

Delft University of Technology

EvoSuite at the SBST 2020 Tool Competition

Panichella, Annibale; Campos, José; Fraser, Gordon

DOI
10.1145/3387940.3392266
Publication date
2020
Document Version
Accepted author manuscript
Published in
Proceedings - 2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW
2020

Citation (APA)
Panichella, A., Campos, J., & Fraser, G. (2020). EvoSuite at the SBST 2020 Tool Competition. In
Proceedings - 2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW
2020 (pp. 549-552). IEEE / ACM. https://doi.org/10.1145/3387940.3392266

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3387940.3392266
https://doi.org/10.1145/3387940.3392266

EvoSuite at the SBST 2020 Tool Competition

Annibale Panichella
Delft University of Technology

The Netherlands
a.panichella@tudelft.nl

José Campos
LASIGE, Faculdade de Ciências

Universidade de Lisboa
Lisboa, Portugal

jcmcampos@fc.ul.pt

Gordon Fraser
Chair of Software Engineering II,

University of Passau
Passau, Germany

gordon.fraser@uni-passau.de

ABSTRACT

EvoSuite is a search-based tool that automatically generates exe-

cutable unit tests for Java code (JUnit tests). This paper summarizes

the results and experiences of EvoSuite’s participation at the eighth

unit testing competition at SBST 2020, where EvoSuite achieved

the highest overall score (406.14 points) for the seventh time in

eight editions of the competition.

ACM Reference Format:

Annibale Panichella, José Campos, and Gordon Fraser. 2020. EvoSuite at the

SBST 2020 Tool Competition. In IEEE/ACM 42nd International Conference

on Software Engineering Workshops (ICSEW’20), May 23–29, 2020, Seoul,

Republic of Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/10.

1145/3387940.3392266

1 INTRODUCTION

Automated unit test generation can support developers and testers,

produce regression test suites, and is an enabler for dynamic pro-

gram analyses. The annual unit test generation aims to foster re-

search and development of automated unit test generators. This

paper describes the results obtained by the EvoSuite test gener-

ation tool [8] in this competition. EvoSuite uses meta-heuristic

search to evolve unit test suites with high coverage, and automati-

cally produces regression oracles in the form of test assertions. In

the 8th instance of the competition at the International Workshop

on Search-Based Software Testing (SBST) 2020, EvoSuite achieved

an overall score of 406.14, which was the highest among the compet-

ing and baseline tools [7]. This paper describes the results obtained

by the EvoSuite test generation tool in this competition.

2 EVOSUITE

EvoSuite [8] is a search-based unit test generation tool [12]. Table 1

summarizes the features of EvoSuite in the standard format of

the SBST unit testing competition: Given just the Java classpath

containing all compiled dependencies and the name of a class under

test, EvoSuite automatically generates a set of JUnit test cases

aimed at maximizing code coverage. EvoSuite can be used on the

command line, as a Maven plugin, or using plugins for the Eclipse

and IntelliJ development environments [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392266

Table 1: Classification of the EvoSuite unit test generation

tool

Prerequisites

Static or dynamic Dynamic testing at the Java class level

Software Type Java classes

Lifecycle phase Unit testing for Java programs

Environment All Java development environments

Knowledge required JUnit unit testing for Java

Experience required Basic unit testing knowledge

Input and Output of the tool

Input Bytecode of the target class and depen-

dencies

Output JUnit 4 test cases

Operation

Interaction Through the command line, and plugins

for IntelliJ, Maven and Eclipse

User guidance Manual verification of assertions for

functional faults

Source of information http://www.evosuite.org

Maturity Mature research prototype, under devel-

opment

Technology behind the tool Search-based testing / many-objective

optimization

Obtaining the tool and information

License Lesser GPL V.3

Cost Open source

Support None

Does there exist empirical evidence about

Effectiveness and Scalability See [12, 13]

Throughout its development, several different search algorithms

have been evaluated, starting with a basic genetic algorithm. Evo-

Suite’s encoding of test cases for the evolutionary search (i.e.,

its chromosomes) consists of variable-length sequences of Java

statements (e.g., primitive statements and calls on the class under

test). The usual search operators used in evolutionary search (e.g.,

selection, crossover, mutation) are adapted for this particular rep-

resentation. In the original approach, individuals of the genetic

algorithm were whole test suites, with the optimization goal of

finding a test suite that maximizes code coverage. This was later

improved by adding an archive of solutions [27] to keep the search

focused on uncovered goals, iteratively discarding covered goals

and storing the tests that covered them.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Annibale Panichella, José Campos, and Gordon Fraser

