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On sufficient density conditions for lattice orbits of relative
discrete series

Ulrik Enstad and Jordy Timo van Velthoven

Abstract. This note provides new criteria on a unimodular group G and
a discrete series representation (π, Hπ) of formal degree dπ > 0 under
which any lattice Γ ≤ G with vol(G/Γ)dπ ≤ 1 (resp. vol(G/Γ)dπ ≥ 1)
admits g ∈ Hπ such that π(Γ)g is a frame (resp. Riesz sequence). The
results apply to all projective discrete series of exponential Lie groups.

Mathematics Subject Classification. 22D25, 22E27, 42C30, 42C40.

Keywords. Density condition, Discrete series, Frame, Lattice, Riesz
sequence.

1. Introduction. Let G be a second-countable unimodular group with a lattice
Γ ≤ G. For an irreducible projective unitary representation (π,Hπ) of G, let
π(Γ)g be the Γ-orbit of g ∈ Hπ, i.e.,

π(Γ)g =
{
π(γ)g : γ ∈ Γ

}
.

An orbit π(Γ)g is said to be a frame for Hπ if there exist constants A,B > 0
such that

A‖f‖2
Hπ

≤
∑

γ∈Γ

|〈f, π(γ)g〉|2 ≤ B‖f‖2
Hπ

, f ∈ Hπ. (1.1)

A Bessel sequence is a system π(Γ)g satisfying the upper bound in (1.1). The
lower bound in (1.1) implies, in particular, that g is a cyclic vector for the
restriction π|Γ.

A system π(Γ)g is a Riesz sequence if it satisfies inequalities dual to (1.1),
namely

A‖c‖2
�2 ≤

∥
∥
∥
∥

∑

γ∈Γ

cγπ(γ)g
∥
∥
∥
∥

2

Hπ

≤ B‖c‖2
�2 , c ∈ �2(Γ). (1.2)
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If π(Γ)g satisfies the upper bound in (1.2), then it is a Bessel sequence. The
lower bound in (1.2) implies, in particular, that a Riesz sequence is linearly
independent.

This note is concerned with the existence of vectors g ∈ Hπ such that its
orbit π(Γ)g is a frame or Riesz sequence. A simple necessary condition is that if
π(Γ)g is a frame or Riesz sequence, so that it admits a Bessel constant B > 0,
then g ∈ Hπ \ {0} satisfies

∫

G

|〈g, π(x)g〉|2 dμG(x) =
∫

G/Γ

∑

γ∈Γ

|〈π(γ)∗g, π(x)g〉|2 dμG/Γ(xΓ)

≤ vol(G/Γ)B‖g‖2
Hπ

< ∞.

An irreducible π with a non-zero L2-integrable matrix coefficient is called a
(projective) discrete series; see Section 2.3 for several basic properties. Since
nilpotent and (unimodular) exponential Lie groups do not admit genuine rep-
resentations that are square-integrable in the strict sense, the use of projective
representations is particularly convenient; see Section 3.

In [2,6], it has been shown that the existence of frames and Riesz sequences
of the form π(Γ)g can be completely characterized in terms of properties of
an associated σ-twisted convolution operator on �2(Γ), with σ : G × G → T

being the 2-cocycle of the projective representation π. An element γ ∈ Γ
(and its conjugacy class CΓ(γ) in Γ) is called σ-regular in Γ if γ satisfies
σ(γ, γ′) = σ(γ′, γ) whenever γ′ ∈ ZΓ(γ), where ZΓ(γ) denotes the centralizer
of γ in Γ.

The following theorem contains the main results of [2,6] for frames and
Riesz sequences.

Theorem 1.1 ([2,6]). Let (π,Hπ) be a discrete series σ-representation of G of
formal degree dπ > 0. Let Γ ≤ G be a lattice. For a unit vector η ∈ Hπ, define
φ : Γ → C by

φ(γ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dπ

|CΓ(γ)|
∫

G/ZΓ(γ)

σ(γ, y)σ(y, y−1γy)

· 〈η, π(y−1γy)η〉d(yZΓ(γ)),
ifCΓ(γ) is finite
andσ-regular;

0, otherwise.

