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EXECUTIVE SUMMARY 

Background, research motivation and objectives 

The provision of efficient and attractive public transport services is a possible sustainable solution to 

mitigate existing problems resulting from excessive motorized traffic especially in densely populated 

urban environments.  

A crucial decision that needs to be made when planning public transport services is the determination 

of frequencies (or headways) and vehicle capacities deployed on certain lines. That is, it needs to be 

decided how often a service runs per hour and what kind of vehicles are used. This tactical decision is 

usually made before any detailed planning at the operational level such as vehicle/crew scheduling 

occurs. Since demand conditions may change in the longer term, a revision of these general decisions 

may be required on a regular basis. 

In practice, authorities or operators typically use predefined service standards such as maximum vehicle 

occupancy rates as the basis for setting frequencies and vehicle capacities, while combining this action 

with experience, judgement and passenger counts. Recent advancements in research and computation 

power, however, lead to the development of advanced optimization models that can consider 

passengers’ response to a new supply setting by incorporating public transport assignment models 

which can simulate and forecast the behavior of travelers. These methods enable a more anticipatory 

planning and dimensioning of supply than if service was merely adjusted to prevailing demand 

conditions. Yet, all methods developed so far use static assignment approaches. That is, travelers are 

assumed to make decisions based on average supply conditions and performance indicators can directly 

be computed from the given supply and passenger flows without taking into account the dynamic 

interaction between demand and supply. However, especially in highly-utilized networks, these 

dynamic interactions may cause severe issues regarding the reliability and overall performance of a 

service. 

Dynamic public transport assignment models make use of simulation techniques that enable a detailed 

emulation of dynamic interactions between demand and supply. In contrast to conventional static 

models, they can capture congestion effects such as denied boarding, deteriorating comfort onboard a 

crowded vehicle as well as service headway fluctuations resulting from riding and dwell time variations. 

To the best of the author’s knowledge, no study has so far investigated the use of dynamic assignment 

models as part of a decision tool for tactical service planning. Although some scientific works on 

frequency and/or vehicle capacity optimization included certain congestion effects, none of them 

considered the implications of crowding on overall service reliability in terms of supply variations. That 

is, running times of vehicles are assumed to be constant and headways perfectly regular. The use of a 

stochastic public transport simulation model can overcome these shortcomings and thus fill a gap in 

current research.  

Given this motivation, the objective of this thesis is the development of a model as tactical decision tool 

for frequency and vehicle capacity determination that is able to fully capture the dynamic behavior of 

demand and supply components in public transport networks. This objective is reflected in the following 

main research question: 
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How can dynamic public transport assignment models and search algorithms be combined in order to find 

optimal network supply conditions in terms of line frequencies and vehicle capacities given the objectives 

of passengers and operators? 

The second objective of the thesis is to test and show the practical applicability and implications of the 

developed model. To this end, it also needs to be investigated to what extent the model can yield 

benefits when applied to problems of real scale. Thus, the second key research question is: 

What are the practical implications and benefits of the proposed model when applied to a case study? 

 

Methodology 

The modelling framework of the proposed headway and vehicle capacity determination model consists 

of three main components (see Figure 0.1): (1) a dynamic public transport assignment model , (2) an 

evaluation model that determines the performance of a potential solution with respect to an objective 

function using the output of the assignment model and (3) a search algorithm that selects feasible 

solutions to be provided as input to the assignment model for further evaluation. Thus, the entire 

process of selecting and evaluating possible solutions is iteratively executed until a certain termination 

criterion is fulfilled, meaning a final solution was found. The algorithm is initialized by a starting point 

in terms of an initial feasible solution. 

BusMezzo is a dynamic public transport operations and assignment tool designed to support the 

analysis and evaluation of Advanced Public Transport Systems in terms of operation, planning and 

control. The mutual interactions of vehicles and passengers in BusMezzo are explicitly modelled using 

an agent-based simulation approach. Therefore, all dynamic effects on assignment results related to 

congestion and service reliability can be explicitly considered by BusMezzo which makes it an ideal 

implementation of a dynamic assignment model. Passengers are modelled as individual decision 

makers who can dynamically choose their routes through the network depending on current 

Figure 0.1: Basic framework of the headway and vehicle size determination model. 
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conditions. The generation of passenger agents at stops is done stochastically, following a Poisson 

process, and mean generation rates are assumed to be constant (i.e. inelastic towards changes in 

supply). That is, it is assumed that passengers arrive randomly at a stop and do not adjust their arrival 

times based on a known schedule. This behavior is commonly seen in public transport networks offering 

high-frequency services. Moreover, an iterative network loading can be performed in the simulation 

that accounts for the day-to-day learning of passengers who may adjust their routes based on 

experienced service reliability attributes in terms of waiting times and on-board crowding levels for all 

tried paths. That is, experienced travel times and comfort levels may cause passengers to switch to 

alternative routes until those travel attributes converge to constant values. Using this feature results in 

network-wide steady-state conditions which can be regarded as an equivalent to the congested user 

equilibrium computed in conventional static assignment models.  

On the supply side, BusMezzo simulates the movements of each individual vehicle through the network. 

