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Abstract 
 
Transport planning models are used all over the world to assist in the decision making regarding 
investments in infrastructure and transport services. Traffic assignment is one of the key components 
of transport models, which relate travel demand to infrastructure supply, by simulating (future) route 
choices and network conditions, resulting in traffic flows, congestion, travel times, and emissions. 
Cost benefit analyses rely on outcomes of such models, and since very large monetary investments are 
at stake, these outcomes should be as accurate and reliable as possible. However, the vast majority of 
strategic transport models still use traditional static traffic assignment procedures with travel time 
functions in which traffic flow can exceed capacity, delays are predicted in the wrong locations, and 
intersections are not properly handled. On the other hand, microscopic dynamic traffic simulation 
models can simulate traffic very realistically, but are not able to deal with very large networks and 
may not have the capability of providing robust results for scenario analysis. In this paper we discuss 
and identify the important characteristics of traffic assignment models for transport planning. We 
propose a modelling framework in which the traffic assignment model exhibits a good balance 
between traffic flow realism, robustness, consistency, accountability, and ease of use. Furthermore, 
case studies on several large networks of Dutch and Australian cities will be presented. 
 

1. Introduction 
 
Transport planners aim to prepare, assess, and implement different plans and projects in order to 
improve and manage transport systems, which include  

(i) road and rail infrastructure (e.g., adding new or expanding existing infrastructure); 
(ii) public transit services (e.g., new bus routes, frequency changes, etc.);  
(iii) demand management policies (e.g., road pricing);  
(iv) traffic management policies (e.g., ramp metering);  
(v) information strategies (e.g., real-time route information); and 
(vi) land use policies (e.g., new urban developments).  

 
These plans and projects typically involve large amounts of money, and the decisions will usually 
have long term impacts. Therefore, many governments all over the world use strategic transport 
models to make forecasts of such impacts and compare different scenarios.  
 
Australia is no different, as indicated in Table 1. A strategic transport model exists for every major 
metropolitan area and serves as a tool that supports decision making in transport systems. These 
models can be applied in the preparation phase to do a quick scan of a wide range of possible 
solutions, later in the assessment phase to compare different alternative solutions in more detail, and 
finally in the implementation phase to for example look at the consequences of the construction, 
which may take many years. 
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Table 1: Main strategic transport models in Australia 
Model name Abbrevation State Area 
Sydney Strategic Travel Model STM NSW Sydney 
Melbourne Integrated Transport Model MITM VIC Melbourne 
Canberra Strategic Transport Model CSTM ACT Canberra 
Brisbane Strategic Transport Model – Multi Modal BSTM-MM QLD Brisbane 
Metropolitan Adelaide Strategic Transport Evaluation Model MASTEM SA Adelaide 
Strategic Transport Evaluation Model STEM WA Perth 
 
1.1 Forecasts used in decision making 
 
When making decisions regarding infrastructure investments and transport policies, the advantages 
and disadvantages of the investment or policy need to be determined. This is often done by economic 
appraisal, which takes a wide range of costs and benefits into account. The most common are a cost-
benefit analysis (CBA) in which all costs and benefits are quantified in monetary terms. In case 
outputs are difficult to measure in monetary terms, one can apply a cost-effectiveness analysis (CEA). 
If the benefits are larger than the costs, i.e. if the benefit-cost ratio is larger than 1, the project is said 
to be economically beneficial. An environmental impact assessment is often part of the economic 
appraisal.  
 
While the costs are relatively easy to determine (although the costs have a wide range due to risk and 
uncertainty involved), the benefits are more difficult to establish. There can be a whole wide range of 
benefits (although they can also be dis-benefits if they make the current status quo worse): 
 Decrease in travel time  
 Increase in travel time reliability 
 Increase in health (measured by emissions of NOx, PM10, PM2.5, etc.) 
 Decrease in climate change (measured by emissions of CO2) 
 Decrease in noise 
 Increase in employment 
 Increase in safety (measured by the number of fatal and non-fatal crashes) 
 Other effects (e.g., agglomeration effects, wider economic impacts) 

 
In order to express each of these benefits into a monetary value, certain conversions are required. For 
example, an hour less travel time can be converted to dollars using the value of travel time savings 
(VTTS), also often referred to as the value of time (VOT).  
 
Strategic transport models may not provide direct estimates of these benefits, but they can often be 
derived from model outputs. While travel time savings are a natural and often the most important 
outcome of strategic transport models, the benefits related to travel time reliability, health, climate 
change, and noise are often derived from traffic flows, speeds, and distance travelled, which are also 
outcomes of the model.  
 
1.2 Model components 
 
Strategic transport models often adopt a similar structure as outlined by the classical four stage model 
(Ortúzar and Willumsen, 2011), but exceptions exist. They all comprise of the following two main 
components: (i) demand model, and (ii) supply model. 
 
The demand model generates the travel demand, and reflects the travel decisions of agents in the 
transport system. For passenger transport, these decisions include activity choice, trip choice, 
destination choice, mode choice, departure time choice, and route choice. The result is therefore the 
travel demand from a certain origin to a certain destination using a certain mode at a specific time on 
a specific route. Similarly, freight transport can be described by a demand model. 
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The supply model describes the interaction of the travel demand with the supply of infrastructure and 
transport services. Like in any economic model, if the demand is larger than the supply, costs will 
increase (i.e., congestion and delays will occur). Traffic simulations are typical examples of supply 
models, in which the travel demand and infrastructure supply is input, and the traffic simulation 
determines the flows, speeds, travel times and delays on road segments. Clearly, there is interaction 
between the demand and supply models: agents may decide to change their route, departure time, 
mode, or destination to avoid long delays or high costs, which in return will have an effect on the 
traffic conditions. The traffic simulations can range from relatively simple static traffic assignment 
models that consider macroscopic traffic flow rates (i.e., vehicles per hour), to very elaborate 
microscopic simulation models, in which each vehicle is simulated individually.  
  
1.3 Paper contributions and outline 
 
In this paper, we will focus on traffic assignment models of road transport for strategic transport 
planning purposes. In other words, we will concentrate on supply models with the inclusion of route 
choice behaviour. Further, we will only consider passenger and freight transport, in which we refer to 
the decision makers as agents, i.e. car drivers and transporters of goods. We will not discuss public 
transport due to their very specific driving pattern with many stops. We will also not consider taxis, 
although they could be considered as passenger cars with possibly extra permissions regarding 
infrastructure use (bus and taxi lanes). Since we are focussing on strategic models, we are only 
looking at models for long term prognoses, not for short term analysis such as incidents or road 
works.  
 
Many traffic assignment models have been proposed in the literature, and there exists a wide range of 
commercially available software that can perform traffic assignment, namely static models in general 
transportation software (such as TransCAD, OmniTRANS, EMME, VISUM, Cube), dynamic models 
that present flow macroscopically as flow rates using a fundamental diagram (such as StreamLine, 
INDY), and dynamic models that present flow microscopically as individual vehicles (AIMSUN, 
VISSIM, PARAMICS). Microscopic models often use car following and lane changing behaviour 
instead of a fundamental diagram. Some dynamic models are called mesoscopic, as they simulate 
individual vehicles or packets of vehicles using a fundamental diagram (INTEGRATION, 
DYNASMART, Dynameq). More recently, network models have been developed that can mix meso 
and micro levels on the same network (e.g., Transmodeler, AIMSUN). There also exist models that 
are somewhere in between static and dynamic (such as SATURN, QBLOK).  
 
For the purpose of strategic transport models, the current state of the practice is the use of static traffic 
assignment models. However, these models have serious drawbacks and may produce very unrealistic 
outcomes, which may lead to significant errors in decision making. Dynamic models are able to 
produce much more realistic traffic conditions, and advances in computing power have made them 
more feasible for larger areas. But the question is whether these detailed dynamic models are the right 
tool for strategic transport planning. Dynamic assignment models prove to be rather difficult and 
cumbersome to operate. Furthermore, feedback loops between the supply and demand models require 
long running times and the results not stable enough to be practical for scenario analysis. Likely, the 
‘best’ model is therefore somewhere in between the two extremes of static models and dynamic 
microscopic simulation models.  
 
