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SUMMARY

The aim of this thesis is to investigate the impact of symmetry on light and how it alters
its characteristics. Our research centers around the examination of complex photonic
crystals rooted in the concept of photonic topological insulators, which are analogs of
topological insulators initially introduced in condensed matter physics. Unlike typi-
cal insulating materials, these possess a unique ability to conduct along their surface
or edges. Leveraging this fundamental property, photonic topological insulators have
gained attention for designing transport circuits resistant to back-reflection and scattering
mechanisms.

To provide a foundation for understanding these concepts, Chapter 1 serves as an
introduction. We introduce photonic crystals and the propagation of light as Bloch waves.
Additionally, we delve into the vectorial nature of light. As photonic topological insulators,
akin to two-dimensional graphene, exhibit diverse degrees of freedom, we explore the
spin and valley degrees of freedom, which form the basis for categorizing the thesis into
two sections. Before delving into experimental results, Chapter 2 elucidates the crucial
concepts of fabrication and measurements for photonic topological insulators. We work
with a silicon-on-insulator platform due to its high-refractive index dielectric, enabling
the creation of high-quality, low-loss waveguides capable of confining light within the
active silicon layer. Our near-field measurements are conducted in the telecom regime.
We introduce Fourier transformation, filtering techniques for visualization, and polariza-
tion separation to equip readers with terminology essential for navigating subsequent
chapters.

The heart of our research revolves around exploring topological phases resembling the
Quantum Spin Hall effect (Part I) and the Quantum Valley Hall effect (Part II). These phases
reveal critical attributes of photonic edge states, including spin-momentum locking,
resilience to sharp corners, valley preservation in the presence of defects, and resistance
to backscattering, even when subjected to engineered random disorder.

In Part I, we delve into photonic platforms emulating the quantum spin Hall effect,
distinguished by a unique pseudospin. Each topological helical edge state is intrinsi-
cally linked to its designated pseudospin, which ideally facilitates coupling to quantum
emitters with matching polarization states for on-chip quantum networks. Neverthe-
less, Chapter 3 uncovers a complexity within the subwavelength structure, as the highly
structured field of the edge state results in a spatially varying optical spin density.

Part II explores non-trivial photonic systems possessing a valley degree of freedom,
ensuring robust topology-protected transport of optical states in the presence of sharp
corners, defects, and random disorder. Chapter 4 presents an experimental study quan-
tifying the robustness of these topologically non-trivial eigenstates within a non-trivial
topological waveguide. We observe significantly reduced backscattering along the inter-
face in such crystals compared to conventional photonic crystal waveguides, especially in
mirror-symmetric zig-zag interfaces. However, introducing a slight interface shift disrupts

ix



x SUMMARY

valley-dependent transport, revealing the fragility of these topological photonic systems,
as discussed in Chapter 5. Additionally, we explore the reduction in backscattering within
topologically non-trivial photonic crystals, a crucial consideration in systems involving
slowed-down light and heightened light-matter interaction. Chapter 6 presents a com-
prehensive analysis demonstrating that adding scatterers may have a more pronounced
impact on topological modes than on trivial ones. Nevertheless, specific parameters show
that non-trivial modes can still offer robustness, particularly in systems involving slow
light. This research into photonic modes and their intriguing behaviors serves as the cor-
nerstone of our thesis. The concluding chapter delves into the significance, implications,
and broader contributions of these findings to the field.



SAMENVATTING

Het doel van deze scriptie is om te onderzoeken hoe symmetrie invloed heeft op licht
en hoe het de kenmerken ervan verandert. Ons onderzoek draait om de studie van com-
plexe fotonische kristallen die gebaseerd zijn op het concept van fotonische topologische
isolatoren, analoge versies van topologische isolatoren die oorspronkelijk werden geïn-
troduceerd in de gecondenseerde materie fysica. In tegenstelling tot typische isolerende
materialen, bezitten topologische isolatoren een unieke eigenschap om te geleiden langs
hun oppervlak of randen. Door gebruik te maken van deze fundamentele eigenschap
zijn fotonische topologische interessant voor het ontwerpen van transportcircuits die
resistent zijn tegen terugreflectie en verstrooiingsmechanismen.

Om een basis te bieden voor het begrip van deze concepten, dient Hoofdstuk 1 als
een introductie. We introduceren fotonische kristallen en de voortplanting van licht als
Bloch-golven. Daarnaast duiken we in de vectoriële aard van licht. Omdat fotonische
topologische isolatoren, vergelijkbaar met tweedimensionaal grafiet, diverse vrijheids-
graden vertonen, onderzoeken we de spin- en valleivrijheidsgraden, die de basis vormen
voor de onderverdeling van de scriptie in twee secties. Voordat we dieper ingaan op
experimentele resultaten, verduidelijkt Hoofdstuk 2 de cruciale concepten met betrekking
tot de fabricage en metingen van fotonische topologische isolatoren. We werken met een
silicium-op-isolator platform vanwege het dielectricum met een hoge brekingsindex, dat
de creatie van hoogwaardige, laag-verlies golfgeleiders mogelijk maakt die licht kunnen
beperken binnen de actieve siliciumlaag. Onze nabijveldmetingen worden uitgevoerd in
het telecom frequentiegebied. We introduceren Fourier-transformatie, filtertechnieken
voor visualisatie en polarisatiescheiding om lezers uit te rusten met de terminologie die
essentieel is voor het begrijpen van de volgende hoofdstukken.

Het hart van ons onderzoek draait om het verkennen van topologische fasen die lijken
op het Quantum Spin Hall-effect (Deel I) en het Quantum Valley Hall-effect (Deel II). Deze
fasen onthullen cruciale kenmerken van fotonische ‘edge states’, zoals spin-momentum
vergrendeling, weerstand tegen scherpe hoeken, behoud van valleien in aanwezigheid
van defecten en weerstand bescherming tegen terugkaatsing, zelfs wanneer zelfs bij
geëngineerde geconfronteerd met geëngineerde willekeurige wanorde.

In Deel I duiken we in fotonische platforms die het quantum Spin Hall-effect naboot-
sen, gekenmerkt door een unieke pseudospin. Elk topologisch helicaal ‘edge state’ is
intrinsiek gekoppeld aan zijn aangewezen pseudospin, wat idealiter de koppeling met
quantumemitters met overeenkomstige polarisatiestaten mogelijk maakt voor on-chip
quantumnetwerken. Niettemin ontrafelt Hoofdstuk 3 een complexiteit binnen de subwa-
velength structuur, aangezien het sterk gestructureerde veld van de ‘edge state’ resulteert
in een ruimtelijk variërende optische spinsdichtheid.

In Deel II verkennen we niet-triviale fotonische systemen met een ‘edge state’, die
zorgen voor robuustheid bij topologie-beschermd transport van optische staten in aanwe-
zigheid van scherpe hoeken, defecten en willekeurige wanorde. Hoofdstuk 4 presenteert
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een experimentele studie waarin de robuustheid van deze topologisch niet-triviale ei-
gentoestanden binnen een niet-triviale topologische golfgeleider wordt gekwantificeerd.
We observeren aanzienlijk verminderde terugkaatsing langs de interface in dergelijke
kristallen vergeleken met conventionele fotonische kristal golfgeleiders, vooral in spiegel-
symmetrische zigzag-interfaces. Het introduceren van een lichte interfaceverschuiving
verstoort echter het vallei-afhankelijke transport, wat de kwetsbaarheid van deze to-
pologische fotonische systemen onthult, zoals besproken in Hoofdstuk 5. Daarnaast
onderzoeken we de vermindering van terugkaatsing binnen topologisch niet-triviale
fotonische kristallen, een cruciale overweging in systemen met vertraagd licht en ver-
hoogde licht-materie interactie. Hoofdstuk 6 presenteert een uitgebreide analyse waaruit
blijkt dat het toevoegen van verstrooiers mogelijk een meer uitgesproken impact heeft
op topologische modi dan op triviale modi. Desondanks tonen specifieke parameters
aan dat niet-triviale modi nog steeds robuustheid kunnen bieden, vooral in systemen
met vertraagd licht. Dit onderzoek naar fotonische modi en hun intrigerende gedrag
vormt de hoeksteen van onze scriptie. Het afsluitende hoofdstuk gaat in op de betekenis,
implicaties en bredere bijdragen van deze bevindingen aan het vakgebied.

raakvlaktoestanden



1
INTRODUCTION

If I have seen further, it is by standing on the shoulders of giants.

1Sir Isaac Newton
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2 1. INTRODUCTION

Communication has played a central role in society since time immemorial enabling
the exchange of emotions, ideas, and knowledge [1]. Throughout history, various methods
have been employed for long-distance communication, such as the use of smoke and fire
as means of signaling [2]. By burning specific materials distinct signals could be generated,
creating smoke that could be observed at a distance. Similarly, mirrors were utilized as
reflective surfaces to redirect sunlight and transmit messages. These methods involved
the transfer of visual signals, i.e., they used light. Over the centuries, technological
advancements have improved the efficiency and reach of communication systems, from
the development of written languages to the invention of the telegraph, telephone, and
the internet [3]. Light forms the backbone of modern telecommunication, from optical
fibers to wireless communication systems [4–6]. Traditional systems heavily rely on the
use of metallic conductors or dielectric waveguides to guide and manipulate light signals
[7–9]. However, these conventional methods are not without limitations. Signal losses,
electromagnetic interference, and the need for complex fabrication processes are just a
few of the challenges faced by existing technologies [10].

In recent years, a groundbreaking field known as topological photonics has emerged,
which holds the promise to revolutionize human communication once again [11–13].
Topological photonics incorporates unique properties of light in structured materials,
offering solutions to the challenges faced by traditional communication systems [14–16].
The study of so-called topological photonic crystals allows us to explore the possibility
of guiding light without any loss and ensuring the efficient and robust transmission of
information. In addition to practical applications, the study of topological photonics
stems from scientific curiosity. Understanding the fundamental concepts of light in these
unconventional systems can provide insights into the workings of nature and can unveil
previously unexplored phenomena [17, 18].

This thesis aims to explore how the symmetry imposed on light changes its behavior.
We investigate non-trivial photonic crystals based on the photonic analog of topological
insulators. In this introductory chapter, we begin our exploration with the concepts of
topology adapted from condensed matter physics to photonic systems, in the realm of
photonic crystals. We investigate one-dimensional (1D) photonic crystals and the Bloch
wave nature of photons in periodic structures. Understanding the nature of Bloch waves is
essential for comprehending the intricate behavior of light within photonic crystals. This
work then gradually progresses to two-dimensional (2D) photonic crystals and through
examination of their properties, discusses topological photonic insulators and their
degrees of freedom. We focus on the topological phases emulating the Quantum Spin
Hall effect (QSHE) and the Quantum Valley Hall effect (QVHE). We present an overview of
the aspects of light-matter interactions related to spin, helicity, and chirality. Finally, we
conclude with an outline of the thesis.

1.1. TOPOLOGY BROUGHT TO LIGHT
Science thrives on analogies. The discovery of a new class of materials known as topologi-
cal insulators (TI) created major excitement in the scientific community [19–21]. In a TI,
electron transport does not suffer back-reflections and is protected against scattering at
bends and corners. These materials are insulating in bulk, but support conducting edge
states at the interfaces of two materials as a result of certain physical properties that are
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invariant under continuous deformations [11]. The concept is often understood at the
expense of mathematicians by the example of the buns, bagels, and pretzels [22] *. In this
thesis, we concentrate not on condensed matter physics but on its optical analogs. As
a geometric concept, topology has progressed from a pure mathematical tool to being
used in gauging the existence and robustness of scattering-free optical networks and
understanding physical phenomena under smooth perturbations [23].

1.1.1. PHOTONIC CRYSTALS
To envision topologically protected transport in light at the nanoscale, we shift our obser-
vation scales from electronics to photonics. The field of photonics has seen tremendous
growth in recent years since it offers the ability to manipulate light at the nanoscale using
photonic crystals (PhCs). PhCs, also called semiconductors of light, possess a periodic
modulation of the refractive index and exhibit frequency ranges where no modes inside
the crystal can exist, so-called band gaps. By carefully engineering the band structure of
these PhCs, we can control the propagation and localization of light, leading to a wide
range of applications, such as filters, mirrors, and lasers [24, 25]. Key applications of
PhCs lie in the field of optical waveguides and lattices [26–30]. Waveguides are structures
that are modulated along a specific direction to confine and guide light along a specific
path, with high efficiency and low loss [31–33]. These waveguides can be used in optical
communications and sensing applications [34]. Analogous to electronic lattices [35] in
solid-state physics, photonic lattices are structures that can be used to study the behavior
of light in periodic systems, including phenomena such as Bloch oscillations [36–39] and
Anderson localization [40–43].

PhCs can be fabricated along one, two, or three dimensions, depending on the dimen-
sions along which the refractive index is modulated [44–49]. In this thesis, we investigate
2D photonic crystals, that possess index-guided modes in the plane of the crystal (x and y
direction) that are confined in the out-of-plane z direction due to total internal reflection
within a high refractive index material [24].

BLOCH NATURE

To comprehend the behavior of light in photonic crystals, we start with the simplest
case of 1D photonic crystals. We apply principles of electrodynamics and symmetry
[24] to understand the Bloch wave nature of photons in such a structure with a period
a along the x direction. For a homogeneous medium, we assume the crystal has an
imposed pseudo-periodicity since it possesses a constant dielectric permittivity ϵ= n2

and continuous translation symmetry. We mathematically express the propagation of
light along +x direction using Maxwell’s equations, where the solution is a plane wave
with the modes taking the form of [50]:

Ek (x) = E0e ik0x−iωt , (1.1)

where E0 is an arbitrary constant vector. These plane waves manifest in the dispersion
relation asω= ck0/n whereω is the optical frequency, k is the wavevector, n indicates the
effective refractive index of the medium and c is the speed of light in vacuum. Therefore,

*A topologist is a mathematician who cannot tell the difference between a doughnut and a coffee cup - so goes
the joke
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for modes in a medium with pseudo-periodicity a, the dispersion relation is linear and
is indicated in Fig. 1.1 with red dashed lines. The shaded blue region is a continuum of
states that extends into the medium and for air where n ≈ 1 is the light line denoted as
the blue solid lines given by ω=±ck.

0-π/a π/a 2π/a2π/a
lig

ht
 li

ne
Wavevector, kx

Direction of 
light propagation

a

x
yPhotonic Band Gap

Optical frequency, ω

Figure 1.1: Schematic representation of a one-dimensional photonic crystal and its band structure with period-
icity a. The direction of light propagation is in the +x direction and is indicated by an arrow through the 1D
photonic crystal. When a pseudo-periodicity a is imposed on the 1D crystal, the corresponding Bloch plane
waves are denoted as dashed red lines indicating the fundamental and higher-order Bloch harmonics. With a
dielectric periodicity a to the 1D crystal, the corresponding Bloch modes are shown as black curves with the
grey region denoting a photonic band gap.

Now, we impose a periodic dielectric function ϵ(x) = ϵ(x +ma), where m is an integer,
to the medium along the +x direction and homogeneous along the in-plane y, z directions.
Bloch’s theorem states that a wavefunction in a periodic medium can be written as a sum
of plane waves, with an amplitude modulated by the periodicity of the underlying medium
[35, 51]. Due to discrete translation symmetry along +x direction with a lattice periodicity
of a, we can rewrite the above expression as [52]

Ek (x) = uk (x)e ikx , (1.2)

where uk (x) = uk (x +R) denotes the discrete periodic envelope function and R is an
integral multiple (m ∈ Z ) of the lattice period. The resulting wave solutions Ek are known
as Bloch states and are functions of space and time. As such, we can separate the time
and spatial dependence by expanding the fields into a set of harmonic modes, and for
simplicity, we ignore the time dependence of the plane wave. Therefore, Eq. 1.2 can be
rewritten in the form of a Fourier series of plane waves as:

Ek (x) =
+∞∑

m=−∞
Am(k)E0e i (kx+m 2π

a )x . (1.3)

Here, Am(k) indicates the amplitude of Bloch harmonics. Eq. 1.3 indicates that all Bloch
harmonics collectively make up one Bloch mode and are separated in wavenumber by
2π/a. Computing the eigenvalues of this wave equation results in a band structure (Fig.
1.1). At an exemplary frequency indicated by a horizontal blue dashed line in Fig. 1.1, we
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indicate Bloch harmonics with color-coded circles. For m = 0, the zero-order harmonic is
referred to as the fundamental Bloch harmonic, and all the higher-order harmonics range
from −∞ to +∞. In Fig. 1.1 all red-colored Bloch harmonics together form the Bloch
mode propagating in the positive direction, while the green Bloch harmonics form the
Bloch mode propagating in the negative direction. In the dispersion relation, the slope of
the curve is defined as the group velocity vg = ∂ω

∂k and signifies the velocity with which
the wave propagates in space. Therefore, each Bloch mode with positive group velocity is
a forward propagating mode (red circles in Fig. 1.1), whereas a mode with a negative vg

is a backward propagating mode (green circles in Fig. 1.1). For a periodic modulation,
the dispersion relation can, however, feature avoided crossings at either k = 0 or at the
edges of the Brillouin zones. Around this gap, electromagnetic waves have no accessible
modes and result in what is known as a stop-gap (grey shaded region in Fig. 1.1) [46]. It is
important to note, that in the context of 1D photonic crystals, stop gaps can be considered
band gaps because they represent ranges of frequencies that are prohibited or strongly
suppressed in terms of light propagation through the crystal structure [24].

From a 1D photonic system, we move to a next higher-order photonic system, where
the dielectric periodicity in the x and y directions ensures Bloch modes propagating in
the plane of the crystal and is homogeneous along the third axis (z). Two-dimensional
photonic crystals, also known as photonic crystal slabs, confine light in the direction
perpendicular to the crystal plane by index guiding as a consequence of total internal
reflection inside the high refractive index material [53, 54]. In free space (n = 1), we
have wavevector k2 = k2

x +k2
y +k2

z = ω2/c2 [55]. However, in the case of a 2D system,
the corresponding Brillouin zone is built using only in-plane wavevectors k∥ = kx ,ky .
Spatial confinement of guided modes in the slabs, therefore, results in k2

∥ >ω2/c2, and as

a result, k2
x +k2

y >ω2/c2 with kz acquiring a purely imaginary value [55]. This results in
index-guided modes being evanescent in z as they decay exponentially away from the
2D crystal plane. On the other hand, when k2

x +k2
y <ω2/c2, the mode has a real kz and

can couple to far-field radiation. In such a case, the modes lie above the light line [56].
In this thesis, we consider air holes in a silicon-on-insulator platform which gives rise to
transverse electric modes, where the magnetic field component Hz is normal to the plane
and E is in the plane with Ez = 0.

1.1.2. SPIN/CHIRALITY/HELICITY OF LIGHT

In the field of nano-optics and photonic crystals, spin, chirality, and helicity of light
are distinct concepts that describe different aspects of light-matter interactions. It is
important to understand these concepts relating to the rotational direction of light fields
and topological photonics.

A beam of light carries both spin and orbital angular momenta in the direction of
propagation [57]. The spin angular momentum of light (optical spin) is used to describe
the polarization state of light. Light can be linearly polarized (where the electric field
oscillates in a fixed direction), circularly polarized (where the electric field rotates in a cir-
cular motion), or a combination of the two, leading to elliptically polarized light. Circular
polarization has two possible spin states: right-handed and left-handed, corresponding
to clockwise and counterclockwise rotation of the electric field, respectively. The Jones
matrix formalism is used to describe the polarization state of light as a 2×2 vector and
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can be used to represent the transformation of the polarization state through an optical
element such as a waveplate or a polarizer. It encodes the polarisation state using the
complex amplitude and phase information for each polarisation component.

To facilitate experimental observations, another important formalism that describes
the polarisation state of light is known as the Stokes parameters [58]. A set of four equa-
tions is derived from the electric field intensity and characterizes the degree of ellipticity
and orientation of the polarization state. They are defined as:

S0 = E 2
x +E 2

y

S1 = E 2
x −E 2

y

S2 = 2Ex Ey cosΦ

S3 = 2Ex Ey sinΦ

(1.4)

where Ex and Ey are the electric field amplitude of the x and y polarisation components,
φ is the phase difference between the two components, S0 quantifies the total intensity of
polarized and unpolarized light, S1 represents the degree of linear polarization (horizontal
or vertical), S2 quantifies the intensity of diagonal polarisation (+45◦ or −45◦), and S3

evaluates the intensity of right or left circular polarisation.
The third Stokes parameter (S3) is known as the helicity parameter and is defined in

a two-dimensional system as σz = Im[E×E]z . For perfectly left or right-handed circu-
larly polarized light the helicity parameter takes a unit value σz =±1 [59, 60]. Therefore,
helicity is the component of spin angular momentum of circularly polarized light pro-
jected onto the propagation direction. Right-handed helicity corresponds to the spin
angular momentum aligned with the direction of propagation, while left-handed helicity
corresponds to the opposite direction as defined from the point of view of the source. In
the context of photonic crystals, the helicity of light can be manipulated by the crystal
structure, leading to various polarization-dependent optical effects.

