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Abstract

Cylindrical shells and conical shells have been analysed and tested separately for the last decade. However,
due to new manufacturing techniques and the use of composite material systems more complex structures
can be made. By combining a cylindrical shell and a conical shell one structural component can be created:
a cylindrical-conical shell. This is a potential design solution for launch vehicle structures, but there is lim-
ited research available about it. Not much is known about the buckling behaviour or imperfection sensitivity
of these structures, especially not for sandwich composite shells. Moreover, there are no design guidelines
for the buckling of sandwich composite cylindrical-conical shells. SP-8007 and SP-8019 are commonly used
guidelines for the design of launch vehicle structures; however, these are only valid for cylindrical shells and
conical shells separately. These guidelines also only address composite shells and do not account for sand-
wich composite shells. The buckling behaviour and imperfection sensitivity has to be fully understood in
order to develop new guidelines for sandwich composite cylindrical, conical, and cylindrical-conical shells.
Therefore, the purpose of this research is to better understand the buckling behaviour and imperfection sen-
sitivity of sandwich composite cylindrical, conical, and cylindrical-conical shells.

The research focuses on using finite element analysis to study the buckling behavior and imperfection
sensitivity of the shells. Models are created of the sandwich composite cylindrical shell, conical shell, and
cylindrical-conical shell. Different modelling techniques are compared to find out how to represent a sand-
wich composite shell. This is done by performing an element study, a mesh convergence study, and a study
on the analysis parameters. Moreover, the buckling behavior of the individual shells are compared with the
buckling behavior of the combined structure. Different shell geometries such as height of the cone, angle of
the cone, and radius of curvature at the transition are used for the comparison. To further investigate the
difference between the shells, both linear and non-linear analyses are performed. A comparison is made
between the buckling loads, mode shapes, and force-displacement graphs. To investigate the imperfection
sensitivity of the different shells, axisymmetric and eigenmode imperfections are added using different am-
plitudes based on a percentage of the wall thickness.

From the results it could be observed that the buckling behavior of the sandwich composite cylindrical
and conical shells without initial imperfections can be captured by both the eigenvalue analysis and the dy-
namic implicit analysis. However, for the sandwich composite cylindrical-conical shell the eigenvalue anal-
ysis is not able to accurately capture the highly non-linear behavior. This can be explained due to the large
radial displacement happening at the transition area for the dynamic implicit analysis. The result of this is
that the dynamic implicit analysis model is less stiff compared to the eigenvalue analysis model resulting in
a lower buckling load. In order to investigate if the non-linear behavior at the interface (location where the
conical shell intersects with the cylindrical shell) can be mitigated, a radius of curvature was added to the
structure. This was done in order to create a smooth transition at the interface. From the results it could be
seen that by adding a radius of curvature the difference between the eigenvalue analysis and dynamic analy-
sis decreased. Moreover, a reinforcement was added to the structure to stiffen the structure at the interface.
The results show that this indeed mitigates the non-linear behavior and can give a dynamic implicit buckling
load close to the eigenvalue analysis buckling load. From these results it can be concluded that if the non-
linear effects are mitigated, the eigenvalue analysis is able to give a buckling load prediction of the sandwich
composite cylindrical-conical shell. Moreover, the imperfection sensitivities were compared for the different
shells. A similar imperfection sensitivity to geometrical imperfections was observed for the cylindrical shell
and conical shell. However, when looking at the imperfection sensitivity of the cylindrical-conical shell it
could be seen that the shell is not as sensitive to geometrical imperfections. This can be explained by the fact
that the behavior at the transition is dominating the buckling behavior of the whole structure. The results
obtained from the thesis show the importance of the non-linear behavior at the transition for the sandwich
composite cylindrical-conical shell. This means that for further research it is important that the non-linear
effects are included when analysing such a structure.
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1
Introduction

Sandwich composite structures are used in many launch vehicles such as the Delta II, Delta IV, Atlas V and the
Ariane 5 [46], [22]. The main structural components are cylindrical shells and conical shells; these structures
are loaded in heavy compression when launched. This loading condition makes buckling one of the main
considerations during the design process due to the decrease in loading capability after buckling. Cylindrical
shells and conical shells are very sensitive to imperfections when axially loaded. This is because these shells
have high radius over thickness ratios. Due to the uncertainty during the manufacturing process and testing
of sandwich composite structures, imperfections can arise which result in a lower buckling load when com-
pared to the pristine structure buckling load. Therefore, during the design process imperfections have to be
taken into account. However, the buckling behavior and imperfection sensitivity of these structures is not
yet fully understood which results in designs being too conservative. As a result a lot of research has been
performed on this topic which includes executing buckling tests.

The research topic that has been studied during the last 50 years is the imperfection sensitivity of shell
structures. Loading imperfections, geometrical imperfections, and thickness variations result in an experi-
mental buckling load that is much lower than the theoretical buckling load. Therefore, it is important that
during the design process these imperfections are taken into account when calculating the buckling load.
Nowadays, the buckling load is predicted by calculating the theoretical buckling load and then multiplying
it with a Knockdown Factor (KDF), which accounts for the imperfections. This KDF can be determined by
using the NASA guidelines, SP-8007 for cylindrical shells [42] and the SP-8019 for conical shells [41], which
are based on empirical data collected back in the 1930s. Because of the fact that since then the materials
used and the manufacturing processes changed, the KDFs calculated by the NASA guidelines are outdated
and often result in conservative designs [59]. For that reason, new KDFs are needed that take into account
sandwich composite materials and the new manufacturing processes.

Moreover, sandwich composite cylindrical shells and sandwich composite conical shells have been man-
ufactured and tested separately for the last decade. However, due to new manufacturing techniques and the
use of sandwich composite structures, it is possible to manufacture the cylindrical shells with the conical
shells together resulting in one structural component: a cylindrical-conical shell. The next step in the inves-
tigation is to test and study these 3D structures. However, the buckling behavior of such a structure is not yet
fully understood and also the modelling techniques are not yet fully explored.

Therefore, the aim of the thesis is to investigate the buckling behavior of sandwich composite cylindri-
cal shells, conical shells, and cylindrical-conical shells including imperfections. The thesis focuses on the
numerical aspect of the determination of the buckling behavior of these structures and implementation of
the imperfections and imperfection sensitivity. The goal is to compare the buckling behavior and imperfec-
tion sensitivity of a sandwich composite cylindrical and conical shell alone with the buckling behavior and
imperfection sensitivity of a sandwich composite cylindrical-conical shell.

The structure of the report is as follows: Chapter two describes the literature study performed at the be-
ginning of the project. Within this study the research that has already been done is elaborated on. The focus
of the literature study is to better understand the buckling behavior of cylindrical and conical shells and to
find out how an imperfection sensitivity study is performed. The main focus lies on using numerical meth-
ods to analyse the behavior. After that, the research objective and research questions are developed and
are explained in chapter 3. This is followed by a chapter about investigating the buckling behavior of sand-
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2 1. Introduction

wich composite cylindrical and conical shells. This chapter includes determining which elements are best
for modelling sandwich composite shells and performing mesh convergence studies. The buckling behavior
is analysed by using both linear and non-linear analyses. After knowing the buckling of the separate shells,
the buckling behavior of the sandwich composite cylindrical-conical shell is explained. Within this chapter
the way in which a cylindrical-conical shell can be modelled best is explained. Moreover, linear and non-
linear analyses are performed. An indepth explanation and interrogation of the results from chapter 5 will
be investigated in chapter 6. Chapter 6 focuses on using different materials, looking at the deformations and
strains, changing the material properties, and using different types of analyses. Moreover, it is investigated
how to give a more realistic representation of the structure: by adding a radius of curvature and by adding
a reinforcement. After that, the imperfection sensitivity of the sandwich composite cylindrical, conical, and
cylindrical-conical shell is elaborated on. The focus lies on adding geometrical imperfections to the shells
and to compare the imperfection sensitivity of the shells. At the end conclusions and recommendations are
given about the thesis project.



2
Literature study

This chapter describes the literature study performed at the beginning of the thesis project. This study was
needed in order to better understand the thesis topic and to investigate the gaps in literature. As already
pointed out in the introduction the thesis focuses on the buckling behavior and imperfections sensitivity of
cylindrical and conical shells. It should be noted that the focus lies on sandwich composite shells however,
the research performed is limited. Therefore, also papers are included that only cover composite cylindrical
and conical shells. Moreover, there is no to little research about buckling analysis of sandwich composite
cylindrical-conical shells and therefore, in this literature study the focus lies on understanding the buckling
behavior and modeling techniques of sandwich composite cylindrical and conical shells.

The structure of this chapter is as follows: the first section describes the buckling tests of cylindrical and
conical shells and touches upon the differences between the test results and numerical results. After that, the
different ways in which an imperfection analysis can be performed are be described. This is followed by a
section about how to model a cylindrical and conical shell in finite element software.

2.1. Buckling tests
The buckling tests contribute to the understanding of the buckling behavior of sandwich composite cylin-
drical shells and conical shells. By executing these tests, the prediction methods for determining the imper-
fections can be validated and new guidelines can be established. This section discusses the test setup, tests
performed, and the difference between the theoretical and experimental buckling load of both cylindrical
shells and conical shells.

2.1.1. Test setup
The tests of sandwich composite cylindrical shells and conical shells under axial compression are described in
this subsection. The first part of this subsection shows the test setup of sandwich composite cylindrical shells
under axial compression. The second part of this subsection discusses the test setup used for the buckling
tests of composite conical shells. The reason for describing the test setup used for the testing of composite
conical shells is that the explanations of the buckling tests of sandwich composite cylinders are not detailed
enough. Baker [7], Bert et al. [9], and Abramovich [2] performed buckling tests on sandwich composite cones
and it could be seen that the same test setup is used as for composite cones. Therefore, it is assumed that the
same test setup applies for the compression tests of sandwich composite conical shells.

Cylindrical shell
In order to contribute to the development of the new design guidelines for the knockdown factors, Schultz
et al. [47] tested a full-scale 2.4m sandwich composite cylinder (CTA 8.1). The specimen consist out of a
honey-comb core and composite face sheets. Before executing the buckling tests, the CTA 8.1 was subjected
to measurement tests in order to establish the imperfections. Visual inspection, flash thermography, and
vacuum shearography were used to determine voids, delaminations, and areas of dry fibers. Structural light
scanning was needed to determine thickness variations and mid-surface imperfections.

The cylinder was tested at the NASA Marshall Space Flight Center which has a test facility that is able to
apply a maximum compression load of 1,500,000 lb, the test facility can be seen in figure 2.1. As can be seen
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4 2. Literature study

in the figure, the test facility has two load introduction platforms at the top and bottom of the specimen, and
the load is applied using eight loading trusses which consist of hydraulic actuators and load cells. The test
article was placed between the top and the bottom plates by potting the edges into the end-ring channels. In
order to add redundancy to the clamping system, bolts were inserted through the end rings and shell of the
cylinder. To make sure that there is a proper load introduction into the specimen, padups were secondarily
bonded to the top and the bottom of the specimen. When the specimen was placed within the structure, pure
compression was applied.

The buckling behavior of the sandwich composite cylindrical shell was monitored during the test. The
strains and displacements of the specimen were determined using eight low speed Digital Image Correlation
(DIC) systems, 28 electric displacement transducers, 256 strain gauges, and 16000 fiber-optic strain sensor
locations. Microphones and video cameras were used to observe the buckling behavior.

Figure 2.1: CTA 8.1 test setup [47].

Conical shell
The conical shells have a similar test setup as presented for the cylindrical shells. Khakimova et al. [35] per-
formed tests on three composite conical shells under axial compression. Before the axial compression tests
were performed, the specimens were measured in order to inspect the specimen for imperfections. Auto-
matic ultrasonic testing using water split coupling was used to detect thickness variations. Moreover, the
actual shape of the conical shells were established by using an optical 3D digitizing measurement system
which is based on photogrammetry. The initial geometric imperfections were determined by using a best-fit
procedure.

The buckling tests were performed using the test facility at the Institute of Composite Structures and
Adaptive Systems of DLR. The test setup was as follows: the conical shell was clamped between one axially
supported plate on top and one drive plate on the bottom. The top plate was able to move in vertical direction
in order to account for different cone heights. The load was applied in a displacement controlled manner
using three load cells. The test setup can be seen in figure 2.2.

In order to evenly apply the load into the specimen and to clamp the specimen within the test setup, metal
rings were assembled to the top and the bottom of the conical shell. Within the metal rings a circular groove
with a trapezoidal cross-section was present in order to precisely fit the edges of the specimen. The specimen
were placed within the metal rings using potting, which was done by an epoxy resin system. Moreover, be-
tween the metal rings and the supporting plates thin equalized layers of epoxy concrete was applied to make
sure that the load was equally introduced into the metal rings.

During the tests the loads and axial displacements were registered using three displacement transducers
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placed at 90°, 180° and 270°. Moreover, the strains were measured using 18 strain gauges which were placed
in back to back configuration. A digital correlation system was used to determine the deformations.

Figure 2.2: The test facility (left) and a scemetic representation of the test setup (right) [35].

2.1.2. Difference between the theoretical and experimental buckling load
After performing the experiments and analysing the buckling behavior, it can be observed that the exper-
imental buckling load of cylindrical shells and conical shells is lower than the theoretical buckling load.
Therefore, it is suspected that these structures are sensitive to imperfections. This subsection investigates
the different imperfections and their influence on the buckling load.

Cylindrical shell
During the manufacturing process imperfections can arise in the cylindrical shell. Due to mandrel imperfec-
tions, geometrical deviations in the shell radius can appear. This imperfection is studied most in literature.
However, there are other type of imperfections that are less studied but are also important. This is because
these imperfections can reduce the buckling load even more when compared to the the geometrical imper-
fection [58]. An example of such an imperfection is thickness variation. This imperfection type can arise
due to variations in the resin content or due to ply gaps. For sandwich composite structures, this imperfec-
tion is introduced due to thickness variation in the core. Another less studied imperfection is the material
imperfection, which emerges due to the probabilistic values of the material properties given by the manu-
facturer or provided in literature. During the testing phase, also imperfections can arise. As described in
subsection 2.1.1, the specimen has to be potted into the testing equipment using epoxy. This introduces
an elastic boundary condition which can result in a non uniform boundary. This imperfection is called the
boundary imperfection. Besides the fact that during the buckling tests a lot of attention is paid to the load in-
troduction as described in subsection 2.1.1, non uniform load introduction can still arise resulting in loading
imperfections. The imperfection types described above, all have a different influence on the buckling load
of cylindrical shells. Below, first the imperfection sensitivity of composite cylindrical shells is presented and
after that the imperfection sensitivity of sandwich composite cylindrical shells is shown. This in order to see
the differences.

Keppe et al. [30] studied the "influence of imperfections on axial buckling load of composite cylindrical
shells". Within this study, the theoretical buckling load was compared with the experimental buckling load.
Also a finite element model was created to investigate the influence of two different imperfections, geomet-
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rical imperfections and thickness variation. The theoretical buckling load was found using the bifurcation
load of a perfect cylindrical shell. The influence of thickness variation and geometrical imperfections were
studied by implementing the measured imperfections into the finite element model. The load shortening
curves of an imperfection sensitive composite cylinder with geometrical and thickness imperfections can be
seen in figure 2.3. It can be seen that the difference between the perfect cylindrical shell buckling load and
the experimental buckling load is almost 50%, which stresses the importance of the imperfections. It can
also be seen that the cylinder is more sensitive to geometrical imperfections than thickness imperfections,
and together result in an even lower buckling load. The difference between the test buckling load and the
numerical buckling load of the imperfect cylindrical shell can be explained by the loading imperfections that
have not been taken into account. Furthermore, by using a stochastic model also the imperfection sensitivity
to material imperfections was investigated. It could be seen that the effect was negligible as expected.

Figure 2.3: Comparison of the load shortening curves generated by the finite element model and the test result [30].

Furthermore, Hilburger and Starnes [24] investigated the influence of imperfections for composite cylin-
drical shells. This study focuses on the difference between lay-ups, and the influence of ply-gaps and elastic
boundary condition. There were two different orthotropic laminated shells and one quasi isotropic laminated
shell tested. It was observed that the quasi isotropic laminated shell was more sensitive to imperfections than
the orthotropic laminated shell. Therefore, the quasi isotropic laminated shell was further investigated and
the influence of each imperfection was studied. Figure 2.4 shows the normalized buckling load as result of
different imperfections. If the imperfection amplitude scale is zero, no imperfection is present. From the
graph it can be seen that the geometric imperfections has the biggest influence on the normalized buckling
load (decrease of 11%), followed by the thickness imperfection (decrease of 4%). It can be seen that the load-
ing imperfection has a more significant effect when the geometrical imperfection amplitude is low. When
the geometrical imperfection amplitude increases the influence of the loading imperfection changes which
indicates a complex non-linear coupling between both imperfections. Moreover, in this study the effect of
ply-gaps and elastic boundary condition due to potting were investigated. It could be seen that these imper-
fections had a marginal effect on the buckling load (about 1%).

The imperfection sensitivities have also been studied for sandwich composite cylindrical shells. Bisagni
and Alfano [11] performed a buckling analysis on a sandwich composite cylindrical shell using measured im-
perfections. In this paper a sensitivity analysis is presented for different imperfections. It could be seen that
the cylindrical shell was less sensitive to geometrical imperfection when compared to thickness variations.
The buckling load determined due to the thickness imperfections was 7% lower. Moreover, when the two
imperfections were combined the reduction in buckling load was 15%. When comparing this buckling load
reduction with the composite cylinders described above it suggests that a sandwich composite cylindrical
shell is less sensitive to imperfections when compared with a composite cylindrical shell. This was also con-
cluded by Orifici and Bisagni [39]. In this study a comparison was made between the design buckling load
of two sandwich composite cylindrical shells and two composite cylindrical shells. The study showed that by
using a radial perturbation, the knockdown factors for the sandwich composite cylindrical shells were higher
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Figure 2.4: Influence of the imperfections on the normalized buckling laod of a quasi-isotropic shell. W = imperfecton amplitude scale
factor for the geometric imperfection, T = imperfection amplitude scale factor for the thickness variation, and D = imperfection

amplitude scale factor for the loading imperfection [24].

than the ones for the composite cylindrical shells. However, this does not mean that for sandwich composite
cylindrical shells the imperfections do not have to be taken into account.

From these studies it can be concluded that the imperfection sensitivity depends on the type of material
used, a sandwich composite cylindrical shell is less sensitive to imperfections than a composite cylindrical
shell. Also the lay-up influences the imperfection sensitivity, a quasi isotropic lay-up is more sensitive to im-
perfections than an orthotropic lay-up. The studies presented above showed that for each cylindrical shell the
influences of the imperfections differ. Therefore, it is advised to always consider the geometrical, thickness,
and loading imperfections when determining the design buckling load. However, the material imperfections,
ply-gap imperfections and boundary conditions imperfections have a marginal effect on the buckling load
and do not have to be taken into account during the first stages of the design process. These imperfections
become important during the validation process of the numerical models.

Conical shell
The imperfections of conical shells also arise during the manufacturing process. Using filament winding with
a horizontal helical winding machine and a conical steel mandrel can result in specimens with thickness
deviations. By using this manufacturing process the shell thickness increases at smaller shell radius [34].
More information about the filament winding process of conical shells can be found in [8] and [21]. When
using automatic fiber placement or automatic tape laying, thickness variations and fiber angle deviations
can occur. This is due to overlaps and ply-gaps that are created because of the changing radius of the conical
shell. Angle deviations occur due to the accuracy of the Automated Fiber Placement (AFP) and Automated
Tape Laying (ATL) processes, and the finite number of plies used. Due to the higher chance of getting ply-
gaps when using these processes [35], the difference in fiber volume fraction along the cone becomes another
imperfection that can arise. Furthermore, an imperfect mandrel, vacuum bagging and demolding can result
in geometrical imperfections. As for cylindrical shells, loading imperfections, elastic boundary condition
imperfections, and material imperfections also emerge for conical shells. In the studies presented below the
imperfection sensitivity of different composite conical shells are presented. This is because the research done
on sandwich composite conical shells is limited.

Khakimova et al. [35] studied the imperfection sensitivity of three composite conical shells, K01, K06 and
K08. Whereas, two conical shells had the same material properties except for the ply topology design and one
conical shell had a different lay-up. The different ply topology designs, D1 and D3, can be seen in figure 2.5.
It can be seen that D1 has less ply pieces and a higher angle deviation when compared to D3.
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Within this study all the imperfections described above are taken into account. The influence of the different
imperfections were studied by using finite element software. After generating the results, it could be seen
that the geometrical and thickness imperfections reduce the buckling load most. It could also be observed
that when the fiber volume fraction imperfection was taken into account the buckling load changed. This
can be explained due to the higher or lower stiffness obtained if the fiber volume changed at certain places.
However, the effect compared to the thickness variation and geometrical imperfection was small. Also the
influence of the elastic boundary condition was studied, and it could be seen that the effect was marginal
compared to the other imperfection types. However, implementing an elastic boundary into the model did
give a better match of the numerical and experimental results.

Figure 2.5: The ply pieces plotted on the conical shell surface including fiber orientation in degrees [35].

Moreover, it could be observed that the difference in ply topology design can reduce the normalized buck-
ling load by 0.3. The conical shell with the D1 topology design had a lower buckling load than the conical
shells with the D3 topology design. The reason for this is that the D1 topology design has a more pyramid like
shape, which is created by using less ply pieces with a larger ply piece width compared to the D3 topology
design [34]. The D1 topology design is more imperfection sensitive which results in a lower buckling load. It
could be seen that for the conical shell with the D1 topology design the influence of the angle deviation was
bigger when compared to the D3 topology design. The angle deviation influenced the buckling load by 15%
for the D1 topology design, and a marginal effect could be observed for the D3 design. This result stresses the
importance of including the ply topology design and ply angle deviation for determining the buckling load of
conical shells.

It was also investigated what the effect of the conical shell shape is on the imperfection sensitivity. Khaki-
mova et al. [32] [33] and Di Pasqua et al. [19] looked at the behavior of conical shells with different semi-vertex
angles. A visual representation of the semi-vertex angle, alpha, can be seen in figure 2.6. In [33] the influence
of a radial perturbation was investigated on conical shells with different semi-vertex angles. It could be seen
that the value of the knockdown factor for a semi-vertex angle of 5° was around 0.5 and the knockdown factor
for a semi-vertex angle of 75° was around 1. In [32] and [19] it was also concluded that when the semi-vertex
angles decreased the sensitivity to imperfections increased. This can be explained by the fact that when the
value of the semi-vertex angle is low, the conical shell has a more cylinder like shape resulting in higher im-
perfection sensitivity. When the semi-vertex angle has a high value, the conical shell looks more like a flat
plate resulting in a low imperfection sensitivity.

What can be concluded from these studies is that the imperfections that have to be taken into account
for the cylindrical shells are the same for the conical shells. However, when the conical shell has a higher
value of the semi-vertex angle, the structure becomes less imperfection sensitive making the imperfections
less important. Furthermore, the topology design used for the conical shells is also an important parameter,
since it has a big influence on the imperfection sensitivity. This stresses the importance of implementing the
design topology used within the buckling load predictions. Also the fiber angle deviation has to be taken into
account when the D1 topology design is used, since it has a significant influence.
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Figure 2.6: Semi-vertex angle of a conical shell.

2.2. Imperfection analysis
In subsection 2.1.2, the difference between the theoretical and experimental buckling load is explained. It
can be seen that imperfections play a mayor roll in decreasing the buckling load and have to be considered
during the design process. However, during the design process, the imperfections are unknown and these
have to be predicted. The design buckling load is determined by using the bifurcation buckling load and then
multiplying it by a Knockdown Factor (KDF) in order to account for the imperfections.

As already stated in the introduction, the KDFs that can be determined by using the NASA design guide-
lines are outdated and conservative. Therefore, there are new design guidelines for determining the KDFs
needed. There are two research projects that have been investigating the possibilities: the New Robust DE-
Sign Guideline for Imperfection Sensitive COmposite Launcher Structures (DESICOS) project, which is al-
ready finished, and the Shell Buckling Knockdown Factor (SBKF) project, which is still ongoing. The DESICOS
project mainly focused on perturbation and stochastic methods to establish new KDFs for cylindrical shells
and conical shells [4]. The methods are investigated for sandwich, isogrid, and monolithic shells with and
without holes. Whereas the SBKF project is using measurement techniques to accurately predict the KDFs of
metallic and composite cylindrical shells [59].

The ultimate goal of both projects is to be able to accurately predict the buckling load of shell structures
such that the design of launcher structures can be improved and its weight can be reduced. This section will
discuss the methods established by both projects and will give a more detailed description about the current
NASA design guidelines.

2.2.1. Knockdown factor using the NASA design guidelines
The NASA design guidelines for cylindrical shells and conical shells were established by Peterson in 1968 [42],
[41]. These guidelines use experimental data and the lower-bound curve determines the knockdown factor
for different geometries. An example of the lower-bound method can be seen in figure 2.7. Since this method
is based on empirical data collected back in 1968, it means that this method does not take into account the
current developments. For example: the sandwich structures with composite face sheets and the higher
precision of manufacturing processes are not taken into account. Therefore, the KDFs determined using
these guidelines are conservative and lead to heavy designs.

The SP-8007 design guidelines can be used for isotropic unstiffened cylindrical shells, orthotropic cylin-
drical shells, and isotropic sandwich cylindrical shells. Since the research topic of this literature study is on
orthotropic sandwich cylindrical shells, the SP-8007 has no guideline for calculating the knockdown factor.
Therefore, it is assumed that an orthotropic sandwich cylindrical shell can be seen as an orthotropic cylin-
drical shell. The same is done by Bisagni and Alfano [11], where it is assumed that the core of the sandwich
composite is part of the lay-up. When assuming this, the equations for calculating the knockdown factor, γ,
of an orthotropic cylindrical shell can be used.

The SP-8019 design guidelines have been established to determine the KDFs for conical shells. The guide-
lines can be used for isotropic conical shells, orthotropic conical shells, and sandwich conical shells. From
the experimental data collected for creating the SP-8019 guidelines, it could be seen that there is no clear rela-
tion between the geometry or type of the conical shell and the knockdown factor. Therefore, the lower-bound
of the experimental data gives γ = 0.33, which does not depend on the type of conical shell. This knockdown
factor is only valid for semi-vertex angles between 10° and 75° due to the limited data. When the semi-vertex
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angle is lower than 10° the conical shell can be converted to an equivalent cylinder and the SP-8007 design
guideline can be used.

Figure 2.7: Test data for isotropic cylinders subjected to axial compression including the lower bound curve [61].

2.2.2. Perturbation methods
A new approach that has been developed to determine the KDFs of cylindrical and conical shells is to intro-
duce a perturbation to the perfect geometry. Examples of perturbations are adding a lateral load, a radial
displacement, and a boundary perturbation. The idea is that adding a perturbation to the perfect geometry
results in the worst case imperfection. This subsection describes the perturbation methods for cylindrical
shells and conical shells, respectively. It should be noted that most of the investigations on perturbation
methods are based on composite cylindrical shells.

Cylindrical shell
The first perturbation method that was established for cylindrical shells was created by Hühne et al. [27]
in 2005. Hühne et al. proposed the Single-Perturbation Load Approach (SPLA), which is based on the ob-
servation that the buckling process of a cylindrical shell starts with a single buckle. The SPLA introduces a
lateral load in the middle of the cylindrical shell to create a single buckle. It can be observed that the buckling
load decreases when increasing the lateral load; however, at a certain threshold the buckling load does not
decrease anymore. The buckling load becomes constant after a certain value of lateral load. This constant
value of the buckling load is said to be the design load by Hühne. A visual representation of the buckling load
versus the lateral perturbation load can be seen in figure 2.8 (left). In this paper, the method was validated by
testing six composite cylindrical shells with different lay-ups. However, one case showed irregular buckling
behavior which resulted in a higher design buckling load when compared to the experiment. This suggested
that more research was needed on the SPLA. The SPLA was created with the idea that it creates the worst case
imperfection. Arbelo et al. [5] studied if the SPLA really imposes the worst case imperfection scenario. From
the results it could be seen that the SPLA method is able to account for geometrical imperfections but not for
other imperfections, which was also concluded by Khakimova et al. [37].

The studies presented above show the results of the SPLA by using composite cylindrical shells, but the
method has not yet been proven for sandwich composite cylindrical shells. Therefore, Orifici and Bisagni [39]
studied the SPLA on two composite cylindrical shells and two sandwich composite cylindrical shells. Figure
2.9 shows the results obtained for the SPLA for each of the cylindrical shells. It can be seen that the sandwich
composite cylindrical shells and the cross-ply composite cylindrical shell do not show the same behavior as
the quasi-isotropic composite cylindrical shell. This means that no buckling load could be determined for the
cross-ply composite cylindrical shell and the sandwich composite cylindrical shells. For these structures the
SPLA cannot be used. This graph also shows that the imperfection sensitivity of the quasi-isotropic composite
cylindrical shell is higher compared to the other cylindrical shells.
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Figure 2.8: Proposed perturbation methods [55].

Figure 2.9: Buckling load due to perturbation [39].

Due to the shortcomings of the SPLA, Wagner et al. [53] introduced the Single Perturbation Displacement
Approach (SPDA) as an improvement of the SPLA. This method introduces the single buckle to the perfect
shell by using a displacement controlled loading at the middle of the shell. A limit point can be established,
which cannot be done when initiating a single buckle using loading control (like the SPLA). During axial com-
pression, the amplitude of the perturbation displacement "v" is fixed and the reaction force is determined.
The process is repeated for different values of "v". It can be observed that when increasing "v" the reaction
force reaches a maximum and the corresponding buckling load is the design load determined by Wagner. A
visual representation of this method can be seen in figure 2.8 (middle).

From the results in [53] and [27], it could be seen that both the SPLA and SPDA could give unconservative
results. It was suspected that this was because of the restricted movement of the single dimple when imposed
in the middle of the shell. Therefore, Wagner et al. [56] [54] investigated the influence of the pre-buckling
behavior on the motion of the single dimple. It could be seen that when imposing a single simple at the top of
the shell the dimple wants to move down. However, it is not allowed to due to inherent deformation pattern
of the shell. This results in a local snap through behavior resulting in a lower buckling load. Therefore, when
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imposing the single dimple at the middle of the shell there is no movement of the dimple resulting in an
unconservative buckling load.