Let Cφ be the σ-twisted convolution operator on �2(Γ) defined by

(Cφc)(γ′) :=
∑

γ∈Γ

φ(γ)σ(γ, γ−1γ′)c(γ−1γ′), γ′ ∈ Γ, c ∈ �2(Γ). (1.3)

Then the following assertions hold:
(i) There exists g ∈ Hπ such that π(Γ)g is a frame if and only if Cφ ≤ I�2 .
(ii) There exists g ∈ Hπ such that π(Γ)g is a Riesz sequence if and only if

Cφ ≥ I�2 .

The convolution operator Cφ defined in Theorem 1.1 determines the so-
called center-valued von Neumann dimension or coupling operator of Hπ as a
module over the (twisted) group von Neumann algebra of Γ. Assertions (i) and
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(ii) in Theorem 1.1 are consequences of the underlying theory of von Neumann
algebras. The paper [2] provides the statements of Theorem 1.1 for genuine
representations and frames (cf. [2, Theorem 1]), and [6] provides an extension
to possibly projective representations and Riesz sequences (cf. [6, Theorem
1.1]).

As a direct consequence of Theorem 1.1, one obtains the following necessary
“density conditions”.

Corollary 1.2. With the assumptions and notations as in Theorem 1.1,
(i) If there exists g ∈ Hπ such that π(Γ)g is a frame, then vol(G/Γ)dπ ≤ 1.
(ii) If there exists g ∈ Hπ such that π(Γ)g is a Riesz sequence, then vol(G/Γ)dπ

≥ 1.

For a simple proof of Corollary 1.2 based on frame and representation
theory, see [16].

The density conditions provided by Corollary 1.2 are generally not sharp,
in the sense that they are not sufficient for the existence of frames and Riesz
sequences of the form π(Γ)g. For example, this might fail for discrete series of
semi-simple Lie groups with a non-trivial center, cf. [2, Example 1]. However,
for semi-simple Lie groups with a trivial center, the convolution kernel φ of
the operator Cφ in Theorem 1.1 is simply given by

φ = vol(G/Γ)dπ · δe. (1.4)

In general, if the identity (1.4) holds, then the density conditions provided by
Corollary 1.2 are also sufficient for the existence of frames and Riesz sequences.
In particular, this holds for lattices in which every non-trivial σ-regular con-
jugacy class has infinite cardinality; such pairs (Γ, σ) are sometimes said to
satisfy “Kleppner’s condition” [11].

It is the aim of this note to provide new criteria under which the convolution
kernel φ in Theorem 1.1 takes the simple form (1.4). In particular, this will
imply the optimality of the density conditions provided by Corollary 1.2.

In order to state the key result of this note, let B(G) be the set of all
elements with pre-compact conjugacy classes in G. Then B(G) is a normal
subgroup of G containing the center Z(G) and was studied for classes of lo-
cally compact groups in, e.g., [8,13,18,21]. In particular, it was shown that
exponential solvable Lie groups and reductive algebraic groups (with no sim-
ple factors) have the property B(G) = Z(G), cf. Example 2.1 for references.

The following result provides criteria for a unimodular G with B(G) =
Z(G) under which the convolution operator Cφ of Theorem 1.1 is a scalar
multiple of the identity operator.

Theorem 1.3. Let G be such that B(G) = Z(G) and let Γ ≤ G be a lattice.
Suppose that either G is locally connected or Γ is co-compact. Suppose (π,Hπ)
is a discrete series of formal degree dπ > 0 such that the projective kernel
Pπ := {x ∈ G : π(x) ∈ C · IHπ

} is trivial. Then the twisted convolution
operator Cφ on �2(Γ) defined in (1.3) is given by

Cφ = vol(G/Γ)dπ · I�2 . (1.5)
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Consequently, the following assertions hold:
(i) If vol(G/Γ)dπ ≤ 1, then there exists a frame π(Γ)g for Hπ.
(ii) If vol(G/Γ)dπ ≥ 1, then there exists a Riesz sequence π(Γ)g in Hπ.

Theorem 1.3 is applicable to all cases in which the necessary density con-
ditions of Corollary 1.2 are known to be sharp, namely for Abelian groups
[6, Corollary 4.6], linear algebraic semi-simple groups [2, Theorem 2], and
square-integrable representations modulo the center of nilpotent Lie groups
[2, Theorem 3]. In addition, it is applicable to exponential Lie groups and re-
ductive algebraic groups and it allows to treat representations that are only
square-integrable modulo their projective kernel since any such representation
is naturally treated as a projective discrete series of the quotient (cf. Section 3).

