<]
TUDelft

Delft University of Technology

Energy Patterns for Web
An Exploratory Study

Rani, Pooja; Zellweger, Jonas; Kousadianos, Veronika; Cruz, Luis; Kehrer, Timo; Bacchelli, Alberto

DOI
10.1145/3639475.3640110

Publication date
2024

Document Version
Final published version

Published in
Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering

Citation (APA)

Rani, P., Zellweger, J., Kousadianos, V., Cruz, L., Kehrer, T., & Bacchelli, A. (2024). Energy Patterns for
Web: An Exploratory Study. In Proceedings - 2024 ACM/IEEE 46th International Conference on Software
Engineering: Software Engineering in Society, ICSE-SEIS 2024 (pp. 12-22). (Proceedings - International
Conference on Software Engineering). IEEE. https://doi.org/10.1145/3639475.3640110

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3639475.3640110
https://doi.org/10.1145/3639475.3640110

2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS)

Energy Patterns for Web: An Exploratory Study

Pooja Rani*, Jonas Zellweger*, Veronika Kousadianos', Luis Cruz$, Timo Kehrer, Alberto Bacchelli*
{pooja.rani,jonas.zellweger,alberto.bacchelli}@.uzh.ch,{veronika.wu,timo.kehrer}@unibe.ch,L.Cruz@tudelft.nl
* University of Zurich, Zurich, Switzerland
T University of Bern, Bern, Switzerland
$ Delft University of Technology, Delft, The Netherlands

ABSTRACT

As the energy footprint generated by software is increasing at an
alarming rate, understanding how to develop energy-efficient ap-
plications has become a necessity. Previous work has introduced
catalogs of coding practices, also known as energy patterns. These
patterns are yet limited to Mobile or third-party libraries. In this
study, we focus on the Web domain—a main source of energy con-
sumption. First we investigated whether and how Mobile energy
patterns can be ported to this domain and found that 20 patterns
could be ported. Then, we interviewed six expert web developers
from different companies to challenge the ported patterns. Most
developers expressed concerns for antipatterns, specifically with
functional antipatterns, and were able to formulate guidelines to lo-
cate these patterns in the source code. Finally, to quantify the effect
of Web energy patterns on energy consumption, we set up an auto-
mated pipeline to evaluate two ported patterns: ‘Dynamic Retry
Delay’ (DRD) and ‘Open Only When Necessary’ (OOWN). With
this, we found no evidence that the DRD pattern consumes less
energy than its antipattern, while the opposite is true for OOWN.
Data and Material: https://doi.org/10.5281/zenodo.8404487

CCS CONCEPTS

« Software and its engineering — Empirical software valida-
tion.

KEYWORDS

Green Software Engineering, Energy patterns, Web applications,
Software sustainability, Coding Practices, Energy consumption

ACM Reference Format:

Pooja Rani*, Jonas Zellweger®, Veronika Kousadianos’, Luis Cruz®, Timo
Kehrer?, Alberto Bacchelli*. 2024. Energy Patterns for Web: An Exploratory
Study. In Software Engineering in Society (ICSE-SEIS’24), April 14-20, 2024, Lis-
bon, Portugal. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3639475.3640110

LAY ABSTRACT

The information technology sector significantly affects the climate.
With our increasing online activities, from chatting to accessing
medical history, software powering these services requires to be
energy-efficient. Researchers in software engineering have been

(©MOM

This work licensed under Creative Commons Attribution International 4.0 License.

ICSE-SEIS’ 24, April 14-20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0499-4/24/04.
https://doi.org/10.1145/3639475.3640110

exploring green coding practices, or energy-specific design patterns
(aka energy patterns) to make software more eco-friendly. While
such energy practices have been explored for other domains in-
cluding Mobile, Web applications have been somewhat overlooked,
despite our daily heavy internet use. We focused on the existing
energy patterns from Mobile applications to Web applications. To
validate these ported energy patterns, we interviewed six profes-
sional web developers from various companies. Then, we tested
some patterns to see if these energy patterns indeed save any en-
ergy. Our results showed that developers are unaware of the energy
practices and some patterns did not make a noticeable difference,
while others consume more energy than their counterpart. In a
nutshell, our work highlights the knowledge gap between green
coding research and industry and emphasize the need to understand
the trade-offs in energy practices for sustainable digital future.

1 INTRODUCTION

The ICT sector is estimated to generate up to 5.5% of world carbon
emissions and to consume 20% of all electricity [3]. Indeed, from
healthcare to communication, every industry prominently runs
on software, thus understanding and developing energy-efficient
software is urgent.

In this context, the Software Engineering (SE) research commu-
nity has started investigating green coding and energy patterns for
source code [17, 24]. Energy-specific design patterns for source
code (henceforth, Energy Patterns) are best practices developers use
to make their source code energy-efficient [24]. While researchers
have developed catalogs of energy patterns for Mobile applications
[10] and for deep learning libraries [35], some domains are still yet
to be covered, prominently the Web domain, which is particularly
relevant as its energy consumption is ever increasing [19].

Our goal is to gather and evaluate Web-specific energy patterns.
To this aim, we first attempt to port existing Mobile energy patterns
[10] to the Web domain. Then, to challenge our ported patterns,
we discuss them with six professional Web developers, by means
of in-depth structured interviews. In particular, we discuss how
understandable these patterns are, how they are perceived, and
whether they can be located in source code of Web applications.
Consequently, we collect concerns regarding various patterns or
their respective antipatterns (not having the pattern) and guidelines
for locating them in the source code. Based on the guidelines, we
analyze the source code of a company and thus show which of
them are easy to locate or not. Finally, we measure the impact of
two energy patterns to see whether they indeed save energy.

Our results show that most Mobile energy patterns (16 patterns)
can be directly ported to the Web, while a few (four patterns) are
only partially applicable to Web applications (e.g., ‘Power Save

https://doi.org/10.5281/zenodo.8404487
https://doi.org/10.1145/3639475.3640110
https://doi.org/10.1145/3639475.3640110
https://doi.org/10.1145/3639475.3640110
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639475.3640110&domain=pdf&date_stamp=2024-06-06

ICSE-SEIS 24, April 14-20, 2024, Lisbon, Portugal

Mode’), and two of them cannot be ported because they are inappli-
cable (e.g., ‘WiFi over Cellular’). From the interview study, we start
by confirming that past results on developers’ limited awareness
of energy aspects [28, 42] also apply to our Web developers. Once
we described the patterns, participants report to understand them
and many expressed concerns for energy antipatterns, specifically
for functional antipatterns. Developers then were able to provide
guidelines to locate the patterns in the source code. Following their
guidelines, we could identify eleven antipatterns and nine patterns
in their own source code. Some energy patterns, e.g., ‘Push over
Poll’, could be easily found in the source code, while others, e.g.,
‘Reduce Size’, ‘Enough Resolution’ were harder to identify.

Finally, concerning the energy impact of ‘Dynamic Retry Delay’
and ‘Open Only When Necessary’, we found no evidence that the
DRD pattern consumes less energy than its antipattern, while the
opposite is true for OOWN.

With this paper, we make the following main contributions:

e a porting of existing energy patterns for Mobile to the Web
domain;

e areport on the perception of six professional web developers
on the ported energy patterns;

o a guideline to find Web energy patterns in source code based
on developers’ experience and confirmed against these de-
velopers’ code bases;

e empirical evidence on the effects of antipatterns on energy
consumption for ‘Dynamic Retry Delay’ and ‘Open Only
When Necessary’;

e areplication package (RP) [31] containing detailed patterns
with context and discussions, interview results, and an auto-
mated pipeline to quantitatively evaluate energy patterns.

