precipitation regimes

4.1.1. Characteristics of a precipitation regime

A precipitation regime is defined as the assembly of ’characteristics of the seasonal distribution of
precipitation at a particular place’ [26]. The characteristics of a regime can be roughly subdivided in
two main groups: precipitation variability and precipitation amounts, like annual or seasonal means
and maxima.

Precipitation variability

Precipitation variability can be split in temporal and spatial variability. Temporal variability refers to the
variability in time at a specific location and can be analysed at different resolutions. At a low temporal
resolution, precipitation variability is often analysed on a seasonal scale. For example, in the famous
Koppen-Geiger climate classification, the presence or absence of dry and wet summers or winters
is used as one of the three major classification parameters to define the climatology of a region [27].
However, temporal variability can also be analysed at a high resolution if the goal is to define very
local precipitation regimes. Lana et.al. [28] used daily rainfall data to analyse the time variability of
intense rainfall in Catalonia to determine strategies to effectively target soil erosion and water resources
problems. They concluded that temporal variability, as defined by the monthly standard deviation and
average rainfall rates, differed between 6 and 24 [mm/day] over the 75 measuring locations resulting
in a very irregular regime over Catalonia.

22
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On the other hand, spatial variability refers to the variability in space at a given moment in time
and can be analysed at scales varying from local to regional and even global. Spatial variability is
often examined by clustering of areas based on certain variables of interest, like daily and monthly
total precipitation and geographic and atmospheric patterns [28]. Spatial variability can be different
depending on the variable and location under study. Emmanual et.al. [29] showed that the decorrelation
distance of precipitation varied depending on the type of precipitation. Storms were characterized by
a dual structure of small intense clusters with low spatial correlation located within areas with a higher
spatial correlation. Light rain periods on the other hand showed very high spatial correlation values,
which reduced when showers became more intense.

Precipitation amounts

The most common precipitation amounts which are used to classify a precipitation regimes are the
maximum and mean precipitation averaged over a long historical time series. Values can be calculated
at different temporal and spatial resolutions. Time scales vary between hourly to annual values while
spatial scales range from point locations to continental regions. Changes in precipitation amounts
can be used to detect cycles in precipitation patterns or to study the effect of climate change [30]. In
addition, the amounts are often used as input to calculate the temporal and spatial variability. In the
Koppen-Geiger system seasonal mean precipitation is used as input to determine presence or absence
of rainfall periods [27]. Monthly mean rainfall was used to define the distinct spatial and temporal rainfall
regimes in Catalonia [28], while maximum hourly precipitation was used to define diurnal cycles in the
UK [31].

4.1.2. Main factors influencing precipitation regimes

The variability and precipitation amounts which define a certain precipitation pattern are determined
by several environmental factors. These factors differ per location and the interplay between them
determines the physical boundaries of the precipitation pattern present. While multiple environmental
factors and their complex relationships have been shown to influence meso-scale precipitation patterns,
three major components can be distinguished which are discussed in the below subsections.

The subsections are divided as follows. In the first subsection, atmospheric circulation patterns
with a focus on the North Atlantic Oscillation (NAO) are presented. The second subsection describes
the influence of topography on rainfall. The effect of orography is central in this subsection. The final
subsection deals with the effects of climate change and spatial dependency associated with it.

Atmospheric circulation patterns

The movement of precipitation fields is largely determined by major atmospheric circulation patterns.
An atmospheric circulation pattern can be defined as a large and consistent movement of air driven by
thermal energy and its associated pressure differences. For the North Atlantic-European (NAE) sector,
to which the area of Rhine basin belongs, the North Atlantic Oscillation (NAO) is the most important
circulation pattern. This oscillation is driven by the difference between two distinct pressure regions.
The first region is the ’sub-polar low’ which is located at the high latitudes near Greenland and Iceland
and is characterized by a lower air pressure compared to its surroundings. The second region is located
in the central North Atlantic Ocean. This region is characterized by a high pressure field and is therefore
referred to as the ’subtropical high’ [32].

The strength of the NAO is not constant in time and can be indicated by the NAO index. A positive
NAO index means that both the sub-polar low and the subtropical high are stronger than normal. A
stronger Atlantic jet stream occurs, shifting the average storm track more northward. Consequently, the
storminess, amount of precipitation and temperature increases in the North of Europe. This correlates
with less precipitation and colder temperatures over the Mediterranean area. A negative NAO index
displays a reversed pattern, with warm, wet and stormy conditions across the Mediterranean and cold
and dry weather patterns over the Scandinavian regions [32].
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The NAO index is also correlated with wind speed. Positive NAO indices create strong westerlies
over the north of Europe with an average wind speed of 5 [m/s]. Over the Iberian Peninsula, wind
speeds drop till average values of approximately 2 [m/s]. Negative NAO indices indicate an opposite
wind pattern with lower wind speeds in the North of Europe and higher wind speeds over the Mediter-
ranean area [33]. As such, the NAO can be considered as an important binding and steering factor
between climate variables like wind speed and direction, heat andmoisture transport, and the frequency
and strength of storms [19].

However, besides the NAO, other atmospheric circulations do influence the occurrence or absence
of precipitation. Wibig et.al [34] discussed the contribution of the Scandinavian (Sc), East Atlantic (EA),
East European (EE) and Central European (CE) pattern to the observed precipitation amounts during
winter between 1951-1990 in Europe. He concluded that the variance in the amount of rainfall was
mainly explained by the NAO (>23%), but that also the Scandinavian and Central European pattern
explained over 17 and 15% of the total variance, respectively.

Important to note is that the influence of each pattern depends on the region of interest. Great
Britain and Ireland, Scandinavia, Western Europe, Central and East Europe, the Iberian Peninsula and
the Mediterranean were all shown to exhibit different dependencies on the most prevailing circulation
patterns [34]. These dependencies are also shown in the different mean annual rainfall amounts in
Europe. Great Britain and Ireland, The Alps, the Scandinavian mountains and Western Europe contain
regions with the largest annual amounts up to 1,500 [mm/year]. Regions with the smallest amounts
are observed in Eastern Europe and the east side of the Iberian Peninsula with values between 250 -
500 [mm/year] [35].

In addition, Alvarez et.al [35] showed that the Pearson correlation coefficient can be used to cluster
areas in Europe exhibiting a comparable rain series dynamics. By calculating the correlation coefficient
for different spatial scales, a threshold was chosen which marked a clear change in correlation between
regions. At a value slightly higher than 0.2, ten distinct regions were identified. Most of these regions
were also shown to be influenced by a common atmospheric circulation pattern, whereas differences
in the prevailing atmospheric pattern were the main drivers for the distinct rainfall anomalies observed.

Topography

It is well known that the presence of distinct topographic elements has a large influence on precipitation
[36]. Especially, mountain ranges are known to affect wind patterns since they alter air flows and
respond differently to solar radiation compared to their lower lying surroundings. By forcing air to rise
or fall they promote either condensation or evaporation creating distinct areas with higher or lower
amounts of precipitation with regard to neighbouring regions. The shape, extent and orientation of the
mountain range defines the final precipitation pattern, which is often very local [37].

This local dependency originates from the balanced interplay between microphysics, (thermo) dy-
namics and the geometry of the terrain. Together they determine the growth and fallout of precipitation.
By studying this interplay in more detail, Houze et.al. [36] defined twelve different types of mecha-
nisms behind precipitation patterns which were induced by topography (see figure 4.1). These types
are not mutually exclusive but can be observed simultaneously in a mountain area or can alter based
on seasonality. For example, Anders et.al [37] showed that in the Alps both rain shadow (figure 4.1 (a))
and blocking (figure 4.1 (i)) are the dominant types behind the observed precipitation pattern. At the
Scottish highlands, rain shadow is considered to be the leading mechanisms behind the precipitation
differences observed [38]. However, the relation between a rainfall pattern and the mechanisms be-
hind it is often non-linear and locally dependent. This makes the comparison of mountainous regions
among each other and the definition of general precipitation responses difficult [36].
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Figure 4.1: Main mechanisms by which mountains influence precipitation (Fig. 3 in Houze (2012)).

Comparing the spatial patterns in mountainous regions with plains can be done more easily. For
example, Touma et.al [39] showed that the length scales over which precipitation events correlate in
mountainous areas are relatively constant between summer and winter. This reflects the dominant influ-
ence of the non-seasonal topographic structure on the occurrence of rainfall. The correlation distances
were found to be short varying from 150 to 200 [km]. In contrast, at plains a clear distinction between
correlation lengths is seen over the seasons. The largest distances occur over winter up to 350 [km]
and the smallest lengths in summer, i.e. 200 [km]. This seasonal difference is most likely caused by
the characteristic storm type of each season. During summer, small scale extreme convective storms
are more common, while winter rainfall is characterised by long-duration, large scale stratiform fronts
[40].

The differences in spatial relevant scales for precipitation patterns between mountainous and flat
areas makes it necessary to consider them carefully when defining distinct analysis regions. In Europe,
the main mountain regions were precipitation is distinct at small scale caused by the mechanisms
shown in figure 4.1 are the Alps, the mountain chain consisting of the Pyrenees and the Cantabrian
mountains and the Scandinavian mountain range. Increasing the resolution in these areas show clear
wind and lee-side differences, up to 250 [mm/year] for some locations [38]. As such, spatial shifting at
these locations should take place over smaller distances to prevent violation of the clear physical limits
which define the distinct precipitation patterns at locations which are in relative proximity of each other.

A second clear topographic element which creates distinct local precipitation patterns are coastlines.
Due to the presence of the ocean-land boundary, precipitation is enhanced in the first 150 [km] of the
land surface. Especially during the winter period, the first 50 [km] of land surface is likely to receive
more rain compared to the hinterland. This difference is less pronounced in summer. On average, the
amount of rainfall reduces with 14% in the first 100 [km] from the coast, with another 8% between 100
and 150 [km] [41].

Not only the presence of large water bodies, but also the type of land cover does influence the
spatial pattern of precipitation. The type of land cover determines the radiation and aerodynamic char-
acteristics of the land surface, which influences the local water cycle. Trusilova et.al. [42] modelled the
influence of increased urbanisation with a 30-[km] resolution and concluded that rural areas downwind
of large cities receive less precipitation, but that small urban patches increase downwind precipitation.
Overall difference were higher in summer but did depend on the location of the area in either East,
Central or West Europe. Absolute difference were all found to be <1 [mm/day] which leads to the con-
clusion that the influence of urban areas are relevant for modelling microclimates but are less essential
for mesoscale extremes.
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A similar conclusion was drawn for the effect of de- and afforestation in Europe with regard to
extreme precipitation. Deforestation leads to a reduction of precipitation events in the 95th and 99th
percentile. Less vegetation leads to a decrease in evaporation causing a dryer climate. Afforestation
creates the opposite effect. Changes are most visible at a local level (±50 [km]) and reduce when
the spatial scale coarsens. In addition, deforestation was shown to take place mainly in eastern and
northern Europe, while afforestation was concentrated in central Europe. When this trend continues,
more extreme events can therefore be expected in the central part of Europe based on this parameter
[43].

Climate change

Changing temperatures as result of climate change are undoubtedly related to changes in precipitation.
The physics behind this relation is captured in the Clausius–Clapeyron equation, which expresses the
change in saturation vapor pressure when temperature increases or decreases. Though, general global
warming does not mean that changes in precipitation are similar everywhere. In Europe, increasing
temperatures and shifting circulation patterns result in a predominantly increasing trend in annual pre-
cipitation in northern Europe, while a decrease is observed in the southern part. The changes are most
pronounced during summer with increases of +20 [mm/decade] in Scandinavia and reductions of -10
[mm/decade] in the Mediterranean and the Iberian Peninsula [44].

When looking at a more regional scale, a more patchy pattern can be seen with regard to the
occurrence of extreme events. In winter, mean and extreme precipitation is estimated to increase with
a spatial pattern reflecting the orography of Europe. Increases on the north-west side of the main
mountain ranges are relative small compared to the rest of the mountain range. Nevertheless, due to
the high amount of rainfall in these areas, the absolute changes are large [45].

Aalbers et.al. [45] also concluded that the response to climate change for mean and extreme precip-
itation in summer was not similar. For the mean precipitation, they found the same drying gradient from
North to South as the European Environmental Agency (EEA) did in her research [44] with exceptions
in the high elevation areas like the Scottish highlands, Scandinavian mountains and the Alps. In these
areas, increased mean precipitation is observed despite drying in the surrounding areas. Extreme pre-
cipitation was shown to increase over the whole domain especially for storms with a return period >20
years. The pattern of increase was very patchy and did not resembled the orography. The probability
density functions confirmed this observation by showing a clear shift to higher values and broadening
of the distribution for longer return periods. This indicates that an increase in spatial variability is likely
to be observed for extreme precipitation events.

The influence of orography on the response of precipitation to climate change was also researched
by Moreno et.al. [46]. They showed that the strongest decrease in total precipitation is observed in the
Pyrenees in areas with an altitude between 500 and 800 [m.a.s.l]. Overall, precipitation decreased on
the Southern side of the Pyrenees while an increase was seen at the Northern side. Locations closer
to either the Atlantic or Mediterranean sea showed an increase in precipitation amount compared to a
decrease more in the middle of the mountain range. Seasonality was also shown to be important with
overall drying in the summer and a spatial variable increase or decrease in winter months.

Seasonality is a parameter which appears to be vary important with regards to climate change. Pa-
pers generally agree on the changes in precipitation over the winter season, with drying in the Southern
part of Europe and wetting in the northern part [44] [46] [47]. Predictions about summer precipitation are
more complex and highly depending on the initial situation, region and forcingmethod [47]. In general, a
clear division is found between Scandinavia, Central Europe, Western Europe and the Mediterranean
area. Each area was shown to have different mean precipitation values, changes in return periods,
daily precipitation values and dry and wet spell duration making local research, testing and analysis of
observations and (modelling) results indispensable.
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4.1.3. Major precipitation regimes in Europe

Precipitation regimes depend on the location. Their variability and characteristic average, minimum
andmaximum amounts are determined by factors like atmospheric circulation patterns, topography and
climate change. These factors and their interaction vary depending on the area of interest. Knowing
these factors and the characteristics of an area can be valuable for modelling since it gives a first
indication of the importance of several variables in the area. Therefore, a clustering based on the
information retrieved from the literature review presented was done in order to determine the main
precipitation regimes above Europe.

Below, the results of the clustering are presented. In total seven distinct precipitation regions were
defined based on their climatic, topographic and atmospheric characteristics. Subsection two focuses
on the two major precipitation patterns covering the Rhine basin. For both patterns, their main charac-
teristics are discussed. Values in this section are derived from the ERA5 wind and precipitation data
which is described in subsections 3.2.2 and 3.4.2.

The seven clustered precipitation regions in Europe

The factors defining a precipitation regime are non linear phenomena with no strict boundaries. As such,
Europe can be divided in different combinations of precipitation regions depending on the importance
given to the several influencing factors and the final goal of the clustering. For this research, it was
chosen to cluster regions based on the characteristics and influencing factors presented in the sections
above. In this way, the knowledge of each region can be used in a later modelling stage to validate the
effects of spatial shifting by examining whether or not the model violates the precipitation characteristics
and factors as defined for the region.