The dynamic properties of stochastic running time variations, demand-dependent dwell times and 

onboard vehicle occupancy levels can be fully considered by the simulation model and enable the 

modelling of crowding and congestion effects. In each iteration of the optimization algorithm, a 

potential supply setting in terms of line frequencies and vehicle capacities is provided as an input to 

BusMezzo for simulation. That is, the headway of successive vehicle departures at a line’s departure 

terminal and the type of vehicle in terms of seating and total capacity used on that line is defined. A 

line may refer to both directions of a route or each direction may be treated separately. 

Each potential solution needs to be evaluated with respect to the objectives of both passengers and 

operator. Therefore, the objective function computes the total system costs as the sum of costs to be 

borne by the users and the operator of the system. The former costs are computed by the value of time 

and the total generalized travel time resulting from a certain supply setting. Travel time components 

such as waiting and in-vehicle times are given by the output of BusMezzo. Operational costs are 

estimated based on the total number of vehicles needed per type and the total travel distance covered 

by the vehicles. The model also allows defining alternative objective functions, for instance the 

minimization of user costs subject to an operational budget constraint.  

A solution in terms of line frequency and vehicle capacity is generated by selecting each of the two 

decision variables from a finite discrete set of predefined values. This allows to constrain the problem 

and also enables the optional consideration of one type of decision variable only in case the other set 

contains only one value. The number of possible solutions increases exponentially with the number of 

lines (or route variants), hence resulting with a problem of large combinatorial complexity. Since a 

closed analytical formulation describing the mathematical relation between the decision variables and 

the objective function value is not available, conventional optimization methods such as gradient-based 

algorithms cannot be employed. Therefore, two versions of a search algorithm that solely use the 

objective function value are developed for solving this specific problem. 

A local search algorithm is developed that finds locally optimal solutions by moving from one candidate 

solution to the other in the solution space following a descent path in terms of the objective function 

value. Thereby, the algorithm only considers the local feasible neighborhood of a solution and selects 

the best performing neighbor as the next candidate solution. A final solution is found when all feasible 

neighboring solutions cannot improve the current candidate, implying local optimality. However, it 

cannot be guaranteed that a global optimum is found since different starting solutions may lead to 

different locally optimal solutions due to the topology of the solution space. 
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A second search algorithm is developed based on the theoretical methodology of simulated annealing, 

a probabilistic metaheuristic. By sometimes accepting solutions that worsen the current objective 

function value, a trapping in locally optimal regions of the solution space might be avoided. In this way, 

local maxima can be overcome and the solution space can be examined more thoroughly, thereby 

increasing the probability of finding the globally optimal regions. The acceptance of an uphill move is 

stochastically simulated based on a probability value which is dependent on the relative difference 

between the current and the new solution as well as a parameter value (temperature) which 

monotonically decreases throughout the runtime of the algorithm. As execution time progresses, this 

acceptance probability gradually decreases which causes the algorithm to finally converge to a solution. 

This procedure, however, does not guarantee finding the global optimum. 

Application 

In the next step, the developed model is applied to two different case studies in order to investigate 

the model’s behavior towards changes in certain input parameters and prove its practical applicability 

as well as identify benefits resulting from the findings obtained. 

First, the model is applied to a hypothetical medium-sized public transport network consisting of four 

lines. Three tests are executed that aim at investigating the influence of certain input parameters on 

the search algorithms, these include: the starting solution defined to initialize the algorithm, the shape 

of the decreasing temperature parameter function in the model based on simulated annealing and the 

relative weighing of the waiting time component in the objective function. 

Results indicate that the nature of the initial solution in terms of decision variable values provided as a 

starting point to the model has a significant influence on the characteristics of the final solution 

obtained by the search algorithm based on local search (see Figure 0.2). In case the method based on 

simulated annealing is used, no dependency can be observed. The parameter value influencing the 

shape of the cooling function in the latter algorithm has a direct effect on overall runtime of the model. 

It is clearly observable that a longer run time can lead to a qualitative improvement in terms of objective 

function value of the respective solutions found (see Figure 0.3). Finally, it can be shown that the 

relative weighing of certain terms in the objective function can significantly affect the final solution. In 

this specific case, an increase of the relative importance associated with the disutility due to the waiting 

time leads to solutions that decrease the average waiting time per passenger at the expense of 

increased operational costs. 

Figure 0.2: Total cost of the final solutions found for different 
scenarios (SA = simulated annealing; LS = Local Search; 1, 2, 3 

= high, medium, low capacity starting solution) 

Figure 0.3: Cost value of final solution vs. runtime for different 
parameter settings of the SA algorithm. 
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In a second step, the developed model based on the simulated Annealing algorithm is applied to a real 

case study located in the ‘Zaanstreek’ area north of Amsterdam. The bus network consists of 6 different 

route variants (lines) and two different demand settings in the morning and the evening peak hours are 

analyzed. The model is applied to multiple scenarios involving different combinations regarding the 

formulation of the objective function, constraints on the decision variables and the considered 

passenger demand.  