2 STUDY DESIGN

In this section we motivate and present our research questions and
detail the research method we use to answer them.

2.1 Research questions

While there’s been a growing focus on green coding practices in
Mobile and embedded systems [24, 35], the Web domain remains
under-explored. Cruz et al. developed a catalog of 22 Mobile energy
patterns [10]. Our aim is to expand current scientific understanding
by exploring the portability of these Mobile energy patterns to Web
applications. Insights from this study can equip Web developers
with tools to integrate energy patterns into their codebase and
recognize antipatterns (inefficient practices) to minimize energy
use. Hence we ask:

RQ;: To what extent can we port energy patterns for mobile
applications to web applications?

Developers are the main target of energy patterns, because these
patterns—akin to design patterns—should provide a roadmap for
developers to code refactoring and reduced energy consumption.
So far, previous work that has proposed catalogs of energy patterns
[2, 10, 35], did not investigate how professional developers perceive
and understand these patterns, and how easily they can be located
in source code. We try to fill this gap in our context: We actively

Rani et al.

engage industrial developers, inviting them to assess and challenge
the energy patterns we have ported from the Mobile domain to the
Web one. Through this endeavor, we aim to shed light on their per-
spectives and hurdles regarding energy consumption in software,
the ported energy patterns, as well as to measure their commitment
to dedicating resources for improving the energy efficiency of Web
applications. We ask:

RQ;: How do developers perceive the ported web energy pat-
terns and locate them in source code?

In RQ; we ported Mobile energy patterns to Web applications.
Whether these energy patterns indeed impact the energy consump-
tion of a Website is not explored. Previous work has investigated
the energy impact of software specific to its code [7], execution
[30, 32], third-party libraries [33], programming languages [29],
and Mobile applications [20]. Researchers have also measured the
impact of test smells or code smells and their associations with
energy consumption. We aim to investigate the actual impact of
our ported energy patterns, as validated by the professional devel-
opers. Such analysis can help practitioners make informed choices
to reduce the energy impact of their Web applications. We focus on
two specific patterns (for the reasons mentioned later) on and ask:

RQs3: How do Dynamic Retry Delay and Open Only When Nec-
essary impact energy consumption?

2.2 Methodology

2.2.1 RQq: Energy Patterns for The Web. Previous work has iden-
tified various coding practices for maintaining source code (e.g.,
design patterns), or improving the energy consumption (e.g., en-
ergy patterns). Cruz and Abreu [10] have identified a set of energy
patterns developers apply intending to improve the energy aspect
of their applications. They have analyzed 1,783 Mobile applications
from both Android and i0S from GitHub. They identified 22 energy
patterns appearing in 421 instances [10] (described in the RP [31]).
Since they provide a recent and the largest catalog of such patterns,
we attempt to port these patterns to the Web. We investigated if
and how many of them are applicable on the Web domain. To port
these energy patterns to the Web, we restricted our focus to a client-
server architecture for the Web since various Web architectures or
frameworks can have various implementations of the patterns.
For each pattern, one author studied the original pattern from
Cruz and Abreu [10] with its description and examples and at-
tempted to formulate the Web counterpart. To find the Web exam-
ple, she checked the code examples given by Cruz et al. in their RP
and searched similar code snippets or the pattern name if exists into
the Google search engine. Since the goal is to find similar concepts
or examples, she also looked at gray literature like guidelines, doc-
umentation, and blogs. Once the patterns were formulated, another
author reviewed each definition with its examples and pointed out
the differences. We found the differences mainly in definitions of 10
patterns, e.g., ‘Dark UI Colors’ in Mobile focuses on saving battery
for AMOLED screens while for Web, battery is not the primary fo-
cus, therefore we phrased the Web pattern accordingly. The detailed
discussion on differences is provided in Appendix in the RP. The

Energy Patterns for Web: An Exploratory Study

third author reviewed the differences and resolved them by mutual
discussion. This process led to energy patterns for the Web, with
description and examples. Certain patterns exist in the front-end
part of the application, while others exist in the back end; we dis-
sected them based on their existence in the front- or back-end part
of the application. This helps identify which patterns require access
to source code and which can be identified by merely exploring the
Website.

2.2.2 RQy: Developers’ Perceptions on Web Energy Patterns. To
challenge our mapped patterns in practice, we investigated the
perception and concerns of professional developers. Following a
convenience sampling approach, we interviewed six expert Web
developers from four different companies. Three of them work at
the same company,! thus allowing us to perform a case study. The
company provides a web portal where the customers can see their
electricity consumption data. The portal is a web application with
a client-server architecture developed mainly using the front end
technologies: NodeJs, VueJs, Element Plus, TypeScript, Axios,
and the back end technologies: Python and Django framework.
The whole web application consists of 57,000 lines of code (LoC)
for the front end and around 1,590,000 LoC for the back end. The
three other developers we interviewed belong to three different
companies yet focus on similar technologies.

Various methods have been used to investigate developers’ per-
ception of energy aspects, such as mining software ecosystems
or surveying developers [17, 42]. Fink [15] explained that “the in-
terview enables to collect information from people to explain their
attitude, behavior, and knowledge.” Therefore we considered it as
the best approach to collect our data. Figure 1 shows the design of
our interview study, as inspired by Fink [15] and Yamashita and
Moonen [42]. We followed various steps to set up the interview: (a)
establish the goals and questions, (b) prepare an interview instru-
ment, (c) organize the interview administration, and (d) analyze the
responses and collect the guidelines based on them.

Establishing the Goals and Questions. Three authors outlined the
goals, mainly focusing on challenging the ported energy patterns
with the help of professional developers. We also aimed at collecting
guidelines to identify the valid patterns in their source code, and at
understanding whether they would invest resources to implement
energy patterns or remove antipatterns. Therefore, we defined in-
termediate goals, e.g., (1) insights on energy pattern awareness, (2)
introduction of patterns as shown in Figure 1. Based on the main
goals, we chose an exploratory structured interview that included
both closed and open questions to understand their motivation or
choices like why certain energy patterns concerned them.

Preparing Interview Instrument. We began by asking about their
awareness of energy patterns and their sources of information.
Then, we challenged the ported patterns by introducing them to
developers, examples to clarify, and their antipatterns. We gauged
their level of concern regarding the presence of antipatterns. We
used a five-point Likert scale and designed various open-ended
questions to understand their reasons of concerns, where in the
source code these energy patterns can be found, how easy it is to
identify them, their desired commitment to invest resources, and

The identity of the company cannot be disclosed due to a non-disclosure agreement.

ICSE-SEIS’24, April 14-20, 2024, Lisbon, Portugal

their past use of related tools. At the end, we asked demographic
questions to understand their background, e.g., role in the organi-
zation, years of experience in Python, JavaScript, and TypeScript
(languages used in the company) and the programming paradigms
as certain patterns can be specific to a language specifically in
trusting the guidelines proposed by developers to search energy
patterns in source code. The questions are provided in RP [31].

Organizing the Interview. We conducted a personally adminis-
tered interview using anonymous Google Forms. The questions
were asked in person and developers filled their responses directly.
For the longer open-ended questions (e.g., where these energy pat-
terns can be found in their source code), the author transcribed
developer responses on-site to avoid recording the sessions, which
would have raised confidentiality concerns.

Analyzing the Responses and Guidelines. We visually analyzed
the graphs of the closed-ended questions, while, for the open-ended
ones, we conducted axial and open coding [37]. That is, we ex-
tracted themes and excerpts from the developer’s responses. Since
one question focused on collecting the guidelines, each author in-
dependently analyzed half of the responses and reviewed the other
half. Both authors handled their disagreement by mutual discus-
sion. Finally, we verified the guidelines by checking the presence
or absence of energy patterns in the source code of the company.