The assumption in Theorem 1.3 that the projective kernel Pπ is trivial
is essential for its validity. For example, both conclusions (i) and (ii) fail
for a holomorphic discrete series π of SL(2,R) (cf. [2, Example 2]), where
{−I, I} ⊆ Pπ, but Theorem 1.3 is applicable to the (projective) discrete series
of PSL(2,R) = SL(2,R)/{−I, I}. On the other hand, for the existence of Riesz
sequences π(Γ)g in general, it is necessary that π|Γ acts projectively faithful.

A particular motivation for obtaining Theorem 1.3 was to investigate the
optimality of the density conditions in Corollary 1.2 for the existence of frames
and Riesz sequences for general exponential Lie groups, i.e., Lie groups for
which the exponential map is a diffeomorphism. For a description of the pro-
jective discrete series of an exponential Lie group in terms of the Kirillov
correspondence, see [12,20]; in particular, cf. [20, Proposition 4].

Theorem 1.4. Let G be an exponential solvable Lie group and let Γ ≤ G be a
lattice. Let (π,Hπ) be a projective discrete series of G of formal degree dπ > 0.
Then the conclusions of Theorem 1.3 hold.

Theorem 1.4 covers, in particular, projective representations obtained from
genuine representations that are square-integrable modulo the center (see Re-
mark 3.2). The existence of frames for such representations of nilpotent Lie
groups was shown in [2] (cf. [2, Theorem 3] and [2, Corollary 4]). A statement
on Riesz sequences does not seem to follow easily from [2, Theorem 3]. On
the other hand, the existence of Riesz sequences follows transparently from
Theorem 1.4, which makes it relevant even for the special case of nilpotent
groups.

A non-nilpotent example to which Theorem 1.4 is applicable is given in
Section 4.

2. Restrictions of discrete series to lattices. Throughout, unless stated oth-
erwise, G denotes a second-countable unimodular locally compact group. A
fixed Haar measure on G will be denoted by μG. If H ≤ G is a closed sub-
group with Haar measure μH , then there exists a unique G-invariant Radon
measure μG/H on the space G/H of left cosets of H such that Weil’s formula
holds: ∫

G

f(x)dμG(x) =
∫

G/H

∫

H

f(xy)dμH(y)dμG/H(xH), f ∈ L1(G). (2.1)
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The measure μG/H will always be assumed to be normalized such that (2.1)
holds. If H is discrete, then μH will be assumed to be the counting measure.

2.1. Bounded conjugacy classes. For a subset S ⊆ G, the centralizer of S in
G is denoted by ZG(S) = {x ∈ G : xs = sx, ∀s ∈ S}. In particular, we write
ZG(x) = ZG({x}) for x ∈ G, and Z(G) = ZG(G). For x ∈ G, its conjugacy
class is CG(x) = {yxy−1 : y ∈ G}. The map yZG(x) �→ yxy−1 is a continuous
bijection from G/ZG(x) onto CG(x).

The conjugacy class CG(x) of x ∈ G is called bounded if its closure is
compact. The set of all elements x ∈ G for which CG(x) is bounded will be
denoted by B(G). The set B(G) is a normal subgroup in G containing the
center Z(G).

An automorphism α ∈ Aut(G) is said to be of bounded displacement if
{x−1α(x) : x ∈ G} is pre-compact. It is readily verified that an inner auto-
morphism αy : G → G, x �→ y−1xy, is of bounded displacement if and only if
y ∈ B(G). If G admits no non-trivial automorphisms of bounded displacement,
then B(G) = Z(G).

Locally compact groups G for which B(G) = Z(G) will play a key role
in this note. The following example lists (classes of) groups for which this
condition is satisfied.

Example 2.1. The condition B(G) = Z(G) holds in each of the following cases:
(a) Abelian groups.
(b) Connected, simply connected nilpotent Lie groups (cf. [21, Theorem 1]).
(c) Exponential solvable Lie groups G, i.e., the exponential map exp : g → G

is a diffeomorphism (cf. [8, Theorem 9.4] or [13, Corollary 1.3]).
(d) Connected, simply connected complex analytic Lie groups (cf. [8, Theo-

rem 9.4]).
(e) Connected semi-simple Lie groups with no compact factors (cf. [8, The-

orem 9.1]).
(f) Connected reductive linear algebraic groups with no simple factors (cf.