The results indicate that there exists a clear difference between the two demand periods examined 

regarding both the found decision variables and objective function values. A minimization of total costs 

(TC) can yield significant reductions of the total system costs by up to 1.6% compared to the current 

situation in the morning peak period (AM), whereas in the evening peak (PM), no significant reductions 

can be achieved. Moreover, in the former period, all solutions tend to reduce passenger-related costs 

at the expense of increased operational costs, while in the latter case two of the found solutions are 

close to the current total cost composition and one solution suggests to decrease operational costs 

which implies higher user costs. In all cases, the major factor which causes changes in user costs is a 

reduction in waiting time. A mere minimization of total travel costs (UC) subject to a current operational 

budget constraint yields significant passenger benefits in both peak periods as supply is increased up 

to the budget limit. The separate determination of line frequencies per direction of a route variant 

(ASYM) yields lower user costs compared to a conventional symmetric setting of frequencies (SYM) 

irrespective of the objective considered. A simultaneous determination of both vehicle capacities and 

line frequencies (VEHCAP) can even yield larger user benefits. Figure 0.4 below shows the found 

solutions in terms of user and operational costs for all scenarios investigated.  

All in all, the obtained results are in line with the expectations on the outcomes of the scenarios. Using 

small vehicles can decrease the average operational costs per vehicle which allows to increase overall 

network capacity and thus reduce passenger-related costs. It proved clearly evident that lower user 

costs are generated at the same amount of operational expenses when determining frequencies 

separately per line direction than if setting them equally in both directions. The fact that the potential 

of improvement of the current supply provisions is greater in the morning than in the evening peak is 

also in line with previous expectations. Notwithstanding, results emphasize the quality of the current 

service provision in the evening peak from a total cost point of view and this also proves that the model 

finds realistic solutions. 

Figure 0.4: Overview of the performance of all solutions found for the different scenarios 
in terms of associated passenger-related and operational costs. 
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Conclusions and recommendations 

The main scientific contribution of this study is the successful implementation of a dynamic public 

transport assignment model within the framework of a tactical decision tool for the simultaneous 

determination of line frequencies and vehicle capacities. To this end, a search algorithm based on the 

method of simulated annealing and combined with BusMezzo, an agent-based assignment model, was 

developed. The integration of BusMezzo allows to fully consider the dynamic interaction between 

demand and a potential supply setting and the resulting consequences on overall system performance. 

From a practical point of view, an application of the proposed model at the tactical planning level may 

lead to a better operational performance of the transport system than if a conventional method was 

used since operational issues such as service reliability are already explicitly taken into account during 

this early planning phase. This makes an application of the tool particularly beneficial in case of highly-

utilized and potentially crowded and congested public transport networks. 

The tests on certain model input parameters have clearly proved the superiority and advantages of the 

simulated annealing method over the method based on local search. The results indicate the presence 

of multiple locally optimal solutions in the specific problem and thus confirm and justify the suitability 

of the application of the SA methodology. Moreover, it was found that a longer execution time of the 

SA algorithm, meaning a more intensive search, can lead to an increase in the quality of found solutions. 

A third test revealed that the relative importance attached to a certain aspect in the objective function 

can significantly affect the final solution found by the model. Hence, it is advised to pay special attention 

towards the formulation of the objective function when defining the model input parameters. 

The application of the model to a case study of real size proved its practical applicability and revealed 

solutions that can beneficially improve the current situation. Overall results indicate that the potential 

of improvement of the current supply provision is largest for the considered morning peak hour. During 

this period, significant travel cost savings can be generated by a change of the current supply and it is 

thus advised to the incumbent operator to increase overall supply provision during this period. In the 

evening peak, however, a change of the current situation is not necessary from a total system costs’ 

point of view. This result confirms the quality and optimality of the current situation given the prevailing 

demand conditions.  

Furthermore, the results clearly highlight the advantages of asymmetric service provision during 

periods of directed passenger demand which is currently present in the regarded network. The use of 

asymmetric frequency settings can lead to a more effective satisfaction of the present demand and also 

confirms the suitability of the current asymmetric supply setting in the evening peak. Moreover, a 

simultaneous optimization of vehicle capacities and line frequencies proved the benefits of deploying 

a mixed vehicle fleet on the regarded network in both periods considered. 

Next to the practical benefits, also some limitations and shortcomings of the developed model were 

identified. A major limitation of the developed tool is the negligence of vehicle scheduling since each 

vehicle is simulated for one trip on a specific line only. Consequently, potential delays being present at 

the destination terminal of a line cannot affect the punctuality of the following departure from the 

terminal which implies that effects of the propagation of delays and degraded service reliability among 

multiple lines and route directions are not accounted for. Moreover, operational costs are computed 

based on an estimated fleet size rather than an exact fleet size value resulting from vehicle scheduling. 

Hence, in order to improve those limitations and further increase the practical utility of the developed 
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tool, future research should examine the integration of a vehicle scheduling model into the present 

modelling framework.  

Another limitation of the proposed model relates to the disregarding of passenger demand elasticity 

towards changes in supply which lead to changes in generalized travel costs. In the present model, 

demand is assumed to be a constant input in terms of (mean) passenger flow rates per OD pair. In 

reality, however, this factor may be influenced by changes in supply provision as those may cause 

effects related to modal shift and/or induced demand. To account for this, an additional feedback loop 

needs to be implemented into the modelling framework that adjusts the OD matrix based on the 

relative changes of generalized travel times per OD pair and a demand elasticity function. This would 

allow to investigate crucial practical topics such as forecasting ridership growth and resulting additional 

revenues or supply optimization given the objective of operator profit maximization or subsidy 

minimization. 