In this paper we explore a range of desired properties for traffic assignment models to determine the 
‘best’ traffic assignment model for the purpose of strategic transport planning. We will argue that 
traditional static traffic assignment models, which may have some merits and are still widely used by 
transport planners all over the world, often generate problematic and unrealistic traffic conditions and 
travel times, and are therefore not the most suitable tool for decision making in transport planning. 
Further, we will argue that moving towards very detailed microscopic simulation models is not the 
answer either. Based on a detailed analysis of criteria, we will show that the ‘best’ model will be a 
route-based capacity-constrained traffic assignment model that is consistent with a proper link model 
(consistent with a realistic fundamental diagram) and a proper node model (consistent with conditions 
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stated in Tampère, 2011), which converges to a unique stochastic user-equilibrium. We will then 
show that the quasi-dynamic approach is the most computational efficient approach which satisfies 
these criteria. This model will exhibit realistic route choice behaviour and traffic flow characteristics, 
will yield robust results, will be consistent with dynamic models, will provide reliable accountable 
results, and will be easy to use. We finally show that such a model is feasible on large realistic 
networks, including networks of the size currently used in strategic transport models in Australia. 
 
Section 2 will discuss the properties that we believe a good traffic assignment model for strategic 
transportation planning should have. Section 3 will then assess the impact of these properties on the 
choices for an appropriate model. Following from these choices, in Section 4 we will present a traffic 
assignment modelling framework that adheres to these choices as much as possible. Section 5 presents 
some case studies illustrate the feasibility of our approach, and we conclude and give a final 
discussion in Section 6. 
 

2. Desired properties for traffic assignment models 
 
In this section we discuss desired properties for traffic assignment models for strategic planning 
purposes. We distinguish the following properties: 

(i) Realism of results 
(ii) Robustness of results 
(iii) Consistency of results 
(iv) Reliability and accountability of results 
(v) Ease of use 

 
We will look at each property in more detail, and determine some model criteria. Some criteria may 
be conflicting, therefore in Section 3 we will have to find a good balance between these criteria.  
 
2.1 Realism of results 
 
2.1.1  Realistic route choice behaviour 
 
Agents base their route decisions on many factors. Car drivers will choose their route based on travel 
time (both free-flow and congestion delays), travel costs (including tolls and running costs), travel 
distance, travel time reliability (for example, expressed in terms of a standard deviation), familiarity 
with the route, the type of road along the route (motorway, urban roads), and the number of 
intersections encountered (where it may also matter how often one turns left or right). Transporters of 
freight will aim to optimise their routes for deliveries and typically minimise costs. The routes they 
can choose may be limited, dependent on the size of their vehicle and their load.  
 
Route choice should at least consider the travel time including congestion and other delays (e.g., at 
intersections due to traffic lights), as travel time is one of the main determinants in route choice. It 
also needs to include costs such as running costs and tolls, in order to correctly forecast route changes 
due to taxation and pricing policies. In the last decade, travel time reliability has been argued as 
another important factor for route decisions. Depending on the trip purpose, one may choose a more 
reliable (but potentially longer) route, in order to guarantee being in time at the destination. Including 
travel time reliability is not trivial, but some studies have showed that it may be possible to express 
travel time reliability as a function of the travel time (Hellinga et al., 2012).  
 
Familiarity is closely related to habitual behaviour. In strategic models, it is common to just consider 
a single representative day or peak period, such that only one route choice decision is used. Clearly, 
travellers do not always take the same route, such that it is important to consider repetitive choice 
making in which multiple routes are taken into account. Familiarity will have a direct influence on 
these repetitive choices. 
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Agents may have different preferences towards the route attributes. These preferences may depend on 
the trip purpose (i.e., work, education, leisure, shopping), the person type (i.e., gender, income), and 
many other factors. It is therefore important to take preference heterogeneity into account.  
 
Since we are interested in strategic models for long-term prognoses, in which we aim to compare 
scenarios or variants, it is common to adopt the concept of a Wardropian user-equilibrium (Wardrop, 
1952). A user-equilibrium is a long term prediction of a stable travel situation, which enables 
comparing different scenarios. This means that the model should be able to generate such a user-
equilibrium state and use pre-trip route choice with feedback. In contrast, short term models using en-
route route choice without feedback and in which travellers respond for example to incidents, are 
assumed not to take this information into account the next time they travel, and therefore will not 
reach a user-equilibrium. 
 
Finally, different vehicle types may have different infrastructure available. For example, trucks may 
not be allowed to drive on certain urban roads, while dedicated infrastructure may be available for 
them. Hence, the route choice set may be different across vehicle types, such that different vehicle 
types have to be considered explicitly.  
 
2.1.2  Realistic traffic flow propagation 
 
Given that all agents have chosen a route, the agents can be simulated on the network in order to 
assess the efficiency of the transport system in terms of flows, speeds, queues, and travel times.  
 
For analysing where problems occur in the network, it is of utmost importance that bottleneck 
locations are identified accurately. These are locations where the travel demand exceeds the 
infrastructure supply, and will be the point from which queues will build upstream and cause 
congestion on the roads. These queues have a physical length and will spill back to upstream road 
segments when they exceed the road segment length. Typical locations are lane drops, merges of 
motorways, and (non-)signalised intersections. The basic relationships between flow, speed, and 
density can be described with the fundamental diagram which, together with the conservation of 
vehicles law, describes stationary flow behaviour. This can predict most essential features of traffic 
flow, including wave formation and propagation. Other more empirical phenomena in traffic are the 
so-called capacity or speed drop (which occurs when traffic is near the critical density), hysteresis 
(which describes different acceleration and deceleration patterns), platoon diffusion, etc. In contrast to 
stationary flow behaviour, these phenomena cannot be described by basic fundamental traffic flow 
theory and require more sophisticated relationships (Zhang, 2001). We argue that for strategic 
transport models, it is important that the model describes stationary flow behaviour (first order 
effects), but does not necessarily need to be able to describe these additional traffic phenomena 
(second order effects). 
 
For benefit cost analysis in which usually travel time savings are an important input, the predicted 
travel times need to be accurate. Such travel times can only be accurately calculated if the length of 
queues and speed within queues are predicted correctly, including queues that are spilling back over 
intersections. Even routes without any bottlenecks can be seriously affected by queue spillback, such 
that the travel times on many routes may increase.  
 
Finally, traffic flow will consist of a mix of different vehicle types that may have very different 
driving characteristics. In particular, we need at least to distinguish passenger cars and trucks. Trucks 
impede cars more than vice versa, and trucks drive at lower speeds, resulting in longer travel times.  
 
2.2 Robustness of results 
 
Strategic transport models are often used to compare different scenarios or variants, therefore it is 
important that differences between scenarios can be attributed to the scenarios themselves, and not to 
unstable model results. Therefore, we require that the model is robust. A model is said to provide 
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robust results if marginally different inputs only lead to marginally different outputs. For example, if a 
different random seed can lead to substantially different results, comparing scenarios will be 
problematic. 
 
2.3 Consistency of results 
 
Governments often apply several different models. For example, a static macroscopic model is 
applied for the whole city, a dynamic mesoscopic model is applied on the city centre, and a dynamic 
microscopic model is applied on a couple of roads and intersections. It is also common that different 
models are applied in different phases of the project. For example a static model for quick-scan and 
project appraisal and a microscopic model to investigate details during the implementation phase. 
Although these models are used for different purposes, it is not beneficial for the decision making 
process if they give conflicting results. 
 