[18, Theorem 2.4]).

2.2. Lattices. A discrete subgroup Γ ≤ G is said to be a lattice if the unique
invariant Radon measure on G/Γ provided by (2.1) is finite. A lattice Γ is
called uniform if G/Γ is compact. For classes of amenable groups, including
connected solvable Lie groups, any lattice is automatically uniform, see [1,14].

Lemma 2.2. Let G be such that B(G) = Z(G) and let Γ ≤ G be a lattice.
Suppose that either G is locally connected or that Γ ≤ G is uniform. Then the
following assertions hold:

(i) For every γ ∈ Γ, the conjugacy class CΓ(γ) in Γ is either trivial or
infinite.

(ii) The centralizer ZG(Γ) of Γ in G equals the center Z(G) of G.

Proof. (i) Let γ ∈ Γ be such that CΓ(γ) is finite. Then Γ/ZΓ(γ) is also finite.
First, suppose that G is locally connected. Let μG/ZΓ(γ), μG/Γ, and μΓ/ZΓ(γ)

be the invariant Radon measures on the coset spaces G/ZΓ(γ), G/Γ, and
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Γ/ZΓ(γ), respectively. Since μG/Γ and μΓ/ZΓ(γ) are finite, it follows that also
μG/ZΓ(γ) is finite, see, e.g., [15, Lemma 1.6]. Hence, since ZΓ(γ) ⊆ ZG(γ), the
continuous map G/ZΓ(γ) → G/ZG(γ) yields a finite G-invariant measure on
G/ZG(γ). An application of [19, Theorem] yields that G/ZG(γ) is compact.
Hence, CG(γ) ∼= G/ZG(γ) is compact, so that γ ∈ B(G) = Z(G).

Secondly, if Γ is a uniform lattice, then there exists a compact set Ω ⊆ G
such that G = Ω · Γ. The conjugacy class CG(γ) is therefore given by

CG(γ) = {xγx−1 : x ∈ G} ⊆ Ω · CΓ(γ) · Ω−1,

whence pre-compact in G. Thus γ ∈ B(G) = Z(G), and hence CΓ(γ) = {γ}.
(ii) Let x ∈ ZG(Γ), so that Γ ⊆ ZG(x). Suppose first that G is locally

connected. The finite G-invariant measure on G/Γ can be pushed forward
to a finite G-invariant measure on G/ZG(x), which implies that G/ZG(x) is
compact by [19, Theorem]. Hence, CG(x) ∼= G/ZG(x) is compact, and thus
x ∈ B(G) = Z(G).

Lastly, if Γ is a uniform lattice, then the continuous surjective map G/Γ →
G/ZG(x) yields that G/ZG(x) is compact. Therefore, the continuous bijection
G/ZG(x) → CG(x) yields that also CG(x) is compact, and thus x ∈ B(G) =
Z(G). �

Lemma 2.2 applies, in particular, to arbitrary lattices in Lie groups. For
this setting, there are alternative proofs of the used [19, Theorem], see [9,
Theorem 1] and [7, Theorem 2]. It is not known whether Lemma 2.2 holds for
non-uniform lattices in general unimodular groups.

2.3. Projective discrete series. A projective unitary representation (π,Hπ) of
G on a separable Hilbert space Hπ is a strongly measurable map π : G →
U(Hπ) satisfying

π(x)π(y) = σ(x, y)π(xy), x, y ∈ G,

for some function σ : G×G → T. The function σ necessarily forms a 2-cocycle
on G, that is, it is a Borel function satisfying the identities

σ(e, e) = 1 and σ(x, y)σ(xy, z) = σ(x, yz)σ(y, z) for allx, y, z ∈ G.

A projective unitary representation with 2-cocycle σ will simply be referred to
as a σ-representation. For σ ≡ 1, it will simply be said that π is a representa-
tion.

A σ-representation (π,Hπ) is irreducible if the only closed π(G)-invariant
subspaces are {0} and Hπ. It is called square-integrable if there exist nonzero
f, g ∈ Hπ such that

∫

G

|〈f, π(x)g〉|2 dμG(x) < ∞.