2.2.3 RQs3:Impact of Energy Patterns. Here, we investigated whether
energy patterns indeed impact the energy consumption of a Website.
Ghaleb [18] showed the accuracy of software tools in estimating en-
ergy consumption. Therefore, to estimate power consumption, we
used Intel PowerLog version 3.7.0 which relies on Running Average
Power Limit (RAPL) interface. This approach, widely used in green
software studies [6, 7, 17], measures real-time power information
of macOS based on the energy counters in the Intel Core proces-
sor without any hardware instrumentation. However, it does not
measure energy use of network traffic, display, or an isolated pro-
cess. Consequently, certain patterns could not be measured. Various
criteria are detailed below to include or exclude patterns.

We included each pattern that:

I1: is processor-dependent

12: is measurable on the client-side browser

We excluded each pattern that:

El: is Mobile device-specific (i.e., ‘Power Save Mode’, ‘Power
Awareness’, ‘Race-to-idle’, “WiFi over Cellular’, ‘Sensor Fu-
sion’, ‘No Screen Interaction’),
is network related as the selected energy profiler does not
measure network impact (i.e., ‘Reduce Size’, ‘Batch Opera-
tions’, ‘Cache’, ‘Push over Poll’, ‘Enough Resolution’),
is display-specific (i.e., ‘No Screen Interaction’, ‘Dark Ul
Colors’, or ‘Avoid Extraneous Graphics and Animations’),
is user-related as it can not be controlled which parameters
to change (i.e., ‘User Knows Best’, ‘Inform Users’, ‘Manual
Sync — On Demand’),
is power model related as it affects the whole device and
thus is not controllable for only browsers (i.e., ‘Power Save
Mode’, ‘Power Awareness’),
can not be simulated systematically or lacks empirical data to
support its parameter selection (e.g., what threshold of logs

E2:

E3:

E4:

E5:

E6:

ICSE-SEIS 24, April 14-20, 2024, Lisbon, Portugal

(1) Insights on energy
pattern awareness

welcome &

) . (2) Introduction of
instructions

energy (anti) patterns

(3) Concerns for energy
(anti) patterns

Rani et al.

(5) Resource investment
for energy patterns

(6) questions on

4) Inquire about
(4) Inguire abou demographic info

patterns in source code

Figure 1: Interview study design to answer RQ5: Industry Insights on Energy Patterns

W - By

Measure energy User scenarios for

Start Pipeline ' k
consumption energy(anti) patterns

50 Iterations

Start Browser and
Demo websites

T~

_>/>

Compute results

—>

Execute scenario
on websites

Quit Browser

Figure 2: Study design to answer RQ3: Impact of Energy Patterns

should be considered for the Suppress Logs pattern, what
amount of notification should be considered for ‘Push over
Poll’, what rate for ‘Decrease Rate’, and which tasks should
be considered abnormal for ‘Kill Abnormal Tasks)’,
similar patterns but no specific Web code could be extrapo-
lated, e.g., ‘Avoid Extraneous Work’ and ‘Avoid Extraneous
Graphics and Animations’ are similar to ‘Open Only When
Necessary’, but could not find precise web code for it.
Based on these criteria, which ensured the most reliable measure-
ments with the current knowledge, we were left with two patterns,
namely ‘Dynamic Retry Delay’ (DRD) and ‘Open Only When Nec-
essary’ (OOWN).

E7:

Pipeline Setup. We automated our test process as shown in Fig-
ure 2, using Python. The test process initiates PowerLog with Sele-
nium, simulating a user scenario on the demo website. PowerLog
measures the energy consumption of the executed commands stor-
ing parameters in log files. These user scenarios are coded in Java,
and the website interaction is automated using Selenium Web-
Drivers (for Chrome and Safari). The browsers ran in incognito
mode to ensure no cache or past data usage. The demo Websites
built using HTML, JavaScript, and PHP, enabled us to simulate the
scenarios for the selected patterns. We analyzed the generated logs
to obtain the results.

Implementation of User Scenarios. To measure the impact of each
pattern, we simulated two user scenarios, as shown in Figure 2.
DRD: We open the browser, visit the demo website, initiate an

HTTP request to an external Web server, which waits for two

seconds and then returns an HTTP 503 error code (the server is

unavailable to handle the request or the attempt to access the
resource failed). Then, the Website retries to access the server. In
the pattern scenario, the retry interval increased exponentially
after each failed attempt (referred to as dynamic retry), while in
antipattern scenario, it remained constant (static retry). Dynamic

retry interval is based on the EcoAndroid tool 2, i.e., 1 second, 2
seconds, 4 seconds etc. and the static retry interval is fixed as 3
seconds. The browser quits after 90 seconds to ensure that the
scenarios do not execute infinitely.

OOWN: We focused on content loading (specifically images). In
the pattern scenario, the website loads images when the user
scrolls or enters the viewpoint (lazy loading) and defers load-
ing non-visible content. In contrast, the antipattern scenario
loaded all images at once when the user opens the website (eager
loading). Both scenarios lasted approximately a similar time, ie.,
45-48 seconds, and then the browser quits.

Execution of User Scenarios. We ran the pipeline on a Mac mini
desktop computer with a 2.3 GHz Quad-Core Intel® Core™ i7 pro-
cessor, 16 GB DDR3 RAM with 1600 MHz, 1 TB SATA HDD, running
macOS Catalina 10.15.7. We run the scenario on two browsers, ie.,
Chrome version 113.0.5672.92 and Safari version 15.6.1. For each
scenario, we collected Cumulative energy (energy consumption
of the processor), elapsed time and (Package Temperature) in
the log files [25].

To mitigate energy consumption variability, each scenario was
run for 50 iterations for both pattern and antipattern for each
browser, thus 400 times; this took approximately 14 hours. Overall,
we took several preventative measures:

P1: Running each scenario for 50 iterations with a 30-second
interval (cool-down periods) for temperature consistency.
Deactivating all non essential applications, e.g., including
WIiFi, Bluetooth.

Limiting the number of accessories, e.g., Mac mini is not
integrated with a keyboard, mouse, or display.?
Disabling sleep mode (set the sleep time to never).

P2:
P3:

P4:

Zhttps://plugins.jetbrains.com/plugin/15637-ecoandroid
3The pipeline was started with a remote connection (Screen sharing option in macOS),
and the remote connection was disconnected as soon as the pipeline started.

https://plugins.jetbrains.com/plugin/15637-ecoandroid

Energy Patterns for Web: An Exploratory Study

P5: Randomizing the scenarios of a pattern to avoid external
influences.
P6: Keeping the computer continuously plugged in.

3 RESULTS

3.1 RQ;: Web Energy Patterns

We could port 20 Mobile energy patterns to the Web domain, as
shown in Table 1. Of these, 16 patterns fit web applications directly,
four patterns mapped partially, and two patterns did not apply
(particularly if the website is accessed via desktop or laptop rather
than Mobile). Patterns like ‘Sensor Fusion’ and ‘WiFi over Cellular’
are Mobile-specific as they rely on features such as accelerometer
or cellular networks. As the websites are also accessed on desktop
or laptop, we marked these patterns as inapplicable. The porting of
patterns required understanding their applicability and trade-offs
in specific scenarios, i.e., which patterns should be considered for
what applications and when.