It is therefore important that the model results across the different models are as consistent as 
possible. Even though the level of detail may be different in each model, the main mechanisms should 
be similar or at least use the same underlying principles. Hence, mesoscopic models should be seen as 
an aggregation of microscopic models, and macroscopic models should be seen as an aggregation of 
mesoscopic models, such that the underlying principles of micro models transfer to meso and macro 
models. We will use the microscopic models as the basis, as these are widely used by governments as 
operational models, and compare other models in terms of consistency with such micro models. 
 
2.4 Accountability of results 
 
A model will be more accountable if the model properties are well understood and results can be 
explained and easily verified. Explainable results are very important in order to convince policy 
makers and the community. 
 
The model should therefore not be a black box, but rather formulated as a rigorous mathematical 
problem, such that convergence towards a user-equilibrium can be guaranteed, and such that existence 
and possibly uniqueness of solutions can be proved. Such a deeper understanding of the model should 
prevent unexpected results. Regarding model complexity, the model should be as complex as it needs 
to be in order to describe the most important transport aspects (realism of results), but not any more 
complex. For accountability reasons, often a less complex model is preferred over a highly complex 
model. Or stated differently; it is always better to have a model that is guaranteed to be fairly close to 
reality, instead of a model that is potentially very realistic, but this level of realism comes without any 
guarantees.  
 
2.5 Ease of use 
 
Last but not least, the model should be user friendly, such that it can timely provide results for 
decision making. After all, making a model is an iterative process of running the model, tuning 
parameters and correcting errors in the input.  
 
This means that the model must have relatively short run times. A rule of thumb is that complete 
scenarios can run overnight, i.e. within 12 hours. Specifically when the traffic assignment is 
embedded in an iterative demand loop with multiple user classes and day parts, the time to run the 
assignment should be limited. With computational power increasing, the run times are becoming less 
of a problem each year. 
 
Preferably a minimum of input data is required by the model to enable easy input and quick 
calibration. The infrastructure should be described by road segments and intersections. For a strategic 
model, it suffices to characterise the road segments by length, number of lanes, capacity, maximum 
speed, and possibly a speed at capacity (critical speed). These attributes are mostly easily obtainable, 
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although the capacity is an important input that requires the most attention, as it will determine the 
bottleneck locations. Intersections will be defined by allowed turns, settings of traffic controls (i.e., 
green times for traffic lights). The physical layout of an intersection for a strategic model is often not 
needed, as long as the capacities in each direction can be properly calculated by the model. An 
extension would be to add priority rules to intersections in order to be able to compute any additional 
delays. Note that the supply model is essentially completely determined by the infrastructure, and 
therefore does not need to contain parameters that require calibration. A proper model should 
therefore not contain any additional parameters, as such parameters are merely present to correct 
imperfections of the model (for example, parameters of travel time functions are such parameters, as 
will be discussed in Section 3).  
 
Since the supply model should not need any further parameters to calibrate, the calibration process 
comes down to calibrating the origin-destination matrix (or matrices), and any parameters in the route 
choice model. Often, vehicle counts on road segments are used to calibrate the matrix. Using such 
counts assumes that the model is at least strictly capacity constrained, i.e. that the flow on a road 
segment cannot exceed the capacity (consistent with reality). Further, in order to calibrate matrices, 
the model should be able to easily provide select link information (i.e., routes and origin-destination 
pairs that pass through a certain link). Route-based models can readily provide this information.  
 
Regarding model outputs, in order to be able to quickly analyse and assess traffic assignment 
outcomes, the model should provide information on the bottleneck locations, queues, flows, speeds, 
densities and level of service matrices (i.e., skims with travel times, travel costs, travel distances, etc.). 
 

3. Critical assessment of models and criteria 
 
Given the desired properties and criteria established in Section 2, we will now critically assess the 
different models and determine which models are most suitable. 
 
3.1 Realism of results 
 
3.1.1  Realistic route choice behaviour 
 
In order to take multiple route attributes into account, it is common to define a so-called generalised 
cost function, in which each attribute is converted into dollars. For example, if only travel time and 
cost is considered, then we can write: 

, ,rs
mnp mn mp mp mnc p P       (1)

where mnpc  is the generalised cost (or the systematic utility) of route p for user class n driving vehicle 
type m,  mp  is the route travel time for vehicle type m, mp  is the travel cost (e.g., running costs and 
toll costs) on route p for vehicle type m, mn  is the value-of-time for user class n driving vehicle type 
m, and rs

mnP  is the set of relevant routes for vehicle type m and user class n from origin r to destination 
s. Clearly, the preferences are heterogeneous for different user classes and vehicle types. Furthermore, 
the route sets can be vehicle type and user class specific.  
 
Since route choice is a repetitive choice, habitual behaviour may exist. For repetitive choices, choice 
behaviour can be decomposed in an habitual part, and in a variety seeking (backup) part, which leads 
to a probabilistic choice model. Swait and Bliemer (2013) apply this methodology for mode choice. 
Swait and Marley (in press) have shown that the probability of choosing a certain alternative (in our 
case, a route) can be written as the well-known conditional logit model, 
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with a positive scale parameter that reflects the level of habitual behaviour (i.e., if ,rs
mn   then a 

driver of user class n in vehicle type m will due to habit always take the least cost route, while if 
0,rs

mn   this driver is variety seeking and randomly selects a route). Note that we also added 
superscripts rs to the scale parameter, as the behaviour typically depends on the distance between 
origin r and destination s. We would like to point out that the generalised cost (or utility) function in 
Eqn. (1) can be extended with any additional terms, including socio-demographics of the driver n, and 
is therefore completely flexible. 
 
In traditional static traffic assignment models, and also in several dynamic models, it is assumed that 
all travellers take the cheapest (in terms of generalised costs) route, which will lead to a so-called 
deterministic user-equilibrium (Wardrop, 1952). The route choice model in Eqn. (2) means that 
drivers do not always take the cheapest/fastest route. This is similar to the notion of a so-called 
stochastic user-equilibrium. Note that deterministic assignment is the limiting case of stochastic 
assignment in which rs

mn    (i.e., all travellers behave in a purely habitual fashion). 
 
Using Eqn. (2) has an important consequence: routes will have to be explicitly generated. While 
models that search for a deterministic user-equilibrium often do not determine route choice sets, in a 
stochastic user-equilibrium based on the logit model this is a requirement. The number of relevant 
routes will be very large in case of networks with many zones, but Bliemer and Taale (2006) have 
shown that it is feasible, which we will illustrate in Section 5 when presenting our case studies. Note 
that only relevant routes are needed, hence we can filter out many route alternatives that are unlikely 
to be chosen. Furthermore, Bar-Gera (2010) has developed an alternative way of using routes called 
paired alternative segments (PAS), which significantly reduces the amount of memory required and 
speeds up convergence.  
 
Explicitly generating routes has more advantages than merely enabling more realistic choice 
behaviour. It also significantly speeds up convergence to a (stochastic) user-equilibrium. The reason is 
that traffic flows will be distributed over multiple routes from the first iteration on, and iterative 
stochastic route choice has a much smoother result than iterative all-or-nothing route choice. Another 
advantage is that the resulting flows in user-equilibria will be route proportional. Bar-Gera (2010) has 
shown the importantance of this property, and it is particularly important when dealing with 
intersection delays.  
 
A final remark we have to make is about route overlap. In logit based choice models, such as Eqn. (2), 
the implicit assumption is that all alternatives are disjoint. However, in practice many routes will be 
partially overlapping, which distorts the route choice probabilities. Several corrections have been 
proposed in the literature by using a route commonality factor (Cascetta et al., 1996) or a path size 
factor (Bierlaire and Ben-Akiva, 1999), which simply adds an overlap term to the route cost functions. 
We would advise using such an overlap term, although one has to be careful not to include any 
irrelevant routes in the route set, as this can lead to unexpected results (Bliemer and Bovy, 2008).     
 