An object that cannot be superimposed onto its mirror image is said to be chiral [61].
In the context of nano-optics and photonic crystals, chirality is often associated with the
handedness of the structure. It can describe the arrangement of certain nanoscale struc-
tures, such as nanoparticles or helical nanostructures, that exhibit a specific handedness.
Chirality plays a crucial role in the interaction of light with chiral materials and can result
in interesting optical phenomena, such as circular dichroism and optical activity. In the
context of topological photonics, the chirality of a photonic structure is often associated
with the Berry curvature, which is a key quantity in the study of topological effects. For
example, in the photonic quantum Hall effect systems, chirality can be used to control
the sign of Berry curvature [62].

1.1.3. TOPOLOGICAL PHOTONIC CRYSTALS
Topological photonic crystals (TPCs) are a subset of photonic crystals that possess a
nontrivial band structure [12, 63]. The topology of the bands is characterized by a quantity
known as topological invariants. If a photonic band has an integer-valued topological
invariant or Chern number, the system is said to be a Chern photonic insulator [19]. If the
topological invariant takes up binary values, the topologically nontrivial systems are said
to haveZ2 topological invariants. These invariants are defined over the momentum space
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as the integral of the Berry curvature within the first Brillouin zone [64]. Chern numbers
can essentially be thought to be the same as the acquired Berry phase or geometric phase
of a state that undergoes an adiabatic change in the momentum space of a 2D system
when it returns to its initial position [65]. In conventional trivial bands, this geometric
phase has a zero acquired phase, whereas in non-trivial bands the acquired non-zero
phase is an integer multiple of 2π [66].

The physical significance of these topological invariants arises from their direct mani-
festation in the bulk-edge correspondence which dictates that the number of edge states
depends on the difference of topological invariants [11, 67–70]. When two insulators with
gapped band structures featuring distinct topological invariants are brought close to-
gether to form an interface, this must give rise to a gapless edge state and these invariants
cannot change its value under continuous perturbations [71]. Topological invariants are
a global property of the crystals’ momentum space and ensure that the TPCs are robust
against certain types of defects and disorders [72, 73], making them promising candidates
for photonic applications where high tolerance to fabrication errors is required. The
properties of TPCs can be engineered to suit specific applications to ensure unidirec-
tional routing [56, 73] and have specific topological properties, such as the presence of
topologically protected slow modes, which can be used in high-performance sensors [74,
75].

1.1.4. SPIN AND VALLEY DEGREES OF FREEDOM

Internal degrees of freedom (DoF) of light such as frequency, polarization, phase, spin,
and orbital angular momentum can be independently manipulated to modulate the
flow of light [76, 77]. Borrowing topological concepts from condensed matter physics
to photonics allows us to control these DoF which results in unique properties of light
propagation [78]. An essential condition for TPC is the requirement to break time-reversal
symmetry. There are several ways to do so, for example, in gyromagnetic crystals using an
external magnetic field [73, 79–82] where the wavefunction is characterized by a binary
topological invariant (Z2). In the absence of a large magneto-optical response at optical
frequencies, one can break pseudo-time-reversal symmetry and ensure robust edge state
propagation and protection against specific types of disorders [83]. The two main DoFs
that allow us to achieve a non-trivial topological invariant are discussed in this thesis
- spin and valley - which can be used to categorize 2D nontrivial topological photonic
systems that are time reversal symmetric but have broken spatial symmetries. These DoFs
give rise to the photonic analog of QSHE and QVHE which are used to describe analogous
phenomena related to the control of polarization states and the manipulation of light
propagation in different momentum space regions.

We employ the electronic band structure of graphene [84] (schematically shown in Fig.
1.2(a)) to discuss the context of DoF in photonic systems. The band structure of graphene
features a doubly degenerate Dirac cone where the conduction and valence band become
degenerate at the corners of the first Brillouin zone (a set is labeled with K and K′ in Fig.
1.2)(b)) [84]. A planar surface of graphene has inversion and time reversal symmetry that
protects the degeneracy of the Dirac points. For graphene, this degeneracy can be lifted
by doping or strain which breaks inversion symmetry [85–87].

Analogous to the graphene lattice, we consider a photonic lattice with hexagonal
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Figure 1.2: Schematic representation of an electronic and photonic lattice and their corresponding band
structure. (a) Top-down view of graphene with two lattice sites forming a honeycomb structure. (b) The
electronic band structure of graphene features a Dirac cone at the K and K′ valleys of the hexagonal Brillouin zone
such that the conduction and valence band are degenerate at the Dirac point. Scanning electron micrograph
of a topological photonic crystal interface emulating (c) quantum spin Hall effect and (e) quantum valley
Hall effect. The schematic in (c) shows an ordinary unit cell with an arrangement of equilateral triangles in a
hexagon. Continuous deformation of this arrangement results in the corresponding shrunken or expanded
lattice. The schematic in (e) shows a rhombohedron ordinary unit cell that deforms to lattice 1 and lattice 2
possessing opposing valley Chern invariants. Dashed lines indicate the initial ordinary lattice arrangement. (d)
The photonic diagram of the interface features two counter-propagating edge states at the Γ point for the QSHE
emulating interface, with the red and blue lines indicating edge states with opposite group velocities. (f) Two
degenerate edge states at the K and K′ (red and blue) with opposing group velocity traverse the bandgap of the
QVHE-emulating interface.

symmetry and treat it as equivalent to a triangular lattice of hexagonal unit cells each
containing six sites (see a schematic of an ordinary lattice in the inset of Fig. 1.2(c)).
The resulting 2D lattice has a C6 crystal symmetry with 60◦ rotational symmetry. Band
folding results in a 4-fold degenerate Dirac cone at the center of the Brillouin zone at the
Γ point [88, 89]. While maintaining the triangular lattice C6 symmetry, we can deform the
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hexagonal sites by concentrically moving them closer or apart. In the inset of Fig. 1.2(c),
the ordinary lattice is deformed into the shrunken lattice (LS ; top) with the holes concen-
trically brought closer and the expanded lattice (LE ; bottom) as a result of triangular holes
concentrically pulled apart. The different coupling strengths between neighboring sites
in the two lattices impart a non-trivial nature to the expanded lattice with the band gap
possessing an integer topological invariant Z2 =±1 [90], whereas the shrunken lattice
leads to a gapped but trivial topological invariant Z2 = 0. The interface of LS and LE

supports two counter-propagating edge states that traverse the band gap around the Γ-
point [88, 89]. A cross-band results in two counter-propagating edge states with opposing
group velocities that indicate the presence of two pseudospin states (red and blue lines
in Fig. 1.2(d)) within the bandgap [88]. These edge states exhibit spin-to-propagation
direction locking and form the basis of quantum spin Hall effect emulating edge states
which are further discussed in Ch. 3 [83, 91, 92]. In the analogy with graphene, this effect
can be observed at the edges of graphene and is said to be topologically protected against
non-magnetic defects as long as the disorder does not induce a spin flip [93].

In contrast to the spin DoF which supports edge states around the Γ point where
k = 0, the valley DoF refers to the propagation of light at higher wavevectors, analogous
to the K and K′ valleys in graphene [12, 82, 94–96]. We consider again the case of photonic
graphene to have a hexagonal lattice with two sites forming a rhombohedron unit cell
(see schematic of ordinary lattice in Fig. 1.2(e)). The crystal possesses C3 group symmetry
and results in the band structure featuring a doubly degenerate Dirac cone at the K and K’
valleys in the irreducible Brillouin zone [95, 97, 98]. Breaking spatial inversion symmetry
by adiabatically changing the side length of the sites lifts the degeneracy at the high
symmetry points and opens a photonic bandgap. These high-symmetry points K and K′
acquire a valley Chern number Cv =±1/2. Following the bulk-edge correspondence [67,
68, 99], an interface with two lattices (Lattice 1 and Lattice 2 in the schematic of Fig. 1.2(e)
with distinct Cv results in one helical edge state crossing the bandgap region at each valley
(red and blue linear dispersion shown in Fig. 1.2(f)). A simple case of such an interface
is known as a zigzag interface, which has mirror symmetry and is further discussed in
Ch. 4. Introducing a glide symmetry along the mirrored interface can give rise to a mode
gap and can result in a breakdown of valley-dependent transport (see Ch. 5). Another
type of glide symmetry includes transforming one of the sites into another which results
in a bearded interface and gives rise to two distinct modes, trivial and non-trivial that
are degenerate at the BZ edge due to glide symmetry. This type of interface is further
discussed in Ch. 6 with respect to engineered random disorder and slow light behavior.
We will further explore the nature of these degrees of freedom resulting from symmetry
operations in detail and how their practical implementation contributes to the robustness
of light propagation in the following chapters.

1.2. ORGANIZATION OF THE THESIS
A rigorous understanding of various aspects of these TPCs for describing novel physics is
essential to build a complete picture of the value topological photonics holds in potential
applications. The remainder of this first section is devoted to introducing the experimen-
tal tool that will allow one to fully understand the techniques that were employed in this
research work. This thesis focuses on the design, fabrication, and characterization of
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TPCs with nontrivial topological properties. We will also explore the effects of defects
and disorder on the topological properties of TPCs. The thesis is organized in two sec-
tions: The first section is devoted to the Quantum Spin Hall effect emulating photonic
crystals and the second half delves deep into nontrivial photonic crystals that emulate
the Quantum Valley Hall effect.

• In Chapter 2, we outline the fabrication procedure to engineer photonic crystals
on a silicon-on-insulator (SOI) platform. We also elucidate the experimental tech-
nique implemented to generate and detect topologically nontrivial fields at telecom
wavelengths.

• In Chapter 3, we investigate the influence of the Bloch nature of QSHE emulating
topological photonic crystals. We explore the spatial distribution of spin density in
the near field and evaluate the measured and calculated global spin.

• In Chapter 4, we quantify the degree of topological robustness in QVHE emulating
photonic crystals.

• In Chapter 5, we explore the interface-dependent behavior of the topological edge
state in QVHE emulating TPCs. We assess the degree of robustness of these edge
states in the presence of defects that preserve valley DoF.

• Chapter 6, we examine the extent of topological protection exhibited by QVHE
emulating TPCs in the context of engineered disorder. This chapter focuses on
assessing the impact of random disorder on the ability of the topological system to
maintain its unique properties.

• In Chapter 7, we present the conclusions drawn from our research and provide
an outlook for future studies aimed at unraveling the novel physics of topological
photonic crystals. We delve into the potential impact of topological photonics in
the telecom region and propose their adoption in the optical regime, specifically
focusing on light-matter interactions with 2D semiconductors. This chapter serves
to summarize the key findings of our work and highlight the exciting prospects for
further exploration in this field.
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ENGINEERING AND MEASURING

PHOTONIC TOPOLOGICAL

INSULATORS

The world is simple. It’s miserable, solid all the way through. But if you can fool them, even
if just for a second, then you can make them wonder, and you get to see something very

special.

2 Robert Angier

With near-field microscopy, we extract the complete vectorial and subwavelength informa-
tion of topologically trivial and non-trivial photonic crystal edge states exploiting direct
access to amplitude, phase, and polarisation resolution. We map the complex field pro-
file and detailed structure of these edge states by coupling light into symmetry-protected
two-dimensional photonic crystals. With an aperture-based probe, we raster scan in the
vicinity of the sample surface. Using various data processing and visualization techniques,
we extract a complete account of robustness, local helicity, and multiple scattering of edge
states.

11
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Figure 2.1: Fabrication process overview for a suspended photonic crystal.

In this thesis, we fabricate suspended photonic crystals (PhCs) and measure and
evaluate their full complex mode behavior. We first introduce in detail the methods
to fabricate these PhCs. Then we discuss the near-field scanning optical microscope
investigations of the PhCs and elaborate on the techniques that equip us to understand
the subsequent chapters. We also give an overview of the types of numerical simulations
that were employed to support our experimental results.

2.1. A PLATFORM FOR TOPOLOGICAL PHOTONIC CRYSTALS
The technology of silicon-on-insulator (SOI) platforms has taken the world by storm over
the last few decades. This platform combines the benefits of silicon-based electronics
with the advantages of photonic devices, paving the way for high-performance optical
communication and sensing networks. Integrating nanophotonic components onto
SOI platforms has enabled high-speed optical communication and resulted in a drastic
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improvement in the performance of on-chip photonic devices [100–103]. The work
presented in this dissertation is based on the technologically mature silicon-on-insulator
platform using a standard layer arrangement. The starting substrate of our PhCs is a
220nm thick silicon layer supported by a 3µm thick thermal oxide layer (SiO2) and
700µm thick Si substrate. The fabrication technique, independent of the precise lateral
structure of the suspended PhCs, involves two lithography steps (see process flow in Fig.
2.1):

1. A positive electron-beam resist from the AR-P 6200 series is spin-coated between
a monolayer of adhesion reagent HMDS and a conductive layer E-spacer 300Z
(Fig. 2.1(2)). Please note that the adhesion and conductive layers are not used
for samples investigated in Ch. 6 and Ch. 5. The thickness of the electron-beam
resist is 240 nm. The desired PhC design is patterned using e-beam lithography
on a Raith Voyager with 50 kV beam exposure (Ch. 4 and Ch. 3), and a Raith
EBPG5200 with 100 kV beam exposure (Ch. 6 and Ch. 5). The resist is developed in
pentylac- etate/O-Xylene/MIBK:IPA(9:1). The intermediate device is schematically
shown in Fig. 2.1(3). The chip is then exposed to a reactive-ion etching plasma of
HBr:O2, to transfer the patterned design on the device layer (see Fig. 2.1(4)). The
resist is removed in a hot DMF solution at 80◦C for 10 minutes and the device is
carefully cleaned in a hot acid piranha solution for 8 minutes and subsequently
super critically dried.

2. Photolithography resist AZ1518 (Ch. 4 and Ch. 3) and S1813 (Ch. 6 and Ch. 5)
of thickness 1.3µm is patterned with a pre-designed quartz rectangular mask to
define a selective wet-etch window to expose only the PhC region 2.1(6-7). After
development in AZ400K:H2O and MF321:H2O (Fig. 2.1(7)), the thermal oxide layer is
locally removed in a buffered solution 5:1 and 7:1 of hydrofluoric acid, respectively
(Fig. 2.1(8)). The PhC is then subjected to careful cleaning in hot acid piranha
solution and super-critically dried (shown in Fig. 2.1(9) [97].

Thus, a free-standing membrane with a photonic crystal, comprising air holes is obtained.

2.2. NEAR-FIELD MEASUREMENTS OF TOPOLOGICAL PHOTONIC

CRYSTALS
We employ near-field microscopy, a powerful tool to map the evanescently decaying com-
plex electromagnetic field confined to the Si -slab. This technique has been extensively
discussed in literature [104–106]. In this chapter, we discuss the techniques specifically
modified to measure and investigate non-trivial topological fields in two-dimensional
photonic crystals. In the subsequent chapters of this thesis, schematic diagrams of the
experimental technique are included, highlighting the aspects employed to obtain the
specific chapter-related experimental results. In general, we employ a heterodyne de-
tection scheme to obtain amplitude and phase information [107]. The method is based
on a Mach-Zehnder interferometer, in which the excitation laser beam is divided into
two paths: a reference and a signal path. The former is shifted in frequency by 40 kHz
using a pair of acousto-optic modulators. In the latter, the free-space light is coupled into
the photonic structure under investigation using a high numerical aperture (NA = 0.8)
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Figure 2.2: An overview optical image of an exemplary topologically non-trivial photonic crystal interface. Left
inset: A zoom-in SEM view of the free-space incoupling waveguide with the arrow indicating the direction of
light. To ensure optimum coupling efficiency, it is essential to obtain a clean cleave along the Si crystal axis.
Right inset: A zoom-in view of the termination of the photonic crystal. Side trenches are introduced to scatter
potential, excited slab modes in the Si membrane outside of the ridge waveguide.

microscope objective and is subsequently picked up by a near-field probe. Combining
the light from both paths leads to a beating signal at the above-mentioned frequency shift.
This allows us to extract the amplitude and phase of the signal via a lock-in amplifier (here
a pair of Stanford Research Systems SR830 were used).

In collection mode [108, 109], a near-field probe with an optical aperture with a
subwavelength diameter is scanned above the sample surface, at a constant height of ca.
20nm. The typical aperture diameter used in this thesis is 150nm. Constant height is
maintained with a shear-force feedback mechanism [110]. Maintaining a constant height
is crucial to keep the amplitude constant, but also to prevent image distortions owing
to the three-dimensional structure of the evanescent field of the eigenstates of photonic
crystal waveguides [111, 112]. A larger separation between the probe and sample surface
would also lead to a reduction of k-space information since higher spatial frequencies
decay faster away from the surface, eventually smearing out the electric field profile.
The evanescent decaying field in the z-direction couples to the aperture using frustrated
total internal reflection [113]. A fraction of the evanescent wave is then converted into a
propagating wave guided through the optical fiber. The detected signal is divided into
the signal received by the two detectors L1 and L2 using standard polarization optics
which includes a polarizing beam splitter, thereby providing polarisation resolution to
the measured in-plane E field [104] (see also 2.2.1 for more on the characterization of the
polarisation components).

COUPLING LIGHT INTO THE CRYSTAL

We couple monochromatic light at telecom wavelengths using a tunable continuous wave
laser (Santec TSL-710) into a carefully cleaved SOI substrate through a ridge waveguide
(left inset in Fig. 2.2) that supports multiple transverse electromagnetic (TE) modes. Multi-
mode light travels for a distance of 2mm along the +x-direction until the waveguide
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Figure 2.3: Example of a near-field map of light in a topological photonic crystal. The color map represents the
normalized electric field amplitude of light in the photonic crystal after it has entered through the left (depicted
by the red arrow labeled Light In) through the feed waveguide, propagating through the entire length of the
crystal until it leaves from the output facet (depicted by the red arrow labeled Light Out). Inset: A zoom-in SEM
image of suspended input and output facets and the corresponding feed waveguides.

eventually tapers a width of 400nm supporting a single fundamental TE mode (right
inset in Fig. 2.2). Trenches along the ridge waveguide are designed as out-couplers for
scattering light coupled into the slab modes of the surrounding silicon at the entrance
facet and bouncing around all different boundaries in this 2D waveguide. An incoupling
PhC feed waveguide is designed inside the PhC to ensure better index-matching of the
modes from the single TE-like mode in the suspended ridge waveguide into the PhC
edge mode (see Fig. 2.3) [97]. With a thickness of 220nm and refractive index nSi = 3.48,
at a wavelength λ= 1550nm, the suspended ridge waveguide supports a fundamental
transverse electric TE0,0 mode with an effective refractive index neff = 1.84. The electric
field of the TE mode lies completely in-plane (x, y), with the oscillating electric field E
perpendicular to the propagation direction, and the wave vector given by kx . The in-plane
E is separated into two Cartesian components Ex and Ey , and the field has an out-of-plane
magnetic field component Hz . Since the out-of-plane wavevector kz is purely imaginary,
the resulting evanescent field decays exponentially away from the surface.

VISUALIZING ELECTRIC FIELDS

In this thesis, we typically map the PhC interface in the excitation wavelength range
λ= [1480nm−1640nm]. An example in Fig. 2.4(a)-(c) shows the experimentally measured
near-field amplitude of a topological photonic crystal emulating spin hall effect (discussed
in detail in Ch. 3) at an excitation wavelength λ= 1540nm. The near-field maps depict
the real space electric field amplitude |E|(x, y) in Fig. 2.4(a) and its Cartesian components
Ex(x, y) and Ey(x, y) in Fig. 2.4(b) and (c), respectively. We observe a subwavelength
modulation of the field profile of the edge state which follows the periodicity of the
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Figure 2.4: Experimentally measured real and reciprocal space of a topological edge state at an exemplary
wavelength λ = 1540nm. The first row (a) - (c) presents the normalized electric field amplitude E∥and the
corresponding in-plane x and y field components. The second row shows the amplitude of the corresponding
spatial frequencies obtained through a Fourier transformation of the real space maps. The white dashed circle
depicts the light cone in the air.

underlying lattice.
The phase resolution of the experimental setup gives access to the full complex in-

plane field amplitude to extract the real and imaginary components of the field. We
subsequently apply a two-dimensional Fourier transform to the real-space field maps to
obtain the reciprocal wavevectors shown in Fig. 2.4(d)- (f). In the reciprocal space, we
observe a hexagonal pattern of high-intensity regions. This pattern is a direct consequence
of the PhC lattice symmetry. An exemplary reciprocal space map is shown in logarithmic
scale to highlight the high signal-to-noise ratio (SNR) and dynamic range achievable via
the described near-field microscope.