Recently, the Dynamic Many-Objective Sorting Algorithm (Dy-

naMOSA) search algorithm [22–24] has been shown to be the most

effective approach of all the algorithms evaluated so far. DynaMOSA

is a many-objective algorithm, where individuals of the search pop-

ulation are test cases, rather than test suites, and the optimization

is driven by a collection of individual fitness functions, one for each

coverage objective (e.g., line or branch).

The fitness functions in EvoSuite are based on traditional heuris-

tics for code coverage, such as the branch distance and the approach

level (see [12] for more details). EvoSuite supports multiple differ-

ent coverage criteria, which can be optimized at the same time. The

default configuration combines branch coverage with mutation test-

ing [14] and other basic criteria [25]. To cope with the potentially

large number of coverage objectives, DynaMOSA prioritizes them

during the search according to their structural dependencies in the

control dependency graph. Initially, the search focuses on coverage

objectives positioned higher in the hierarchy, and the remaining

objectives are incrementally inserted in later generations when

their dominator requirements are covered.

After the search has used up the available search budget (or

alternatively, has achieved 100% coverage of all coverage objec-

tives), EvoSuite applies various post-search optimizations aimed

to improve the readability of the generated tests [8, 11], such as

minimization and addition of test assertions using mutation analy-

sis [18]. It also checks all generated tests for compile errors (which

may be the result of bugs in EvoSuite) or flakiness caused by non-

determinism in the class under test, not covered by EvoSuite’s

extensive instrumentation.

EvoSuite has been evaluated on open source as well as industrial

software in terms of code coverage [6, 13, 22, 27], fault-finding

effectiveness [1, 29], and effects on developer productivity [17, 26]

and softwaremaintenance [30]. EvoSuite has a longstanding record

of success at the unit testing tool competition, having ranked second

in the third edition of the competition [15] and first in all the other

editions [9, 10, 16, 19, 20]. In the 2019 SBST contest, EvoSuite

achieved the highest overall score of all participating tools [21],

although some bugs inhibited its performance.

3 TOOL SETUP

Similar to the previous years, the configuration of EvoSuite for

the 2020 competition is largely based on its default values since

these have been tuned extensively [3]. The search algorithm used

was DynaMOSA [22], optimizing for the default set of coverage

criteria [25] (i.e., line coverage, branch coverage, branch coverage by

direct method invocations, weak mutation testing, output coverage,

exception coverage). Other features enabled by default include

the use of frequency-based weighted constants for seeding [28]

as well as support for Java Enterprise Edition features [4]. In the

case of difficult dependencies and branches that cannot be covered,

EvoSuite can start using mock objects once a certain percentage

of the search budget has passed [5] .

No major new features have been introduced in EvoSuite since

the 2019 competition, but several bugs that affected EvoSuite’s

performance during the previous competition have been fixed. In

particular, there were several problematic cases when EvoSuite

was run using very small search budgets.

The test minimization step used by EvoSuite is computation-

ally expensive and sometimes omitted for empirical studies; in the

competition, we always enable the post-processing step of test min-

imization, because minimized tests are less likely to break or expose

flakiness. However, we aimed to reduce the post-processing time by

including all regression assertions rather than filtering them with

mutation analysis [18]. While this makes test cases less readable

and potentially more brittle with respect to future changes in the

software under test, neither of these aspects is evaluated as part of

the SBST contest.

EvoSuite uses different phases (e.g., initialization, search, mini-

mization, assertion generation, compilation check, removal of flaky

tests). Like in previous competitions (e.g., [16]), we allocated 50%

of the overall time set by the competition organizers for the search,

and distributed the other 50% equally to the remaining phases.

4 BENCHMARK RESULTS

Table 2 summarizes the results achieved by EvoSuite on the com-

petition classes and search budgets. In general, the performance

of EvoSuite was in line with previous results. As usual, there are

some notable cases where EvoSuite did not perform well. In the

following, we discuss these cases, such that future work can address

open problems in automated unit test generation.