3.1.2  Realistic traffic flow propagation 
 
Network loading of route flows to the network can be done statically or dynamically. Clearly, traffic 
is dynamic in nature, and therefore dynamic network loading models (macroscopic models or 
microscopic simulation models) are clearly superior over static models in terms of realism. Static 
models basically aim to predict average traffic conditions over a certain time period assuming 
stationary travel demand and instantaneous flow propagation. The assumption of instantaneous flow 
propagation is particularly convenient from a computational perspective, but it also assumes that a 
vehicle is on all parts of the network at the same time.   
 
Besides the above simplifying assumptions, traditional static traffic assignment models are 
particularly weak in determining bottleneck locations and queue formation to derive proper travel 
times. Most of these models adopt the original model formulation of Beckmann et al. (1956) and 
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compute the link travel times as a function of the link flow. Well-known travel time functions (more 
correctly called link performance functions or volume-delay functions) are the BPR (Bureau of Public 
Roads, 1964) function and the Akçelik (1991) function. Both functions are of the form: 

,a a
a a

a a

L q
f

C



 

   
 

 (3)

where a  is the travel time on link a, aL  is the link length, a  is the maximum speed, aq  is the link 
volume (flow), and aC  is the capacity of the link. The first part of this term represents the free-flow 
travel time, and the second part represents the additional delay, where af  denotes a certain increasing 
function of the volume/capacity-ratio with certain parameters that have to be calibrated (see for 
example the US Highway Capacity Manual). It is important to note that this ratio can be larger than 1, 
in other words, the link flow is not constrained to capacity. This means that high flows will merely 
lead to increased delay instead of vehicles queuing in front of bottlenecks. Hence, the travel times are 
not consistent with traffic flow theory. This means that traffic flows, predicted by a static model, will 
be rather meaningless and mainly too high, such that bottleneck locations will be wrong, and travel 
times will be incorrect. Due to these flaws, that it is impossible to correctly calibrate such models to 
link counts and measured travel times. We do not believe one should draw too many conclusions 
based on the outcomes of such static models. It is therefore somewhat worrying that many 
assessments of large infrastructure projects are based on such model outcomes. There have been 
extensions of the formulation of Beckmann et al. that add capacity constraints (Larsson and 
Patriksson, 1999; Nesterov and De Palma, 2000), but these models result often in even more 
unrealistic traffic conditions by constraining the entire route flow to the smallest capacity on a route. 
Daganzo (1998) proposed to use a travel time function with an asymptote near the capacity, which 
aims to prevent the link flow from exceeding the capacity, but cannot guarantee this. 
 
Early dynamic traffic assignment models, such as Janson (1991), were basically a direct extension of 
static models by introducing a time index in the travel time functions. In the last decade, it has 
become very clear that realistic dynamic models cannot rely on such travel time functions, but that 
traffic flow needs to be derived from traffic flow theory. De Romph (1994) therefore introduced the 
use of speed-density relationships instead of travel time functions. Travel time has to be considered an 
implicit result of the traffic flow propagation, not an explicit function of the flow (Bliemer, 2007). 
This insight has led to models where traffic is modelled consistent with fundamental diagrams of 
macroscopic traffic flow theory. In these models, flow can never exceed capacity, such that queues 
will build up. The simplest models assumed vertical queues without any physical length (as in the 
original bottleneck model introduced by Vickrey, 1969), but have recently been replaced by models 
with simple horizontal queues (e.g., Bliemer, 2007), and more advanced physical queues (Yperman, 
2007; Gentile, 2010) in which the queue may move along a road segment depending on the 
shockwaves. The most widely accepted macroscopic theory is the traffic flow theory based on 
kinematic waves of Lighthill and Whittam (1955) and Richards (1956), which is able to explain most 
essential traffic phenomena. Other phenomena mentioned earlier, such as the empirically observed 
capacity drop and hysteresis, can only be reproduced by more advanced higher order models (Parzani 
and Buisson, 2012; Zhang, 1999). However, these higher order models are computationally much 
more complex and may exhibit inconsistencies (Daganzo, 1995). As argued earlier, first order models 
sufficiently reproduce most relevant traffic phenomena for strategic transport models, including queue 
formation and spillback. The simplified theory of kinematic waves of Newell (1993) presents a basic 
but powerful first order model. Therefore, we propose to adopt Newell’s model instead of a second or 
higher order model. 
 
During the development of dynamic models the focus was primarily on the development of link 
models. This is not surprising since the dynamics of traffic flow occur on roads. As well, static 
models do not constrain flow to capacity and at nodes no restrictions to flow are imposed. However, 
the nodes are the locations where queues originate and – moreover – the available supply is 
distributed over demand. The first used node models are very unrealistic, they block traffic that can 
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pass through or cause alternations (i.e., flip-flops) in simulations. It was not until Tampère (2011) that 
the importance of proper node model was recognized. They formulate requirements for node models 
to represent first order phenomena at intersections. The node model determines the severity and 
direction of congestion and is therefore very important in network models.  
 
Instead of using fundamental diagrams and macroscopic traffic flow theory, others have adopted 
microscopic traffic flow theory in which all vehicles are considered separately. These microscopic 
models include mostly car-following behaviour, gap acceptance, speed adaptation, ramp merging, 
lane-changing, and overtaking behaviour (Olstam and Tapani, 2004). These models require a high 
level of detail and, when this level of detail is provided, are able to mimic the behaviour of each 
vehicle, which results at a more aggregate level in macroscopic traffic flows. The aggregate behaviour 
of microscopic models is likely to be more or less similar to the fundamental diagrams in macroscopic 
traffic flow theory, but differences will exist. 
 
Mesoscopic models are hybrids of macroscopic and microscopic models. They are based on 
macroscopic traffic flow theory, but propagate individual vehicles or packets of vehicles. Mesoscopic 
models have gained popularity the last few years due to their reliance on robust macroscopic traffic 
flow theory while at the same time individual information (e.g., route, vehicle class) can be easily 
tracked.   
 
In practice, the step from static to dynamic models is considerable. In order to fill the gap, so-called 
quasi-dynamic models have been proposed. They are basically static models that consider a single 
time period, but constrain the flows to capacity, such that bottlenecks appear and queues build up. 
Examples are the operational model QBLOK (4Cast, 2009), which has been used in the Dutch 
national and regional models for many years, and a model described by Bundschuh et al. (2006) 
which has been implemented in VISUM. Although these models are strict capacity constrained, they 
do not consider a realistic fundamental diagram nor a proper node model. Brederode et al. (2011) and 
Bliemer et al. (2012) derive a new quasi-dynamic model from a macroscopic dynamic model 
assuming stationary flow and instantaneous flow propagation. As such, their quasi-dynamic models 
inherit the most important properties from macroscopic traffic flow theory. Travel times are derived 
after the flow propagation using cumulative inflow and outflow curves. 
 
Now consider different user classes and different vehicle types. First, we note that while it makes 
sense to distinguish different user classes in route choice, it is much less important to distinguish user 
classes in flow propagation. When there is congestion, the driver will just have to queue and wait, no 
matter what their socio-demographics are. Different vehicle types, however, do have an important 
impact. While microscopic models can naturally consider different vehicle types, in macroscopic 
models this is less obvious and usually requires some assumptions. The first assumption that is often 
made in macroscopic models, is that every vehicle type is converted into passenger car units (pcu), 
see e.g., Petigny (1967). For example, a large truck could have the same impact as 2.5 cars, and a 
small truck can be converted using a pcu value of 1.5 cars. This pcu value is determined by a 
combination of the space occupied by the value when standing still, and the impedance of the vehicle 
on other vehicles. We believe that adopting pcu’s is a simple and workable way to include multiple 
vehicle types, even though it does not capture all the nuances that microscopic models could capture. 
Extra care is needed when calculating the travel times for vehicle types other than the car. In case of 
free-flow, the car speed will be significantly higher than the truck speed, hence the travel time for the 
truck needs to be scaled up appropriately. In case of heavy congestion, the car and truck will drive at 
approximately the same speed, such that the travel time of the truck is about the same as that of the 
car. Therefore, we propose for vehicle types such as trucks to use a scaling factor for travel time 
dependent on the traffic conditions. Another option is to simulate different modes on different layers 
of the network that can interact (for example via a common density). This causes additional problems 
that are beyond the scope of this paper, but does allow for direct simulation of different modes with 
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different characteristics. The benefit of this approach is the absence of the need for post simulation 
adjustments to correct the results. 
 