Areas of research in which the model could be applied beyond the tactical level are the strategic 

network design and tactical supply determination during special events. In the former case, the model 

could be applied to a network consisting of all potential lines. Those lines resulting in zero or very low 

frequencies could then be removed from the set of attractive routes. Running the model on a modified 

network or special demand configurations in case of special circumstances such as construction works 

or big events can create valuable outputs which can be used as a tactical basis for predefined service 

plans. Future research using the model as a methodological basis could investigate the capabilities and 

suitability of the developed framework for the design of automated public transport services. In this 

context, aspects that differ from conventional public transport services and thus require further 

investigation may include the negligence of on-board staff costs and changes in passengers’ 

perceptions as a result of vehicle automation. Furthermore, future research should quantify and 

validate the added value of the proposed model by conducting a comparative analysis between the 

developed tool and a conventional public transport supply optimization model using a static assignment 

approach. In this way, the practical advantages and disadvantages of the proposed model compared to 

the state of the art could be identified on a generalizable level as well. 
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1 INTRODUCTION 

This chapter provides an introduction to the present study, starting with a section describing the 

background and scope of the topic as well as the research motivation. The following sections elaborate 

on objectives and research questions and present the approach that is followed to meet the objectives. 

Finally, the chapter closes by presenting the structure of the thesis report. 

 

1.1 Background and research motivation 

Especially in densely populated urban environments, issues caused by motorized traffic such as 

congestion, noise and air pollution and conflicts with vulnerable road users have been increasing in 

many places all over the world for the past decades. One way to mitigate these issues is the provision 

of public transport systems offering high levels of service to its users and thus making people switch 

from private motorized modes of transport to more sustainable public transport modes. Therefore, 

public authorities and operators should promote the development of high-quality public transport 

systems in order to improve people’s overall quality of life. 

Providing attractive public transport services is a challenging task which involves decision making on 

various supply elements ranging from short-term day-to-day operational strategies to long-term 

network planning. The final goal is the provision of an attractive, reliable and comfortable service that 

meets users’ needs and is still economically efficient in terms of operation. The frequency setting and 

fleet size determination problem can be regarded as a tactical planning decision at the medium term 

horizon of a few weeks up to months or years. In order to maintain a good level of service or reduce 

operational cost by cutting excessive and underutilized supply it is necessary to regularly adjust 

frequencies and vehicle capacities on public transport lines to demand variations along different 

seasons of the year or times of day. 

In practice, public transport agencies typically use service standards such as crowding levels, allowed 

maximum standees, and upper (policy) and lower limits on headways as the basis for setting 

frequencies and vehicle capacities, while combining this action with experience, judgement and 

passenger counts (Furth & Wilson, 1981). Recent advancements in research and computation power, 

however, lead to the development of advanced optimization models that can consider passengers’ 

response to a new supply setting by incorporating assignment models which can simulate and forecast 

the behavior of travelers. Using this approach, a more anticipatory planning and dimensioning of supply 

would be possible than if service was merely adjusted to prevailing demand conditions. Yet, there is still 

room for improvements of these new models since all methods developed so far use static assignment 

approaches. That is, travelers are assumed to make decisions based on average supply conditions and 

performance indicators can directly be computed from the given supply and passenger flows without 

taking into account the dynamic interaction between demand and supply. The impact of these effects 

on travel time reliability is not accounted for as average waiting and in-vehicle times are computed 

based on perfectly regular headways and average travel times of vehicles. In practice, some static 

assignment models can partly consider crowding and congestion effects by computing user equilibrium 

conditions in the network based on experienced in-vehicle times that are adjusted by crowding factors. 

However, especially in highly-utilized networks, the dynamic interactions between demand and supply 

may not only affect onboard crowding levels but also cause severe issues regarding the reliability and 
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overall performance of a service for instance resulting from passenger flow-dependent dwell times. 

Therefore, the inclusion of dynamic system behavior is desirable when making tactical decisions such 

as frequency and capacity determination. To the best of the author’s knowledge, no study has 

investigated the use of dynamic public transport assignment models for tactical planning purposes so 

far. 

 

1.2 Objectives and research questions 

Given the afore-mentioned research motivation, the main objective of this thesis is the formulation of 

a model as tactical decision tool for frequency and vehicle capacity determination which is able to 

capture the dynamic behavior of demand and supply components in public transport networks. This 

objective is reflected in the following research question: 

How can dynamic public transport assignment models and search algorithms be combined in order to find 

optimal network supply conditions in terms of line frequencies and vehicle capacities given the objectives 

of passengers and operators? 

A number of sub-questions can be formulated which help to gain supportive knowledge to answer the 

main question and structure the research approach: 

 How can potential solutions neighboring a given solution and satisfying certain feasibility 

constraints be generated?  

 Which components should be included in the objective function for performance evaluation of 

a potential solution to incorporate both the interests of travelers and operators? 

 How can this problem be solved using an efficient search algorithm that uses outputs from the 

simulation model and finds a feasible and well-performing solution? 

The second objective of the thesis is to test and show the practical applicability and benefits of the 

proposed model. Thus, the second research question is: 

What are the practical implications and benefits of the proposed model when applied to a case study? 