Another method was proposed to capture this behavior. This method is called the Single Boundary Per-
turbation Approach (SBPA), which accounts for geometrical imperfections and loading imperfections. The
method is based on the following procedure: a shim is introduced on the top of the shell which results in a
local loading imperfection. When the cylinder is axially compressed the shim causes an additional bending
moment. Due to the uneven loading, a single dimple appears beneath the shim and moves downwards to the
middle of the cylindrical shell during axial compression. The buckling load has to be calculated for different
shim heights and a similar graph can be made as for the SPLA. A visual representation can be seen in figure
2.8 (right). Due to the fact that the buckle is able to move downwards, more conservative results are expected.
Wagner et al. [55] validated this method and established a semi-analytical expression for determining the
knockdown factors obtained with the SBPA. The KDFs are valid for isotropic or quasi isotropic composite
shells with R/t and L/R ratios from 90 till 500 and 1 to 5, respectively. In figure 2.10 the SBPA thresholds and
empirical data can be seen. The KDFs are 10% to 200% higher than the KDFs obtained with SP-8007, which is
promising.

Figure 2.10: SBPA thresholds and empirical data [55].

Wang et al. [59] investigated the possibilities of an improved method of the SPLA. This method is called
the Worst Multiple Perturbation Load Approach (WMPLA), which is based on using multiple lateral loads to
induce multiple single dimple shape imperfections. This in order to better represent the geometrical imper-
fections. The number and positions of the lateral loads are determined by using an optimization process
where the buckling load is minimized. When the number and positions of the lateral loads are known, the
design buckling load is determined using the same process as for the SPLA. The same graph can be con-
structed as for the SPLA, see figure 2.8 (left). In this paper, five isotropic cylindrical shells were tested using
the WMPLA. This method was able to give conservative results even if the measured imperfection amplitude
increased. Wang et al. [60] also investigated the WMPLA on composite cylindrical shells with delaminations
and geometric imperfections. In this paper, the WMPLA method was validated using two composite cylindri-
cal shells.

To conclude, the SPLA and SPDA are not recommended for the design process. This is because these
methods do not account for all the imperfections resulting in unconservative results. The SPLA is also not
able to give a design load for sandwich composite cylindrical shells. A better option is the WMPLA which is
an extension of the SPLA and can impose a worse case imperfection scenario. However, it takes a lot of time
to set up the optimization and this method has not yet been validated for sandwich composite cylindrical
shells. The last method proposed was the SBPA, this method is promising; however, has not yet been vali-
dated for sandwich composite cylindrical shells. This means that more research is needed before the SBPA
and WMPLA can be used for the prediction of the design buckling load of sandwich composite cylindrical
shells.



2.2. Imperfection analysis 13

Conical shell
For the conical shells, the same methods apply as described for the cylindrical shells. Within literature, the
SPLA and the SBPA are investigated most, so these will be the ones that are presented here. It should be noted
that no research was found related to the perturbation methods of sandwich composite conical shells.

Khakimova et al. [36] studied if the SPLA can be used as a new guideline to determine the KDF for conical
shells. In this paper, the same three conical shells were used as described in section 2.1.2 [35] to see the effect
of the ply topology. The perturbation load was applied at z/H = 0.5, since it gives the most conservative results
[32]. The KDFs of the three cylinders were determined using the SPLA and compared to the KDFs determined
by a finite element model only including the measured geometrical imperfection. It could be seen that the
method does give conservative results of the 2/3 cylindrical shells, which both have the same manufacturing
method. Therefore, it was proposed that the imperfections that arise for conical shells are related to the
manufacturing process and there should be different guidelines for different manufacturing processes. This
was also stressed in section 2.1.2.

In order to further investigate the applicability of the SPLA for conical shells, Khakimova et al. [32] inves-
tigated the SPLA method for different composite conical shells. Numerical models were made for composite
conical shells having three different lay-ups: quasi isotropic, orthotropic, and cross ply together with seven
different geometries: semi-vertex angles varying between 5° and 75°. The perturbation load was applied at
z/H = 0.5 and the same curve as in figure 2.8 (left) was created for all different configurations. For the cross ply
composite conical shell, it could be observed that the figure created by the SPLA did not show the bi-linear
behavior when the semi-vertex angle increased. This means that the buckling load could not be determined
for these cases and show the limitations of the SPLA. This has also been concluded for cylindrical shells.

Due to the limitations of the SPLA and the promising results of the SBPA for cylindrical shells, the SBPA
has also been used for conical shells. Wagner et al. proposed the SBPA in [57] for metallic conical shells
and in [54] for composite conical shells. For the composite shells [54], the results were compared with the
experiments of composite conical shells and showed conservative results; however, the amount of data was
limited. The same was tested for metallic conical shells since more data were available. However, the SBPA
method did not result in conservative buckling loads for the 26 out of 180 metallic cylindrical shells.

To conclude, there are several numerical investigations performed using the SPLA and the SBPA for com-
posite conical shells; however, the validation data are not yet sufficient to establish these methods as guide-
lines. Therefore, more tests should be performed on composite conical shells. Moreover, the SBPA showed
unconservative results for metallic conical shells and because composite conical shells are more complex
more investigation is needed.

2.2.3. Measured imperfections
The most accurate way to predict the KDFs of sandwich composite shells is to use measured data of the man-
ufactured component. By generating a Finite Element (FE) model of the perfect structure and by inserting
the measured imperfections, the non-linear buckling load can be determined. This method is proven to give
accurate results and is described in further detail below. This method is based on the assumption that the
manufacturing process of one manufacturer produces the same imperfection signature every time a part
is manufactured meaning that the measured imperfections for one shell structure can be used for multiple
structures [26]. Furthermore, the equipment used to determine the measured imperfections are constantly
improved to give more accurate data [40], resulting in a better match between the experimental and numer-
ical results. This subsection describes the ways of implementing the measured imperfections into the FE
models and the results obtained using this method.

However, not for all the shell structures measured imperfection data is available. Especially during the
design process, when the model has not been manufactured yet. Therefore, in [43], [48], [13], a method is
described to use the available measured imperfections from other shell structures. This will be described in
more detail below. The setup of this subsection is as follows: first the measured imperfection method is used
for cylindrical shells and after that the measured imperfection method is described for conical shells.

It should be noted that this subsection focuses on the implementation of the measured imperfections in
the FE model. No attention is paid to the modelling techniques used for the shell structures and how to set
up a FE model. This is described in section 2.3.
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Cylindrical shell
Not a lot of buckling tests of sandwich composite cylindrical shells have been performed yet resulting in
models that have not been validated. However, the modelling techniques for implementing the imperfections
are still used as a guideline.

An example of a validated FE model including the measured imperfections is presented by Schultz et al.
[47]. In [47], a full-scale sandwich composite cylindrical shell was tested. The test set-up and test article are
described in subsection 2.1.1 so are not repeated here. In order to predict the buckling behavior of the CTA
8.1 test article, a FE model was created. More details on the FE model can be found in section 2.3. After
the model was created, the measured imperfections determined by the measurement tests were added to the
model. From the tests, the geometrical imperfections and thickness variation were gathered. The geometrical
imperfection data were implemented in the FE model using a user written program. This program was used to
convert the data into measured imperfections at each node location. When this was known, the nodes were
perturbed by the amount determined by the code and an imperfect mid surface was created. The highest
imperfection measured was 0.25 mm. Also the thickness variation was added to the model. The thickness
variation was assumed to come from the difference of the core thickness. Within the FE model, the core
thickness was changed for each element, which was done by alternating the composite ply properties of
each element (the core is represented by one single composite ply due to the small core thickness). The
material properties used in the FE model were assumed material properties of the honey-comb core and
composite face sheets. However, pretests were planned to determine the material properties of the CTA 8.1,
but due to testing difficulties the tests were canceled. Therefore, material imperfections were introduced
into the model. When the first tests of the CTA 8.1 were performed, it could be seen that the FE model gave
a different response due to a different stiffness. Then it was decided that the first tests performed act as
calibration tests in order to match the material properties of the FE model with the test conditions. After
the right material properties were added in the FE model, the actual tests were performed. The difference
between the numerical and experimental results can be seen in figure 2.11. It can be seen that the difference
is less than 1% and that including the measured imperfections into the FE model gives a good correlation
with the experimental results. The reasons for the differences between the results are given in subsection
2.3.1, this is due to the fact that it is not related to measured imperfections. What can be concluded from
this paper is that adding the measured imperfections to the finite element model the buckling load can be
predicted.

Figure 2.11: Load vs. displacement curves for the CTA 8.1 using FEM and experimental test [47].

However, measured imperfections are not always available. Since measured imperfections are the most
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accurate way of implementing imperfections compared to other methods, researchers want to use this method
[59]. In [46], a method is described to implement measured imperfections in the early stages of the design
process. For this method, the imperfection signature of a different cylindrical shell was used. Four sandwich
composite cylindrical shells were used in the analysis, the Ares V intertank and Interstage, and the Space
Launch System (SLS) upper stage skirt and the Interstage. These cylindrical shells were modelled using FE
software and the imperfection sensitivity was explored by adding geometrical imperfections. However, no
manufacturer data were available, so the geometrical imperfection of a fluted-core sandwich composite bar-
rel was measured. The barrel was manufactured by joining five panels including pad-ups using longitudinal
scarf joints. The imperfection signature can be seen in figure 2.12.

Figure 2.12: Geometrical imperfection of the sandwich composite barrel [46].

From figure 2.12, it can be seen that the largest imperfections occur at the joint and pad-up locations. Be-
sides the fact that the actual designs do not include the joints, this imperfection signature was still used for the
investigation. Due to the fact that the barrel did not have the same size as the launch vehicle structures, the
measured imperfection had to be scaled to the same size. After the scaling was done, the imperfections were
added to the FE models. Furthermore, the amplitude of the measured imperfection was kept as a variable
and changed within the FE model. After that, analyses were run for all models with different imperfection
amplitude and an imperfection sensitivity analysis was performed. The results showed that the NASA guide-
line was overly conservative and that depending on the structure the mass could be reduced by 4% to 19%.
It should be noted that imperfection signatures of cylindrical shells that do not represent the current design
well, should only be used for determining the imperfection sensitivity and the result should not be used as
design buckling load.

Due to the fact that there is a lack in literature about methods to implement the imperfections into the
FE model for sandwich composite cylindrical shells, the method described in [23] for composite cylindrical
shells is shortly described here. This paper gives a detailed explanation on how to implement the geometrical
imperfections, thickness variation, boundary condition imperfections, and loading imperfections into the
STAGS software. It should be noted that the routines created in the STAGS software can also be created using
python. The first step in the process was to generate a FE model with a perfect geometry. After that, the
imperfections had to be added.

The geometrical imperfections and thickness variations were added to the model using subroutines.
These subroutines are similar to the user written programs created by Schultz [47] as already explained above,
so are not repeated here. Moreover, It should be noted that the method of implementing the geometrical im-
perfections has also been used in [59] and [58]. In order to account for the potting of the cylindrical shell 2D
plane strain FE analyses were run. A FE model was created of the potting material including the cylindrical
shell wall. These analysis were used to determine the stiffness of the potting material. When the stiffness was
known the potting material was added to the total FE model by using linear spring elements at the edges of
the cylindrical shell. The non uniform loading conditions were added to the finite element model by using
the measured loading surface imperfections. This was done by perturbing the nodes at the load end of the
shell by the measured amount.

In the paper [23], three cylindrical shells were modelled including imperfections using the subroutines
described above. The specimens that were tested were 8-ply cylindrical shells with a length of 16 inch, a
radius of 8 inch, and a nominal thickness of 0.04 inch. Each cylindrical shell had a different lay-up. The
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numerical results and the experimental results were compared and it could be seen that the results match
well. The load displacement graphs can be seen in figure 2.13. It should be noted that in this study also the
uncertainty of the testing process was taken into account resulting in graphs including predictive bounds.
The same author also tested three 16-ply composite cylindrical shells [25]. The buckling loads were predicted
using the same software and imperfection modelling method as described above. Herein the results of the
experimental test and the numerical model were similar and a similar graph was shown as in figure 2.13. The
difference between the 8-ply composite cylindrical shell and the 16-ply composite cylindrical shell is that
the knockdown factors are higher due to the increased thickness. These papers prove that the method of the
measured imperfections give good results. This is also the case when the thickness of the shell increases,
which can be related to a sandwich composite cylindrical shell.

Figure 2.13: Numerical and experimental results of three composite cylindrical shells [23].

Conical shell
This part describes the measured imperfection method for conical shells. It could be seen that when search-
ing in literature not a lot can be found on the measured imperfection method for sandwich composite conical
shells and only little can be found on composite conical shells. This also means that not a lot of test data exist.
Firstly, a paper is described were a method was proposed on how to implement measured imperfections from
a different structure. This paper is explained because of the use of sandwich composite material. After that, a
fully validated model including measured imperfections is described for composite conical shells.

As said previously, not a lot of measured imperfection data can be found for conical shells. Therefore,
Sleight et al. [48] proposed a method to still be able to inspect the imperfection sensitivity without knowing
the actual imperfection pattern. Sleight studied the imperfection sensitivity of sandwich composite conical
shells under axial compression. The conical shells considered were components from the Space Launch Sys-
tem (SLS), the Payload Attach Fitting (PAF) with a shallow semi-vertex angle and the Universal Space Adapter
(USA) with a steep semi-vertex angle. The material used was a honeycomb core and composite face sheets.
The imperfection sensitivity was investigated for different core thicknesses and different lay-ups. A FE model
was created of the perfect conical shells. Due to the fact that no measured imperfections were available for
large scale composite conical shells, the measured imperfections of the CTA 8.1 were used. The geometrical
imperfection pattern of the CTA 8.1 was scaled both in length and circumferential direction in order to apply
it to a conical shape. The amplitude of the measured imperfection was varied from 1x to 10x. The scaled im-
perfection pattern was applied to the FE model in a stress-free state. In figure 2.14 the imperfection pattern
from the CTA 8.1 can be seen and in figure 2.15 the scaled imperfection pattern can be seen on the conical
shell with an amplitude of 10x the measured imperfection. For all different configurations and amplitudes
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analysis were performed.

Figure 2.14: Measured radial imperfection pattern of the CTA 8.1 [48].

Figure 2.15: conical shell with imperfection pattern and 10x amplitude [48].

From the results it could be seen that for both of the conical shells with different core thicknesses and
lay-ups, the knockdown factor was above 0.6 except for two cases. These two cases had a knockdown factor
of around 0.5 and belong to the cases where the core thickness was 0.5 inch and the imperfection amplitude
was 10x. From these results it can be observed that all values are above the NASA knockdown factor of 0.33,
which proves that these guidelines are conservative. This report also proves that without knowing the actual
pattern of the measured imperfection of the conical shell still the imperfection sensitivity can be investigated.
It should be noted that an imperfection amplitude of 10x will only happen in extreme cases. During the man-
ufacturing process, only small imperfections can arise due to regulations. However, during the assembly of
the specimen to the testing equipment mishandling can take place resulting in high amplitude imperfec-
tions, since the chance that this will happen is low, an amplitude of 10x is still considered conservative. This
means that taking the design knockdown factor of the value belonging to an amplitude of 10x will result in a
conservative prediction.

Furthermore, a validated finite element model was presented using the measured imperfection method
by Khakimova et al. In [35], a study is presented were the KDFs are predicted for three composite conical shells
using measured imperfections. This study is performed to prove that the SP-8019 guidelines are conservative.
The test setup and a short description of the test articles have already been given in subsection 2.1.1 and
2.1.2, and is not repeated here. A FE model was set up for all the three cones in Abaqus Standard 6.14 and the
imperfections were modelled as accurately as possible. The imperfections considered in this paper were the
mid-surface imperfections, the thickness variation, fiber volume fraction, and ply piece imperfection.

The FE model created was assumed to have a perfect conical shape. However, the actual shape of the
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conical shells is not perfectly conical. Therefore, the cones were subjected to measurement tests and the
3D-scanning system ATOS was used to determine the geometrical imperfections. The measurement system
created a data file that was the input for the GOM inspect software. This software package fits a conical shell
through the data points resulting in a reference configuration. Then the measured data together with the
reference configuration is used to determine the deviations. These were then transported to a text file in
order to load them in the DESICOS ABAQUS-plugin. The plugin was able to read the data and calculated the
perturbation that was needed for each node of the FE model using a weighted interpolation technique. These
calculated perturbations were added to the nodes and the final surface can be seen in figure 2.16. The same
method of adding the geometrical imperfection is presented in [20] using a different software package.

Figure 2.16: Measured imperfection surface of conical shell scaled by a factor 100 [35].

The next imperfection that had to be added was the thickness variation. Ultrasonic scanning was used to
determine the difference between the inner and outer surface. The data were processed in a similar way as
described above for the geometrical imperfections. For the thickness variation, the thickness and coordinates
had to be saved to a text file. This text file was then added to the FE model resulting in a thickness plot, which
can be seen in figure 2.17.

Figure 2.17: Thickness plot of the conical shell [35].

This method of adding the thickness variation to the model has some limitations. As what can be seen in
figure 2.17 the thickness is assigned to each element. By using this procedure the assumption is made that
the thickness is the same for the whole element. Moreover, it is assumed that within each element the plies
have the same thickness. However, the thickness deviation occurs due to ply gaps and overlaps which makes
this assumption not valid. Furthermore, the range of true thickness values for each element is enormous and
in order to keep it manageable, a list of thicknesses with corresponding lay-up is used. This results in that the
closest value with respect to the true thickness is chosen from the list resulting in a small error.

As said above, the material properties stay the same for each element. However, in order to better repre-
sent the material properties of the conical shell, it was assumed that the thickness variation is the result of the
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change in the amount of matrix volume with the amount of fibers staying constant. For each element the new
volumes are calculated and by using the composition rule and the corrected composition rule by Chamis [15]
the material properties can be calculated for each element. For implementing the material properties into
the FE model the same process as for the thickness imperfection is used; however, for each element also new
material properties had to be defined.

The final imperfection that had to be added was the ply piece imperfection. In the FE model created
the fiber angle is constant. However, as described in subsection 2.1.2, the lay-up is performed with a finite
number of ply pieces which results in fiber angle deviations. The process that was used to add this deviation
in the FE model is as follows: first the ply topology had to be determined accurately, and then for each ply
piece and element, the fiber orientation had to be changed to the right value. This had to be done for each
element. The limitations of this method is that the fiber angles are determined by using the as to be built
structure, which means that production mistakes are not taken into account. Moreover, at the edges of the
cone there are no fibers present resulting in a weak spot. However, this is not implemented in the FE model.

After the imperfections were implemented in the FE models, the analyses could be performed. The buck-
ling loads of the FE models were compared with experimental data. A good correlation with the experimental
results can be seen for two out of the three conical shells as shown in figure 2.18. The deviation of the K08 cone
can be explained by the fact that the angle deviations have not been taken into account accurately enough.
This is because there have not been a method proposed yet how to accurately measure the ply angle devia-
tions. In order to overcome this problem a worst and best case scenario of the ply angle imperfections have
been implemented. Figure 2.19 shows the improved graph and it can be seen that the gap between the exper-
imental and FE results is closed. This also means that the ply topology is an important factor to implement
accurately into the FE model. It could also be seen that all three composite conical shells had knockdown
factors of above 0.6, which is much higher than the value of 0.33 obtained using the SP-8019 guidelines.

To conclude, It can be seen that by using the measured imperfection method a design buckling load can
be determined. Since the FE models have been validated it proves to be a good method to include the im-
perfections. It is assumed that the method presented herein for composite conical shells can also be used
for sandwich composite conical shells. The difference lies in the implementation of the thickness variation.
For sandwich structures it can be assumed that the thickness deviation occurs due to variations in the core
meaning that no new material properties have to be determined for each element. In order to apply the
thickness variation to the core, the thickness of the ply representing the core has to be changed. This process
has already been explained above. Furthermore, the implementation of the ply angle deviation should be
done correctly in order to match the experimental with the FE results. However, for that to improve first the
measurement techniques to detect ply angle deviations on conical shells should be upgraded.

Figure 2.18: Load vs. displacement graphs for the conical shells [35].
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Figure 2.19: Different ply angle imperfections used for the K08 cone [35].

2.2.4. Stochastic methods
It is important that the modelled imperfections represent the real imperfections. In order to check if the
modelled imperfections are accurate, buckling tests are needed. When realistic imperfections are modelled
it results in less conservative designs, cost-efficient, and light weight structures. However, it would take a lot
of time to manufacture and test every shell structure. In the early stages of the design process it is not even
possible to manufacture the shell structure but still an imperfection estimate is needed.

Therefore, the DESICOS project explored the probabilistic methods to determine new KDFs for shell
structures. These methods use the measured imperfections gathered during the tests for a probabilistic anal-
ysis. It is assumed that when the shell structures are manufactured at one manufacturer the imperfections
stay within probabilistic bounds when producing a new shell structure. In this way only a few shell struc-
tures have to be manufactured and measured. The imperfection pattern obtained including a probabilistic
analysis can be used for other shells manufactured at the same manufacturer. In the end a guideline can be
established for determining the KDFs for different manufacturers. This subsection describes the probabilis-
tic methods that are proposed. Due to the fact that the probabilistic methods are not yet explored for conical
shells, this subsection focuses on the methods developed for the cylindrical shells.

Arbocz and Hilburger [6] proposed a probabilistic approach to determine a new lower bound for compos-
ite cylindrical shells. In this paper the first-order second-moment (FOSM) method was explained and com-
pared to the Monte Carlo method. The Monte Carlo method uses the characteristics of the statistical input
variables for making samples. Then for each of the samples the buckling load is determined and a statisti-
cal evaluation is performed on the buckling loads obtained. The FOSM method uses a database containing
properties of a number of shells such as the geometry, material properties, and geometrical imperfections.
This data base is then used to predict the reliability function and to obtain improved knockdown factors.
The results of the FOSM were validated using the experimental buckling loads of nine composite cylindrical
shells. It could be seen that the methods gave conservative results for every cylindrical shell. After the re-
sults were presented, also a comparison between the methods was made. The major differences between the
FOSM method and the Monte Carlo method are that the FOSM method takes less computational time and
that approximations are introduced.

Due to the fact that methods are needed that do not require approximations but are based on actual data,
Bisagni and Alfano presented several papers on new probabilistic approaches that do not require approx-
imations. In [3], a method is presented were the Monte Carlo Method is combined with Latin Hypercube
sampling.

Within this paper, three cylindrical shells were used as test articles, two composite shells and one sand-
wich composite shell. Different imperfections were studied: uncertainty of longitudinal Young’s Modulus,
uncertainty of ply orientation, loading imperfection, and geometrical imperfections. For each of the imper-
fections the method was used to determine the best fit probability density functions and the knockdown
factors. The knockdown factors obtained for the sandwich composite cylindrical shell can be seen in 2.1. It
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can be seen that the Young’s modulus and the geometrical imperfections have to most influence on the buck-
ling load. It was also observed that the knockdown factor obtained using the probability method was higher
when compared to the value of the NASA SP-8007 guidelines. This method was proposed to investigate the
effect of the input parameters on the buckling load. Therefore, it is advised to use this method only during
the intermediate stage of the design process.

Table 2.1: Knockdown factors for different imperfection types for the sandwich cylindrical shell [3].

Imperfection Knockdown factor
Young’s Modulus 0.83
Ply orientation 0.96
Loading imperfection 0.92
Geometrical imperfection 0.7
All 0.53

Bisagni and Alfano [11] presented another probabilistic method to analyse the buckling behavior of sand-
wich composite cylindrical shells. This method is able to account for geometrical imperfections, thickness
variation, ply misalignment, and boundary imperfections. The Stress-Strength Interface Method and the
Latin Hypercube Method were both used for the analysis. This method was used to analyse the buckling be-
havior of the scaled Dual Launch System (SYLDA) of the Ariane 5 launcher. The cylindrical shell consist out
of a foam core with composite face sheets and was manufactured to measure the geometrical imperfections
and the thickness variation along the shell surface. These imperfections were the inputs for the probabilistic
approach. A block diagram of the process can be seen in figure 2.20.

Figure 2.20: Block diagram of the probability based methodology [11].

Since the measured imperfections were needed for the probabilistic approach, the SYLDA was exposed
to measurement tests. LVDTs were used to determine the geometrical imperfections. A best-fit cylinder ap-
proach was used on the data. The thickness variation was determined by calculating the difference between
the inner and outer surface measurements.

The measurements were used to determine the input parameters for the probabilistic analysis. In past
researches [6], [31], [58], it was discovered that the geometrical imperfections have a specific pattern, which
can be represented by a half-wave cosine double Fourier series. The measured data of the geometrical im-
perfections were used to determine a half-wave cosine double Fourier series with imperfection amplitude
and imperfection phase. A multivariate Gaussian distribution was then employed to vary the imperfection
amplitudes and imperfection phases. The same process was used for determining the input of the thick-
ness variation. The ply misalignment was assumed to be normally distributed. Since no data were available
for the boundary condition imperfections, a one dimensional Gaussian random field was used to create the
boundary condition imperfections.

After the input parameters were known, a FE model was created of the sandwich cylindrical shell. S4R
elements were used to represent the structure and fixed boundary conditions were employed. The imperfec-
tions were added by perturbing the nodes in the FE model using a user written MATLAB program.

After executing the probabilistic analysis, the knockdown factor obtained was 0.75 for 99% probability.
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The knockdown factor calculated using the SP-8007 was 0.57, which is much lower. Moreover, in [4], Alfano
and Bisagni presented the same probabilistic method and analysed another sandwich composite shell, the
Interstage Skirt Structure(ISS) of the Ariane 5. The knockdown factor determined by this method was 0.79
for 99% probability. Again, the KDF determined by the SP-8007 guideline was much lower and equal to 0.64.
Besides the fact that the method shows promising results more identical shells to the SYLDA and the ISS
have to be manufactured in order to create a large data set. More data make the probability approach more
reliable and eventually a lower bound for determining the knockdown factors for these particular shells can
be generated.

Another approach that was proposed was to generate a manufacturing signature of the geometrical im-
perfections, which could be used for different cylindrical shells manufactured at the same manufacturer. In
[23] the measured geometrical imperfections were used and rewritten as a double Fourier series using the
same approach as described above. However, in order to establish a manufacturing process specific imper-
fection signature the Fourier coefficients had to be determined by using geometrical imperfection data of
several cylinders in order to be reliable. By using the data of several cylinders, the Fourier coefficient were
determined by using a probability distribution. The result was a mean imperfection shape and a correspond-
ing standard deviation that were based on the measured data. Now by using the imperfection signature and
implementing them in the FE model a buckling load range could be obtained. This was tested for one com-
posite cylindrical shell and the result can be seen in figure 2.21. What can be seen that the as-measured result
lies within the bounds of the prediction. It should be noted that this approach results in a lower bound for
determining the knockdown factors for a specific manufacturing process if validated with more test data.

Figure 2.21: Predicted bounds of the buckling load of a composite cylindrical shell [23].

A different way of using a probabilistic approach is to only use it for the imperfections that are unknown.
This approach combines the measured imperfections with probability based imperfections. This means that
the unknown imperfections will be assumed using a probability density function. In [17] such an approach is
presented. In this study the loading imperfections and material imperfection were assumed with probability
distributions. In order to create the different samples the Monte Carlo method was used. The samples gen-
erated were modelled using FE software. The buckling loads were calculated for each shell and a probability
density function could be determined. The results were then compared to experimental results and showed
promising results. However, the author stresses the importance of the choice of probability density function
for the unknown imperfections. Such an approach was also used in [24] where the uncertainties that arise
during the buckling test were unknown. Examples are imperfect measurements, the fiber volume fraction,
and variations in the applied load. These were assumed using a lower and upper bound. By implementing
the minimum and maximum values in the FE model a margin could be found for the buckling load. When the
experimental and probability based results were compared it could be seen that the experimental results lied
within the probability bounds. This means that this method is able to account for the uncertainties during
the manufacturing and testing processes. These two methods ensure that without having all the measured
data the buckling loads still can be approximated by taking into account all the possible imperfections.

The probabilistic methods proposed in this subsection show promising results. However, in order to make
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a probabilistic approach reliable a lot of test data are needed. When more data are available a lower bound for
determining the KDFs can be obtained. Another way of implementing a probability approach in predicting
the KDFs of shells is by assuming a probability density function for the unknown imperfections. By using this
approach all the imperfections can be taken into account.

2.2.5. Discussion of the methods
In this subsection three ways of determining new guidelines for calculating the KDFs have been presented.
This subsection will discuss the differences between the perturbation methods, measured imperfection meth-
ods, and stochastic methods. For each of the methods the advantages and disadvantages will be given.

An advantage of the perturbation methods is that these methods can be used in the early stages of the
design process since no test data are required. The implementation of this method is also easy since the only
requirement is a finite element model. A disadvantage of this method is that it is not known if these methods
can impose the real imperfections if no test data are used. It has already been proven that these methods are
able to only account for geometrical imperfections and loading imperfections. If a shell is sensitive for thick-
ness variation this will not be taken into account and non conservative results will be obtained. Furthermore,
the methods presented in this subsection have only been tested and validated using composite cylindrical
shells and conical shells. It is not yet proven that these methods also work for sandwich composite cylindri-
cal shells and conical shells. As can be seen in subsection 2.2.2, poor results are obtained for two sandwich
composite cylindrical shells using the SPLA method. Since these methods have not yet been validated for
sandwich composite cylindrical shells these cannot be used during the thesis.

Furthermore, the measurement technique methods are proven to give good results if the modelling is
done correctly. By using actual measurement data the imperfections can be modelled accurately and the FE
element software can predict the buckling load well when compared to the experimental results. However, for
this method the design has to be manufactured and measured in order to gain the measured imperfections. It
is possible to use the measured imperfection of different shells if the measured imperfections of the current
design are not available. In order to do this it is required that the shell is similar to the current design and
should have the same manufacturer if the purpose is to predict the buckling load. If only the imperfection
sensitivity has to be determined any imperfection signature can be used. The methods presented in this
subsection are a good option to be used during the thesis since there are measured imperfection available of
the CTA 8.1 test article, which is a similar cylindrical shell that also will be used during the thesis.