The Koppen-Geiger climate classification was used as starting point for the clustering since the level
two precipitation category is based on the main characteristics of precipitation as defined in subsection
4.1.1. When neglecting the third category based on temperature, four different climate zones were
distinguished:

1. The area covering Scandinavia and Eastern Europe with a cold, no dry season climate.
2. The area covering Great-Britain and Western Europe with a temperate, no dry season climate
3. The area covering the Mediterranean area excluding the Iberian Peninsula, having a temperate,

dry summer climate.
4. The Iberian Peninsula having a mix of climates between arid and temperate with and without dry

seasons.

Precipitation regimes in each region can be assumed approximately similar with regard to their
major characteristics like seasonality and mode of precipitation, e.g. rain or snow, short and intense or
long and moderate [27].

An extra level of detail was added to the division based on the Koppen-Geiger classification by con-
sidering the most important atmospheric circulation patterns. As shown by Wibig et.al. [34], Alvarez
et.al. [35] and Lindsey et.al. [32], the impact of the NAO and other circulation patterns differs over
Europe. In general, a strong north-south gradient is observed for the NAO while other atmospheric pat-
terns act more locally. As such, Great-Britain and Ireland can be assumed as a separate area relying
more on the NAO circulation compared to the rest of Western Europe which is highly influenced by the
East-Atlantic and East-European circulations. A similar reasoning was made to split Scandinavia from
Eastern Europe. Whereas Scandinavia relies most heavily on the NAO and the Scandinavian circu-
lation, Eastern Europe depends mainly on the Scandinavian and Central-Europe circulation patterns
[34].
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Figure 4.2: The 7 analysis regions which will be used in this study. 1) Scandinavia, 2) Great-Britain, 3) Western Europe, 4)
Central Europe, 5) The Alps, 6) Iberian Peninsula, 7) Mediterranean. Shaded, red-contoured areas indicate main mountainous

areas in which precipitation does differ compared to the surroundings. Elevation map retrieved from [48]

On top, also topography, most dominantly the orography of a region, was indicated to be an impor-
tant factor especially for regional precipitation patterns. In figure 4.2 the main mountain areas, which
were shown to exhibiting distinct characteristics, are indicated by their red contours. However, with
regard to the purpose of the use of spatial perturbation for flood risk impact models, it was chosen to
only separate The Alps as distinct area from its surroundings. The Alps are centered in an area with
high economic value and lay at the origins of many important river basins in Western Europe. On the
contrary, the economic value of the areas influenced by the Scandinavia mountains is relatively low,
with some exceptions in the most southern part of Norway. For the Pyrenees, its influence on the pre-
cipitation dynamics at the larger Iberian Peninsula is deemed to be low compared to the several climatic
regions in which the peninsula can be subdivided. On top, as result of its location at the boundary of
the analysis region it is expected that a larger uncertainty of the spatial dynamics in this region will not
hamper the spatial permutation in the more economically important regions at the coastlines of Spain
and Portugal.
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Last, a bird’s eye view was given concerning the impact of climate change. Most papers seemed
to confirm a clear north-south gradient with regard to the annual amount of precipitation. In addition,
it was mentioned that mountainous areas often react distinct to climate change compared to their sur-
roundings. Regional differences in precipitation were shown to be largely dependent on the orientation
and location of the area in the mountain range. In addition, also seasonality was proven to control a
regions response to climate change. However, all these factors are for their largest part captured in the
characteristics of climatic zones, atmospheric circulation patterns and topography. As a result, climate
change itself is not seen as a parameter which creates the need to define additional areas on top of
the seven final regions which are shown in figure 4.2.

Precipitation regions in the Rhine basin

Figure 4.2 shows that the Rhine basin is covered by the Western Europe and the Alps precipitation
regions. The distinguishing factor between the two regions is the orography with high and steep moun-
tains in the Alpine region, while the rest of Western Europe is characterized by relative flat to hilly
terrain.

The effects of the Alps were seen in all of the characteristics of the precipitation regions which
were defined over the Rhine basin. Figure 4.3 shows the mean monthly precipitation values. Highest
mean precipitation values were seen in the Alps during the summer months. Warm moist air is lifted
by the mechanisms shown in figure 4.1 and cooling at higher altitudes results in cloud formation and
subsequent precipitation. Maximum mean values were found to be around 14 [mm/day], while minima
in the Northern part of the basin were around 1 [mm/day]. Patterns of maximum monthly precipitation
and standard deviation show similar differences between the Alps and the surrounding area, though
maxima are found at the edges of the Alpine region instead of at the center. Figures can be seen in
appendix III, figures III.1 and III.2.

Wind speed and direction was also different when comparing the two regions. Mean wind speeds
were as low as 1 [m/s] in the Alps for all seasons, while at the Northern part of the Rhine basin mean
wind speeds increased up to 14 [m/s] during winter (see figure 4.4). The most common wind direction
observed was South-West, which is in agreement with the prevalence of Westerlies in Western-Europe
as result of the NAO. Varying directions at the grid cell spatial resolution were observed around the Alps
(see appendix III, figure III.5). Minimum wind speeds were observed in the center of the Alpine region
while maximum speeds up to 40 [m/s] were seen in the most North-Western part of the Rhine basin.
Figures can be seen in appendix III, figures III.4 and III.3, respectively.
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Figure 4.3: Mean historical daily precipitation values [mm/day] observed over the Rhine basin. Data is retrieved from the
ERA5 reanalysis data set from 1980-2021. Values shown are average values over each month.
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Figure 4.4: Mean historical daily wind speed values [m/s] observed over the Rhine basin. Data is retrieved from the ERA5
reanalysis data set from 1980-2021. Values shown are average values over each month.
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Summary literature review
• Rainfall regimes are characterized by their temporal and spatial variability and their character-
istic amounts, like mean and maximum precipitation.

• Rainfall regimes are influenced by many environmental and physical factors. The most impor-
tant are:

– Atmospheric circulation patterns.
– Orography and land surface.
– Climate change

• Seven different rainfall regimes were defined above Europe based on grouping of rainfall char-
acteristics and influencing factors.

• The Rhine basin is covered by two distinct rainfall regimes: The Alpine regime and the Western
Europe regime.
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4.2. Results and discussion: fixed spatial permutation

The objective of research model 1 was to research if spatial permutation influences extreme precipi-
tation values and how the results depend on catchment size, permutation direction and permutation
distance. To answer these questions, the extreme value distribution and the cumulative distribution
function (cdf) of the generated data was compared with the historical distributions. In addition, the ef-
fect of the model on the observed precipitation during the last day of the July 2021 flood was visualised.

In the following subsections, the results of research model 1 are presented and discussed. The
first section focuses on the extreme value distribution. Differences are quantified with the Anderson-
Darling (AD) test statistics (see subsection 3.2.3). In the second subsection the cumulative distribution
function (cdf) is examined by means of the AD-test and the Pearson correlation coefficient. On top, the
coefficient is used to test the relation between shifting distances and the difference between historical
and shifted precipitation extremes. The final subsection visualizes the working method of the model by
showing its effect on the precipitation event of July 15th, 2021.

4.2.1. Extreme value distribution

The mean observed daily precipitation for the Rhine, Moselle and Ijssel basins were tested against
five different statistical distributions by means of the Anderson-Darling (AD) test. The results showed
that the observed data was most likely distributed according to a Generalized Extreme Value (GEV)
distribution, with an average AD-test statistic of -1.11. The Gumbel distribution was shown to be the
second best fit with an AD-test statistic of -0.86.

Fitting the GEV distribution to the observed and one, two and three pixels shifted data revealed
some general trends. First, the GEV fit to the shifted data resulted in higher AD-statistics in all cases
independent of the basin and aggregation time under consideration (see figure 4.5). It indicated that the
GEV fit to the shifted data is worse compared to the historical data. This can be explained by the fact that
the Generalized Extreme Value (GEV) distribution is based on the assumption that the underlying data
is independent and identically distributed (IID). For historical precipitation maxima, this assumption is
met. Therefore, the GEV statistics is the most widespread used distribution for the analysis of extreme
rainfall events and the calculation of return periods exceeding the length of the observed data records
[49]. However, the assumption of independence was not met for the shifted data since the introduction
of a new extreme event was highly correlated with the presence of an extreme in the historical data
series. This dependency was most severe for large basins and short shifting distances since under
these circumstances the influence of shifting is minimal compared to the historical observations. This
led to a repetition of historical extreme events in the modelled data series. As such, independence
cannot be guaranteed shown by the higher Anderson-Darling (AD) test statistics for all shifted data
sets.

Higher AD-values were also seen when extreme outliers were present in the historical data. By
shifting the precipitation fields 360◦around, these outliers were replicated in a slightly different way.
While the introduction of these new extremes was the ultimate goal of the model, these outliers could
not be well captured by the parameters of the GEV distribution. The higher sensitivity of the AD-test
to the tails of the distribution caused the statistics to increase quickly [50]. This was most obviously
seen for the smaller Ijssel basin in which an extreme historical event was replicated eight times (see
figure 4.7b). On top, the the introduction of pixels with new extremes resulted quickly in new high mean
values because the relative contribution of each pixel to the basin’s mean precipitation was large.
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(a) The Rhine basin

(b) The Ijssel basin

Figure 4.5: The Generalised Extreme Value (GEV) distribution for annual daily precipitation maxima of the Rhine (top) and
Ijssel (bottom) basin. Shaded areas show the 95% confidence intervals. The red dots represent the observed maxima. Shifted

maxima are not shown. The table shows the Anderson-Darling (AD) test statistics between the historical and shifted
precipitation data for different shifting distances, i.e. Shift 1 = 1 pixel, Shift 2 = 2 pixels and Shift 3 = 3 pixels.



4.2. Results and discussion: fixed spatial permutation 35

The second observation made was that the uncertainty interval of the GEV distribution of the shifted
data reduced with a factor three compared to the observed data (see figure 4.5). The cause for this
observation could be found in the increased sample size from 42 years of historical data to 378 years of
shifted data, which resulted in more information about the underlying data [51]. On top, the dependency
between the historical and shifted data caused the change in standard deviation of the shifted data set to
be minimal compared to the historical variability. As such, the calculated 5- and 95-percentile intervals
reduced.

Moreover, it was shown that the shifted data felt within the uncertainty boundaries of the historical
data for each shifting distance. This indicated that the introduced events could have happen in the
region of interest by chance as well. Thereby, it proved that shifts of up to three pixels did not cause
the unwanted introduction of rainfall events from other climate regimes which was in agreement with
the extent of the Koppen-Geiger climate regions identified in Europe [27]. Nevertheless, the uncer-
tainty intervals could not be used to determine whether the introduction of new extremes at a higher
spatial resolution, i.e. grid cells, did violate any physical limits. This could be especially the case in
mountainous areas in which spatial variability is large [36]. Therefore, a more spatially differentiating
permutation approach will be needed to take this local limits into account and having a more realistic
permutation mechanism over varying locations.

Next, it was seen that the relative position of the uncertainty intervals of the shifted data compared
to the bounds of the observed data differed, but the direction was not consistent for either basins or
aggregation time. The overlap between the uncertainty bounds for larger basins was more coherent,
whereas for the IJssel basins the bounds did vary most. Moreover, an increase in absolute value of the
uncertainty intervals was seen when basin size decreased (see figure 4.5).

This overall dependency of the results to the basin size and aggregation time observed for the
uncertainty intervals was also seen in the values of the AD-test statistics. AD-test statistics for all
shifted data was higher compared to the historical data but the mutual values of the shifted data varied.
For the Rhine basin, the shifted data was still well fitted with a GEV distribution. The maximum AD-test
statistic observed was 0.42. For the Moselle basin, AD-test statistics increased since the shifted data
introduced new extremes in the data set. These extremes did act as outliers in the data set and as
result, the AD value for the GEV fit increased. The same observation was made for the Ijssel basin, in
which even more extreme events were introduced by shifting the data. The maximum AD-test statistic
was found to be 6.12. However, removing the six most extreme events from the shifted data set resulted
in a decrease of the AD-test statistic to 4.91,

Last, increasing the rainfall aggregation time from one day to one week caused a reduction in the
AD-test statistics for all basins. For longer time spans, i.e. weekly, variability in the historical data set
was shown to be less and also the newly introduced extremes deviated less compared to the historical
observed values shown by the lower AD-test statistics. This difference in variability was also observed
by Zhang et.al [52] who showed that the already existing difference of variability between time scales
will be amplified by the effects of climate change. Short duration extremes will likely become more
extreme and more local [44]. This change in frequency is valuable for the modelling of rainfall return
periods in a certain area. Spatial permutation could therefore be used as tool to introduce these short
and very local events in the time series of a location which historical data did not contain these extremes
yet.

4.2.2. Cumulative distribution function

The cumulative distribution function (cdf) of the precipitation extremes was analysed with two tests.
First, the Anderson-Darling (AD) test was used to test the similarity between the historical and shifted
data. Next, the Pearson correlation coefficient was used to determine the extent to which historical and
shifted maxima were related.
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The AD-test statistics showed that the similarity between the observed and shifted data related to
basin size. Smaller basins had higher absolute differences in AD-test statistics for each aggregation
time compared to larger basins such as the Rhine basin. In addition, smaller basins showed higher AD-
test statistics for increasing shifting distances which indicated a decrease in similarity to the observed
data when shifting distance increased. The cause for this observation is the relative sensitivity of small
basins to permutations. Even permutations over short distances will introduce relatively many new
precipitation values in a small basin compared to a larger basin in which only a minority of the area is
exposed to new precipitation values. As such, the mean precipitation over a small basin will change
more compared to a larger basin, resulting in bigger differences in AD-test statistics.

This reasoning was confirmed by the finding that the AD-test statistics of the larger Rhine basin
showed an irregular trend over shifting distance and aggregation time with varying AD-test statis-
tics. However, the absolute differences between the AD-test statistics for each aggregation time were
smaller compared to the Moselle and Ijssel basins. For all basins, the direction of change of the AD
values was similar for all shifting distances when considering one aggregation time, but no trend in
AD-test statistics was visible over time (see figure 4.6).

(a) Rhine (b) Moselle

(c) IJssel

Figure 4.6: The Anderson-Darling (AD) test statistics to compare the historical and shifted cumulative distribution functions
(cdfs) of the annual precipitation maxima for different basins, aggregation times and permutation distances. The lower the
AD-test statistics, the more similar the cdfs were. One pixel is similar to a shift of ±27.75 [km] or 0.25 [degrees lat/lon].

The Pearson correlation coefficients varied between 0.92 and 0.99, indicating a clear dependency
between the observed and shifted maxima for all basins. The differences between Pearson correlation
coefficients for one aggregation time became smaller when the aggregation time increased. Though,
the largest correlation coefficients did not always coincide with the longest duration. The smallest
correlation coefficients were seen for the two days aggregation time in all basins. On top, the lowest
absolute values of the correlation coefficients were seen for the smallest basins, which agreed with the
earlier observation that even small permutation distances introduce relatively many new precipitation
values into a small basin. As such, the differences between the historical and shifted precipitation
values will become more evident even for small permutation distances. This is reflected in the faster
decrease of the correlation coefficient observed for small basins.