The related sub-questions are: 

 What is the effect of different starting solutions and search algorithm parameters on the quality 

of the final solution obtained? 

 To what extent do the solutions and resulting performance indicators obtained by the model 

differ from a reference situation when applied to a real case study? 

 How robust/sensitive are the model outputs against varying demand conditions? 

 What are the practical limitations of the model? 
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1.3 Approach 

This section describes the approach chosen in order to meet the objective and answer the research 

questions. The research approach consists of three stages: a literature review, the model development 

and its application. 

A thorough literature review facilitates the development of the model by gaining insight into the 

approaches proposed in previous studies. First, the superordinate topic of public transport service 

planning which forms a basis for the actual topic is briefly introduced. Thereafter, various older and 

more recent works on headway and vehicle size optimization are presented and classified according to 

their approaches. The basic strategies identified in the literature study can serve as a good basis for the 

present model. Finally, a comparative analysis and synthesis of the reviewed literature is executed in 

order to identify those basic strategies, review the historical development of modelling approaches 

within this specific domain, and also highlight concepts and elements which have been neglected or 

rarely treated so far and which the present study intends to address. 

In the next stage, the actual model development takes place, which means finding an answer to the 

first research question. Figure 1.1 shows the basic methodology of the proposed model consisting of 

three main components which constitute the decision tool: A dynamic public transport assignment 

model that considers the dynamic interaction between demand and supply and its potential impacts 

on service reliability, a model that evaluates the performance of a potential solution by transforming 

the outputs of the assignment model into a suitable performance indicator, and a search algorithm that 

selects potential solutions. The optimization model aims at finding a well-performing solution by 

iterative search. Thus, the formulation of the optimization problem leads to the adoption of a suitable 

search algorithm that selects appropriate solutions in the neighborhood of a given solution. Special 

attention needs to be paid to the generation of a feasible set of solutions respecting the defined 

constraints. The performance of a solution is evaluated using an objective function which reflects both 

the interests of travelers and operators. After the model has been implemented, it needs to be checked 

whether it works as expected and produces reasonable results. Using a small example case study for 

model verification purposes facilitates the tracing of potential errors and bugs and overall 

interpretation of the produced results. Moreover, the effects of assumptions on certain model inputs 

can be easily tested and compared using a small network which allows for an exhaustive search, i.e. the 

enumeration of all possible solutions. 

Figure 1.1: Basic components of the proposed model. 
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Finally, the proposed model is applied to case studies in order to show its practical implications. Since 

the behavior of the proposed model may depend on several external input parameters, different 

scenarios need to be executed under different assumptions on constraints, model input parameters 

and demand conditions. A real-world case study is used to compare the performance of an optimized 

supply with that of the current situation. The analysis of the model results for different cases and 

scenarios helps to identify the effects of different assumptions on model inputs as well as the practical 

limitations and finally provides an answer to the second research question. Based on the analysis of the 

obtained results, conclusions can be drawn and recommendations for practice and research can be 

made. 

 

1.4 Thesis structure 

The report of this study is structured as follows: Chapter 2 provides a comprehensive review on 

literature dealing with headway and vehicle size optimization approaches. It closes with a summarizing 

synthesis including a positioning of the present study within the current research. Chapter 3 gives a 

detailed explanation of the selected methods used to develop the model. The theoretical formulation 

of the model is introduced step-by-step and, finally, model verification results are presented. Chapter 

4 presents practical applications of the developed model to case studies including discussions of the 

obtained results. Finally, Chapter 5 summarizes the findings of this thesis by giving answers to the 

research questions and providing recommendations for public transport authorities and operators as 

well as for future research projects. The final chapter concludes by a personal reflection on the work 

process and lessons learned during the thesis project. 
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2 LITERATURE REVIEW 

This chapter provides a comprehensive review on literature which is relevant in the context of the 

present study. It starts with giving a brief introduction on the more generic and superordinate topic of 

optimal planning of public transport services. Thereafter, various studies presenting models and 

approaches for determining and optimizing vehicle capacities and headways in public transport 

networks are reviewed. The chapter concludes with summarizing the most important findings of the 

literature review and pointing out missing elements that the present study can address.  

 

2.1 Public transport service planning 

Designing and operating public transport networks is a very complex task involving various decisions on 

different supply elements which range from short-term operational strategies to long-term network 

planning. The overall goal is the provision of a public transport system that offers an attractive, reliable 

and comfortable service to its users and is still economically efficient in terms of operation. 

In literature, the entire public transport service planning problem is usually subdivided in four phases 

or sub-problems (Ceder & Wilson, 1986 ; Ceder, 2007): 

1. Public transport network design: Comprises the strategic determination of the locations of 

interchange, terminals and intermediate stops on a line as well as the line’s route. Independent inputs 

and constraints may include land-use characteristics, authority constraints such as budget limits and 

current patronage. 

2. Frequency setting and timetabling: Includes the tactical determination of service frequencies for 

certain periods of operation as well as the definition of arrival and departure times of vehicles at all 

stops. These decisions result in a required fleet size to operate the timetable based on known route 

travel time distributions.  

3. Vehicle scheduling: In this phase, vehicles of a certain type are assigned to the trips determined in 

the previous phases. This results in an operational vehicle schedule and a required fleet size per type 

of vehicle. 