An irreducible, square-integrable σ-representation is called a discrete series
σ-representation, or a projective discrete series if the associated cocycle is
irrelevant.
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The significance of a discrete series π is the existence of a unique dπ > 0,
called its formal degree, such that the orthogonality relations

∫

G

〈f, π(x)g〉〈f ′, π(x)g′〉 dμG(x) = d−1
π 〈f, f ′〉〈g, g′〉

hold for all f, f ′, g, g′ ∈ Hπ.

2.4. The projective kernel. The projective kernel of a σ-representation π is
defined by

Pπ := {x ∈ G : π(x) ∈ T · IHπ
}. (2.2)

The σ-representation π is projectively faithful if Pπ = {e}.
Throughout, χπ : Pπ → T denotes the measurable function satisfying

π(x) = χπ(x)IHπ
for all x ∈ Pπ. Then, for f, g ∈ Hπ, x ∈ G, and y ∈ Pπ,

|〈f, π(xy)g〉| = |〈f, σ(x, y)π(x)χπ(y)g〉| = |〈f, π(x)g〉|, (2.3)

so that xPπ �→ |〈f, π(x)g〉| is a well-defined function on the coset space G/Pπ.

Lemma 2.3. If π is a σ-representation of G, then Pπ is a closed normal sub-
group. If, in addition, π is square-integrable, then Pπ is compact.

Proof. Let P(Hπ) := U(Hπ)/T · IHπ
be the projective unitary group of Hπ,

equipped with the quotient topology relative to the strong operator topology
on U(Hπ). Let p : U(Hπ) → P(Hπ) be the canonical projection. By [22,
Theorem 7.5], the map π′ := p◦π : G → P(Hπ) is a continuous homomorphism,
and hence Pπ = ker(π′) is a closed normal subgroup.

Suppose π is square-integrable. Letting f, g ∈ Hπ \ {0}, we apply (2.1) and
(2.3) to obtain

∞ >

∫

G

|〈f, π(x)g〉|2dμG(x) =
∫

Pπ

dμPπ
(y)

∫

G/Pπ

|〈f, π(x)g〉|2dμG/Pπ
(xPπ),

and thus the Haar measure of Pπ is finite, so that Pπ must be compact. �

Following [11], x ∈ G is called σ-regular in G if σ(x, y) = σ(y, x) for all
y ∈ ZG(x).

Lemma 2.4. Let G be such that B(G) = Z(G) and let (π,Hπ) be a discrete
series σ-representation of G. Then the projective kernel coincides with the σ-
regular elements of the center of G. In particular, the following are equivalent:

(i) π is projectively faithful.
(ii) The only σ-regular element of G with precompact conjugacy class is the

identity.

Proof. If an element x ∈ Z(G) is σ-regular, then

π(x)π(y) = σ(x, y)π(xy) = σ(y, x)π(yx) = π(y)π(x)

for all y ∈ G. Thus π(x) ∈ π(G)′ = T · IHπ
by irreducibility, so that x ∈ Pπ.

Conversely, if x ∈ Pπ, then CG(x) ⊆ Pπ since Pπ is a normal subgroup of
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G. Since Pπ is compact by Lemma 2.3, it follows that CG(x) is pre-compact,
hence x ∈ B(G) = Z(G). Therefore, for any y ∈ G,

χπ(x)π(y) = π(x)π(y) = σ(x, y)π(xy) = σ(x, y)π(yx)

= σ(x, y)σ(y, x)π(y)π(x) = σ(x, y)σ(y, x)χπ(x)π(y).

Hence σ(x, y) = σ(y, x) for all y ∈ G, so x is σ-regular.
Since B(G) = Z(G), it follows that the projective kernel coincides with σ-

regular elements with pre-compact conjugacy classes. In particular, Pπ = {e}
if and only if the only σ-regular element with pre-compact conjugacy class is
the identity. �

A combination of the previous lemmata allows a proof of Theorem 1.3:

Proof of Theorem 1.3. Suppose γ ∈ Γ is σ-regular in Γ and CΓ(γ) is finite.
For showing (1.5), we have to show that φ(γ) = vol(G/Γ)dπδγ,e. By Lemma
2.2(i), it follows that CΓ(γ) is trivial, so that γ is in the center Z(Γ) of Γ. In
particular, this implies that ZΓ(γ) = Γ. In addition, Lemma 2.2(ii) yields that
γ ∈ Z(G). Hence,

φ(γ) = dπ

∫

G/Γ

σ(γ, y)σ(y, y−1γy)〈η, π(y−1γy)η〉 dμG/Γ(yΓ)

= dπ〈η, π(γ)η〉
∫

G/Γ

σ(γ, y)σ(y, γ) dμG/Γ(yΓ).