Between the permutation distances and the correlation values the opposite relation was seen. When
shifting distance increased, the correlation values decreased. The decrease was largest for the Ijssel
basin, with a correlation value of 0.987 for one pixel shifted daily data and a value of 0.61 for 10 pixels
shifted daily data. For the Rhine basin, the same shifts on daily data resulted in correlation values of
0.997 and 0.80, for one and 10 pixels shifts, respectively.
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(a) The Rhine basin

(b) The Ijssel basin

Figure 4.7: The influence of permutation distance and direction on the correlation coefficient between the observed total daily
precipitation and shifted total daily precipitation of the Rhine basin (top) and Ijssel basin (bottom). Only the main wind-rose

translation directions are shown.
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With regard to the permutation direction, a strong relation with the correlation coefficient was seen
for the Rhine basin. More extreme events were introduced with a northward shift while less extreme
events were seen when the shifting direction was opposite (see figure 4.7a). The same trend was
present in the Moselle basin. A possible explanation could be found in the orography of the two basin.
Basist et.al. [53] showed that mountainous areas were strongly related to more extreme precipita-
tion events. As such, northward permutations could introduce extreme events from The Alps and its
foothills into the shifted data series whereas southward shifts did not. On the other hand, the Ijssel
basin, characterised by a uniform orography, did not show a clear north-south trend. This resulted in a
more random introduction of extremes and less influence of permutation directions on the final result.
However, permutation distance became more important for the results of the Ijssel basin. The most
extreme event in the historical data (50.90 [mm/day]) was re-sampled in all directions for a one pixel
shift but the event disappeared when the permutation distance increased till five or 10 pixels. At these
distances, other extremes were introduced which were not observed in the historical data (see figure
4.7b).

4.2.3. Influence on the July 2021 flood

To visualise the working mechanism of research model 1 and its effect on extreme precipitation events,
the most extreme precipitation event in the Moselle catchment had been selected as example. This
event took place on July 15th, 2021, which was the last day of the low pressure area called ’Bernt’.
Bernt caused major flooding in parts of Germany, Belgium and The Netherlands and was the direct
cause for the questions raised about the spatial component of extreme rainfall.

The results of figure 4.8 proofed that spatial permutation had a large effect on the observed mean
precipitation value over a catchment. Both shifting distances and directions influenced the final mean
value observed. For this specific event, southward shifting resulted in a larger part of the precipitation
event to be located above the catchment. Larger permutation distances on the other hand led either to
larger values when the depression was more centered above the catchment or lower when the center
of the depression was shifted away from or over the catchment. Therefore, multi-directional shifting can
be considered necessary to create reliable new precipitation time series in which biased introduction
of new extreme events is prevented. This is especially important for basins which consisted of distinct
precipitation regimes causing a strong directional dependency of the results as was shown for the Rhine
basin.
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Figure 4.8: Visual representation of the effect of research model 1 on the modelled precipitation in the Moselle catchment on
July 15th, 2021. Shifts are shown for the north and south direction over a distance of one, three, five and 10 pixels.
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Summary research model 1
• The Generalized Extreme Value (GEV) distributions and the cumulative distribution functions
(cdfs) of the historical observed precipitation extremes are altered by spatial permutation indi-
cated by the changing Anderson-Darling (AD) test statistics.

• Spatial permutation created most variation in extremes for large distances, small basin sizes
and short aggregation times.

• Longer aggregation times and larger basins resulted in higher correlation values between his-
torical and shifted precipitation series. Shorter aggregation times and smaller basins resulted
in lower correlation values.

• The magnitude of extreme precipitation events introduced by spatial permutation depends on
the direction in which precipitation is shifted. This effect is most clear for areas which cover
different rainfall regimes, i.e. the Rhine basin, and when analysing individual events, i.e. the
July 2021 floods.
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4.3. Results and discussion: vector based permutation

The fixed based permutation approach of research model 1 showed that spatial permutation influenced
the precipitation values observed in a basin. However, the fixed method was rigid and did not allow for
local modification while aggregation time, basin size and shifting direction were shown to influence the
final results. As such, the need to develop amore differentiable approach emerged in precipitation could
by shifted without violating the varying temporal and spatial characteristics of precipitation patterns.

For that reason, research model 2 was developed with as main objective to research how a semi-
random vector based approach could be developed and used to shift precipitation over the area of
interest. It was tested to what extent this approach could generate new extremes, what the influence
of basin size and aggregation time was on the obtain results and last, how the different model steps,
assumptions and variables did affect the outcomes of the model.

Subsection one of this section presents the generalized extreme value (GEV) distributions of re-
search model 2 and the differences between the distributions for several combinations of basins and
aggregation times. In the next subsection, the cumulative distribution functions (cdfs) are shown. In the
third subsection, the displacement vector fields are analyzed and the influence of different parameters
on the vectors fields is discussed. The fourth subsection shows the effect of the model on the July 2021
event in the Moselle basin. Subsequently, the sensitivity of the methodology to several features and
steps taken is examined. Features discussed are the initial vector field, the weighting factors and the
directional component of the methodology. Besides the results, each subsection provides a discussion
of the meaning, consequences and implications of the findings.

4.3.1. Generalized extreme value distribution

The AD-test statistics of the GEV showed a strong relation with basin size. Average AD-test statis-
tics became higher when basin size decreased for all vector types (see table 4.12 for the parameter
combination per vector type). The range of the average AD-test statistics varied between -0.36 and
-1.09. Highest scores pointed towards the presence of a larger variation in precipitation extremes, while
the lowest score indicate a more even distribution which could be better fitted by the GEV distribution.
Though, since all AD-test statistics were still well below zero, it indicated that all vector-shifted data
were still likely to be distributed according a GEV distribution.

In addition, 56% of the combinations of aggregation time, basin and vector type led to lower average
AD-test statistics compared to the historical data. This observation can be explained by splitting the
vector data into the individual repetitions for each vector type (see figure 4.9). Repetitions with a small
range between minima and maxima were shown to be fitted better by a GEV distribution resulting in
low AD-test statistics. When the variation in a repetition became larger, the GEV fit became worse
resulting in higher AD-test statistics.

This reasoning is supported by the observed decrease in AD-test statistics of the different basins
when aggregation time increased. Longer aggregation times resulted in smaller relative ranges be-
tween precipitation minima and maxima for all repetitions of each vector type. This directly translated
into lower AD-test statics. However, two days rainfall events had the highest AD-test statistics for all
basins and vector types which was caused by the largest variation observed in these repetitions.

Considering individual vectors, the maximum and minimum AD-test statistics found were 0.55 and
-1.20, respectively. No relation between AD-test statistics and vector type was observed. Yet, it must
be noticed that a better or worse fit of the GEV distribution does not provide a conclusion about the
usefulness of the data. Even the repetitions which had the worst fit to a GEV distribution can be useful
for risk analysis. Especially these data sets will be likely to include more extreme events and can be
employed for modelling the increased variability and extremity observed in our current day climate as
a result of climate change.
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Figure 4.9: The annual precipitation maxima of the Moselle basin for all vector types and aggregation times for the eight
repetitions separately. Black crosses show the historical observed values. Distinct coloured open circles represent

independent repetitions of the semi random-based vector shifted maxima.

With regard to the uncertainty intervals, it was seen that for 72% of the tested combinations between
aggregation time, basin and vector type, the shifted-data had a smaller average maximum uncertainty
interval compared to the historical data. This was interesting since data sets had the same length as
the historical data, i.e. 42 years. A larger sample size could therefore not be an explanation for the
reduced uncertainty as was the case for research model 1. Carlson [54] suggested that a better fit of the
underlying distribution could lead to smaller confidence intervals since residuals are and the standard
deviation is smaller. However, the results did not show a relation between AD-test statistics and the
absolute magnitude of the corresponding confidence intervals. As such, this explanation did not hold.

A reason which can be explanatory for the average decrease in uncertainty intervals can be seen
when considering the results for the Moselle basin. In the historical data, the year of 2021 had a very
distinct maximum with a value more than 10 [mm/day] higher than the second highest value (see figure
4.9). As a result, the uncertainty interval of the observed data was large. Random re-sampling and
the use of linear regression to determine the new grid cell precipitation value led in most cases to a
decrease of the largest annual maxima. However, vector repetition three of type T3 sampled an even
higher maxima. A corresponding larger uncertainty interval was indeed observed.
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Larger uncertainty intervals were also seen for longer aggregation times for all basins because the
absolute range of observed extremes was larger. The lowest average values for each aggregation
time were found for the Rhine basin, while the uncertainty for the Moselle was the highest, except for
daily data. In view of the vector types, a similar pattern was observed with lowest values for the Rhine
basin and highest values for the Moselle, except for vector type T1 (|m| = 1.25 [degrees], r = 0.25
[degrees]). Though, when neglecting the extreme 2021 annual maximum, again a clear influence of
catchment size was seen in the uncertainty intervals. Smaller catchments had more variable maxima
leading to larger uncertainty intervals and higher AD-test statistics for the GEV fit.

4.3.2. Cumulative distribution function

The cdf curves of the observed and vector-shifted data were compared with the AD-test. The average
AD-test statistic for each combination of vector type and aggregation time varied between 1.02 and
-1.08. In total, 88.9% of the AD-values were below the α = 0.25 critical value for the AD-test, indicat-
ing a high likelihood that the vector shifted precipitation data came from the same distribution as the
historical data. Nevertheless, higher AD-test statistics were a clear indicator for the presence of more
variability and were mainly seen for small basins. This confirmed that especially for small basins, spa-
tial permutations resulted in the introduction of more new precipitation events which made these time
series interesting for risk analysis.

When the average AD-test statistic over all aggregation times for each vector type and basin was
calculated, the effects of limit m became visible. Changing the limit from |1.25| [degrees] to |2.5|
[degrees] resulted in higher AD-test statistics for all basins which was confirmed by a clear visible
change in cdf-curves. The larger the basin, the lower the AD-test statistics. This indicated that new
events introduced by spatial permutation differed less compared to the historical observed extremes
when basin size increased.

A remarkable exception on this general relation between basin size and AD-test statistics was seen
in the results of one of the iterations for vector type T3 (see figure 4.10). For this particular vector,
highest AD-test statistics were seen for the Rhine basin, meaning that the difference between the
vector shifted and historical events was large. Examination of the underlying vector field revealed that
the mean Dx (r,m) and Dy (r,m)-permutations were 1.28 [degrees] and 1.06 [degrees], respectively,
which was more than 50% higher compared to the other iterations of vector type T3. As such, an almost
unidirectional re-sampling of precipitation from the northeast direction took place.

This translation direction could directly be compared with a southward shift in research model 1. For
this shifting direction, introduced extremes were shown to be less intense compared to the historical
data in case of the Rhine basin. A cause for this observation was found in the presence of the Alpine
region. Basist et.al. [53] showed that mountainous areas are a source of more extreme events. The
biased sampling from the northeast direction causes a replacement of the historical values observed
in the Alpine region, with less extreme events observed in the more northeast located areas. This
resulted in a decrease of the cdf-curve compared to the historical data and as consequence a large
AD-test statistic reflecting the difference between the historical and shifted cdf-curves.

Varying the range (r) did not result in large changes in the AD-test statistics and order. Highest
values were still observed for the Ijssel basin and lowest for the Rhine basin. The influence of the
range on the AD-test statistics was largest for the Moselle basin, while the values for the Ijssel and
Rhine hardly changed.

The average correlation between the historical and vector-shifted data showed the largest corre-
lation values for the Rhine basin and the smallest values for the Ijssel, independent of vector type
(see figure 4.11). This underlined again that smaller basins are more influenced by spatial permutation
compared to larger basins. Yet, differences between the Ijssel and the Moselle were small. Corre-
lation increased when the aggregation time of the precipitation events became longer, since longer
aggregation time averaged out the most extreme daily precipitation values.
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Figure 4.10: The cumulative distribution function (cdf) of annual maximum precipitation values in the Rhine basin of the
historical data (black solid line) and the most extreme iteration of vector type T3 (m=2.50 [degrees], r=0.25 [degrees]) data
(black dotted line). Corresponding AD-test statistics are: 2.44, 3.91, 5.53 and 7.90 for daily, 2-days, 4-days and weekly data,

respectively.

For the average correlation for each vector type, the highest correlation values were observed for
vector type T2. Increasing the range while maintaining the same value ofm led to a higher correlation
between the observed and shifted precipitation data (see figure 4.11). Intuitively, this higher correlation
seems unexpected when considering the displacement vectors and resulting precipitation fields. As
can be seen in figure 4.13b a high value for r resulted in a fragmented precipitation field which did not
resemble to original coherent historical precipitation pattern. However, the fragmentation prevented
the model to shift low pressure areas in or out an area of interest as a whole. As such, the mean
precipitation modelled over an area was almost similar to the historical mean, while the precipitation
pattern from which the mean was derived was a lot different.

The lowest correlation values were observed for vector type T3 with the highest value of m of all
vector types, i.e. m = |2.5| [degrees]. As a result of this higher limit, the average displacement vectors
became longer. Longer displacement vectors meant that precipitation was shifted over larger distances
which created larger changes in precipitation patterns compared to short displacement vectors which
kept the historical precipitation approximately at the same location. As such, the larger differences
caused by longer displacement vectors were reflected in lower correlation values.

This phenomenon can be compared with the negative relation between correlation and shifting
distances in research model 1. Yet, the obtained correlation coefficients for research model 2 were
still higher compared to the five and 10 pixels shifted correlation values of research model 1. This
can be explained by the fact that the pixel shifted approach ensured that precipitation was shifted the
exact amount of indicated pixels, i.e. 1.25 [degrees] (five pixels) or 2.5 [degrees] (10 pixels), in all cases.
While theoretically these limits could also be reached with the semi-random vector approach in research
model 2, the average length of vector type T3, with limitm = |2.5| [degrees], was only 0.4 [degrees] and
0.2 [degrees] for the Dx (r,m) and Dy (r,m)-permutations, respectively. These lower values resulted
in smaller shifting distances of the precipitation fields with as consequence higher correlation values
between historical and vector shifted precipitation data.
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(a) Rhine

(b) Moselle

(c) Ijssel

Figure 4.11: The correlation plots and average correlation values for daily precipitation data. Each plot shows the results of a
different vector type. From left to right: T1, T2 and T3 (for parameter values see table 3.2). Observed precipitation is shown as

a straight red line. Notice that vertical axis values differ per plot.
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The knowledge obtained about the influence of the parameters m and r can be translated to a
more physical meaning by relating them to the characteristics of precipitation regimes. As discussed
in section 4.1.1, temporal and spatial precipitation variability have distinct values depending on the
location. Therefore, they can be seen as important boundaries for precipitation permutation in an
area. For the current modelling approach, these boundaries can be created by varying the parameter
r on grid cell level. High values of r will reflect areas in which spatial and temporal correlation is
low, like mountainous areas. Low values will be appropriate for the low lands and over large waters,
such as the North sea, The Netherlands and the North of Germany, where temporal but mainly spatial
correlation is higher. Limit m can be connected to the average distance over which precipitation or
wind moves. Areas in which large travel distances of precipitation events are observed will allow for
a higher limit, while areas with very local precipitation patterns will be confined by a smaller limit. As
such, the methodology of research model 2 allows for local adjustments when further developments
are done.