The last methods that have been proposed are the probabilistic approaches. For these approaches the
measured imperfections of a series of identical cylindrical shells are used to determine the lower bound of the
knockdown factors. These methods are based on the assumption that a manufacturer has its own imperfec-
tion signature resulting in the same imperfection pattern every time. This method shows promising results;
however, for it to be used as a guideline a lot of test data are required. The test data have to be obtained using
measurement tests of similar shells. Since this takes a lot of time and cost, the probabilistic approaches that
have been proposed do not have enough data yet to be reliable. Since during the thesis project no data set is
available for the measured imperfections of similar shells, these methods cannot be used.

2.3. Modelling techniques
The thesis focuses on analysing the buckling behavior and imperfection sensitivity of sandwich composite
cylindrical shells and conical shells by using numerical methods. For the purpose of the thesis, Finite Element
(FE) models have to be created and analysed. Therefore, this section investigates the different modelling
approaches in Abaqus to accurately represent the buckling tests of cylindrical shells and conical shells. It
should be noted that for the modelling of the imperfections of sandwich composite shells similar techniques
can be used as for composite shells when buckling is investigated. However, if the failure of the sandwich
composite shells becomes a phenomena of interest, different modelling techniques are needed due to the
difference in failure modes. Moreover, there are different solvers available within Abaqus and this section is
meant to explore them. The structure of the section is as follows: the first subsection explains the modelling
techniques used to create sandwich composite cylindrical shells in FE software, and after that the modelling
techniques employed for sandwich composite conical shells are discussed. This is followed by a comparison
between the solvers that can be used to perform buckling analyses. The last subsection covers the type of
elements that can be used for the modelling of sandwich composite structures.
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2.3.1. Cylindrical shell
This subsection describes the modelling techniques used to accurately represent the buckling tests of sand-
wich composite cylindrical shells. First, a paper is presented that shows a validated FE model and after that,
two papers are described that investigate the need of incorporating the whole test setup in the FE model.

Schultz et al. [47] compared experimental results with numerical results using a FE model generated
in Abaqus 6.14. This paper investigated how the buckling tests can be modelled best and the goal was to
perfectly match the experimental results with the numerical results. The specimen and the test setup used
have already been discussed in subsection 2.1.1 and will not be repeated here.

In order to accurately represent the experimental buckling test performed, the whole test setup was mod-
elled using FE software. A visual representation can be seen in figure 2.22. Within the FE model the specimen
including pad-ups, load introduction struts, load introduction platforms, and end rings were realized. Within
the FE model the specimen was realised using S4 four noded general purpose shell elements and a combi-
nation of the S4 shell and B31 shear-flexible beam elements were used for the adjacent structure. After the
model was built, a convergence study was carried out to determine the amount of elements needed.

Figure 2.22: CTA 8.1 finite element model [47].

Not only the test setup was modelled as accurately as possible but also a detailed model of the specimen
was created. Attention was paid to the way in which the sandwich composite material, imperfections, and
pad-ups were modelled. The sandwich composite material was implemented in the FE model by using plies.
Within the Abaqus software there is a composite material option available where all the plies can be specified.
It should be noted that the core was represented by one ply with the material properties of the core material.
The face sheets were implemented individually in the lay-up. As stated in subsection 2.1.1 the CTA 8.1 test ar-
ticle was subjected to measurement tests in order to determine the imperfections. These imperfections were
implemented in the FE model as described in subsection 2.2.3. Moreover, the pad-ups were also modelled by
using the exact lay-up and ply drops.

After the modelling was done, the boundary conditions and the loading conditions could be added to
the model. The load was introduced by using eight load points placed at the end of the loading beams. The
bottom load platform was fixed by constraining the translational and rotational directions. The top load plat-



2.3. Modelling techniques 25

form was also fixed except for the axial direction, this in order to allow axial displacement of the specimen.
The load applied is visualized in figure 2.22 by the red arrows. The analyses that were run used displacement
control, since this is also used during actual buckling tests. In order to determine the buckling load and to
investigate the final point of failure, non-linear static analysis and non-linear transient analysis were used.
The non-linear static analysis performed the buckling analysis until the load was 80% of the predicted buck-
ling load. After that, the non-linear transient analysis continued the analysis to determine the buckling load
and the post buckling behavior. By looking at the load vs. displacement graph the buckling load could be
determined.

In order to match the numerical results with the experimental results pre tests were performed to exam-
ine the material properties used by the FE model. It could be seen that in order to match the stiffness of the
experimental results the material properties assumed had to be increased by 8.7%. After this adjustment the
buckling load differed 1%, the load vs. displacement graph can be seen in figure 2.11. However, when looking
at the graph before buckling still a small difference between the results can be observed. It can be seen that
the material behavior before buckling was non-linear instead of linear which was not incorporated in the FE
model. Moreover, the buckling initiation side was not identical for the experimental result and the numerical
result. Due to these differences a post test analysis was needed. The first step was to investigate the reason
for these deviations. The stiffness difference could be explained by the thickness of the experimental ply lam-
inates, which was 9% thicker than expected. The non-linearity could be explained by non-linear material
properties. In order to remove the difference and capture the non-linear behavior before buckling a non-
linear relationship of the material properties was established. Moreover, the buckling initiation site differed
between the experimental and numerical results due to imperfect loading. By implementing these adjust-
ments the differences between the results were solved and an accurate representation of the buckling test
was created. To conclude, a validated FE model was created for this test article. This means that FE models
are able to capture the behavior of sandwich composite cylindrical shells under axial compression.

Since it takes a lot of time to model the whole test setup, it is investigated if this is really needed. Przekop
et al. [43] presented a paper where the design of large-scale sandwich composite cylindrical shells for the
SKBF project is explained and where different FE models are created. Within this paper designs are proposed
which were generated using analytical equations and nondimensional parameters. These results were ver-
ified by using FE models. Within this paper two different FE models of the buckling tests were created and
compared in order to explore the modelling techniques. The specimens that were used consisted of a hon-
eycomb core with composite face sheets. Different lay-ups and thicknesses were used for the analyses. For
all the specimens detailed FE models were created using Abaqus, the reason for this is that the closed-form
solution of the initial test article had limitations. By only using analytical expressions the pad-ups, load in-
troductions rings, and imperfections could not be taken into account.

For the buckling analyses two different models were created, one model consisting out of the specimen
including pad-ups and end rings and one model including the specimen and the surrounding structure. This
was done in order to verify the assumption that adding the whole loading introduction structure does not
change the output of the results much. The first model was created using S4R reduced integration shell ele-
ments. The sandwich structure was modelled by representing the core as one single ply within the composite
stacking sequence. Furthermore, the face sheets were individually added as plies within the model. By using
the manufacturing files of the materials used, the material properties could be determined.

The second model created included the surrounding structure. This includes: the loading spider, struts,
and load lines. The FE model looked similar to the FE model presented in figure 2.22. This model was created
by adding the surrounding structure to the first model described above. The loading introduction cylinders
were implemented using the S4R shell elements with a coarser mesh when compared to the mesh of the
specimen. Modelling of the load spider and struts was done by using B31 beam elements with an even coarser
mesh. The load lines were modelled using one T3D2 truss element for each line.

After the modelling was done, a linear eigenvalue analysis was performed to verify the closed-form buck-
ling calculations. In order to account for the non-linear behavior in the pre buckling regime, the quasi-static
linear and geometrically non-linear static analyses were used. Another reason for doing non-linear analyses
was because of the design of the pad-ups. By using the results, the pad-ups could be altered and optimized.
An implicit transient geometrically non-linear analysis was performed to determine the state at buckling and
to analyse the post-buckling regime. First, the analyses were performed on the perfect models and it could be
seen that some perfect cylinders showed a load plateau meaning a very good stability. However, in reality this
would never happen so the mesh was somewhat perturbed in axial and radial direction. It should be noted
that when this is done the shape of the perfect cylindrical shell should be retained. The loading plateau has to
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be removed because the results should represent the actual behavior of cylindrical shells. After that, analyses
were run including imperfections. Furthermore, the results of the FE model including the whole test setup
and the FE model without the whole test setup were compared. It could be seen that the difference between
the buckling loads was 0.31%, which shows that using a simplified model is good enough for predicting the
buckling load.

Another paper that investigated the need of implementing the whole test setup in the FE models was
presented by Cha and Schultz. Cha and Schultz [14] created two FE models of a honeycomb-core composite
cylindrical shell, whereas one model consist of the free length of the cylindrical shell where the end rings were
modelled as boundary conditions and the other model included the end rings with load introduction cylin-
ders. The purpose of the paper was to compare both models. The cylindrical shell was modelled as a single
shell with the honeycomb-core as an extra ply, this method is only valid for thin-walled sandwich structures.
The load introduction cylinders were made out of steel, so the material properties of steel were used for the
modelling. Throughout the model, S4 elements were used. The boundary conditions for the model without
the loading introduction cylinders were applied at the edges of the cylinder, whereas the potting was simu-
lated by fixing the nodes in the potting region in all directions except for the axial direction. The edge of the
cylinder was fixed at one edge and on the other edge the compression load is applied. A rigid body link was
used to tie the nodes along the edge to a reference point. Compression was applied to the reference point.
This modelling technique imposes that the loading introduction was done by a rigid plate.

The second model created consisted of three parts, the cylindrical shells with the end rings and the steel
cylindrical load introduction cylinders. Important to note is that the load introduction cylinders did not have
the same size as the cylindrical shell. All three parts were modelled using shell elements. In order to simulate
the buckling test, one load introduction cylinder was constraint in all directions and one load introduction
cylinder was constraint in all directions except for the axial direction. As described for the model above the
load was applied using a reference point which was connected to the end nodes of the load introduction
cylinder. A sketch of the modelled load introduction can be seen in figure 2.23.

Figure 2.23: Sketch of FE model including load introduction and degrees of freedom [14].

After the modelling was done, a convergence study was performed for both models. This was followed by
a linear eigenvalue buckling analysis and a non-linear analysis. Geometrical imperfections were introduced
using the SPLA. The linear eigenvalue buckling analysis results of both models were similar, the difference be-
tween the buckling loads was 0.02% and the buckling shapes were the same. These results were checked with
an analytical model. For the non-linear analysis the results were also close to each other and the difference
between the buckling loads was 2.6%. After that, the geometrical imperfections were added to the models.
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For the model including the loading introduction cylinders the KDF was 0.64 and for the other model the KDF
was 0.67. This means that the difference is small and that without modelling the loading cylinders the result is
still accurate. Another observation was done when looking at the results of both models. In the model where
the loading cylinders were added, an additional rotation could be seen at the interface of the load introduc-
tion cylinder and the cylindrical shell. This could be explained by the misalignment between the radius of
the specimen and the load introduction cylinders, resulting in an extra rotation when compared to the model
without the load introduction cylinders. For the model without the load introduction cylinders this rotation
is constraint due to the boundary conditions applied to the model. This additional rotation can be seen as
an error in how the load introduction cylinders have been modelled. Therefore, care should be taken when
implementing the load introduction structure of the buckling tests.

2.3.2. Conical shell
This subsection presents the modelling techniques used for sandwich composite conical shells and com-
posite conical shells, because no literature could be found on validated sandwich composite conical shell
models. In this subsection, one paper is presented where the modelling of sandwich composite conical shells
is explained; however, no validation is presented for these models. After that, another paper is presented
where the validation of the FE models of three composite conical shells is discussed.

Sleight et al. [48] presented a study where the buckling imperfection sensitivity was investigated for sand-
wich composite conical shells. Two conical shells were analysed which were based on space launch systems,
whereas one had a low value of the semi-vertex angle and the other one had a high value of the semi-vertex
angle. Within this study, FE models were created with different geometrical imperfections. The program that
was used for generating the FE models was Abaqus 6.14. It was chosen to select the number of elements in
axial direction depending on the aspect ratio at the mid height of the conical structure. An aspect ratio of
1:1 was striven for. The elements used were the S4R four-node, quadrilateral shell elements with reduced
integration and a large-strain formulation. The boundary conditions were applied by using a center node in
the middle of the top and bottom of the cones. The center nodes were connected to the edges of the cone
by using multi-point constraints to the nodes located on the edges. The bottom was constraint in all transla-
tional and rotational degrees of freedom and the top was constraint in all translational and rotational degrees
of freedom except for the axial degree of freedom. The compression load was applied using displacement
control at the center node located at the top of the conical shell. The final model created can be seen in fig-
ure 2.24. After the modelling was done, the buckling loads of the perfect structures were determined using
linear buckling analysis. For the imperfect structure, non-linear static and non-linear transient analyses were
performed. The non-linear static analysis was used to load the structure up to 80% of the predicted buckling
load for the perfect cylinder and after that the non-linear transient analysis was used to simulate the buckling
and post buckling phase. These analyses were performed for different imperfection amplitudes and different
cone geometries. The results are not presented here because it is not related to FE modelling. This paper is
presented to give an example of how a sandwich composite conical shell can be modelled and analysed. It
should be noted that for the modelling of sandwich composite conical shells the same methods are used as
for sandwich composite cylindrical shells.

Khakimova et al. [35], [36] validated FE models with measured imperfections by the use of experiments.
The test setup and the conical shells employed were already described in subsection 2.1.1, so will not be re-
peated here. The FE models were created using ABAQUS Standard 6.14 (implicit) together with a plugin that
was developed during the DESICOS project. The conical shells were modelled using S8R elements which is a
quadratic thin shell with 8 nodes per element and six degrees of freedom. The reason for using these elements
is explained in [20] and [19], where a trade-off is presented between the accuracy of the results and compu-
tational cost. It should be noted that both papers use composite conical shells as specimens. Moreover,
reduced integration was incorporated. The number of elements was determined by a convergence study.
Furthermore, the boundary conditions were applied using fixed constraints at the bottom of the shell, result-
ing in a clamped boundary condition. At the top of the shell the translations were constraint in all directions
except for the axial direction, the rotations were constraint around all the axes. The load was applied by using
a reference point in the middle of the top of the conical shell. This reference point is linked to the nodes along
the top edge using pin constraints, constraining all translations. The loading is applied to the reference point
using a time varying axial displacement. For determining the buckling load, the Newton-Raphson iterative
solver with artificial damping was employed due to the good results obtained in [13], [5], [17]. By incorporat-
ing the measured imperfections, the buckling loads of the experiments were matched with the buckling loads
of the FE models. The load vs. displacement graphs can be seen in figure 2.18. It can be seen that the results
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Figure 2.24: FE model of conical shell with degrees of freedom [48].

are similar for two out of the three cones. In order to close the gap between the experimental and numerical
results, the resin rings were added to the FE model to see if it affects the load-displacement curves. It could be
seen that the change in buckling load is negligible and the change in stiffness is only 6%. This closed the gap
of K01 and K06; however, the deviation between the results for the K08 conical shell was still large and could
be explained by the fiber angle deviation between the FE model and the experimental specimen as described
in subsection 2.2.3. The present paper proves that by using FE models the buckling behavior of conical shells
can be predicted.

2.3.3. Buckling analysis in Abaqus
When the sandwich composite cylindrical shell and conical shell are modelled, the buckling behavior has to
be analysed. This can be done by using different solvers in ABAQUS. The solvers that are mostly discussed
in literature are the eigenvalue solver, the non-linear Riks method, and a dynamic analysis. Bisagni [10] pre-
sented a paper where these methods are compared. It should be noted that the solvers used in this paper are
applicable for sandwich composite structures.

The specimens that were used in the paper presented by Bisagni were composite cylindrical shells with
a length of 700 mm. At the bottom and the top of the specimens, tabs were added in order to attach them
to the loading rings. However, these tabs were not included in the model resulting in a free length of 540
mm. Moreover, the material properties as determined during the tests were used. For the modelling, S4R
elements were used which have six degrees of freedom and use bending strain measures. They do not have
the problem of inter shear locking and have no unconstrained hourglass mode. The constraints used on the
specimen forced the top and the bottom of the specimens to remain plane and circular and to maintain the
circular radius. Moreover, the geometrical imperfections were measured and added to the model.

The first step in the buckling analysis was to compute the bifurcation buckling load, which can be done
by using a perfect model and the eigenvalue analysis option provided in Abaqus. It should be noted that this
method does not take into account any non-linearity. Executing a non-linear buckling analysis is important
because a linear analysis cannot take into account material and geometrical non-linearities, the behavior af-
ter buckling, and imperfections. The eigenvalue analysis was performed in the paper and after executing a
mesh convergence study the difference between the numerical model and the analytical model was 2-4%.
During the analysis it was observed that the buckling pattern highly depended on the lay-up used. In order to
account for the imperfections, a non-linear analysis is needed. The non-linear Riks method as implemented
in the ABAQUS/Standard edition was employed, which is based on the arc length method. After perform-
ing the analysis, the difference between the numerical model and the analytical model was 4%. However, as
reported by Bisagni, the solution of the non-linear Riks method is sensitive to the values of the artificial stiff-
ness and structural damping. Therefore, these parameters have to be determined carefully when this solver
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is used.
Moreover, a dynamic analysis was performed. This was done by using an assigned displacement to

simulate the compression, which is also done when performing an actual buckling test. The dynamic be-
havior of the model is determined by using the explicit central difference formula which is integrated in
ABAQUS/Explicit. The buckling loads were also calculated by using an implicit integration operator which
can be found in ABAQUS/Implicit. When comparing these methods it could be seen that the computation
using the implicit integration operator takes more CPU time when compared to the explicit integration op-
erator with no difference in buckling behavior. Therefore, for these shells ABAQUS/Explicit is preferred. It
should be noted that the CPU time of the ABAQUS/Implicit and ABAQUS/Explicit depend on the shell tested,
which means that when a different shell is used ABAQUS/Implicit can be faster. The results obtained differ
with 2% from the analytical results and were able to follow the load displacement curves even in the post-
buckling regime.

For further comparison experimental results were compared with the numerical results and it could be
seen that the difference was 15-20%, which could be explained by the manufacturing process. During curing
the mandrel can expand which result in the fibres going towards the inner surface, which reduces the bending
stiffness resulting in an overestimation of the buckling loads. Despite the difference in the buckling loads, it
could be seen that the dynamic analysis was able to follow the experimental curve in the post buckling regime
which cannot be done when using the non-linear Riks method. Also the post buckling shape obtained showed
a similar result to the the experimental one, see figures 2.25 and 2.26.

Figure 2.25: Post buckling shape of the experimental test [10].

Figure 2.26: Post buckling shape of the numerical model [10].

However, Arbelo et al. [5] argued that the drawbacks of using the dynamic analysis are the computational
time needed and its ability to handle the instability phenomena when approaching the buckling load. This



30 2. Literature study

was also observed in [38], where the dynamic analysis was giving negative eigenvalues for a sandwich com-
posite curved panel with measured imperfections. The results were unreliable and could be resolved by using
the non-linear Riks method. Therefore, the non-linear Newton Raphson method including artificial damp-
ing or the non-linear Riks method is used in most papers. A drawback of these methods is that parameters
have to be determined manually in order to get accurate results, as example the time integration step, damp-
ing factor, and number of increments. Since these parameters are not based on physical phenomena these
parameters have to be determined using convergence studies. This process can be time consuming.

In [13], a detailed explanation is given on how to determine these parameters. The most important aspects
of this paper are given below. In ABAQUS, the damping factor is set to 1e-4 as default value; however, it is not
recommended to use this value if the structure experiences an abrupt change between the pre- and post
buckling states. This is due to the fact that the default value results in an overdamped solution with a higher
buckling load. To prevent obtaining non conservative solutions it is recommended to start with a value of
1e-7 and increase it until convergence is achieved. Furthermore, the values that are used in most papers are
described below. For the initial, min and max increment size the values are 10e-3, 10e-6, 10e-3, respectively.
The max number of increments is 10e5.

2.3.4. Type of elements
In literature the elements used for modelling shell structures are mostly the conventional shell elements, such
as S4R, S4, and S8R. However, within the Abaqus analysis guide [18], more type of elements are available and
might be a better choice for the modelling of sandwich composite structures. When modelling sandwich
composite structures, transverse shear becomes an important phenomena that has to be captured. There-
fore, it is required that the elements used are able to account for tansverse shear. It should be noted that
Abaqus just released new elements that are able to better represent this behavior.

The S4 and S4R elements are 4 node elements that have 6 degrees of freedom. These elements are able to
account for large strains and transverse shear. Reduced integration and hourglass mode control are incorpo-
rated in the S4R element. The general-purpose elements (S4R and S4) are able to adjust the solving behavior
depending on the thickness of the shell. When the thickness of the shell increases the thick shell theory is
used for the computation and if the thickness of the shell is small the Kirchhoff shell theory is used. This
is due to the fact that the transverse shear deformation can be neglected for thin shells, which means that
another theory can be used. Since these elements are able to take into account transverse shear, the general
purpose elements can be used to represent sandwich composite structures. However, if transverse shear flex-
ibility and second order interpolation is required the S8R should be used. This happens for thick shells (when
the thickness is larger than 1/15 of the length).

In [13], a study is presented where the different general-purpose elements are compared. In this study dif-
ferent elements were used to model composite cylindrical shells. Castro conducted a comparison study using
the S4R, S4R5, S8R, and S8R5 element models based on mesh refinement and computational time. It should
be noted that the S4R5 and S8R5 use the Kirchhoff theory, so cannot be used for thick shells. When looking at
the results it could be seen that the S8R and S8R5 showed better convergence compared to the linear S4R and
S4R5 elements. Moreover, the S8R elements had a higher computational cost than the S8R5 elements. This
can be explained by the fact that the S8R5 has one degree of freedom less per node. On the other hand, the
linear elements had less computational cost compared to the parabolic elements. When deciding on which
elements to use a trade-off has to be made between the accuracy of the results and experimental costs.

Apart from the conventional shell elements, there are other type of shell elements that can be used. Such
a shell element is the continuum shell element, SC8R. This element uses the first-order layer-wise compos-
ite theory and can be stacked in order to get a more precise through-thickness result. However, when this
element is employed it should be checked if the overall deformation determined comply with the layer-wise
plane stress assumption. This assumption yields that the response of the structure is dominated by bending
and that the change in thickness is less than 10%. If this does not happen regular three-dimensional solid
elements should be used.

If a three-dimensional constitutive material behavior is needed for the shell structure the continuum solid
shell element, CSS8, is advised. This element contains seven incompatible modes which results in a better
bending behavior when compared to other elements. Moreover, locking is diminished by using an assumed
strain. This element is mostly used for thin structures where a three-dimensional constitutive response is
required, like composite structures. This element uses only displacement degrees of freedom and full inte-
gration. Hourglassing is not a problem for this element.

As described above, not only the conventional shell elements can be used to determine the behavior of
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sandwich composite shells. The SC8R and the CSS8 elements might also be a good choice for the modelling,
since the transverse shear can be taken into account more accurately. Another option is to use a combina-
tion of elements, for example by using different elements for the face sheets and core. Also the number of
elements through the thickness can be varied to improve the transverse shear behavior of sandwich com-
posite structures. It should be noted that choosing the type of elements and mesh is a trade-off between the
accuracy of the results and computational time.





3
Aim, objective, and research questions

The aim of the thesis has already been briefly described in the introduction and is defined as "to investigate
the buckling behavior of sandwich composite cylindrical shells, conical shells, and cylindrical-conical shells
including imperfections". From the aim, the following research objective is established:

The research objective is to contribute to the investigation on the buckling behavior of sandwich composite
shells by comparing the buckling behavior and imperfection sensitivity of a sandwich composite cylindrical
shell and conical shell alone with the buckling behavior and imperfection sensitivity of a sandwich composite
cylindrical-conical shell using finite element analysis.

When looking at the objective, three different sub objectives can be derived. The first sub objective is
to find a modelling technique to accurately model a sandwich composite cylindrical shell and conical shell,
this includes determining which elements to use and performing convergence studies. This is followed by
including the imperfections in the finite element models and by doing an imperfection sensitivity analysis for
each model. The final sub objective is to compare the buckling behavior of a sandwich composite cylindrical
shell and conical shell alone with the buckling behavior of a cylindrical-conical shell. For the last step it
is important to understand the relation between the separate shell models and the cylindrical-conical shell
model.

From the objective, three main aspects have been derived that need to be investigated during the thesis;
the modelling techniques, the imperfection sensitivities, and the comparison between the different models.
From these three aspects the research questions have been derived and are presented below. It should be
noted that when the sub questions are answered the main research question is answered as well.

1. What is the most promising method to model buckling tests of sandwich composite cylindrical shells,
conical shells, and cylindrical-conical shells, with and without imperfections, using finite element anal-
ysis?

(a) Which elements are able to represent the behavior of sandwich composite structures?

(b) What modelling techniques are needed to combine a cylindrical shell with a conical shell?

(c) What modelling techniques are required to implement imperfections in the sandwich composite
finite element models?

2. What is the imperfection sensitivity of the sandwich composite cylindrical shell, conical shell, and
cylindrical-conical shell?

(a) Which imperfections are important for sandwich composite structures?

(b) How do the imperfections change the buckling behavior of the sandwich composite cylindrical
shell, conical shell, and cylindrical-conical shell?

33
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3. What is the relation between the sandwich composite cylindrical shell and conical shell alone and the
cylindrical-conical shell?

(a) What are the similarities between the buckling behavior of the separate shells and combined shell?

(b) What are the similarities between the load vs. displacement graphs of the separate shells and
combined shell?

(c) What are the differences between the imperfection sensitivities of the separate shells and com-
bined shell?



4
Sandwich composite cylindrical shell and

conical shell

This chapter is meant to explore the modelling techniques in Abaqus and to gain more knowledge about the
buckling of sandwich composite shells. Before performing analyses on the sandwich composite cylindrical-
conical shell, first analyses are performed on a sandwich composite cylindrical shell and conical shell sepa-
rately. This in order to better understand the behavior of both shells alone and to investigate if there is any
relation between the shells separately and the cylindrical-conical shell as a whole. Since this thesis project is
in collaboration with NASA, the sandwich composite cylindrical shell material properties, dimensions, and
lay-up were used as described in [52]. The design of a sandwich composite conical shell is still in the early
stages of the design process and no buckling tests have been performed yet. Since the design of the conical
shell is still in progress, for now the material properties and lay-up of the sandwich composite cylindrical
shell were used. For the dimensions of the conical shell the maximum mandrel dimensions were taken. In
this chapter, first the linear analyses and dynamic analysis of the sandwich composite cylindrical shell are
presented and after that the linear analyses and dynamic analysis of the sandwich composite conical shell
are shown. Not only the buckling loads and mode shapes are presented, but also an element comparison is
given. This in order to investigate which elements are able to represent a sandwich composite shell structure.

4.1. Linear analyses of the sandwich composite cylindrical shell
The sandwich composite cylindrical shell considered in this section has the geometrical properties as shown
in table 4.1. It should be noted that the length is a bit longer than specified in [52], this in order to be consistent
with the cylindrical-conical mandrel design presented later on. Moreover, the lay-up that is shown in the table
is the lay-up for one face sheet.

Table 4.1: Geometrical properties of the sandwich composite cylindrical shell.

Length [mm] Diameter [mm] Lay-up [deg] Core thickness [mm]
800 800 [56,0,-56] 1.9

The materials used for the shell are composite face sheets and a foam core. For the face sheets the com-
posite IM7/8552 was used and the material properties can be seen in table 4.2.

Table 4.2: Material properties of IM7/8552. Material properties taken from [16].

E11 [MPa] E22 [MPa] v [-] G12 [MPa] tply [mm] ρ [kg/m3]
140928 9721 0.356 4688 0.175 1580
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For the core the Rohacell 300 WF foam was used and the material properties can be seen in table 4.3.

Table 4.3: Material properties of Rohacell 300 WF. Material properties taken from [1].

E [MPa] v [-] G [MPa] ρ [kg/m3]
578 0.3 364 300

The first step in analysing the buckling behavior of the sandwich composite cylindrical shell was to do a
linear static analysis and an eigenvalue analysis. These analyses already give insight into the behavior of the
sandwich composite cylindrical shell. The linear static analysis is used in order to get a stiffness estimate of
the cylindrical shell, which can be useful for further dynamic analysis. An eigenvalue analysis is performed
in order to get the linear buckling load and the buckling mode shape.

In this section also the different type of elements that can be used to model a sandwich composite cylin-
drical shell are compared. The elements considered are the S4R, SC8R, CSS8, and the C3D8R element. These
elements all behave differently and this section is meant to explore which elements are best to represent the
behavior of a sandwich composite cylindrical shell. It shoud be noted that it might be better to represent
the model by using more elements through the thickness or a combination of different elements. In this
section first the modelling techniques used are discussed. This is followed by a mesh convergence study to
determine the mesh size. Then the results of the linear static analysis and eigenvalue analysis are given for
different element models.

4.1.1. Modelling technique
For the creation of the model, four different elements were used: S4R, SC8R, CSS8, and C3D8R [18]. The rea-
son for using shell elements (S4R and SC8R) is because these elements are used to model structures that have
a much smaller thickness compared to the other two dimensions. In the literature study it already became
clear that these type of elements are typically used for the modelling of shells. These shell elements use first
order shear deformation theory and are based on two dimensional plane stress constitutive behavior. An-
other element that was chosen was the solid continuum shell element (CSS8). The reason that this element
was used is because of its improved behavior in bending compared to the S4R and SC8R elements. It has a
three dimensional constitutive behavior, which is an improvement on the S4R and SC8R elements. This ele-
ment was created to close the gap between the SC8R element and C3D8R element. The C3D8R element was
not yet seen in literature for the analysis of shells, however, this element is able to give good results if large
deformations are present. The SC8R, CSS8, and C3D8R elements can even be stacked on top of each other to
get a better through thickness response.

For the linear analyses six models were created using different elements and meshes. The S4R, SC8R, and
CSS8 element were modelled with one element through the thickness, see figure 4.1a. It should be noted that
in figure 4.1a the S4R element could be replaced by the SC8R and CSS8 element. For the CSS8 element another
model was made with three elements through the thickness (T-t-T), whereas the face sheets were represented
by two elements and the core by one element. A visual representation of the mesh through the thickness can
be seen in figure 4.1b. The same was done for the C3D8R element model, see figure 4.1c. A combination
of SC8R elements for the face sheets and the CSS8 element for the core was created as well (SC8R + CSS8),
see figure 4.1d. The reason for using a CSS8 element for the core is because the CSS8 element has a superior
bending behavior, which can be beneficial for capturing the transverse shear of the core. The way in which
the 3D element models were created was to use the orphan meshing option within Abaqus. When orphan
meshing is used the S4R element model is extruded resulting in a 3D element model. This method ensures
that a regular mesh is created.
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(a) S4R element model with one element through the thickness. Note that the
face sheets and core are represented together by one element.