4. Crew scheduling: Finally, drivers are assigned to planned vehicle trips and thus driver roosters are 

generated taking into account for example working regulations, payment structures and individual 

preferences of drivers. 

All four phases constitute the public transport service planning problem and are highly interdependent 

since outputs obtained at one stage are provided as inputs to the following stage. A decision made at 

the frequency setting stage, for instance, may strongly influence the subsequent phases. Therefore, it 

would be desirable to simultaneously solve all stages of the problem in one step. However, due to the 

high complexity of each phase, an integral approach is difficult to realize in terms of computational time 

given the current state of computing power of standard PCs and algorithms available. Instead, each 

phase or a combination of multiple phases is solved separately and the entire problem can finally be 

solved using an iterative procedure which uses outputs in terms of a solution obtained for one problem 

as inputs to the subsequent problem. Ibarra-Rojas et al. (2015) provide an extensive review of scientific 

papers dealing with all sub-problems of the public transport service planning problem and also             



6 
   

real-time control strategies. Especially in recent years, this research domain has gained substantial 

progress in terms of new types of approaches and models being developed.  

 

2.2 Headway and vehicle size determination 

This section provides a comprehensive review on scientific literature both dealing with headway and 

vehicle size determination in public transport networks. It starts with reviewing analytical models using 

exact optimization approaches which were mainly developed between the years 1980 and 2000. 

Thereafter, recent works on the issue incorporating sophisticated heuristic optimization methods are 

presented and elaborated on. 

 

2.2.1 Exact optimization approaches 

The network design, frequency setting and timetabling stages of the public transport service planning 

methodology described in Section 2.1 usually considers only one type of vehicle having a certain 

capacity. In practice, however, various types of vehicles having different capacities such as minibuses, 

articulated and double-decker buses or standard buses may be employed. Note that the decision 

variables frequency and vehicle capacity are strongly interrelated as a line segment’s capacity in terms 

of maximum number of passengers transportable per hour is the product of both variables. That is, for 

a given line frequency and maximum load segment and desired average vehicle load factor a minimum 

vehicle capacity can be directly computed. The same holds for a given vehicle capacity and the resulting 

frequency.  

The following two sections elaborate on analytical models developed to determine optimal headways 

and vehicle sizes using exact optimization approaches. Most of the models are only applicable to a 

single line without taking into account network effects. 

 

2.2.1.1 Optimal headway 

This section presents analytical models and optimization approaches for determining the optimal 

headway of a single public transport line. Note that all these methods only aim at determining a suitable 

supply in terms of frequencies and thus assume a given vehicle capacity. Models for determining the 

vehicle size are discussed in the following section (2.2.1.2).  

One of the earliest models was proposed by Newell (1971) who derived an analytical expression for the 

difference in time (headway) between two consecutive vehicle departures by minimizing passengers’ 

waiting time and a constant operating cost per vehicle for a single line. According to this formula, the 

frequency and the number of passengers per vehicle is proportional to the square root of the passenger 

arrival rate. The model is formulated for the case of vehicles with unlimited capacity and also for the 

case where a capacity constraint is present. 

The work of Newell was later extended and refined by Salzborn (1972) who developed a model for 

determining a complete vehicle schedule resulting from an optimized frequency setting by splitting up 

the problem into two objectives. The primary objective is to determine the minimum fleet size for a 

single transportation route given a known passenger arrival rate and the line’s cycle time. During peak 

it is assumed that the minimum fleet size/maximum headway results from a maximum load factor 
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constraint: i.e. during peak, busses have to be loaded at maximum. In a second step, the actual bus 

departures are determined by minimizing passengers’ waiting time subject to the fleet size constraint. 

In contrast to Newell (1971), Salzborn considers that busses can be used for more than one trip (trip 

chaining). The optimization problem is solved with the calculus of variations. Practical implications of 

the model are illustrated by means of a real-world metropolitan bus route in Adelaide, Australia, using 

observed passenger counts. The number of required vehicles and their departure times at certain 

control points are determined by the model. Moreover, it is shown how the developed model can be 

easily extended to optimize a pair of connected lines. 

Ceder (1984) describes a method for the practical frequency determination of a single line using 

passenger count data and desired occupancy levels. In total, four methods are proposed which use two 

kinds of data: the maximum load at selected stops (point check) or a complete load profile of the entire 

route (ride check). A criterion is developed that helps to decide which type of method should be used 

and thus which type of data should be collected. The criterion uses the measure of the load profile 

density, which is the observed measure of total passenger-km (i.e. total ridership over the route), 

divided by the product of the length of the route and its maximum load. Lower profile densities 

indicating significant load variability among the stops suggest the use of the ride check procedure 

whereas the point check method would be appropriate in the case of a flatter load profile (high density). 