3.2 Robustness of results 
 
Traditional static models have proven to be very robust, although it has shown to be important to set 
the convergence criterion (e.g., the duality gap) relatively small to guarantee proper convergence 
(Boyce et al., 2004). This property is mainly due to the fact that these models are not strict capacity 
constrained (i.e., capacity is a soft constraint that merely increases the travel time, not a hard 
constraint limiting the flow), resulting in smooth functions. In contrast, all strict capacity constrained 
models with proper queuing behaviour are more sensitive and gridlock of a network can occur in 
models with spillback. This increase in sensitivity to model inputs does not mean that such models are 
not robust. All macroscopic and mesoscopic models are usually quite robust against small 
perturbations due to their fundamentals in macroscopic traffic flow theory. 
 
In contrast, microscopic models are based on car-following, lane-changing and other driving 
behaviour, and often include random components or probabilities. This means that running a 
microscopic model with exactly the same input but only a different random seed may yield different 
results. This could mean the difference between congestion and no congestion occurring with large 
impacts on route choice. It is therefore recommended to perform multiple runs of a microsimulation 
model. Simply averaging the results of multiple runs is not possible, as this may lead to an infeasible 
result. While microsimulation models are suitable for short term prognoses, due to potential instability 
(see e.g., Sbayti and Roden, 2010), we believe that microscopic simulation models are typically not 
suitable for comparing scenarios in strategic transport planning. However, microsimulation models 
can be complementary in later stages of the planning process. 
 
3.3 Consistency of results 
 
As mentioned, we require that model results should be as much as possible consistent with outcomes 
from a dynamic microscopic model. Differences in results can be minimised by using the same 
underlying principles. As mentioned in Section 3.1.2, we propose to derive a quasi-dynamic model 
based on a dynamic model. By using a proper link model that is consistent with first order traffic flow 
theory and a proper first order node model, differences will be minimised.  
 
3.4 Accountability of results 
 
The static traffic assignment model has been proposed over 50 years ago and has not changed much 
since. The properties of this model are well understood. For example, there exists a unique solution to 
the original model formulation by Beckmann et al. (1956) for a single vehicle type in case the travel 
time function is strict monotonically increasing (like the BPR function). In the case of multiple 
vehicle types in which pcu values are used to convert all vehicles into passenger cars, the travel time 
function is no longer strictly monotone, hence the solution need not be unique. Many algorithms have 
been proposed to solve for the user-equilibrium solution, of which the Frank-Wolfe method (1956) is 
the most well-known. More recently origin based models have been proposed with better converging 
properties, such as Bar-Gera (2002), Florian et al. (2009), and Gentile and Noekel (2009). 
 
In contrast, properties of dynamic models are less well understood. Different dynamic models will 
have different properties, but it has been shown that for some models existence of a dynamic user-
equilibrium solution cannot be guaranteed (Szeto and Lo, 2006), and if it exists, it is not likely to be 
unique (Bliemer and Bovy, 2003). Models with horizontal queues and spillback in particular do not 
have elegant theoretical properties (Szeto and Lo, 2006). Models with vertical queues have nicer 
properties, but are clearly less realistic. Simulation based algorithms will typically find an 
approximate solution, but it is problematic to compare such approximate user-equilibria in different 
scenarios. 
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We will propose a model that is mathematically defined similar to a static traffic assignment model in 
which we proof existence of a user-equilibrium solution, and under certain assumptions also 
uniqueness. Further, we will propose a converging algorithm.  
   
3.5 Ease of use 
 
Due to their computational complexity and configuration hungry nature, microscopic dynamic models 
are, even when feasible, not desirable to use on large scale networks with thousands of traffic analysis 
zones (TAZ), links, and nodes, millions of routes and possibly millions of vehicles on the road at the 
same time. Although mesoscopic and macroscopic dynamic models can handle much larger networks, 
they still have a high computational complexity, require more detailed inputs, and require much more 
time for calibration compared to static models. Static models on the other hand are very fast and can 
handle very large networks, but generate very unrealistic traffic conditions. Quasi-dynamic models 
seem to sit comfortably between the two, which combine a low computational complexity with 
realistic flow propagation, which is the model type we will adopt.  
 
The input into quasi-dynamic traffic assignment models is actually less than in static traffic 
assignment models that use travel time functions. Since the supply model is completely determined by 
the infrastructure, there is no need to include these functions and hence no need to estimate the 
corresponding parameters. Dynamic models require more input data in the form of time-specific 
travel demand.   
 
Calibration of this time-dependent travel demand in dynamic models is not an easy task, as the time 
dimension adds significant complexity. Not only are there many more input variables that require 
calibration, each calibration run will require simulations and therefore long computation times. Static 
and quasi-dynamic models only consider a single origin-destination matrix for the whole time period, 
which makes calibration of the model easier more feasible task. Calibration towards link counts is 
essentially impossible in static traffic assignment models due to the fact that the flows on the network 
are not strict capacity constrained and as such are actually desired flows, not realised flows. Quasi-
dynamic models that are strict capacity constrained yield flows that can directly be compared with the 
link counts. Furthermore, by adopting a route-based approach, there will be an immediate mapping 
from links to routes, which assists in select link analysis and matrix calibration.  
 
Therefore, quasi-dynamic models are superior in ease of use, even compared to static traffic 
assignment models. They come with an additional bonus that they can show bottlenecks and queues, 
which are model outcomes that are easily understood.  
 

4. Proposed quasi-dynamic traffic assignment methodology 
 
Analysis of the desired properties and how the different models score are summarised in Table 2. This 
table draws a clear picture. Static models are robust, reliable, and easy to use, but lack realism and 
consistency. In the other side, dynamic models are realistic and consistent, but are less easy to use, 
less reliable, and less robust. In between are the quasi-dynamic models, which are designed to be 
sufficiently realistic, robust, consistent, reliable, and easy to use. Therefore, quasi-dynamic traffic 
assignment models seem to be very suitable for strategic transport planning purposes in which 
realistic aggregate results are required without too many details.  
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Table 2: Models and scoring on desired properties 
 static quasi-dyn. dynamic 
Property macro macro macro meso micro 
Realistic results -- + ++ ++ ++ 
- stochastic route-choice 
- multiple vehicle types 
- multiple user classes 
- strict capacity constrained  
- queue spillback 
- realistic link model 
- realistic node model 

- 
+ 
+ 
-- 
-- 
-- 
-- 

+ 
+ 
+ 

++ 
+ 
+ 
+ 

+ 
+ 
+ 

++ 
++ 
++ 
+ 

+ 
++ 
++ 
++ 
++ 
++ 
++ 

+ 
++ 
++ 
++ 
++ 
++ 
++ 

Robust results ++ ++ + + - 
- stable outcomes ++ ++ + + - 
Consistent results -- + ++ ++ ++ 
- consistent with dyn. micro model -- + ++ ++ ++ 
Accountable results ++ ++ + + - 
- convergence to equilibrium 
- existence and uniqueness 
- low model complexity 

++ 
++ 
++ 

+ 
++ 
+ 

+ 
- 
- 

+ 
- 
- 

- 
-- 
-- 

Ease of use + ++ - - -- 
- short run times 
- little input required 
- easy of calibration 