(b) CSS8 3 T-t-T element model using CSS8 elements for the facesheets and
CSS8 element for the core.

(c) C3D8R 3 T-t-T element model using C3D8R elements for the facesheets
and C3D8R element for the core.

(d) CSS8 + SC8R element model using SC8R elements for the facesheets and
CSS8 element for the core.

Figure 4.1: Through the thickness mesh of the different element models.

For all the elements the layup was defined using the composite layup option in Abaqus. The core was
represented as a ply within the layup with its own material properties and thickness. It should be noted that
each element has its own way in which the orientation of the composite plies are applied. For the S4R and the
SC8R elements a cylindrical coordinate system had to be created and the normal direction had to be pointed
in the direction of the radial axis. Moreover, the one direction of the coordinate system had to be aligned
with the required zero degree ply direction. This method ensures that the stacking direction and rotation
around the stacking direction is maintained for all elements. For the CSS8 and the C3D8R elements a different
process had to be used. This is because these elements are 3D solids and define the coordinate system of the
elements in a different way. For these elements the one direction of the element is always pointing in the
radial direction of the cylinder. In order to correctly apply the coordinate system of these elements a discrete
definition was used, which creates a local coordinate system for each element. For this method a surface of
the cylindrical shell had to be defined in order to define the stacking direction. Moreover, a primary axis had
to be assigned and had to be in the direction of the axial direction of the cylindrical shell.

The boundary conditions and forces were applied using reference points. These were tied to the edge
nodes using a rigid body tie. A visual representation can be seen in figure 4.2. The reason for using refer-
ence points is due to easy post processing. For this model a clamped boundary condition was used for the
bottom of the cylindrical shell (reference point 1) and the top of the cylindrical shell (reference point 2) was
constrained in all directions except for the axial direction. The force was applied at the top of the cylindrical
shell in axial direction.

Figure 4.2: Finite element model of the sandwich composite cylindrical shell with reference points.

4.1.2. Mesh convergence study
In order to determine the mesh size a convergence study was performed. Eigenvalue analyses were executed
for mesh sizes of 20 mm, 10 mm, 5 mm, 2.5 mm, and 1.25 mm using the S4R element model. A visual rep-
resentation of a 20 mm mesh can be seen in figure 4.3. It should be noted that a regular mesh was used
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since there are no places of interests such as cut outs or stress concentrations. The load applied was 1 N in
the negative axial direction. After performing an eigenvalue analysis, the buckling load can be obtained by
multiplying the eigenvalue with the load applied.

Figure 4.3: Regular mesh of the sandwich composite cylindrical shell using a mesh size of 20 mm.

The results of the eigenvalue analyses can be seen in table 4.4. It should be noted that the computational
times that are shown in the tables within this chapter are determined by using the same office computer with
one CPU. When looking at the results in the table it be seen that the computational time increases drastically
when the mesh size is decreased. This is expected because when there are more elements in the model there
are more degrees of freedom that need to be solved for, increasing the computational time. When looking
at table 4.4 it can be seen that decreasing the mesh below 5 mm does not result in a big change of the buck-
ling load. Since the increase of the computational time of the models using a mesh smaller than 5 mm are
significant, a mesh size of 5 mm is preferred.

Table 4.4: First three force eigenvalues and CPU times of the sandwich composite cylindrical shell using different mesh sizes.

Mesh size [mm]
Force
eigenvalue 1 [kN]

Force
eigenvalue 2 [kN]

Force
eigenvalue 3 [kN]

CPU time [s]

20 811.8 811.8 812.1 95
10 807.2 807.2 808.0 629
5 806.1 806.1 806.5 2622
2.5 805.8 805.8 806.1 12099
1.25 805.7 805.8 806.0 64572

Besides the force eigenvalues also the mode shapes were compared in order to check if a smaller mesh
size gives a different mode shape. It is possible that some mode shapes cannot be simulated if the mesh is too
coarse, resulting in a different mode shape than when a smaller mesh size is used. The mode shapes for the
different mesh sizes can be seen in figure 4.4. It should be noted that in this figure only the first mode shapes
are shown because the second and third mode shapes look similar. When looking at the figure it can be seen
that for all the mesh sizes the mode shapes are the same. However, when looking at a mesh size of 20 mm
and 10 mm the mode shapes give some irregularities due to the mesh size being too coarse. Since the mode
shape is an important phenomenon to capture when looking at the buckling behavior of shells, a minimum
mesh size of 5 mm has to be used for further analysis.
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(a) Mesh size of 20mm. (b) Mesh size of 10 mm. (c) Mesh size of 5 mm.

(d) Mesh size of 2.5 mm. (e) Mesh size of 1.25 mm.

Figure 4.4: First buckling mode shapes of the sandwich composite cylindrical shell using different mesh sizes. For generating the figures
a scaling factor of 30 was employed.

4.1.3. Results of linear static analysis and eigenvalue analysis
Different element models were created to investigate the linear static analysis results and eigenvalue analysis
results. In order to compare the results and verify the model of the linear eigenvalue analysis the analytical
buckling load of the pristine sandwich composite cylindrical shell had to be determined. For this calculation
two different methods were used: the SP-8007 guideline [42] and the method presented by Bert and Reese
[44].

First thing to note is that the calculation proposed by the SP-8007 guideline is not meant for sandwich
composite shells, but for composite shells. The equations were modified in order to still use the NASA guide-
line because this method is also able to predict the knockdown factor which can be of interest for further anal-
yses. The way in which the SP8007 guideline calculates the buckling load is by using equation 4.1. Whereas,
Nx is the buckling load per meter, l is the length of the cylindrical shell, and m is the number of half waves.
The A terms can be calculated by using the stiffness terms of the laminate. The way in which the guideline
was modified was to include the core in the calculation of the stiffness terms.

Nx =
(

l

mπ

)2
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The Bert and Reese method is applicable for sandwich composite shells and therefore, could directly be
used to calculate the analytical buckling load. Since the method is quite extensive, the final equation is not
given here. The way in which the analytical buckling load is calculated is by using stiffness terms of the
facesheets and stiffness terms of the core.

Both of these methods use simply supported boundary conditions. This is important to note since the
finite element models are created using clamped boundary conditions and thus, a difference can be present
between the analytical solution and the finite element solution. The analytical buckling loads calculated by
both methods can be seen in table 4.5. It can be seen that there is a difference of 10% between the analytical
buckling loads.
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Table 4.5: Analytical buckling loads calculated for the sandwich composite cylindrical shell using different methods.

Method Analytical buckling load [kN]
SP-8007 873.0
Bert and Reese 792.8

Before performing an eigenvalue analysis, a linear static analysis was performed to get the linear stiffness
of the cylindrical shell. For the linear static analysis, a load was used in the order of the analytical buckling
load and had a value of 900 kN. This load was applied in the negative axial direction. The results of the
analysis can be seen in table 4.6 for the models with different types of elements. What can be seen is that
the displacements are all close to each other. This means that all element models give the same stiffness
of the sandwich composite cylindrical shell. When looking at the CPU time it can be seen that the CSS8
element with three elements through the thickness takes the longest. This is due to the increase in number of
elements. It can also be seen that for the models with one element through the thickness the CPU time of the
S4R and the SC8R element models are similar and that the CPU time of the CSS8 element model takes more
time to finish. This can be explained by the fact that the CSS8 element uses 3D constitutive relations and full
integration, which takes more time.

Table 4.6: Displacement of the sandwich composite cylindrical shell due to a force of 900 kN in axial direction.

Element Displacement [mm] CPU time [s]
S4R 4.9 31
SC8R 4.9 35
CSS8 4.8 91
CSS8 3 T-t-T 4.9 207
C3D8R 3 T-t-T 4.9 105
SC8R + CSS8 4.9 129

Besides a linear static analysis also an eigenvalue analysis was performed. For performing an eigenvalue
analysis, a load of -1 N in axial direction was applied at the top reference point. For the different element
models the first three eigenvalues and CPU times are compared. The results can be seen in table 4.7. A
difference of less than 9% is obtained for all element models when comparing the force eigenvalues to the
analytical solution obtained by the SP-8007 guideline. The difference can be explained by the fact that this
method is not meant for sandwich composite shells. The difference between the calculated Bert and Reese
buckling load and the finite element results are below 2% for all element models except for the CSS8 element
model. The reason for this can be that the CSS8 element is not able to represent a sandwich composite
structure by one element through the thickness due to the difference in stiffness between the face sheets and
the core. Therefore, another model was analysed with more elements through the thickness. Three elements
through the thickness were used whereas two elements were used for the facesheets and one element was
used for the core. When increasing the number of elements through the thickness it can be seen that the
force eigenvalues are closer to the values of the other element models.

When looking at the CPU times it can be seen that for the models with one element through the thickness
the CSS8 element model takes the longest and is not even able to give a similar buckling load when compared
to the other element models. Furthermore, when the number of elements through the thickness is increased
the computational time increases. This is due to the larger amount of elements used.
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Table 4.7: First three force eigenvalues and CPU times for the sandwich composite cylindrical shell using different element models.

Element model
Force
eigenvalue 1 [kN]

Force
eigenvalue 2 [kN]

Force
eigenvalue 3 [kN]

CPU time [s]

S4R 806.1 806.1 806.5 2622
SC8R 806.1 806.1 806.5 3493
CSS8 857.0 857.1 857.5 8938
CSS8 3 T-t-T 802.7 802.7 803.2 30696
C3D8R 3 T-t-T 808.6 808.6 809.8 4968
SC8R + CSS8 804.9 804.9 805.0 16134

Besides a force based eigenvalue analysis also a displacement based eigenvalue analysis was performed.
This was done in order to determine the displacement at which buckling happens. When the load and dis-
placement at which buckling happens are known, a point can be constructed and it can be seen if the point is
located somewhere along the line of the linear static analysis. This was an important step in the verification
process since the point has to be located on the line of the linear static analysis. The displacement based
eigenvalue analysis was done by applying a displacement of -1 mm in axial direction at the top reference
point. The results can be seen in table 4.8. It can be observed that the results of the CSS8 element model
gives higher displacement eigenvalues compared to the other element models. Because of the fact that the
displacement determined using the linear static analysis is the same as for the other element models, the
buckling of the CSS8 element model happens later compared to the other element models. Since all the other
element models give a similar buckling load and displacement, the CSS8 element model is not able to predict
the buckling behavior of a sandwich composite cylindrical shell. Moreover, the CPU times are comparable
to the results obtained for the force based eigenvalue analysis. This is expected because the same analysis is
performed.

Table 4.8: First three displacement eigenvalues and CPU times for the sandwich composite cylindrical shell using different element
models.

Element
Displacement
eigenvalue 1 [mm]

Displacement
eigenvalue 2 [mm]

Displacement
eigenvalue 3 [mm]

CPU time [s]

S4R 4.3 4.3 4.4 2607
SC8R 4.4 4.3 4.4 3463
CSS8 4.6 4.6 4.6 9132
CSS8 3 T-t-T 4.3 4.3 4.3 31175
C3D8R T-t-T 4.4 4.4 4.4 4639
SC8R + CSS8 4.3 4.3 4.3 16469

Next to the force eigenvalues also the buckling mode shapes are an output of the eigenvalue analysis.
These are also compared to see if there are any differences between different element models. The first three
buckling mode shapes of the different element models can be seen in table 4.9. What can be seen is that all
element models give the same buckling shapes for the first two modes. There are five waves in axial direction
and one wave in the circumferential direction. It should be noted that the first two mode shapes of the C3D8R
3 T-t-T element model is less rotated around the circumferential direction when compared to the other ele-
ment models. The third mode shape does give a different mode shape, which means that the C3D8R 3 T-t-T
element model is not able to predict the right the mode shapes. Besides the fact that the CSS8 element model
has a buckling load much higher than the other buckling loads, the buckling mode shapes are close to the
buckling mode shapes of the other element models.
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Table 4.9: First three buckling mode shapes of the sandwich composite cylindrical shell using different element models. For generating
the figures a scaling factor of 30 was employed.

First mode Second mode Third mode

S4R

SC8R

CSS8

CSS8 3 T-t-T

C3D8R 3 T-t-T

SC8R + CSS8
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4.2. Dynamic analysis of the sandwich composite cylindrical shell
For shell structures a dynamic analysis is also of interest. This is because by performing a dynamic analysis
it is possible to capture the behavior after buckling and the final point of failure, and to capture geometric
non-linearity of the structure. Due to the unstable postbuckling behavior of circular thin walled structures,
the load drop after buckling is an important feature to capture. The dynamic analysis of the cylindrical shell
were ran using the dynamic implicit solver in Abaqus. This solver was chosen due to the low computational
time compared to the dynamic explicit solver. Since a lot of analyses had to be performed the computational
time had to be as low as possible.

The dynamic implicit analysis was performed using an applied displacement. The reason for a displace-
ment based analysis is because the actual tests of shells are also controlled using an applied displacement.
Since the rate in which the displacement is applied can vary, the displacement rate is determined first. This
displacement rate is then used for further analyses. After that, the results of the dynamic analysis is explained
for the cylindrical shell.

4.2.1. Sensitivity to displacement rate
For a dynamic implicit analysis the displacement rate has to be determined. This was done by doing a con-
vergence study using displacement rates of 10 mm/s, 5 mm/s, 2 mm/s, and 1 mm/s. Since the buckling of
shells can be seen as a quasi-static problem, a low displacement rate is preferred. However, the lower the
displacement rate the longer the analysis takes. This means that a trade-off should be made between the
computational time and the quality of the results. The displacement rate that is chosen in this subsection
is used for further analyses unless stated otherwise. Important to note is that the first analyses that are per-
formed for the cylindrical, conical, and cylindrical-conical shell have to be accurate in terms of buckling load
and deformation shape. This is because the buckling behavior of the cylindrical-conical shell is not yet fully
understood. This means that the computational time is of less importance when compared to the accuracy
of the results.

A dynamic implicit solver requires several inputs. For example, the time parameters. These parame-
ters are an important factor in the dynamic implicit analysis; the lower the time parameters the higher the
computational time. However, when using lower time parameters the accuracy of the results are increased.
Therefore, an optimum has to be found such that the results are still accurate and that the computational
time is reasonable. By determining the time parameters it is important that there are no negative eigenval-
ues prior to buckling. When this happens it means that the dynamic analysis overshoots the buckling load.
Since an accurate prediction was needed, the time parameters were determined such that there were no neg-
ative eigenvalues prior to buckling. The time parameters that were used for the dynamic analysis were 0.001,
0.001, and 1e-5 for the initial increment size, maximum increment size, and the minimum increment size,
respectively. Moreover, also the time period had to be specified. This parameter was determined by using the
displacement rates of 10 mm/s, 5 mm/s, 2 mm/s, and 1 mm/s. The displacement applied was determined by
using a value in the range of the first displacement eigenvalue obtained by the eigenvalue analysis. By using
the total applied displacement and the displacement rate the time period could be calculated.

The model that was used for the analysis was the same as the one used for the linear analysis. The only
difference is that a displacement is applied to the reference point located on the top of the cylindrical shell.
For the dynamic analysis only the SC8R element model was used, this because of the results obtained by the
eigenvalue analysis and the low computational time.

The force-displacement graph was obtained by extracting the reaction force and displacement in axial
direction of the reference point located at the top of the shell at each moment in time. The force-displacement
graphs by using a displacement rate of 10 mm/s, 5 mm/s, 2 mm/s, and 1 mm/s can be seen in figure 4.5. The
linear static analysis line is included as a reference. From the graph it can be seen that the force-displacement
curve converges with decreasing displacement rate. When looking at the post-buckling path of the different
graphs it can be seen that by using a displacement rate of 10 mm/s and 2 mm/s the same post buckling path
is followed. For a displacement rate of 5 mm/s a different post buckling path can be observed which diverges
from the other post buckling paths. This means that a displacement rate of 5 mm/s will give a different post
buckling behavior compared to the other three displacement rates.

The values of the buckling loads and CPU times can be seen in table 4.10. What can be observed is that
when the displacement rate is decreased the computational time increases. Since for the first couple of anal-
yses the computational time is of less importance the convergence of the buckling load will weigh more in
choosing a displacement rate. When looking at the buckling load of the different displacement rates it can be
observed that at a displacement rate of 2 mm/s the buckling load is converged. Therefore, there is no need
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to use a displacement rate lower than this value. For further analysis a displacement rate of 2 mm/s is used.
When a qualitative comparison is sufficient, a higher displacement rate can be used since the buckling load
of all four displacement rates are relatively close to each other. This will save computational time.

Figure 4.5: Force-displacement graphs of the sandwich composite cylindrical shell using a displacement rate of 10 mm/s, 5 mm/s, 2
mm/s, and 1 mm/s.

Table 4.10: Buckling loads, CPU times, and difference with respect to 1 mm/s for the sandwich composite cylindrical shell using
different displacement rates.

Displacement
rate [mm/s]

Buckling
load [kN]

CPU time [s]
Difference in
buckling load
w.r.t. 1 mm/s [%]

10 792.7 49358 1.5
5 788.3 93112 0.9
2 782.4 173432 0.2
1 781.2 334931

4.2.2. Results of the dynamic implicit analysis
This subsection investigates the non-linear buckling behavior of the cylindrical shell by performing a dy-
namic implicit analysis. Moreover, a dynamic implicit analysis is able to capture the behavior of the shell
right after buckling. In this subsection a comparison is made between the buckling load and mode shape
determined by the eigenvalue analysis and the buckling load and deformation shape of the dynamic implicit
analysis. For the dynamic analysis the same properties as described in the previous subsection were used.
The force-displacement graph determined by the dynamic analysis can be seen in figure 4.6. The buckling
load predicted by the dynamic analysis is 782.4 kN with a displacement of 4.3 mm. The difference between
the buckling load determined by the eigenvalue analysis and the dynamic analysis is 2.9%. It can also be ob-
served that the stiffness is the same as for the linear static analysis. This means that there is a good correlation
between the results of linear analyses and the dynamic analysis.

The deformation shape of the cylindrical shell for each stage can be seen in figure 4.7. It should be noted
that there are four different stages that can be distinguished: deformation shape before buckling, deforma-
tion shape at the buckling load, deformation shape right after buckling, and deformation shape in the post
buckling regime. What can be seen is that the shape at the buckling load is not the same as predicted by the
eigenvalue analysis, there are some waves present but are more located near the boundary conditions. Af-
ter buckling the deformation shape changes from straight waves to a diamond pattern. In the post buckling



4.2. Dynamic analysis of the sandwich composite cylindrical shell 45

regime the deformation shape is more concentrated at the middle of the cylindrical shell.
The reason that there is a difference between the buckling shape of the eigenvalue and dynamic implicit

analysis is due to the effect of the boundary condition in the dynamic analysis. This effect cannot be captured
by an eigenvalue analysis because of the non-linearity. If the length of the cylindrical shell was longer, the
effect of the boundary would be less and a better comparison between the mode shape determined by the
eigenvalue analysis and dynamic analysis can be made.

Figure 4.6: Force-displacement graph of the sandwich composite cylindrical shell. Whereas, (a), (b), (c), and (d) represent the different
phases of deformation.

(a) Before buckling. Taken at a displacement of 2.55 mm with maximum U1
of 0.62 mm and minimum U1 of 0 mm.

(b) At buckling load. Taken at a displacement of 4.28 mm with maximum U1
of 1.52 mm and minimum U1 of 0 mm.

(c) Right after buckling. Taken at a displacement of 4.29 mm with maximum
U1 of 5.09 mm and minimum U1 of -11.2 mm.

(d) Post-buckling regime. Taken at a displacement of 4.56 mm with
maximum U1 of 10.2 mm and minimum U1 of -21.8 mm

Figure 4.7: Deformation shapes in radial direction of the sandwich composite cylindrical shell with a scaling factor of 1. Whereas, (a),
(b), (c), and (d) represent the different phases of deformation and U1 denotes the out of plane deformation.
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4.3. Linear analyses of the sandwich composite conical shell
For the sandwich composite conical shell the same linear analyses were performed as for the sandwich com-
posite cylindrical shell in order to determine the stiffness of the shell and to determine the linear buckling
load. The dimensions of the sandwich composite conical shell were based on the dimensions of the sand-
wich composite cylindrical shell as already explained above. The large diameter of the cone matches the
diameter of the cylinder, and the height of the cone is the same as the cylinder. The semi-vertex angle of the
cone is 15°. The dimensions of the shell can be seen in table 4.11. It can be seen that the same diameter and
height were used as for the cylindrical shell. Moreover, the same materials were used as for the cylindrical
shell and the material properties of the composite facesheets and foam core can be seen in tables 4.2 and 4.3,
respectively.

This section is meant to get more insight into the behavior of conical shells compared to cylindrical shells.
This includes the modelling techniques that have to be used for conical shells, the difference in buckling load
and mode shape. In this section also a comparison between the different kind of elements is given.

Table 4.11: Geometrical properties of the sandwich composite conical shell.

Length [mm] Large diameter [mm] Lay-up [deg] Core thickness [mm] Semi-vertex angle [deg]
800 800 [56,0,-56] 1.9 15

4.3.1. Modelling techniques
The modelling of the sandwich composite conical shell was done in the same way as for the sandwich com-
posite cylindrical shell. This means that the same elements were used, the same methods of defining the
orientation were employed, and the same techniques for applying the loads and boundary conditions were
used. For the analysis of the conical shell also six models were created using the same type of elements as for
the cylindrical shell. A visual representation of the conical shell model can be seen in figure 4.8.

Figure 4.8: Finite element model of the sandwich composite conical shell with reference points.

When modelling a conical shell, attention has to be paid to the edges. When a S4R model is transformed
into a 3D element model, the edges of the cone become perpendicular to the cone angle. When a cone is
manufactured, the edges of the cone are trimmed at the end such that the edges are parallel to the loading
surface. Since the model made in Abaqus should represent the manufactured specimen as accurate as possi-
ble, the Abaqus model had to be changed. This was done by perturbing the edge nodes by a certain amount
such that the nodes along the lower edge had a z-coordinate of 0 and that the nodes along the upper edge
had a z-coordinate of 800. It should be noted that when doing this also the thickness of the elements were
changed such that a total thickness of 2.95 mm was maintained. A visual representation can be seen in figure
4.9.
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Figure 4.9: Problem with the cone edges when extruding the S4R model.

4.3.2. Mesh convergence study
In order to determine which mesh size to use for the sandwich composite conical shell, a mesh convergence
study was performed. The way in which the mesh for the conical shell was created was by defining the num-
ber of elements in the circumferential direction according to the mesh size. Then Abaqus calculated the
height needed for the elements by enforcing an aspect ratio of 1 in the middle of the conical shell. The same
height is used for each element. Due to this, the number of elements in the conical shell is higher than the
number of elements in the cylindrical shell when the same mesh size is used. For performing the mesh con-
vergence study, the S4R element model was used. Mesh sizes of 20 mm, 10 mm, 5 mm, 2.5 mm, and 1.25
mm were tested. It should be noted that these mesh sizes are determined by using the large diameter of the
conical shell. In figure 4.10 the mesh can be seen for a mesh size of 20 mm.

Figure 4.10: Regular mesh of the sandwich composite conical shell using a S4R element and a mesh size of 20 mm.

For each of the mesh sizes, an eigenvalue analysis was performed and the results can be seen in table 4.12.

Table 4.12: First three force eigenvalues and CPU times of the sandwich composite conical shell using different mesh sizes.

Mesh size [mm]
Number of
elements [-]

Force
eigenvalue 1[kN]

Force
eigenvalue 2[kN]

Force
eigenvalue 3[kN]

CPU time [s]

20 126 717.9 718.0 718.6 157
10 251 713.8 713.9 713.9 578
5 500 712.5 712.6 712.7 4035
2.5 1005 712.2 712.2 712.5 17927
1.25 2011 712.1 712.2 712.4 89635

The first aspect to notice from the table is that the force eigenvalues converge when the mesh size is de-
creased. The same can be observed as what was observed in the mesh convergence study of the cylindrical
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shell, the CPU time increases with decreasing mesh size. Moreover, at a mesh size of 5 mm the force eigen-
values are converged and the CPU time is still reasonable.

For the mesh convergence study also the mode shapes are compared. The first three mode shapes have
a similar shape, so only the first mode shapes are shown here. In figure 4.11 the buckling mode shapes for
the different mesh sizes are shown. It can be seen that for a mesh size of 20 mm the mode shape has some
irregularities and that the shape is less twisted when compared to the mode shapes of the models using a 5
mm and 2.5 mm mesh. The 10 mm mode shape is giving a different mode shape, this can be explained by
a numerical error. This is because the 20 mm mesh is able to give the right mode shape, so the difference
cannot be explained by the mesh being too coarse. Since the mode shape of the 5 mm mesh is the same as
the mode shape of the 2.5 mm mesh, the 5 mm mesh is used for further simulations.

(a) Mesh size of 20mm. (b) Mesh size of 10mm. (c) Mesh size of 5mm.

(d) Mesh size of 2.5mm. (e) Mesh size of 1.25mm.

Figure 4.11: First buckling mode shapes of the sandwich composite conical shell using different mesh sizes. For generating the figures a
scaling factor of 30 was employed.

4.3.3. Results of linear static analysis and eigenvalue analysis
Before executing the eigenvalue analysis of the different element models, first a linear static analysis was
performed. For this analysis, a load of -900 kN was applied at the top reference point of the conical shell.
This load was used in order to be able to compare the results with the results of the linear static analysis of
the cylindrical shell. The results for the different element models can be seen in table 4.13. It can be seen
that for all element models the displacements are similar. The same trend for the CPU time as described in
subsection 4.1.3 can be observed here as well. It can also be seen that the displacements of the conical shell
are higher compared to the displacement of the cylindrical shell. This is expected because of the semi-vertex
angle of the conical shell.

Table 4.13: Displacements of the sandwich composite conical shell due to a force 900 kN in axial direction.

Element Displacement [mm] CPU time [s]
S4R 7.7 49
SC8R 7.7 51
CSS8 7.7 116
CSS8 3 T-t-T 7.7 239
C3D8R 3 T-t-T 7.7 146
SC8R + CSS8 7.7 176

For the conical shell also an eigenvalue analysis was performed. In order to verify the results of this analy-
sis the analytical buckling load was calculated. The analytical buckling load was calculated using equation 4.2
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[41], whereas PCone is the buckling load of the conical shell, PC yli nder is the buckling load of the cylindrical
shell with the same material properties, height, and diameter as the conical shell, andα is the semi-vertex an-
gle. Since the material properties and dimensions of the sandwich composite cylindrical shell are the same,
the buckling load obtained by the Bert and Reese method was used to calculate the buckling load of the sand-
wich composite conical shell. The analytical buckling load of the sandwich composite conical shell is 739.7
kN.

PCone = PC yli nder · cos2α (4.2)

The results of the eigenvalue analysis for the different element models can be seen in table 4.14. The
difference with the analytical solution is less than 4.5% except for the CSS8 element model. The same trend
as for the cylindrical shell eigenvalue analysis results can be observed for the conical shell as well. Only the
CSS8 element model shows different results compared to the other element models. The computational time
results are also similar to the results of the cylindrical shell eigenvalue results. It should be noted that the
buckling load is about 10% lower than the buckling load of the cylindrical shell.

Table 4.14: First three force eigenvalues and CPU times for the sandwich composite conical shell using different element models.

Element
Force
eigenvalue 1 [mm]

Force
eigenvalue 2 [mm]

Force
eigenvalue 3 [mm]

CPU time [s]

S4R 712.5 712.6 712.7 4035
SC8R 712.6 712.6 712.8 2755
CSS8 788.0 788.0 788.9 5691
CSS8 3 T-t-T 707.5 707.6 708.3 14152
C3D8R 3 T-t-T 714.9 714.9 716.0 4491
SC8R + CSS8 709.4 709.4 710.6 8620

Also a displacement based eigenvalue analysis was performed. This was done in order to verify the results
given by the different analyses, as already described in subsection 4.1.3. The results of the eigenvalue analy-
sis using an applied displacement can be seen in table 4.15. What can be observed is that the displacement
eigenvalues are all within 1% except for the CSS8 element model. This element model gave higher displace-
ment eigenvalues. Since the displacement of the linear static analysis is the same for all element models, it
means that the buckling of the CSS8 element model is predicted later when compared to the other element
models. This was also observed for the cylindrical shell. Moreover, the CPU times are comparable to the
CPU times obtained for the force based eigenvalue analysis. This is expected because the same analysis was
performed.

Table 4.15: First three displacement eigenvalues and CPU times for the sandwich composite conical shell using different element
models.

Element
Displacement
eigenvalue 1 [mm]

Displacement
eigenvalue 2 [mm]

Displacement
eigenvalue 3 [mm]

CPU time [s]

S4R 6.1 6.1 6.1 3312
SC8R 6.1 6.1 6.1 2348
CSS8 6.8 6.8 6.8 5655
CSS8 3 T-t-T 6.1 6.1 6.1 14122
C3D8R 3 T-t-T 6.1 6.1 6.1 4482
SC8R + CSS8 6.1 6.1 6.1 8577

The first three buckling mode shapes of the conical shell of the different element models can be seen
in figure 4.16. What can be seen is that for the S4R, SC8R, and CS8R+CSS8 element models the three mode
shapes look similar. The CSS8 3 T-t-T element model shows similar mode shapes for the first two buckling
mode shapes but for the third buckling mode shape the buckling waves are more twisted when compared
to the other element models. The C3D8R 3 T-t-T element model shows a less twisted shape for the first two
buckling mode shapes. Since for these two models the buckling mode shapes show buckling at the top, these
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models are still considered accurate since the force eigenvalues are similar. The CSS8 element model shows
different mode shapes for the first three buckling modes. Since the force eigenvalues of this model are differ-
ent as well, the CSS8 element model is not able to give accurate results for this sandwich composite conical
shell.