All studies reviewed previously present a methodology for determining optimal headways for a single 

public transport line given an observed passenger demand. That is, the supply is optimally adjusted in 

response to prevailing demand conditions. However, in reality, demand is not independent from supply 

but rather distributes across a network depending on the supply characteristics of certain lines in the 

network. The study of Han and Wilson (1982) was one of the first considering these network effects, 

yet in a very simplified fashion. They proposed a model for allocating busses to a network with 

significant overlap between routes given passenger demand in form of an OD-matrix. The overall 

objective is to minimize waiting time and crowding levels subject to fleet size and demand satisfaction, 

i.e. capacity should be sufficient on any line segment. A simplified assignment model is proposed that 

assigns passenger flows to parallel overlapping lines proportional to the respective frequencies. The 

solution of the problem is decomposed into a base allocation procedure and a subsequent surplus 

allocation algorithm: The base allocation increases the frequency on each line until all constraints are 

satisfied, i.e. generating the supply condition with the minimum number of busses required; the surplus 

allocation procedure increases the frequencies on each line separately by minimizing overall crowding 

levels until the maximum number of available vehicles is reached. Practical application is illustrated by 

a simple network (a three-lines part of the bus system in Cairo) for which the algorithm was applied in 

a complete manual procedure. 

 

2.2.1.2 Optimal vehicle capacity 

This section presents exact optimization approaches for determining the optimal vehicle size of a public 

transport service. Note that a selected vehicle capacity has direct implications on the headway since 

both measures show a proportional relation assuming that a constant line capacity and an average 

vehicle load factor is given. That is, an optimally determined vehicle type directly results in an associated 

headway. 

The general problem when determining the optimal vehicle size lies in the trade-off between the costs 

to be borne by the user and the operator of the system. That is, the overall aim is to minimize the social 
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costs of the public transport system consisting of the generalized travel costs of passengers and the 

operating costs associated with a certain supply. This contrasts with the previously presented models 

for setting optimal frequencies since those are based on demand satisfaction rather than cost 

minimization. All of the analytical models mentioned below are derived in a similar fashion. The 

equation for optimal vehicle size computation is derived by first formulating a social cost equation and 

then setting the first derivative with respect to the vehicle size to zero. Depending on their theoretical 

assumptions the presented models differ in terms of complexity and amount of data required. 

A very simple analytical formulation to compute the optimal vehicle size was proposed by Walters 

(1980), who claims that the optimal size which minimizes passengers’ waiting time costs and wage 

vehicle costs is indirectly proportional to the total number of passengers. This implies that for increasing 

passenger volumes, vehicles sizes and corresponding headways decrease. In contrast to that, Gwilliam 

et al. (1985) attack this idea by establishing a similar expression which entails a direct proportional 

relationship between passenger demand and vehicle size. By assigning common values to the input 

variables, the authors show that operating much smaller buses than those commonly used is not 

justified. 

A far more sophisticated model was developed by Oldfield and Bly (1988). Their assumptions are very 

detailed comprising various features and components. In contrast to most other models, demand is 

assumed to be elastic towards changes in the supply in terms of passenger trip costs according to a 

constant generalized cost elasticity value. Moreover, the influence of different vehicle sizes and 

resulting frequencies (i.e. flow of vehicles) on road congestion is modelled explicitly. In order to account 

for the influence of different demand levels on dwell times and thus operating speed, passengers’ in-

vehicle time is assumed to be dependent on the occupancy of the vehicles. The probability of denied 

boarding as busses become full is explicitly accounted for as well. Considering all these components, 

the model is capable of replicating the entire public transport system in great detail compared to other 

models within this domain. However, this comes at the price of an increased effort when gathering and 

calibrating required input data.  

Unlike all models presented so far, Shih and Mahmassani (1994) proposed an approach that is 

applicable to a network of lines and not only to a single line. Demand in terms of total passenger trips 

and maximum link volume per line is not assumed to be constant but a result of the supply offered and 

determined by a simple public transport assignment model only taking into account line frequencies, 

travel times and number of transfers. The model aims at computing optimal frequencies and vehicle 

sizes by using an iterative procedure. First, an initial set of preliminary route frequencies is assigned to 

the network and a demand matrix defined at network level is assigned. Then, the optimal vehicle size 

per line is computed using the maximum link flow resulting from the passenger assignment and a 

predefined maximum load factor. An updated frequency resulting from the vehicle size and load factor 

is computed and reassigned to the network. The procedure is repeated until frequencies converge. 

Note that this approach does not aim at minimizing overall system costs but rather optimizes the vehicle 

sizes for each line separately. A real-world case study in Austin, Texas, is conducted to illustrate the 

practical implementation of the model. 

An early work by Jansson (1980) paid special attention towards determining the optimal vehicle size to 

be used both in peak and off-peak periods of the day. By incorporating passenger peak to off-peak flow 

ratios and considering the mean flow rate over the whole day the author developed an expression that 

determines the optimal bus size to be used for the entire daylight service. Using that model, he showed 

that particularly in off-peak, social costs can be significantly reduced by employing smaller vehicles at 



9 
   

higher frequency. Similar to the previous work, Lee et al. (1995) also developed a model that takes into 

account different periods of the day. The model is able to optimize vehicle sizes on multiple routes as 

well, i.e. it considers the entire network. The model also aims at analyzing the advantages of using 

different vehicle sizes on a line during the day by taking into account additional capital cost resulting 

from a mixed vehicle fleet. Numerical results show that operating a network with two different vehicle 

sizes instead of one single size is advantageous in cases where the demand in peak hours is 

approximately two times bigger than in off-peak periods. Using a mixed-fleet may lead to a lower overall 

fleet size than if a single vehicle size was used.  