Table 1 shows the patterns classified based on whether they are
relevant to the client-side (front end) or server-side (back end) of a
Web application. This information also helps pinpoint where these
patterns can be found. For example client-side patterns (e.g., ‘Dark
UI Colors’, ‘Power Save Mode’, ‘User Knows Best’) can be found by
looking at the website without inspecting the source code.

const audio = document.querySelector("audio");

// Handle page visibility change:
// - If the page is hidden, pause the video
// - If the page is shown, play the video
document.addEventListener("visibilitychange", () => {
if (document.hidden) {
audio.pause();
} else {
audio.play();

3
D;
Listing 1: Mozilla API handles visibility change [9]

Table 1 provides a breakdown of each adapted pattern accompa-
nied by a representative example. As an illustration, the Mozilla’s
Page Visibility API, showcased in Listing 1, exemplifies the ‘Avoid
Extraneous Work’ pattern. This API informs users if a web page
is currently visible, enabling functionalities like pausing audio or
video when the page is not in view. Moreover, this API also embod-
ies the ‘'OOWN’ pattern, where resources, like audio, are activated
only when necessary—specifically, when the user can see the page.
These examples highlight the manifestation of such patterns on the
Web, guiding us in spotting them in future web applications.

3.2 RQ,: Developers on Web Energy Patterns

Awareness. Figure 3 shows that most of the interviewed devel-
opers are unfamiliar with energy patterns. Only a few possess an
understanding of it, primarily gained from university seminars or
through their peers. Some interviewees highlighted that discussion
forums and social media have contributed to their knowledge; this
finding suggest that to enhance awareness and influence within
the industry, researchers should consider exploring strategies to
effectively engage with online social platforms.

ICSE-SEIS’24, April 14-20, 2024, Lisbon, Portugal

Heard but unsure
m Strong understanding

Never heard
Good understanding

General understanding

How familiar are you with

. 16.70%
energy patterns?

66.70% 16.70%

University

Peers

Discussion forms
Research Papers
Social Media
Blogs

Books

I
w il

Sources to familiarize

1
Developers

¥
w

Figure 3: Awareness and sources of Energy Patterns

Ported Energy Patterns. When examining the ported patterns, in-
terviewees found certain patterns easy to understand, such as ‘Dark
UI Colors’, ‘Push over Poll’, ‘Suppress Logs’, or ‘DRD’. However,
for other patterns, many asked clarification questions and examples
as they found them hard to imagine in the Web domain. This was
mainly due to some patterns being applicable to many contexts
(e.g., ‘Decrease Rate’, ‘Reduce Size’), hard to pinpoint to an example
(e.g., ‘Avoid Extraneous Work’), or unheard of (e.g., ‘Manual Sync
- On Demand’, ‘No Screen Interaction’). For example, concerning
‘Avoid Extraneous Work’, P5 explained: “It’s hard to pinpoint, this
could be anywhere or everywhere”” For ‘Avoid Extraneous Graphics
and Animations’, P3 answered: “Nothing comes to mind,” when
asked to locate it in the source code. They also asked clarification
questions for architecture (e.g., “is it MVC?”), framework, libraries,
and programming languages. Although, we restricted our focus
on client-server architecture and specific languages (that the inter-
viewees are expert of), such factors seem to play a role in porting
them. Furthermore, when discussing patterns, Web developers tend
to prioritize application functionality and performance, in contrast
to Mobile developers who show greater concern for battery life and
cellular network considerations [11, 21].

Concerns. Figure 6 reveals significant interviewees are somewhat
or moderately concerned with antipatterns in their code. Most de-
velopers are especially wary of patterns that could affect the main
functionality (functional requirements) of the website, or can have
an impact on overall quality or security of software, e.g., the antipat-
terns for ‘Avoid Extraneous Work’, ‘Dynamic Retry Delay’, ‘Kill
Abnormal Tasks’ etc. Many of these patterns recommend avoid-
ing extra work or killing abnormal tasks as they can slow down
the performance or even block the main functionality. On the con-
trary, interviewees are least or slightly concerned for antipatterns
like ‘Dark UI Colors’, ‘Inform Users’, or ‘Power Awareness’ as the
patterns do not really impact the main functionality and mainly en-
hance user experience—having these patterns in source code is not a
high-priority tasks for developers. Some patterns like ‘Race-to-idle’,
‘Decrease Rate’ seem neutral to developers.

A thematic analysis (excerpts shown in the RP [31]) of developer
feedback showed that their concerns (somewhat or moderately con-
cerned with energy antipatterns) stems from the energy demand of
cloud computing and the link between computational complexity
and energy antipatterns. Whether such perceptions correspond

ICSE-SEIS 24, April 14-20, 2024, Lisbon, Portugal

Rani et al.

Table 1: Energy patterns with applicability to web, classified to client (C) or Server (S), description, and examples.

Pattern Applicability C/S Description
Avoid Extraneous Graphics v S Use battery-intensive graphics or animations with moderation.
and Animations e.g., A website not loading heavy graphics until users interact with them.
Avoid Extraneous Work v S Present only relevant data or perform tasks that have a direct impact on the user experience.
e.g., Mozilla’s APl in Listing 1 informs users for the page visibility to let audio/video pause.
Batch Operations 4 S Combine multiple operations to perform batch processing.
e.g., Web API from Microsoft to group several operations into a single HTTP request [12].
Cache v C Utilize caching mechanisms to reduce network load.
e.g., A code example to cache an API response in the local storage [31].
Dark UI Colors v C Provide a web application with the dark UI color theme.
e.g., Facebook provides an option on the website to switch to a dark theme.
Decrease Rate v S Increase the time interval between requests to the backend.
e.g., Library website refreshes the book availability only a few times a day.
Dynamic Retry Delay 4 S Use a systematic retry increasing time interval after each failed attempt to a resource, such as a database, or network.
e.g., In the Fibonacci series utilize a retry mechanism API to handle abnormal conditions [31].
Enough Resolution v S Provide high-accuracy data only when strictly necessary.
e.g., AVIF and WebP image formats reduces file sizes in browsers [8, 14].
Inform Users partially C Inform users of the energy-intensive operations on the website.
e.g., Autoplay feature on YouTube consumes a significant amount of energy, but the user is not informed.
Kill Abnormal Tasks v S Provide means of interrupting energy-hungry operations.
e.g., A timeout to interrupt an abnormal operation [31].
Manual Sync — On Demand ¢/ S Perform tasks exclusively when requested by the user.
e.g., YouTube, with Autoplay feature off, plays song only when user clicks on it.
No Screen Interaction partially C Whenever possible, allow interaction without using the display.
e.g., Users interacting with music player websites via other methods (e.g., audio, keyboard) [31].
Open Only When Necessary ¢/ S Open resources or services only when necessary.
e.g., A camera application opens the camera only to capture an image [31].
Power Awareness partially C Enable or disable certain website functionalities based on the power status.
e.g., Chrome offers Energy Saver mode [41], which limits background activity and visual effects (e.g., animations and videos)
when the device’s battery reaches 20%.
Power Save Mode partially C Provide an energy-efficient mode for the website.
e.g., BooHoo has introduced an energy-saving mode to its website [13].
Push over Poll v S Use push notifications to receive updates from resources instead of actively querying resources (i.e., polling).
e.g., The server pushing the updates rather than the client requesting them [31].
Race-to-idle v S Release unnecessary resources and services.
e.g., Release camera after a video call, unused variables via garbage collection in source code [26].
Reduce Size v S Transmit only necessary data.
e.g., An HTTP request wherein strings bigger than 1KB get compressed [31].
Sensor Fusion x - Use data from low-power sensors to infer whether new data needs to be collected from high-power sensors.
Suppress Logs v S Keep the logging rates low.
e.g., The logging level shown in the console output as ‘warning’ [31].
User Knows Best 4 C Allow users to customize preferences for energy-critical features.
e.g., BooHoo [13] let users choose between certain features (bright screen and full availability of images).
WiFi over Cellular x - Delay or disable heavy data connections until the device is connected to a WiFi network.