++ 
++ 
+ 

+ 
++ 
++ 

- 
- 
- 

- 
- 
- 

-- 
-- 
-- 

 
Literature on quasi-dynamic traffic assignment models is scarce. Bakker et al. (1994) were pioneers in 
this field, and developed QBLOK, which added capacity constraints, horizontal queues and spillback 
to static traffic assignment. However, this model is not route-based and uses split proportions to 
propagate traffic through the network, which leads to inconsistent results when blocking flow. 
Bundschuh et al. (2006) proposed a similar approach, which is implemented in VISUM. Both models 
suffer from the lack of a realistic underlying fundamental diagram and a proper node model. 
Furthermore, the queues build up inside bottlenecks, while realistic queues form upstream of 
bottlenecks. 4Cast (2009) makes several changes to the QBLOK model, among other queue formation 
upstream bottlenecks. Brederode et al. (2011) and Bliemer et al. (2012) developed a novel route-based 
approach derived from a macroscopic dynamic model (to be more specific, the link transmission 
model, see Yperman, 2007, which is based on the simplified theory of Newell, 1993), which includes 
a simplified but sufficiently realistic triangular fundamental diagram and a demand proportional node 
model, resulting in queues upstream bottlenecks. Furthermore, they formulated their quasi-dynamic 
model in a much more rigorous fashion, which allows inspection of the model properties (important 
for accountability of model results).  
 
Tampère et al. (2011) investigated node models and came to the conclusion that most existing 
(demand proportional) node models are flawed and distribute capacities and flows in an unrealistic 
way. They formulated a set of conditions for proper node models and formulated a capacity 
proportional node model that satisfies all conditions. Realistic distribution of capacities to different 
turns at nodes is essential for any strict capacity constrained flow propagation model. In this paper we 
adopt the approach of Brederode et al. and Bliemer et al. and derive a quasi-dynamic model from the 
macroscopic dynamic link transmission model assuming Newell’s triangular fundamental diagram 
(Newell, 1993) and the capacity proportional node model proposed by Tampère et al. (2011). Adding 
this node model is by no means a trivial exercise. The flow propagation model has to be solved in an 
entirely different way than proposed by Brederode et al. and Bliemer et al. in order to guarantee 
consistency with this node model. This has led to a new fixed point formulation of the strict capacity 
constrained static traffic assignment problem, proposed by Bliemer et al. (2013). 
 
Our proposed model consists of four components: 

(i) Route generation submodel;  
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(ii) Route choice submodel; 
(iii) Strict capacity constrained static network loading submodel; 
(iv) Dynamic physical queuing submodel; 
(v) Travel cost submodel. 

  
The first component first finds all the relevant and likely routes between each origin-destination pair. 
The second component determines for each origin-destination pair the route flows depending on the 
generalised costs (utilities) of each route. The third component instantaneously propagates the route 
flows through the network, in which turn capacities are determined by a first order node model, and 
flows are strictly constrained to these capacities. This will yield vertical queues upstream bottlenecks. 
The fourth component dynamically applies a first order link model to convert these vertical queues 
into horizontal physical queues with realistic shockwaves and spillback. Finally, the fifth component 
calculates the link and route travel costs. 
 
It is clear that this model is a hybrid between a static model and a dynamic model, hence the term 
quasi-dynamic. In the following subsections we will elaborate on each of these five components. We 
will assume that the total travel demand over a certain time period [0, ]T  is given by vehicle type and 
user class specific origin-destination (r-s) trip matrices [ ].rs

mn mnD D  Further, we assume that the 
network is given by a directed graph ( , ),G N A  where N  is the set of nodes and A  is the set of 
links. Each link a A  has an associated link length aL  (in km), a capacity aC  (in pcu/T ), a vehicle 
type specific maximum speed  ma  (in km/hour), and a jam density aK  (in pcu/km).  
 
4.1 Route generation submodel 
 
Different methods exist for generating route choice sets. They can basically be split into stochastic 
methods and deterministic methods. Stochastic methods (e.g., Fiorenzo-Catalano et al., 2004) 
iteratively generate cheapest cost routes by randomising the link travel costs. Deterministic methods 
(e.g., Prato and Bekhor, 2006) find all routes that satisfy a set of given constraints. Both methods are 
able to generate relevant routes depending on the network. More routes will automatically be 
generated if many similar alternatives exist (e.g., in a grid network), while less routes will be 
generated when only few relevant alternatives exist (e.g., in a network with motorways). The notion 
of relevancy is important, as indicated by Bliemer and Bovy (2008). A route is irrelevant if it is 
unlikely that travellers will choose that route. Examples are routes with long detours, or routes that 
include off-ramp on-ramp behaviour. In deterministic methods, such irrelevant routes can be ruled out 
by setting specific constraints. We will adopt a combination of a stochastic and deterministic method 
by adopting a stochastic generation method followed by a deterministic route filtering method that 
excludes irrelevant routes.  
 
It is important to note that while route set generation can be time-consuming, once we have generated 
such a route set, we can re-use this route set in subsequent model runs, thereby avoiding expensive 
shortest path computations while running the model. This significantly speeds up running the 
assignment model. However, by generating the routes in advance, we cannot guarantee that each 
relevant route is included in the route set in order to find a user equilibrium. Therefore, it may be wise 
to search for new routes at the end of the traffic assignment run based on the current travel costs and 
include any newly found routes in the route set. 
 
The outputs of this submodel are route sets rs

mnP  for each origin-destination pair ( , )r s  for each vehicle 
type m and user class n.  
 
4.2 Route choice submodel 
 
In the proposed model, we aim to find a stochastic user equilibrium. In general, the vehicle type and 
user class specific route flows * *[ ]mnpff  corresponding to a stochastic user equilibrium can be found 
by solving a variational inequality (VI) problem (see Nagurney, 1993). In case of conditional logit 
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probabilities as in Eqn. (2), the VI problem in the case of a single vehicle type and user class can be 
written as (see e.g., Bell, 1995; Luo et al., 2012): 

   * * *

( , )

1
( ) ln 0, ,

rs
mn

mnp mnp mnp mnprs
m n r s p P mn

c f f f


 
     

 
  f f  (4)

where  rs
mn  is the scale parameter in the logit model defined in Eqn. (2), and   is the set of feasible 

route flows defined by the following flow conservation and non-negativity constraints:  

, ( , ), , ,
rs

mn

rs
mnp mn

p P

f D r s m n


     (5)

0, , ( , ), , .rs
mnp mf p P r s m n      (6)

Different iterative schemes could be used to solve this route-based stochastic user equilibrium 
problem (Nagurney, 1993). There are some simple strategies that could be adopted, such as the well-
known method of successive averages (MSA, see e.g., Sheffi and Powell, 1982). Liu et al. (2009) 
propose some variations of MSA that may be more efficient. Convergence of such iterative schemes 
can be checked by using a so-called gap function. An often used measure for deterministic user 
equilibrium assignment is the relative duality gap, which describes the sum over all origin-destination 
(OD) pairs of all differences (weighted by the path flows) between path costs and the minimum cost 
between an OD pair, relative to the total travel time in the system. Clearly, in a deterministic user 
equilibrium, the costs of all used paths (i.e., with positive path flow) between an OD pair must be 
equal, hence upon convergence this relative duality gap will be equal to zero. However, in the case of 
a stochastic user equilibrium, costs for all paths will not be the same, hence this relative duality gap 
will never go to zero, although it will stabilise at a certain (unknown) positive value. In order to 
overcome this problem, we propose the following gap function for a conditional logit based stochastic 
user equilibrium: 

 
 ( , )

( , )

1
( ) ln

1
,   with min ( ) ln .
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mn
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
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 
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f

f (7)

This new gap function is a rather straightforward extension of the original relative duality gap 
function, realising that the path cost in VI problem (4) has essentially an extra ‘cost’ component as a 
result of the logit model.  
 