TREATMENT OF RECIPROCAL SPACE DATA

• Filtering out the light cone - A common feature in all Fourier images at a cho-
sen excitation frequency (ω) in Fig. 2.4(d)-(f) is the circular ring with a radius of√

k2
x +k2

y =ω/c indicated by the white dashed line. This ring in two-dimensional

space, with amplitude in all directions, corresponds to a horizontal cut through the
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light cone in the three-dimensional plane. Its presence indicates light grazing the
surface of the PhC and picked up by the probe. Hereafter, we filter this ring pattern
to ensure that we obtain only the light in the photonic eigenstates of the structure
under investigation. Furthermore, this filtering technique allows us to separate
the spatial frequencies of the eigenstate that couple to the far field (everything
inside the light cone ring) and the near-field of the underlying mode. In addition
to filtering out the far-field, we slightly modify this filtering technique to separate
the fundamental and the higher-order Bloch harmonics (BH). The fundamental
BH corresponds to the part of the edge state lying in the first Brillouin zone and
includes all information in the transverse direction ky . On the other hand, higher
Bloch harmonics are separated in incremental units of 2π/a along the x-axis, where
a is the lattice constant of the periodic photonic crystal along the x-direction. These
techniques will be discussed in detail in Ch. 3.

• Zero-padding - To ensure that the measured dispersion images do not exhibit a
Fourier artifact in the form of a breathing pattern due to abrupt ends of the measure-
ment data, we add zeros to increase the number of points for the decomposition. It
is essential to note, that zero-padding is only added for visual purposes. An alterna-
tive way to present dispersion curves without altering any of the measured data is by
using a window function such as a Hanning window [114]. This involves reducing
the amplitude at the boundaries of a finite data set to prevent sharp features in the
Fourier-transformed image.

• Separating forward and backward propagating modes - Propagating modes in a
finite length PhC can suffer reflections at a defect or the end-facet (right inset of
Fig. 2.3). To decouple a forward propagating mode from a backward propagating
one, we isolate the modes as determined by their group velocity. With a mode
propagating along the x-direction, modes with a positive slope are indicative of
forward propagation, whereas the modes with a negative slope are the reflected
backward propagating ones. This will be further discussed in Ch. 4 in Fig. 4.2.

2.2.1. SEPARATING POLARISATION COMPONENTS: Ex AND Ey
A rigorous calibration of the polarization resolution of the near-field detection system is
essential to unambiguously discuss the near-field helicity of the topological fields in Ch.
3. While a cylindrical symmetric aperture, in principle, allows for a separate pickup of Ex

and Ey [104], birefringence effects due to the bending of optical fibers in the collection
path can result in a (slight) modification of the polarization of the collected light in the
detection fiber. This can lead to cross-talk of the field components extracted via the
near-field probe and transmitted to our detection optics. To account for this mixing, we
use a quarter and half waveplate before far-field detection to separate two polarisation
components in the same Cartesian reference frame as at the near-field probe position. To
ensure proper calibration, we use the field symmetry of a known fundamental TE00 mode
in the photonic ridge waveguide (see right inset of Fig. 2.2) to infer any additional rotation
angle needed for the waveplates, following le Feber et al., 2014 [115]. This procedure
allows us to compensate for the unwanted cross-talk. We, subsequently, use symmetry
considerations to calculate the extent of polarisation mixing in the probe which typically
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results in <1% mixing of the signals in the two detectors. The process is repeated for
the entire excitation wavelength range to account for the frequency dependence of our
optical measurements. The obtained additional rotation compensation is multiplied
via a rotation matrix onto the experimentally obtained E field map for each excitation
wavelength.

We acknowledge that our near-field microscope does not only detect purely electric
fields but also the magnetic component of the electromagnetic field [106, 115–118]. Taking
into account a cylindrical aperture probe and propagating mode behavior, we always
assume that the detectors detect a combination of electric and magnetic fields which are
related to each other by a proportionality constant. Therefore, throughout the thesis, we
denote the measured maps of optical electric fields only.

10 μm 0.5μm10 μm

(a) (b) (c)

Figure 2.5: SEM images showing the optimization of the metal-coated aperture probes. (a) The probe with
unoptimized parameters that provide a straight pencil-like shape to the apex. (b) The optimized probe with
a dumbbell shape, with a long taper. (c) After buffered HF dipping to ensure isotropic etching to remove the
long taper, and obtain a large pick-up angle. Right inset: An example of an optimized probe with an aperture
diameter of 150 nm and pick-up angle of 42◦.

2.2.2. PROBE: FABRICATION, OPTIMIZATION, AND CHARACTERIZATION
The single-mode optical fiber used as the basis for our near-field probes is Corning SMF-
28 and is designed for wavelength λ= 1550nm with a core diameter 8.2µm. The fiber is
pulled with a laser-based micro-pipette puller system P-2000. The pulling parameters
were chosen to guarantee a dumbbell shape (see Fig. 2.5(b) and (c)) and not a straight
shape (see Fig. 2.5(a)) to ensure a higher throughput [119]. To create a high pick-up
angle (see right inset of Fig. 2.5(c)), we immerse the probes in buffered oxide etch (BOE)
comprising a volume ratio 7:1 of ammonium fluoride, hydrofluoric acid, and water for
20mins to ensure an isotropically etch of the glass fiber core [120]. The diameter of the
probe’s apex is critically determined by a combination of pulling and BOE etch time.
A uniform coating of a metal, in our case, aluminum of thickness 100nm− 200nm is
evaporated onto the fiber dielectric surface, to prevent the fields from leaking to the far
field through the walls of the probe. An aperture is created at the apex using focused
ion-beam milling [121]. The probe diameter of λ/7 at the apex determines two quantities:
the sub-wavelength resolution and the measured SNR.

Each probe is characterized to ensure a high transmission and polarisation resolution
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before introducing them in the near-field setup. We use a far-field characterization tech-
nique to examine the quality of the prepared probes. We image the focal and back-focal
plane of the probe with a laser wavelength λ= 1550nm on an Infrared CCD camera. An
ideal probe’s transmission focal image is a concentric spot indicating a perfect Airy pattern
and a perfectly circular back-focal image without any defects or spots. This indicates that
no additional pinholes are present in the probe. A three-paddle polarisation controller in
combination with a linear analyzer is introduced to characterize the polarisation sensitiv-
ity of the probe. The paddle controller uses stress-induced birefringence that alters the
polarization of the transmitted light in the fiber and allows us to map the polarization
over the full Poincaré sphere.

2.2.3. NUMERICAL SIMULATIONS
We use both COMSOL [122] and MPB [123] software packages to simulate the electromag-
netic fields of a periodic photonic structure and determine the eigenfrequencies of its
modes. They use different numerical methods and algorithms for solving the underlying
equations.

In Ch. 3 and Ch. 5 we use COMSOL which uses a finite element method to solve the
electromagnetic wave equation. This involves dividing the simulation domain into small
sub-regions and approximating the solution to the partial differential wave equations
of each sub-region using a polynomial expansion. This approach can be accurate for
complex geometries and materials with arbitrary refractive indices.

For Ch. 4 and Ch. 6 we use MPB which uses a plane wave expansion method. This
method involves expanding the electromagnetic fields in terms of plane waves and solving
for the eigenfrequencies using a matrix eigenvalue equation. This approach is efficient
for periodic structures with a high degree of symmetry, such as photonic crystals, and
assumes materials without losses.
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3
BREAKDOWN OF SPIN-TO-HELICITY

LOCKING AT THE NANOSCALE

Things we lose have a way of coming back to us in the end.
If not always in the way we expect.

3Luna Lovegood

In this chapter, we investigate the local near-field optical spin in topological edge state
waveguides that emulate the quantum spin Hall effect. We reveal a highly structured spin
density distribution that is not linked to a unique pseudospin value from experimental
near-field real-space maps and numerical calculations. We confirm that this local struc-
ture is essential in understanding the properties of optical edge states and light-matter
interactions. The measured global spin in the far field is reduced in the near field and,
for certain frequencies, flipped compared to the pseudospin measured in the far field. We
experimentally reveal the influence of higher-order Bloch harmonics in spin inhomogeneity,
leading to a breakdown in the coupling between local helicity and global spin.

Parts of this chapter have been published in Physical Review Letters 128, 290303 (2021) [124]
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3.1. INTRODUCTION
Unidirectional photon emission is achieved, by strong coupling of a quantum emitter
supporting a circularly polarized dipole moment to photonic states with a corresponding
local polarisation orientation (helicity) [59, 125–127]. The resulting chiral quantum
optical interface is a consequence of spin-momentum locking [128] and serves as a luring
proposition for large-scale on-chip quantum networks [129, 130]. However, a finite spin-
to-direction coupling and susceptibility to disorders and defects [131] invokes the demand
for an explicit account of the local structure of the edge state’s optical spin density profile
to achieve high directional coupling [127, 132–141].

In this chapter, we employ the photonic crystal-based analog of topological insula-
tors which emulate the quantum spin Hall effect (QSHE) [19]. Experimental as well as
numerical realizations have shown that the two edge states at the interface between a
topologically trivial and non-trivial lattice [88, 89] each exhibit a unique pseudospin due
to the different topological invariants of the supporting bulk bands. Such an interface
offers robust photonic transport against defects and sharp corners [133, 142, 143]. This
transport relies on pseudospin coupling to the far-field (FF) helicity to ensure and maxi-
mize photon unidirectionality [144]. Leveraging the helicity supported by these systems
has enriched applications for quantum entanglement [135] and quantum spin circuits [91,
145–148]. However, it is essential to determine the exact relation between field helicity
and edge state pseudospin.

With that intent, we examine the near field of edge states in topological photonic
crystals (TPCs) to comprehensively study the (local) chiral information. With aperture-
based phase- and polarisation-resolved near-field optical microscopy [106], we collect
the orthogonal in-plane polarisation components of the electric field using a hetero-
dyne detection scheme and determine the underlying spatially varying spin density. We
experimentally verify that the inhomogeneity in optical spin density follows the Bloch
periodicity of the lattice. By experimentally accessing the different Bloch harmonics (BHs)
that together form the symmetry-protected edge state, we show that accounting for the
individual contribution of each higher-order BH breaks the coupling between pseudospin
and helicity of the edge state.

Following the shrink-and-grow design [88, 89, 149], we realize a TPC interface on a
silicon-on-insulator platform by deforming a graphene-like hexagonal lattice with six
equilateral triangular holes. While the unperturbed lattice features a doubly degenerate
Dirac cone at the Γ-point in the dispersion diagram, this degeneracy is lifted in two ways
(see Fig. 3.1(a)): on one side of the interface, the holes are concentrically shifted inwards,
called the shrunken lattice (LS ), while on the other side, the holes are shifted concentrically
outwards, labeled as expanded lattice (LE ). The geometrical transformations emulate a
synthetic gauge field and keep the global C6 symmetry of each lattice unaltered. The band
structure of LS and LE both reveal a direct bandgap at the Γ-point. For LS , the shape of the
electric field in the lower band resembles ‘p’-like orbitals and the upper band resembles
‘d’-like orbitals, whereas for LE , the mode symmetries of the upper and lower band are
inverted [88]. The different intra- and inter-cell coupling strengths between neighboring
sites in the two lattices impart a non-trivial nature to the expanded lattice with the band
gap possessing integer spin-Chern numbers (C =±1) [90], whereas the shrunken lattice
leads to a gapped but trivial band (C = ±0). The interface of LS and LE supports two



3.1. INTRODUCTION

3

25

(a)

L S
L E

500 nm

a

Near �eld Radiative �eld(c) (d)

0

1

1 µm

Light 

in

L S
L E

|E
|

Light in Topological 
photonic crystalxy

Near �eld

Radiative �eld

ne
ar

   
   

fa
r

(b)

kx

kyω = ω0

Figure 3.1: (a) Scanning electron micrograph (SEM) of the topological interface in the fabricated sample with
the color-coded regions depicting the shrunken LS (red) and expanded LE (blue) lattices. The lattice periodicity
is a=880nm. (b) Schematic representation of the TPC lattice with overlaid near- and far-field amplitudes of
the electromagnetic field. Inset: Schematic representation of the reciprocal space of an edge state (frequency
ω=ω0) with its typical hexagonal pattern of intensity peaks together with the 3D light cone of air (ω = c k). The
dashed circle at the intersection of the light cone and the reciprocal space of the edge states represent the largest
spatial frequencies of the edge state that can couple to the far field. Close-up of the normalized in-plane electric
(c) near-field and (d) radiative field amplitude in the TPC featuring an armchair interface at λ = 1520nm with
the light launched into the structure from the left (indicated by the red arrow). The dashed hexagonal pattern
outlines the underlying crystal lattice.

counter-propagating edge states that traverse the band gap around the Γ-point [88, 89].
These edge states are robust against back-scattering and offer unidirectional transport,
provided no scattering between pseudospins occurs. The TPC reported in this chapter
is different from a photonic crystal emulating the quantum valley Hall effect [95, 97,
150–152], as the latter supports edge states that lie around the high-symmetry points K
and K ′ of the Brillouin zone. Since the QSHE TPC edge states traverse the Γ-point, the
counter-propagating modes lie above the light cone and therefore couple to FF radiation.
This makes them accessible to far-field spectroscopic investigations [142, 149, 153]. Here,
the polarization of the light scattered to the FF shows a near-unity optical spin and can
be directly linked to the state’s pseudospin [79, 149, 154]. However, the radiative FF does
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Figure 3.2: Near-field map of a photonic crystal with an armchair edge: (a) Experimentally measured electric
field amplitude ca. 20 nm above the surface of the photonic crystal at an excitation wavelength λ= 1560nm. (b)
Normalized integrated amplitude over the longitudinal extent of the edge state in the direction of propagation
along the interface. The solid line corresponds to an exponential decay fit to the data. (c) Normalized integrated
amplitude from the transverse area. The two solid black lines indicate the exponential decay fit away from the
interface into the bulk of the lattices (expanded on the left and shrunken on the right)

.

not contain the full complex information of the evanescent electromagnetic field since it
only takes into account the plane waves within the light cone [155, 156] and a detailed
account of the full local field is imperative for ensuring chiral light-matter interactions on
the nanoscale.

To experimentally investigate the spin character of the TPC interface rigorously, we
fabricate a lattice featuring an armchair (AC) interface. Fig. 3.1(a) shows the unit cell
structure on both sides of the interface. We measure the complex in-plane electric
field distribution E using a phase- and polarization-resolving near-field scanning optical
microscope. Fig. 3.2a shows the real space scan of the full electric field distribution at an
exemplary wavelength of λ= 1560nm. The mode is confined to the armchair interface
and decays exponentially along the propagation direction (see Fig. 3.2b). The mode
amplitude diminishing while propagating from left to right is associated with radiative
coupling to the FF [79, 149, 154]. We fit an exponential function to extract a decay length
of L = 13.73µm. Fig. 3.2c shows the transverse extent of the edge state away from the
armchair interface into the expanded and shrunken lattices. The extracted penetration
length in the expanded lattice is DE = 0.98µm whereas the extracted penetration length
in the shrunken lattice is higher with DS = 4.31µm, which is consistent with the relative
width of the photonic bandgap. As a result, the field extends further into the LS bulk
than in LE . This asymmetry in evanescent tails is consistent with the relative width of the
photonic bandgap of the lattices, which is larger for LE .
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3.2. TRANSFORMING NEAR TO FAR FIELD

Light propagation along the interface is schematically visualized in Fig. 3.1(b). Here, we
distinguish the two typical evaluation regimes of the electromagnetic (EM) field: near (NF)
and radiative far (FF). The former defines the EM field directly above the crystal surface,
constituting both the decaying evanescent field and the radiative field (Erad(x, y)) of the
propagating edge state. It is important to note, that Erad(x, y) is the spatial distribution of
the Bloch modes mapped at the near field of the interface, however, only contains spatial

frequencies that radiate to the far field (where k∥ = k2
x +k2

y < ω2

c2 ). In Fig. 3.1(c), we depict
the measured electric field amplitude over 2 unit cells at an excitation wavelength of
λ= 1520nm. A highly structured field is visible. A zoom-in of the full near- and radiative
field is shown in Fig. 3.1(c) and (d). The field profile around the AC interface (indicated
by the solid gray line in Fig. 3.1c) resembles a Bloch wave [157] with pockets of high
and low field amplitude forming a hexagonal pattern that repeats with lattice periodicity
a along the propagation direction +x. The dominant part of the field is confined to
the interface. The structured NF information is transformed to the radiative FF of the
edge state by limiting the collected wavevector range to lie within the light cone using
Fourier filtering. This is depicted in the inset of Fig. 3.1(b) which shows a schematic of
the reciprocal space of the edge state with intensity peaks in a hexagonal pattern for an
exemplary excitation frequency ω0. The single peak inside the dashed circle on the 2D
projection of the light cone for ω0 constitutes the radiative FF. In contrast to Fig. 3.1(c),
where the amplitude antinodes follow the underlying crystal structure, the FF amplitude
is homogeneous along the TPC interface (see Fig. 3.1(d)). For a Bloch mode propagating
in the x-direction, an infinite set of BHs in reciprocal space (with spatial frequencies
separated by multiples of 2π/a, where a/

p
3 = 800nm is the lattice periodicity) together

form the detailed near-field structure of an edge state in real space. Each BH contributes
to the mode amplitude with a certain weight that leads to the field variations in each
unit cell. In the y-direction, the periodicity of the lattice causes peaks in reciprocal space
with the same spacing, corresponding to the lateral mode profile of the edge state [158].
Only spatial frequencies within the so-called light cone (dashed circle in inset Fig. 3.1(b))
can couple to the FF. Here, this fundamental BH radiates to the FF as it couples with the
continuum of free-space air modes. We obtain it by filtering to the single in-plane k-vector
inside the light cone. A Fourier transform of these spatial frequencies yields the radiative
field (Fig. 3.1d). Predictably, the dominant field energy in the FF lies more on the shrunken
side of the interface, consistent with NF observations and the corresponding size of the
bulk band gaps. An evanescent field strongly confined to the interface, propagating in
the +x direction and decaying in y-direction, implies the existence of transverse spin
[60, 159–161] with positive and negative helicity mirrored at the interface. For our C6

symmetric lattice, this results in the dominance of one designated helicity that is locked
to the direction of mode propagation. The calculated transverse optical spin of the
evanescent field is therefore a non-zero value. However, the spin distribution of the mode
in the NF and FF differs greatly, well beyond a simple smoothening of the near-field
pattern.
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Figure 3.3: (a) Experimentally measured NF spin density σz of the AC-edge mode over two unit cells for an
excitation wavelength of λ= 1520nm. (b) Experimentally measured FF spin density over the same extent as in
(a), realized by filtering out the non-radiative wavevectors of the field shown in (a). (c) Numerically calculated
spin density for kx = 0.08(π/a) with (d) displaying the spin density for numerical simulations in the FF. The
solid gray line indicates the armchair interface while the dashed hexagonal pattern outlines the underlying
crystal lattice.

3.3. SPATIAL DISTRIBUTION OF SPIN DENSITY
From the experimentally measured in-plane complex electric field, we reconstruct the
spin density distribution σz (x, y) = Im [E∗(x, y) × E(x, y)]z [159], where E∗(x, y) is the
complex conjugate of the electric NF and Im indicates that only the imaginary part of the
resultant complex vector field is extracted. The derived quantity is visualized in Fig. 3.3
which depicts the experimentally measured ((a),(b)) and numerically calculated ((c),(d))
σz (x, y). For the evanescent field, σz is the expectation value of the helicity of light and
it directly translates to the local field polarization state of the photonic TE-like mode
as a result of spin-orbit interactions. The NF σz depicted in Fig. 3.3(a) reveals a highly
structured σz distribution. A periodic pattern of +σz and −σz is observed, that repeats
with a periodicity of a in the propagation direction and a/

p
3 in the transverse direction.

Close to the center of any given unit cell indicated by dashed lines in Fig. 3.3(a), antinodes
of +σz are prominent, whereas around the outlines of the unit cell, the sign of σz flips.
This spin flip within a unit cell confirms that the local handedness of a topological edge
mode’s polarization state is non-uniform. The local inhomogeneity of the spin density
σz (x, y) in the NF

ENF(x, y) =
Ï ∞

−∞
Ẽ(kx ,ky )e i [kx x+ky y] dkx dky ,

which takes into account all spatial frequencies, completely vanishes in the FF

Erad(x, y) =
Ï

k2
x+k2

y<k2
0

Ẽ(kx ,ky )e i [kx x+ky y] dkx dky

(shown in Fig. 3.3(b)), where k0 = ω/c. For an excitation wavelength of λ = 1520nm,
only +σz is visible close to the interface. This is in perfect agreement with reports of
near-unity spin density in FF measurements [149]. Comparing both regimes to numerical
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Figure 3.4: Numerically simulated dispersion relation where the edge state eigenfrequencies are color-coded
with the estimated (a) near-field and (b) far-field optical spin S.

simulations in Fig. 3.3(c) and (d) reveals an excellent agreement of the σz distribution
for the NF as well as the FF case, respectively. To understand the origin of the observed
spatial variations and differences in NF and FF, we undertake a detailed analysis of the
edge states in momentum space.