to reality is currently unknown. Some developers expressed indif-
ference about energy consumption on local machine; as P5 (who
rated ‘somewhat concerned’) put it: “It depends if its locally run,
or on the cloud. If local, I don’t really care. If GPUs are involved or
the cloud, I am more concerned because I read a lot about energy

consumption of large data centers, and I know that GPUs consume
a lot of power”

This feedback indicates the knowledge gap about software en-
ergy consumption on the individual level or local machines. Given
the high number of pet projects built by developers on GitHub [4],
such systems collectively can have a large impact. Moreover, some

17

Energy Patterns for Web: An Exploratory Study

ICSE-SEIS’24, April 14-20, 2024, Lisbon, Portugal

On the fly = Plan = Combination
-
§ Dashboard Do you plan to implement energy patterns or remove anti-patterns “on 50% 0%
£ Management decision the fly,” or do you plan and allocate time to “refactor your code™? “ °
=3
: actori
o Refactoring
E - I ;
= Performance-related patterns Resource investment extent Every week Every month Every quarter Other
5 Implement patterns in new feature INEG__——— L
S 5 0 y y
g Chosing Architecture I EGEG_— Bug prediction 333% 333% 16.7% 16.7%
§ Chosing Libraries I Training developers 16.7% 33.3% 50.0%
= 0 1 2 Quality assessment 16.7% 33.3% 333% 16.7%
Developers Refactoring source code 50.0% 33.3% 16.7%
Figure 4: Willingness of developers in investing resource for energy patterns
Programming Experience <1 year 1- 5 years 5 - 8 years > 8 years
% Developer Python 16.7% 16.7% 50.0% 16.7%
= i] ;
< Architect . JavaScript 33.3% 16.7% 50.0%
s Tester .
= . TypeScript 33.3% 50.0% 16.7%
g Project Manager
< QA Manager Dail o . o WO o
S . : a]
£ Team Lead mmmmn Programming frequency aily nce a weel nce a mont nce a quarter nce a year
Other Python 333% 50.0% 16.7%
0 2 4 6 JavaScript 33.3% 33.3% 16.7% 16.7%
Developers .
P TypeScript 16.7% 50.0% L 167%

Figure 5: Participants’ demographics

Least concerned Slightly concerned Somewhat concerned

Moderately concerned H Extremely concerned

50.0%
66.6%

16.7% 16.7%
16.7% 16.7%
333%

16.7% 16.7%
16.7% 16.7%
16.7% 16.7%

16.7%

Avoid Extraneous Graphs...
Avoid Extraneous Work
Batch Operations
Cache
Dark UI Colors
Decrease Rate
Dynamic Retry Delay
Enough resolution
Kill Abnormal Tasks
Inform Users
Manual Sync - On Demand
No screen interaction
Open Only When Necessary
Power Awareness
Power Save Mode
Push Over Poll
Race-to-idle
Reduce Size
Sensor Fusion
Suppress Logs
User Knows Best
WiFi Over Cellular
Overall with antipatterns

16.7%

50.0%
33.3%
16.7% 16.7%

33.3%

33.3%

50.0%
66.6%

16.7%
66.6%

50.0%

16.7%
50.0%
33.3%
50.0%
33.3%
16.7% 16.7%
33.3%

33.3% 16.7%

16.7%
33.3% 16.7%
16.7% 0.0%
333%
33.3%
16.7% 16.7%
33.3%
33.3%
333%
50.0%
16.7%

33.3%

33.3%

33.3%
50.0%
16.7%

33.3%

16.7%
16.7% 16.7%

16.7% 33.3%

Figure 6: Developers concerns for energy antipatterns

developers prioritize application and performance optimization
over energy, as stated by P6 (who rated ‘somewhat concerned’):
“Application optimization and performance are still more impor-
tant than energy optimization.” It calls for more research knowing
whether this preference stems from lack of knowledge about energy
issues or entrenched focus on application performance throughout
the development life cycle.

Locating Patterns in Code. Finding these patterns or antipatterns
in source code can be challenging as some are general coding prac-
tices and can exist in various components. Developers require a
thorough understanding of their web applications. When inquired

18

about finding these patterns in their code, Table 2 shows instances
of developer guidelines on locating them. Following their guide-
lines, we indicate (in column Found) if a pattern or antipattern
could be found in the company’s source code. For some patterns,
they provided a rationale (in Rationale/Guidelines column) whether
an antipattern exists in their source code or if it is inapplicable, as
shown in the table. Not all instances were found, but they could
point out potential code components, e.g., modules, classes, func-
tions, or specific annotations. Concerning ‘OOWN’, one developer
(P1) explained: “Our frontend is a single-page application, It loads
everything at once and there is a lot of data traffic to be able to
render the page. We load certain information (in accessing the dash-
board) that is not shown to the user (antipattern), while we don’t
load dynamic charts (pattern).”

Figure 4 reveals developers’ interest in optimizing energy as-
pects. They expressed willingness to implement energy patterns
in their source; but noted it is often a management decision. They
wish to have a dashboard reflecting their source code’s energy
consumption so that they can identify energy hot spots. While
half of the interviewees stated to be open to refactor existing code,
most prefer to incorporate energy patterns for new source code,
e.g., in implementing new features or choosing a new library or
architecture based on the energy aspect, rather than refactoring
existing code for this specific reason. Indeed, their preference is
to address energy concerns spontaneously rather than allocating
specific times, as shown in Figure 4. When asked about resource
commitment, they showed interest in some activities e.g., quality
assessment, refactoring source code, or identifying energy antipat-
terns (bug prediction) on a weekly or monthly basis, but preferred
training developers further apart, like quarterly or yearly.

About the knowledge on energy-related tools or past use of such
tools, they mentioned a few tools but not intended to explore the
energy aspect, e.g., Silk for data transmission, tick stack monitoring,

ICSE-SEIS 24, April 14-20, 2024, Lisbon, Portugal

Rani et al.

Table 2: Guidelines/Rationales on finding a pattern (P) or antipattern (AP), or not applicable (NA) in the company

Pattern Found Rationale/Guidelines to locate the pattern Code Reference
Avoid Extraneous Graphics P, AP P1, P3: “we do not use animations, but charts only.” Library, component
and Animations
Avoid Extraneous Work P P1: “we implement custom functions, e.g., compute bills which are needed.” Function
Batch Operations P P1: “we use batch operations in testing, Redis jobs.” Functions
P2: “look for promise.all()” Functions
Cache P P3: “most API calls are cached, check @memorize annotation.” * Annotation
Dark UI Colors AP P1: “it is not implemented.”. Module
Decrease Rate NA, P P1: “we have no sensors so no sync rates (NA).”
P3: “there is a refresh token in logging (P).” Component
Dynamic Retry Delay AP P2: “there are no delays, only maximum retries for connecting to the APL” Module
Enough Resolution NA, AP P1: “it is not applicable to us. We use a third-party library that has this feature (NA).” Library
P2: “API responses have high resolution (AP). We have certain resolutions due to legal reasons.”
Inform Users AP P1: “not implemented currently.”
Kill Abnormal Tasks P P2: “we use timeouts to cancel a computation process.” Annotation
Manual Sync - On Demand P P1: “we fetch data if user requests.” Component
No Screen Interaction NA P1: “it does not make sense for our case”
Open Only When Necessary P, AP P1: “the frontend is a single page application, we load certain information that is not shown to the ~ Classes
user (AP), while we don’t load dynamic charts (P).”
Power Awareness NA P2: “it is not applicable to our application.”
Power Save Mode AP P1: “we do not have options for the user.”
Push over Poll AP P1: “when computation happens in the server, the frontend requests the state of computation ~ Component
constantly.”
Race-to-idle P P1: “we use tear-down functionality in testing (provided by the framework)” Module
Reduce Size AP P1: “we sometimes send big payloads from the backend to the frontend to deal with.” Class
Suppress Logs AP P1: “we do not do enough logging.” File
User Knows Best AP P1: “no options for the user, we show all charts”
and Profilers for minimizing database requests. For instance, P6
stated: “T use the ‘Network / Performance’ tab in Developer Mode
in the browser, but it is more for performance or debugging rea- 4091
sons than for energy patterns.” Such instances show the limited 440
awareness about existing ones and the dearth of dedicated tools for 20
energy measurement. S
Figure 5 shows the demographics of the interviewees in terms £ 400
of role and experience. More than half of the developers have more § 380 % 385.65 % 385.10
than five years of experience in Python and JavaScript while lacking é
experience in TypeScript. Also, the majority of developers program g 3601
frequently (daily or weekly). Only one developer reported once in & 2101
a year programming activity in TypeScript.
320 A
——307.57 304.39
3.3 RQs: Impact of Energy Patterns 3001 - =