FESCAR-15. According to the results provided by the competition

organizers, it seems that the generated test cases do cover some

lines of code but no branches/conditions. For further investigation,

we ran EvoSuite as a stand-alone tool (i.e., not using the bench-

mark infrastructure) but it was still not capable of covering any

line. Through manual investigation, we notice that the CUT man-

ages objects of the class ScheduledExecutorService and threads.

Generating tests for CUTs that produce or manage threads is chal-

lenging and a well-known open problem in the literature [11]. Evo-

Suite does not prevent the CUT from spawning new threads, but

it (1) forces the use of a wrapper class that leads to deterministic

stack traces and thread names, and (2) any spawned threads are

joined and removed after a test execution to ensure a clean state

for successive test executions, which may consume a substantial

amount of time.

FESCAR-2. This CUT contains only a few branches (i.e., 14) and

lines (i.e., 19). EvoSuite was only able to generate test cases that

cover around 20%-25% of lines but 0% of condition coverage. The

generated tests cover branchless methods and the root branch of the

method lookup, which is the only method with some conditions. It

is worth noticing that EvoSuite could not complete a single gener-

ation, even with a search budget of 180s. The CUT is particularly

expensive, and each generated test requires seconds for its execu-

tion. Low search budgets are thus not feasible nor recommended

for this CUT.

FESCAR-41, FESCAR-6. EvoSuite reached a very low line and

branch coverage for these two CUTs, independently from the search

budget. These CUT also manage threads, and more precisely objects

of the classes ThreadPoolExecutor and NamedThreadFactory.

EvoSuite at the SBST 2020 Tool Competition ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Detailed results of EvoSuite on the SBST benchmark classes.

Benchmark Java Class
Line Coverage Branch Coverage Mutation Score

60s 180s 60s 180s 60s 180s

FESCAR-10 com.alibaba.fescar.core.model.BranchType 80.0% 90.0% 80.0% 90.0% 80.0% 90.0%

FESCAR-12 com.alibaba.fescar.core.rpc.netty.RpcServerHandler 100.0% 100.0% 87.5% 87.5% 100.0% 100.0%

FESCAR-13 com.alibaba.fescar.core.exception.TransactionExceptionCode 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

FESCAR-15 com.alibaba.fescar.core.rpc.netty.RpcServer 0.8% 0.7% 0.0% 0.0% 0.0% 0.0%

FESCAR-17 com.alibaba.fescar.core.protocol.transaction.GlobalBeginResponse 99.4% 99.4% 100.0% 100.0% 90.0% 90.0%

FESCAR-2 com.alibaba.fescar.core.service.ServiceManagerStaticConfigImpl 20.5% 25.8% 0.0% 0.0% 0.0% 0.0%

FESCAR-23 com.alibaba.fescar.core.protocol.MergeResultMessage 90.5% 60.5% 76.4% 50.0% 0.0% 0.0%

FESCAR-25 com.alibaba.fescar.core.rpc.netty.RmMessageListener 46.9% 37.5% 62.5% 48.8% 22.2% 17.8%

FESCAR-28 com.alibaba.fescar.core.rpc.ClientType 90.0% 100.0% 90.0% 100.0% 90.0% 100.0%

FESCAR-32 com.alibaba.fescar.core.protocol.transaction.BranchRegisterRequest 97.7% 89.2% 94.4% 87.5% 95.2% 78.3%

FESCAR-33 com.alibaba.fescar.core.model.GlobalStatus 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

FESCAR-34 com.alibaba.fescar.core.protocol.ResultCode 90.0% 100.0% 90.0% 100.0% 90.0% 100.0%

FESCAR-37 com.alibaba.fescar.core.rpc.RpcContext 92.4% 94.6% 86.8% 91.2% 0.0% 0.0%

FESCAR-41 com.alibaba.fescar.core.rpc.netty.RmRpcClient 1.7% 1.7% 2.0% 2.0% 0.0% 2.4%

FESCAR-42 com.alibaba.fescar.core.rpc.DefaultServerMessageListenerImpl 24.3% 42.6% 11.8% 27.1% 12.1% 25.4%

FESCAR-5 com.alibaba.fescar.core.protocol.MessageFuture 98.6% 99.1% 96.0% 98.0% 99.2% 100.0%