The function ωγ : G → T given by ωγ(y) = σ(γ, y)σ(y, γ) is a homomorphism
since

ωγ(yy′) = σ(γ, yy′)σ(yy′, γ) = σ(γ, yy′)σ(y, y′)σ(y, y′)σ(yy′, γ)

= σ(γ, y)σ(γy, y′)σ(y, y′γ)σ(y′, γ)

= σ(γ, y)σ(yγ, y′)σ(γ, y′)σ(y, γy′)σ(γ, y′)σ(y′, γ)

= σ(γ, y)σ(yγ, y′)σ(γ, y′)σ(y, γ)σ(yγ, y′)σ(y′, γ)

= σ(γ, y)σ(y, γ)σ(γ, y′)σ(y′, γ)

= ωγ(y)ωγ(y′).

The G-invariance of the measure on G/Γ gives that
∫

G/Γ

ωγ(y)dμG/Γ(yΓ) =
∫

G/Γ

ωγ(y′y)dμG/Γ(yΓ)

= ωγ(y′)
∫

G/Γ

ωγ(y)dμG/Γ(yΓ), y′ ∈ G,

which means that
∫

G/Γ

ωγ(yΓ) dμG/Γ(yΓ) =

{
vol(G/Γ), ifωγ ≡ 1,

0, otherwise.
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Note that ωγ ≡ 1 if and only if σ(γ, y) = σ(y, γ) for all y ∈ G, i.e., if and only
if γ is σ-regular in G. Since γ ∈ Z(G), γ is σ-regular in G if and only if γ = e
by Lemma 2.4 and the assumption that π is projectively faithful. Hence,

φ(γ) = vol(G/Γ)dπ · δγ,e,

as required. �

Proof of Theorem 1.4. Since G is exponential, we have Z(G) = B(G) by [8,
Theorem 9.4]. By Lemma 2.3, the projective kernel Pπ of a discrete series π
must be compact, hence trivial, since G does not contain nontrivial compact
subgroups, see, e.g., [10, Theorem 14.3.12]. The conclusion follows therefore
directly from Theorem 1.3. �

3. Discrete series modulo the projective kernel. This section considers pro-
jective representations obtained from genuine representations that are square-
integrable modulo their projective kernel. Such projective representations are
projectively faithful, and they form an important class to which Theorem 1.3
applies.

Let (ρ,Hρ) be an irreducible representation of a second countable unimod-
ular group H. It is called a relative discrete series (modulo Pρ) if there exist
non-zero f, g ∈ Hρ such that

∫

H/Pρ

|〈f, ρ(ẋ)g〉|2 dμH/Pρ
(ẋ) < ∞,

where ẋ = xPρ and μH/Pρ
denotes the Haar measure on H/Pρ.

A relatively discrete series (ρ,Hρ) of H can be treated as a (projective)
discrete series of G := H/Pρ. For this, choose a Borel section s : H/Pρ → H
of the canonical quotient map, and set π := ρ ◦ s. Then a direct calculation
shows that

π(ẋ)π(ẏ) = σ(ẋ, ẏ)π(ẋẏ), ẋ, ẏ ∈ G = H/Pρ,

where the 2-cocycle σ is given by

σ(ẋ, ẏ) = χρ(s(ẋ)s(ẏ)s(ẋẏ)−1), ẋ, ẏ ∈ G = H/Pρ.

A different choice of the section s yields a 2-cocycle cohomologous to σ and a
representation unitarily equivalent to π.

The following proposition is a special case of Theorem 1.3.

Proposition 3.1. Let (ρ,Hρ) be a relative discrete series (modulo Pρ) of a uni-
modular group H. Suppose that G = H/Pρ is unimodular and denote by π a
σ-representation of G associated to ρ. Let Γ ≤ G be a lattice. If B(G) = Z(G)
and either G is locally connected or Γ is uniform, then Cφ = vol(G/Γ)dπ · I�2 .