Figure 7 shows the cumulative package energy (CPU) consump-
tion with median values for DRD pattern (dynamic interval) and
its antipattern (static interval) for Safari and Chrome browsers.
The energy difference between both scenarios is insignificant, i.e.,
the antipattern consumes slightly more energy, but we can see a
difference between Safari and Chrome browsers. Looking at the
elapsed time (time to execute the scenario), we found Chrome took
an average of approximately 95 seconds, while Safari took approxi-
mately 109 seconds. Such differences are mostly due to the Safari
WebDriver taking longer to start than the ChromeDriver. However,
once started, Safari consumed less energy than Chrome. We found
similar differences in package temperature, where the average tem-
perature for Safari (35 degrees) is less than Chrome’s (38 degrees).
Previous work has indicated that there is a negative correlation
between the high temperature of the device and battery life [22].

T T T T
Chrome_antipattern Chrome pattern Safari antipattern Safari pattern

Figure 7: Cumulative energy for DRD

Similarly, Figure 8 shows the cumulative package energy (CPU)
consumption for ‘OOWN’. We found that the ‘OOWN’ pattern (lazy
loading) consumes more energy than its counter scenario (eager
loading). Also, Chrome (both pattern or its antipattern) consumes
more energy than Safari. While this may seem counter-intuitive at
first glance, since an energy pattern is expected to consume less
energy than its antipattern, the reason can be the implementation of
the ‘OOWN’ scenario. To achieve lazy loading of content, scrolling
activities must be constantly monitored to detect when new content

Energy Patterns for Web: An Exploratory Study

450 -

425 A

'S

o

1S3
L

37541
536473

3501

% 339.73

3254 320.58

Energy Consumption (J)

i

3001

2751

E=—1267.04

T T T T
Chrome_antipattern Chrome_pattern Safari antipattern Safari_pattern

Figure 8: Cumulative energy for OOWN

needs to be loaded, and several calls to the server must be executed
to load the content itself. However, the real advantage of ‘OOWN’
is that certain resources do not have to be loaded at all if a user
does not need them. In our simulating scenarios, the same number

of images (resources) is loaded for both pattern and its antipattern.

Like ‘DRD’, we observed the elapsed time for OOWN’ and found
that Chrome took an average of approximately 57 seconds, while
Safari took approximately 67 seconds. We found that similar to
‘DRD’, the average temperature for Safari (43 degrees) is less than
Chrome’s (45 degrees) for ‘OOWN’ as well.

Overall, our results show that Safari consumes less energy than
Chrome. One of the reasons for this can be that the measurements
are done on a machine running macOS, and Safari is optimized
for macOS and Apple Hardware. Also, Chrome uses V8 JavaScript
engine, while Safari uses JavaScriptCore (aka Niro). The way these
engines handles JavaScript can affect energy consumption. Our
results also show that the energy efficiency of energy patterns
may depend on the specific implementation and use case and the
frequency of those scenarios. Therefore, we advise researchers to
carefully design scenarios to measure the patterns.

4 IMPLICATIONS AND FUTURE WORK

For Researchers and Developers. In RQ1, we aim to catalog energy
patterns for Web apps. We build on the previous work that used
GitHub (Mobile repositories) to identify Mobile energy patterns [10].
Others have used platforms like Stack Overflow to identify energy
patterns [35]. We plan to expand the catalog by exploring other
sources like Stack Overflow and web specific GitHub repositories.
Then, verify the catalog with developers to ensure that they are
adapted appropriately to the web context.

In RQ3, we measured the energy impact of two patterns. We
observed that adapting patterns requires understanding trade-offs
in specific scenario. For instance, ‘Race-to-idle’ pattern suggests
releasing the resources as soon as possible, but holding onto them
might save energy in some situations, e.g., if the resource request
is frequent, then it can consume more energy in the process of

20

ICSE-SEIS’24, April 14-20, 2024, Lisbon, Portugal

requesting and releasing the resources continuously. We plan to
examine these trade-offs in real-world scenarios. Some patterns
may save energy at the cost of other software attributes, e.g., per-
formance, code comprehension, or maintainability. Previous work
has investigated the effects of code smells, design patterns, or an-
tipatterns on maintainability [1]. They also investigated the effect
of energy-efficient changes on maintainability and found that such
changes hinder the maintainability of Android applications [11].
Whether such findings are specific to maintainability or Mobile
apps, is yet unknown. Knowing such trade-offs can help developers
in choosing when to include or avoid patterns in their source code
to build green web applications.

For Tool Designers. RQ2 findings show developers’ interest in
exploring the software energy usage, e.g., via Dashboard or identify
antipatterns in their source code. However, many are unaware
of existing tools or find them unsuitable for energy evaluation.
Many developers mentioned tools like Silk, or tick stack monitoring,
but use them for debugging or device performance rather than
energy analysis. Future work should explore if this gap is due to
unawareness or the need for better tools.

For Organizations. The results of RQ2 show that developers learn
about energy efficiency from peers and University seminars. Devel-
opers who are somewhat concerned for antipatterns are motivated
due to company mission or team leaders for achieving sustainability.
Future work can investigate the awareness and role of the team lead-
ers on source code sustainability. Companies can leverage this by
offering training programs and urging team leaders to adopt green
coding practices and make other developers in the team aware of
them. Also, integrating software energy efficiency in the Univer-
sity curriculum can educate students or future developers learn
the importance of green software engineering and energy-related
trade-offs in development.

5 THREATS TO VALIDITY

Catalog of Patterns. There is a possibility of more patterns that
can be suitable to the Web domain. We have searched the literature
on the existing Mobile patterns and selected the largest catalog by
Cruz and Abreu [10] to adopt. Also, some patterns are specific to
domains and code implementation, while others are more general,
as they (e.g., ‘'OOWN’) are relevant across various code components
e.g., from front-end to database to network components; thus re-
quire adaptation to a broader context. We have, for now, kept the
patterns generalized and indicated one example for each pattern.

Interview Study. For the interview study, we interviewed three
developers from one company and three from different ones. As
a result our convenience sample is not representative of web de-
velopers. Our choice was dictated by the need to conduct in-depth
in-person interviews (60—90 minutes) and to access to their source
code to verify their guidelines. Given that reducing carbon emis-
sions and our energy footprint is a pressing societal need, we cannot
rule out that some of the interviewees could have given specific
answers due to social desirability bias [16]. Overall, further studies
are needed to both challenge our findings with a more general
population (questions to consider include: How familiar are devel-
opers with energy patterns? Do they share similar concerns about

ICSE-SEIS 24, April 14-20, 2024, Lisbon, Portugal

antipatterns? Can one easily locate Web energy patterns in source
code?) and lower the risk of social desirability bias, by means of
guaranteed anonymity. Also our analysis of their feedback can pose
a threat. To minimize this issue, two authors independently ana-
lyzed the responses and a third author reviewed the disagreements.
We handled the disagreements by mutual discussion.