We investigate the dissimilarity in the NF and FF optical spin density distribution
by analyzing the global optical spin S = Î

σz (x, y)d x d y of the edge state for its full
band dispersion, representing the integrated helicity of the interface mode. The global
spin is calculated for a simulation region of 15µm×13µm. Fig. 3.4 shows the calculated
eigenmodes of the AC interface for both regimes. Figures 3.4(a) and (b) both show a linear
dispersion for the edge states that lie within the band gap and cross at the Γ−point. The
edge states are disconnected from the top and bottom bulk bands and recombine at the
Brillouin zone edge. We notice an anti-crossing of 0.1THz, predicted by the extended
tight-binding model [162] and observed in experiments [149]. This is a result of spin-spin
scattering due to the coupling of the counter-propagating edge states governed by the
local C6 symmetry breaking at the interface of the TPC. For Fig. 3.4(a) and (b) the color
scale represents the sign of the optical spin S. The minimum and maximum extent of
the scale for the two subplots are distinctly different. Fig. 3.4(a) shows the dispersion
obtained by calculating S from the in-plane field distributions and is referred to as the NF
optical spin (SNF). As expected, the degenerate counter-propagating edge states exhibit
opposing helicity. However, we observe that this helicity is flipped in Fig. 3.4(b), where
we plot the FF spin (SFF) of the edge states. The linear state with negative SNF possesses
positive SFF and vice versa. Moreover, the SFF exhibits a near-unity value, more than an
order of magnitude larger than the maximum SNF =±0.056. The tight-binding approach
predicts that the pseudospin for each edge state is uniquely linked to its FF helicity. On
the other hand, the much lower SNF and the spin-flip suggest that the pseudospin of the
full electromagnetic mode of the edge state is not uniquely linked to a designated SNF.
The principal difference between NF and FF observations stems from the fact that the
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Figure 3.5: Two-dimensional Fourier representation of the experimentally measured electric field amplitude
of the TPC edge mode at a wavelength of λ = 1560nm, with the amplitude shown in logarithmic scale. The
reciprocal lattice vectors are periodically separated in the propagation direction (kx ) in units of 2π/a, where a
is the lattice constant of the armchair edge. The white dashed circle represents the light cone in the air. Inset:
Zoom-in of momentum space restricted to show the fundamental (k0̄) and first higher-order BH (k1̄).

evanescent NF contains information from all higher-order BHs, which are unaccounted
for in the FF. To better understand this intriguing spin-flip transition, we investigate the
spin of the individual BHs.

3.4. MOMENTUM SPACE ANALYSIS

3.4.1. FILTERING OUT LIGHT CONE

The origin of the spatially varying spin distribution of the Bloch periodic structure is
confirmed by performing a two-dimensional Fourier transform F (kx ,ky ) (shown in Fig.
3.5) of the measured complex field amplitude as visualized in Fig. 3.2, for an excitation
wavelength λ= 1560nm. The high-intensity peaks arranged in a hexagonal pattern in
reciprocal space are the result of the underlying C6 symmetry. A small amount of air-
guided, unwanted stray light that is not part of the edge state mode, skims along the
surface of the photonic crystal. Because it propagates parallel to the surface, its spatial
frequency lies exactly on the circular ring originating from the light cone (indicated
as the white dashed circle in Fig. 3.5) and can therefore easily be removed by Fourier
filtering. For the chosen wavelength, within this light cone lies a central peak at ky = 0
that corresponds to the part of the Bloch mode radiating to the FF. Along kx at multiples
of 2π/a, clusters of peaks are seen that correspond to the different BHs building up the
intricate NF subwavelength structure of the edge state. An excellent signal-to-background
ratio (S/B) of 40 dB is obtained in our experiment which allows us to resolve seven different
BHs. These BHs, each contributing with different weights, together form the edge state
mode which obeys Bloch’s theorem [158]. Individual contributions of individual BH to S
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hold the utmost significance in understanding the inhomogeneity in the underlying spin
structure.

3.4.2. BUILDING A BLOCH MODE

We restrict our analysis to building up BH contributions by increasing the Fourier filter
width in momentum space along kx . In Figures 3.6(a) and (b), the first column represents
the S originating from the fundamental BH (k0̄) which extends from kx = [−0.5,0.5],
while the consecutive columns represent S corresponding to all higher-order BHs up and
including the BH indicated in the horizontal axis label, i.e. the wavevector range kn̄ =̂
[−1,1]∗(n+0.5) (see right inset of Fig. 3.5). The frequency of theΓ-point crossing (denoted
by dashed gray line) differs in Fig. 3.6(a) and (b) due to slight variations in the geometric
parameters of the fabricated photonic crystal device. The quantitative analysis of the
BH contribution to the optical spin is performed by first isolating BHs of certain width
along kx , applying an inverse Fourier transform to obtain the real-space field amplitude,
and subsequently calculating S. For k0̄, S reflects the near-unity value that has previously
been reported in FF measurements [149]. Taking an exemplary frequency of 188.92 THz
in simulations, the radiative FF helicity Sk0̄

= 0.53. As the filter width in kx increases
along the x-axis in Fig. 3.6, the optical spin S of the edge state reduces drastically (at an
exemplary frequency the integrated NF spin Sk5̄

=−3.931×10−4). We acknowledge that
the distinct difference between exact values of S for experiment and numerical calculation
arises partly from the polarization sensitivity of the NF probe [163]. Nevertheless, Skx̄

undergoes a clear reduction from the fundamental BH column represented as k0̄ to
the first higher-order BH represented as k1̄, as shown in Fig. 3.6. For simulations, the
calculated average reduction factor of S in the near-field is 30. This means that S cannot
be a deterministic helicity parameter of the edge interface when including more than the
fundamental BH since a one-on-one relation between local spin and helicity is no longer
valid. For every additional higher BH contribution starting at k1̄ and above along the
x-direction, the spin-momentum coupling breaks down to such an extent that it results
in a sign flip as is evident from the sign switch (positive to negative value) with increasing
frequency in the right inset of Fig. 3.6(b). It is important to note that the color bar for the
inset was saturated to ±0.1 to make the sign flip for k1̄ and above visible. The extrema of
the numerically simulated S is ±0.57. Therefore, we observe that already adding the first
higher-order BH contribution to that of the fundamental BH completely breaks down
pseudospin-momentum coupling.

3.5. CONCLUSIONS

In summary, we experimentally visualize the intricate spin density distribution of
symmetry-protected edge states in topologically non-trivial photonic crystals that lie
above the light line, using a NF microscope. We demonstrate that spin in such photonic
systems no longer retains its unique handedness in comparison to electronic systems,
where s must always be a good quantum number. We report that even the contribution
of the first-order BH unambiguously flips the sign for certain excitation frequencies.
Consequently, a priori knowledge of detailed high spin density locations obtained from
NF information will improve the chances of precise positioning of quantum emitters



3

32 3. BREAKDOWN OF SPIN-TO-HELICITY LOCKING AT THE NANOSCALE

− 0.750.75 − 0.750.75
S SS

SimulationsExperiments(a) (b)

k0 k1 k2 k3 k4 k5 k6 k6
Bloch harmonic range

− 0.10.1

185

190

195

1560

1600

1640 W
av

el
en

gt
h

(n
m

)

185

190

195

200

Fr
eq

ue
nc

y
(T

H
z)

k0 k1 k2 k3 k4 k5 k6
Bloch harmonic range

Figure 3.6: Build-up of spin-dependent contributions of the BHs from (a) experiment and (b) numerical
simulations, evaluated over several higher-order BH ranges. Right inset: Spin-dependent contribution for the
largest evaluated BH range which extends from kx = [−6.5,6.5] with a saturated color scale. The gray dashed
line indicates the frequency of the Γ-point crossing. The grayed-out region extending below 184.4THz depicts
the lower band edge.

along chiral interfaces. Without this knowledge, spin-polarised emission will result in the
mixing of pseudospin edge states, and therefore reduce the desired network efficiency.
Thus, this finding needs to be accounted for in the architectures of future topological
photonic quantum networks and it provides a pathway towards engineering truly robust
topologically protected chiral interfaces.
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4
DIRECT QUANTIFICATION OF

TOPOLOGICAL PROTECTION

I was wise enough never to grow up while fooling people into believing I had.

4Margaret Mead

In this chapter, we divert our attention to tailored photonic crystals (PhCs) that emulate
quantum valley-Hall effects. We present a direct quantitative evaluation of topological
photonic edge eigenstates and their transport properties in the telecom wavelength range
using phase-resolved near-field optical microscopy. Experimentally visualizing the detailed
sub-wavelength structure of these modes propagating along the interface between two
topologically non-trivial mirror-symmetric lattices allows us to map their dispersion rela-
tion and differentiate between the contributions of several higher-order Bloch harmonics.
Selective probing of forward- and backward-propagating modes as defined by their group
velocities enables direct quantification of topological robustness. Studying near-field propa-
gation in controlled defects allows us to extract the upper limits of topological protection in
on-chip photonic systems in comparison with conventional PhC waveguides. We find that
protected edge states are two orders of magnitude more robust than modes of conventional
PhC waveguides. This direct experimental quantification of topological robustness com-
prises a crucial step toward the application of topologically protected guiding in integrated
photonics, allowing for unprecedented error-free photonic quantum networks.

Parts of this chapter have been published in npj, Light: Science & Applications 10, 9 (2021) [150]
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4.1. INTRODUCTION
The promise of photonic topological insulators (PTIs) [79, 164–167], supporting un-
hindered transport around defects and sharp corners as large as 120◦ bends without
optimization is interesting for protected light-matter interactions [168] and integration
of robust quantum devices [169]. In the linear [83, 88, 142, 149] and nonlinear regimes
[170], topological robustness against backscattering at corners has been inferred by high
transmission [97, 151]. This is in sharp contrast to conventional nanophotonic systems
with low backscattering at sharp bends. Additionally, these conventional systems pose
a great design challenge owing to the need to balance high bandwidth, low reflectance,
and modest footprint. A ubiquitous quantification of robustness as the defining quality
of scattering-free propagation has remained elusive. Potential interference effects and
out-of-plane scattering losses at local disorder render this quantification challenging.

In this chapter, we report a rigorous robustness evaluation of valley photonic edge
eigenstates at telecom wavelengths. Local investigation of the states’ transport proper-
ties via phase-resolving near-field microscopy provides direct insight into topological
protection, through the distinction between forward and backward modes. We find
that protected edge states are two orders of magnitude more robust to backscattering at
corners as compared to conventional waveguides.

We realize valley-Hall PhCs (VPCs), which rely on the valley degree of freedom linked
to the breaking of a specific lattice symmetry [12, 97, 171–173]. Similar to the valley-
selective polarization caused by spin-orbit coupling in transition metal dichalcogenides
[174], these PhC lattices exhibit a non-vanishing Berry curvature at the K and K ′ points of
the Brillouin zone [95]. In contrast to the quantum spin-Hall effect emulating PhCs that
support edge states at the Γ-point, the edge states in the following VPCs occur below the
light line and thus feature negligible radiative losses. Since each valley is associated with
an intrinsic magnetic moment, the valley-Chern invariant CK ,K ′ =±1/2 signifies a pseudo-
spin [175], rendering the bulk band structure topologically non-trivial. An interface
formed by two parity-inverted copies of the PhC lattice results in two degenerate and
robust edge-state eigenmodes confined to the interface that linearly traverse the photonic
band gap (PBG), each with a unique pseudo-spin [176]. As long as the lattice symmetry is
preserved and no inter-valley scattering occurs to flip the pseudo-spin, these edge states
are predicted to be immune to reflection from local disorder along the interface [82, 95].

4.2. EXPERIMENTAL OBSERVATION OF EDGE STATE
To determine the experimentally achievable robustness against back-scattering, we fab-
ricate a VPC working at telecom wavelengths on a silicon-on-insulator (SOI) platform
following the design of [97] (see Fig. 4.1a). Light is coupled into the PhC structure in the
+x direction from an access waveguide. This system supports edge modes of opposite
group velocity ±vg (see Sec. 4.A, Fig. 4.10) propagating along the interface between two
parity-transformed lattices (VPC1 and VPC2). We visualize the spatial wavefunction of
the mode with a phase-sensitive near-field scanning optical microscope [106, 158]. Fig.
4.1b shows the measured two-dimensional in-plane field amplitude map at a wavelength
of λ= 1600nm. The detected transverse-electric (TE)-like field pattern confined to the
interface of VPC1 and VPC2 extends laterally over roughly five unit cells, revealing an
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Figure 4.1: Experimental visualization of a topological edge state in a valley photonic crystal. (a) SEM of the
fabricated structure with two pseudo-colored regions depicting the two lattices VPC1 and VPC2, with opposite
valley-Chern invariants. The unit cell with lattice constant a = 503nm consists of equilateral triangular holes of
side lengths d1 = 0.7a and d2 = 0.45a. Scale bar: 500 nm. (b) Measured normalized amplitude of the in-plane
field components at a laser excitation wavelength of λ= 1600nm over the extent of 165 unit cells, with the scale
bar corresponding to 5µm. Light is launched from a feed waveguide at the left side of the crystal, with the
direction indicated by the green arrow. Left inset: zoom-in of the detected field amplitude pattern along the
interface. Right inset: Zoom in on the out-coupling flank of the access waveguide.

intricate sub-wavelength mode structure (left inset of Fig. 4.1b). The measured fields
show close correspondence to the numerical calculations (see Sec. 4.A, Fig. 4.10). At the
locations of the access and exit waveguides, the influence of broken lattice symmetry and
the adjacent feed waveguide becomes evident in the distorted field pattern (right inset of
Fig. 4.1b).

4.3. BUILDING THE DISPERSION RELATION
The heterodyne detection configuration of the employed near-field microscope gives
access to the complex in-plane optical fields of the edge mode [107]. As a direct conse-
quence of Bloch’s theorem, the two-dimensional spatial Fourier transformation F (kx ,ky )
of the measured field amplitude allows the individual analysis of Fourier components
with positive and negative group velocities. An illustrative Fourier map at λ= 1600nm is
displayed in Fig. 4.2a. By repeating the near-field scans and corresponding Fourier anal-
ysis for λ= [1480nm−1640nm] and integrating F (kx ,ky ) over ky , we extract the mode
dispersion shown in Fig. 4.2b. The numerically simulated edge- and bulk-bands show
excellent overlap with the experimentally measured dispersion, as can be seen in the over-
laid enlarged view presented in Fig. 4.2c. We achieve an excellent signal-to-background
(S/B) ratio ≈ 56dB. The achieved spatial resolution, combined with the high S/B, enables
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Figure 4.2: Momentum space of the VPC edge state. (a) Two-dimensional Fourier transform of the real space
amplitude distribution of the PhC mode. High-intensity points are periodically separated by the reciprocal
lattice vector 2π/a in the direction of propagation kx along the edge and by 4π/

p
3a in the transverse direction

ky , representing the bulk reciprocal symmetry. (b) Experimentally retrieved dispersion diagram. Bright lines of
positive slope indicate a positive group velocity (forward propagating modes), while lines with negative slope
indicate a negative group velocity (backward propagating modes). Consecutive Bloch harmonics are separated
by the size of a single Brillouin zone (2π/a). Frequencies above 197.5 THz correspond to bulk bands. The Fourier
intensity for each excitation frequency is normalized to the overall maximum value. In addition to the dominant
modes in the forward and backward directions, lines with half and a third of the dispersion slope appear. These
are attributed to a nonlinear interaction with the scanning near-field probe (see Sec. 4.B) (c) A close-up of the
experimentally retrieved dispersion diagram limited to the first Brillouin zone edge, denoted by black dashed
brackets. The black dashed lines indicate the numerically simulated values for the edge state (See Ch. 2.2.3 for
details). The solid gray line denotes the light line and the gray dashed lines with grayed-out regions indicate the
onset of the bulk bands.

us to resolve at least six higher-order Bloch harmonics over multiple Brillouin zones. The
lines with a positive slope correspond to a single forward-propagating mode with group
velocity vg = c/6. Closer inspection reveals negatively-sloped lines corresponding to a
single backward propagating mode with −vg [104, 177]. This separation of forward- and
backward-propagating Bloch modes allows the local monitoring of back-scattering along
the interface.

4.4. HOW ROBUST IS ROBUST?
Using this local phase and amplitude information, we probe a straight edge interface,
as shown in Fig. 4.1b. We obtain the quantities WF and WB representing the forward
and backward energy, by integrating over the full Fourier intensity of the forward and
backward modes, respectively. The ratio ηe =WB /WF ≈ 0.03 unambiguously yields the
conversion from forward to backward propagation, a result of scattering events occurring
at and beyond the VPC end facet. Thus, ηe includes coupling of the forward-to-backward
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Figure 4.3: Directional transport along defects. For the topologically non-trivial VPC waveguide, (a) shows
the schematic of the probed 120◦ corner. (b) Top-view SEM image of the fabricated Ω-shaped defect. Two-
dimensional real-space amplitude maps showing the (c) full mode amplitude distribution, (d) forward propa-
gating mode amplitude only, and (e) backward propagating mode amplitude only. The amplitude maps are
normalized independently to their maximum value. For a topologically trivial W1 waveguide, (f) schematically
shows the mode propagation around a 120◦ corner, and (g) shows a top-view SEM image of the device. The
two-dimensional amplitude maps of the filtered forward and backward propagating modes are shown in (h) and
(i) respectively. The direction of in-coupling is indicated by the green arrows. All scale bars correspond to 5µm.

mode energy away from the topologically protected regime. This initial examination of
the straight edge with the observed back-propagation energy dominated by contributions
of the end facet, calls for a more intricate analysis of topological protection.

To quantify protection without the aforementioned contributions, we introduce a
trapezoidal (Ω-shaped) structure along the interface comprising four sharp corners (Fig.
4.3). This structure is expected to be topologically protected since n ×120◦ bends respect
the underlying C3 lattice symmetry. Reflections characterized by energy coupled between
the degenerate forward (F ) and backward (B) propagating modes are indicated by red and
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Figure 4.4: Degree of topological protection. (a) Schematic of the mode contributions in aΩ-shaped defect VPC
waveguide. Red arrows indicate the forward propagating modes, with F 1 and F 2 denoting the modes before and
after the defect, respectively. Blue arrows indicate backward propagating modes before (B1) and after (B2) the
defect. Yellow dashed circles show the locations of in- and outcoupling- facets. White dashed circles indicate
the four 120◦ corners. (b) Plot of the transmission coefficient ηT , with the inset demonstrating transmission
over a small region ([189.5THz−190.5THz]). (c) Backward/forward energy ratio before (ηR1) and after (ηR2) the
Ω-shaped defect in the VPC interface. The inset shows how the back-propagation energies before and after the
defect are almost indistinguishable over the considered frequency range. (d) and (e) show the corresponding
plots of (b) and (c) for the W1 waveguide, respectively.

blue arrows, respectively, in schematic Fig. 4.3a. Fig. 4.3c shows a map of the measured
amplitude of the VPC edge mode. By first separating the forward and backward modes
through Fourier filtering in k-space based on the group velocity of the edge mode and then
performing an inverse Fourier transform, we obtain Fig. 4.3d and e. Fig. 4.3d qualitatively
demonstrates that the forward propagating mode exhibits a near-unity transmission
through the four bends. The constant amplitude of the backward propagating mode (Fig.
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4.3e) also indicates near-unity transmission. This demonstrates that we may attribute
the coupling of the forward and backward modes to the termination of the exit PhC
waveguide. Put differently, light is seemingly perfectly guided around the Ω-shaped
interface, with the transmission being independent of the presence of the defect itself.

This observation is quantified by translating the locally measured amplitudes into
mode energy ratios. We filter the Fourier intensity distribution to obtain the forward
and backward propagating mode energy before (WF 1,WB1) and after the Ω-bend (see
Fig. 4.4a). Locally determined transmission through the defect for the linear part of
the dispersion is shown in Fig. 4.4b. A mean transmission value ηT = WF 1/WF 2 of
≈ 0.92 is obtained for the chosen frequency range. Additionally, the mode energy ratios
calculated for the regions before (ηR1 =WB1/WF 1) and after (ηR2 =WB2/WF 2) the defect
are shown for a frequency range of 4THz in Fig. 4.4c. We notice that ηR1( f ) and ηR2( f )
are almost indistinguishable. This strongly suggests that the contribution of the four
symmetry-protected corners to the back-propagation energy is insignificant with respect
to back-scattering at the end facet.

Although expected, one can fully appreciate that the remarkably large transmission
over the mode’s full frequency range [80, 95, 151] is reasonably atypical by comparing
it with the transmission of a topologically trivial standard “W1” PhC waveguide (see
Methods for fabrication details). We again introduce a trapezoidal structure in the “W1”
waveguide (Fig. 4.3f, g). It is worth mentioning that the fabricated W1 waveguide corners
are not optimized for unity transmission at any given frequency [178]. In stark contrast
to the forward and backward modes for a VPC (Fig. 4.3d, e), the W1 modes (Fig. 4.3h, i)
show significant loss across the defect. Moreover, the normalized backward amplitude
map in Fig. 4.3i demonstrates that the dominant reflections already occurred at the first
120◦ corner. The mode energy here is converted to a back-reflected wave and additionally
experiences out-of-plane scattering loss. The ηT measured through theΩ-structure in
the W1 PhC, shown in Fig. 4.4d, is on average one-third the ηT observed for the VPC. The
strong reflection from the first corner is confirmed by the ηR shown in Fig. 4.4e, where
ηR1 on average is four times higher than ηR2 in the W1 PhC waveguide. The amplitude
oscillations in ηR1 are a result of Fabry-Perot type modulations and are further discussed
in Sec. 4.6 for increasing number of corners.