4.3.3. Displacement vector fields

The influence of the three vector types with different combinations of parameters m and r (see table
3.2) on the resulting vector fields was tested visually (see figure 4.12). Each vector type was examined
at t > 365 [days] to ensure that the initial field did not influence the examined vector fields.

(a) Vector type T1 : |m|=1.25 [degrees], r=0.25 [degrees] (b) Vector type T2 : |m|=1.25 [degrees], r=0.75 [degrees]

(c) Vector type T3 : |m|=2.50 [degrees], r=0.25 [degrees]

Figure 4.12: Visual representation of the different vector types T1, T2 and T3. Parameter combinations for each vector type
can be found in table 3.2. Days are chosen randomly after the spin up time of t > 365 [days] to indicate the differences

between the vectors types clearly
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The results showed that an increase of the limit m from |1.25| (T1) to |2.5| (T3) [degrees], re-
spectively, resulted in longer vectors. The mean absolute length for the Dx (r,m) and Dy (r,m)-
permutations of the type T3 vectors was 1.09◦and 1.20◦compared to 0.46◦and 0.44◦for type T1 vectors.
Parameter r determined the coherence at one time step between vectors. The low r-value of 0.25 [de-
grees] for vector types T1 and T3 lead to a strong coherence with long stretching vector patterns (see
figures 4.12a and 4.12c). Increasing the r-value to 0.75 [degrees] for vector type T2 resulted in less
coherence and a dynamic vector field with distinct clusters of vectors (see figure 4.12b). The average
length of the Dx (r,m) and Dy (r,m)-permutations did not change for different values of r.

The proof that the choice of the parameters m and r do influence the final vector fields in distinct
ways, confirmed that these parameters can provide a strong base for reflecting physical limits like
atmospheric circulations and variability. This was already observed and described for the resulting cdf-
curves (see section 4.3.2). However, between the created vector fields and the resulting cdf-curves one
step is left. This step concerns the influence ofm and r on a precipitation event itself and is discussed
in the next subsection.

4.3.4. Influence on the July 2021 flood

The differences in the displacement vector fields as caused by the varying combinations of the parame-
tersm and r persisted into the generated precipitation field. This was made visible for the rainfall event
of July 15th, 2021. In figure 4.13, it can be seen that type T1 displacement vectors fields caused the
least changes in precipitation. Almost all fields shifted the center of the event away from the Moselle
basin resulting in lower mean values for all repetitions compared to the historical observed value of
52.77 [mm/day] (see figure 4.13a).

The precipitation fields resulting from vector type T2 showed the same disruption as the displace-
ment vector field itself. The spatial coherence of the original precipitation event was lost resulting in
unrealistic, scattered precipitation patterns. Grid cells with high precipitation values were spread over
the area without a clear direction. Mean values of the eight repetition varied around the observed value
with two repetitions creating a more extreme event compared to the historical event (see figure 4.13b).

Vector type T3 resulted in coherent precipitation patterns which were shifted over larger distances
compared to the results obtained with vector type T1. This was in agreement with the expectation
based on the longer, but still spatially correlated displacement vectors observed in the displacement
vector field of type T3 (see figure 4.12c). In addition, no persistent shifting direction was observed.
The repetitions with shifts in the southward direction resulted in the highest mean precipitation, while
northeastward shifts created very low mean values. None of the repetitions created a more extreme
mean value compared to the historical observed value for the Moselle basin (see figure 4.13c).

When considering the different vector types, the amount of variation in the mean values created by
vector T2 can be considered most promising. New extremes were introduced compared to historical ob-
served precipitation values. However, vector type T2 showed also a clear trade-off between the created
extremes and the loss of the spatial coherence. This conflicts with the notion that spatial correlation
is an important characteristic of a precipitation regime. The uncorrelated precipitation fields thereby
weaken the argumentation that the modelled precipitation values could have occurred by chance in the
area of interest, which is the basic assumption behind the application of spatial permutation.

The loss of spatial coherence was prevented when keeping r low while changingm. Larger values
of m resulted in more variation, though for this specific event no more extreme precipitation values
were introduced. This can be a matter of chance, but to conclude about this more repetitions should
be made. Yet, when indeed a larger value of m is proofed to create more variation, this value cannot
be increased endlessly. If m is used to reflect the atmospheric circulations in a certain area, a limit
should be chosen based on values typical for the local wind speed and -direction. Too extreme values
can lead to precipitation shifts which conflict with the distance over which precipitation moves is reality
and should therefore be prevented despite their possibility to introduce more extremes.



4.3. Results and discussion: vector based permutation 48

(a) Vector type T1 : |m = |1.25|| [degrees], r = 0.25 [degrees] (b) Vector type T2 : |m = |1.25|| [degrees], r = 0.75 [degrees]

(c) Vector type T3 : |m = |2.50| [degrees], r = 0.25 [degrees]

Figure 4.13: Visual representation of the influence of the different displacement vector types on the precipitation event of July
15th, 2021
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4.3.5. Model sensitivity

The methodology of research model 2 contained assumptions about boundary and initial parameter
values which were not based on physical arguments but rather on practical modelling reasons. In ad-
dition, the underlying code had a strong directional component caused by a constant array fill direction
from northwest to southeast. To determine the influence of the assumptions and methodology, the dif-
ferent parts were analysed. The starting situation for each analysis was the methodology as explained
in subsection 3.3.1. Sensitivity to different features was tested by varying only the feature of interest
and run the model over a period of one year with as base precipitation values the historical values of
2021.

Sensitivity to the initial field

The initial field did influence the variation in precipitation values observed for each basin. Largest
coefficients of variation (cv) were seen when varying initial fields were used as starting point. This
can be explained by the diversity of initial permutation fields which were used as starting point for the
simulation. The cv decreased when the same initial field was used, thereby reducing the diversity in
the permutation fields with regard to varying initial fields. Lowest cv values were obtained when the
simulations were started with initial fields consisting of zeros. Cv for all initial fields for all basins were in
the same order of magnitude after one month, which can be seen as the spin up time of the model. As
such, the spin up time can be considered negligible compared to the long time series which are used
for flood risk predictions, i.e. often more than 1,000 years. Cv were shown to be strongly correlated to
basin size. Smallest values were found for the Rhine basin and largest for the Ijssel.

Sensitivity to the assigned weights

The rainfall maxima observed over the different basins did not show a sensitivity towards the weights
assigned during the displacement vector generation. Independent of the weights used, a strong relation
between maxima and basin size was observed. Lowest maxima were seen for the Rhine, while highest
values were found for the Ijssel basin.

The assigned weights had a large influence on the spatial correlation of displacement vectors. When
cells parallel to the permutation direction were given higher weights, the correlation between latitudes
(rows) for Dy (r,m) and between longitudes (columns) for Dx (r,m) increased. This is the direct
consequence of assigning the adjacent row and column grid cells larger weights in the computation
process for the new Dy (r,m) and Dx (r,m), respectively. For the case in which perpendicular grid
cells were given a higher weight, the opposite trend was visible with higher longitude correlations for
Dy (r,m) and higher latitude correlations forDx (r,m). Remarkable was that the absolute value for the
longitude correlation was much lower than latitude correlation independent of the the weights assigned
in the calculation process. Longitude correlation dropped faster over distance while latitude correlation
remained high over a long distance (see figure 4.14).

Sensitivity to the direction of the methodology

The directional bias in the methodology resulted in a high latitude (row) correlation. Independent of
the weights assigned, latitude correlation was higher than longitude correlation for all weights tested.
Yet, no physical reasons are known to assume that precipitation movement correlates more over lat-
itudes compared to longitudes. Instead, it was shown that atmospheric circulation patterns and local
orography in most cases steer the movement and occurrence of precipitation [32], [36], [37]. The dif-
ference between latitudinal and longitudinal correlation is therefore unwanted. Perpendicular weights
for Dy (r,m) and parallel weights for Dx (r,m) partly counteracted the high latitude correlation as can
be seen in figure 4.14 A and B, which can be considered favorable for the credibility of the model.
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Nevertheless, a better result was obtained when the directional bias in the current time step was
eliminated. As a consequence, latitude correlation for the Dy (r,m) dropped and became almost simi-
lar to the longitude correlation. The correlation for the Dx (r,m) remained high without a clear reason.
However, when also replacing the initial field with a field consisting of zeros, latitude and longitude cor-
relation became similar for bothDy (r,m) andDx (r,m) as can be seen in figure 4.14 E and F. Hence,
removing the directional component of the methodology is most efficient in eliminating the difference be-
tween longitudinal and latitudinal correlation. Future modelling approaches should therefore start from
an non-directional methodology by using non-differentiated weights and a new computation method in
which spatial correlation in the current time step is not defined in a fixed direction. Deviations from this
starting point should be made only on arguments substantiated with observed physical limits, such as
the observed historical spatial and/or temporal correlation values. In that way, it will be prevented that
variation is added to the observed extremes which is caused by the underlying methodology instead of
credible modelling of the natural spatial variability of precipitation.

Figure 4.14: Pearson correlation values of vector permutations between latitude (row) and longitude (column) under different
conditions. Left column shows the north-south (Dy (r,m)) permutation, right column shows the east-west (Dx (r,m))

permutation. Base weights for all figures is 1. Changes in weights are indicated in the legend. Figures A, B) Initial field filled
from left to right, new permutation based on past en present values. C, D) Initial field filled from left to right, new permutation

only based on past values. E, F) Initial field consist of zeros, new permutation only based on past values.
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4.3.6. Extent of variation

The most extreme event for each basin was shown to vary depending on the methodology used to
create the underlying vector fields. The events analysed took place on July 15th, 2021 for the Moselle
and Rhine basin, and on June 22nd, 2021 for the Ijssel basin. Highest variation, as defined by the
standard deviation, was obtained for the methodology based on random initial fields. This was in
agreement with the earlier finding that the modelling results are sensitive to the type of initial field used
for different iterations, with largest cv for varying initial permutation fields.

Reducing the difference between the weights did not result in lower variability. On the contrary,
when weights were brought closer together compared to the weights used in the methodology, i.e.
1.125 for the parallel components and 0.825 for the perpendicular component, variability was shown
to be highest. Obtained standard deviations were 4.83, 10,81 and 7,4 [mm/day] for the Rhine, Moselle
and Ijssel basin, respectively. A likely explanation for this phenomenon can be the strong directional
component in the model methodology itself. Weights closer to each other will counteract this directional
component less, especially due to the fact that the past values were weighted relatively less compared
to the present, highly directional, values. This explanation was confirmed by the observation that lowest
variation was obtained for the methodology with an initial field based on zeros and weights all equal to
one. Standard deviations for the Rhine, Moselle and Ijssel basin were 0,81, 2,98 and 2,57 [mm/day],
respectively.

In addition, it was found that the distribution of the extremes varied depending on the methodology
and basin under consideration. For the Rhine basin, distributions were almost normal around the
extreme observed except for the random method with the smaller weights. This method resulted in two
distinct peaks on both sides of the extreme event. This meant that the model generated both a distinct
group of events with lower mean precipitation values compared to the historical observed value, while
at the same time also generated a group with precipitation patterns resulting in higher mean values. A
cause can be found in the direction of the initial field. When smaller weights are used, this direction is
hardly changed and thereby likely to be maintained leading to either a shift of a larger part of the event
over the basin or a shift of the event away from the center of the catchment. In this way, two distinct
peaks are created which depend on the prevailing shifting direction of each iteration.

For the Moselle basin, methodologies starting with an initial field of zeros resulted in an even distri-
butions around the extreme value, while the methodologies starting with a random initial field resulted
in left-skewed distributions indicating the generation of mainly lower mean precipitation values. The
variation for the Ijssel basin was left-skewed, independent of the methodology used. This indicated that
shifting of the 2021 extreme of the Ijssel basin led in most cases to a shift away from the catchment
and lower modelled mean precipitation values. For an overview of all histograms, see appendix IV.
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Summary research model 2
• The Generalized Extreme Value (GEV) fit to the shifted data became worse whenmore variation
in annual extremes was introduced. Less variation let to smaller uncertainty intervals. However,
the quality of the GEV fit could not be used to draw conclusions about the usefulness of the
shifted time series for risk analysis.

• The difference between the historical and shifted cumulative distribution functions (cdfs) was
largest for high values of limit m, small basins and short aggregation times. The range param-
eter r did not have a considerable influence on the cdf curves.

• Correlation values were highest for larger basins, long aggregation times and vector type 2,
with a high value for limit m and a low value for range r. Reduced variability between rainfall
extremes was the main reason for the higher correlation values.

• The methodology of research model 2 was sensitive to the initial and boundary conditions. Fea-
tures such as the initial field, the weights used to relate past, present and neighbouring cells,
and the calculation direction should therefore be chosen as neutral as possible in subsequent
modelling processes.

• In future development of the methodology of research model 2, parameter m can be used
to represent wind speeds while parameter r can represent spatial and temporal correlation.
Adding the modelling opportunity to vary these parameters depending on location and season
is advised to better represent natural precipitation movement.
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4.4. Results and discussion: wind based permutation

Research models 1 and 2 showed that the effect of spatial permutation on the extremes in different
basins was dependent on the methodology used to shift precipitation. They indicated that basin size,
direction and aggregation time influenced the extent to which extremes were changed by spatial per-
mutation. In addition, it was proved that a fixed approach, in which precipitation patterns were per-
turbed over fixed directions and distances, could be replaced by a vector based approach, in which
precipitation patterns were perturbed by means of semi-random vector fields, mimicking a more natu-
ral movement of precipitation. Nevertheless, the spatial shifts introduced by both research models were
artificial and not based on historical observed parameters which are known to influence the movement
of precipitation.

As described in subsection 4.1.2, circulation patterns do have a large influence on the movement
and occurrence of precipitation. Therefore, the goal of model 3 was to research whether it is possible
to shift precipitation based on displacement vectors conditioned with the characteristics retrieved from
historical wind speeds and -angles.

In the first subsection of this section, the results of the GEV distribution are shown and discussed.
Differences were quantified with the AD-test and the width of the uncertainty intervals. Subsequently,
the correlation between the historical and shifted cdf is discussed, together with the obtained AD-test
statistics. The third subsection shows the spatial and temporal correlation patterns of the shifted precipi-
tation and compares the values with the historical correlation patterns in order to understand if historical
behaviour was preserved. Next, differences between means, maxima and standard deviations of pre-
cipitation between historical and shifted data are presented. In the fifth subsection, the results of the
comparison between displacement vector angles with the historical observed values is shown. Sub-
sequently, the amount of variation the model produces for an extreme event is showed for the three
basins, to see if the method produced novel extremes compared to history. The final subsection fo-
cuses on the influence of the model on the July 2021 floods for different upper and lower limits for the
wind angles and -speeds as defined by a fraction f of the standard deviation.