Tools. As we have conducted the experiment on MacOS, it can
introduce a bias on our power consumption estimation. We repli-
cated the experiment additionally on Chrome Browser to minimize
this risk. We suggest future work to replicate our work on other
operating systems and browsers. For ‘DRD’ scenarios, we drew
inspiration from the EcoAndroid tool and used Intel Power Gadget
for energy consumption measurement. Any error in these tools can
influence our results. We tried to minimize this risk by ensuring to
be consistent with how these tools have been evaluated and used
in previous work. Although Intel Power Gadget is heavily used
in previous work, various factors, such as electricity outage, or
room temperature can affect energy consumption. We maintained
our conditions consistent, e.g., by keeping the desktop computer
plugged in and at room temperature for the entire duration of the
experiment. Since the temperature can play a major role in such
experiments, we included warm-up and cool-down periods.

User Scenarios. Having a realistic yet precise simulating scenario
is a vital part of energy measurement. We designed two scenarios
per pattern, the scenario of pattern and antipattern. To minimize
external influences, we removed additional details, e.g., in ‘DRD’,
API requests contain only a header. Similarly, in ‘OOWN’ we have
selected images as the content to be loaded dynamically. As ‘OOWN’
can be applied to other components, e.g., database, camera, and thus
can have a different energy impact in those scenarios. On the Web,
there is a constant exchange of network information. PowerLog
does not measure network traffic; therefore, we have focused on
measuring the more processor-dependent patterns.

6 RELATED WORK

Energy Patterns. While previous research in SE has mostly fo-
cused on traditional software design issues, such as code smells,
or design smells [5, 38], attention has shifted recently towards
energy-related concerns in the source code, leading to identify-
ing energy patterns in various domains. For example, Albonico
et al. analyzed energy practices in robotics software [2], finding
ten recurring antipatterns and proposing 14 recommendations to
address them. Similarly, Shanbhag et al. identified eight energy
patterns for deep learning applications [35]. Although many of
their patterns are focused on large language models, patterns such
as avoiding unnecessary data referencing is a more generalized
recommended practice and similar to ours as ‘Avoid Extraneous
Work’, ‘Open Only When Necessary’, ‘Avoid Extraneous Graph-
ics and Animations’. Cruz et al. identified 22 energy patterns for
Mobile-based applications. We mapped their energy patterns to
the Web domain, checked them with web developers, and asked
developers for guidelines to identify them in source code.

Developers’ insights on Energy Patterns. Despite growing interest
in the energy aspect, assessing software energy consumption is rare
in the industry. Previous surveys have shown that developers rarely

21

Rani et al.

consider energy efficiency in developing software [28, 35]. Manotas
et al. [24] extended the survey to a broad domain of developers from
various organizations, such as Microsoft, Google, and IBM. They
found that developers care about energy, but they lack the required
information and infrastructure to develop software. We confirmed
the past research in this regards. We collected their understanding
and concerns about energy patterns. We inquired for the guidelines
to locate these patterns in code. With the guidelines, we could find
eleven patterns and nine antipatterns in their source code.

Measurement of Software Energy Consumption. Researchers have
analyzed various software or parts of the software to identify
energy-hungry practices. They measured energy consumption of
software in various context, such as code execution [7, 30, 32], de-
sign patterns [23], third party libraries [33], dataframe processing
libraries [34], programming languages [29], Java Applications [40],
embedded software [39], Mobile applications [20]. As a result, they
identified various coding practices or antipatterns that can cause
energy inefficiencies.

Given the increasing usage of Web and ecological cost, its en-
ergy efficiency is crucial. Some organizations have recommended
energy-saving practices for Web applications, like optimizing im-
age formats (AVIF, WebP) to reduce file transfer over browsers.
Greenspector [27] measured the energy impact of these image for-
mats and resolutions for various browsers. Singh et al. explored
the energy cost of Java APIs on servers and found that developers
can choose energy-efficient APIs to reduce the energy cost [36].
Inspired by such studies, we measured the impact of two patterns
and their antipatterns in two browsers and found that patterns do
not always guarantee less energy consumption and browsers and
many other factors play a role.

7 CONCLUSION

Given the increasing usage of web applications, we aimed to define
Web energy patterns to reduce the energy footprint of these applica-
tions. We investigate the porting of existing Mobile energy patterns
to the Web domain and found that 20 patterns could be ported.
We interviewed developers from different companies to challenge
these ported energy patterns and to investigate their awareness
and concerns for energy topics. While our interviewees were not
familiar with energy issues, most expressed concerns for antipat-
terns, especially with functional antipatterns. Together with their
help, we collected guidelines to identify the ported energy patterns
in source code. Based on the guidelines, we could find nine patterns
and eleven antipatterns in the company’s source code. Finally, we
provided evidence that, although these patterns aim to save en-
ergy, they do not always succeed. We measured the impact of two
patterns, ‘OOWN’ and ‘DRD’ and found that the ‘OOWN’ pattern
consumes more energy compared to its antipattern, while we found
no evidence for the ‘DRD’ pattern compared to its antipattern.

ACKNOWLEDGMENTS

P. Rani and A. Bacchelli acknowledge the support of the Swiss
National Science Foundation for the SNF Project 200021_197227.

Energy Patterns for Web: An Exploratory Study

REFERENCES

(1]

A

&

(1]

[12]

[13]
[14]
[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.
2011. An empirical study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension. In 2011 15Th european conference on software
maintenance and reengineering. IEEE, 181-190.

Michel Albonico, Ivano Malavolta, Gustavo Pinto, Emitza Guzman, Katerina
Chinnappan, and Patricia Lago. 2021. Mining energy-related practices in robotics
software. In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 483-494.

Anders SG Andrae and Tomas Edler. 2015. On global electricity usage of commu-
nication technology: trends to 2030. Challenges 6, 1 (2015), 117-157.

Earl T Barr, Christian Bird, Peter C Rigby, Abram Hindle, Daniel M German, and
Premkumar Devanbu. 2012. Cohesive and isolated development with branches.
In Fundamental Approaches to Software Engineering: 15th International Conference,
FASE 2012, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2012, Tallinn, Estonia, March 24-April 1, 2012. Proceedings 15.
Springer, 316-331.

Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In 2012 28th IEEE international conference
on software maintenance (ICSM). IEEE, 56-65.

Bobby R Bruce, Justyna Petke, and Mark Harman. 2015. Reducing energy con-
sumption using genetic improvement. In Proceedings of the 2015 Annual Confer-
ence on Genetic and Evolutionary Computation. 1327-1334.

Tiago Cargao. 2014. Measuring and visualizing energy consumption within
software code. In 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 181-182.

AVIF contributors. 2023. AVIF Image format.
https://avif .io/

MDN contributors. 2023. Mozilla Page Visibility APL. Retrieved on Oct 2023 from
https://developer.mozilla.org/en-US/docs/Web/API/Page_Visibility API

Luis Cruz and Rui Abreu. 2019. Catalog of energy patterns for mobile applications.
Empirical Software Engineering 24 (2019), 2209-2235.

Luis Cruz, Rui Abreu, John Grundy, Li Li, and Xin Xia. 2019. Do Energy-
Oriented Changes Hinder Maintainability?. In 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 29-40. https://doi.org/10.1109/
ICSME.2019.00013

Jim Daly, Peter Hecke, Divya Kamath, and Amol Deore. 2023. Microsoft web API
for Batch Processing. Retrieved on Oct 2023 from https://learn.microsoft.com/en-
us/power-apps/developer/data-platform/webapi/execute-batch-operations-
using-web-api

BooHoo Developers. 2022. BooHoo. Retrieved on Oct 2023 from https:
/[www.boohoo.com/page/sustainability-guide.html

Google Developers. 2023. WebP Image format. Retrieved on Oct 2023 from
https://developers.google.com/speed/webp

Arlene Fink. 2003. The survey handbook. sage.