It is important to note that the original optimisation problem formulation introduced by Beckmann et 
al. (1956) can no longer be used, as the resulting link performance functions are no longer separable 
(Dafermos and Sparrow, 1969). 
 
The outputs of each iteration of this submodel are route flows mnpf  for each route rs

mnp P  for each 
origin-destination pair ( , )r s  for each vehicle type m and user class n.  
 
4.3 Strict capacity constrained static network loading submodel 
 
The main difference between static models and quasi-dynamic models is the propagation of traffic 
flow and computation of the resulting route costs .mnpc  The first step in the flow propagation is the 
strict capacity constrained network loading, which is later followed by dynamic physical queuing. Our 
strict capacity constrained static network loading model will move all stationary traffic flow 
instantaneously through the network (consistent with static assumptions), in which traffic flows are 
capped at turn capacities, which are outcomes of the node model specified in Tampère et al. (2011). 
Our novel model formulation consists of the following set of equations (for more details we refer to 
Bliemer et al., 2013): 
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m n b p
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      
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   (8)

( | ), α q C (9)

where [ ]apqq  denotes the vector of flows on link a following a certain path p, ap  denotes the set of 
links on route p from the origin up to the link previous to a, [ ]aα  is the vector of outflow 
reduction factors at the end of link a due to capacity restrictions, [ ]aCC  is the vector of link 
capacities, m  is the pcu-value of vehicle type m, and ( )   is a mapping from desired flows at each 
node to reduction factors, which is described by the node model specified in Tampère et al. (2011). 
The reduction factors range from 0 to 1, where 0 means that no flow leaves the link (complete halt), 
while a reduction factor equal to 1 means that all flow can leave the link and no queue forms. In 
traditional static traffic assignment models, 1a   for all links, i.e. no strict capacity constraints. In 
our case, the flow along a route will decrease each time it is constrained to capacity. Note that in Eqn. 
(7) all flows over user classes n can be summed. The flows over different vehicle types are also 
summed taking pcu-factors m  into account. 
 
When inspecting these two equations, it can be seen that the flows q depend on α  given path flows f, 
while α  depends on flows q given capacities C. Writing Eqn. (8) into the form ( | ), q α C  where 

( )   is the function that performs the strict capacity constrained network loading, we can rewrite 
Eqns. (8) and (9) into the following fixed point (FP) problem: 

 ( | ) | ,  q q C f  (10)

The vector of flows *q  that satisfies * *( | , ),gq q f C  where g     is the composite function, is 
called a fixed point solution. It can be shown that under some mild conditions, this FP solution exists 
and is unique. Function ( )g   is a non-expansive mapping and under mild conditions, it is a 
contraction mapping such that this FP solution can be found by iteratively solving the strict capacity 
constrained network loading and the reduction factor (node) model. Faster accelerated iterative 
schemes have been proposed to solve fixed point problems, such as Polyak iterations (Polyak, 1990; 
Bottom and Chabini, 2001) or Anderson acceleration (Anderson, 1965; Walker and Ni, 2011).  
 
We can further define the link flows ,aq  which are merely a sum of path-specific flows apq  that pass 
through link a, i.e., 

( , )

, ,a ap ap
r s p

q q a   (11)

where ap  is an indicator that equals one if link a is on route p, and zero otherwise (also known as the 
assignment map). 
 
The cumulative link inflow aU  and  outflow aV  (both in pcu) over time period [0, ]T  can be written 
as a aU q  and ,a a aV q  respectively. The (vertical) queues (expressed in pcu) at time instant T  
can be computed as 

(1 ) .a a aQ q T   (12)

The outputs of this submodel are therefore link flows aq  (in pcu) and vehicles waiting in the queue 

aQ  (in pcu) for each link .a A   
 
4.4 Dynamic physical queuing submodel 
 
While the strict capacity constrained model presented in the previous subsection is a major 
improvement over traditional static traffic assignment models and the resulting travel times will be 
much more realistic than the travel times generated by simple link travel time functions like the BPR 
function, the vertical queues are not very realistic and ignore the fact that bottlenecks have 
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consequences for a much larger part of the network due to spillback effects. In order to overcome this 
problem, in this second submodel we will propagate the shockwaves realistically through the network 
consistent with the dynamic link transmission model (Yperman, 2007). Bliemer et al. (2012) have 
proposed an event-based procedure for queues and spillback of the queues. All shockwaves through 
the network are simulated for the whole simulation time period [0, ].T While this may sound 
computationally intensive, it is in fact a very fast and efficient procedure. The first reason is, that it is 
an event-based procedure in which only changes in the flow rates are of interest. Since in a static 
traffic assignment model the input is a stationary flow, the flow rates only change when forward or 
backward shockwaves hit the other end of the link. Hence, the number of events will be limited. 
Secondly, the dynamic model only has to compute in the local area around the bottlenecks, not the 
entire network. Details of this event-based procedure are beyond the scope of this paper. We refer to 
to Bliemer et al. (2012) for details. The difference with Bliemer et al. is that we are using a more 
proper capacity proportional node model proposed by Tampère et al. (2011) instead of the demand 
proportional node model as proposed in, e.g.,  Bliemer (2007).  
 
It should be pointed out that this submodel is optional. Although the physical queues determined in 
this submodel are more realistic, resulting in more appropriate travel times, one could opt to only 
determine vertical queues (output of the previous submodel) for the first or all of the route choice 
iterations.  
 
The outputs of this submodel are dynamic cumulative inflow and outflows ( )aU t   and ( ),aV t  where t 
is a certain time instant in the entire simulation period.  
 
4.5 Travel cost submodel 
 
The route costs consist of travel time and additional costs, see Eqn. (1). The route travel time is the 
summation of travel times on links along the route, 

, , ( , ), , .rs
mp ap ma mn

a

p P r s m n         (13)

The link travel times are determined differently, depending on whether one runs the optional dynamic 
physical queuing submodel or not.  
 
First, suppose that one does not run the dynamic submodel. The queue at 0t   is zero, and the queue 
at t T  is ,aQ  such that the average queue length is 1

2 .aQ  The outflow rate for each link a is given 
by ,a aq  such that the delay as a result of waiting in the queue is given by 1

2 /( / )a a aQ q T 
1
2 (1 ) /( ) (1 ) /(2 ).a a a a a aq T q T      Hence, the link travel time is given by 
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a a
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ma a

L
T




 


   (14)

Clearly, the free-flow travel times /a maL 
 

are vehicle type specific, but the average delay 
(1 ) /(2 )a aT  

 

is vehicle type independent. If the link flow does not exceed capacity, then 1,a 
 and the resulting travel times are free-flow. The more the outflow is reduced due to capacity 

constraints, the longer the delay.  
 
Now, suppose that we do a run with the dynamic submodel. Then we can use the dynamic cumulative 
inflow and outflows ( )aU t   and ( )aV t  to determine the link travel time, see e.g., Carey (2004). Then 
the average travel time over time period [0, ]T  on link a for vehicle type m is given by: 

  1

0

( ) ,
T

m
ma a a

a t

V U t t dt
q


 



   (15)
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where m  is a correction factor depending on vehicle type m. If m is a passenger car,  1,m   while if 
m is a truck, then 1m   due to possible lower maximum speed .ma   
 
The outputs of this submodel are route travel costs mnpc   that can be used in the next iteration of the 
route choice submodel. 
 

5. Case studies 
 
In order to test our proposed quasi-dynamic traffic assignment model, we have implemented 
submodels (iii)-(v) in the StreamLine modelling framework in the OmniTRANS software package. 
Streamline is a modular framework, initially designed to run dynamic traffic assignment models, see 
Raadsen et al. (2010). StreamLine included implementations for submodels (i) and (ii), can calculate 
turn capacities for junctions, and has graphical capabilities. This enabled us to implement our model 
in a relatively short amount of time. 
 