When comparing the mode shapes of the conical shell with the mode shapes of the cylindrical shell it can
be seen that the deformation for the conical shell is present at the top of the shell whereas the deformation of
the cylindrical shell is present along the whole length of the cylinder. This is expected because the cylindrical
shell has a constant radius resulting in a mode shape covering the whole length of the shell. Whereas, a
conical shell has a smaller radius at the top, which results in a smaller area to withstand the load and therefore,
the top is the weakest section of the conical shell resulting in a deformation at the top.
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Table 4.16: First three buckling mode shapes of the sandwich composite conical shell of different element models. For generating the
figures a scaling factor of 30 was employed.

First mode Second mode Third mode

S4R

SC8R

CSS8

CSS8 3 T-t-T

C3D8R 3 T-t-T

SC8R + CSS8
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4.4. Dynamic analysis of the sandwich composite conical shell
A dynamic analysis was performed for the conical shell to capture the behavior of the shell right after buckling
and to investigate the effects of the geometric non-linearity prior to buckling. A dynamic implicit analysis
was used for the dynamic analysis of the conical shell. In order to compare the dynamic analysis results
throughout the thesis the same time parameters and displacement rate were used as discussed in section 4.2.
The SC8R element model was employed for the analysis because of the good results for the linear analyses
and a low CPU time. The force-displacement graph of the dynamic analysis can be seen in figure 4.12. The
buckling load obtained using the dynamic analysis is 684.8 kN with a displacement of 5.9 mm. The difference
between the buckling load obtained using the eigenvalue analysis and the dynamic analysis is 4.9%. It can
also be seen that the stiffness prior to buckling is the same when compared to the linear static analysis. This
means that there is a good correlation between the results of the linear analyses and the dynamic analysis.

The deformation shapes can be seen in figure 4.13. There are four stages in the force-displacement graph
that are of interest as already explained in section 4.2. What can be seen is that the deformation shape at
the buckling load has waves located mostly at the top of the conical shell. This was already predicted by the
eigenvalue analysis. Moreover, right after buckling a diamond pattern appears at the top of the shell and
travels down towards the bottom of the conical shell when in the post buckling regime.

Figure 4.12: Force-displacement graph of the sandwich composite conical shell. Whereas, (a), (b), (c), and (d) represent the different
phases of deformation.
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(a) Before buckling. Taken at a displacement of 3.25 mm with maximum U1
of 0.50 mm and minimum U1 of 0 mm.

(b) At buckling load. Taken at a displacement of 5.94 mm with maximum U1
of 1.43 mm and minimum U1 of 0 mm.

(c) Right after buckling. Taken at a displacement of 5.95 mm with maximum
U1 of 6.51 mm and minimum U1 of -13.0 mm.

(d) Post-buckling regime. Taken at a displacement of 6.19 mm with
maximum U1 of 9.58 mm and minimum U1 of -20.0 mm.

Figure 4.13: Deformation shapes in radial direction of the sandwich composite conical shell with a scaling factor of 1. Whereas, (a), (b),
(c), and (d) represent the different phases of deformation and U1 denotes the out of plane deformation.

4.5. Sensitivity to conical height
This section investigates what happens to the buckling load and mode shape when the conical height is de-
creased. Since the mandrel dimensions were already known, the semi-vertex angle was kept the same and at
a value of 15°. The conical heights that were analysed were 800mm, 600 mm, 400 mm, and 200 mm. First, an
eigenvalue analysis was performed of each model to see the difference in buckling load. The SC8R element
was used for the analyses. Only the first three eigenvalues were compared to limit the computational time.
The first three force eigenvalues can be seen in table 4.17. What can be seen is that the first force eigenvalues
of the 800 mm, 600 mm, and 400 mm conical height are close to each other (within 7%). This implies that
the length of the conical shell does not influence the buckling load. This was already observed for cylindrical
shells. It can be seen that when changing the cylindrical height, the buckling load calculated using the ana-
lytical method proposed by Bert and Reese does not change. The 200 mm conical height model has a higher
force eigenvalue and is 19% higher compared to the 800 mm conical height model. The reason that the buck-
ling load changes by a higher percentage for the 200 mm conical height model can be explained by the fact
that at this height the shape of the conical shell looks more like a ring than a cone, resulting in a different
structure and thus a different buckling behavior.

Table 4.17: First three force eigenvalues of the conical shell with different conical heights using the SC8R element model.

Height [mm] Force eigenvalue 1 [kN] Force eigenvalue 2 [kN] Force eigenvalue 3 [kN]
800 712.6 712.6 712.8
600 736.2 736.3 737.2
400 761.1 761.2 761.7
200 844.1 844.1 846.1

The first buckling mode shapes can be seen in figure 4.14. Only the first buckling mode shapes are shown
here because the second and third buckling mode shapes look similar. What can be observed is that for the
models with a conical height of 800 mm, 600 mm, and 400 mm the buckling mode shape consist of waves
while the 200 mm height model shows a more diamond shaped pattern. It can also be seen that when the
conical height is decreased the buckling mode shape covers the full conical length instead of only the top of
the shell as what can be observed for the 800 mm conical height model.
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(a) Conical shell with a height of 800 mm. (b) Conical shell with a height of 600 mm.

(c) Conical shell with a height of 400 mm. (d) Conical shell with a height of 200 mm.

Figure 4.14: First buckling mode shape of the sandwich composite conical shells with different heights. For generating the figures a
scaling factor of 30 was employed.

For the different conical height models a dynamic analysis was performed in order to see if there is a
difference between the eigenvalue analysis and dynamic analysis results and to see if there is any non-linear
behavior. The force-displacement graphs of the dynamic analysis can be seen in figure 4.15. What can be seen
in the figure is that the stiffness of the conical shell increases if the length is decreased. The buckling loads
determined by the dynamic analysis can be seen in table 4.18. What can be observed is that the buckling
load does not change when decreasing the conical height except for low values of the height. This was also
observed when looking at the eigenvalue analysis results. The difference between the eigenvalue analysis
buckling loads and the dynamic buckling loads is less than 7% for all conical height models. This means that
there is a good correlation between the results of the eigenvalue analysis and the dynamic implicit analysis.

Figure 4.15: Force-displacement graphs of the sandwich composite conical shells with a height of 800 mm, 600 mm, 400 mm, and 200
mm using the SC8R element model.
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Table 4.18: Buckling loads of the different height models determined by the dynamic analysis.

Height [mm] 800 600 400 200
Buckling load [kN] 684.8 705.3 711.6 806.0
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Sandwich composite cylindrical-conical

shell

Since the buckling behavior of the sandwich composite cylindrical shell and conical shell are known, the
next step is to analyse the buckling behavior of the cylindrical-conical shell. In order to be able to compare
the results of chapter 4 with the results in this chapter, analyses were performed using the same geometry
and material properties for the cylindrical part and conical part as described in chapter 4. The cylindrical-
conical shell model was created by using the separate models of the cylindrical shell and conical shell. In
order to further explore and understand the buckling behavior of cylindrical-conical shells, different models
were created. The buckling behavior is investigated by doing both linear analyses and a non-linear analysis.
Moreover, a mesh sensitivity study is performed in order to determine the right mesh for the cylindrical-
conical shell. After that, the sensitivity to conical height and semi-vertex angle is investigated. Throughout
the chapter comparisons are made between the cylindrical-conical shell and the separate shells.

5.1. Modelling techniques
For creating the cylindrical-conical shell the two separate models of the cylindrical shell and conical shell
were used. These models were placed on top of each other and the nodes were merged along the boundary
resulting in the complex shell structure. The lay-up, material properties, boundary conditions, and loading
conditions were applied using the same methods as described in subsection 4.1.1. For the cylindrical-conical
shell, the same mesh was used as for the separate models. However, when doing this it had to be checked if
the number of elements of the cylindrical shell in circumferential direction was the same as for the conical
shell. For the investigation of the cylindrical-conical shell two element models were created: one using S4R
elements and one using SC8R elements. The reason for using these elements was because of the good results
obtained for the separate shells and due to the low computational time.

It should be noted that for the analysis of the buckling behavior of the sandwich composite cylindrical-
conical shell a lot of different models had to be created. For every case first the separate models of the cylin-
drical shell and conical shell had to be made and then the models had to be combined in order to create the
cylindrical-conical shell. This takes a lot of time and the work is very repetitive. Therefore, for creating the
cylindrical-conical shell models a Python code was created which was able to generate the input files that are
needed for running a job in Abaqus. This input file contains the node locations, element definition, bound-
ary conditions, forces, and type of analysis. It should be noted that the Python code was based on the model
created in Abaqus. This means that the same modelling technique applies for the model generated by Python
as described above. The input file of the Python code was identical to the input file generated by Abaqus. The
only difference lies in the numerical errors when calculating the node locations. The input file was generated
using the following main steps:

• Input parameters: mesh size, cylindrical height, diameter, conical height, semi-vertex angle, material
properties, lay-up, and thickness.

• Step 1: Use the mesh size and geometrical properties to calculate the number of elements in circum-
ferential and axial direction.
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• Step 2: Create a list of radii for the conical shell part using the number of elements in axial direction
and the geometrical properties.

• Step 3: Use the number of elements and geometrical properties to determine all the node locations. It
should be noted that for the node locations of the cylindrical shell a constant radius was used and for
the node locations of the conical shell the list with radii was used.

• Step 4: Define the elements by using the nodes.

• Step 5: Write the input file.

It should be noted that two Python codes were generated: one for the S4R element model and one for the
SC8R element model.

5.2. Linear analyses
First a linear static analysis was performed in order to determine the stiffness of the cylindrical-conical shell.
A load of 900 kN was applied in negative axial direction in order to compare the results with the results of
the separate shells. The results for the linear static analysis can be seen in table 5.1. What can be observed
is that the displacement is higher when compared to the displacements of the cylindrical and conical shell.
This means that the stiffness of the cylindrical-conical shell is lower. The CPU time is higher when compared
to the results of the separate shells. This is expected because there are more elements present.

Table 5.1: Displacement of the sandwich composite cylindrical-conical shell due to a force of 900 kN in axial direction.

Element Displacement [mm] CPU time [s]
S4R 14.6 90
SC8R 14.6 95

Also an eigenvalue analysis was performed. It should be noted that for the cylindrical-conical shell no
analytical expression could be found for calculating the buckling load. The buckling loads of the cylindrical
and conical shell that were obtained by the eigenvalue analyses were verified with the analytical solution.
This implies that the same modelling approach should also be valid for the cylindrical-conical shell. The
results of the eigenvalue analysis can be seen in table 5.2. It can be seen that the buckling load is the same as
the buckling load for the conical shell. Moreover, it can be observed that there is no difference between the
S4R and SC8R element models.

Table 5.2: First three force eigenvalues and CPU times of sandwich composite cylindrical-conical shell using a S4R element model and a
SC8R element model.

Element Force eigenvalue 1 [kN] Force eigenvalue 2 [kN] Force eigenvalue 3 [kN] CPU time [s]
S4R 712.5 712.6 712.8 5517
SC8R 712.6 712.6 712.8 4399

The mode shapes were determined using the eigenvalue analysis. The mode shapes of the S4R and SC8R
element models gave the same mode shapes and; therefore, only the mode shapes obtained using the S4R
element model are shown here. The mode shapes of the first three force eigenvalues can be seen in figure
5.1. It can be seen that the deformation is located only at the top of the cylindrical-conical shell. It seems like
the cylindrical shell acts as a boundary condition. When comparing the mode shape of the conical part of
the cylindrical-conical shell to the mode shape of the conical shell alone it can be seen that the same mode
shape is obtained. This is expected because the buckling load of the cylindrical-conical shell is the same as
the buckling load of the conical shell.
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(a) First mode shape. (b) Second mode shape. (c) Third mode shape.

Figure 5.1: First three buckling mode shapes of sandwich composite cylindrical-conical shell using the S4R element model. For
generating the figures a scaling factor of 30 was employed.

5.3. Dynamic analysis
A dynamic implicit analysis was performed in order to investigate if the buckling load and mode shape are the
same as predicted by the eigenvalue analysis and to construct the force displacement graph of the cylindrical-
conical shell. For the analysis, the SC8R element model was used. Before performing the dynamic implicit
analysis, an eigenvalue analysis was performed which was done using an applied displacement. This was
needed in order to determine the order of magnitude of the applied displacement for the dynamic implicit
analysis. A displacement of -1 mm was added to the top reference point and results in a displacement eigen-
value of 11.5 mm. For the dynamic implicit analysis a displacement of 12 mm was applied over a time of 6 s.
The same time parameters were employed as described in chapter 4.

The force-displacement graph determined by the dynamic implicit analysis can be seen in figure 5.2. A
buckling load of 441.5 kN is obtained by the dynamic implicit analysis. Moreover, what can be seen is that
the eigenvalue analysis gives a buckling load that is 38% higher than the the buckling load obtained by the
dynamic analysis. It can also be seen that the slope of the force displacement graph is non-linear, which
was not observed in the dynamic analysis results of the cylindrical shell and conical shell. The deformation
shapes of the cylindrical-conical shell can be seen in figure 5.3. In figure 5.3a and 5.3b it can be seen that
the interface (region where the conical shell part and cylindrical shell part come together) plays a mayor role
in the deformation of the shell. It was expected that the interface should have some impact on the buckling
behavior of the shell because at the interface the shape of the shell changes. However, this was not yet seen in
the results of the eigenvalue analysis. The mode shape obtained by the dynamic analysis is therefore, different
compared to the mode shape of the eigenvalue analysis.

The difference between the results of the eigenvalue analysis and the dynamic implicit analysis can be
explained by the non-linearity of the problem. It can be seen that in the stage prior to buckling there is
already a large deformation at the interface. This creates a drop in stiffness of the cylindrical-conical shell.
Due to this, the buckling of the structure happens earlier. These results imply that the interface is indeed the
weakest point of the shell structure. The difference between the eigenvalue analysis and dynamic implicit
analysis is further investigated in the next chapter.
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Figure 5.2: Force-displacement graph of sandwich composite cylindrical-conical shell. Whereas, (a), (b), (c), and (d) represent the
different phases of deformation.

(a) Deformation shape prior to buckling. Taken at a displacement of 4.40 mm
with maximum U1 of 2.2 mm and minimum U1 of 0 mm.

(b) Deformation shape at buckling load. Taken at a displacement of 3.95 mm
with maximum U1 of 4.49 mm and minimum U1 of -0.85 mm.

(c) Deformation shape right after buckling. Taken at a displacement of 3.96
mm with maximum U1 of 6.9 mm and minimum U1 of -14.5 mm.

(d) Deformation shape in post buckling regime. Taken at a displacement of
8.31 mm with maximum U1 of 16.6 mm and minimum U1 of -42.7 mm.

Figure 5.3: Deformation shapes in radial direction of the sandwich composite cylindrical-conical shell with a scaling factor of 1.
Whereas, (a), (b), (c), and (d) represent the different phases of deformation and U1 denotes the out of plane deformation.

5.4. Mesh comparison
Since there is a difference between the eigenvalue analysis and dynamic implicit analysis, it is suspected that
there is a mesh bias at the top of the conical shell part. This is because at the top of the cylindrical-conical
shell the mesh size is smaller compared to the mesh size at the interface. Therefore, different meshes were
generated in order to check if the buckling is always present at the top of the cylindrical-conical shell. The
following meshes were created:
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• Mesh 1: The mesh proposed in section 5.1. This mesh is used as reference mesh.

• Mesh 2: Bias of 5 towards the interface. The bias was applied only on the conical part of the shell. This
mesh was created to decrease the mesh size of the elements towards the interface. Important to note is
that the number of the elements is the same.

• Mesh 3: Bias of 5 towards the interface for the cylindrical shell part and conical shell part. This means
that around the interface the mesh is much denser compared to the rest of the model. This mesh was
created to see if there is any effect if the mesh size of the cylindrical shell towards the interface is smaller.
It should be noted that the number of elements was kept constant.

• Mesh 4: Using the equal number of elements in the conical part and the cylindrical part. This means
that height of the elements in the conical part is increased. This mesh was used in order to see the
difference in CPU time.

For these four different meshes an eigenvalue analysis was performed. The results can be seen in table 5.3.
The difference with respect to mesh model 1 is less than 0.2% for all mesh models. When looking at the CPU
times it can be seen that mesh model 4 has the lowest CPU time, which is expected because of the number
of elements being less compared to the other mesh models. Furthermore, the mode shapes were determined
and the mode shapes of the different meshes are similar to the mode shapes shown in figure 5.1. This means
that a bias towards the interface does not move the buckling shape towards the intersection. Since all models
gave the same results it was chosen to use the mesh 1 configuration for further analysis. This is because the
aspect ratio of the elements is also an important factor. For mesh 2, mesh 3, and mesh 4 the maximum aspect
ratio of the elements is around 2.5. For mesh 1 the maximum aspect ratio is 1.5. For Abaqus models, an aspect
ratio of 1 is striven for, which results in that the mesh 1 configuration is used for further analyses.

Table 5.3: First three force eigenvalues and CPU times of the sandwich composite cylindrical-conical shell using different meshes.

Mesh [-] Force eigenvalue 1[kN] Force eigenvalue 2[kN] Force eigenvalue 3[kN] CPU time [s]
Mesh 1 712.6 712.6 712.8 4399
Mesh 2 713.5 713.6 713.8 3493
Mesh 3 713.5 713.6 713.8 3793
Mesh 4 713.0 713.0 713.2 2606

5.5. Sensitivity to conical height
In this section the sensitivity to conical height is investigated. It is investigated if the difference between the
eigenvalue analysis and dynamic analysis decreases when the conical height is decreased. For the analysis,
the geometrical properties of the cylindrical part of the cylindrical-conical shell were kept constant. For the
conical part the semi-vertex angle was kept constant and the height was changed. The heights that were
analysed were 1600 mm, 1400 mm, 1200 mm, and 1000 mm whereas the 1600 mm cylindrical-conical shell
is the reference case. It should be noted that this corresponds to conical heights of 800 mm, 600 mm, 400
mm, and 200 mm, respectively. First, an eigenvalue analysis was performed and the results can be seen in
table 5.4. What can be seen is that the the buckling loads of the cylindrical-conical shells are the same as the
buckling loads determined by the eigenvalue analysis of the separate shells. This means that the buckling load
determined by the eigenvalue analysis is the similar to the buckling loads of the separate shells, depending
on which shell has a lower buckling load. For the 1600 mm, 1400 mm, and 1200 mm cylindrical-conical shell
the buckling load is close to the buckling load of the conical shells with a height of 800 mm, 600 mm, and 400
mm, respectively. For the 1000 mm cylindrical-conical shell the buckling load is similar to the buckling load
of the cylindrical shell.
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Table 5.4: First three force eigenvalues of the sandwich composite cylindrical-conical shells with different conical heights.

Height [mm] Force eigenvalue 1 [kN] Force eigenvalue 2 [kN] Force eigenvalue 3 [kN]
1600 712.6 712.6 712.8
1400 735.8 735.8 736.7
1200 756.0 756.0 756.9
1000 793.9 794.8 794.8

In figure 5.4 the first buckling mode shapes of the cylindrical-conical models with a different conical
height can be seen. For the cylindrical-conical shells with a height of 1600 mm, 1400 mm, and 1200 mm
it can be seen that the deformation is only present in the conical part of the shell. It looks like the cylindrical
part of the shell does not participate in the analysis. For the 1000 mm shell the deformation is present in the
cylindrical part and conical part of the shell. It seems like the eigenvalue analysis is not able to capture the
behavior of both the cylindrical and conical shell and neglects the transition area.

(a) Cylindrical-conical shell with a height of 1600 mm. (b) Cylindrical-conical shell with a height of 1400 mm.

(c) Cylindrical-conical shell with a height of 1200 mm. (d) Cylindrical-conical shell with a height of 1000 mm.

Figure 5.4: First buckling mode shapes of the sandwich composite cylindrical-conical shell with different conical heights. For
generating the figures a scaling factor of 30 was employed.

Next to an eigenvalue analysis, a dynamic analysis was performed for the different height models. The
results can be seen in figure 5.5. The buckling loads for each height model can be seen in table 5.5. What can
be observed is that the buckling loads determined by the eigenvalue analysis are around 40% higher for all the
height models. As already suggested, the eigenvalue analysis is not able to capture the right buckling behavior
of cylindrical-conical shells. What also can be observed is that the buckling load almost does not change with
decreasing conical height. This means that the buckling load of the cylindrical-conical shell is independent
of the conical height. However, it can be observed that the stiffness does change when decreasing the conical
height.

Moreover, the deformation shapes right before buckling were extracted from the dynamic analysis in
order to make a comparison with the mode shapes obtained by the eigenvalue analysis. The deformation
shapes just before buckling can be seen in figure 5.6. In the figures it can be seen that the deformation is
mostly present around the interface and that the shapes are not similar to the mode shapes from the eigen-
value analysis. There is a very large deformation at the intersection which was also seen for the 1600 mm
cylindrical-conical shell.
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Figure 5.5: Force-displacement graphs of the sandwich composite cylindrical-conical shell with different conical heights.

Table 5.5: Buckling loads of the sandwich composite cylindrical-conical shell with different conical heights determined by the dynamic
analysis.

Height [mm] 1600 1400 1200 1000
Buckling load [kN] 441.5 441.8 442.6 455.5

(a) Cylindrical-conical shell with a height of 1600 mm. (b) Cylindrical-conical shell with a height of 1400 mm.

(c) Cylindrical-conical shell with a height of 1200 mm. (d) Cylindrical-conical shell with a height of 1000 mm.

Figure 5.6: Deformation shapes right before buckling of the sandwich composite cylindrical-conical shell with different conical heights.
For generating the figures a scaling factor of 1 was employed.
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5.6. Sensitivity to semi-vertex angle
This section investigates the effect of the semi-vertex angle on the difference between the results obtained by
the eigenvalue analysis and dynamic implicit analysis. Semi-vertex angles of 0°, 1°, 2°, 5°, 10°, and 15° were
used in order to see at which semi-vertex angle the difference between both analyses starts. The cylindrical-
conical shell used had the same lay-up and material properties as the other models proposed in this thesis.
The length of the shell was 1200 mm, whereas the cylindrical part had a length of 800 mm and the conical
part had a length of 400 mm. This in order to shorten the computational time and to make the results less
dependent on the length of the conical shell.

The first step in analysing the effect of the semi-vertex angle was to do an eigenvalue analysis for the
different cylindrical-conical shells. The first three force eigenvalues can be seen in table 5.6. What can be
observed is that the buckling load decreases with increasing semi-vertex angle. The accompanying first mode
shapes of the cylindrical-conical shells can be seen in figure 5.7. What can be seen is that for the models with
a semi-vertex angle between 0° and 5° the deformation is located along the whole length of the cylindrical-
conical shell and for the other models the deformation is present at the conical part of the cylindrical-conical
shell. When looking at the force eigenvalues it can be seen that the cylindrical-conical shells with a semi-
vertex angle of 0°, 1°, 2°, and 5° have the same buckling load, which is expected since the mode shapes look
similar. It can be seen that when the semi-vertex angle increases the buckling load decreases, which can be
explained by the fact that only the conical part buckles. The conical part has a lower buckling load compared
to the cylindrical part.

Table 5.6: First three force eigenvalues of the 1200 mm cylindrical-conical shell with different semi-vertex angles.

Semi vertex angle [◦] Force eigenvalue 1 [kN] Force eigenvalue 2 [kN] Force eigenvalue 3 [kN]
0 801.1 801.1 801.6
1 801.1 801.1 801.8
2 801.0 801.1 801.9
5 800.0 800.0 800.9
10 787.3 787.3 788.1
15 756.0 756.0 756.9

(a) Cylindrical-conical shell with a
semi-vertex angle of 0°.

(b) Cylindrical-conical shell with a
semi-vertex angle of 1°.

(c) Cylindrical-conical shell with a
semi-vertex angle of 2°.

(d) Cylindrical-conical shell with a semi-vertex
angle of 5°.

(e) Cylindrical-conical shell with a semi-vertex
angle of 10°.

(f) Cylindrical-conical shell with a semi-vertex
angle of 15°.

Figure 5.7: First buckling mode shapes of the 1200 mm sandwich composite cylindrical-conical shell with different semi-vertex angles.
For generating the figures a scaling factor of 30 was employed.
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A dynamic implicit analysis was also performed in order to see the differences with the eigenvalue anal-
ysis. It should be noted that the same dynamic properties were used as described in earlier sections. The
force-displacement graphs can be seen in figure 5.8. What can be observed is that when using a semi-vertex
angle of 0° the difference between the buckling loads of the eigenvalue analysis and dynamic analysis is 2.5%.
At a semi-vertex angle of 5° the difference is already 30% and goes to 40% for a semi-vertex angle of 15°.

(a) Cylindrical-conical shell with a semi-vertex angle of 0°. (b) Cylindrical-conical shell with a semi-vertex angle of 1°.

(c) Cylindrical-conical shell with a semi-vertex angle of 2°. (d) Cylindrical-conical shell with a semi-vertex angle of 5°.

(e) Cylindrical-conical shell with a semi-vertex angle of 10°. (f) Cylindrical-conical shell with a semi-vertex angle of 15°.

Figure 5.8: Force-displacement graphs of the 1200 mm sandwich composite cylindrical-conical shell with different semi-vertex angles.
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To further investigate the difference also the deformation shapes just before buckling were extracted. The
deformation shapes are shown in figure 5.9. What can be seen is that for semi-vertex angles higher than
0° the deformation is concentrated around the intersection. When comparing the deformation shapes with
the mode shapes obtained by the eigenvalue analysis it can be seen that the eigenvalue analysis is not able
to capture the behavior around the intersection. Interesting to note is that at a semi-vertex angle of 1° the
behavior around the intersection is already dominating the buckling of the cylindrical-conical shell.

(a) Cylindrical-conical shell with a semi-vertex
angle of 0°.

(b) Cylindrical-conical shell with a semi-vertex
angle of 1°.

(c) Cylindrical-conical shell with a semi-vertex
angle of 2°.

(d) Cylindrical-conical shell with a semi-vertex
angle of 5°.

(e) Cylindrical-conical shell with a semi-vertex
angle of 10°.

(f) Cylindrical-conical shell with a semi-vertex
angle of 15°.

Figure 5.9: Deformation shapes right before buckling of the 1200 mm sandwich composite cylindrical-conical shell with different
semi-vertex angles. For generating the figures a scaling factor of 1 was employed.



6
Investigation of the non-linear behavior of

the sandwich composite
cylindrical-conical shell

Since there is a difference between the eigenvalue analysis and the dynamic implicit analysis, further inves-
tigation is needed. For the sandwich composite cylindrical shell and sandwich composite conical shell the
eigenvalue analysis is able to capture the buckling load. However, for the sandwich composite cylindrical-
conical shell the eigenvalue analysis is giving a buckling load which is 40% higher compared to the dynamic
implicit analysis. Since for the eigenvalue analysis only deformation is present at the top of the conical part of
the cylindrical-conical shell and nothing happens at the interface, it is further investigated if the eigenvalue
analysis is not able to give accurate results for a sandwich composite cylindrical-conical shell structure. The
reason for this is probably because of the non-linear behavior of the sandwich composite cylindrical-conical
shell, which cannot be captured by the eigenvalue analysis.

This chapter further investigates the causes of the non-linear behavior and shows how the difference be-
tween the eigenvalue analysis and dynamic implicit analysis can be solved. First, the results given by the
dynamic implicit analysis are verified. This is done by performing a non-linear Riks analysis, which is an-
other solver within the Abaqus software that is able to capture non-linear effects. Moreover, a S4R element
model was analysed to verify the results. After that, the radial deformation and strains are compared between
the analyses. This in order to better understand the behavior of the transition area and to find out why this
difference happens. In section 6.4, a preload is added before executing an eigenvalue analysis to see if in-
cluding the non-linear behavior of the cylindrical-conical shell gives a better prediction for the eigenvalue
analysis. Then the material properties are changed of the cylindrical part of the cylindrical-conical shell to
see what happens if the cylindrical shell has a lower buckling load compared to the conical part of the shell.
This is followed by the investigation of an aluminum cylindrical-conical shell to see if the eigenvalue analy-
sis is able to give a buckling load closer to the dynamic implicit buckling load when an isotropic material is
used. After that, a composite cylindrical-conical shell was analysed to see the difference between a compos-
ite cylindrical-conical shell and a sandwich composite cylindrical-conical shell. Finally, the effect of adding
a radius of curvature at the transition and the effect of reinforcing the structure around the transition are in-
vestigated. It should be noted that for the analyses performed in this chapter the same modelling techniques
are used as described in chapter 5 and the SC8R element model was employed unless stated otherwise.

6.1. Verification of the dynamic implicit analysis
For the verification of the results of the dynamic implicit analysis, two analyses were performed: the non-
linear Riks analysis and a dynamic implicit analysis using the S4R element model. In order to verify the results
the force-displacement graphs of the different analyses are compared. Both analyses are able to capture the
non-linear effects of the shell.

The non-linear Riks solver was used in order to verify the force-displacement graph of the dynamic im-
plicit analysis. The reason for choosing a non-linear Riks analysis is because of its ability to include non-linear
effects. The non-linear Riks analysis is based on the arc-length method and generates the force-displacement
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graph by using iterations. It solves simultaneously for loads and displacements and uses arcs to measure the
progress of the solution. In the Abaqus manual [18] it is advised to use the non-linear Riks solver instead of
using the eigenvalue analysis if there is any chance of material non-linearity or geometric non-linearity be-
fore buckling. In figure 5.2 it can be seen that there is non-linear behavior before buckling and therefore, this
solver should be able to give a better prediction of the buckling load.

For the non-linear Riks solver, incremental parameters should be defined. The process of determining
these parameters is the same as for the dynamic implicit analysis. For the non-linear Riks analysis the same
incremental parameters were used. It should be noted that for the non-linear Riks solver to initiate buckling a
small imperfection is needed. This is because it is a quasi-static analysis and for buckling to happen a trigger
is needed. This section is meant to verify the result of the dynamic analysis so the non-linear Riks solver
was used without adding any imperfection to the model and only the graphs prior to buckling are compared.
The comparison between the non-linear Riks and dynamic implicit force-displacement graphs can be seen
in figure 6.1. What can be seen is that the graphs are the same until buckling, which means that the graph
obtained by the dynamic implicit analysis is verified.