Proof. Denote by π a σ-representation of G = H/Pρ obtained from ρ via a
Borel section s. If xPρ ∈ Pπ ≤ H/Pρ, then ρ(s(xPρ)) = π(xPρ) ∈ T · IHπ

,
so that s(xPρ) ∈ Pρ. This implies that xPρ = s(xPρ)Pρ = Pρ, and thus
Pπ = {ePρ}. Therefore, it follows from Theorem 1.3 that Cφ = vol(G/Γ)dπ ·I�2 .

�
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Remark 3.2. The projective kernel of an irreducible representation (ρ,Hρ) of
an exponential Lie group H is connected by [3, Theorem 2.1], and thus G =
H/Pρ is again exponential and B(G) = Z(G) by [8, Theorem 9.4]. In the
particular case that ρ is square-integrable modulo the center Z(H), then Pρ =
Z(H) by [3, Theorem 2.1] combined with [5, Theorem 5.3.4] or [17, Section
4.1]. Especially, if H is unimodular, then G = H/Z(H) is unimodular.

4. A non-nilpotent exponential SI/Z group with a lattice. This section pro-
vides an example of a non-nilpotent exponential Lie group to which Theorem
1.4 is applicable, showing that it is not vacuous in the non-nilpotent case.

4.1. Completely solvable group. Let g = span
R
{X1, ...,X5} with non-zero Lie

brackets

[X2,X3] = X1, [X2,X5] = X2, [X3,X5] = −X3, [X4,X5] = X1.

Then g is completely solvable, i.e., it admits a sequence of ideals

{0} = g0 ⊂ g1 ⊂ · · · ⊂ g4 ⊂ g5 = g, with dim(gj) = j.

In particular, this shows that g is an exponential solvable Lie algebra. Its
nilradical is given by n = span

R
{X1,X2,X3}⊕RX4, so that g is non-nilpotent.

The center of g is z(g) = RX1.
Let G be the connected, simply connected Lie group with Lie algebra g.

Denote by N and T the connected Lie subgroups with Lie algebras n and RX5,
respectively. Then G is a semi-direct product G = NT with group multiplica-
tion

⎛

⎜
⎜
⎜
⎜
⎝

x
y
z
w
t

⎞

⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎝

x′

y′

z′

w′

t′

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

x + x′ − tw′ − 1
2 (etzy′ − e−tyz′)

y + e−ty′

z + etz′

w + w′

t + t′

⎞

⎟
⎟
⎟
⎟
⎠

.

The center of G is given by Z(G) = {(x, 0, 0, 0, 0) : x ∈ R}.

4.2. Lattice. A lattice in G can be given as follows, cf. [4, p. 237]: Let n ∈ N,
n > 2, and let t0 > 0 be such that (et0)2 − net0 + 1 = 0. Let v1 = (1, 1) and
v2 = (e−t0 , et0) and x0 = (e−t0 − et0)/2. Then the set

Γ = Z

⎛

⎜
⎜
⎜
⎜
⎝

x0

0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

+ Z

⎛

⎜
⎜
⎝

0
v1

0
0

⎞

⎟
⎟
⎠ + Z

⎛

⎜
⎜
⎝

0
v2

0
0

⎞

⎟
⎟
⎠ + Z

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0

x0/t0
0

⎞

⎟
⎟
⎟
⎟
⎠

+ Z

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
0
t0

⎞

⎟
⎟
⎟
⎟
⎠

forms a lattice in G.
The projection of this lattice via the quotient map to G/Z(G) yields a

lattice in G/Z(G).
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4.3. Relative discrete series. For showing that G admits relative discrete series
representations, it suffices (cf. [17, §4.1]) to show that there exists a functional
� ∈ g∗ such that

g(�) := {X ∈ g : �([Y,X]) = 0, ∀ Y ∈ g} = z(g).

Denoting by (ξ1, ..., ξ5) a dual basis of {X1, ...,X5} in g∗, it is readily verified
that g(ξ1) = z(g).

For ξ := ξ1 ∈ g∗, consider the associated polarization p = span
R
{X1,X2,X4}.

Then

χξ(exp(X)) = e2πiξ(X), X ∈ p,

defines a unitary character of P := exp(p) ≤ G. The Kirillov-Bernat cor-
respondence yields that the induced representation ρξ = indG

P (χξ) forms an
irreducible representation of G that is square-integrable modulo Z(G).
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