For our initial feasibility tests presented in this paper, we make a series of simplifying assumptions. 
While these assumptions may result in shorter computation times, they are by no means too 
restrictive. Relaxing these assumptions is possible without great sacrifices. The following simplifying 
assumptions are made. We consider a single vehicle type and a single user class. We adopt Polyak 
iterative averaging for solving the fixed point problem in submodel (iii) and a simple MSA scheme 
for solving for a stochastic user equilibrium solution in submodel (iv). We assume that the travel 
demand in all test cases considers a peak period of 2 hours. In order to speed up computations for 
Eqn. (13), instead of calculating the average travel time we compute the median travel time for a 
vehicle leaving at 1

2 1t T   hour. The paired combinatorial logit model (Prashker and Bekhor, 1998; 
Gliebe et al., 1999) is available in Streamline, which is able to handle the route overlap earlier 
discussed. However, we have adopted the simpler conditional logit model as stated in Eqn. (2) for 
reasons of computational speed. We further assume that the travel costs only consist of travel times. 
Finally, we have not used green times at signalised intersections to provide more detailed information 
on turn capacities, although StreamLine and the framework we have developed can handle it.  
 
We point out that we have not calibrated the models in any way, and did not compare the outcomes of 
the models to real measured link counts travel times. Therefore, the purpose of these initial case 
studies are to solely to show the computational feasibility of our quasi-dynamic approach on large 
networks. We leave the validation of our results for further research. We again note that, since our 
model is derived from a first order dynamic model, results will be much closer to outcomes of a 
dynamic model than to the results of a traditional static model.  
 
Figure 1 shows the four road networks that we will use for the case studies. The first two networks 
(Amsterdam and Rotterdam) are from the Netherlands, and the next two networks (Gold Coast and 
Sydney) are from Australia. Table 3 summarises the dimensions of the case studies. The networks 
vary in size, and the number of traffic analysis zones (TAZ) varies as well. Clearly, the number of 
TAZs has clearly a significant impact on the number of routes generated by submodel (i). The CPU 
time per iteration is the summation of computation time for submodels (ii) through (v). We have 
generated route choice sets prior to running the models and did not update the route choice sets at the 
end of the traffic assignment runs. This means that the stochastic user equilibria that we converge 
towards are conditional on the route choice sets generated at the beginning.  
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Table 3: Network data, computation time, and memory use 
Network Number 

of TAZs 
Number 
of links 

Number 
of nodes 

Number 
of routes 

Number 
of OD 
pairs 

Number 
of 
vehicles 

CPU time 
per 
iteration3 

Amsterdam1    418   9,408   4,281    266,505    275,722    271,772     3 sec. 
Rotterdam1 1,744 17,187   6,422 1,394,853    737,415    260,324   18 sec. 
Gold Coast2 1,067   9,565   2,987 1,221,524    592,856    243,838   19 sec. 
Sydney2 3,264 75,379 30,573 2,394,496 1,045,156 1,569,698   89 sec. 
1 Network and OD matrix kindly provided by Goudappel Coffeng BV, The Netherlands 
2 Network and OD matrix kindly provided by Veitch Lister Consulting Pty Ltd, Australia 
3 Using a notebook computer with Intel Core i7 @ 2.80Ghz running Windows 7 

 
Consider for example the Sydney network. The CPU times reported in Table 3 are per route choice 
iteration, including calculating the route choice proportions for over 1 million origin-destination pairs, 
solving the fixed point problem in the strictly capacity constrained traffic assignment submodel (69 
fixed point iterations were required in the first iteration), and performing the event-based dynamic 
physical queuing model (1,124,381 events were generated in the first iteration). As a result of the first 
iteration, 1,333 nodes were blocked, yielding 1,799,407 blocked routes. The maximum number of 
blocked turns on a single route is 152. In total 9 per cent of all links were in a congested state. All 
these computations for the first iteration were done within 1.5 minutes (on a single core) and required 
2.0GB of RAM.  
 
Figure 2 shows convergence over multiple route choice iterations in terms of the relative duality gap. 
For a deterministic user equilibrium, this gap will go to zero. However, for a stochastic user 
equilibrium, it will stabilise at a certain value larger than zero. As can be observed from the figure, for 
all case studies this gap seems to stabilise quite quickly, which is typical for models with stochastic 
route choice, as they are able to distribute the route flows over the network quite quickly. 
 
To illustrate the difference between the queues of submodel (iii) and submodel (iv), Figure 3(a) shows 
the bottleneck locations and the vertical queues after running the strict capacity constrained traffic 
assignment submodel, while Figure 3(b) shows the horizontal queues after running the dynamic 
physical queuing submodel. Figure 3(a) is very useful to get an insight into the bottleneck locations, 
whereas Figure 3(b) shows how the queues spill back upstream. Both provide very powerful 
visualisations that are easy to interpret.  
 

6. Conclusions and discussion 
 
In this paper we have considered traffic assignment models for strategic planning purposes. In a 
critical assessment based on realistic outcomes, robust results, consistent results, accountable results, 
and ease of use, we argue that traditional static models yield unrealistic results and outcomes that are 
inconsistent with dynamic microscopic models. At the other hand, dynamic models are less robust, 
less accountable, and not easy to use. Therefore, for the purpose of long term strategic transport 
planning, in which we would like to compare scenarios and run models on large scale networks, we 
propose to use a hybrid approach which is sometimes termed quasi-dynamic. This approach maintains 
the realism of dynamic models, but adopts the more rigorous mathematical foundations and 
computational efficiency of static models.  
 
Our hybrid modelling framework is basically a special case of a first order dynamic model with some 
‘static’ assumptions. It includes a proper node model to determine turn capacities, and a strict capacity 
constrained network loading model, such that link flows do not exceed the capacity. Furthermore, 
physical queues, shockwaves, and spillback can be achieved by adopting an event-based dynamic 
physical queuing model.  
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Figure 1: Road networks for the different case studies 
   
 

 
Figure 2: Convergence towards a stochastic user equilibrium solution 
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(a)                                                                            (b) 

Figure 3: Gold Coast case study results: (a) vertical queues, and (b) horizontal physical 
queues  
 
 
We believe that the model approach formulated in this paper is a major step forward in traffic 
assignment for strategic planning. We have shown that the computational complexity of these models 
is feasible for large scale networks. 
 
Although the formulated model is the result of about two years of research, there are still several 
research steps to be made. First of all, we are currently investigating all the mathematical properties of 
the model and providing rigorous proofs, such that the exact conditions for existence, uniqueness and 
convergence are known. Second, while we have already implemented more detailed junction models 
for signalised and non-signalised intersections, they still need to be tested. Third, the simple iterative 
schemes that we have adopted are by no means optimal; therefore we expect to increase the 
computational efficiency of our algorithms by smarter iterative schemes. Fourth, we so far have 
considered only Newell’s triangular fundamental diagram in the original link transmission model. 
Gentile (2010) generalised the link transmission model to include any fundamental diagram. We have 
already developed a new event-based dynamic physical queuing model that assumes a quadratic shape 
of the fundamental diagram in the free-flowing part, in contrast to a linear shape. This has the 
advantage that the free-flow speed gradually reduces from the maximum speed to the critical speed, 
instead of always assuming the maximum speed in free-flow conditions. This new event-based model, 
however, still requires more testing, but it seems that the event-based algorithm can be extended to a 
fundamental diagram of any shape. Finally, and perhaps more importantly, we want to compare the 
outcomes of our new model to actual traffic data and thereby empirically validate our approach. In the 
coming year(s) we will address the above mentioned points.  
 
We hope that with this research, we are able to move away from the current strategic (mostly static) 
traffic assignment models that rely on theories developed in the 1950s, and enter a new era of traffic 
assignment models.  
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