4.4.1. Generalized extreme value distribution

The AD-test statistics for the GEV distribution were below -0.1 for all combinations of aggregation time,
basin and fraction f (see figure 4.15). This confirmed that the 42 years of modelled extremes were still
well fitted by a GEV distribution. Lowest average values for each aggregation time and fraction f were
obtained for the Rhine basin. Highest average values were seen for the Ijssel basin, except for f = 0.25
and f = 0.5. The range of AD-test statistics was smallest for the Rhine basin and highest for the Ijssel
basin and varied between -0.7 and -1.2, and -0.1 and -1.0, respectively. All these results are in line
with the earlier observation that larger basins and longer aggregation times lead to smaller standard
deviations of precipitation events. Extremes are less spread and as a result the GEV distribution fit is
better reflected in lower AD-test statistics.

The individual basins showed different patterns with regard to the AD-test statistics. For the Rhine
basin, lowest AD-test statistics were observed which can be directly attributed to the lower influence
of spatial permutation on large basins. AD-test statistics did slowly increase when fraction f became
higher for all aggregation times. This showed that only high values of f caused the variation between
extremes to increase, reducing the quality of the GEV fit to the modelled extremes. Between different
aggregation times, no clear trend in AD-test statistics of the Rhine basin was visible.

The AD-test statistics for the Moselle basin showed a more irregular pattern. This was most likely
caused by the introduction of random noise and a monotonic reaction to both the values of f and the
aggregation time. For the Ijssel basin, a decreasing trend was observed with lowest AD-test statistics
for larger values of f . A clear decrease was seen between f = 0.25 and f = 0.5 for the one, two and
four days aggregation times. Weekly AD-test statistics were lowest, except for f = 0.5.
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(a) Rhine (b) Moselle

(c) Ijssel

Figure 4.15: Anderson-Darling test statistics obtained for the Generalized Extreme Value (GEV) distribution of annual
precipitation maxima for different combinations of basins, aggregation times and fractions f .

This showed that for smaller basins, a higher value for the fraction f led to a more even distribution
of extremes by disrupting the coherence of the historical precipitation pattern. This hypothesis was
confirmed by the presence of three very extreme events in the historical data series with values above
44 [mm/day]. Permutation led in all cases to a reduction of one or multiple of these events to values up
to 13 [mm/day] lower. As a result, GEV fits became better and AD-test statistics decreased.

Nevertheless, it needs to be noticed that a better GEV fit is not the goal of the development of a
spatial permutation model. As indicated in subsection 4.1.2, climate change causes current day pre-
cipitation events to change and to become more local. More extreme events are expected at locations
where they are not observed yet. A better fit of the GEV distribution caused by a smaller range of ex-
tremes can therefore oppose the goal of generating more local extremes. As such, the extent to which
the spatial permutation leads to changes in precipitation maxima is a better indicator for the suitability
of the model to generate new extremes. These changes do indicate how well the model can create
more local variation at different locations which could not be deduced from the GEV fit itself. Hence the
changes in maxima can be used to quantify the capability of the model to generate new local extremes
on top of the historical observed values in order to mimic present-day climate better.

Switching to the observed uncertainty intervals around the GEV fit, more clear patterns were ob-
served (see figure 4.16). The uncertainty intervals were shown to be sensitive to the aggregation time,
with decreasing AD-values for longer aggregation times. This indicated that the variation in extremes
was reduced when the aggregation time of the extremes increased. No sensitivity to the value of f was
observed. In addition, the magnitude of the uncertainty intervals was related to the magnitude of the ex-
treme precipitation events. The relative lower values in the Rhine basin resulted in smaller uncertainty
intervals (±3 [mm/day]), while the Moselle and Ijssel basin had larger values up to 14 [mm/day]. This
corresponded with the larger variation and magnitude of the precipitation extremes of these basins to
which the GEV was fitted.
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(a) Rhine (b) Moselle

(c) Ijssel

Figure 4.16: The 5- to 95-percentile uncertainty interval obtained for the Generalized Extreme Value (GEV) distribution of
annual precipitation maxima for different combinations of basins, aggregation times and fractions f .

4.4.2. Cumulative distribution function

The AD-test showed that up to a value of f = 0.25 the cdf-curves of the shifted data were not significantly
different compared to the historical data. For all basins and aggregation times, values were below 0.16
with the lowest value found to be -1.24. For f = 0.5, AD-test statistics became much larger for all
aggregation times for both the Rhine and Moselle basin (see appendix V). The Ijssel basin did not
show a strong response and values remain below zero (see figure 4.17).

On top, two different patterns in the AD-test statistics to compare the similarity between the historical
and wind-based vector shifted cdfs could be observed. These patterns were related to basin size.
The larger basins of the Moselle and the Rhine catchments showed an increase in AD-test statistics
when the value of fraction f increased. This increase is explained by the amount of disruption of the
precipitation pattern related to the fraction f . As can be seen in figure 4.26, low values of f hardly
influence the amount of precipitation modelled over the basin. Low pressure areas are disrupted but
since pixels are shifted over the basin, the mean value does not change much resulting in almost
similar cdfs and low AD-test statistics. Only at the highest value of f , i.e. f = 0.5, disruption takes
place including values from outside the basin boundaries. The spatial correlation of the historical low
pressure area was lost. This resulted in much lower mean values which is reflected in a strong increase
of AD-test statistics and a shifted cdf curve with values below the historical cdf over the whole range
(see appendix V).



4.4. Results and discussion: wind based permutation 56

Figure 4.17: Cumulative distribution functions (cdf) of the Ijssel basin for different values of f and aggregation times.
Anderson-Darling (AD) test statistics are printed above each figure.

This hypothesis was confirmed by considering the percentage of time a grid cell in a basin sampled
a value from outside the basin. As can be clearly seen in figure 4.18, low values of f resulted in almost
no sampling from outside the basin except for the boundary cells. As a result, the mean value modelled
over the larger Moselle and Rhine basin will not change a lot. Increasing f to 0.5 resulted in a steep
increase of the percentage of time a precipitation value from outside the basin was sampled. Thereby,
a larger difference between the historical and modelled mean precipitation value emerged.

For the smaller Ijssel basin, a different pattern was observed (see figure 4.17). AD-test statistics
were all below zero with an on average increasing trend of AD-test statistics for higher values of f .
Though, the effect of the value of f on the similarity between the historical and shifted cdf was small.
An explanation can be found when considering the configuration of the majority of the individual annual
extremes. These extremes often consisted of low pressure areas which were much larger than the
Ijssel basin itself and relatively uniform, i.e. stratiform precipitation events (see figure 4.19). Even
when the disruption was high and an increasing percentage of the precipitation was sampled from
outside the basin (see figure 4.18), new values were still from the same low pressure area. As a result,
the mean value over the basin did not change much. In addition, it was observed that most extreme
events were often of the convective type with centers straight above the Ijssel basin (see figure 4.20).
For these types of events, higher f values did result in the introduction of pixels with distinct and lower
precipitation values over the Ijssel basin. Consequently, the final cdf curve of the shifted data showed a
clear deviation of the historical cdf curve for the most extreme events, especially for shorter aggregation
times .
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Figure 4.18: Spatial representation of the percentage of time each grid cell sampled a value from outside the basin. Top row
shows the values for f = 0.05. Bottom row shows the values for f = 0.5. Overall percentages are plotted above the

sub-figures. From left to right: Ijssel, Moselle and Rhine.

Comparing the AD-test statistics between different aggregation times showed that an aggregation
time of one week resulted in the lowest AD-test statistics. Shorter aggregation times caused an increase
in AD-test statistics though this relation did not hold for every value of f since absolute differences
between AD-test statistics were small. For the Rhine and Moselle basin, all aggregation times showed
an increase in AD-test statistics for higher f , while the Ijssel basin showed an irregular pattern with
increasing and decreasing AD-test statistics over the different values of fraction f . This is most likely
be attributed to random noise introduced by the iterations over the small area of the Ijssel basin.

The Pearson correlation coefficient between the observed and shifted cdf distributions showed a
clear relation with fraction f . Higher fractions resulted in a decreased correlation for all basins and
all aggregation times. The difference in correlation became larger between aggregation times when
fraction f increases. For the Ijssel basin, the smallest correlation value was observed, i.e. 0.961, while
the highest value of 0.999 was observed for all basins. Correlation values between aggregation times
did not show a clear pattern for individual values of f .

4.4.3. Spatial and temporal correlation of precipitation

Differences in seasonal spatial correlation between the historical and wind vector shifted precipitation
data showed a positive correlation with the value of fraction f . Largest differences were seen for f=0.5
and ranged from -0.09 to 0.3 [-]. For f=0.05, differences were as small as -0.02 up to 0.01 [-]. Small
values of f led to higher spatial correlation of the shifted data especially in summer. Large values for
f showed the opposite trend with lower spatial correlation compared to historical data for all seasons,
with maxima during winter. The differences in spatial correlation were lowest in the Alps for all values
of f , though this pattern became only visible when the value of f increased.
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Figure 4.19: Stratiform storm above the Ijssel basin at July 2nd, 1980. Influence of the value of fraction f is shown. Mean
values are plotted above each graph.

The above described relation between f and the spatial correlation is a direct result of the modelling
approach. By sampling new values of the wind angles randomly from the historical data, the spatial
coherence between neighboring cells got partly lost. Even with almost the same historical wind angle,
the new proxy angle was chosen from a range of values around the historical value. In the model, no
dependence was imposed between the sampled wind angle of the grid cell to the newly sampled angles
of its surrounding cells. As such each wind angle was as likely to be chosen creating a more random
pattern of displacement vector angles which is directly related to a more random precipitation pattern.

This effect became stronger when the value of f , and thereby the range of possible wind angles
to sample from, increased. Only in the Alpine region, almost no difference between spatial correlation
values was seen. Both historical and modelled spatial correlation values were low since the orography
of this region created local areas separated by mountain ridges having their distinct precipitation and
wind angle distributions. As a result, grid cell precipitation values and wind characteristics were not
influenced by their neighboring cells and the introduction of additional noise by themodel did not change
the almost absent spatial correlation in this region.
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Figure 4.20: Convective storm above the Ijssel basin at September 26th, 1993. Influence of the value of fraction f is shown.
Mean values are plotted above each graph.

The mean temporal auto-correlation over the Rhine basin was show to be strongly correlated with
the time lag. Largest values were seen for a time lag of one day, after which auto-correlation values
dropped quickly (see figure 4.21). For these longer time lags, the lack of temporal correlation in the his-
torical data also resulted in the absence of differences between the historical and modelled correlation.
Additional noise created by the model did not reduce the temporal correlation which was already close
to zero for the historical data. This is in agreement with the observation made for the almost absent
spatial correlation in the Alpine region.

In contrast, for the time lag of one day, differences were observed at higher values of f . The
differences were caused by the randomness of sampling, both for the length as well as the direction of
the displacement vector. Grid cells in which subsequent sampled displacement vectors were in general
similar resulted in higher values of the temporal correlation. Very different displacement vectors resulted
in sampling of more diverse precipitation values leading to lower temporal correlations.
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Since no relation was imposed to create temporal dependency between days, the pattern of over- or
underestimation of the historical correlation by the model was random. Higher values of f did generate
more randomness and thereby less consistency in both time and space. This was confirmed by the
larger differences between the historical and shifted mean auto-correlation values for higher values of
f (compare left and right graph of figure 4.21).

In addition, figure 4.21 shows a clear seasonality. Highest auto-correlation values were seen in
winter independent of the time lag and value of fraction f . This can be explained by the stratiform
nature of winter storms. These stratiform fronts often cover large areas and have, in general, a relatively
continuous and uniform intensity which persists for a long duration. As such, temporal correlation for
stratiform storms will be higher, especially compared to convective storms. Convective storms are often
local and have a short duration. They are the typical rain showers often observed during the summer
season, Their low temporal correlation is also reflected in the lowest correlation values for the summer
season, as can be seen in figure 4.21.

Figure 4.21: Mean auto-correlation over the Rhine basin for the historical and wind based vector shifted precipitation data for
f=0.05 (left) and f=0.5 (right). Mean values are shown for time lags of one, three, five and seven days for the four different

seasons.

4.4.4. Difference in the mean, maximum and standard deviation of precipitation

The differences in monthly mean precipitation, measured as the historical mean value minus the shifted
mean value, increased when the fraction f became larger. Lowest values ranged from -0.5 to 0.5
[mm/day] for f = 0.05, which is 89% and 143% of the historical mean, respectively, while highest values
were seen for f = 0.5, ranging from -2.2 to 4.6 [mm/day], which is 41% and 381% of the historical mean
(see figure 4.22). Patterns of areas with higher and lower mean precipitation values were consistent
over the different values of f . Most extreme differences were seen in the south-east of the basin while
differences in the north-west were smaller. Large areas with negative and positive differences were
often paired.

This pattern of paired areas can be explained by the general precipitation conditions over the dif-
ferent countries. Comparing the seasonal mean precipitation patterns for Germany [55], France [56]
and Italy [57], the areas of underestimation can be related to the areas with high mean precipitation
values in the historical data. Permutation resulted in the introduction of lower mean values from the
surroundings leading to lower modelled mean precipitation values, i.e. positive differences. The areas
in which an overestimation of the mean precipitation was seen were strongly connected to this under-
estimated areas. Applying the reverse reasoning, these areas were prone to the introduction of higher
precipitation values resulting in higher mean values, i.e. negative differences.
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With regard to time, it was shown that patterns of mean differences varied over the months. Re-
garding the whole study area, most widespread differences were seen during October and the winter
months. These differences are most likely caused by the prevailing stratiform fronts which are typi-
cal for the winter months and span large areas. On grid cell resolution, the most extreme absolute
differences were seen during summer when precipitation is often convective and very local. Smallest
absolute difference were seen in spring. This observation was made for all values of f .

The difference in maximum precipitation showed the same trend as the mean precipitation. Most
extreme differences were again seen below the Alps while in the north the differences were minimal.
Between months, patterns differed with varying locations of maximum differences. During the summer
months, larger differences were seenmore north of the Alps while during winter most extreme difference
were observed around the Mediterranean see and in the north of Italy. In addition, differences became
larger when the value of f increased. The smallest differences were observed for f = 0.05 and ranged
from -45 to 35 [mm/day], i.e. 63% and 179% of the historical values, respectively. For f = 0.5 values
from -147 to 126 [mm/day], i.e. 33% and 564% of the historical maximum, respectively, were seen for
the most extreme locations (see figure 4.23).

In contrast to the mean values, the patterns observed for the differences in maximum values were
very local and more scattered. Differences between neighbouring grid cells were large. A reason for
this observation can be found in the methodology underlying the calculation of the differences. These
differences are based on the highest values of the historical and observed values in one month. If
the shifting approach resulted in the introduction of many low precipitation values into the grid cell at
the expense of the historical higher values, the difference will be positive. On the other hand, the
introduction of only one very large value will already result in a high negative value since this value
will be selected as the monthly maximum. As such, the differences in maxima are more random and
depend on the spatial shifting approach. A new round of iterations of model 3 will therefore likely result
in a new pattern of observed differences in maxima while the mean patterns will remain approximately
the same.