It could be seen in the job diagnostics of the non-linear Riks analysis that negative eigenvalues start ap-
pearing after passing the buckling point determined by the dynamic implicit analysis. This means that the
non-linear Riks analysis is following an unstable path after the buckling point. The result is that the non-
linear Riks analysis overshoots the buckling load. This was expected as already explained above.

Figure 6.1: Force-displacement graphs obtained by the non-linear Riks analysis and dynamic implicit analysis of the sandwich
composite cylindrical-conical shell.

Another way to verify the results given by the dynamic implicit analysis is to use another element model.
The S4R element model was chosen because of the mesh being independent on the way in which the thick-
ness is defined (2D element model) and because the mesh convergence studies in chapter 4 were done using
S4R elements. A dynamic implicit analysis was performed to see the differences in the force-displacement
graphs. The force displacement graphs of both element models can be seen in figure 6.2. It can be seen that
both graphs are on top of each other. This means that the SC8R element model is build up correctly and that
there is no difference between both element models.
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Figure 6.2: Force-displacement graphs obtained by the dynamic implicit analysis using the S4R element model and the SC8R element
model of the sandwich composite cylindrical-conical shell.

6.2. Difference in radial deformation of linear analyses and non-linear anal-
yses

To better understand the difference between the linear analyses and the non-linear analyses, a linear static
analysis was performed. A load of -440 kN (just before buckling) was applied to the sandwich composite
cylindrical-conical shell to be able to compare the deformation shapes of the linear static analysis, non-linear
Riks analysis, and dynamic implicit analysis. When looking at the results of the dynamic implicit analysis it
can be seen that there is a large radial deformation at the interface of the cylindrical-conical shell. In order
to investigate if the linear static analysis is able to capture the same behavior as the non-linear analyses, the
radial deformations are compared at the same displacement. At a load of -440 kN the displacement in axial
direction of the linear static analysis is equal to -7.12 mm. To make the comparison, the radial deformation
shapes of the non-linear analyses are also taken at an axial displacement of -7.12 mm. The maximum radial
deformations and deformation shapes can be seen in table 6.1 and figure 6.3, respectively. It should be noted
that a scaling factor of 20 is used for the representation of the deformation shapes. This is done in order to
better visualize the difference.

When looking at table 6.1 it can be seen that the maximum radial displacements of the non-linear Riks
and dynamic implicit analysis are the same. This is expected since the slope of the force-displacement graph
of both analyses are similar. When looking at the difference between the linear static analysis and the non-
linear analyses it can be seen that there is a difference of 23%. This means that the linear static analysis is not
able to capture the large radial deformation at the interface. When looking at the deformation shapes it can
be seen that the non-linear Riks analysis and the dynamic implicit analysis show a larger deformation at the
interface. Moreover, when looking closely at the interface it can be seen that just before the structure bulges
outward the structure is bulging inward. This is not seen for the linear static analysis. The deformation shape
of the linear static analysis shows an increase in radial displacement until the maximum radial displacement
is reached. Due to this difference the stiffness of the non-linear models are reduced, which results in a lower
buckling load.
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Table 6.1: Maximum radial displacement of the sandwich composite cylindrical-conical shell at a displacement of -7.12 mm in axial
direction.

Max radial displacement [mm]
Non-linear Riks 3.9
Dynamic implicit 3.9
Linear static 3.0
Difference [%] -23

(a) Non-linear Riks analysis. (b) Dynamic implicit analysis. (c) Linear static analysis.

Figure 6.3: Radial deformation of the sandwich composite cylindrical-conical shell at a displacement of -7.12 mm in axial direction. For
generating the figures a scaling factor of 20 was employed.

6.3. Difference in strains right before buckling of linear analyses and non-
linear analyses

Looking at the strains of the cylindrical-conical shell can help in getting a better understanding of the non-
linear behavior that is happening. The strain distribution can reveal why there is such a large deformation
at the interface and why there is a difference between the linear and non-linear analyses. In this section the
strains are compared on ply level for the non-linear Riks analysis, dynamic implicit analysis, and linear static
analysis. The strains are compared at a load of -440 kN, which is just before the buckling happens for the
dynamic implicit analysis.

First the strains are compared of the non-linear Riks analysis and the dynamic implicit analysis to verify
that both analysis give the same results. The strains of the dynamic implicit analysis and non-linear Riks
analysis can be seen in tables 6.2 and 6.3, respectively. It should be noted that the strains reported in the table
are the maximum/minimum strains in each ply direction, whereas the positive strains stand for tension and
the negative strains stand for compression. For the non-linear Riks analysis and dynamic implicit analysis
the maximum and minimum strains are located at the exact same position for each ply. The maximum and
minimum strains were located at the transition region. In the table Ply1 - Ply3 represent the strains of the
inner face sheet and Ply4 - Ply6 represent the strains of the outer face sheet. The difference between the
strains are presented in table 6.4. In the table it can be seen that the highest difference that can be observed is
0.3%. For almost all plies the same small difference occurs which can be explained by the fact that the strains
extracted from both analyses were not exactly at a load of -440 kN due to the incremental solving technique.
For both analysis an increment was chosen very close to a load of -440 kN. Since the difference between the
strains is very small, the strains obtained by the dynamic implicit analysis are verified.
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Table 6.2: Micro strains of the dynamic implicit analysis at a load of -440 kN. Ply1 - Ply3 are the strains of the inner face sheet. Ply4 - Ply6
are the strains of the outer face sheet.

ε11 ε22 ε12

Ply1 3285 -6942 23700
Ply2 -13750 10843 264
Ply3 3681 -5214 -21890
Ply4 7535 -4990 -10990
Ply5 -7651 10854 -216
Ply6 8193 -5562 10042

Table 6.3: Micro strains of the non-linear Riks analysis at a load of -440 kN. Ply1 - Ply3 are the plies of the inner face sheet. Ply4 - Ply6 are
the plies of the outer face sheet.

ε11 ε22 ε12

Ply1 3288 -6947 23720
Ply2 -13770 10850 263
Ply3 3684 -5218 -21910
Ply4 7542 -4993 -11000
Ply5 -7655 10860 -216
Ply6 8201 -5565 10050

Table 6.4: Difference between the strains of the dynamic implicit analysis and non-linear Riks analysis in percentages. Ply1 - Ply3 are
the plies of the inner face sheet. Ply4 - Ply6 are the plies of the outer face sheet.

ε11 ε22 ε12

Ply1 0.1 0.1 0.1
Ply2 0.1 0.1 0.3
Ply3 0.1 0.1 0.1
Ply4 0.1 0.1 0.1
Ply5 0.1 0.1 0.0
Ply6 0.1 0.1 0.1

The strains of the dynamic implicit analysis and linear static analysis are also compared. The strains of
the linear static analysis are presented in table 6.5. It should be noted that the strains are taken at the same
element of the maximum/minimum strains of the dynamic implicit analysis. This in order to make a good
comparison, however, it could be seen that the location of maximum/minimum strains of the dynamic im-
plicit analysis coincided with the maximum/minimum strains obtained by the linear static analysis. When
looking at the strains of the linear static analysis it can be seen that the strains are always less when com-
pared to the strains of the dynamic implicit analysis. The difference in percentages between the strains of
the dynamic implicit analysis and the linear static analysis can be seen in table 6.6. A maximum difference
of 38% can be observed. For most of the plies the difference is around 30%. Since this difference is large, it
can be concluded that there is a large deformation present at the transition region resulting in the non-linear
behavior seen for the dynamic implicit analysis. This cannot be captured by the linear analyses.

Table 6.5: Micro strains of the linear static analysis at a load of -440 kN. Ply1 - Ply3 are the plies of the inner face sheet. Ply4 - Ply6 are the
plies of the outer face sheet.

ε11 ε22 ε12

Ply1 2326 -4716 16178
Ply2 -9480 7427 179
Ply3 2518 -3692 -15157
Ply4 4708 -4809 -9086
Ply5 -7340 7437 -150
Ply6 4969 -5213 8743
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Table 6.6: Difference between the strains of the dynamic implicit analysis and linear static analysis in percentages. Ply1 - Ply3 are the
plies of the inner face sheet. Ply4 - Ply6 are the plies of the outer face sheet.

ε11 ε22 ε12

Ply1 -29.2 -32.1 -31.7
Ply2 -31.1 -31.5 -32.2
Ply3 -31.6 -29.2 -30.8
Ply4 -37.5 -3.6 -17.3
Ply5 -4.1 -31.5 -30.6
Ply6 -39.4 -6.3 -12.9

To further investigate the difference in strains of the dynamic implicit analysis and the linear static anal-
ysis the strain distributions are compared. The strain distributions for each ply are shown in figures 6.4, 6.5,
and 6.6. It should be noted that the contours of the linear static analysis were changed to comply with the
contours defined by the dynamic implicit analysis. The strain distributions of each ply and strain direction
have its own contour. Moreover, the strain distributions are shown for the inner face sheet. This is because
for the outer face sheet similar strain distributions were observed. When looking at the strain distributions it
can be seen that for all the models the linear static analysis is able to capture the deformation at the interface.
However, the strains at the interface are not that large as observed for the dynamic implicit analysis.

In figure 6.4 the strains of the +56° ply (ply1) can be seen. When looking at figure 6.4a it can be seen that
from top to the transition region first the strains are negative then close to the transition region the strains
become even more negative and then at the transition region the strains become positive. For the linear
static analysis the strains go from negative values to positive values. This means that not the same behavior is
happening at the interface for the linear static analysis. In figures 6.4d and 6.4e it can be seen that the strains
at the interface are more positive for the dynamic implicit than for the linear static analysis. For the strain in
ε22 direction it can be observed that the strains for the dynamic implicit analysis from top to the transition
region go from negative to positive close to the transition region and then back to negative at the intersection.
This is not seen for the linear static analysis, the strains are all negative.

Figure 6.5 shows the strains of the 0° ply (ply2). In figure 6.5a and figure 6.5b it can be seen that the
dynamic implicit analysis and the linear static analysis are giving similar results. The difference lies in that
the linear static analysis is not able to give as negative values as given for the dynamic implicit analysis. When
looking at the figures of ε22 it can be seen that the strains from top to the transition region for the dynamic
implicit analysis go from positive values to negative values and back to positive values again at the transition.
This is not seen for the linear static analysis, the strains are positive for the whole structure. Since this is
the zero degree ply, the ε22 are the hoop strains. It can be seen that just before the transition the hoop strains
become negative, which can explain the buckling behavior of the dynamic implicit analysis of the cylindrical-
conical shell. These negative hoop strains are not seen for the linear static analysis and therefore, a higher
buckling load is obtained. Moreover, a comparison can be made between the strains of the perfect cylindrical-
conical shell and perfect cylindrical and conical shells. For perfect cylindrical and conical shells the axial
strains are negative and the hoop strains are positive. For the cylindrical-conical shell it can be seen that the
axial strains are also negative, but that the hoop strains are both negative and positive. The negative hoop
strains can explain the different behavior of the cylindrical-conical shell.

The strain distributions for the -56° ply (ply3) can be seen in figure 6.6. The strain distributions of ε11 for
the dynamic implicit analysis and linear static analysis are similar to the behavior seen for the first ply. For
ε12 and ε22 it can be seen that the dynamic implicit show more negative values compared to the linear static
analysis.

The strain plots given here show that there is a major difference between the dynamic implicit analysis
and the linear static analysis. The linear static analysis is not able to capture the same behavior around the
interface as the dynamic implicit analysis. It can be seen that the strains of the dynamic implicit analysis
sometimes change from positive to negative strains and from negative to positive strains right before the
transition, which is not captured by the linear static analysis. Moreover, the linear static analysis is not able
to give the same large magnitude of the strains at the interface as for the dynamic implicit analysis. This can
be the reason why the linear static analysis is giving a higher buckling load compared to the dynamic implicit
analysis.

Due to the behavior at the transition more research was performed on the behavior of the intersection
of combined shell structures. It could be seen that for pressure vessels under internal pressure large nega-
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tive strains appear at the transition area. In [63], [62], and [51] it is described that due to these large nega-
tive strains the structure fails at the interface. It should be noted that pressure vessels also consist out of a
cylindrical-conical shell section. In [51] it is explained why these large strains appear and why the transition
area is the weakest part of the combined shell. It is explained that when a vertical force is exerted on the
conical part of the cylindrical-conical shell due to internal pressure, the conical part is pulled away from the
cylindrical part. This force is taken up by the tension of the conical part in radial direction, which reaches its
maximum at the intersection. At the intersection the vertical component of this tension is transferred to the
cylindrical part. However, the radial component cannot be transferred to the cylindrical part and has to be
taken up by the intersection. This radial component leads to compressive stresses and strains at the inter-
section which in most cases result in failure at the intersection. Since the loading condition for the sandwich
composite cylindrical-conical shell in this research is axial compression the same explanation can be given as
described for the pressure vessel under internal pressure. However, the cone is pushed away from the cylin-
der. This means that at the transition area large positive hoop stresses and strains appear, which can also be
seen in the results.
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(a) ε11 dynamic implicit analysis. (b) ε11 linear static analysis. (c) ε11 contour plot.

(d) ε12 dynamic implicit analysis. (e) ε12 linear static analysis. (f) ε12 contour plot.

(g) ε22 dynamic implicit analysis. (h) ε22 linear static analysis. (i) ε22 contour plot.

Figure 6.4: Strain distribution of the first ply in different directions of the dynamic implicit analysis and linear static analysis.
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(a) ε11 dynamic implicit analysis. (b) ε11 linear static analysis. (c) ε11 contour plot.

(d) ε12 dynamic implicit analysis. (e) ε12 linear static analysis. (f) ε12 contour plot.

(g) ε22 dynamic implicit analysis. (h) ε22 linear static analysis. (i) ε22 contour plot.

Figure 6.5: Strain distribution of the second ply in different directions of the dynamic implicit analysis and linear static analysis.
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(a) ε11 dynamic implicit analysis. (b) ε11 linear static analysis. (c) Contour plot.

(d) ε12 dynamic implicit analysis. (e) ε12 linear static analysis. (f) ε12 Contour plot.

(g) ε22 dynamic implicit analysis. (h) ε22 linear static analysis. (i) ε22 Contour plot.

Figure 6.6: Strain distribution of the third ply in different directions of the dynamic implicit analysis and linear static analysis.
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Launch vehicle structures are not meant to fail prior to buckling. Therefore, for the sandwich composite
cylindrical-conical shell it is investigated if this does not happen. The failure strains of the IM7/8552 can be
seen in table 6.7.

Table 6.7: Failure strains of the composite IM7/8552 material in micro strain [16].

εt
11 εc

11 εt
22 εc

22 ε12

15969 12280 6584 29400 11520

When comparing the failure strains with the strains obtained by the dynamic implicit analysis (see table
table 6.2) it can be concluded that the cylindrical-conical shell would fail before buckling. It can be seen that
the +56°, 0°, and -56° ply of the inner face sheet and the 0° ply of the outer face sheet are the most critical
plies. It can be seen that the structure fails prior to buckling due to these four plies. This means that for this
structure a new design should be proposed because the cylindrical-conical shell proposed in this study is not
able to withstand the load. For the thesis it does not matter that the cylindrical-conical shell would fail since
the purpose of the thesis is to better understand the buckling behavior of cylindrical-conical shells. The thesis
focuses more on analysing the behavior from a numerical point of view than from a design perspective.

6.4. Preloading structure before eigenvalue analysis
From section 6.2 it is known that large deformations are present at the interface and, therefore, the results
of the eigenvalue analysis can be inaccurate. This is because these large deformations are non-linear effects
which cannot be captured by the eigenvalue analysis alone. By preloading the structure before executing an
eigenvalue analysis a buckling load can be obtained that includes the non-linear effects. Since the deforma-
tion pattern as can be seen in figure 5.3a is showing large deformation around the interface, this deforma-
tion shape should be included when performing an eigenvalue analysis. Therefore, before performing the
eigenvalue analysis, a static general non-linear analysis step was performed. This analysis method is a static
method which is able to capture non-linear effects. It uses the Newton Raphson iterative method to find a
solution. It was decided to load the structure before performing the eigenvalue analysis by using a preload of -
200, -300, and -400 kN. The force-displacement graph including the eigenvalue buckling points with a preload
can be seen in figure 6.7. What can be seen is that the buckling load decreases with increasing preload. The
values of the buckling loads using different preloads can be seen in table 6.8. By using a preload of -400 kN
the difference between the buckling load predicted by the eigenvalue analysis and the dynamic analysis is
less than 5%. From the table it can be concluded that the prediction given by the eigenvalue analysis is more
accurate when a preload of below -300 kN is applied.

Table 6.8: Buckling loads obtained by the eigenvalue analysis after performing a preload of the sandwich cylindrical-conical shell and
difference with respect to the dynamic buckling load.

Preload [kN] Force eigenvalue1 [kN] Difference w.r.t. dynamic analysis [%]
0 kN 712.6 38
-200 kN 666.9 34
-300 kN 558.8 21
-400 kN 463.6 5

The first mode shapes determined by the eigenvalue analysis performed after a preload can be seen in
figure 6.8. The first mode shape of the model with a preload of 0 kN can be seen in figure 5.1a. What can
be observed is that when adding a preload the eigenvalue analysis is giving a mode shape with a diamond
deformation pattern around the interface. These mode shapes look similar to the mode shape obtained from
the dynamic implicit analysis. This means that by adding a preload before performing an eigenvalue analysis
can give a better prediction.
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Figure 6.7: Force-displacement graph of the sandwich composite cylindrical-conical shell including the eigenvalue analysis points
obtained after adding a preload.

(a) Preload of -200kN. (b) Preload of -300kN. (c) Preload of -400kN.

Figure 6.8: First buckling mode shape of the sandwich composite cylindrical-conical shell determined after adding a preload. For
generating the figures a scaling factor of 30 was used.

What can be concluded from this section is that when adding a preload the prediction given by the
eigenvalue analysis is able to give a buckling load and mode shape closer to the buckling load and defor-
mation shape of the dynamic implicit analysis. An explanation for this is that around the intersection of the
cylindrical-conical shell a large deformation is present. This is due to the interface being unconstrained.
When a force is pushing down from the top at the interface the structure wants to bulge outwards, which
is also known as the elephant foot effect [12]. This effect is also present around clamped boundaries as al-
ready seen in the chapter about the cylindrical shell. Due to this deformation, an axisymmetric imperfection
is added to the structure around the interface. Since this imperfection is included in the dynamic implicit
analysis the buckling load of the dynamic implicit analysis is much lower compared to the eigenvalue analy-
sis. The reason that the eigenvalue analysis is not able to capture this is because the elephant foot effect is a
geometrical non-linear problem which cannot be captured by linear analyses. This is the reason why adding
a preload and thus, adding a deformation to the structure before executing an eigenvalue analysis gives a
buckling load closer to the dynamic implicit buckling load.
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6.5. Buckling load of cylindrical part same as conical part
When looking at the buckling loads obtained by the eigenvalue analysis of the separate cylindrical and coni-
cal shell, it can be seen that the buckling load of the conical shell is lower compared to the buckling load of the
cylindrical shell. Since the value and mode shape obtained by the eigenvalue analysis of the sandwich com-
posite cylindrical-conical shell is the same as the buckling load and mode shape of the conical shell alone, it
is hypothesized that the result of the eigenvalue analysis is similar to that of the cylindrical or conical shell
alone depending on which buckling load is lower. In order to verify this hypothesis, the material properties
of the cylindrical shell were changed such that the buckling load of the cylindrical shell is much lower com-
pared to the buckling load of the conical shell, which is equal to 712.6 kN. The reason for using the material
properties as variables is because the result should be independent on geometry. The material properties
were chosen such that the analytical buckling load of the cylindrical shell was around 500 kN. This value was
chosen randomly and could have been any number well below 712.6 kN. The material properties used can be
seen in table 6.9. By using the analytical expression for calculating the buckling load of the cylindrical shell
using the material properties given in table 6.9 a buckling load of 545 kN is obtained.

Table 6.9: Material properties set 1 of sandwich composite cylindrical shell [50].

E11 [MPa] E22 [MPa] v [-] G12 [MPa]
94800 7100 0.3 2900

The material properties of the conical part were kept the same. Within the Abaqus model this was achieved
by creating two sets of elements, one for the conical shell part and one for the cylindrical shell part. Then the
material properties were assigned using the two element sets resulting in two parts with different material
properties. After the material properties were changed, an eigenvalue analysis and dynamic impilicit analy-
sis were performed.

The buckling load obtained by the eigenvalue analysis is equal to 559.2 kN. This value is close to the
buckling load of the cylindrical shell alone as expected. The first buckling mode shape of the cylindrical-
conical shell can be seen in figure 6.9. What can be seen is that only the cylindrical part of the cylindrical-
conical shell is showing out of plane deformation and the conical shell part is not showing any deformation. It
looks like that the conical shell is not taking part in the eigenvalue analysis. This suggests that the eigenvalue
analysis is giving the buckling load and mode shape of either the cylindrical or conical shell alone depending
on which buckling load is lower.

Figure 6.9: First buckling mode shape of sandwich composite cylindrical-conical shell using modified material properties. For
generating this figure a scaling factor of 30 was employed.

A dynamic implicit analysis was performed to investigate if there is still a difference between the buckling
load and mode shape obtained by the eigenvalue analysis and dynamic analysis. The force-displacement
graphs can be seen in figure 6.10. It should be noted that in the graph the modified results represent the
sandwich composite cylindrical-conical shell using material properties set 1 and the original result represents
the sandwich composite cylindrical-conical shell as defined in previous analyses. The results of the original
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sandwich composite cylindrical-conical shell are added as a reference. From the graph it can be seen that
the buckling load obtained by the dynamic analysis is 351 kN. This value is again around 40% lower than the
value given by the eigenvalue analysis. The deformation shape before buckling is presented in figure 6.11.
When comparing the shape in figure 6.11 with the mode shape given in figure 6.9 it can be observed that the
dynamic implicit analysis gives a shape that is more around the interface and that the eigenvalue analysis is
giving a shape showing deformation only at the cylindrical shell. The eigenvalue analysis is not able to show
the interaction between the two shells.

Figure 6.10: Force-displacement graphs of the sandwich composite cylindrical-conical shell using the modified material properties and
using the original material properties for the cylindrical shell.

Figure 6.11: Radial deformation shape right before buckling of the sandwich composite cylindrical-conical shell using modified
material properties. For generating this figure a scaling factor of 1 was employed.

By knowing this, it is investigated what happens when the buckling load of the cylindrical shell and conical
shell are the same and equal to 712.6 kN. It is hypothesized that the buckling mode shape obtained by the
eigenvalue analysis should be giving a mode shape that covers the whole shell and not only at the conical
shell or cylindrical shell part. For this investigation again the material properties of the cylindrical shell part
were changed. Since there were no actual material properties found that gave an analytical buckling load of
712.6 kN, the cylindrical shell material properties were made up such that an analytical buckling load of 712.6
kN could be achieved. The material properties used for the cylindrical shell can be seen in table 6.10.
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Table 6.10: Material properties set 2 of sandwich composite cylindrical shell.

E11 [MPa] E22 [MPa] v [-] G12 [MPa]
120000 9800 0.3 5950

The same method of implementing the different material properties for the cylindrical part and conical
part was used as described above. First an eigenvalue analysis was performed. The buckling load obtained is
equal to 712.6 kN as expected since the buckling load of the cylindrical shell and conical shell are both equal
to 712.6 kN. However, the mode shape obtained can be seen in figure 6.13 and is the same as the mode shape
given in figure 5.1a. This means that the eigenvalue analysis is not able to capture the interaction between
the cylindrical and conical shell.

Figure 6.12: First buckling mode shape of sandwich composite cylindrical-conical shell using modified material properties. For
generating this figure a scaling factor of 30 was employed.

Also a dynamic analysis was performed to see what happens if the cylindrical shell and conical shell part
have the same buckling load. The force-displacement graphs can be seen in figure 6.13. It should be noted
that in the graph the modified results represent the sandwich composite cylindrical-conical shell using ma-
terial properties set 2 and the original result represents the sandwich composite cylindrical-conical shell as
defined in previous analyses. The buckling load of the dynamic analysis is equal to 419.2 kN, which is again
around 40% lower than the eigenvlaue analysis result. The shape obtained by the dynamic implicit analysis
is similar to the shape given in figure 6.11.

From this investigation it can be said that the eigenvalue analysis is not able to capture the behavior of the
cylindrical and conical shell together, the transition is completely ignored. The buckling load and mode shape
that are obtained by performing an eigenvalue analysis are similar to the buckling load and mode shapes
of the separate shells. To conclude, the eigenvalue analysis is not able to capture the buckling behavior of
sandwich composite cylindrical-conical shells.
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Figure 6.13: Force-displacement graphs of the sandwich composite cylindrical-conical shell using the modified material properties and
using the original material properties for the cylindrical shell.

6.6. Aluminum cylindrical-conical shell
An aluminum cylindrical-conical shell was analysed in order to investigate if the difference between the
eigenvalue analysis and dynamic implicit analysis is because of the sandwich composite material used. It
might be that the difference is caused by the lay-up. Therefore, an eigenvalue and dynamic implicit analysis
was performed using an aluminum cylindrical-conical shell. The dimensions of the cylindrical-conical shell
were kept the same. This means that the thickness of the shell was equal to the total thickness of the sandwich
composite shell which was equal to 2.95 mm. The material properties of the aluminum used can be seen in
table 6.11.

Table 6.11: Material properties of aluminum 2024-T4 [49].

E [MPa] v [-]
73100 0.3

Firstly, an eigenvalue analysis was performed for the separate cylindrical and conical shell. This in order
to be able to compare the eigenvalue analysis results of the shells alone and the combined cylindrical-conical
shell. The buckling loads obtained can be seen in table 6.12.

Table 6.12: Buckling loads of the cylindrical shell and conical shell using eigenvalue analysis.

Buckling load [kN]
Cylidrical shell 2437.7
Conical shell 2256.7

What can be seen is that the buckling load for the cylindrical shell is higher than the buckling load of the
conical shell, as expected due to the semi-vertex angle. The buckling loads are verified by using equation 6.1
[42] for the cylindrical shell and equation 6.2 [41] for the conical shell. The buckling loads obtained are 2444.7
kN and 2280.9 kN, respectively.

Pcr = 2πEt 2√
3(1−µ2)

(6.1)



6.6. Aluminum cylindrical-conical shell 83

Pcr = 2πEt 2cosα2√
3(1−µ2)

(6.2)

A difference of 0.3% is obtained for the cylindrical shell and a difference of 1.1% for the conical shell. The
first mode shape of the cylindrical shell and conical shell can be seen in figure 6.14a and 6.14b, respectively.
What can be seen is that for both models the mode shape shows a diamond pattern. For the conical shell the
deformation is more located towards the top, which is expected because of the top of the shell being weaker
as already explained.

(a) First mode shape of aluminum cylindrical shell. (b) First mode shape of aluminum conical shell.

Figure 6.14: First mode shapes of aluminum cylindrical and conical shell. For generating this figure a scaling factor of 30 was employed.

A finite element model was also created for the cylindrical-conical shell model. This was done by using the
same model as for the sandwich composite cylindrical-conical shell and by changing the sandwich lay-up to
an isotropic material. For this model an eigenvalue analysis and a dynamic implicit analysis were performed.
The buckling loads determined by the eigenvalue analysis and dynamic analysis can be seen in table 6.13.
The force-displacement graph obtained by the dynamic implicit analysis is presented in figure 6.15. The
difference between the buckling loads is 44%, which is again a large difference. It can also be seen that the
buckling load obtained by the eigenvalue analysis is close to the buckling load of the conical shell alone. This
means that the same behavior happens for an isotropic material.

The buckling shapes can be seen in figure 6.16. What can be seen is that for the isotropic cylindrical-
conical shell the eigenvalue analysis is able to give a buckling mode shape that is located around the inter-
face. It can be seen that the mode shape obtained is different compared to the mode shape determined by
the eigenvalue analysis of the conical shell alone. The eigenvalue analysis is able to give a mode shape that
looks similar to the dynamic implicit deformation shape right before buckling. The difference is that for the
eigenvalue analysis the interface is not taken into account and the deformation is only located in the conical
part of the shell and nothing happens in the cylindrical shell part. This is not the case for the deformation
shape of the dynamic implicit analysis.

What can be concluded is that the eigenvalue analysis is not able to give accurate results for the isotropic
cylindrical-conical shell model. The difference between the buckling load of the eigenvalue analysis and
dynamic implicit analysis is 44%. However, the mode shape obtained is closer to the deformation shape
determined by the dynamic implicit analysis, which was not seen for the sandwich composite cylindrical-
conical shell model. Since the difference in buckling load is still big it can be said that the difference between
both analyses is not because of the material used.

Table 6.13: Buckling loads of the eigenvalue analysis and dynamic implicit analysis.

Buckling load [kN]
Eigenvalue analysis 2207.3
Dynamic implicit
analysis

1226.7
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Figure 6.15: Force-displacement graph of aluminum cylindrical-conical shell.

(a) First mode shape obtained using the eigenvalue analysis.
(b) Radial deformation shape just before buckling obtained by the dynamic

implicit analysis.

Figure 6.16: Deformation shapes obtained by the eigenvalue analysis and dynamic implicit analysis of the aluminum
cylindrical-conical shell.