FESCAR-6 com.alibaba.fescar.core.rpc.netty.TmRpcClient 3.4% 3.4% 2.7% 2.7% 0.0% 2.7%

FESCAR-7 com.alibaba.fescar.core.rpc.netty.MessageCodecHandler 76.1% 78.2% 73.3% 77.2% 0.0% 0.0%

FESCAR-8 com.alibaba.fescar.core.rpc.netty.NettyPoolableFactory 57.3% 62.0% 50.8% 57.5% 0.0% 0.0%

FESCAR-9 com.alibaba.fescar.core.protocol.transaction.GlobalBeginRequest 99.0% 98.3% 100.0% 100.0% 99.1% 98.2%

GUAVA-102 com.google.common.collect.LinkedListMultimap 29.4% 32.3% 12.9% 11.6% 19.2% 14.8%

GUAVA-110 com.google.common.collect.LexicographicalOrdering 3.0% 22.2% 0.0% 7.5% 0.6% 15.0%

GUAVA-128 com.google.common.base.Throwables 75.1% 25.0% 75.8% 25.3% 81.0% 26.8%

GUAVA-129 com.google.common.collect.SparseImmutableTable 31.9% 35.8% 37.5% 42.5% 35.0% 43.8%

GUAVA-159 com.google.common.primitives.ParseRequest 100.0% 100.0% 100.0% 100.0% 50.0% 50.0%

GUAVA-169 com.google.common.math.LongMath 96.2% 86.7% 94.2% 85.3% 99.2% 89.3%

GUAVA-177 com.google.common.primitives.Doubles 98.7% 98.5% 99.3% 99.3% 100.0% 100.0%

GUAVA-181 com.google.common.primitives.SignedBytes 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

GUAVA-184 com.google.thirdparty.publicsuffix.PublicSuffixType 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

GUAVA-196 com.google.common.io.Closeables 71.5% 70.0% 77.5% 75.0% 88.0% 88.0%

GUAVA-2 com.google.common.collect.MinMaxPriorityQueue 13.9% 22.5% 6.4% 11.1% 16.5% 19.2%

GUAVA-206 com.google.common.collect.ImmutableEnumSet 25.4% 26.1% 23.6% 24.5% 7.1% 7.6%

GUAVA-212 com.google.common.net.MediaType 92.6% 94.3% 77.6% 83.0% 0.0% 0.0%

GUAVA-22 com.google.common.graph.Graphs 53.9% 49.7% 51.8% 47.3% 0.0% 0.0%

GUAVA-224 com.google.common.primitives.UnsignedLongs 99.3% 89.6% 100.0% 90.0% 100.0% 90.0%

GUAVA-240 com.google.common.collect.FilteredMultimapValues 12.3% 22.7% 0.0% 5.0% 0.0% 0.0%

GUAVA-39 com.google.common.collect.TreeMultiset 30.2% 43.1% 18.6% 27.9% 19.5% 31.3%

GUAVA-47 com.google.common.collect.FilteredEntryMultimap 2.6% 11.3% 0.0% 0.7% 0.0% 0.4%

GUAVA-90 com.google.common.io.FileBackedOutputStream 98.9% 89.6% 98.1% 90.0% 98.0% 89.3%

GUAVA-95 com.google.common.collect.ComparatorOrdering 27.5% 51.7% 12.5% 30.0% 18.8% 31.2%

PDFBOX-117 org.apache.pdfbox.filter.Predictor 89.0% 93.5% 83.9% 91.0% 0.0% 28.6%

PDFBOX-127 org.apache.pdfbox.pdfparser.PDFObjectStreamParser 57.5% 65.6% 37.1% 43.6% 44.4% 50.6%

PDFBOX-130 org.apache.pdfbox.pdmodel.interactive.digitalsignature.visible.PDVisibleSignDesigner 7.1% 14.3% 1.7% 1.7% 1.5% 2.5%

PDFBOX-157 org.apache.pdfbox.pdmodel.font.PDType1Font 2.1% 0.0% 0.4% 0.0% 0.0% 0.0%

PDFBOX-198 org.apache.pdfbox.pdmodel.fdf.FDFAnnotationLine 66.4% 66.5% 32.4% 32.7% 5.5% 0.0%