Also the differences in standard deviation showed a positive correlation with the value of fraction
f . Larger values of f resulted in larger differences with maxima ranging from -4.42 (55%) to 6.74
[mm/day] (218%) for f = 0.5 and a minimum range of -1.1 (91%) and 1.12 [mm/day] (115%) for f =
0.05. Differences were also larger in the south of the study area, below the Alps, while difference in the
north were small. Most extreme differences were seen in October, November, December and January.

The patterns of the differences in standard deviation showed a large similarity with the patterns
observed for the mean differences. Areas with negative differences in standard deviation, i.e. larger
variation in the vector shifted data compared to the historical data, had larger negative difference in
mean precipitation as well. Since the standard deviation is based on the spread of values, the similarity
in patterns is caused by the reduction of the magnitude of extremes caused by spatial permutation. As
can be seen in appendix V, spatial shifting led to the reduction of the most extreme events over larger
areas. This created lower mean values and precipitation values closer to each other. The spread
of values and thereby the standard deviation will reduce. This similar response of the mean and the
standard deviation to the reduction of the magnitude of extremes resulted in the alike patterns observed
for both characteristics.

When considering the standard deviation of mean precipitation values over the different basins for
each month, it was observed that shifted standard deviations are in general smaller than the historical
standard deviations. The higher the value of fraction f , the smaller the standard deviation over the
basin and the larger the positive difference between the historical and shifted standard deviation. This
observation can be justified with the same reasoning as the reduced standard deviation on grid cell
resolution as described in the paragraph above. Larger values of f led to more disruption and thereby
a more extreme reduction of the magnitude of precipitation extremes and the spread of the modelled
means, i.e. the standard deviations.
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On top, the difference between the modelled and historical standard deviation became smaller
when aggregation time increased. On the one hand, this is due to the fact that the standard deviations
of longer aggregation times were in general smaller compared to shorter aggregation times. On the
other hand, and the direct cause of the smaller standard deviations, is the fact that extremes for longer
aggregation times are less extreme compared to shorter aggregation times. As consequence of the
summations of multiple days of precipitation, very rainy days are averaged by dryer days in the same
time series. This is the case for both the historical data series as well as the shifted data series. Dis-
ruption still resulted in some reduction of the most rainy days, but the effect was less visible compared
to the shorter duration events.

Last, a strong relation between standard deviation and basin size was observed. Smaller basins
did react more strongly on spatial permutation reflected by the varying and even negative values of
the difference in standard deviation. Especially in summer months, in which convective storms were
more common, spatial permutation led to introduction of larger extremes by shifting convective storms
over or out of the small basin. Larger basins did not show this response since the model did not move
precipitation over distances large enough to introduce or exclude complete new precipitation fields. The
difference in standard deviation for the Rhine basin remained almost constant over the seasons with a
slight increase during winter. As such, this indicates that spatial permutation can be especially useful
when the area of interest is small. Even small and likely precipitation shifts resulted in more variation
in the observed precipitation values, which is not the case for larger basins.
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Figure 4.22: Monthly difference between historical and wind based vector shifted mean precipitation for f = 0.5. Differences
are calculated as historical minus vector shifted mean precipitation and shown as percentage of the historical monthly mean.
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Figure 4.23: Maximum monthly difference between historical and wind based vector shifted maximum precipitation for f = 0.5.
Differences are calculated as historical minus vector shifted maximum precipitation.
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4.4.5. Comparison of historical and model wind angles

The historical and model wind angles showed a similar pattern for the locations tested. The model was
able to mimic the distribution of angles for both mountainous areas, e.g. Bern (Swiss), and lowlands,
e.g. Munster (Germany) (see appendix VI). For Bern it was observed that most common angles were
either under- or oversampled. This could be caused by the distinct groups of wind speeds and -angles
in mountainous areas (see figure VII.1) whichmade the probability to sample an angle outside the group
of the initial historical angle low . Even with larger bounds as set by the fraction f , not much sampling
outside the groups could take place. As a result, most deviation was seen in the most preferred angles
while the fit is better for areas with relatively rare angle and wind speed combinations.

For Munster, located in a low land area, a slight oversampling of the historical wind speeds and
angles was observed for the less common angles. This opposed effect to the observations made for
Bern can be explained by the fact that in low land areas wind speeds and angles are more evenly
distributed (see figure VII.2). This allowed for sampling over a wider range of wind speeds and angles
which created more variation in the sampled wind angles, especially around the sides of the most
prevailing groups of angles in the histogram. Though, difference between f = 0.1 and f = 0.5 were not
large. This can be an indication that even with small values of f , the sampling range for angles and
wind speeds is already large enough to sample further outside the most distinct groups of angles.

4.4.6. Extent of variation

Figure 4.24: The historical precipitation patterns for the single most extreme events in 2021 for each individual basin. From left
to right: Rhine, Moselle and Ijssel.

For the most extreme event of each basin, it was examined how much variation the model was able
to add with different values of f . Figure 4.24 shows the historical precipitation patterns of the most
extreme event of each basin in 2021. The histograms obtained for each basin showed a clear pattern
(see figure 4.25). Larger values of f resulted in a larger spread of extreme values indicated by a higher
standard deviation of the extreme. Lowest standard deviations for each value of f were observed for
the Rhine basin and increased when basin size became smaller (see figure 4.25 A and D).

The histograms of the Rhine basin were extremely right-skewed, indicating that most modelled
extremes were larger than the historical observed extreme. An explanation for the skewness can be
seen in the historical precipitation pattern (see figure 4.24). The center of the low pressure area was
located on the west of the basin. Since the prevailing wind direction during the summer months is
south-west, the model will likely sample angles from this direction and thereby shifting the low pressure
area more to the east, e.g. over the Rhine basin. As a result, mean precipitation values increased.
Larger increases were seen when the value of f became higher since the length of the displacement
vectors was allowed to be longer moving the event further over the basin.



4.4. Results and discussion: wind based permutation 66

Figure 4.25: Histograms of the variation of 100 runs for the most extreme event in each basin in 2021. Top row shows the
results for f = 0.1. Bottom row shows the results for f = 0.5. From left to right: Rhine (July 15th), Moselle (July, 15hth) and

Ijssel (June, 22nd)

For the Moselle a transition form a right-skewed histogram, with mostly higher values for the mod-
elled extremes, to a left-skewed histogram, with mostly lower values for the modelled extremes, was
observed when the value of f increased (see figure 4.25 B and E). The relation between the shape
of the histogram and the value of f can be explained by the limits to the direction and distance of the
permutation as opposed by the value of f . Based on a similar reasoning as for the Rhine basin, it can
be seen in figure 4.24 that small values of f can shift the center of the precipitation event more over
the north side of the basin. This resulted in higher mean values up to 55.75 [mm/day] compared to the
historical 52.75 [mm/day] (see figure 4.25). However, when the value of f became large two distinct
options were observed. For some iterations, the precipitation event was scattered with the introduction
of many low values over the basin resulting in lower mean values and a more left-skewed histogram.
The opposite was also seen in other iterations in which the scattered patterns introduced more high
precipitation values over the basin. However, mean reductions were more severe compared to mean
increases which is likely caused by the prevailing south-west wind angles which promote the shift of
the event away from the Moselle basin.

The Ijssel basin showed a left-skewed histogram for all values of f (see figure 4.25 C and F). This
indicated that the model produced mostly less extreme precipitation values compared to the historical
observed value. The reason for the reduction of the extreme can be found in the location of the historical
event which was straight above the basin (see figure 4.24). Even small shifts resulted mainly in the
reduction of the mean value observed by introducing lower values of the surrounding grid cells. It
therefore needs to be noticed that a larger standard deviations does not mean that there are also more
extremes introduced. The standard deviation is a metric which does indicate the spread and thereby the
influence of spatial permutation on the observed data. However, it does not give information about the
magnitude of the observed values. The magnitude will mainly depend on the position of the historical
extremes relative to the basin and the prevailing wind angles. For that reason, the ability of the model
to generate more extreme events will depend on the diversity and length of the historical data set. Only
when the historical patterns provide sufficient variety in extremes and wind angles, the model will be
able to generate new extremes.
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4.4.7. Influence on the July 2021 flood

Figure 4.26 displays the influence of the model on the July 15th, 2021 event in the Moselle basin. The
results showed that the mean precipitation became higher for the lower values of f . The mean value
was increased due to the shifting of cells with larger amounts of precipitation over the basin. Lower
mean precipitation values were seen when the value of f increased since lower precipitation values
were shifted over the basin originating from location outside of the low pressure area. The amount of
disruption showed a positive correlation with the value of f , leading to a loss of spatial correlation for
the highest values of f . This indicates that for the modelling approach of model 3 only small values of
f can be used to add more variation. Too large values cause to much disruption of the spatial pattern
leading to unrealistic precipitation patterns as was seen for the July, 2021 event.

Figure 4.26: Visual representation of the effect of model 3 on the modelled precipitation in the Moselle catchment on July 15th,
2021. Shifts are shown for all values of fraction f .
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Summary model 3
• The Generalized Extreme Value (GEV) fit to the shifted data showed the same response to
aggregation time, basin size and introduced variation as research model 2. The GEV fits were
not sensitive to the value of fraction f .

• The difference between the historical and shifted cumulative distribution functions (cdfs) became
larger when fraction f increased for the Moselle and Rhine basin. For the Ijssel basin, no
response in the shifted cdf curve to the value of fraction f was observed.

• The correlation between observed and modelled mean precipitation values increased when
fraction f increased for all combinations of basin and aggregation time tested.

• Spatial and temporal correlation were reduced when the value of f increased as result of the
loss of coherence of the observed precipitation patterns.

• Larger values for fraction f resulted in larger differences between the historical and shifted
precipitation mean, maximum and standard deviation. Explanations could be found in the un-
derlying methodology for the maximum values, while disturbed rainfall characteristics where the
reason for larger differences between the historical and shifted mean and standard deviation of
precipitation.

• The methodology of model 3 was able to produce displacement vectors with the same distribu-
tion of angles as the historical wind angle distribution.

• The amount of variation added to the historical observed extremes became higher when fraction
f increased. However, the magnitude of the shifted extremes depended on basin size and
shifting direction.

• Temporal and spatial correlation was not explicitly incorporated in the methodology of model
3. This resulted in a trade-off between the amount of variation introduced and the similarity
between the historical and shifted precipitation characteristics. Future attempts should focus
on incorporating correlation more explicitly to reduce this trade-off.



5
Project discussion

The central objective of this research was to examine the effects and benefits of spatial permutation on
the generation of new extreme precipitation events in the Rhine basin. In the past, much research has
been done the the generation of new extreme events with temporal resampling. By means of creating
similar groups of weather patterns, historical data was resampled into new precipitation series. The
largest drawback of this method is that it will not introduce new extremes with durations shorter than the
temporal resolution of the historical data. As such, especially small basins with times of concentration
shorter than the temporal resolution of the precipitation data will not be exposed to new and more
extreme values.

Spatial permutation was therefore proposed as a new methodology to introduce extreme events
from surrounding areas into the area of interest. Recent extreme precipitation events have shown that
especially very local and not yet observed rainfall configurations can have a severe impact on local
communities. This led to a growing demand for more local, varying and extreme precipitation series
which can be used for risk analysis. Yet, substantiated permutation is a difficult topic. The occur-
rences and characteristics of precipitation have been shown to be highly dependent on the prevailing
circumstances and location [32], [36], [43]. In addition, most research into the opportunities of spatial
permutation is limited to local scale initiatives [8] and knowledge about the potential of larger scale spa-
tial permutation is scarce. Consequently, this research was set up with a clear gradient of complexity
in the models generated to analyse step by step the potential of spatial permutation.

The first step in this process was the development of research model 1 which showed that spatial
permutation does affect precipitation statistics but that basin size, aggregation time and direction influ-
ence the results. Especially the confirmation that direction is of importance for spatial permutation was
an important finding which has not been seen back that clearly in research model 2 and model 3. The
main reason is the fact that only in research model 1 the direction of shifts was known precisely. As
such, observed changes in statistics and extremes could be related to direction or other causing factors
without the noise created by a more random approach as was used in the subsequent models.

In addition, research model 1 has been the only model in this research for which time series longer
than 42 years were generated, i.e 378 years. In retrospective, it would be advised to generate longer
time series for the two other models as well, especially for the analysis of the cdf distributions. The
parameters fitted for this process do depend on the sample size, since their sensitivity to outliers in-
crease when sample size is relatively small [58]. This sensitivity was especially observed for the Ijssel
basin which had some very extreme events in the historical data series. As such, comparison of the
cdfs and conclusions drawn from their corresponding AD-test statistics should be considered with care.
For the GEV distributions, results can be considered more robust even for the small sample size. Hos-
sain et.al. [59] showed that using L-moments as parameter estimation technique was less sensitive to
small sample sizes, outliers and variability compared to other techniques like the maximum likelihood
estimate and the Bayesian method.
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Besides the findings done based on research model 1 and the generation of longer data series com-
pared to the other models, it must be noticed that the shifts applied are far from realistic. Low pressure
areas associated with extreme rainfall do often follow preferred tracks which are non-linear and depend
on the location of origin [60]. In addition, they are impacted by the presence of orographic elements
like the Alps, which was not considered in the shifting methodology of research model 1. Therefore,
research model 2 was developed in which a deepening step was made to study how precipitation can
be moved in a more physical and realistic way.

The added level of complexity in research model 2 compared to research model 1 was created by
shifting from a fixed permutation based approach to a vector based approach. The choice to use vectors
to shift precipitation was based on the notion that wind data are leading for precipitation movement [8]
[61]. Their direction and speed can be quantified and visualized by means of vectors, and with the
methodology of research model 2 these patterns could be mimicked. Yet, the resulting vector fields did
highly depend on the choices made for the model parameters. Whereas the effect of the parameter for
the upper and lower limit m on the vector length could be clearly seen in the resulting vector field, the
response to the weights used and the range parameter r was more complex.

Nevertheless, understanding the complexity of the range, limit and the weights was important since
these parameters reflect two important characteristics of precipitation movement: spatial and temporal
correlation. Spatial correlation of precipitation depends on the location of interest. In low land areas
coherence is generally high and the vector in a grid cell is influenced by and does influence the values
of vectors in its neighboring cells to a large extent. This leads to the often observed large stretch vector
fields such as the westerlies over Northern Europe. In mountainous areas, spatial correlation can be
much lower as result of orographic separation of different areas and the local effects of topography.
Subsequently, the influence of one grid cell on its surrounding grid cells will be less [62]. These corre-
lation patterns observed in the wind vector fields influence the precipitation patterns in these regions
directly and are therefore important to capture in the model. Though, research model 2 allowed for
imposing a degree of spatial correlation by increasing or decreasing the value of r, no variations of
this value for different grid cells could be set. This led to the loss of variability characteristics especially
when comparing distinct orographic regions.