6.7. Composite cylindrical-conical shell
Most of the research done until now focused on the analysis of a sandwich composite material. Since the lay-
up used for the sandwich composite shell has a nonconventional lay-up, this section focuses on a composite
cylindrical-conical shell with a conventional lay-up. In this section it is investigated how the difference be-
tween the eigenvalue analysis and dynamic implicit analysis changes when a more conventional laminate is
used. For the composite cylindrical-conical shell a quasi-isotropic lay-up was chosen. A quasi-isotropic lay-
up was chosen because it has similar stiffness in all directions and has no coupling effects. Moreover, since
a lot of studies have been performed on quasi-isotropic laminates the behavior of these laminates are better
understood. A cylindrical-conical shell of 1600 mm with a semi-vertex angle of 15 degrees and a shell with a
height of 1200 mm and a semi-vertex angle of 5 degrees were used. The 1600 mm shell was chosen because
most of the analyses performed in this report had this configuration. The 1200 mm shell was used because for
the sandwich composite cylindrical-conical shell with a height of 1200 mm and a semi-vertex angle of 5 de-
grees the difference between the eigenvalue analysis and dynamic implicit analysis was still large. Therefore,
it was investigated if this difference decreases when a different material is used. The material properties used
were the same as for the sandwich composite shell. Moreover, the lay-up used was as follows: [0,45,90,−45]s .
For these models a linear static analysis, an eigenvalue analysis, and a dynamic implicit analysis were per-
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formed. It should be noted that the same modelling techniques were used as described in previous sections.
It is known that the eigenvalue analysis gives a buckling load close to either the buckling load of cylindrical

or conical shell alone depending on which part has a lower buckling load. To be able to verify the results given
by the eigenvalue analysis of the composite cylindrical-conical shell, first the analytical buckling loads of the
cylindrical and conical shell were calculated. The analytical buckling loads were calculated using the SP-8007
guideline for composite cylindrical shells and the buckling load equation can be seen in equation 6.3 [42].
Whereas, Nx is the buckling load per meter, l is the length of the cylindrical shell, and m is the number of
half waves. The A terms can be calculated by using the stiffness terms of the laminate. The buckling load of
a composite conical shell was calculated using equation 6.4 [41]. Whereas, PCone is the buckling load of the
conical shell, PC yli nder is the buckling load of the cylindrical shell with the same material properties, height,
and diameter as the conical shell, and α is the semi-vertex angle.

Nx =
(

l

mπ

)2
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∣∣∣∣ (6.3)

PCone = PC yli nder · cos2α (6.4)

The buckling loads were calculated for a cylindrical shell of 800 mm, a conical shell of 800 mm with a
semi-vertex angle of 15°, and a conical shell of 400 mm with a semi-vertex angle of 5°. The analytical buckling
loads can be seen in table 6.14.

Table 6.14: Buckling loads of the composite cylindrical shell and conical shells calculated using the SP-8007 and SP-8019 guidelines.

SP-8007/SP-8019 buckling load [kN]
Cylindrical shell 800 mm 315.6
Conical shell 800 mm 294.5
Conical shell 400 mm 314.8

An eigenvalue analysis was performed using the composite cylindrical-conical shell of 1600 mm and the
composite cylindrical-conical shell of 1200 mm. The buckling loads are reported in table 6.15. It can be seen
that the buckling load of the 1600 mm is close to the analytical buckling load of the 800 mm conical shell. For
the 1200 mm shell the buckling load is close to the analytical buckling load of both the cylindrical shell and
conical shell since the buckling loads of the seperate shells are similar. It should be noted that a difference
between the buckling loads determined by the eigenvalue analysis and analytical method is around 15%.
This difference can be explained by the fact that the analytical buckling loads represent the buckling of a
cylindrical or conical shell alone and not a cylindrical-conical shell. However, the buckling loads obtained
by the eigenvalue analyses are of the same order of magnitude as the values determined by the analytical
method.

Table 6.15: Buckling loads of a quasi-isotropic cylindrical-conical shell with a length of 1600 mm and 1400 mm.

Force eigenvalue 1 [kN] Force eigenvalue 2 [kN] Force eigenvalue 3 [kN]
1600 mm shell 249.8 249.8 250.2
1200 mm shell 271.1 271.1 272.1

The first mode shapes are shown in figure 6.17. What can be seen is that for the 1600 mm cylindrical-
conical shell only the conical part is showing deformation and for the 1200 mm cylindrical-conical shell only
the cylindrical shell is showing deformation. This can also be explained by the reason that the buckling load of
the conical shell alone has a lower buckling load than the cylindrical shell alone. For the 1200 mm cylindrical-
conical shell the analytical buckling loads are close to each other which means that either the cylindrical or
conical part buckles. This was also already seen in an earlier section where the buckling load of the cylindrical
shell is the same as the buckling load of the conical shell.
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(a) 1600 mm cylindrical-conical shell. (b) 1200 mm cylindrical-conical shell.

Figure 6.17: First mode shapes of the 1600 mm and 1200 mm composite cylindrical-conical shell. For generating this figure a scaling
factor of 30 was employed.

Moreover, dynamic implicit analyses were performed using both models. The force-displacement graphs
can be seen in figure 6.18. The buckling loads obtained by the dynamic implicit analyses can be seen in table
6.16. It can be seen that for the 1600 mm composite cylindrical-conical shell the difference is bigger than
for the 1200 mm composite cylindrical-conical shell. It can also be observed that the difference between the
eigenvalue analysis and dynamic implicit analysis with respect to the difference observed for the sandwich
composite cylindrical-conical shell is less. This means that the sandwich composite cylindrical shell is more
sensitive to the non-linear behavior happening at the transition region. In figure 6.19 the radial deformation
shapes right before buckling can be seen. When comparing these deformation shapes with the mode shapes
obtained by the eigenvalue analysis it can again be seen that the eigenvalue analysis is not able to capture the
interface.

(a) 1600 mm cylindrical-conical shell. (b) 1200 mm cylindrical-conical shell.

Figure 6.18: Force-displacement graphs of the composite cylindrical-conical shells.

Table 6.16: Buckling loads of the composite cylindrical-conical shells with a height of 1600 mm and 1200 mm obtained by the dynamic
implicit analysis and difference w.r.t. the eigenvalue analysis buckling load.

Buckling load [kN]
Difference w.r.t.
eigenvalue analysis [%]

1600 mm shell 186.6 25
1200 mm shell 249.9 8
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(a) 1600 mm cylindrical-conical shell. (b) 1200 mm cylindrical-conical shell.

Figure 6.19: Radial deformation shapes right before buckling of the 1600 mm and 1200 mm cylindrical-conical shell. For generating this
figure a scaling factor of 1 was employed.

6.8. Effect of radius of curvature at the interface
Until now the model of the sandwich composite cylindrical-conical shell was made by placing the models of
the sandwich composite cylindrical shell and sandwich composite conical shell on top of each other and by
merging the nodes along the boundary. This results in that at the interface there is a sharp transition between
the cylindrical shell part and the conical shell part. However, when a cylindrical-conical shell is manufactured
the interface will not have such a sharp transition. The transition will be more smooth. Therefore, this section
investigates the effect of the buckling behavior when a smooth transition is incorporated in the model. The
smooth transition between the two parts was created by adding a radius of curvature at the interface. The
radius of curvature was equal to 380 mm and is used as preliminary estimate.

For investigating the effect of the radius of curvature at the transition two linear analyses were performed
and one dynamic analysis. First, a linear static analysis was performed in order to see the difference of the
stiffness between the model with radius of curvature and the model without radius of curvature. The load
applied was -900 kN. The axial displacement obtained is 13.9 mm which is a bit less compared to the model
without the radius of curvature. This means that the model is a bit more stiff. Moreover, an eigenvalue anal-
ysis was performed. This was done in order to investigate if the mode shape and buckling load change when
the transition is more smooth. The buckling load obtained is 712.6 kN and the buckling mode shape of the
first buckling mode can be seen in figure 6.20. When comparing the buckling load and mode shape with the
model without the radius of curvature it can be seen that the results are the same.

Figure 6.20: First buckling mode shape of the model including a radius of curvature of 380mm. Scaling factor is equal to 30.

Next to two linear analyses also a dynamic analysis was performed. The force-displacement graphs of the
model with radius of curvature and without radius of curvature can be seen in figure 6.21. The buckling loads
are reported in table 6.17. What can be seen is that the buckling load is increased by 20%. This means that
by adding a radius of curvature at the intersection the difference between the eigenvalue analysis and the
dynamic analysis is decreased. However, still a difference of 26% can be observed. Furthermore, the stiffness
of the model with radius of curvature is increased compared to the model without radius of curvature.
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Figure 6.21: Force-displacement graphs of the sandwich composite cylindrical-conical shell model with and without radius of
curvature.

Table 6.17: Buckling loads obtained by the dynamic analyses of the models with and without radius of curvature.

Model Without radius of curvature With radius of curvature
Buckling load [kN] 441.5 529.0

For the 1200 mm sandwich composite cylindrical-conical shell with a semi-vertex angle of 5° it could
be seen that the difference between the eigenvalue analysis and dynamic implicit analysis is large (as dis-
cussed in section 5.6). However, it is expected that when a small semi-vertex angle is used the difference
between both analyses should be small. This is because when a semi-vertex angle of 5° is used the angle is
small enough that the cylindrical-conical shell looks more like a cylindrical shell. For cylindrical shells the
difference between the eigenvalue analysis and dynamic implicit analysis is negligible; however, this small
difference was not observed for the cylindrical-conical shell with a semi-vertex angle of 5°. Therefore, the
effect of the radius of curvature was also investigated for this sandwich composite cylindrical-conical shell to
see if the difference could be decreased. For this investigation two radii of curvature were used: 380 mm as
used for the previous analysis and 1500 mm to see the effect of using a larger transition region. In order to see
the difference between both models the meshes used can be seen in figure 6.22.

(a) Radius of curvature of 380 mm. (b) Radius of curvature of 1500 mm.

Figure 6.22: Mesh of the 1200 mm shell including different radii of curvature.



6.8. Effect of radius of curvature at the interface 89

The buckling loads obtained by the eigenvalue analysis can be seen in table 6.18. All models have the same
force eigenvalue. The eigenmode shapes of the models have a similar shape and can be seen in figure 6.23.
What can be concluded is that by adding a radius of curvature to the structure the results of the eigenvalue
analysis do not change.

Table 6.18: Force eigenvalues of the 1200 mm cylindrical conical shell with a semi-vertex angle of 5° using different radii of curvature at
the transition.

Radius of curvature [mm] Force eigenvalue 1 [kN] Force eigenvalue 2 [kN] Force eigenvalue 3 [kN]
- 800.0 800.0 800.9
380 799.9 799.9 800.8
1500 799.4 799.5 800.1

(a) Radius of curvature of 380 mm. (b) Radius of curvature of 1500 mm.

Figure 6.23: First mode shape of the cylindrical-conical shell using different radii of curvature. A scaling factor of 30 was used.

Next to an eigenvalue analysis also a dynamic implicit analysis was performed to see the difference in
results. The force-displacement graphs of the models with and without radius of curvature can be seen in
figure 6.24. It can be observed that a radius of curvature of 380 mm only increases the buckling load by
2%. This can be explained by the fact that for the 1200 mm shell with a semi-vertex angle of 5° a radius of
curvature of 380 mm results in a small transition. Therefore, also a larger transition area was investigated
and it can be seen that it improves the results. The difference in buckling load of the eigenvalue analysis and
dynamic implicit analysis for the 1500 mm radius of curvature is 10.6%. This means that by adding a large
enough radius of curvature, the behavior at the transition area can be mitigated and a buckling load close to
the eigenvalue analysis buckling load can be obtained.

The radial deformation shapes right before buckling of the models including a radius of curvature can be
seen in figure 6.25. It can be seen that for the model with a radius of curvature of 380 mm the deformation is
mostly located around the intersection. For the model with a radius of curvature of 1500 mm the axissymmet-
ric behavior that was also seen for the eigenvalue analysis mode shape can be observed as well. However, still
a lot of deformation is present at the transition. It can also be seen that the deformation is less concentrated
at the intersection than for the model with a radius of curvature of 380 mm. This due to the longer transition
area.

It can be concluded that the eigenvalue analysis is able to predict the behavior of the cylindrical-conical
shell if a large radius of curvature is present, however, the effect at the transition area will not be mitigated by
adding a large radius of curvature. This is due to the radial component which will always be present if there
is a difference in slope in the geometry.
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Figure 6.24: Force-displacement graphs of the 1200 mm sandwich composite cylindrical-conical shell model with and without radius of
curvature with different values.

(a) Radius of curvature of 380 mm. (b) Radius of curvature of 1500 mm.

Figure 6.25: Radial deformation shapes right before buckling for the 1200 mm shell including different radii of curvature. For generating
this figure a scaling factor of 1 was employed.

6.9. Reinforcing the sandwich composite cylindrical-conical shell by us-
ing extra plies at the interface

In previous analyses it became clear that the interface is the weakest link of the structure. Therefore, in this
section a reinforcement is added at the interface to stiffen the structure. It is investigated to what extend
the non-linear behavior at the interface can be decreased by adding a reinforcement at the interface. In this
section, first the design process of the reinforcement is explained. After that, the modelling technique used is
elaborated on and the results are given.

It was chosen to reinforce the structure using extra plies around the transition area. The reinforcement
consists of 0° plies since these lie in the same direction as the axial load. It was chosen to add 4- 0° plies to
make sure the reinforcement is sufficient and that not too many plies are added. This means that around
the transition area the cylindrical-conical shell is 0.7 mm thicker. It should be noted that the thickness is
increased at both sides of the shell. For the design of the lay-up the design rules given in the book written by
Kassapoglou [29] were used. In the book it is stated that the plies that lay in the same direction should not be
next to each other. Moreover, the laminate should be symmetric in order to avoid coupling effects. By using
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these rules the following lay-up was determined for the face sheets: [0, 56, 0, -56, 0]. The length in which the
transition area had to be reinforced was determined by looking at the out of plane displacement results of
the sandwich composite cylindrical-conical shell. The length that was chosen was equal to the length of the
large out of plane displacements shown in figure 5.3a. This length was equal to 200 mm and was applied at a
height of 700 mm. This length was chosen as a preliminary estimate.

The way in which the reinforcement was added to the model was done by increasing the thickness of the
elements. This modelling technique was chosen because no additional elements were needed. It should be
noted that for adding the reinforcement a Python code was created. First it had to be determined which ele-
ments needed a different thickness. This was done by using the reinforcement length of 200 mm. It should be
noted that the reinforcement was located on the cylindrical part and conical part meaning that the elements
that represent the nodes with a height higher than 700 mm and lower than 900 mm needed a thickness in-
crease. These elements were put in a set to be able to easily change the lay-up of the elements located at the
reinforcement area.

After the reinforcement was added to the model, the linear analyses were performed. A linear static anal-
ysis and eigenvalue analysis were performed. For the linear static analysis a load of -900 kN was applied and a
displacement of 12.9 mm was obtained. This means that the model is more stiff compared to the cylindrical-
conical shell model. This can be explained by the added 0° plies which should increase the stiffness of the
model. The eigenvalue extracted from the eigenvalue analysis is equal to 712.6 kN. This is expected since
the reinforcement is placed at the interface and the eigenmode shape obtained for the sandwich composite
cylindrical-conical shell without reinforcement shows deformation at the top of the conical part, where no
reinforcement is located. The mode shape for the cylindrical-conical with reinforcement can be seen in figure
6.26 and has a similar shape as the mode shape of the sandwich composite cylindrical-conical shell without
reinforcement.

Figure 6.26: First mode shape of the reinforced cylindrical-conical shell. For generating this figure a scaling factor of 30 was employed.

A dynamic implicit analysis was also performed in order to see if the difference between the eigenvalue
analysis and dynamic implicit analysis decreases when a reinforcement is added to the structure. The force-
displacement graph can be seen in figure 6.27. The buckling loads of the model without reinforcement and
with reinforcement can be seen in table 6.19. By adding a reinforcement the buckling load is increased by
42%. This results in a difference between the eigenvalue analysis and dynamic implicit analysis of 12.1%. This
means that by adding a reinforcement to the structure a higher buckling load can be obtained and a smaller
difference between the eigenvalue analysis and dynamic implicit analysis can be achieved. The reason that
this happens is that when adding a reinforcement to the structure the amount of radial displacement at the
interface decreases, which reduces the non-linear behavior of the structure.

Table 6.19: Buckling loads obtained by the dynamic analyses of the models with and without a reinforcement.

Model Without reinforcement With reinforcement
Buckling load [kN] 441.5 626.1



92 6. Investigation of the non-linear behavior of the sandwich composite cylindrical-conical shell

Figure 6.27: Force-displacement graph of the reinforced cylindrical-conical shell. The linear static and eigenvalue buckling point are
included in the model.

The radial deformation shape right before buckling can be seen in figure 6.28. What can be seen is that
the deformation is again mostly located around the transition between the cylindrical part and conical part.
The deformation shape looks similar to the one obtained for the cylindrical-conical shell without radius of
curvature. This means that the eigenvalue analysis is able to predict the buckling load of this shell but not
able to give the right mode shape.

Figure 6.28: Radial deformation right before buckling of cylindrical-conical shell with a reinforcement of 200 mm. A scaling factor of 1
was used.

There is still a difference observed between the eigenvalue analysis and the dynamic implicit analysis
when a reinforcement is included in the model. Therefore, the reinforcement length was increased to see if
the difference can be mitigated. A reinforcement length of 300 mm was chosen, which means that an extra 50
mm on the cylindrical shell part and conical shell part was added. The same lay-up was used as described in
the beginning of this section. First linear analyses were performed. For a linear static analysis a displacement
of 12.5 mm was observed when a load of -900 kN was applied. This means that the model is more stiff than
the model with a reinforcement length of 200 mm, which is expected since more material is added. The force
eigenvalue obtained by the eigenvalue analysis is the same as for the model with a reinforcement length of
200 mm and the same mode shape is obtained, see figure 6.26.

After the linear analyses, also a dynamic implicit analysis was performed. The force-displacement graph
can be seen in figure 6.29. It can be seen that the buckling loads of the eigenvalue analysis and dynamic im-
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plicit analysis are close to each other. The buckling load obtained has a value of 683 kN, which is an increase
of 9% with respect to the model with a reinforcement of 200 mm. The difference between the force eigenvalue
and the buckling load of the dynamic implicit analysis is 4.1 %, which means that by adding a reinforcement
of 300 mm the difference between the eigenvalue analysis and dynamic analysis is small. This also means
that the behavior at the transition is mitigated.

The radial deformation shape right before buckling can be seen in figure 6.30. What can be seen is that
the radial deformation is similar to that of the eigenvalue analysis. It can be seen that only in the conical part
there is radial deformation. This means that by adding a reinforcement to the structure the response is able to
separate the behavior of the cylindrical part and the conical part. It should be noted that the behavior around
the intersection is still present however it is not fully dominating the buckling behavior of the cylindrical-
conical shell anymore. The reason why the deformation around the transition is still present is due to the
non-linearity of the problem which is always present even if a reinforcement is added. What can be concluded
is that when the radial deformation at the transition area is reduced, the eigenvalue analysis is able to predict
the buckling behavior of a cylindrical-conical shell.

Figure 6.29: Force-displacement graph of the cylindrical-conical shell including a reinforcement of 300 mm.

Figure 6.30: Radial deformation right before buckling of cylindrical-conical shell with a reinforcement of 300 mm. A scaling factor of 1
was used.





7
Sensitivity to geometrical imperfections

When a cylindrical or conical shell is manufactured, the structure will never be perfectly circular. This is due
to manufacturing processes and the limitations of the accuracy of the machines used during manufacturing.
This means that imperfections are introduced into the shell and will have an effect on the buckling behavior.
The reason that the imperfection sensitivity has to be investigated is due to the fact that a shell structure has
a large radius/thickness ratio. From the literature study it is known that the buckling load can be reduced to
almost half of the buckling load of a pristine structure if imperfections are present. Since this is such a large
reduction it is important that imperfections are included in the analyses in order to give a better prediction
of the buckling behavior of shells.

Imperfection analyses are performed on the sandwich composite cylindrical, conical, and cylindrical-
conical shell models. It should be noted that the cylindrical-conical shell analysed in this chapter is the one
as presented in chapter 5. The reason for investigating these shells is in order to see the difference in im-
perfection sensitivity and to be able to compare the different structures. There are five models analysed: a
cylindrical shell of 800 mm, a conical shell of 800 mm and 400 mm, and a cylindrical-conical shell of 1600
mm and 1200 mm. Before looking at the imperfection sensitivities of these shells, a computational time
study was performed. The reason for this is that the computational time of a dynamic implicit analysis of the
cylindrical-conical shell model was about two days when using the dynamic implicit parameters determined
in section 4.2.1. It should be noted that at the university a calculation cluster is available with 20 CPUs. Since
this is a long time and a lot of analyses had to be performed in this chapter a computational time study was
done first in order to decrease the computational time of further analysis. After that, geometrical imperfec-
tions are introduced into the models and a comparison is made between the imperfection sensitivity of the
different shells. It should be noted that this chapter focuses on the geometrical imperfections since this was
proven to give a large reduction in buckling load as stated in the literature study. The reason that no other im-
perfections were implemented in the analyses is because this section is meant to compare the imperfection
sensitivities of the different shells and is not meant to compare the effect of different imperfections.

7.1. Computational time study
The computational time of a dynamic implicit analysis of the sandwich composite cylindrical-conical shell
is about two days when using the TU Delft facilities. Since this is a lot of time and a lot of analyses had to
be performed in this chapter, a decrease of computational time was needed. For analysing the imperfection
sensitivity of a shell the buckling load is of interest. This is because it is important to know to which extent
the buckling load is reduced when introducing imperfections into the structure. Since it is of interest to
qualitatively compare the buckling response, the parameters of the dynamic implicit analysis were changed
to more efficiently run the analyses. A computational time study was performed and the parameters of the
model were changed in order to see the effect on the buckling load. The parameters that were changed were
the mesh size, loading rate, and increment size. There were five different cases created and are shown in table
7.1. Case 1 is the case that was used for previous analyses and the results of this case are used as the reference
case. It can be seen that for each of the different cases only 1 parameter was changed except for case 5. The
reason for changing one parameter at the time was in order to investigate the effect of a parameter alone on
the buckling behavior of the cylindrical-conical shell.

95
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Table 7.1: The dynamic implicit parameters used for the 5 cases analysed for the computational time study of the sandwich composite
cylindrical-conical shell.

Case1 Case2 Case3 Case4 Case5
Mesh size [mm] 5 10 5 5 10
Max number of increments 10000 10000 10000 10000 10000
Increment size initial 0.001 0.001 0.01 0.001 0.001
Increment size maximum 0.001 0.001 0.01 0.001 0.001
Increment size minimum 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05
Time period [s] 4.5 4.5 4.5 1.8 1.8
Loading applied [mm] 9 9 9 9 9
Loading rate [mm/s] 2 2 2 5 5

For each of these cases a dynamic implicit analysis was performed and the load-displacement graphs,
buckling loads, and computational times are compared. The load-displacement graphs of each case are
shown in figure 7.1. What can be seen is that cases 1,2,4, and 5 show a force-displacement graph that are
very similar to each other. Only case 3 shows a buckling load which is higher compared to the other cases.
Moreover, the post buckling paths of all cases are similar. When looking at table 7.2 it can be seen that the
buckling loads of cases 2,4, and 5 give a buckling load with a difference of less than 0.5% percent compared to
the reference case. Since the difference in buckling load of case 3 is 3.2% and the computational time is not
decreased that much compared to the other cases, this case will not be used for further analysis. The buckling
loads of cases 2,4, and 5 are close to the buckling load of case 1 and, therefore, each of these cases can be used
for further analyses. Since case 5 shows the biggest decrease in computational time (89.7%) this case is used
for further analyses in this chapter.

Figure 7.1: Force-displacement graphs of the sandwich composite cylindrical-conicals shell using 5 cases with different dynamic
implicit parameters.
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Table 7.2: Buckling loads, CPU times, and difference with respect to the reference case of the sandwich composite cylindrical conical
shells using different dynamic implicit parameters.

Buckling load [kN] CPU time [s]
Difference w.r.t. buck-
ling load case1 [%]

Difference CPU time
w.r.t case1[%]

Case1 441.5 925700
Case2 441.1 227987 -0.1 -75.4
Case3 455.5 370917 3.2 -59.9
Case4 443.0 441380 0.3 -52.3
Case5 443.3 95458 0.4 -89.7

7.2. Axisymmetric imperfection
The first imperfection analysed is an axisymmetric imperfection, which is a geometrical imperfection. This
type of imperfection is based on an analytical expression. The reason for using this type of imperfection is
because it is independent on the results of any analysis.

The equation for implenting an axisymmetric imperfection into a model is given in equation 7.1. Where
ξ is the imperfection amplitude, m is the number of half waves, L is the length of the shell, and x is the axial
position. This imperfection was implemented in the model by giving the nodes a perturbation in the radius
for each height step.

∆R = ξ∗ cos
(m ∗π∗x

L

)
(7.1)

Amplitudes of 10%, 20%, 50%, and 100% were used to investigate the imperfection sensitivity. The am-
plitude is defined as a percentage of the thickness, which means that an amplitude of 10% results in an im-
perfection of 0.295 mm. The number of half-waves of the axisymmetric imperfection were determined by
using the analytical buckling load calculation method proposed by Bert and Reese. It should be noted that
for the conical shell no analytical expression for the buckling mode was found. Therefore, the number of half
waves calculated for the cylindrical shell were also used for the conical shell. The number of half waves used
for the cylindrical-conical shell was determined by adding the number of half waves of the cylindrical and
conical shell. In figure 7.2 a visual representation can be seen of a cylindrical shell and conical shell with an
axisymmetric imperfection. Note that this model uses a very high amplitude (300%) to better visualize the
imperfection added.

(a) Cylindrical shell. (b) Conical shell.

Figure 7.2: Shells including an axisymmetric imperfection with an amplitude of 300% and 12 half waves.

7.2.1. Cylindrical shell
The axisymmetric imperfection implemented in the model had 12 half waves. The buckling loads obtained
for each imperfection amplitude can be seen in table 7.3. In the table also the KDF values can be seen, which
is a measure that is commonly used when imperfections are added to shell structures. This factor shows the
amount in which the buckling load is decreased when adding an imperfection with respect to the buckling
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load determined by the eigenvalue analysis of the model without imperfection. The KDF value is determined
by dividing the buckling load with imperfection by the buckling load without imperfection. It should be
noted that the KDF accounts for both non-linearity and imperfections. What can be seen in the table is
that the buckling load decreases significantly with increasing amplitude. At an amplitude of 10% the KDF is
0.69, which is equal to a decrease of the buckling load with respect to the buckling load of the model with-
out imperfection of 30%. These results show the importance of including imperfections into the model. An
amplitude of 10% is equal to an imperfection of 0.295 mm which is an imperfection that is not considerably
large and possible to be introduced during the manufacturing process. If this happens the buckling load of
the structure would be significantly lower than predicted.

Moreover, a comparison is made between the KDF value predicted by the SP-8007 guideline and the KDF
values obtained by adding an axisymmetric imperfection. In the literature review it is stated that the SP-8007
guideline is outdated and result in parts that are over-designed. The KDF value determined using the SP-
8007 guideline is equal to 0.59. In table 7.3 it can be seen that at an imperfection amplitude of 20% this value
is reached. At an amplitude of 20% the imperfection is equal to 0.59 mm which is quite large and will not
happen during the manufacturing process due to tolerances and regulations. This means that the KDF value
determined by the SP-8007 guideline is overly conservative.

The force-displacement graphs of the cylindrical shell including the axisymmetric imperfections can be
seen in figure 7.3. It can be seen that adding an axisymmetric imperfection has a significant effect on both the
stiffness and buckling load of the cylindrical shell. It can also be seen that the drop after buckling decreases
with increasing imperfection amplitude. It can even be observed that with an amplitude of 100% no sudden
drop in load occurs. This is due to the fact that with an amplitude of 100% the cylindrical shell acts more like
a spring resulting in no buckling of the structure. The structure will just deform in axial direction but will not
show sudden changes in out of plane displacement. Furthermore, the post buckling paths of the models with
an amplitude of 10% and 20% show similar paths. For all the other models a different post buckling path is
followed.

Table 7.3: Buckling loads of the sandwich composite cylindrical shell including axisymmetric imperfection.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 782.4 556.3 458.7 316.9 /
KDF [-] 0.69 0.57 0.39 /

Figure 7.3: Force-displacement graphs of the sandwich composite cylindrical shell with axisymmetric imperfection.
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7.2.2. Conical shell
For the conical shell two models were analysed including an axisymmetric imperfection, one with a height of
800 mm and one with a height of 400 mm. For the 800 mm and 400 mm height models 12 and 6 halve waves
were added to the model, respectively.

The buckling loads of the conical shell with a height of 800 mm including an axisymmetric imperfection
using different amplitudes can be seen in table 7.4. It can be seen that the buckling load decreases signifi-
cantly with increasing amplitude. At an imperfection amplitude of 10% the KDF is equal to 0.71. What also
can be observed is that the values of the KDFs are similar to that of the cylindrical shell model with an ax-
isymmetric imperfection. This was expected because in literature it was said that conical shells have a similar
sensitivity to imperfections as cylindrical shells when small semi-vertex angles are employed [45]. Moreover,
also for the conical shell a guideline was established for determining the buckling load and KDFs named the
SP-8019. However, in this guideline there is no particular section assigned to composite cones. In the guide-
line it is stated that the KDF is not dependent on geometry and, therefore, an universal KDF was assumed
for all types of conical shells. The value of the KDF specified by the SP-8019 guideline is equal to 0.33. When
looking at table 7.4 it can be seen that only when adding an axisymmetric imperfection with an amplitude of
100% the KDF is lower than 0.33, which is not a realistic imperfection. The KDF for an imperfection ampli-
tude of 10% is more than 2 times higher than the KDF predicted by the SP-8019 guideline. This means that
the SP-8019 is very conservative when it comes to the design of sandwich composite conical shells.

The force-displacement graphs of the models including axisymmetric imperfection can be seen in figure
7.5. The same trend can be observed as for the cylindrical shell, when the amplitude increases the drop after
buckling decreases. Moreover, it can be seen that the models without imperfection, axisymmetric imperfec-
tion of 10%, and 20% converge in the post buckling region. It can also be seen that with an axisymmetric
imperfection of 50% an extra load drop is present at a higher displacement, which is not seen for the other
models.

Table 7.4: Buckling loads of the sandwich composite conical shell with a height of 800 mm including axisymmetric imperfection.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 684.8 504.1 407.3 267.2 179.3
KDF [-] 0.71 0.57 0.38 0.25

Figure 7.4: Force-displacement graphs of the sandwich composite conical shell with a height of 800 mm including axisymmetric
imperfection.