In addition to the back-reflection from the individual corners, a proper evaluation
of propagation along the Ω-shaped defect also takes into account other aspects: out-
of-plane scattering losses, scattering at the end facet, and interference due to multiple
reflections along the interface. We notice rapid oscillations in ηR1,2( f ) before and after
the defect (Fig. 4.4c, e). To disentangle the back-scattering contribution from the afore-
mentioned aspects, we consider the complex scalar mode amplitude of the Bloch wave at
different points along the interface. With the assumption of a perfectly mirror-symmetric
device, we treat the defect as a single effective interface in a transfer-matrix model (TMM).
Using ηR and ηT as input parameters to the model, we quantify the mean reflectance Rc

of the full defect. Details of the model and the precise extraction method can be found in
Sec. 4.5. Applying the model to the data for the topologically protected edge states shown
in Fig. 4.4b,c yields a mean effective reflectance for the full defect Rc = 0.002±0.001 and
an out-of-plane scattering loss Ac = 0.080±0.002 for the topologically protected edge

states. Furthermore, we determine the average single-corner reflectance Rsingle
c = 0.0007
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from the TMM (see Sec. 4.5.3).

The same approach applied to the data in Fig. 4.4d, e for the W1 PhC waveguide reveals
a reflectance Rc = 0.191±0.010, two orders of magnitude larger than that observed for the
VPC, and an out-of-plane scattering coefficient Ac = 0.304±0.017. These values for the
W1 structure are in good agreement with values in the literature [179–181]. A topologically
protected PhC lattice thus reduces the experimentally achievable back-reflection from
individual sharp corners by two orders of magnitude over the entire frequency range of
the edge state. We confirm this finding and the applicability of the introduced TMM using
finite-difference time-domain simulations for the same lattice designs with increasing
numbers of corners (see Sec. 4.5), further corroborating the discovered experimental
limits to topological protection. The observation that the numerically extracted corner
reflectance for the VPC is even lower than the experimentally determined reflectance
suggests that we measure the effect of C3 symmetry-breaking disorder in the fabricated
structure.

4.5. QUANTIFICATION OF CORNER REFLECTIVITY AND LOSS

We quantify the back-scattering of topologically protected edge states - bound to a VPC
interface - from an Ω-shaped defect of four 120◦ corners (cf. Fig. 4.3b of Sec. 4.4) by
comparing the measured forward and backward propagating energies before and after
the defect to an analytical model. We introduce a transfer matrix model (TMM) approach
and compare its results to the back-scattering observed in a similarly shaped W1-type
photonic crystal waveguide, which is based on one missing row of holes in a hexagonal

lattice. We extract the reflection coefficient Rsingle
c of an individual corner in the waveguide

as a quantitative measure of back-scattering and quantify the associated loss Asingle
c which

is dominated by out-of-plane scattering.

4.5.1. TRANSFER MATRIX MODEL

forward

f1

b1

f1

b1

f2

rc / tc

rc / tc

b2

f2

b2

… …

δ

Figure 4.5: Sketch of the experimentally investigated VPC with an Ω-shaped interface defect, as well as its
representation within a transfer matrix model. The effect of the Ω-shaped defect on the field amplitudes is
approximated by complex reflection and transmission coefficients rc and tc , and the distance between the
detection points is associated with a propagation phase δ.

To compare the mode at different positions along the interface, we separate a complex
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scaling amplitude ak from the Bloch mode’s periodic distribution, resulting in

Ekx (r) = ak e ıkx x ·u′
kx (r), (4.1)

with u′
kx a fixed function, independent of the unit cell or time at which the mode field is

evaluated. The full spatial information in each unit cell is thus effectively reduced to the
scalar complex amplitude value ak . The complex amplitude together with the reciprocal
nature of the employed photonic crystals enables us to describe back-scattering sites
along the interface with complex amplitude reflection and transmission coefficients rc

and tc , respectively. Furthermore, we introduce a loss channel Ac , incorporating out-of-
plane scattering losses, via

Rc +Tc = 1− Ac , (4.2)

where Rc = |rc |2, Tc = |tc |2.
Without loss of generality, we consider the forward and backward propagating field

amplitudes f1, f2, and b1,b2 to denote the value of ak at specific positions on the sample
as shown in Fig. 4.5 and get

b1 = rc f1 e i 2δ+ tc b2 e iδ (4.3)

f2 = tc f1 e iδ+ rc b2 , (4.4)

with the propagation phase δ= k ·d given by the wavenumber k and distance d between
the two detection points 1 and 2, which are placed immediately after an interface. Eq.
(4.3) and Eq. (4.4) can be cast into the compact form(

f1

b1

)
= Mc

(
f2

b2

)
, (4.5)

where

Mc = 1

tc

(
e−iδ 0

0 e iδ

)(
1 −rc

rc t 2
c − r 2

c

)
(4.6)

is the transfer matrix describing light propagation from position 1 to 2 in the multilayer
stack. The propagation through a series of N layers can then be written as a single matrix
M̃ , given by

M̃ =
N∏

i=1
Mi . (4.7)

Here, Mi is the transfer matrices of the individual layers (with corresponding distances
and reflection/transmission coefficients).

It is straightforward to relate any field amplitudes in a TMM to each other by appropri-
ate transfer matrix multiplications. The experimentally determined energy densities on
which we base our analysis are given by Fn = | fn |2, Bn = |bn |2 (n = 1,2) and are repeated
from Fig. 4.4b-e of the main manuscript in Fig. 4.6 over an excitation frequency window
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of ca. 4THz. If we want to achieve a full overlap of these energy densities with predictions
from the TMM model, we not only need to take into account the four 120◦ corners of the
tailored topologically protected defect but additionally all scattering sites after the defect.
These include scattering at the transition from the VPC interface to an intermediate PhC
waveguide, the subsequent transition to a silicon strip waveguide, and scattering at poten-
tial fabrication defects. Since these additional interfaces are not protected by the mirror
symmetry of the VPC lattice, it is expected that their reflection coefficients dominate the
entire system.
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Figure 4.6: Experimentally retrieved energy of the forward (F2) and backward (B1,B2) propagating modes before
and after the Ω-shaped defect, normalized to F1. The backward mode intensities are shifted by 1 for better
visibility. (a) VPC edge state. (b) W1 waveguide.

4.5.2. EFFECTIVE CORNER REFLECTIVITY
Our aim is to arrive at a relation between the measured energy densities before and
after the defect, and the intensity reflection coefficient Rc and loss Ac . If we, in fair
approximation, assume our devices to be mirror-symmetric (as by design), reciprocity
dictates equal coefficients for forward and backward propagation through the full Ω-
shaped defect. We can thus combine the four individual corners into a single effective
interface with complex amplitude reflection and transmission coefficients rc and tc (see
Fig. 4.5). We divide Eq. (4.3) and Eq. (4.4) by f1 and take the absolute square to obtain

B1

F1
= Rc + B2

F1
Tc +

(√
Rc e−iθrc

√
Tc e iθtc

√
B2

F1
e iθb2 e−iθ f1 + c.c.

)

= Rc + B2

F1
Tc +2

√
Rc Tc B2 F1 cos(θc −θ) (4.8)

F2

F1
= Tc + B2

F1
Rc +2

√
Rc Tc

B2

F1
cos(θc +θ) . (4.9)

Here, c.c. denotes the complex conjugate and we express complex quantities in their
polar form (z =p

Z e iθz ), with the phase differences θc = θrc −θtc and θ = θb2 −θ f1 . Using
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Eq. (4.2), we cast Eq. (4.8) and Eq. (4.9) into the form

B1 −B2

F1 −B2
= Rc − Ac B2 −2

p
Rc (1−Rc )F1B2

F1 −B2
cos(θc −θ) (4.10)

F1 −F2

F1 −B2
= Rc + Ac F1 −2

p
Rc (1−Rc )F1B2

F1 −B2
cos(θc +θ) . (4.11)

Eq. (4.10) and Eq. (4.11) represent the central result of the TMM analysis, and the corre-
sponding data is presented in Fig. 4.7.

Due to the expected strong influence of scattering events from outside the topological
photonic crystal, as seen by the strong correlation between the signals B1/F1 and B2/F1

in Fig. 4.6a, we utilize an effective averaging approach. Such an approach is based on the
linear slope of the VPC edge state dispersion. We can then disentangle the reflection at the
tailoredΩ-shaped defect from any subsequent back-scattering events by averaging over
a frequency range where the interference effects between the latter lead to cosine-like
intensity modulations with multiple full periods. Both θc and θ in Eq. (4.10) and Eq. (4.11)
are oscillatory functions of frequency since they incorporate the propagation phases
(cf. Eqs. (4.3), (4.4)). Therefore, by applying a frequency average over the experimental
range of ca. 4THz (denoted by 〈·〉) to Eq. (4.10) and Eq. (4.11), we average out the cosine
modulation and solve for the mean effective defect reflectivity and loss,

〈Rc〉 = (B1 −B2 )F 1 − (F1 −F2 )B2

F1 +B2
(4.12)

〈Ac〉 = (F1 −F2 )− (B1 −B2 )

F1 −B2
, (4.13)

where we defined the operator

· ≡
〈 ·

F1 −B2

〉
, (4.14)

and assume no correlation in the spectral behavior of Ac and F1, B2. The resulting
averages are displayed as straight lines in Fig. 4.7, with their standard deviation indicated
by the shaded regions.

4.5.3. SINGLE CORNER REFLECTIVITY
From the mean effective interface values 〈Rc〉 and 〈Ac〉 via Eq. (4.12) and Eq. (4.13), we
infer an estimate for the coefficients of the individual corners, i.e., when representing each
of the four waveguide bends by a single interface in the TMM. The distances between the
interfaces are set to the design parameters, as indicated in Fig. 4.5. We model a waveguide

with four identical corners, then search for an
〈

Rsingle
c

〉
such that the mean effective 〈Rc〉

given by Eq. (4.12) reproduces the value extracted from the experiment. The single corner
absorption is subsequently given by

〈
Asingle

c

〉
= 1−

〈
Rsingle

c

〉
− 4

√
1−〈Rc〉−〈Ac〉 . (4.15)
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Figure 4.7: Evaluation of Eqs. (4.10), (4.11) for the data shown in Fig. 4.6, where 〈Rc 〉 and 〈Rc 〉+〈Ac 〉 according
to Eqs. (4.12), (4.13) are indicated as red and blue dashed lines, respectively. The shaded region around the lines
corresponds to the standard deviation of the extracted mean values. (a) VPC edge state. (b) W1 waveguide.

VPC edge state W1 waveguide
〈Rc〉 0.0026±0.0010 0.191±0.010
〈Ac〉 0.0804±0.0014 0.304±0.017〈

Rsingle
c

〉
0.0007 0.052〈

Asingle
c

〉
0.0208 0.105

Table 4.1: Comparison of extracted effective mean corner reflectivity and loss for theΩ-shaped defect within
the studied photonic crystal waveguides, as well as the estimates for single corners.

The mean effective parameters extracted from our measurements of the VPC interface
and W1 waveguide are displayed in Fig. 4.7 and listed together with the single corner

parameters in Tab. 4.1. For the VPC edge state defect, we obtain
〈

Rsingle
c

〉
≈ 0.1% and〈

Asingle
c

〉
≈ 2%. While the value of

〈
Asingle

c

〉
might seem large for a topological photonic

insulator, topological protection is only given for in-plane propagation, with out-of-plane
confinement in the silicon slab solely provided by total internal reflection. If we apply
the described model to the experimentally measured mode amplitudes of a topologically
trivial W1 photonic crystal waveguide, we obtain a corner reflectivity that is two orders

of magnitude higher with respect to the topologically protected system (
〈

Rsingle
c

〉
≈ 5%),

while we also see roughly a four-fold increase in out-of-plane scattering (
〈

Asingle
c

〉
≈ 11%).

Such an increase in losses matches well with the expected scaling behavior with the modes’
group velocity of v−2

g [182], with vg ≈ c/5.8 for the VPC edge state and vg ≈ c/10.1 for the
W1 waveguide mode. In consequence, the extracted reduction of back reflection between
the two waveguide systems suggests an advantage of topological photonic systems in
experimentally achievable conditions.
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4.6. INFLUENCE OF CORNERS ON BACKSCATTERING
In order to validate the experimental retrieval of the best estimate for corner reflectivity
from the introduced transfer matrix model, we calculated the back-reflected energy
densities for different numbers of corners using finite difference time domain simulations
(Lumerical FDTD). We construct a VPC interface and W1 photonic crystal waveguide
with the same dimensions and a similar in-coupling scheme as used in the experiment.
The lattice constant a and sizes of the triangular holes in the unit cell of the VPC were
thus chosen as a = 500nm, d1 = 0.70a and d2 = 0.45a, while the W1 waveguide was
constructed with a lattice constant of a = 420nm and hole radius of r = 120nm. To reduce
the computational cost for the simulations, 2D calculations were performed with effective
refractive indices adapted to approximately match the experimentally retrieved band
gaps around 190−200THz. In this configuration, out-of-plane scattering is absent in
the simulations in contrast to the experiment. We utilize a broadband source in the feed
waveguide to launch a pulse with a spectral range of 1450nm−1650nm and temporal
width of ∆t ≈ 40fs. The simulation domain was encapsulated by perfectly matched
layers (PMLs) with sufficient thickness to minimize unwanted reflections at the domain
boundaries, and the simulation was performed for 10ps to allow for the pulse energy to
adequately decay in the PMLs.

The in-plane electric field components over an area of 20×20 unit cells along the
interface/waveguide before the corner(s) were subsequently extracted (see Fig. 4.8a-c for
the different defect configurations) and used to calculate the mode energy of the forward
(F1) and backward (B1) traveling edge state or waveguide mode via their dispersion
relation, analog to the experimental realization. The resulting energy ratio ηR1 = B1/F1

is shown for the three different configurations in Fig. 4.8a-c on a logarithmic scale to
compare the QVHE-emulating VPC and W1 PhC waveguide for each configuration, as
well as in Fig. 4.8d,e on a linear scale to follow the evolution of the two modes with an
increasing amount of corners. In the case of two and four 120◦ corners, the field energies
F2, B2 were additionally extracted from a similar area after the defect.

Looking at the variation in the energy ratio, we observe that the oscillation ampli-
tude of the back-reflected mode energy increases as the amount of interface corners is
increased. In addition, the interference between the different corners leads to a distinct
Fabry-Perot-type modulation pattern for the W1 waveguide (Fig. 4.8e), while an increase
of contributing oscillation periods can be seen for the VPC edge (Fig. 4.8d). The nearly
flat reflection coefficient for a single corner in the W1 waveguide of 〈ηRc 〉 = 0.288 high-
lights the dominating influence of the W1 corner over other sources of backscattering,
while the modulation seen in the VPC edge data for a single corner hints at a compara-
ble backscattering strength from the corner and the PMLs terminating the simulation
domain.

Further evaluating the determined energy ratios via the transfer matrix model of
Sec. 4.5, we retrieve an effective full reflectivity of 〈Rc〉 = [0.2,1.4,3.9] ·10−5 for a system
containing 1, 2 and 4 corners along the VPC interface, respectively. The W1 waveguide
system exhibits 〈Rc〉 = [0.288,0.443,0.571] for the same configurations. The relative low
reflectivity for the VPC suggests that in addition to backscattering caused by the intro-
duced defects, the backward propagating mode energy is affected by numerical as well
as meshing artifacts in the simulations. These are negligible for the W1 simulations,
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Figure 4.8: Numerically calculated energy ratio ηR1 = B1
F1

of the backward (B1) and forward (F1) propagating

mode for different configurations of the guiding channel. A schematic of the simulation setup is shown above
the corresponding ratio of a VPC edge state and W1 waveguide mode for (a) a single 120◦ corner, (b) two corners
(Z-shaped defect) and (c) four corners (Ω-shaped defect), where the mode amplitudes f1 and b1 are extracted
from an area of 20×20 unit cells. To visualize the four orders of magnitude difference, the retrieved energy ratio
is plotted on a logarithmic scale. (d) Comparison between the three different scenarios in (a-c) for the VPC edge
state, and (e) the W1 PhC waveguide mode.

which show a clear trend of increasing system reflectivity with a number of corners. Us-
ing the reflectivity 〈Rc〉 for the W1 waveguide structures with 2 and 4 corners, we can
estimate the single-corner reflectivity with the approach of Sec. 4.5.3. This results in

〈Rsingle
c 〉 = [0.285,0.284] for the two- and four-corner system. This is in good agreement

with the reflectivity 〈Rc〉 = 0.288 that was calculated directly for a single-corner system,
corroborating the approach of Sec. 4.5.3 to estimate single-corner from full-defect reflec-
tivity as we perform in the main text.

The extracted four orders of magnitude difference in reflectivity between the VPC edge
state and the W1 waveguide mode highlights the robustness of the former against the
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designed four 120◦ corner defects. While these 2D simulations achieve an additional two
orders of magnitude decrease in backscattering as compared to the experiment, we want
to emphasize here that no disorder in the position and size of the triangles constituting
the VPC unit cells was taken into account in the simulations. Typical state-of-the-art
manufacturing techniques allow for the disorder as small as σ≈ 1nm [183], which is an
order of magnitude larger than the grid size chosen in the shown numerical calculations.
The discrepancy between experimentally determined and numerically extracted corner
reflectivity can thus be understood as an indirect measure of the C3 symmetry-breaking
disorder in the experimental system.

4.7. CONCLUSIONS
In summary, a direct experimental quantification of topological protection in VPC-based
PTIs at telecom frequencies was achieved by accessing the full complex wavefunction of
the edge state via phase-resolved near-field microscopy. This allows for the determination
of the back-reflection from topologically protected defects as well as for quantification of
the experimentally unavoidable out-of-plane scattering losses. We unambiguously deter-
mined an experimental upper limit to the back-scattering contribution from symmetry-
protected defects in PhC-based topological edge states. This evaluation opens a direct
pathway toward applied quantum topological photonic networks for secure and robust
communications.
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APPENDIX
4.A. NUMERICAL CALCULATION OF EDGE STATE DISPERSION

AND EIGENMODES
The edge state eigenfrequencies f (k), as well as eigenmodes Ek(r) that are localized
at the interface between two mirror-symmetric valley photonic crystals (VPCs), were
calculated for an in-plane wavevector k with the freely available MIT Photonic Bands
solver [184]. It determines the Bloch eigenmodes of the full three-dimensional photonic
crystal structure using a plane-wave basis set and periodic boundary conditions. We
used a simulation supercell of dimensions a ×28a ×10h, where h is the thickness of the
free-standing silicon slab and a is the lattice constant of the VPC patterned therein. This
supercell was sufficiently large to avoid interactions between neighboring supercells in y
and z. The calculations used an in-plane grid size of a/32 and an out-of-plane grid size of
a/16, which ensured convergence of the eigenvalues to better than 0.1%. To account for
surface passivation effects of the experimentally employed silicon membrane of height
h = 220nm and to adapt the resulting eigenfrequencies to the experimentally determined
dispersion relation, the effective refractive index of silicon was modeled to be 3.36.
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Figure 4.9: Band structure calculations. (a) Geometry of the photonic crystal membrane used in the eigenmode
calculations, with grey and white representing silicon and air, respectively. For better visibility, two unit cells
are shown along the interface. (b) Numerically calculated band structure of the edge state eigenmode (orange)
as well as the upper and lower bulk bands (red and blue, respectively) of the photonic crystal. The light cone
is displayed as dark grey shading, while the bulk band region has been shaded light grey. In addition to the
topologically non-trivial edge mode, there exists a second mode confined to the edge at large kx , shown in
ochre. (c) Comparison of the fundamental Brillouin zone of the experimentally retrieved dispersion relation and
the numerically calculated edge state eigenfrequencies (black dashed line) as well as bulk bands (grey dashed
line and shaded region), highlighting the excellent overlap between experiment and simulation. The light line is
given by the solid grey line.

The lattice constant was chosen as a = 503nm, and the base length of the triangular
holes in each unit cell, determined from SEM images, was d1 = 0.70a and d2 = 0.45a for
the large and small triangles, respectively. Both triangular holes were modeled with a
corner rounding of r = 42nm to account for fabrication-related deviations from their
ideal structure. We construct a bridge-type interface between two mirror-symmetric
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sub-lattices VPC1 and VPC2 in the supercell, with the base of the large triangles facing
each other. The periodic nature of the simulation subsequently dictates the additional oc-
currence of the complementary interface (base of small triangles facing each other) at the
boundary of the supercell (see Fig. 4.9a). The calculated edge state eigenmodes located at
this complementary interface were filtered out, and the resulting band structure for the
topologically protected edge state as well as the bulk VPC eigenfrequencies determining
the system’s band gap are shown in Figure 4.9b. The latter were calculated for a single
unit cell of one of the sub-lattices and subsequently mapped to the chosen interface
orientation by projecting the resulting bulk frequencies onto the kx direction. In addition
to the edge state traversing the band gap with a linear dispersion around the K-point, a
second mode confined to the central interface is found branching off the top bulk band
for high in-plane k-values (shown in ochre in Fig. 4.9b). Comparing the calculated band
structure to the fundamental Brillouin zone of the experimentally retrieved dispersion
relation, an excellent agreement in both position of the band edge as well as edge state
dispersion is found, with the mode dispersion of the edge state extending into the light
cone for kx < 0.31 ·2π/a (see Fig. 4.9c).