Adrian Furnham. 1986. Response bias, social desirability and dissimulation.
Personality and individual differences 7, 3 (1986), 385-400.

Stefanos Georgiou, Stamatia Rizou, and Diomidis Spinellis. 2019. Software devel-
opment lifecycle for energy efficiency: techniques and tools. ACM Computing
Surveys (CSUR) 52, 4 (2019), 1-33.

Taher Ahmed Ghaleb. 2019. Software energy measurement at different levels
of granularity. In 2019 International Conference on Computer and Information
Sciences (ICCIS). IEEE, 1-6.

Jonathan G Koomey et al. 2007. Estimating total power consumption by servers
in the US and the world.

Young-Woo Kwon and Eli Tilevich. 2013. Reducing the energy consumption of
mobile applications behind the scenes. In 2013 IEEE International Conference on
Software Maintenance. IEEE, 170-179.

Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2013. Where has my battery
gone? Finding sensor related energy black holes in smartphone applications. In
2013 IEEE international conference on pervasive Computing and Communications
(PerCom). IEEE, 2-10.

Shuai Ma, Modi Jiang, Peng Tao, Chengyi Song, Jianbo Wu, Jun Wang, Tao Deng,
and Wen Shang. 2018. Temperature effect and thermal impact in lithium-ion
batteries: A review. Progress in Natural Science: Materials International 28, 6
(2018), 653-666

Sepideh Maleki, Cuijiao Fu, Arun Banotra, and Ziliang Zong. 2017. Understanding
the impact of object oriented programming and design patterns on energy effi-
ciency. In 2017 Eighth International Green and Sustainable Computing Conference
(IGSC). IEEE, 1-6.

Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin
Sadowski, Lori Pollock, and James Clause. 2016. An empirical study of practi-
tioners’ perspectives on green software engineering. In Proceedings of the 38th
international conference on software engineering. 237-248.

Timothy McKay and Patrick Konsor. 2019. Intel Power Gadget. Retrieved on Oct
2023 from https://www.intel.com/content/www/us/en/developer/articles/tool/

Retrieved on Oct 2023 from

22

[26]

[27

[28

[30

[31

[32

®
&

[34

[35

(36]

@
=

[38

(39]

[40

[41

=
L)

ICSE-SEIS’24, April 14-20, 2024, Lisbon, Portugal

power-gadget.html

Jan Monschke. 2019. Garbage collection in source code. Retrieved on Oct
2023 from https://developers.soundcloud.com/blog/garbage- collection-in-redux-
applications

Philippot Olivier. 2022. Greenspector. Retrieved on Oct 2023
from https://greenspector.com/en/which-image-format-to-choose-to-reduce-
its-energy-consumption-and-its-environmental-impact/

Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan. 2016. What
Do Programmers Know about Software Energy Consumption? IEEE Software 33,
3 (2016), 83-89. https://doi.org/10.1109/MS.2015.83

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jicome Cunha, Jodo Paulo
Fernandes, and Jodo Saraiva. 2017. Energy efficiency across programming lan-
guages: how do energy, time, and memory relate?. In Proceedings of the 10th ACM
SIGPLAN international conference on software language engineering. 256-267.
Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Understanding energy
behaviors of thread management constructs. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages &
Applications. 345-360.

Pooja Rani, Jonas Zellweger, Veronika Kousadianos, Luis Cruz, Timo Kehrer,
and Alberto Bacchelli. 2024. Replication Package for ‘Energy Patterns for Web:
An Exploratory Study’. Retrieved on Jan 2024 from https://doi.org/10.5281/
zenodo.8404487

Haris Ribic and Yu David Liu. 2014. Energy-efficient work-stealing language
runtimes. ACM SIGARCH Computer Architecture News 42, 1 (2014), 513-528.
Andreas Schuler and Gabriele Anderst-Kotsis. 2020. Characterizing energy con-
sumption of third-party api libraries using api utilization profiles. In Proceedings
of the 14th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 1-11.

Shriram Shanbhag and Sridhar Chimalakonda. 2022. On the Energy Consumption
of Different Dataframe Processing Libraries—An Exploratory Study. arXiv preprint
arXiv:2209.05258 (2022).

Shriram Shanbhag, Sridhar Chimalakonda, Vibhu Saujanya Sharma, and Vikrant
Kaulgud. 2022. Towards a Catalog of Energy Patterns in Deep Learning De-
velopment. In Proceedings of the 26th International Conference on Evaluation
and Assessment in Software Engineering (Gothenburg, Sweden) (EASE '22). As-
sociation for Computing Machinery, New York, NY, USA, 150-159. https:
//doi.org/10.1145/3530019.3530035

Jasmeet Singh, Kshirasagar Naik, and Veluppillai Mahinthan. 2015. Impact of
developer choices on energy consumption of software on servers. Procedia
Computer Science 62 (2015), 385-394.

Anselm Strauss and Juliet Corbin. 1998. Basics of qualitative research techniques.
(1998).

Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. 2017. How developers
perceive smells in source code: A replicated study. Information and Software
Technology 92 (2017), 223-235.

Vivek Tiwari, Sharad Malik, and Andrew Wolfe. 1994. Power analysis of embed-
ded software: A first step towards software power minimization. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 2, 4 (1994), 437-445.
Narayanan Vijaykrishnan, M Kandemir, Soontae Kim, S Tomar, Anand Sivasubra-
maniam, and Mary Jane Irwin. 2001. Energy behavior of Java applications from
the memory perspective. In Java (TM) Virtual Machine Research and Technology
Symposium (JVM 01).

Philip Walton. 2022. Energy Saver Mode in Chrome Browser. Retrieved Aug 2023
from https://developer.chrome.com/blog/memory-and-energy-saver-mode/
Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. In 2013 20th Working Conference on Reverse Engineering
(WCRE). 242-251. https://doi.org/10.1109/WCRE.2013.6671299

https://avif.io/
https://developer.mozilla.org/en-US/docs/Web/API/Page_Visibility_API
https://doi.org/10.1109/ICSME.2019.00013
https://doi.org/10.1109/ICSME.2019.00013
https://learn.microsoft.com/en-us/power-apps/developer/data-platform/webapi/execute-batch-operations-using-web-api
https://learn.microsoft.com/en-us/power-apps/developer/data-platform/webapi/execute-batch-operations-using-web-api
https://learn.microsoft.com/en-us/power-apps/developer/data-platform/webapi/execute-batch-operations-using-web-api
https://www.boohoo.com/page/sustainability-guide.html
https://www.boohoo.com/page/sustainability-guide.html
https://developers.google.com/speed/webp
https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html
https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html
https://developers.soundcloud.com/blog/garbage-collection-in-redux-applications
https://developers.soundcloud.com/blog/garbage-collection-in-redux-applications
https://greenspector.com/en/which-image-format-to-choose-to-reduce-its-energy-consumption-and-its-environmental-impact/
https://greenspector.com/en/which-image-format-to-choose-to-reduce-its-energy-consumption-and-its-environmental-impact/
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.5281/zenodo.8404487
https://doi.org/10.5281/zenodo.8404487
https://doi.org/10.1145/3530019.3530035
https://doi.org/10.1145/3530019.3530035
https://developer.chrome.com/blog/memory-and-energy-saver-mode/
https://doi.org/10.1109/WCRE.2013.6671299