The buckling loads of the conical shell with a height of 400 mm can be seen in table 7.5. It can be seen



100 7. Sensitivity to geometrical imperfections

that the buckling load decreases with increasing imperfection amplitude in the same way as the conical shell
with a height of 800 mm. At an imperfection amplitude of 10% the KDF is equal to 0.71. This means that the
model has a similar sensitivity to an axisymmetric imperfection as the the 800 mm height model. The force
displacement graphs can be seen in figure 7.5. Similar results can be observed as for the force-displacement
graphs of the 800 mm height model. The difference is that the post buckling paths of all models are differ-
ent and do not converge. Moreover, the model with an imperfection amplitude of 100% is not showing any
buckling as was seen for the cylindrical shell model with an imperfection amplitude of 100%. For this shell
the same explanation can be used as given in the cylindrical shell section.

Table 7.5: Buckling loads of the sandwich composite conical shell with a height of 400 mm including axisymmetric imperfection.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 711.6 540.8 446.5 313.7 /
KDF [-] 0.71 0.59 0.41 /

Figure 7.5: Force-displacement graphs of the sandwich composite conical shell with a height of 400 mm including axisymmetric
imperfection.

7.2.3. Cylindrical-conical shell
For the cylindrical-conical shell two height models were analysed including an axisymmetric imperfection,
one with a conical height of 400 mm and one with a conical height of 800 mm. The cylindrical shell part was
kept the same and its height was equal to 800 mm. For the 1600 mm cylindrical-conical shell model 24 half
waves were added and for the 1200 mm cylindrical-conical shell 18 half waves were added.

It should be noted that for cylindrical and conical shells the reduction in buckling load due to imperfec-
tions is a well studied aspect. However, for cylindrical-conical shells the behavior is not yet fully understood
and the imperfection sensitivity is not fully known. There are also no design guidelines for these structures in
which the KDFs are determined. Therefore, the KDFs that are presented in this thesis are not meant for design
purposes. These were calculated to make a comparison with the KDFs of the cylindrical shell and cylindrical
shells and to keep the consistency within this thesis.

From chapter 5 it is known that the difference between the eigenvalue analysis and dynamic implicit
analysis is large due to the non-linear behavior. It should be noted that the KDF value determined for the
separate shells is calculated by dividing the buckling load of the eigenvalue analysis by the buckling load of
the dynamic implicit analysis including imperfections. This would mean that when calculating the KDF for
the sandwich composite cylindrical-conical shells the value would be low due to the large difference between
the eigenvalue analysis buckling load and dynamic implicit analysis buckling load. Therefore, for analysing
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the imperfection sensitivity of the sandwich composite cylindrical-conical shells, two KDF factors were used:
the KDF as defined for the separate shells and a KDF that only takes into account the reduction in buckling
load due to imperfections (KDFi ). This was done in order to isolate the effect of the reduction of the buckling
load due to the non-linearity and imperfections. The KDFi is a normalized buckling load that represents
the reduction in buckling load due to imperfections only. This factor is calculated by dividing the buckling
load determined by the model with imperfection by the buckling load determined by the model without
imperfection (using the dynamic implicit buckling loads).

As already said above for these type of shells there are no guidelines or analytical expressions available to
determine the KDF. This means that the KDFs can only be compared directly to the KDFs of the cylindrical
shell and conical shells including an axisymmetric imperfection. The buckling loads of the 1600 mm sand-
wich composite cylindrical-conical shell including axisymmetric imperfection can be seen in table 7.6. The
first thing to notice from the table is that the KDF at an imperfection amplitude of 10% has a value of 0.57.
This means that there is a large reduction of the buckling load. However, when looking at the higher imper-
fection amplitudes it can be seen that the value does not decrease that much. This can be explained by the
fact that the KDF also accounts for non-linearity as already explained. For the cylindrical-conical shell it is
known that the non-linearity plays a big role when comparing the buckling loads of the eigenvalue analysis
and dynamic implicit analysis. This means that it is logical that the KDF at an imperfection amplitude of 10%
already shows a low KDF. Interesting to note is that the buckling load does not decrease that much when look-
ing at higher imperfection amplitudes. In order to investigate the effect due to imperfections only the KDFi

values are used. What can be seen is that the KDFi is 0.91 for a 10% imperfection amplitude, which means
that the cylindrical-conical shell is not that sensitive to the axisymmetric imperfection shape.

For the comparison between the separate shells and the combined shell, the KDF values are compared in
order to see the difference. What can be seen in table 7.6 is that the KDF value for the cylindrical-conical shell
with imperfection amplitude of 10% is 0.57, which is lower compared to the KDFs of the separate models,
see table 7.3 and table 7.4. However, it should be noted that the effect of the non-linearity is small for the
separate shells (difference between eigenvalue analysis and dynamic implicit analysis of maximum 4.9%).
For the sandwich composite cylindrical-conical shell this difference is 38%. This means that the cylindrical-
conical shell has a smaller KDF compared to the separate shell models because of the non-linearity and not
because of a higher imperfection sensitivity. When looking at the difference between the KDFs with imper-
fection amplitude of 10% and 20% of the separate shells and cylindrical-conical shell it can be seen that the
cylindrical-conical shell shows a smaller decrease in KDF value than the separate shells. Moreover, when
looking at the prebuckled shapes it could be seen that the cylindrical shell and conical shell were influenced
by the axisymmetric imperfection while the cylindrical-conical shell was not. Due to these differences it can
be concluded that the cylindrical-conical shell is much less sensitive to an axisymmetric imperfection when
compared to the cylindrical shell and conical shell. This can be explained by the fact that the deformation
shape right before buckling is around the interface and has more of a diamond pattern, see figure 5.3b. Since
this is a completely different shape compared to an axisymmetric imperfection shape the cylindrical-conical
shell is not very sensitive to an axisymmetric imperfection. It might be that an imperfection shape that more
closely matches the deformed shape prior to buckling would have more of an impact on the buckling load.

The force-displacement graphs of the cylindrical-conical shell including axisymmetric imperfection can
be seen in figure 7.6. What can be seen is that the buckling load decreases by a less extent when compared
to the separate shell models, see figures 7.3 and 7.4. Moreover, the post buckling paths of the model without
imperfection and axisymmetric amplitude of 10%, 20%, and 100% converge to the same value.

Table 7.6: Buckling loads of cylindrical-conical shell with a height of 1600 mm including axisymmetric imperfections.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 441.5 402.7 363.5 261.2 /
KDF [-] 0.57 0.51 0.37 /
KDFi [-] 0.91 0.82 0.59 /
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Figure 7.6: Force-displacement graphs of cylindrical-conical shell with a height of 1600mm including axisymmetric imperfection.

The buckling loads, KDF, and KDFi of the cylindrical-conical shell with a height of 1200 mm can be seen
in table 7.7. What can be seen is that this shell has a similar sensitivity to an axisymmetric imperfection as the
1600 mm shell. This means that the height of the conical shell does not influence the imperfection sensitivity
of the cylindrical-conical shell. This was also observed for the conical shell. The force-displacement graphs
can be seen in figure 7.7. The same trend can be observed as for the 1600 mm model. However, the post
buckling paths of all models are different except for the model without imperfection and the model with an
axisymmetric imperfection of 10%.

Table 7.7: Buckling loads of the sandwich composite cylindrical-conical shell with a height of 1200mm including axisymmetric
imperfection.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 442.6 406.8 369.7 284.9 /
KDF [-] 0.54 0.49 0.38 /
KDFi [-] 0.92 0.84 0.64 /
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Figure 7.7: Force-displacement graphs of the sanwdich composite cylindrical-conical shell with a height of 1200mm incluing
axisymmetric imperfection.

7.3. Eigenmode imperfection
Another way to investigate the imperfection sensitivity of a shell is to use the eigenmodes extracted from the
eigenvalue analysis. This method is used in many papers since it is an easy way to investigate the geomet-
rical imperfection sensitivity of a shell in the early stages of the design process. In [28] a study is presented
where a cylinder-cone-cylinder structure is analysed using the eigenmodes as an imperfection type. The re-
sults showed that the lowest KDF was obtained for the eigenmode imperfection when compared to the SPLA
method and an axisymmetric imperfection. Due to these results, this section focuses on analysing the im-
perfection sensitivity using eigenmode imperfections. This in order to see if an eigenmode imperfection has
greater effect on the buckling load than an axisymmetric imperfection. In this section two eigenmode imper-
fections were used to study the imperfection sensitivity, the eigenmode shape determined by the eigenvalue
analysis and the eigenmode shape determined by the eigenvalue analysis after performing a preload. For
this imperfection analysis only the model of the sandwich composite cylindrical-conical shell was used to
investigate if this shell is not sensitive to other geometrical imperfections.

To implement the mode shape obtained by the eigenvalue analysis first the eigenvalue analysis had to
be ran again in order to get a file with all the node locations of the mode shape. After that, the mode shape
was added as an imperfection for the dynamic analysis by using the keyword *IMPERFECTION. This keyword
defines the mode shape that should be added and includes the amplitude. The amplitudes that were used
for the analyses were 10%, 20%, 50%, and 100%. For this imperfection study the cylindrical-conical shell with
a height of 1600 mm and 1200 mm were used. It should be noted that for the visualization of the imperfec-
tion sensitivity again two KDF factors were used: the KDF as defined for the separate shells and the KDFi as
described in the previous section.

7.3.1. Eigenmode imperfection without preload
In this thesis the mode shape obtained by the eigenvalue analysis does not coincide with the deformation
shapes from the dynamic implicit analysis. Since for the mode shape of the eigenvalue analysis nothing hap-
pens at the interface, the shape obtained by the eigenvalue analysis does not represent the buckling behavior
of the sandwich composite cylindrical-conical shell. However, it is interesting to see if the structure is really
not sensitive to this imperfection shape and, therefore, this mode shape was used as an imperfection for the
cylindircal-conical shell. A visual representation of the mode shape can be seen in figure 5.1a.

The buckling loads, KDF, and KDFi of the cylindrical-conical shell with a height of 1600 mm including
the mode 1 imperfection can be seen in table 7.8. Again it can be seen that the KDF values are low, which
can be explained due to the non-linear behavior of the cylindrical-conical shell. When looking at the KDFi
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values it can be seen that the cylindrical-conical shell with a height of 1600 mm is not sensitive to the mode
1 imperfection. Only at an imperfection amplitude of 50% a reduction is seen, but this imperfection ampli-
tude is not a realistic case. This is because an imperfection amplitude of 50% is equal to 1.475 mm, which
does not happen due to manufacturing tolerances and due to regulations. Since there is almost no reduc-
tion in buckling load for the models with an imperfection amplitude of 10% and 20% it can be said that the
shape obtained by the eigenvalue analysis is not a good representation of the imperfection sensitivity of the
cylindrical-conical shell. The force-displacement graphs are shown in figure 7.8. What can be seen is that
the graph of the model without imperfection and the graph of the models with an imperfection amplitude of
10% and 20% coincide with each other. The post-buckling path is also the same. This suggests that the post
buckling shape is the same for each of the models. What can be concluded is that by adding the mode 1 as an
imperfection it does not influence the buckling behavior of the cylindrical-conical shell. For the models with
an imperfection amplitude of 50% and 100% the buckling behavior is different. This can be explained by the
fact that these imperfections are an exaggeration of the reality.

When looking at the graph with an imperfection amplitude of 50% it can be seen that the solution stays
constant after buckling. This is called a loading plateau. This phenomena is not meant to happen and is
present here due to a numerical error. When this happens the solver is able to find a solution; however, this
solution is not realistic. This problem can be solved by using smaller incremental parameters or a smaller
displacement rate. The buckling load of this model was determined by using the highest point in the graph.
It can also be seen that after the drop in the force-displacement graph the post-buckling path is the same as
for the other models. When looking at the deformation shapes in the post-buckling regime of the different
models it could be seen that the shapes were similar. This means that even when the behavior before collapse
is different still the same post-buckling path can be obtained.

Table 7.8: Buckling loads of the sandwich composite cylindrical-conical shell with a height of 1600 mm including mode 1 imperfection
shape.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 441.5 442.2 428.4 323.2 /
KDF [-] 0.62 0.60 0.45 /
KDFi [-] 1.00 0.97 0.73 /

Figure 7.8: Force-displacement graphs of the sandwich composite cylindrical-conical shell with a height of 1600 mm including mode 1
imperfection shape with different amplitudes.
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The buckling loads, KDF, and KDFi of the cylindrical-conical shell with a height of 1200 mm including
mode 1 imperfection with different amplitudes can be seen in table 7.9. What can be seen is that the KDF
and KDFi values are lower compared to the KDF and KDFi values of the 1600 mm shell. When only looking
at the KDFi values it can be concluded that the cylindrical-conical shell with a height of 1200 mm is more
imperfection sensitive to the mode 1 imperfection shape. This can be explained by the fact that the imper-
fection shape has a deformation closer to the transition. This was not seen for the 1600 mm shell because
the deformation was located around the top of the shell. Since the transition area is the weakest part of the
structure these results were expected. The force-displacement graphs can be seen in figure 7.9. In the figure
it is shown that the stiffness of the models including imperfection amplitudes of 10% and 20% are the same as
the stiffness of the model without imperfection. It can also be seen that the post buckling paths of the model
without imperfection and the model including imperfection with an amplitude of 10% are similar. Further-
more, for the models with an imperfection amplitude of 50% and 100% the buckling load is less defined and
the drop after buckling is not present.

Table 7.9: Buckling loads of the sandwich composite cylindrical conical shell with a height of 1200 mm including mode 1 imperfection
shape with different amplitudes.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 442.6 423.2 389.5 300.4 /
KDF [-] 0.56 0.52 0.40 /
KDFi [-] 0.96 0.88 0.68 /

Figure 7.9: Force-displacement graphs of the sandwich composite cylindrical-conical shell with a height of 1200 mm including mode 1
imperfection shape with different amplitudes.

7.3.2. Eigenmode imperfection with preload
In order to also use a shape that is more representative as an imperfection for the cylindrical-conical shell the
shape obtained by the analysis where a preloading is performed before executing the eigenvalue analysis was
used. This is because this mode shape shows a diamond pattern deformation around the intersection and is
similar to the deformation shape right before buckling for the dynamic implicit analysis. The shape that was
used for this analysis is the mode shape obtained after preloading the structure by -200 kN and can be seen
in figure 6.8a.

The buckling loads, KDF, and KDFi of the cylindrical-conical shell with a height of 1600 mm including the
mode 1 imperfection obtained after preloading the structure can be seen in table 7.10. It can be seen that the
buckling load reduces with increasing imperfection amplitude. Moreover, it can be seen that this imperfec-
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tion shape is more effective in decreasing the buckling load when compared to the mode shape imperfection
added previously. It can also be observed that a similar imperfection sensitivity is obtained as for the ax-
isymmetric imperfection. This means that the cylindrical-conical shell is not very sensitive to geometrical
imperfections. Moreover, it can be concluded that it does not matter if the geometrical imperfection shape is
similar to the deformation shape right before buckling of a perfect cylindrical-conical shell since the imper-
fection sensitivity of adding a mode 1 imperfection is the same as the imperfection sensitivity of adding an
axisymmetric imperfection. The results suggest that the non-linear behavior at the intersection is dominat-
ing the buckling behavior of the whole shell resulting in that the cylindrical-conical shell not being sensitive
to geometrical imperfections.

The force-displacement graphs are shown in figure 7.10. It can be seen that the mode 1 obtained after
performing a preload has a bigger effect on the buckling load. It can also be seen that the stiffness of the
different amplitude models are similar. Moreover, for all models the same post buckling path is followed.
It can also be seen that the difference between the buckling loads and force-displacement graphs obtained
by the 50% imperfection amplitude and the 100% imperfection amplitude are very close to each other. This
means that the reduction in buckling load converges.

Table 7.10: Buckling loads of sandwich composite cylindrical-conical shell with a height of 1600 mm including mode 1 imperfection
shape obtained after performing a preloading of the structure.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 441.5 397.2 371.3 341.15 332.7
KDF [-] 0.56 0.52 0.48 0.47
KDFi [-] 0.90 0.84 0.77 0.75

Figure 7.10: Force-displacement graphs of the sandwich composite cylindrical-conical shell with a height of 1600 mm including mode 1
imperfection shape after performing a preloading of the structure.

The buckling loads, KDF, and KDFi of the 1200 mm cylindrical-conical shell including mode 1 imperfec-
tion after preloading the structure with different imperfection amplitudes can be seen in table 7.11. What can
be seen is that the KDF and KDFi values are very similar to the KDF and KDFi values obtained for the 1600
mm including mode 1 imperfection shape with added preload. This means that both the 1200 mm and 1600
mm shells do not have a large imperfection sensitivity to geometrical imperfection. Moreover, the KDF and
KDFi value converges which was also seen for the 1600 mm shell.
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The load displacement graphs can be seen in figure 7.11. What can be seen is that all the models have
similar stiffness for the models without imperfection, imperfection amplitude of 10%, and imperfection am-
plitude of 20%. It is also interesting to note that the post buckling paths of all models converge to the same
value.

Table 7.11: Buckling loads of the sandwich composite cylindrical-conical shell with a height of 1200 mm including mode 1 imperfection
shape obtained after preloading of the structure with different amplitudes.

Imperfection 0% 10% 20% 50% 100%
Buckling load [kN] 442.6 397.4 371.9 346.4 340.6
KDF [-] 0.53 0.49 0.46 0.45
KDFi [-] 0.90 0.84 0.78 0.77

Figure 7.11: Force-displacement graphs of the sandwich composite cylindrical-conical shell with a height of 1200 mm including mode 1
imperfection shape after performing a preload to the structure with different amplitudes.





8
Conclusion and recommendations

The purpose of the research was to better understand the buckling behavior of sandwich composite cylindri-
cal, conical, and cylindrical-conical shells. Finite element analyses were used to compare the different shells.
Moreover, the imperfection sensitivities of these shells were analysed. This chapter describes the conclusions
that can be drawn from these analyses and gives recommendations for future work.

8.1. Conclusion
The goal of this thesis was to investigate the buckling behavior and imperfection sensitivity of sandwich com-
posite cylindrical shells, conical shells, and cylindrical-conical shells. From the literature study it became
clear that not a lot of research was performed on the buckling behavior of sandwich composite shells and
cylindrical-conical shells. This thesis was meant to fill this gap in literature. The focus of this research was
based on the numerical modelling of these structures. Three different finite element models were created:
A sandwich composite cylindrical shell, a sandwich composite conical shell, and a cylindrical-conical shell.
This in order to be able to compare the buckling behavior and imperfection sensitivity of the cylindrical shell
and conical shell alone with the buckling behavior and imperfection sensitivity of the cylindrical-conical
shell.

First, analyses were performed on the sandwich composite cylindrical and conical shell. The focus of
these analyses was to determine which modelling techniques were best to model a sandwich composite shell.
A mesh convergence study was performed for both shells and a mesh of 5 mm was considered best in terms
of buckling behavior and computational time. Moreover, a comparison was performed on the different ele-
ments that can be used to model a sandwich composite shell. This was done by doing an eigenvalue analysis.
The elements used were the S4R, SC8R, CSS8, and C3D8R. It should be noted that different models were cre-
ated; using one element through the thickness or using three elements through the thickness, whereas two
elements represent the face sheets and one element represents the core. From the comparison it became
clear that the S4R element model and the SC8R element model were best in predicting the buckling behavior
of the sandwich composite cylindrical and conical shell. These models gave the lowest computational time
and similar buckling behavior compared to the other element models. What also could be observed was that
the CSS8 element model gave an inaccurate prediction of the buckling load. The buckling load was about 6%
higher compared to the buckling loads of the other element models. Moreover, for the sandwich composite
conical shell the CSS8 element was not able to give the right modeshape. However, when 3 CSS8 elements
through the thickness were used the results were better but the computational time increased significantly.
Therefore, it was chosen to use the SC8R element model for further analyses.

For the sandwich composite cylindrical and conical shell an eigenvalue analysis and a dynamic implicit
analysis were performed. For both models the buckling loads predicted by both analyses were close to each
other, for the sandwich composite cylindrical shell the difference was 2.9% and for the sandwich composite
conical shell the difference was 4.9%. Also the mode shapes and deformation shapes obtained by both analy-
ses were similar. Moreover, the buckling load of the sandwich composite conical shell was lower compared to
the sandwich composite cylindrical shell. This was expected due to the semi-vertex angle. For the sandwich
composite cylindrical shell also the sensitivity to conical height was investigated. The semi-vertex angle was
kept constant and the height was changed, heights between 200 mm and 800 mm were investigated. It could
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be seen that the buckling load of the conical shell was independent of the height. Only for the 200 mm height
model the buckling load increased but this can be explained by the fact that the structure looks more like a
disc than a cone.

An eigenvalue analysis and dynamic implicit analysis were also performed for the sandwich composite
cylindrical-conical shell. The buckling load determined by the eigenvalue analysis was the same as for the
sandwich composite conical shell. When looking at the mode shape it could be seen that the conical part
of the shell was showing deformation similar to the mode shape obtained for the conical shell alone. The
cylindrical part was not taking part in the analysis. It looked like the cylindrical part was acting as a bound-
ary condition. When this behavior was compared to the dynamic implicit analysis it could be seen that the
buckling load of the dynamic implicit analysis was about 40% lower. Moreover, the shape right before buck-
ling was showing deformation at the transition and no deformation in the conical part. This means that the
eigenvalue analysis and dynamic analysis do not show similar results. This was not seen for the separate
shells.

In order to investigate when this difference happens, a sensitivity study to conical height and semi-vertex
angle was performed for the sandwich composite cylindrical-conical shell. It could be observed that the
buckling load of the cylindrical-conical shell is independent of the height. Moreover, the eigenvalue analysis
was again showing only deformation at the conical part of the shell and giving a buckling load close to the
buckling loads of the conical shells with different heights alone. From these results it can be concluded that
the eigenvalue analysis is giving a buckling load and mode shape similar to that of the separate shells, de-
pending on which shell has the lowest buckling load. The difference in buckling load between the eigenvalue
analysis and dynamic implicit was around 40% lower for the different height models. This means that the
conical height does not play a role in the difference between the eigenvalue analysis and dynamic implicit
analysis. Moreover, it could be seen that the sandwich composite cylindrical-conical shell is sensitive to a
change in semi-vertex angle. When the semi-vertex angle decreased the difference in buckling loads deter-
mined by the eigenvalue analysis and dynamic implicit analysis also decreased. This was expected since for
a cylindrical-conical shell with a semi-vertex angle of zero the difference should be negligible.

Since there was a difference between the eigenvalue analysis and dynamic implicit analysis, more re-
search was performed to better understand the behavior that is happening at the transition which cannot
be captured by the eigenvalue analysis. From the force-displacement graph of the sandwich composite
cylindrical-conical shell it could be seen that there was non-linear behavior before buckling. Since the eigen-
value analysis is not able to capture non-linear effects it is logical that the eigenvalue analysis is giving a
different behavior. To better understand what is happening at the transition and why this non-linear behav-
ior happens, the radial displacements and strains were compared at the transition for both analyses. It could
be seen that at the transition area the radial displacement for the dynamic implicit analysis was 23% higher
compared to the radial displacement by the linear static analysis. It could also be seen that for the dynamic
implicit analysis the structure was deforming inward before deforming outward, which was not seen for the
linear static analysis. Moreover, the strains for the dynamic implicit analysis were around 30% higher for all
plies compared to the linear static analysis. This means that due to the larger deformation and larger strains
at the transition for the dynamic implicit analysis the stiffness is much lower compared to the linear analysis
resulting in a lower buckling load. This large deformation causes the non-linear behavior seen. In the Abaqus
manual it is explained that if there is non-linear behavior present before buckling it can be that the eigenvalue
analysis is giving different results when compared to analyses that are able to capture non-linear effects. This
is due to the fact that an eigenvalue analysis is linear and is not able to capture non-linear effects. Therefore,
it was decided to add a preload to the structure before performing an eigenvalue analysis. This was done in
order to show that when the deformation at the transition is present when performing the eigenvalue anal-
ysis, a better prediction can be given. This was done by using different values of the preload and it could be
seen that the eigenvalue analysis was able to give a better prediction. It could even be observed that the mode
shape showed deformation around the transition area and not only at the top of the conical shell. This means
that the eigenvalue analysis alone is not able to give accurate results for the sandwich composite cylindrical-
conical shell due to the large deformation at the transition.

The model of the sandwich composite cylindrical-conical shell was made by using the separate models of
the cylindrical and conical shell and merging the nodes at the transition area. This results in a sharp corner
at the transition. Therefore, a model was created including a radius of curvature at the transition to see if this
could decrease the non-linear behavior of the sandwich composite cylindrical-conical shell. A radius of cur-
vature of 380 mm was added to the transition and an increase of 20% of the buckling load was obtained. This
resulted in a difference between the eigenvalue analysis and dynamic implicit analysis of 26%. The difference
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is still large, however, it can be seen that a small radius of curvature already can give a large increase of the
buckling load. This means that by using a radius of curvature that is large enough the non-linear behavior
can be mitigated and a smaller difference between the eigenvalue analysis and dynamic implicit analysis can
be obtained. Next to that the effect of adding a reinforcement to the structure was investigated. When adding
a reinforcement of four 0° plies with a length of 300 mm at the transition an increase of the buckling load of
50% can be observed. This results in a difference between the eigenvalue analysis and dynamic implicit anal-
ysis of 4.1%. Moreover, the mode shape determined by the eigenvalue analysis and the deformation shape
right before buckling for the dynamic implicit analysis show similar behavior. This means that by adding a
reinforcement to the transition the radial deformation at the transition can be mitigated and the behavior at
the intersection is not dominating the behavior anymore.

The imperfection sensitivities were compared for the sandwich composite cylindrical shell, conical shell,
and cylindrical-conical shell models. By adding an axisymmetric imperfection to the structure the sensitivity
to geometrical imperfections could be investigated. When an axisymmetric imperfection was added to the
models it could be seen that the sandwich composite cylindrical and conical shell have a similar imperfec-
tion sensitivity. The sandwich composite cylindrical-conical shell showed a lower imperfection sensitivity.
The normalized buckling loads due to an axisymmetric imperfection amplitude of 10% were 0.69, 0.71, and
0.57 for the cylindrical, conical, and cylindrical-conical shell, respectively. However, it should be noted that
the effect of the non-linearity causes the small value of the normalized buckling load for the cylindrical-
conical shell and is not due to imperfections. It could be seen that for higher imperfection amplitudes the
buckling load decreases by a less extend when compared to the separate shell models. This means that the
sandwich composite cylindrical-conical shell is not that sensitive to geometrical imperfections as the sand-
wich composite cylindrical and conical shell. For the sandwich composite cylindrical-conical shell also the
effect of adding an eigenmode imperfection to the structure was investigated. The eigenmodes added were
the first eigenmode of the eigenvalue analysis and first eigenmode of the eigenvalue analysis performed after
a preload. The normalized buckling loads that only take into account imperfections due to the first eigen-
mode of the eigenvalue analysis and first eigenmode of the eigenvalue analysis performed after a preload
using an amplitude of 10% were 1.00 and 0.90, respectively. Moreover, due to the fact that nothing happens
with the buckling load of the sandwich composite cylindrical-conical shell when the first eigenmode of the
eigenvalue analysis is added to the structure it can be said that the shape obtained by the eigenvalue analysis
is not representing the buckling behavior of the shell and should not be used to predict the behavior of these
shells. To conclude, the behavior at the intersection is dominating the behavior of the cylindrical-conical
shell resulting in not being sensitive to geometrical imperfection.

From this research it can be concluded that a sandwich composite cylindrical-conical shell shows a dif-
ferent buckling behavior than a sandwich composite cylindrical shell and conical shell. This is due to the
non-linear behavior happening at the interface for the cylindrical-conical shell, which was not seen for the
separate shells. The non-linear behavior results in a large difference between the eigenvalue analysis and
the dynamic implicit analysis. From the research done it could be seen that this non-linear behavior could
be decreased by adding a radius of curvature at the interface or by reinforcing the structure at the interface
using extra composite plies. This resulted in a smaller difference between the eigenvalue analysis and the
dynamic implicit analysis. When looking at the imperfection sensitivity it could be seen that the sandwich
composite cylindrical shell and conical shell were more sensitive to geometrical imperfections than the sand-
wich composite cylindrical-conical shell. This can be explained by the fact that the behavior at the interface
is dominating the buckling behavior of the sandwich composite cylindrical-conical shell. The results of the
thesis stress the importance of including non-linear effects when analysing cylindrical-conical shells.

8.2. Recommendations
In this thesis, only finite element analyses were performed to study the buckling behavior of sandwich com-
posite cylindrical, conical, and cylindrical-conical shells. For cylindrical shells and conical shells the buckling
behavior and modelling techniques are well known. However, for cylindrical-conical shells the buckling be-
havior is not studied that much and there are no validated finite element models available. In the thesis
more insight was given in the behavior of these shells; however, when only performing finite element anal-
yses the validity of the results are not known. This is very important because in the thesis, it could be seen
that the eigenvalue analysis and dynamic implicit analysis showed a different buckling behavior. The results
presented suggest that the eigenvalue analysis is not representative for the buckling behavior of these shells;
however, this cannot be known without performing tests. Another reason why it is important to perform
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buckling tests is that the buckling behavior can be better understood. These reasons stresses the importance
of performing buckling tests on cylindrical-conical shells.

However, before the tests can be performed, test articles have to be created. The design proposed in this
thesis fails before buckling which is not desired when actual buckling tests are performed. As already stated in
the thesis, launch vehicle structures should be designed to fail after buckling. It should be noted that within
this thesis the focus lied on sandwich composite cylindrical-conical shells, however, for the design of test
articles composite cylindrical-conical shells can also be used.

Another interesting topic for future work is to further investigate the imperfection shapes that influence
the buckling load. From this study, it could be seen that for the sandwich composite cylindrical and conical
shell the axisymmetric imperfection showed a large reduction in the buckling load. For the sandwich com-
posite cylindrical-conical shell it could be seen that the axisymmetric imperfection showed a small reduction
in the buckling load. It could even be seen that the eigenmode shape almost did not influence the buckling
load. Due to these differences it can be concluded that different geometrical imperfections result in different
buckling loads for different shells. However, it is not yet known why some geometrical imperfections show
a larger reduction in buckling load compared to other geometrical imperfections. It is of interest to know
why certain imperfection shapes do influence the buckling load of some shells and why some imperfections
shape do not influence the buckling load. This in order to know which geometrical imperfections result in
the most conservative buckling load prediction.
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