A way forward would be to condition the parametersm and r on historical observed characteristics
of precipitation, like the wind data used in model 3. In such, the strength of research model 2 to include
spatial and temporal correlation will be maintained while at the same time introducing seasonality and
spatial variable characteristics into the model. Nevertheless, the methodology of research model 2 also
need to be redefined to limit the effect of the modelling direction on the final results. Starting with an
initial field of zeros and equalizing the weights used will be the first steps. Further options need to be
researched.

In model 3, the use of historical wind data as starting point did account to a certain extent for the
variability of spatial correlation of vectors over the study area. The historical wind data clearly showed
a reduced spatial correlation over the Alps while high values were seen over the low lands of northern
Europe. However, the diversity of sampling options for new angles could be high when the value of
fraction f , determining the sampling limits of the proxy vectors, increased or when natural variability
was already large in the grid cell. This, together with the lack of any spatial correlation relation imposed
in the model, led to a reduction of spatial correlation in the modelled displacement vector fields. For
the largest values of f , this was confirmed by the loss of spatial coherence of the precipitation events.
An improvement of the model could therefore be made by imposing a spatial correlation relation on the
chosen displacement vectors. This relation can have many formats but options include:

1. To keep the historical wind angle and only varying the length of the displacement vector.
2. To impose a second round of iterations over the displacement vectors and calculate the average

Dx

(
V⃗p

)
and Dy

(
V⃗p

)
based on N of the surrounding grid cells. N will be set larger if spatial

correlation is high in the historical data and smaller when spatial correlation can be considered
low (see appendix VIII.1).
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The loss of temporal correlation is related to the loss of spatial correlation and will likely improve
when a spatial correlation is represented better on a cell-by-cell basis, However, for the current method
the same discussion point holds. In research model 2, temporal correlation was maintained to a certain
extent by imposing weights on the past and present vector values. The research model was highly
sensitive to the choice of the weights and a well argued reasoning for the choice of weights is needed
to use this methodology in a more physical based approach. Using the historical temporal correlation
coefficients can be one option to relate past and present. Especially since the auto-correlation between
precipitation values was shown to be highest over a time step of one day, this would fit into the current
methodology applied in model 3 which also has a time step of one day. A weighted selection method
should than be developed for the permutations Dx

(
V⃗p

)
and Dy

(
V⃗p

)
at time t = t. Vectors with the

same direction and with a similar value of wind speed as the proxy vector sampled at time step t = t-1
will be given a higher probability to be sampled as a new proxy vector at time t = t (see appendix VIII.2).

Considering the outcomes of model 3 a clear trade-off between the noise generated by the value of
f and the similarity of the historical and modelled precipitation and vector fields was seen. The same
was also observed for the values ofm and r in research model 2. More noise resulted in less similarity
and vice versa. The optimal ratio between these two standards is disputable. On the one hand, more
noise means a higher probability that new extremes are generated which is the final purpose of the
spatial shifting approach and can be useful for a better representation of the current weather pattern
in risk modelling. On the other hand, the modelled precipitation and vector patterns need to maintain
a certain similarity with the historical patterns to maintain their credibility. To much deviation points
towards violation of physical boundaries which are present in reality. This is unwanted and will make
the model more controversial for further applications.

Finding the optimal balance between noise and similarity is important but will to a certain point al-
ways be a subjective choice of the modeller. Providing scenarios with different combination of parame-
ters can be a good way to leave the choice of the optimal value to the final user. Clear communication
about the influential parameters, which sensitivity can be derived by additional sensitivity studies, and
the trade-offs between different standards is in that case indispensable. For further studies a closer
look into the acceptable range of noise and similarity is therefore advised. Together with the generation
of longer time series and more explicit incorporation of temporal and spatial correlation, this information
is expected to improve the spatial shifting approach as proposed in model 3.

Yet, despite the improvements proposed, it is believed that the application of the spatial permutation
methodology of model 3 can already be an useful contribution to the toolbox of weather generators. In
contrast to research models 1 and 2 it has been shown that model 3 could permute precipitation in a
substantiated and credible way. No fixed shifting direction or distances was needed and the method-
ology did not heavily rely on underlying assumptions except for the choice of fraction f . Besides, it
maintained the characteristics of the historical precipitation patterns while at the same time generated
new extremes in different regions of the study area. The methodology also gives way to a broader use
on pan-European scale as long as sufficient wind data is available. However, careful examination of
the results, especially in orographically complex areas, is advised to ensure that the model does not
introduce physical unrealistic new precipitation events.

Finally, the results have shown that especially smaller basins, with times of concentration higher than
the temporal resolution of the data, can benefit from the introduction of new extremes from neighbouring
locations. For larger basins the direct effect was less but potential can be seen in the combination of a
spatial and a temporal sampling approach. New time series can be generated by temporal resampling
and an additional iteration with spatial resampling can generate supplementary variation. This will make
the rainfall series useful for both small and large catchments. The final effect of a combined approach
will need to be proven by subsequent research into the opportunities which spatial resampling can offer.
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Summary project discussion
• Research model 1 showed that permutation direction, distance, aggregation time and basin size
determine the outcome of the model. The longer time series generated by research model 1
made the statistical analysis more robust, though care should be taken about the dependency
between the observed extremes.

• Research model 2 showed that precipitation can be shifted based on semi-random vectors. It
provided a framework for including spatial and temporal correlation explicitly in the generated
vector fields.

• Research model 2 was sensitive to the initial and boundary conditions. Therefore, it is rec-
ommended to base the value of the independent variables limit m and range r on historical
observed physical parameters like wind direction and -speed.

• Model 3 proofed that wind direction and -speed can be used to condition displacement vectors.
However, a large trade-off was observed between the number of newly generated extremes
and the similarity between the historical and modelled rainfall characteristics.

• To reduce this trade-off it is recommended to include spatial and temporal correlation more
explicitly in the methodology of model 3. Options suggested include:

– Maintain the historical wind angle for each displacement vector. Only vary the length.
– Use a convolution matrix to equalize the displacement vectors after their creation (see
appendix VIII.1).

– Use a weighted selection method for the displacement vectors of the current day based
on the displacement vectors of the day before (see appendix VIII.2).

It is expected that the quality of the temporal correlation will benefit from the improvement of
the spatial correlation and visa versa.

• To apply spatial permutation on Pan-European scale, research model 2 and model 3 are consid-
ered suitable. However, sufficient (wind)data and improvement of the methodologies to reduce
the drawbacks as described above is recommended to increase the quality of the results.

• For future research it is advised to look into the possibilities to combine the current temporal
resampling algorithms with the developed spatial permutation approaches. As such, it is fore-
seen that generated data series will be more divers and suitable for risk assessment in both
small and large areas.



6
Conclusion

Weather generators (WGs) are powerful models which are used to generate long term precipitation se-
ries for flood risk analysis. They are based on different types of temporal resampling algorithms which
combine similar days into new weather sequences. Their use has been proven useful for large basins
with a time of concentration longer than the temporal resolution of the precipitation data. For smaller
areas, temporal resampling is not able to generate new extreme events since the time of concentration
is shorter than the temporal resolution. As such, no more extreme values can be observed than the
maxima in the historical data. Yet, during last years local and severe storms have shown their devas-
tating effect on local communities. These storms had never been observed before but their frequency
is expected to increase due to climate change. This raised the question whether spatial permutation
could contribute to a better representation of these local extremes in long term weather series.

To answer this question for the Rhine basin, four different consecutive research questions were
formulated. Each question provided information for the next question. In the first part, a literature re-
view described the main characteristics of precipitation regimes. Regimes can be distinguished by their
temporal and spatial variability and the precipitation amounts observed. The main factors influencing
precipitation regimes are atmospheric circulation patterns, topography and climate change and their
influence depends on location and season. Combining the characteristics and influencing factors re-
sulted in the subdivision of Europe in seven different areas. The Rhine basin was located in two of
them. The biggest part concerned Western Europe characterized by prevailing westerlies, low wind
speeds, relative flat orography and mean precipitation values around 5 [mm/day]. The Alps formed
the second area distinguished by varying mean precipitation values over the months, large orographic
elements, low wind speeds and very divers wind directions.

In the second part, fixed spatial permutation proved that shifting does affect extreme precipitation
patterns and statistics. A strong dependence of direction was confirmed when the area of interested
covered distinct precipitation regimes, e.g. the Rhine basin. Small basins reacted more strongly on
spatial permutation with a larger variation in modelled extremes. This demonstrated that spatial per-
mutation can be particularly useful to introduce more variability in precipitation for small basins. An
increase in shifting distance resulted in larger difference between historical and modelled precipitation,
while aggregation time showed the opposite relation. Nevertheless, the fixed approach conflicted with
the highly dynamic character of precipitation as described in the literature review. This contradiction
was addressed in the third part.

The third part showed that a more random vector based approach can be used to move precipitation
more naturally over the Rhine basin. Strongest effects on extreme precipitation were again seen for
small basins and short aggregation times. In addition, spatial and temporal correlation was incorpo-
rated in the methodology and was shown to be important for coherent precipitation shifting. A lack of
correlation resulted in highly scattered precipitation patterns.
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However, the sensitivity of the model to the weights assigned, the direction of calculations, the initial
and boundary conditions caused the outcomes of research model 2 to be highly dependent on the as-
sumptions made. To reduce the influence of these assumptions a more physically based methodology
was developed.

Historical wind vectors formed the physical base of the last model developed in this research ap-
proach. Observed angles and speeds were used to conditions the displacement vectors. The variation
between historical and displacement vectors was set by the fraction f and was proved to influence
the results strongly. Too high values created non-coherent precipitation patterns while too low values
constrained the capability of the model to generate new extremes. Spatial and temporal correlation
was lost by the lack of the methodology to take this explicitly into account. Nevertheless, the main
characteristics and influencing factors of precipitation regimes could be mimicked by the generated dis-
placement vector fields. Thereby, model 3 was considered to have a high potential for substantiated
permutation of precipitation.

To harvest the potential of spatial permutation and to contribute to a better representation of very
local, destructive precipitation events in stochastic weather series several steps were suggested. First,
spatial correlation of displacement vectors should be accounted for preferably with the possibility to
alter correlation values depending on the grid cell location and season. Values can be extracted from
historical precipitation sorted by season and related to distance by variogram analysis. Auto-correlation
should be taken into consideration especially over short durations, i.e. one day, though a better rep-
resentation of spatial correlation is expected to already contribute to this objective. Furthermore, the
justifiable ratio between noise and variation remains a point of interest and research into optimization
of these standards will contribute to a better transparency of the model results. Last, a promising
contribution of spatial resampling was seen in combination with temporal resampling. The effects of
this combination of both temporal and spatial variation are not known. However, many applications
are anticipated for areas of interest concerning both small and large catchments spread over different
precipitation regimes.
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I
Summary of notebooks used for

research model 2
All notebooks can be found at the Fathom-global Github page in the folder: axa-internal/wflow_axa/
src/1-prepare/SWG_Nynke in the branch SWG. The first part can be found in the folder model2_code.
The second part can be found in the folder model2_sensitivity. Requesting access may be needed to
view to code.

I.1. Code of model 2

model2_CDF_AD: code used to perform the Anderson-Darling test to quantify the difference between
the cumulative distribution functions (cdf) of the observed and shifted annual precipitation maxima.
Code returns both the AD-test statistics and a graph of the two cdfs.

model2_CDF_AD_oneclick: code used to perform the Anderson-Darling test to quantify the difference
between the cumulative distribution functions (cdf) of the observed and shifted annual precipitation
maxima. Code returns both the AD-test statistics and a graph of all the cdfs of one vector type. Code
is written such that it can be run with ‘one click’ without the need for further input.

model2_CDF_pearson: code used to calculate the Pearson correlation coefficient to quantify the
correlation between the cumulative distribution functions (cdf) of the observed and shifted annual pre-
cipitation maxima. Code returns the Pearson correlation coefficient, the 5- and 95-percentile intervals
and a graph of the two cdfs.

model2_CDF_pearson_oneclick: code used to calculate the Pearson correlation coefficient to quan-
tify the correlation between the cumulative distribution functions (cdf) of the observed and shifted annual
precipitation maxima. Code returns the Pearson correlation coefficient, the 5- and 95-percentile inter-
vals and a graph of all the cdfs of one vector type including the confidence intervals. Code is written
such that it can be run with ‘one click’ without the need for further input.

model2_coord_to_precip: code used to convert numpy.arrays with shifted longitude and latitude co-
ordinates into precipitation values based on the historical observed precipitation data. Code returns a
xr.Dataset with the new precipitation values.

model2_GEV_AD: code used to perform the Anderson-Darling test to quantify the goodness of fit of the
Generalized Extreme Value (GEV) distribution to the observed and shifted annual precipitation maxima.
Code returns both the AD-test statistics and a graph of all the GEV distributions of one vector type.
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model2_GEV_AD_oneclick: code used to perform the Anderson-Darling test to quantify the good-
ness of fit of the Generalized Extreme Value (GEV) distribution to the observed and shifted annual
precipitation maxima. Code returns both the AD-test statistics and a graph of all the GEV distributions
of one vector type. Code is written such that it can be run with ‘one click’ without the need for further
input.

model2_GEV_AD_unc_analysis: code used to examine the underlying causes of the differences in
AD values for the GEV fit of varying combinations of basins and aggregation times. Code returns a
figure with the observed and shifted annual maxima for different aggregation times and vector types.

model2_histogram_extremes: code used to generate a N number of repetitions of one year to deter-
mine the extent of variation the model can generate under different starting conditions. Code returns a
histogram of all repetitions with the historical value and standard deviation indicated.

model2_pearson_cor_analysis: code used to generate the correlation figures between the observed
and shifted precipitation value for different basins for an aggregation time of one day. Code returns
for each basin a figure in which the shifted precipitation is plotted against the observed precipitation
including the corresponding Pearson correlation coefficient.

model2_precipitation_fields_figure: code used to generate a figure in which the historical and ob-
served spatial precipitation pattern is shown including the differences in [mm/day] between the two
patterns.

model2_save_base42: code used to generate the base xr.Dataset with 42 years of historical observed
precipitation values.

model2_test_coords: code used to check visually if the longitude and latitude coordinates between
the observed and shifted data have the similar direction.

model2_short_ani: code used to generate a short vector animation of one month to show the differ-
ences in vector fields between different vector types characterized by their values of limit m (or a and
b (old notation)) and range r.

model2_visualize_extremes: code used to generate a figure in which one extreme event and the
influence of the different shifts and vector types are shown for the Moselle basin. In addition, the codes
include an option to generate a short animation of the period before and after the extreme event under
consideration.

model2_workflow: code used to generate new coordinate sets to shift the historical precipitation
patterns, convert them to precipitation values, generate an animation and finally store them as a new
xr.Dataset.
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I.2. Code to analysis the model sensitivity

Sensitivity_initial_field: code used to generate an N number of random displacement vector fields
with a length of one year with varying initial fields. Mean rainfall values are calculated at different points
in time for the Ijssel, Moselle and Rhine basin.