PDFBOX-214 org.apache.pdfbox.pdfparser.EndstreamOutputStream 99.5% 90.0% 99.2% 90.0% 48.0% 40.0%

PDFBOX-22 org.apache.pdfbox.pdmodel.fdf.FDFAnnotationCaret 63.9% 63.9% 64.3% 64.3% 10.5% 31.4%

PDFBOX-220 org.apache.pdfbox.filter.JPXFilter 32.7% 32.7% 7.7% 7.3% 0.0% 0.0%

PDFBOX-229 org.apache.pdfbox.util.XMLUtil 62.4% 69.6% 52.5% 60.0% 10.7% 13.6%

PDFBOX-234 org.apache.pdfbox.pdmodel.interactive.action.PDActionSound 97.7% 96.7% 88.9% 87.8% 0.0% 20.0%

PDFBOX-235 org.apache.pdfbox.pdmodel.font.PDTrueTypeFontEmbedder 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

PDFBOX-26 org.apache.pdfbox.pdmodel.encryption.SecurityProvider 55.8% 56.8% 100.0% 100.0% 100.0% 90.0%

PDFBOX-265 org.apache.pdfbox.pdmodel.font.PDType3Font 62.4% 70.2% 42.3% 52.0% 0.0% 0.0%

PDFBOX-278 org.apache.pdfbox.pdfwriter.ContentStreamWriter 96.8% 98.3% 96.7% 96.3% 0.0% 0.0%

PDFBOX-285 org.apache.pdfbox.pdmodel.interactive.digitalsignature.PDSignature 98.9% 99.7% 89.5% 95.5% 0.0% 0.0%

PDFBOX-40 org.apache.pdfbox.pdmodel.font.PDCIDFontType2 57.2% 54.9% 45.1% 46.6% 0.0% 0.0%

PDFBOX-62 org.apache.pdfbox.rendering.PageDrawer 2.3% 6.8% 1.2% 4.2% 0.0% 0.0%

PDFBOX-8 org.apache.pdfbox.pdmodel.font.FileSystemFontProvider 45.2% 48.4% 34.2% 35.8% 41.9% 52.2%

PDFBOX-83 org.apache.pdfbox.contentstream.operator.text.SetTextRenderingMode 89.3% 85.7% 92.5% 100.0% 82.5% 87.5%

PDFBOX-91 org.apache.pdfbox.pdmodel.documentinterchange.taggedpdf.PDArtifactMarkedContent 91.6% 97.9% 71.2% 92.5% 0.0% 0.0%

SPOON-105 spoon.support.compiler.jdt.PositionBuilder 9.6% 5.5% 7.8% 3.9% 0.0% 0.0%

SPOON-155 spoon.reflect.visitor.filter.AllMethodsSameSignatureFunction 13.0% 12.7% 0.0% 1.2% 0.7% 3.2%

SPOON-16 spoon.reflect.path.CtElementPathBuilder 15.9% 16.1% 8.0% 9.0% 10.3% 6.4%

SPOON-169 spoon.reflect.visitor.ImportScannerImpl 1.2% 10.6% 0.1% 4.7% 0.0% 1.3%

SPOON-20 spoon.support.reflect.reference.CtLocalVariableReferenceImpl 30.0% 38.6% 14.0% 18.0% 3.3% 13.3%

SPOON-211 spoon.reflect.path.impl.CtRolePathElement 16.3% 18.3% 6.2% 10.3% 6.2% 11.2%

SPOON-25 spoon.pattern.internal.ValueConvertorImpl 3.0% 7.1% 1.2% 3.1% 0.7% 4.3%

SPOON-253 spoon.pattern.internal.parameter.MapParameterInfo 76.8% 73.9% 72.5% 73.8% 0.0% 0.0%

SPOON-32 spoon.MavenLauncher 27.0% 30.0% 11.2% 12.5% 6.0% 6.7%

SPOON-65 spoon.support.DefaultCoreFactory 10.7% 9.7% 5.9% 8.9% 0.1% 0.0%

Average 55.9% 57.0% 50.8% 51.7% 32.6% 33.8%

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Annibale Panichella, José Campos, and Gordon Fraser

GUAVA-110, GUAVA-240. Both classes make use of the annotation

@Nullable. GUAVA-110 uses the annotation for the input parame-

ter of the method equals(...), while GUAVA-240 uses it for the

methods contains(...) and remove(...). The static analyzer im-

plemented in EvoSuite does not handle the annotation @Nullable

and triggers the error “Cannot find symbol”. This, in retrospect,

would have been easy to avoid.