To verify the experimentally determined near-field structure of the edge mode (shown
for a wavelength of λ = 1600nm in Fig. 4.10a), the field distribution of the eigenstate
was extracted from the simulation 20nm above the silicon membrane. The in-plane field
amplitude distribution is displayed for an illustrative k-point of kx = 0.32 ·2π/a in Fig.
4.10b. The corresponding eigenfrequency of the edge state at this k-point is f = 187.0THz.
It can be seen that the mode symmetries of this numerically determined eigenmode
match the mode’s in-plane electric field amplitude and the experimentally measured
mode distribution.
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Figure 4.10: Comparison between (a) the experimentally retrieved near-field amplitude map for λ= 1600nm
( f = 187.4THz) and (b) the numerically calculated in-plane electric field distribution of the edge mode at
kx /(2π/a) = 0.32 ( f = 187.0THz).

4.B. DISPERSION RELATION OF A W1 WAVEGUIDE
To compare the robustness against reflection from a corner defect between the VPC edge
state and a W1-type photonic crystal waveguide, both modes need to be considered at
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Figure 4.11: Dispersion relation of the fundamental mode of a W1-type photonic crystal waveguide, retrieved
via Fourier transforms of near-field maps of the mode while scanning the excitation wavelength. The lattice
constant of the investigated photonic crystal is a = 420nm, with a hole of radius r = 120nm constituting the
unit cell of the hexagonal lattice.

comparable group velocities vg , since backscattering loss scales with v−2
g [182]. Thus,

we experimentally determine the dispersion relation of the W1-type photonic crystal
waveguide (analogous to the VPC edge state dispersion from the main manuscript, shown
in Fig. 4.2b), and show the bands of forward and backward propagating Bloch modes
spanning several Brillouin zones (BZs) in Fig. 4.11. One key observation here is that the
forward propagating mode in the fundamental BZ is located at negative kx , in accordance
with the mode’s expected behavior [182]. In addition to the predicted band in the forward
and backward direction, bands with half and a third of the dispersion slope of the funda-
mental mode appear. These were already observed in a GaAs-based photonic crystal and
attributed to a nonlinear interaction with the scanning near-field probe [185].



5
INTERFACE DEPENDENCE OF

TOPOLOGICAL EDGE STATE

There is always light. If only we were brave enough to see it. If only we’re brave enough to be
it.

5Amanda Gorman

In this chapter, we study the effect of edge geometry transformation on topological edge
states in Valley Hall effect emulating photonic crystals. We experimentally show that a glide
transformation of the interface can open a finite mode gap and lead to slow light inside the
Brillouin zone close to the Dirac point. Simulation results indicate that the transformation
also weakens the robustness of the edge state against valley-conserving disorder. This work
suggests that interface geometry in addition to the bulk-edge correspondence has a direct
influence on the existence of valley-polarized edge modes.

Parts of this chapter have been published as a preprint [186]
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5.1. INTRODUCTION

A fundamental property of a topological photonic crystal (TPC) interface is the occurrence
of a photonic eigenmode with its electric field localized transversely along the interface
of two semi-infinite lattices with the dispersion of the mode traversing a nontrivial band
gap [11, 80, 88]. The number of topological edge states (TES) is governed by the bulk-
boundary correspondence [11, 67–70]. By engineering the bulk of a TPC, TES associated
with various topological orders has been realized with different levels of robustness
[88, 95, 165, 187–190]. For nonreciprocal TPCs, such as gyromagnetic photonic crystals
[73, 79], the existence of TES is guaranteed by the topological order in bulk [79, 164].
For C6-symmetric TPCs [88, 149], the topological protection of TES is conditional on
the conservation of pseudo-spin [88]. When an interface mixes counter-propagating
edge states, such as in the case of broken C6-symmetry at the interface in spin Hall effect
emulating TPCs [150, 191], spin-spin scattering results in a gapped dispersion and thereby,
is detrimental to the robustness of TES [88]. A similar argument applies to the valley
Hall effect emulating photonic crystals (VPCs), where the valley degree of freedom plays
the role of pseudo-spin [95, 152, 192, 193]. From the bulk-boundary correspondence,
it is widely accepted that a valley-conserving interface should exhibit TES as long as it
separates two regions with distinct valley-dependent topologies [95, 194]. Recent studies
show that the interface geometry of TPCs can also significantly impact the TES [26, 195–
197]. One can, for example, design a chiral interface [133] or ensure broadband low-loss
waveguides [198, 199]. However, the bulk-boundary correspondence doesn’t fully take
into account the relationship between the geometry of the interface and the occurrence
and robustness of the edge state [67, 68, 79, 99, 200].

In this chapter, we study the impact of gradually changing the geometry of a VPC
interface on edge states in a valley photonic crystal, with a specific focus on the transfor-
mation from a zigzag into a glide plane interface. By experimentally measuring the mode
dispersion of the glide plane, we observe a finite gap between the upper bulk modes and
the edge states (mode gap). Below the mode gap, a region of slow light exists inside the
Brillouin zone (BZ), distinct from the slow light regions that occur either at the center or
the edge of the BZ [124, 133, 149, 150, 196, 201]. Next, we examine the valley-dependent
transport of these edge states by simulating their propagation through a specially de-
signed valley-conserving defect. The calculated transmittance of this defect experiences a
significant drop as the geometry of the interface is transformed. This observation suggests
that the transformation of the VPC interface disrupts the valley-dependent transport of
the edge states.

5.2. GLIDE SHIFT ON VALLEY PHOTONIC CRYSTAL

We start with a VPC interface, similar to the one depicted in Fig. 4.1 (Ch. 4). Here, two
distinct VPCs are patterned on a silicon-on-insulator slab. Each unit cell of these VPCs
comprises two inequivalent triangular holes, with side lengths of d1 = 0.6a and d2 = 0.4a,
respectively with a lattice constant of a = 500nm. The two VPCs are mirror images of
each other. As a consequence of bulk-edge correspondence, a difference of ∆Cv = 1 in
the valley-dependent topological invariant [95, 97, 194] results in an edge state traversing
the non-trivial band gap and is robust against perturbations that disallow inter-valley
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Figure 5.1: Interface geometry and dispersion diagrams. (a) An SEM image of a shifted interface of two distinct
VPCs for t = 0.25a, with a = 500nm the lattice constant of both VPCs. (b) Experimentally retrieved dispersion
diagram of photonic modes of the shifted interface, where log10 |F (E)|2 is plotted versus kx and the frequency
of excitation. A mode gap arises between the edge states (bottom of graph) and the bulk modes (top of graph). A
close-up of the measured dispersion curve of the edge states for a shift of 0.25a is shown in (c), where |F (E)|2 is
plotted in a linear scale. The measured dispersion has an M-shape and is consistent with the simulation result
(blue-dashed line). Remarkably, there is a slow light region around kx = 0.8π/a, which is inside the Brillouin
zone rather than at its edge. As a result, the edge state also exhibits both a positive and negative group velocity
within half a Brillouin zone. (d) Numerically simulated dispersion curves of edge states for t = 0 (orange), 0.25a
(blue), and 0.5a (red). The grey regions represent bulk modes, and the dark line corresponds to the light line
ω= ck. As t increases from 0 to 0.5a, the edge states transform from gapless to gapped. (e) The group velocity
of edge states. With an increase in t , a slow-light edge state with vg = 0 transitions from the Brillouin zone edge
towards its interior.

scattering [11, 67, 95]. Such an interface between two semi-infinite lattices is known
as the zigzag interface with no shift along the direction of the interface (t = 0). The
maximum achievable shift is t = 0.5a and at this shift, the interface geometry becomes
perfectly glide-plane symmetric. To investigate the interface dependence on topological
robustness, it is important to consider intermediate shifts as well. Therefore, we examine a
mid-point transformation t = 0.25a. It is worth noting that shifting the VPC preserves the
conservation of valleys since this perturbation does not affect the wavefunction overlap
between states at different valleys. Therefore, valley-dependent gapless edge states are
still expected to appear at both the shifted interface and the glide plane.

We fabricate three VPC interfaces, corresponding to t = 0,0.25a, and 0.5a, respectively.
The in-plane electric field distribution E of edge states along these interfaces is measured
with phase-sensitive near-field scanning optical microscopy [106]. We apply a spatial
Fourier transform F (kx ) to the measured complex electric field E for a wavelength range
λ= [1480nm−1640nm] to obtain the dispersion relation of the photonic modes [150].
For t = 0, we observe edge states with a gapless dispersion curve for the zigzag interface
(see Fig. 5.3(a)), as expected from the previous chapter (Ch. 4) [97, 150]. However, as t is
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increased the dispersion curve changes dramatically. The measured dispersion diagram
of the shifted interface t = 0.25a is shown in Fig. 5.1(b), where |F (E(kx ))|2 is plotted with
a logarithmic color scale versus kx for a range of excitation frequencies. We observe that a
mode gap opens between 185 THz and 189 THz, which is absent in the dispersion of the
zigzag interface [150]. A close-up of the dispersion curve is displayed in Fig. 5.1(c), where
|F (kx )|2 is also shown with a linear scale. The measured dispersion curve has an M-shape
centering at the BZ edge, which is consistent with the simulation result indicated by the
white dashed line. This dispersion curve has a zero slope at approximately kx = 0.8π/a,
demonstrating that slow light occurs within the BZ, where kx <π/a. This slow light region
is distinct from the typical ones in a photonic crystal waveguide, which usually lies either
at the edge (kx =π/a) or in the middle (kx = 0) of the BZ [195, 202, 203]. A simple interface
deformation with a glide shift can transform gapless edge states into gapped ones. In
addition, we present the measured dispersion diagram of photonic modes of the glide
plane for t = 0.5a (Fig. 5.3), where edge states are not observed as they fall below the
operating frequency range of our laser.

To investigate how the dispersion relation of edge states changes for a glide shift
between the VPC interfaces, we numerically simulate the dispersion relations of edge
states using finite-element simulations [122], as shown in Fig. 5.1(d). We also present
the calculated group velocities of the edge states in Fig. 5.1(e). When t = 0 (the zigzag
interface), the edge states exhibit a gapless dispersion curve, which becomes almost linear
near the valley at kx = 2π/3a. The gapless dispersion is a feature of TES and indicates that
a change of bulk band topology occurs at the interface [11, 165]. For a shift of t = 0.25a, a
mode gap appears between the top of the edge states and the bottom of the upper bulk
modes. The edge states shift down in frequency towards the BZ edge (kx =π/a), creating
a slow light region distinctly different from the typical slow light regions in photonic
crystals, which occur either at the BZ edge or at the Γ point [195, 202]. The decrease of
the group velocity here is due to the emergence of energy vortexes, rather than standing
waves [203]. As t increases further to 0.5a, the mode gap widens, and the slow light region
moves closer to the valley at kx = 2π/3a. To underpin the gradual change from gapless
to gapped edge states, we numerically simulate various interfaces with t = [0.1−0.5]×a,
and is shown in Fig. 5.4.

5.3. ROBUSTNESS AGAINST VALLEY-CONSERVING DEFECTS
We found that the edge states at the shifted interface have a dispersion relation distinct
from those of typical valley-dependent edge states, which cross the band gap around
valleys. Usually, valley-dependent transport is demonstrated with backscattering-free
propagation through a valley-conserving defect, such as a sharp 120◦ interface bends [97,
150, 151]. However, in the case of a shifted interface, a sharp bend cannot be realized
while preserving the interface geometry. To examine the valley-dependent transport of
edge states at interfaces with a glide shift, we propose a valley-conserving lattice defect
called an L3 defect. This defect is introduced into a VPC interface by replacing three small
triangular holes with three larger ones, as depicted in Fig. 5.2(a). According to first-order
perturbation theory, the L3 defect conserves the valley degree of freedom. It is thus ideally
suited for testing valley-dependent transport (a mathematical proof is provided in Sec.
5.B).
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Figure 5.2: Defect and transmittance. a) The geometry of a valley-conserving L3 defect introduced into a shifted
interface, with three small triangles replaced by three large ones (blue). b) & c) Simulated electric field amplitude
E on the zigzag interface (t = 0) and the shifted interface (t = 0.25a), respectively, at an excitation frequency of
168 THz. The blue arrow indicates the position of the L3 defect. Light enters the VPC interface from the left side
and exits from the right side. A decrease in |E| at the L3 defect and an interference pattern is observed in c) but
not in b), indicating a significant contrast in transmittance before the defect between the two VPC interfaces.
The simulated transmittance spectra of the zigzag and shifted interface are presented in d) & e), respectively.
The grey domain indicates the band gap, while the dark domain represents the mode gap. The zigzag interface
has a transmittance spectrum almost unaffected by the L3 defect. In contrast, the shifted interface exhibits a
significant decrease in its transmittance after introducing the L3 defect.

We simulate light propagation along various VPC interfaces using COMSOL Multi-
physics® software [122], both with and without an embedded L3 defect. Figs. 5.2(b) and
(c) depict the amplitude of the simulated normalized electric field |E| of the edge state in
the zigzag and shifted interfaces, respectively, for an excitation frequency of f = 168 THz.
The input port and output ports are located on the left and right sides, respectively. The
blue arrow indicates the position of the L3 defect. For the zigzag interface, the electric
field amplitude remains almost unchanged after the L3 defect. However, for the shifted
interface, the electric field amplitude reduces significantly after light crosses the L3 defect.
The interference pattern in Fig. 5.2(c) before the L3 defect is the first indication that light
suffers back-reflection at the defect.

The transmittance spectra of the VPC interfaces for two cases, namely t = 0 (zigzag
interface) and t = 0.25a (shifted interface), are presented in Fig. 5.2(d) and (e), respectively.
In these figures, the red line represents the transmittance of the VPC interfaces without
the L3 defect, while the blue line corresponds to the transmittance with the L3 defect. The
grey region represents the band gap, whereas the dark gray region represents the mode
gap. It is worth mentioning that the band gap, which spans from 161 THz to 173 THz,
does not match the one displayed in Fig. 5.1(d). This inconsistency can be attributed to
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the numerical errors in the two-dimensional simulations for Fig. 5.2. Furthermore, all
transmittance curves exhibit frequency-dependent oscillations that stem from inefficient
coupling input and output ports (not shown in the figure). For the zigzag interface, in Fig.
5.2(d), the transmittance with and without the defect is near-unity for both cases (red and
blue curves), indicating near-perfect light propagation along the interface, even in the
presence of a local perturbation. The backscattering of light at the L3 defect is negligible,
highlighting the robustness of the edge states along such a valley-conserving defect. In
contrast, the transmittance spectra of the shifted interface in the presence of an L3 defect
exhibit a significant reduction, as shown by the blue curve in Fig. 5.2(e). Substantial
backscattering occurs at the defect suggesting that the edge states at the shifted interface
are less robust against this lattice defect. By comparing the transmittance spectra of the
zigzag and shifted interfaces, we conclude that the deformations in the VPC interface
lead to a reduction in the robustness of the edge state against valley-conserving defects
and therefore disrupt valley-dependent transport of the edge states. Our study suggests
that the robustness of the edge state against valley-conserving defects is reduced by
geometrically deforming the VPC interface even if the bulk and its topological invariants
remain the same.

5.4. CONCLUSIONS
In conclusion, the existence of valley-dependent gapless edge states depends not only
on the bulk invariants but also on the interface geometry of VPCs. By deforming a VPC
interface while preserving the conservation of valleys, through the introduction of a glide
shift we observe a transition of the edge states from gapless to gapped. Furthermore,
we observe the occurrence of slow light within the Brillouin Zone (BZ), which is distinct
from the typical resonant zero-group-velocity modes found at the BZ edge. We demon-
strate that the valley-dependent transport of these edge states is disrupted as well. Our
results indicate that the valley-dependent gapless edge states are not protected by valley-
dependent topology alone. Instead, interface geometry is a critical factor in engineering
edge states in VPCs.
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APPENDIX
5.A. GRADUAL TRANSITION OF EDGE STATES FROM GAPLESS TO

GAPPED
Here, we present additional experiments and simulation results to demonstrate the
transition from gapless to gapped as we shift the interface.

5.A.1. EXPERIMENT

Figure 5.3 shows the experimentally measured dispersion relation of the edge state of
three VPC interfaces obtained with near-field optical microscopy. For a glide shift t = 0,
the zigzag interface (in Fig. 5.3(a)), the edge state traverses the full band gap. Around
191.3 THz, we observe a cut-off where the edge mode seemingly stops, as above this
frequency lie the upper bulk bands. The zigzag interface exhibits a gapless dispersion as
expected [97, 150]. For a shift t = 0.25a, Fig. 5.3(b), shows the existence of a mode gap
(ν= [185THz−189THz]), separating the bulk modes (at the top) and the edge states (at
the bottom). As the shift increases t = 0.5a, the mode gap widens even further, as depicted
in Figure 5.3(c). In this case, two valleys reside at the top, representing the bulk modes,
while the edge states are not observed since their frequencies fall below the accessible
frequency window of the excitation laser.

(a) shift = 0 (b) shift = 0.25a (c) shift = 0.5a

Figure 5.3: Measured mode dispersion of interfaces with three different shifts. As the shift increases, a mode gap
opens between the bulk modes (at the top) and the edge states (at the bottom).

5.A.2. SIMULATION

In Fig. 5.4, we present numerically simulated dispersion curves of the edge mode along a
glide interface for incremental shifts. The calculations were performed using the COMSOL
Multiphysics® software (version 6.1) [122]. The colored lines represent the edge states,
while the grey regions correspond to the bulk modes. For a shift of t = 0, the numerically
simulated dispersion curve of the edge states (blue) overlaps with the upper and lower
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bulk modes, indicating a closed gap in the dispersion. However, as the shift of the VPC
interface increases to t = 0.1a, the edge mode (orange) is pulled down, albeit maintaining
the gapless mode. A further increment in the shift results in a mode gap emerging between
the edge states (green) and the upper bulk modes (grey). This mode gap becomes more
pronounced as the shift is increased to t > 0.2a. At the maximum shift t = 0.5a, for the
perfect glide-plane-symmetric VPC interface, the direction of kx and the sign of vg no
longer coincide along the edge mode away from the BZ edge. The edge mode becomes
degenerate with the lower bulk modes and features a forward and backward propagating
mode within the first BZ. These simulation results are consistent with the observations
we made in Fig. 5.3. Moreover, we observe two independent edge modes for the glide
plane, which is a direct consequence of glide-plane symmetry [204].

Figure 5.4: Calculated dispersion diagrams of edge modes occurring along VPC interfaces for different shifts.
The dark line represents the light line. The grey areas denote the bulk bands.

5.B. PROOF OF VALLEY CONSERVATION AT THE L3 DEFECT

Here, we show that the L3 defect decouples the bulk modes at different valleys. We denote
a bulk mode at valley K /K ′ byψK /K ′ . According to Bloch’s theorem, these bulk modes can
be expressed as the product of a plane wave and a periodic function: ψK = exp(i K · r )uK

and ψK ′ = exp(i K ′ · r )uK ′ . The coupling strength between ψK and ψK ′ by the L3 defect,
denoted by its perturbation on permittivity ∆ϵ, is [95]

〈ψK |∆ϵ|ψK ′〉 =
∫

V
∆ϵexp(i (K ′−K ) · r )u∗

K uK ′dV =
∫

V
∆ϵexp

(
−i

4π

3a
x

)
u∗

K uK ′dV. (5.1)

We divide the region where ∆ϵ ̸= 0 into three parts, corresponding to the three triangles in
the L3 defect: V =V1 +V2 +V3. For any r ∈V1, note that ∆ϵu∗

K uK ′ (r ) =∆ϵu∗
K uK ′ (r +ax̂) =

∆ϵu∗
K uK ′ (r +2ax̂). Therefore, the expression of coupling strength can be reduced to an
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integral over V1:

〈ψK |∆ϵ|ψK ′〉 =
3∑

n=1

∫
Vn

∆ϵexp

(
−i

4π

3a
x

)
u∗

K uK ′dV

=
3∑
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3a
x

)
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)
u∗

K uK ′dV
3∑

n=1
exp

(
−i

4π(n −1)

3

)
= 0.