Sensitivity_initial_field_zeros: code used to generate an N number of random displacement vector
fields with a length of one year with initial fields filled with zeros. Mean rainfall values are calculated at
different points in time for the Ijssel, Moselle and Rhine basin.

Sensitivity_past_all1: code used to generate an N number of random displacement vector fields with
a length of one year with a fixed initial field for each iterations. All weights of the past weight’s matrix are
set to one. Current displacement vector values are not used in the calculation. Maximum rainfall values
are calculated at different points in time for the Ijssel, Moselle and Rhine basin. Spatial correlation is
calculated for latitude and longitude.

Sensitivity_past_all1_zeros: code used to generate an N number of random displacement vector
fields with a length of one year with an initial field consisting of zeros for each iterations. All weights of
the weight’s matrix are set to one. Current displacement vector values are not used in the calculation.
Maximum rainfall values are calculated at different points in time for the Ijssel, Moselle and Rhine basin.
Spatial correlation is calculated for latitude and longitude.

Sensitivity_past_parallel4_zeros: code used to generate an N number of random displacement vec-
tor fields with a length of one year with an initial field consisting of zeros for each iterations. Parallel
weights of the past weight’s matrix are set to four. All other weights are set to one. Current displace-
ment vector values are not used in the calculation. Maximum rainfall values are calculated at different
points in time for the Ijssel, Moselle and Rhine basin. Spatial correlation is calculated for latitude and
longitude.

Sensitivity_past_perpen4_zeros: code used to generate an N number of random displacement vec-
tor fields with a length of one year with an initial field consisting of zeros for each iterations. Perpen-
dicular weights of the past weight’s matrix are set to four. All other weights are set to one. Current
displacement vector values are not used in the calculation. Maximum rainfall values are calculated
at different points in time for the Ijssel, Moselle and Rhine basin. Spatial correlation is calculated for
latitude and longitude.

Sensitivity_weights_all1: code used to generate an N number of random displacement vector fields
with a length of one year with a fixed initial field for each iterations. All weights of the past and current
weight’s matrix are set to one. Maximum rainfall values are calculated at different points in time for the
Ijssel, Moselle and Rhine basin. Spatial correlation is calculated for latitude and longitude.

Sensitivity_weights_parallel2: code used to generate an N number of random displacement vector
fields with a length of one year with a fixed initial field for each iterations. All parallel weights of the
past and current weight’s matrix are set to two. Other weights are set to one. Maximum rainfall values
are calculated at different points in time for the Ijssel, Moselle and Rhine basin. Spatial correlation is
calculated for latitude and longitude.

Sensitivity_weights_perpen2: code used to generate an N number of random displacement vector
fields with a length of one year with a fixed initial field for each iterations. All perpendicular weights of the
past and current weight’s matrix are set to two. Other weights are set to one. Maximum rainfall values
are calculated at different points in time for the Ijssel, Moselle and Rhine basin. Spatial correlation is
calculated for latitude and longitude.
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Sensitivity_weights_past_parallel2: code used to generate an N number of random displacement
vector fields with a length of one year with a fixed initial field for each iterations. All parallel weights
of the past weight’s matrix are set to two. Other weights are set to one. Current displacement vector
values are not used in the calculation. Maximum rainfall values are calculated at different points in time
for the Ijssel, Moselle and Rhine basin. Spatial correlation is calculated for latitude and longitude.

Sensitivity_weights_past_perpen2: code used to generate an N number of random displacement
vector fields with a length of one year with a fixed initial field for each iterations. All perpendicular
weights of the past weight’s matrix are set to two. Other weights are set to one. Current displace-
ment vector values are not used in the calculation. Maximum rainfall values are calculated at different
points in time for the Ijssel, Moselle and Rhine basin. Spatial correlation is calculated for latitude and
longitude.



II
Summary of notebooks used for model 3
All notebooks can be found at the Fathom-global Github page in the folder: axa-internal/wflow_axa/src/
1-prepare/SWG_Nynke/model3_code in the branch SWG. Requesting access may be needed to view
to code.

colormaps: text file with code to import colormaps used for figures for the final report.

model_data: text file with explanation of the data used in the notebooks of model 3.

model3_autocorrelation_angles: Calculates the autocorrelation of the wind angles and wind speeds
of the historical and shifted data series for time lags of one, three, five and seven days. Returns figure
with the spatial patterns of the autocorrelation values for each season.

model3_autocorrelation_time: Calculates the autocorrelation of the precipitation patterns of the his-
torical and shifted data series for time lags of one, three, five and seven days. Returns figure with the
spatial patterns of the autocorrelation values for each season.

model3_built_anomalies: code used in the initial phase to visualize different wind characteristics such
as mean and maximum windspeed and the change of windspeed over one day.

model3_CDF_AD_cell_basin_oneclick: code used to generate the probability density (pdf) curves
of the precipitation values observed in one grid cell. Histograms are returned to compare the observed
and shifted precipitation values per grid cell. Testing of different statistics to quantify the difference
between the historical and shifted pdfs is done. QQ-plots can be plotted to compare grid cell data.
model3_CDF_AD_oneclick: code used to generate the Anderson-Darling test statistics for the cumu-
lative distribution functions.

model3_CDF_pearson_oneclick: code used to calculate the Pearson correlation coefficient between
the sorted annual maxima of the observed and shifted data sets. 5- and 95-percentile uncertainty
intervals around the cumulative distribution functions are calculated and plotted.

model3_CDF_pearson_oneclick_non_sorted: code used to calculate the Pearson correlation coeffi-
cient between the unsorted annual maxima of the observed and shifted data sets. 5- and 95-percentile
uncertainty intervals around the cumulative distribution functions are calculated and plotted.

model3_compare_cor: code used to generate the figures to compare the historical and shifted pre-
cipitation patterns both in time and in space for different seasons.
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model3_compare_precip_fields: code used to generate the figures to compare the historical and
shifted precipitation patterns on their monthly mean, maximum and standard deviation.

model3_correlation_space: Calculates the spatial correlation of the longitude and latitude component
of the historical and shifted vectors and the historical and shifted precipitation patterns. Correlation
values are calculated compared to the 5x5 square surrounding the grid cell of interest. Code returns
figure of mean correlation value for each grid cell per season.

model3_cov_analysis: code used to calculate the coefficient of variation between windspeeds and
-angles (not used in the report). Last part of the code was used to visualize the historical windspeed and
-angle distribution at different locations and compare these with the shifted data by means of histograms.

model3_cov_vectors: code used to calculate the coefficient of variation (cov) (standard deviation /
mean) of the historical and observed longitude and latitude components of the vectors, the wind angles
and the vector lengths. Returned figures include the cov values of the observed and historical data
series per season and the absolute difference between the two data series.

model3_datasets_delta_degrees: code to convert historical u- and v-components from [m/s] to [de-
grees] and save them as a new XArray.Dataset.

model3_datasets_displacement_vectors: code to generate the final datasets with the displacement
vectors and the new precipitation values.

model3_displacement_vectors: code in which the methodology of model 3 is applied step by step
and converted into a final definition used to generate the displacement vectors for different fractions f.

model3_extremes_basins: code to visualize the spatial pattern of an extreme event over the basin
of interest.

model3_final_datasets: code to generate final datasets with displacement vectors and components
in degrees.

model3_final_datasets_wa_wsp: code to generate final datasets with displacement vectors and com-
ponents in degrees including wind angle and -speed.

model3_GEV_AD_oneclick: code to generate generalized extreme values (GEV) distribution and the
corresponding AD-values and uncertainty intervals.

model3_july2021: code to visualize the observed and shifted precipitation patterns for the July 2021
event for all three models.

model3_per_sampling: code used to count the number of times a grid cell inside a basin samples a
precipitation value outside a basin. Returns figure of the Ijssel, Moselle and Rhine basin showing the
spatial pattern of percentage of time a grid cell in the basin samples from outside the basin. Overall
percentages are plotted above the figure. A second attempt to generate figures which plot the percent-
age of time and outside grid cell was included in the figure is added, but the code did not work yet.
Potential for further research.

model3_practise_pdf:: code used the practise the generation of a probability density function (pdf)
for the historical and shifted precipitation values. Different options are tested and visualized.

model3_sensitivity_fraction: code to visualize the sensitivity of different model parameters to the
value of fraction f (results are not used in the report).
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model3_std_basins_different_durations: code to calculate the differences in standard deviation of
precipitation for different durations between the observed and shifted data.

model3_std_hist_vs_noise: code used to compare the noise generate by the shifting of the historical
precipitation with the standard deviation of the historical precipitation per month. Returns figure for
each month in which the noise is shown as percentage of the historical standard deviation.

model3_test_bias_windangle: code to test whether a bias in wind angle sampling can be explained
by a skewed sampling distribution. Note: bias appeared to be an error in the used data, so the output
of this code was not relevant at the end for the report.

model3_variation: code to generate the histograms for one extreme event to determine the extent of
variation model 3 can generate for different values of fraction f.

model3_wind_direction_angle: code to test the definitions used in other notebooks to convert angles
to directions and calculate windspeed from components.



III
Precipitation and wind characteristics of

the Rhine basin
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Figure III.1: Maximum historical daily precipitation values [mm/day] observed over the Rhine basin. Data was retrieved from
the ERA5 reanalysis data set from 1980-2021. Values shown are average values over each month.
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Figure III.2: Standard deviation of historical daily precipitation values [mm/day] observed over the Rhine basin. Data was
retrieved from the ERA5 reanalysis data set from 1980-2021. Values shown are average values over each month.
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Figure III.3: Maximum historical daily wind speed values [m/s] observed over the Rhine basin. Data was retrieved from the
ERA5 reanalysis data set from 1980-2021. Values shown are average values over each month.
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Figure III.4: Minimum historical daily wind speed values [m/s] observed over the Rhine basin. Data was retrieved from the
ERA5 reanalysis data set from 1980-2021. Values shown are average values over each month.
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Figure III.5: Average wind angle [degrees] observed over the Rhine basin. Data was retrieved from the ERA5 reanalysis data
set from 1980-2021. Values shown are average values over each month.



IV
Histograms of variation for different

methodologies for each basin
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Figure IV.1: The extent of variation generated by different methodologies for the most extreme event in the Rhine basin in
2021 at July 15th, 2021. Methodologies are indicated by the letters: A) Random initial fields and weights 1.5 for parallel cells
and 0.75 for perpendicular cells (standard methodology of toy model 2), B) Random initial fields and weights 1.125 for parallel
cells and 0.825 for perpendicular cells, C) Initial field with zeros and weights 1.5 for parallel cells and 0.75 for perpendicular

cells, D) Initial field with zeros and weights all one. Standard deviations are printed above each figure.

Figure IV.2: The extent of variation generated by different methodologies for the most extreme event in the Moselle basin in
2021 at July 15th, 2021. Methodologies are indicated by the letters: A) Random initial fields and weights 1.5 for parallel cells
and 0.75 for perpendicular cells (standard methodology of toy model 2), B) Random initial fields and weights 1.125 for parallel
cells and 0.825 for perpendicular cells, C) Initial field with zeros and weights 1.5 for parallel cells and 0.75 for perpendicular

cells, D) Initial field with zeros and weights all one. Standard deviations are printed above each figure.
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Figure IV.3: The extent of variation generated by different methodologies for the most extreme event in the Ijssel basin in 2021
at June 22nd, 2021. Methodologies are indicated by the letters: A) Random initial fields and weights 1.5 for parallel cells and
0.75 for perpendicular cells (standard methodology of toy model 2), B) Random initial fields and weights 1.125 for parallel cells
and 0.825 for perpendicular cells, C) Initial field with zeros and weights 1.5 for parallel cells and 0.75 for perpendicular cells, D)

Initial field with zeros and weights all one. Standard deviations are printed above each figure.



V
Cdf curve of the Rhine and Moselle

basin with AD-values
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Figure V.1: Cumulative distribution function (cdf) of the Rhine basin for different durations and values of fraction f . AD-test
statistics are shown above each graph. Note the strong decrease in extremes when the value of fraction f increases till f= 0.5

(dark green line) for all durations
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Figure V.2: Cumulative distribution function (cdf) of the Moselle basin for different durations and values of fraction f . AD-test
statistics are shown above each graph. Note the strong decrease in extremes when the value of fraction f increases till f= 0.5

(dark green line) for all durations



VI
Histograms of the angle distribution

Figure VI.1: Seasonal histograms of the historical (black) and modelled wind angles for two different values of f : 0.1 (red) and
0.5 (blue), for the city of Bern (Swiss).
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Figure VI.2: Seasonal histograms of the historical (black) and modelled wind angles for two different values of f : 0.1 (red) and
0.5 (blue), for the city of Munster (Germany).



VII
Wind speed and wind angle distribution

Figure VII.1: Seasonal scatter plot of wind angle vs. wind speed for the city of Bern (Swiss).
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Figure VII.2: Seasonal scatter plot of wind angle vs. wind speed for the city of Munster (Germany).



VIII
Recommendations correlation

VIII.1. Improvement spatial correlation

On the next page, a schematic representation of the use of a convolution matrix to explicitly include
spatial correlation in the methodology of model 3 is presented. Foreseen advantages and challenges
are described in the enumerations below.

Advantages:

• The spatial correlation between vectors in neighboring grid cells will increase. It is expected that
the resulting spatial correlation will show a smaller difference with the historical spatial correlation
value.

• By increasing the size of the convolution matrix, the spatial correlation between grid cells can be
extended over larger distances. This can be used to reflect large correlation distance in uniform
areas, like lowlands. Decreasing the size of the convolution matrix can be used to create the
opposite effect for areas with low historical correlation values, like mountainous areas.

• Varying the weights of the convolution matrix can be used to introduce directional correlation. This
can be useful in areas which are characterised by different precipitation regimes, e.g. at foothills
or at small islands.

Challenges:

• The realisation of an objective method to determine the different weights when a convolution
matrix with varying weights is seen as most appropriate.

• The determination of the appropriate size of the convolution matrix. This can potentially be done
by defining a cut-off value of the historical spatial correlation between two cells. Cells with values
lower than this cut-off value should not be involved in the convolution process.
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VIII.2. Improvement temporal correlation

On the next page, a schematic representation of the use of an elaborated approach of choosing a proxy
vector to explicitly include temporal correlation in the methodology of model 3 is presented. Foreseen
advantages and challenges are described in the enumerations below.

Advantages:

• The temporal correlation between vectors in one grid cell will increase. It is expected that the
resulting temporal correlation will show a smaller difference with the historical temporal correlation
value.

• Randomness is maintained by allowing the model to ’escape’ from the quadrant with the highest
weights.

• The method can be implemented as new part in the methodology of model 3. There is no need
to change the rest of the methodology.

Challenges:

• The realisation of an objective method to determine the weights which need to be given to each
quadrant of proxy vectors.

• The inclusion of spatial correlation in this method should create a dependency between the
weights of quadrants of neighbouring cells at one time step to prevent an improvement of the
temporal correlation at the expense of the spatial correlation.
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Figure VIII.2: Visual representation of the elaboration of the proxy vector selection to include more temporal correlation in the
methodology of model 3.
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