GUAVA-47. For this class, EvoSuite reached very low coverage

(both line and branch) and mutation score. To have a better un-

derstanding of the underlying issue, we ran EvoSuite stand-alone.

We notice that our tool could not generate any single test cases,

never completing the initialization process (and the generation of

the initial population, in particular) even with a search budget of

180s. A more in-depth analysis is needed to discover the root cause

of the issue.

PDFBOX-157. EvoSuite crashed in 9 out ten times with a search

budget of 60s, and in 10 out of 10 runs for larger budgets. The exact

reasons are not yet clear, and will require further debugging.

FESCAR-23, FESCAR-37, FESCAR-7, FESCAR-8, GUAVA-212, GUAVA-

22, PDFBOX-265, PDFBOX-278, PDFBOX-285, PDFBOX-40, PDFBOX-

91, PDFBOX-62, SPOON-105, SPOON-253. For all these classes the

mutation analysis failed due to a java.util.concurrent.

ExecutionException thrown by the experimental infrastructure,

rather than by EvoSuite.

PDFBOX-235, SPOON-155. In these two cases, EvoSuite crashed

while attempting to set upmock objects; these are bugs in EvoSuite.

5 CONCLUSIONS

This paper reports on the participation of the EvoSuite test gen-

eration tool in the 8th SBST Java Unit Testing Tool Contest. With

an overall score of 406.14 points, EvoSuite achieved the highest

score of all tools in the competition. Despite the many years of

development, the benchmark used in the competition points out

several opportunities for improvement, which we discussed in this

paper.

To learn more about EvoSuite, visit our Web site:

http://www.evosuite.org

Acknowledgments:Many thanks to all the contributors to Evo-

Suite. This project has been funded by the EPSRC project “GREAT-

EST” (EP/N023978/2).

REFERENCES
[1] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Jānis Bene-

felds. 2017. An Industrial Evaluation of Unit Test Generation: Finding Real Faults
in a Financial Application. In ACM/IEEE Int. Conference on Software Engineering
(ICSE). IEEE, 263–272.

[2] A. Arcuri, J. Campos, and G. Fraser. 2016. Unit Test Generation During Software
Development: EvoSuite Plugins for Maven, IntelliJ and Jenkins. In IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST). IEEE
Computer Society, 401–408.

[3] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An
empirical investigation in search-based software engineering. Empirical Software
Engineering (EMSE) (2013), 1–30. https://doi.org/DOI:10.1007/s10664-013-9249-9

[4] Andrea Arcuri and Gordon Fraser. 2016. Java Enterprise Edition Support in
Search-Based JUnit Test Generation. In Int. Symposium on Search Based Software
Engineering. Springer, 3–17.

[5] A. Arcuri, G. Fraser, and R. Just. 2017. Private API Access and Functional Mocking
in Automated Unit Test Generation. In IEEE Int. Conference on Software Testing,
Verification and Validation (ICST). 126–137.

[6] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. 2018. An empirical evaluation of evolutionary algorithms for unit test
suite generation. Information and Software Technology 104 (2018), 207 – 235.
https://doi.org/10.1016/j.infsof.2018.08.010

[7] Xavier Devroey, Sebastiano Panichella, andAlessio Gambi. 2020. Java Unit Testing
Tool Competition - Eighth Round. In IEEE/ACM 42nd International Conference
on Software Engineering Workshops (ICSEW’20). Seoul, Republic of Korea. https:
//doi.org/10.1145/3387940.3392265

[8] G. Fraser and A. Arcuri. 2011. EvoSuite: Automatic Test Suite Generation for
Object-Oriented Software.. In ACM Symposium on the Foundations of Software
Engineering (FSE). 416–419.

[9] Gordon Fraser and Andrea Arcuri. 2013. EvoSuite at the SBST 2013 Tool Compe-
tition. In Int. Workshop on Search-Based Software Testing (SBST). 406–409.

[10] Gordon Fraser and Andrea Arcuri. 2013. EvoSuite at the Second Unit Testing
Tool Competition.. In Fittest Workshop. Springer, 95–100.