(5.2)

This equation shows that the L3 defect does not contribute to the inter-valley coupling.
Consequently, the backscattering of valley-polarized edge states by the L3 defect is sup-
pressed. And the converse is also true: any backscattering of edge states by the L3 defect
indicates that the edge states are not valley-polarized.
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MULTIPLE BACKSCATTERING OF

PHOTONIC TOPOLOGICAL EDGE

STATES

It is paradoxical that tragedy stimulates the spirit of ridicule; because ridicule, I suppose is
an attitude of defiance: we must laugh in the face of our helplessness against the forces of

nature - or go insane.

6Charlie Chaplin

In this chapter, we present an experimental investigation of multiple scattering in photonic-
crystal-based topological edge states with and without engineered random disorder. We
map the spatial distribution of light as it propagates along a so-called bearded interface
between two valley photonic crystals which supports both trivial and non-trivial edge
states. As the light slows down and/or the disorder increases, we observe the photonic
manifestation of Anderson localization, illustrated by the appearance of localized high-
intensity field distributions. We extract the backscattering mean free path (BMFP) as a
function of frequency, and thereby group velocity, for a range of geometrically engineered
random disorders of different types. For relatively high group velocities (with ng < 15),
we observe that the BMFP is an order of magnitude higher for the non-trivial edge state
than for the trivial. However, the BMFP for the non-trivial mode decreases rapidly with
increasing disorder. As the light slows down the BMFP for the trivial state decreases as
expected, but the BMFP for the topological state exhibits a non-conventional dependence
on group velocity. Due to the particular dispersion of the topologically non-trivial mode,
a range of frequencies exist where two distinct states can have the same group index but
exhibit a different BMFP. While the topological mode is not immune to backscattering at
the disorder that breaks the protecting crystalline symmetry, it displays a larger robustness

Parts of this chapter have been published as a preprint [205]
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than the trivial mode for a specific range of parameters in the same structure. Intriguingly,
the topologically non-trivial edge state appears to break the conventional relationship
between slowdown and the amount of backscattering.
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6.1. INTRODUCTION

Slow light has been known to benefit on-chip photonics through the concomitant increase
in light-matter interactions [202, 206, 207]. The much-wanted increased light-matter
interaction itself is, however, accompanied by fundamental side effects. No real-life
photonic structure is perfect and as the light slows down, imperfections increasingly scat-
ter the propagating light both into the far field and into the counter-propagating mode
[208, 209]. Moreover, the fraction of light being backscattered will grow with increased
slowdown, inevitably resulting in Anderson localization for one-dimensional systems like
waveguides [210, 211]. The advent of crystalline topological insulators in electronic as
well as photonic and acoustic systems spurred an investigation into robust transmission
channels that are inherently protected from scattering [11, 19]. These systems offer the
possibility of topological transport without a magnetic field that breaks time-reversal sym-
metry. Instead, the protection is directly linked to crystalline symmetry. The realization
of photonic analogs consisting of topologically non-trivial photonic crystals (PhCs) [11,
13, 83, 88, 142, 149, 164, 165, 212] with reduced backscattering [73, 213–216] offer passive
implementation and the ability for on-chip, nanoscale integration. In the specific case of
quantum valley Hall effect emulating systems [95, 97, 150, 151, 217] that operate below
the light line, robustness against backscattering relies fully on geometric symmetries.
This immediately raises the question to what extent the topological protection holds in
the presence of random disorder, which by its very nature destroys the underlying and
required symmetry [131, 218].

To address this intriguing question, one must simultaneously consider photonic
slowdown and topological robustness. As the propagating light slows down, light becomes
more susceptible to backscattering due to a combination of an increase in light-matter
interaction and local density of states (proportional to the slow down) that increases the
overall scattering at imperfections, and increases the fraction of scattered light into the
backward direction which is also proportional to the density of states of the mode and
slowdown [209, 219, 220]. Recently, a design called bearded interface has been introduced
that offers both a topologically trivial and non-trivial mode within the bandgap of the
same silicon-on-insulator device, i.e., with the same unavoidable fabrication-induced
disorder [195]. Moreover, this interface offers the prospect of achieving two topologically
distinct modes over an extended range of achievable group velocities. Initial transmission
measurements have found that the transmission along straight and symmetry-preserving
corners of the non-trivial mode was indeed higher than for the trivial mode [133, 195,
221], with losses increasing for slower light. A more recent study on scattering losses due
to intrinsic fabrication disorder found no appreciable difference between the robustness
of topologically trivial and non-trivial edge states [201] with all losses being enhanced by
the slowdown of the propagating light. By observing indications of the onset of Anderson
localization, the study suggested the presence of multiple (back)scattering. In all cases, the
determination of the group velocity came from simulations. It is important to note that,
interestingly, due to small differences in the exact geometrical parameters (relative hole
sizes and corner rounding) of the realized photonic crystals, the frequency for which the
group velocity is lowest is not equivalent in both investigations: in one it is located inside
the non-trivial frequency range [221] and in the other, inside the trivial frequency range
[201]. This highlights, that for probing the limits of topological protection, investigations
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that use engineered disorder, combined with a local determination of the group velocity
would be highly valuable.

In this chapter, we experimentally quantify the robustness of edge states propagating
along a bearded interface using a universal metric known as backscattering mean free path
(BMFP) [41, 222, 223]. We directly map the spatial distribution of the complex electric field
of the edge states with phase-resolved near-field scanning optical microscopy [106, 158].
We first investigate the bearded interface without induced disorder and systematically
compare the BMFP of the trivial and non-trivial modes for the same range of group
velocities. Subsequently, we study the effect of intentionally induced positional or hole
size disorders of various magnitudes. While both trivial and non-trivial waveguides show
scattering losses, we observe a different qualitative and quantitative response for the
topologically trivial and non-trivial edge states, which depends on the type and magnitude
of the disorder. For the largest magnitudes of the disorder, we observe the photonic
manifestation of Anderson localization, illustrated by the appearance of localized high-
intensity states. Interestingly, we find that the onset of Anderson localization is different
for the distinct edge states. We also observe that the conventional direct relation between
the slowdown factor and backscattering seemingly breaks down for the topologically
non-trivial mode.

6.2. EXPERIMENTAL RESULTS

6.2.1. MAPPING OF THE NEAR-FIELD EDGE STATE

We experimentally investigate edge states at the interface of topological PhCs mimicking
the quantum valley Hall effect. A non-vanishing Berry curvature at the valleys is associated
with an intrinsic magnetic moment, resulting in a valley Chern number CK ,K ′ =± 1

2 [82,
91, 95, 97, 172, 173, 175, 224, 225]. This gives rise to photonic bulk bands of a topologically
non-trivial nature. For a unit cell with underlying C3 symmetry, there are several ways to
realize valley-protected edge state interfaces, akin to edge terminations in a honeycomb
lattice structure such as graphene. Edge state modes appear at K and K′ points of the
Brillouin zone (BZ) as a consequence of broken lattice symmetry [91, 95, 172, 173, 225] by
mirror inversion of the PhC lattices at the interface where y = 0. The two valley-protected
degenerate eigenmodes traverse the photonic band gap with a linear dispersion. This is
referred to as a zigzag interface [82, 97]. The bearded interface combines parity inversion
and glide symmetry [195] and the resulting interface enforces a degeneracy at the BZ
edge [204] resulting in two eigenmodes in each valley with a slow-light region around
the BZ edge. The high-energy eigenmode is attributed to have a trivial nature as it
can be observed to ‘drop down’ from the conduction band when holes at the interface
are adiabatically reduced in size [195]. At the same time, the low-energy eigenmode is
attributed to be non-trivial. It is observed to exhibit higher transmission through sharp
bends in comparison to the high-energy eigenmode, as is expected for a non-trivial edge
state [221]. From this point on, the low-energy mode is thus referred to as the non-
trivial mode, whereas the high-energy mode is called the trivial mode. The continuous
deformation of the interface holes and the resulting glide plane symmetry gives rise to
the two eigenmodes bending towards the BZ edge. This results in a slow-light region for
both the trivial and non-trivial modes enabling access to different backscattering regimes
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Figure 6.1: (a) Scanning electron micrograph (SEM) of the bearded interface in the fabricated sample with
the color-coded regions depicting the two mirror-inverted lattices with glide symmetry (blue and green). The
lattice periodicity is a = 510nm. (b) Schematic representation of the experimental setup employed to study
the near-field of the bearded interface with amplitude and phase resolution. (c) The experimentally measured
dispersion diagram of the first Brillouin zone of the edge state in a pristine PhC with two edge modes: at lower
frequencies, non-trivial and at higher frequencies, a trivial mode that is degenerate at 1558 nm or 192.4 THz.
The blue and red dashed lines indicate the numerically calculated dispersion curves of the non-trivial and trivial
modes, respectively.

[226].

We fabricate the bearded interface in a silicon-on-insulator platform (pseudo-colored
in SEM image Fig. 6.1(a)). The unit cell with lattice constant a = 510nm consists of
equilateral triangular holes with side lengths L1 = 0.6a and L2 = 0.4a. An interface is cre-
ated by transforming the triangular holes at the interface of one lattice from L1 to L2. We
measure the complex in-plane optical fields propagating along the length of the PhC span-
ning 180 unit cells as a function of laser excitation wavelength λ= [1480nm−1640nm]
using phase-sensitive near-field scanning optical microscopy [106]. The employed het-
erodyne detection scheme allows us to decompose each spatial field map into its Fourier
components F (kx ,ky ). Thus, we obtain the mode dispersion. Figure 6.1(b) shows the dis-
persion of a bearded interface without any engineered disorder as an example. The region
above 194.5THz represents the start of top bulk bands. Rather than a linear dispersion as
supported by the zigzag interface [150], we observe both predicted modes each with a
steep linear slope around kx = 2π/3a, and also a slow light region close to the Brillouin
zone edge (kx = π/a). The red (trivial) and blue (non-trivial) dashed outline indicates
an excellent correspondence with numerically simulated dispersion curves for the two
modes.

6.2.2. VISUALIZING REAL AND RECIPROCAL SPACE OF THE EDGE STATE

We measure the electric field of light that enters the crystal through a feed waveguide and
propagates along the interface until it leaves at the end-facet, which serves as a termina-
tion of the PhC. An exemplary measured electric field amplitude of a bearded interface
without engineered disorder is shown in Fig. 6.7. The end-facet in addition to fabrication
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Figure 6.2: Real and reciprocal space of an electromagnetic field of an ensemble-averaged realization of a
bearded interface without the intentional disorder. (a) Near-field spatial-spectral amplitude map normalized to
the incoupling region collected as a function of frequency and position along the interface. Light propagates the
TPC from the left. (b) Ensemble-averaged dispersion curve. The white dashed horizontal line denotes where
trivial and non-trivial modes become degenerate at the Brillouin zone edge. (c) Calculated group index curve
from the measured ensemble averaged dispersion. The blue and red shaded regions depict the non-trivial and
trivial modes separated by the degeneracy point given by the white dashed line at 0THz. The dark blue and dark
red regions indicate the slow light region for the non-trivial and trivial modes with a group index of ng > 15,
respectively and the grey dashed line denotes ng = 15

imperfections such as surface and side wall roughness may cause backscattering and cre-
ate intrinsic loss channels [150, 227]. The procedure that we follow for all spatial-spectral
maps in this work includes obtaining an ensemble average of five realizations of bearded
interface PhCs with the same magnitude of disorder, summed over modes with the same
group velocity [228]. Due to slight variations in nanofabrication, the dispersion relation of
individual PhCs may exhibit slight shifts in the degeneracy pointωD (DP) of the trivial and
non-trivial modes. We therefore shift all measurements to ensure that the DPs coincide
before averaging. As a consequence, the vertical axis of Fig. 6.2 indicates modified units
of frequency in terahertz denoting the frequency difference with respect to that of the DP
(ω−ωD ). The spatial-spectral amplitude map displayed in Fig. 6.2(a) shows the ensemble-
averaged electric field amplitude as a function of ω−ωD and interface length (in units
of lattice constant a). To account for the excitation-dependent incoupling efficiencies,
each horizontal line in the spatial-spectral map is normalized to the mean amplitude of
the first four unit cells after the feed waveguide. The corresponding ensemble-averaged
dispersion is shown in Fig. 6.2(b). The white dashed line denotes the DP of the trivial
and non-trivial mode in the ensemble dispersion at the boundary of the Brillouin zone
edge. By fitting a hexic polynomial function (polynomial of degree six) to the measured
ensemble-averaged dispersion curve we determine the group velocity as a function of
frequency. The extracted group index for the ensemble ng = c/vg , where c is the speed of
light in vacuum and vg is the group velocity of the measured edge state, is shown in Fig.
6.2(c). More information on this procedure is provided in Sec. III.

For qualitative scrutiny of the ensemble-averaged spatial-spectral map (Fig. 6.2(a)),
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we separate the edge mode of the bearded interface into two regimes: fast dispersive
(ng ≤ 15) and slow diffusive (ng > 15). Below −0.66 THz (blue dashed line), the non-trivial
mode has a group index of ng ≤ 15. Here, the non-trivial mode retains a nearly uniform
amplitude distribution over the entire interface length consistent with unity transmission
[150], and the corresponding dispersion shows a positive steep slope within kx < π/a.
Amplitude oscillations (with a spatial frequency of roughly 2π/3a and lower) in the spatial-
spectral maps arise due to the interference of the backward and forward propagating
Bloch modes. As the non-trivial mode enters the diffusive regime (ng > 15) for larger
frequencies, the mode nominally slows down further and the amplitude starts to rapidly
decay with distance. In reciprocal space (Fig. 6.2(b)) more spatial frequencies appear
around the DP. We observe that the non-trivial mode reaches a maximum group index
of ng = 50 at ω−ωD = −0.17 (shown in Fig. 6.2(c)). Importantly, this maximum group
index is found to occur not at the DP but at a lower frequency, i.e., in the frequency range
of the non-trivial edge state (see Sec. 6.C.2 and ref. [201]). As we cross over to the trivial
region, we observe a gradual decrease of ng as the frequency is increased away from
the BZ edge with a group index ng = 30 at the BZ edge. The influence of unavoidable
fabrication-induced disorder on the trivial mode is evident. A clear indication of light
undergoing backscattering along the waveguide is visible in the frequency region around
the DP. The local high-intensity features are characteristic of Anderson localized modes
[229, 230]. Above the red dashed line, where the trivial mode has ng ≤ 15, the dispersion is
roughly linear. However, multiple interference patterns along the interface are observed
in the spatial-spectral maps with a distinct decay, in sharp contrast to the homogeneous
distribution of the non-trivial mode with the same ng range. Thus, from qualitative
scrutiny, it is apparent that the trivial edge state suffers more backscattering than the
non-trivial edge state.

6.2.3. INTRODUCING RANDOM INTENTIONAL DISORDER

To experimentally unravel the degree of protection that a trivial and non-trivial mode
may offer against multiple scattering, we intentionally introduce disorder in the bearded
interface PhC design. We engineer two types of intentional disorder: (a) random dis-
placement of the holes and (b) hole size variations. We introduced several magnitudes of
disorder for each type of disorder and fabricated five different PhC interface realizations
per magnitude. The triangular holes are randomly displaced and deformed in accordance
with a normal distribution with standard deviation σ as a measure of position and size
disorder. The value of σ is scaled with the lattice constant a and the hole diameters L1

and L2 (which are also in units of a) for position disorder and size disorder, respectively.
Figure 6.3 shows the ensemble-averaged spatial-spectral amplitude maps for position
and size disorders with increasing disorder magnitude σ= [0.0025,0.005,0.01,0.02]. To
account for variations in in-coupling efficiency for different excitation frequencies, each
horizontal line on the spatial-spectral maps is also normalized to the mean intensity at the
feed waveguide. Qualitatively, the following observations can be made for the non-trivial
(bottom) and trivial (top) modes as we increase the magnitude of the engineered disorder.
Every ensemble-averaged spatial-spectral map in Fig. 6.3 reveals that the light in the fast
non-trivial mode region (the limit denoted by the blue dashed line where ng = 15) ex-
hibits an almost homogeneous spatial profile. Interference of the forward and backward
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Figure 6.3: Spatial-spectral maps of the measured electrical field amplitude (normalized to the input waveguide)
for various degrees of intentionally induced disorder averaged over five realizations of the disorder. The two
columns represent position- and size-induced disorder, respectively, as a function of interface length in units of
lattice constant a = 510nm. The white dashed line denotes DP of trivial and non-trivial mode. The red and blue
dashed lines (with a white background for better visibility) denote the frequency away from DP where the trivial
and non-trivial mode have a group index of ng = 15, respectively.
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modes due to back reflection at the end is evidenced by fast amplitude oscillations. As
the frequency is increased into the slow non-trivial region close to the DP, the intensity
along the interface rapidly decays to a negligible value. The propagation losses become
prevalent and the penetration of the light along the interface decreases. Similar behavior
is evident in the slow trivial region below the red dashed line where ng = 15. However, the
fast trivial region above the red dashed line looks different than that of the non-trivial
mode, showing multiple interference patterns along the interface. In the vicinity of the DP,
we observe high-intensity resonances that feature spectral and spatial dependence. These
sharp features of intensities are fingerprints of localized states and they become more
pronounced as the magnitude of the disorder increases. In general, we observe a rather
sharp transition in propagation behavior for the non-trivial region as the mode slows
down as the frequency increases, from an edge state that propagates along the entire
interface to a state that is hardly able to penetrate the structure. In contrast, the transition
in propagation behavior from fast to slow light in the trivial mode is more gradual with
frequency. We scale the magnitude of both types of engineered disorder to the lattice
constant in a linear fashion. If we use a similar scaling as was used in previous works for
both two-dimensional and three-dimensional photonic crystals [42, 131, 231] to compare
the effects of different types of disorder, it suggests that the influence of position disorder
is more prominent on edge state propagation than size disorder, as evidenced by the
slower onset of speckle-like interference patterns in trivial and non-trivial regions.

6.3. QUANTIFYING BACKSCATTERING
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Figure 6.4: (a) Normalized ensemble-averaged electromagnetic field intensity map, averaged over 5 realizations
of bearded interface without intentionally induced disorder of the non-trivial mode with integrated over fast light
region. Inset: Ensemble-averaged field intensity profile fitted with a linear slope to obtain the backscattering
mean free path.

To quantify the robustness to backscattering of the non-trivial mode in comparison
to the trivial mode in the bearded interface, we use the backscattering mean free path
(BMFP or ξ) as a figure of merit [232, 233]. It is defined as the absolute displacement along
the bearded interface after which light suffers (multiple) scattering events in the absence
of other loss channels such as absorption [234] or out-of-plane losses. We extract the
backscattering mean free path along the interface for an exemplary waveguide as shown
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in the inset of Fig. 6.4 using the following relation [235]:

− x

ξ(ω)
=

〈
ln

[
I (ω)

I0(ω)

]〉
(6.1)

where x signifies the distance from the feed waveguide, I
I0

is the normalized electric field
intensity, and the brackets indicate the statistical ensemble average over different PhCs
with the same type and magnitude of disorder. The frequency (ω) dependence of ξ is
stated to differentiate between the contributions of disorder on the non-trivial and trivial
modes.

The experimentally determined backscattering mean free path ξ as a function of
induced disorder is plotted in Fig. 6.5. The red and blue triangles indicate the BMFP of
fast dispersive regimes (ng ≤ 15) for trivial and non-trivial modes in the ensemble with
an equal group index range, respectively (see Table 6.1 for BMFP values and mean group
indices of the trivial and non-trivial regions). For the PhC ensemble with no intentionally
engineered disorder (σ0), the non-trivial mode is more robust to backscattering by an
order of magnitude compared to the trivial mode. As the magnitude of the disorder
increases, the BMFP for the non-trivial mode drops by almost an order of magnitude
for the largest disorder. The decrease in BMFP is strongest for increases in positional
disorder. Surprisingly, the trivial mode doesn’t suffer a similar reduction and exhibits
a BMFP that remains roughly constant with increasing disorder [131]. Importantly, we
observe backscattering for all degrees of engineered disorder, and thus symmetry-induced
protection partly breaks down due to the induced disorder. However, the non-trivial mode
suffers less backscattering than the trivial mode of the waveguide without intentional
disorder. This suggests that a certain degree of robustness of the non-trivial mode remains
in effect for the studied types and magnitudes of disorder. Nevertheless, the rapid decrease
in BMFP does suggest a rapid deterioration of the symmetry-induced protection [218].
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Figure 6.6: Qualitative analysis of the slow light region. a) Zoom-in of Fig. 6.2(a) denoting the spatial-spectral
map confined to the slow light region of the two modes. b) Group index curve for the frequencies in the range
[−1,1], with the red and blue dashed line denoting the frequencies where ng = 15 for the trivial and non-trivial
region, respectively. c) Backscattering mean free path as a function of frequency away from DP. The red and
blue points denote the measured BMFP, whereas the black curve denotes the non-trivial and trivial BMFP for a
sliding window of width 0.17 THz. It is clear that the minimum BMFP neither occurs at the DP nor the region
of the maximum group index. d) Backscattering mean free path as a function of ng . The blue and red circles
denote the non-trivial and trivial mode for a sliding window of width 0.17 THz, respectively. The increasing
darkness of the filled circles indicates the relative frequency away from the DP where the darkest red and darkest
blue denote the slow light region, whereas light red and light blue denote fast light of the trivial and non-trivial
mode, respectively.

At the maximum value of induced disorder, for size and position (2%), the magnitude of
the BMFP for the non-trivial and trivial mode is almost the same, suggesting that for the
largest disorder, topological protection is destroyed to a greater degree. It is important to
note that for the fast non-trivial and trivial mode without the engineered disorder, the
deviation in the mean group indices of the two modes is within 1.05% (where ng ≤ 15).
See Table S1 for BMFP values and mean group indices of the trivial and non-trivial regions
of the ensemble. An upper limit of the deviation in the mean group indices of the trivial
and non-trivial regions is within 13.39% and it occurs for size disorder 0.5% and does
not directly dictate the trend in BMFP. The difference in BMFP observed in Fig. 6.5 of
the two fast modes can therefore not be explained by differences in group velocity. The
anomalous value of a low BMFP for both non-trivial and trivial mode at size disorder
σ0.25% is attributed to limited statistics. Our observation is in agreement with the work in
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[131], where the initial introduction of disorder results in a quick reduction of BMFP, and
thereafter the decay is slower with an increasing amount of disorder.

6.4. GROUP INDEX CONTRIBUTION TO BACKSCATTERING
A complete understanding of the edge mode’s robustness also requires a detailed anal-
ysis of the extracted BMFP with respect to light slowing down as defined by the group
index ng . In Fig. 6.6, we show how the two modes’ BMFP depend on ng . For conven-
tional waveguides, ξ is directly linked to the group index as ξ∝ n−2

g for ordinary light
propagation [182, 209]. While the concept of a waveguide mode’s group index falters in
the slow-light regime due to multiple scattering and the diffusive nature of light [226,
233], the nominal ng is typically still useful to describe the average behavior of the light
propagation [202, 236]. From Fig. 6.6(a) we qualitatively investigate the slow diffusive
behavior of the two distinct modes for the case without intentional disorder using the
ensemble-averaged spatial-spectral mode profile. Around the DP (white dashed line in
Fig. 6.6(a) and black dashed line in Fig. 6.6(b)), the propagation losses are significant
as evidenced by the small penetration along the interface. The non-trivial mode above
the blue dashed line where ng > 15 suffers a discrete drop in intensity as a function of
frequency, nonetheless maintaining a homogeneous distribution along the interface (See
Fig. 6.12 for the central spatial-spectral map). In contrast, a gradual decay is observed
in the trivial mode as we move from the fast to the slow light regime (ng > 15). Figure
6.6(c) and Fig. 6.6(d) show the experimentally determined BMFP as a function of ω−ωD

and ng for the ensemble without the engineered disorder. It is important to note that
the occasional occurrence of localization events for a single frequency along the length
of the waveguide can result in meaningless values of the BMFP. To reduce the effect of
such occurrences on our investigation of the role of slowdown on the BMFP, we use a
sliding averaging window with a width of 0.17 THz to obtain a smooth curve denoted by
the black circles in Fig. 6.6(c). For BMFP as a function of ng in Fig. 6.6(d), the smoothed
values in the non-trivial region are denoted as blue circles whereas the smoothed values
in the trivial region are depicted in red. The increase in shade of the circles indicates the
frequency concerning ωD and therefore also indicates a transition from the fast to the
slow light region, with the darkest shade of red and blue denoting the value at the DP. For
a narrow range of 10 < ng < 15, the fast non-trivial mode has a higher BMFP than the fast
trivial mode. It is interesting to note that the lowest BMFP (ξ= 26.71a) does not occur at
the frequency of the largest group index in the non-trivial region below the DP but occurs
when the edge mode lies in the trivial region with ng = 15. When the frequency of the
trivial mode decreases further and its slowdown increases as the DP is approached, the
BMFP stays roughly constant, if anything increasing slightly. For frequencies lower than
the DP where the modes becomes non-trivial a small increase of the BMFP is actually
observed as the non-trivial modes slow down further towards the maximal slowdown.
At the maximal slowdown of ng = 50, we observe modes propagating through the entire
structure with a relatively high BMFP suggesting a degree of robustness against backscat-
tering, a factor of 3.3 larger than that of light in the comparatively faster trivial mode at
ng = 15. Beyond the maximal slowdown peak, the group velocity of the non-trivial mode
increases again. For these frequencies, the non-trivial modes will have the same ng as
other modes, either trivial or non-trivial, at frequencies away from the DP. Two interesting
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observations can be made for these non-trivial modes at frequencies lower than that of
the maximal slowdown. First, the conventional relation between slowdown and degree of
backscattering holds again. Second, the BMFP of all these modes is always higher than
that of the modes above and around the DP with the same ng , regardless of whether the
latter are trivial or non-trivial. We suggest that part of the observed differences in BMFP
for modes with the same slowdown could be attributed to an effect of the wavevector
change on backscattering: the higher the required wavevector change, the smaller the
backscattering. This could explain the differences in BMFP of non-trivial modes with the
same group index.

Acknowledging the possible misinterpretation when comparing Fig. 6.6(a) and Fig.
6.6(c), we address the apparent contradiction between the spatial-spectral map and the
measured BMFP. When quantifying the BMFP (shown in Fig. 6.6(c)) we find that the
minimum BMFP occurs for frequencies just below the red dashed line around 0.39THz.
A cursory glance at the corresponding spatial-spectral map (Fig. 6.6(a)) seems to show
a large penetration up to ≈ 55a for these frequencies. Conversely, frequencies around
−0.08THz, directly below the DP, seemingly exhibit the smallest penetration in the spatial-
spectral map but show a comparatively high BMFP of ξ= 70.14a. However, the cursory,
visual interpretation of a small penetration in the non-trivial region neglects a much
longer intensity tail to the end termination of the PhC. In contrast, the trivial mode
around ω−ωD = 0.39THz experiences a drastic reduction in intensity right after the first
high-intensity region, even leading to a negligible intensity of light reaching the end ter-
mination. This is evident from the spatial-spectral map in the logarithmic intensity scale
overlaid on the spatial-spectral amplitude map in Fig. 6.12. These findings emphasize
the significance of employing appropriate normalization and background correction
methods to accurately discern the true nature of backscattering.

In conclusion, a direct experimental evaluation of backscattering of fast and slow
light propagating along a bearded interface between two topological photonic crystals
emulating the quantum valley Hall effect has been performed. The spectral and spatial
maps of the full interface enable us to completely visualize and probe the appearance of
localized events caused by fabrication disorders. Induced disorder in terms of position
and size variations affects the electric field distribution in different ways. For the slowest
light, we find an indication of Anderson localization at increasing magnitude of disorder
illustrated by the localized areas of high light intensity for both the non-trivial and trivial
edge states. However, the sensitivity to disorder is found to be different for the two
modes for the investigated range of disorder, with the non-trivial mode exhibiting more
robustness than the trivial ones. This study sheds light on the potential relevance of
topological crystals for on-chip photonic devices for practical applications. We find that
all edge states undergo backscattering, regardless of whether they are trivial or non-trivial.
Having said that, our observations do indicate that for the same slowdown, topologically
non-trivial edge states can exhibit less backscattering than their trivial counterparts.
However, the difference is less than an order of magnitude. Both types of edge states
will exhibit multiple backscattering as the light is slowed down significantly or when the
amount of disorder increases, ultimately leading to Anderson localization.
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APPENDIX
6.A. ENGINEERED DISORDER FABRICATION
A total of 45 PhCs were fabricated, with 9 configurations of disorder as

σ(0) = Without intentional disorder,

σ(pos) = [(0.0025,0), (0.005,0), (0.01,0), (0.02,0)]a,

σ(si ze) = [(0,0.0025), (0,0.005), (0,0.01), (0,0.02)]L1or L2

where pos and size signify if the disorder induced was a position dislocation or size
deformation. The position disorder scales with the lattice constant a = 510nm and the
size disorder scales with the relative hole size L1 or L2. For each degree of disorder in every
bearded interface PhC, the random disorder is drawn using a normal (Gaussian) random
number generator. To disregard large deviations in resist thickness, the 45 waveguides
were fabricated in the central region of the SOI chip (20mm×10mm), each separated by
100µm.
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Figure 6.7: Electric field amplitude of (a) trivial and a (b) non-trivial fast mode of a pristine no disorder waveguide
far away from the degeneracy point.Trivial mode at 1512 nm and nontrivial mode at 1580 nm. (c) and (d) show
the corresponding numerically simulated electric field amplitude
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6.B. ELECTRIC FIELD AMPLITUDE/INTENSITY
Fig. 6.7(a) and (b) show the experimentally measured in-plane field amplitude distribu-
tion for a trivial and non-trivial edge mode, respectively. It is important to note that the
amplitude distribution shown here is from a different bearded interface PhC than dis-
cussed in the previous sections. Fig. 6.7(a) shows a trivial fast edge mode at an excitation
wavelength λ= 1512nm and a non-trivial fast mode at λ= 1580nm, both measured at an
equidistant frequency from the degeneracy point at the edge of the Brillouin zone. For
an illustrative k-point of kx = 0.40 ·2π/a, where the trivial and non-trivial modes have a
linear dispersion with a group velocity of ≈ c/7, we observe that the mode symmetries of
the numerically determined eigenmode of the trivial and non-trivial edge mode match
perfectly the experimentally measured mode profile.

6.C. GROUP VELOCITY FITS AND CENTER WAVELENGTHS
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Figure 6.8: Dispersion and edge mode of an individual waveguide. (a) Experimentally retrieved dispersion of the
edge mode. Bloch harmonics are separated by 2π/a with each a trivial and non-trivial edge mode degenerate
at the Brillouin zone edge. The Fourier intensity is normalized to the maximum value and results in the −π/a
BH being the most prominent, as shown in (b). The grey points here denote the peak positions within this
irreducible BZ. (c) The black line denotes the median filter applied to the peak positions. The red line denotes a
polynomial fit of degree 6.

An ensemble average without engineered random disorder, shown in Fig. 6.2 is built
using 5 individual bearded interface measurements. We use an exemplary individual
interface, namely WG4 to discuss how the degeneracy points and group index curves were
obtained. Using the near-field technique in collection mode, we raster-scan the probe
over a length x = 60µm along the propagation direction and in the transverse direction
y = 200nm. We obtain a full dispersion relation of the edge mode by Fourier transforming
the electric field intensity for each wavelength in the range λ= [1480nm−1640nm] with
a fine step wavelength resolution of 0.1nm, shown in Fig. 6.8(a). In the obtained spatial
frequencies of the light, plotted on a logarithmic scale, we resolve at least six higher-order
Bloch harmonics (BH). We obtain a signal-to-background ratio of 21.36dB±0.9. Since
each higher-order BH carries a certain relative amplitude, we select the BH with the
highest amplitude (in this case, it lies at −π/a). For each wavelength, we extract the
corresponding wavevector to build the full mode shown as the overlaid grey circles in Fig.
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6.8(b).

Due to the resolution in kx and an unclear dispersion around the degeneracy point, we
find the median value of the peaks in the dispersion curve (black lines in Fig. 6.8). Since
the non-trivial and trivial curves are not symmetric around the BZ edge, a higher degree
polynomial is selected. The choice of polynomial undergoes rigorous treatment before a
decision is made. We use the coefficient of determination (R2) as a metric to determine
the goodness of the polynomial fit and therefore any discrepancy between observed and
modeled values for the polynomial (see Fig. 6.9a). We select a hexic polynomial (degree-6)
for which the calculated R2 = 0.995 and the corresponding polynomial fit to the mode’s
wavevector is shown as a red curve in Fig. 6.8(c). A similar treatment was undergone to
the simulations for clarity and confidence (see Fig. 6.9b).

6.C.1. DEGENERACY POINT DETERMINATION

The frequency at which the trivial and non-trivial modes become degenerate slightly shifts
in the measured dispersion of individual waveguides due to fabrication imperfection. We
identify the degeneracy point, as the intersection where the polynomial converges to the
vertical line signifying the end of the Brillouin zone at kx = 0.5 ·2π/a, where a = 0.510 is
determined from SEM images for the fabricated photonic crystals (see Fig. 6.10). The
inflection point of the fitted hexic polynomial assigns the wavelength where the sign of
the fit undergoes a sign change, and therefore the wavelength at which maximum ng

occurs. This tends to drastically vary for disordered photonic crystals that do not have a
clear dispersion curve in the region where the slowdown factor is highest and depends
solely on the polynomial fit at the fast light region. We observe an average difference
of 1.025nm±0.46nm between the inflection and intersection point, for 5 waveguides
without the engineered disorder.
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Figure 6.10: Determination of the degeneracy point. (a) 6-degree polynomial fit and the corresponding (b)
group index curve. The horizontal green dashed line indicates the intersection point of the fit to kx = 0.5 ·2π/a
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6.C.2. SUBTLETIES IN ng DETERMINATION
Slight variations in the geometry such as rounding of the corners and the relative sizes of
the holes result in changes in the dispersion and therefore variations in the ng curves as a
function of frequency. We find that therefore, the frequency range where the maximum
group index occurs can be affected crucially. In Fig. 6.11, we show three numerically
simulated dispersion curves and their corresponding group index curves. The parameters
used for Fig. 6.11(a) and (b) were 512 nm L1 = 1.35a/

p
3 = 0.78a and L2 = 0.76a/

p
3 =

0.44a and fillet radius of 20nm. The maximum ng = 41 occurs in the trivial region given
by the red curve. This coincides well with the observation reported in ref. [201]. On
increasing the roundedness to a fillet radius of 40 nm, while ensuring that the edge modes
remain single-mode and do not exhibit intermodal scattering, we observe that the DP
shifts to lower frequencies and the edge modes become degenerate around 188THz (see
Fig 6.11(b)). The corresponding group index results in a maximum value very close to
the DP with ng = 87. In Fig. 6.11(c), the numerically simulated dispersion for a lattice
constant a = 508nm and L1 = 0.6a and L2 = 0.4a show a further reduction in the DP
to lower frequencies and the corresponding group index curve features a maximum
ng = 285 in the topological region, consistent with the observation in ref. [195] and ref.
[221]. It is clear that the relative hole sizes, and the rounding of the triangles due to
fabrication variations can consistently shift the maximum ng obtained and must be taken
into account for experimentally realizing topological edge states in the slow-light region.
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Figure 6.11: Group index curves in the slow light region. (a), (c), (e) Numerically simulated dispersion curves
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p
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p
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Figure 6.12: Slow light spatial-spectral map. A cropped normalized intensity map on a logarithmic scale is
overlaid on top of the spatial-spectral amplitude map shown in Fig. 6a where the cropped interface length is in
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6.C.4. CALCULATED BMFP AND MEAN GROUP INDICES

Disorder
magni-
tude

Non-
BMFP

Trivial
BMFP

Non-
trivial ng

Trivial ng
|∆ng |

1
2 (ng ,T +ng ,N T )

(%)

0 3861.44 636.86 10.60 10.71 1.05

Position
0.25% 1879.33 275.79 9.95 8.90 11.17
0.5% 1074.44 440.83 7.42 8.29 11.17
1 % 520.26 313.88 8.21 7.83 4.75
2 % 532.52 467.98 11.56 11.19 3.28

Size
0.25% 2501.02 575.71 8.94 9.17 8.27
0.5% 2231.78 400.25 10.19 8.91 13.39
1 % 2346.43 334.34 9.04 9.61 6.07
2 % 680.49 591.04 7.68 6.97 9.70

Table 6.1: Overview of ensemble-averaged calculated BMFPs and group indices for 9 magnitudes of disorders.
The columns denote (1) the magnitude of the engineered disorder (position or size), calculated BMFP for the
fast (2) non-trivial (NT) and (3) trivial (T) region, mean group index of the fast light range for (4) non-trivial and
(5) trivial region, and (6) the deviation of mean group indices.
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CONCLUSION

I want to do something splendid. . . something heroic or wonderful that won’t be forgotten
after I’m dead. I don’t know what, but I’m on the watch for it and mean to astonish you all

someday.

7Louisa M. Alcott
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This thesis delves into the fascinating realm of photonic modes and their behavior
when symmetry is imposed on them. Our primary objective was to explore non-trivial
photonic crystals, particularly those based on the photonic analog of topological insu-
lators. The journey began in Chapter 1 with the introduction of one-dimensional (1D)
photonic crystals and the fundamental nature of Bloch waves, crucial for unraveling the
intricate behavior of light in such crystals. Building upon this understanding, we grad-
ually progressed to two-dimensional (2D) photonic crystals, wherein we discussed the
intriguing concept of topological photonic insulators and their degrees of freedom. The
focal point of our research lay in exploring topological phases mimicking the Quantum
Spin Hall effect (Part I) and the Quantum Valley Hall effect (Part II). These topological
phases unveiled novel aspects of light-matter interactions, encompassing spin, helicity,
and chirality.

The fabrication of photonic crystals on a silicon-on-insulator platform allowed us
to work with telecom wavelengths around 1550 nm (Chapter 2). Utilizing near-field
experiments, we gained direct access to amplitude, phase, and polarization resolution.
Through visualization of the complex and detailed field profile of the photonic edge
states, we uncovered essential characteristics that underpin these states such as spin-
momentum locking, robustness against sharp corners, valley-conserving defects, and
protection to backscattering against engineered random disorder.

We first explore photonic platforms that emulate the quantum spin Hall effect and are
characterized by a unique pseudospin. Each topological helical edge state in such systems
is directly linked to its designated pseudospin and should unambiguously couple to the
matched spin-polarized quantum emitters for on-chip quantum networks. However,
as our experiments reveal in Chapter 3, the reality isn’t so straightforward. The highly
structured field of the edge state leads to a strongly spatially varying optical spin density,
at subwavelength length scales. In Part II, we explore non-trivial photonic systems based
on the valley degree of freedom that offer robust topology-protected transport of opti-
cal states along sharp corners, defects, and random disorder. In principle, these edge
states occurring at different extremes of the Brillouin zone cannot undergo inter-valley
scattering and have the potential of robust on-chip loss-free energy transport. But how
robust is robust? In Chapter 4, we report an experimental study of quantified robustness
in these topologically non-trivial eigenstates on a nanophotonic chip. We find through
direct experimental comparison that the amount of back-scattering suffered along the
interface in these non-trivial crystals is two orders of magnitude smaller compared to that
in a conventional photonic crystal waveguide. This is the case in a zig-zag interface when
the two semi-infinite lattices are mirror symmetric. However, this changes when adding
a slight shift to the interface. In principle, a shift should not change the valley degree
of freedom since the bulk-edge correspondence defining the bulk valley Chern number
remains consistent. Even so, we discovered that introducing such a glide shift could
disrupt valley-dependent transport, suggesting the fragility of such topological photonic
systems which is discussed in Chapter 5. Furthermore, we explored the reduction in
backscattering within topologically non-trivial photonic crystals, a crucial factor when
dealing with slowed-down light and increased light-matter interaction. Our thorough
analysis in Chapter 6 demonstrated that adding scatterers affects topological modes more
significantly than trivial ones. Nevertheless, for specific parameters, non-trivial modes
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can still provide robustness, particularly in slow light systems.
The exploration of topological photonics for scientific curiosity enriches our funda-

mental understanding of light and its interactions but also paves the way for innovative
ideas and breakthroughs in the field. Exploring the limits of topological protection and
understanding the effects of disorder, imperfections, and nonlinearity in topological
photonic systems are important areas for further inquiry. Studying the robustness of
topological edge states against various types of perturbations and exploring strategies to
mitigate the impact of imperfections could lead to the design of more resilient photonic
devices and communication channels. Unique properties of topological edge modes,
such as their strong localization and protection against backscattering, could enhance
the efficiency of quantum light-matter interactions and enable the realization of robust
quantum communication channels. Therefore, the pursuit of topological photonics for
scientific curiosity offers a vast landscape of uncharted possibilities. By investigating
exotic topological phases, non-Hermitian systems, quantum photonics, and the impact
of the disorder, researchers can unlock new ideas and concepts that may revolutionize
the way we manipulate light and harness its potential in future technologies.

Looking ahead, the potential applications of our research extend beyond the tele-
com regime. Future studies could delve into the optical regime, particularly visible
light (400nm−700nm), offering additional advantages such as the integration of two-
dimensional semiconductors including molybdenum or tungsten-based dichalcogenides
(MoSe2, WSe2, WSeTe). It is important to note that the choice of the best transition metal
dichalcogenide for valleytronic applications depends on the excitonic band gap size and
magnitude of spin-orbit splitting. This large splitting allows for selectively populating
and manipulating excitons using circularly polarized light. By exploiting propagating
optical modes at the interface of non-trivial photonic crystals, we can route the valley
excitonic emission of these semiconductor monolayers. The chiral coupling mechanism
and spin-momentum locking of polaritons in these topological photonic devices make
them promising candidates for creating interface polaritons at room temperature. In-
vestigating the light-matter interaction of topological edge polaritons and measuring
the near-field optical spin can pave the way for groundbreaking advances in utilizing
photonics and TMDs for novel applications.
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