[11] G. Fraser and A. Arcuri. 2013. EvoSuite: On The Challenges of Test Case Genera-
tion in the Real World (Tool Paper). In IEEE Int. Conference on Software Testing,
Verification and Validation (ICST). 362–369.

[12] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291.

[13] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using EvoSuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 8:1–8:42.

[14] Gordon Fraser and Andrea Arcuri. 2015. Achieving Scalable Mutation-based
Generation of Whole Test Suites. Empirical Software Engineering (EMSE) 20, 3
(2015), 783–812.

[15] G. Fraser and A. Arcuri. 2015. EvoSuite at the SBST 2015 Tool Competition. In
Int. Workshop on Search-Based Software Testing (SBST). IEEE Press, 25–27.

[16] Gordon Fraser and Andrea Arcuri. 2016. EvoSuite at the SBST 2016 Tool Compe-
tition. In Int. Workshop on Search-Based Software Testing (SBST). ACM, 33–36.

[17] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
2015. Does Automated Unit Test Generation Really Help Software Testers? A
Controlled Empirical Study. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 4 (2015), 23:1–23:49.

[18] Gordon Fraser and Andreas Zeller. 2012. Mutation-Driven Generation of Unit
Tests and Oracles. IEEE Transactions on Software Engineering (TSE) 28, 2 (2012),
278–292.

[19] José Campos Gordon Fraser, José Miguel Rojas and Andrea Arcuri. 2017. EvoSuite
at the SBST 2017 Tool Competition. In Int. Workshop on Search-Based Software
Testing (SBST). IEEE Press, 39–41.

[20] José Miguel Rojas Gordon Fraser and Andrea Arcuri. 2018. EvoSuite at the SBST
2018 Tool Competition. In Int. Workshop on Search-Based Software Testing (SBST).
IEEE Press, 34–37.

[21] José Miguel Rojas Gordon Fraser and Andrea Arcuri. 2019. EvoSuite at the
SBST 2019 Tool Competition. In 2019 IEEE/ACM 12th International Workshop on
Search-Based Software Testing (SBST). IEEE, 29–32.

[22] A. Panichella, F. M. Kifetew, and P. Tonella. 2018. Automated Test Case Generation
as aMany-Objective Optimisation Problemwith Dynamic Selection of the Targets.
IEEE Transactions on Software Engineering 44, 2 (Feb 2018), 122–158. https:
//doi.org/10.1109/TSE.2017.2663435

[23] A. Panichella, F. M. Kifetew, and P. Tonella. 2018. Incremental Control Depen-
dency Frontier Exploration for Many-Criteria Test Case Generation. In Interna-
tional Symposium on Search Based Software Engineering. Springer, 309–324.

[24] A. Panichella, F. M. Kifetew, and P. Tonella. 2018. A large scale empirical com-
parison of state-of-the-art search-based test case generators. Information and
Software Technology 104 (2018), 236–256.

[25] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea
Arcuri. 2015. Combining Multiple Coverage Criteria in Search-Based Unit Test
Generation. In Search-Based Software Engineering. Springer, 93–108.

[26] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2015. Automated Unit Test
Generation during Software Development: A Controlled Experiment and Think-
Aloud Observations. In ACM Int. Symposium on Software Testing and Analysis
(ISSTA). ACM, 338–349.

[27] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. 2016.
A Detailed Investigation of the Effectiveness of Whole Test Suite Generation.
Empirical Software Engineering (EMSE) 22, 2 (2016), 852–893. https://doi.org/10.
1007/s10664-015-9424-2

[28] Abdelilah Sakti, Gilles Pesant, and Yann-Gaël Guéhéneuc. 2015. Instance genera-
tor and problem representation to improve object oriented code coverage. IEEE
Transactions on Software Engineering 41, 3 (2015), 294–313.

[29] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges. In IEEE/ACM Int. Conference
on Automated Software Engineering (ASE). IEEE, 201–211.

[30] Sina Shamshiri, José Miguel Rojas, Juan Pablo Galeotti, Neil Walkinshaw, and
Gordon Fraser. 2018. How Do Automatically Generated Unit Tests Influence
Software Maintenance? In IEEE Int. Conference on Software Testing, Verification
and Validation (ICST). 250–261.