Gronau (2000) tackles the vehicle size determination problem from a different perspective by 

evaluating the viability of an unexplored option to offer different types of vehicles on the same route 

for travelers having different values of time. That is, small vehicles operating at high frequency should 

serve high-value-of-time passengers whereas larger vehicles can offer a supply to low-value-of-time 

travelers. He shows that the optimal decision whether to use one or two types of vehicles depends on 

the length of the route and the distribution of passengers’ value of time. The longer the route and the 

more dispersed the distribution of the population, the greater becomes the tendency to use two types 

of vehicles rather than one. The optimal number of runs associated with each service concept is used 

as a simple decision criterion, i.e. the concept requiring the fewer runs is preferable over the other one. 

Another different viewpoint of the problem was examined by Tisato (2000) who optimized public 

transport subsidy levels given multiple constrained scenarios concerning desired load factor and bus 

size. Results show that the optimal unit subsidy declines as patronage increases but the decline was 

less pronounced in unconstrained cases where both load factor and bus size are optimizable decision 

variables. That is, if both variables are optimized simultaneously the change of bus sizes due to 

increased demand will be smaller than if only one variable is optimized because marginal optimization 

conditions can be better met by increasing both load factor and vehicle size.  

Several studies have adopted vehicle size optimization approaches for designing and evaluating public 

transport feeder services, i.e. a feeder line that connects a remote area with an adjacent major 

transportation hub or interchange station. Analytical models were developed to compare fixed route 

conventional services over flexible route subscription services for deterministic (Chang & Schonfeld, 

1991) and stochastic demand (Chien et al., 2001). Results show that flexible services require smaller 

vehicles at higher frequencies than conventional services do. This implies higher operating costs and 

lower user costs for the former and the opposite constellation for the latter case. Moreover, a threshold 

value of the demand density in the area connected by the feeder service was established which can be 

used to make a decision about which service concept to use. Another study dealing with the design of 

a bus feeder service was done by Chien (2005) who optimized headway, vehicle size and the route of 

the feeder line simultaneously given a discrete set of possible vehicle sizes and routes having associated 

lengths and travel times. The procedure computes the optimal headway by an analytical expression for 

each combination of vehicle size and route and finally selects the optimal solution which results in the 

minimum total cost. The model was applied to a real-world case study in New Jersey, USA. 

 

2.2.2 Heuristic optimization approaches 

Most of the analytical approaches presented in the previous section assume a fixed demand-line 

assignment, i.e. constant rates of passengers boarding and alighting at the stops along a route 

independent from the supply offered. In practice, however, when an entire public transport network 
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consisting of multiple lines needs to be optimized, this assumption does not hold anymore since 

passengers choose their route through the network from origin to destination based on the supply 

characteristics of (potential) multiple routes. These demand-supply interactions and network effects 

introduce non-linear components to the optimization problem such as the inverse relationship between 

waiting time and headway. Exact and efficient solution methods are rarely available for such highly non-

linear problems. In order to solve these complex problems, heuristic methods that find approximate 

near optimal solutions are often applied. 

The following two subsections present heuristic optimization approaches for frequency and capacity 

determination. First, models for determining optimal line frequencies in public transport networks 

assuming given vehicle capacities are reviewed. Thereafter, approaches are presented that 

simultaneously optimize headways and vehicle capacities using heuristic optimization methods. 

 

2.2.2.1 Frequency determination assuming given vehicle capacities 

In order to account for the route choice implications of passengers, recent scientific works on public 

transport supply optimization incorporate bi-level optimization models. These models typically consist 

of two hierarchically structured optimization procedures: An upper level supply optimization model and 

a lower level assignment model computing equilibrium passenger flows resulting from a certain supply 

given by the upper level model (Ibarra-Rojas et al., 2015). 

An early work on bi-level frequency optimization in public transport networks was done by Constantin 

and Florian (1995). At the upper level, the total travel time of passengers is minimized subject to a fixed 

fleet size constraint and a lower frequency bound. Assignment of passengers at the lower level is done 

using optimal strategies, a linear optimization problem which can be solved by an algorithm of 

polynomial complexity, e.g. a label-setting algorithm (Spiess & Florian, 1989). The upper level problem 

is solved by a projected sub-gradient algorithm which uses a (sub)gradient obtained from the 

assignment model in each iteration. The model is tested on three real life public transport networks. 

Yu et al. (2010) use the same upper level objective and lower level assignment approach in their bi-level 

model as in the previous study. Vehicle capacities and fleet sizes are a constraint per set of lines 

belonging to a specific bus company. In the assignment model, multiplicative crowding factors 

reflecting the degree of comfort are used when computing in-vehicle times. Frequencies at the upper 

level model are optimized using a genetic algorithm. The proposed model is tested on a real life network 

in China. Results reveal that travel times can be reduced compared to the current supply situation. 

Moreover, it is shown that an integrated organization of bus companies sharing their vehicles can lead 

to an even more efficient allocation of resources in the entire network.  

Another approach is examined by Yoo et al. (2010) who set the upper level objective of maximizing 

demand in response to a certain frequency setting. Constraints include frequency bounds as well as a 

fixed given vehicle fleet. Passenger flows are modelled using a stochastic user equilibrium assignment 

model considering transfer delays between lines at the lower level. Moreover, capacity constraints for 

line segments as well as increased waiting times because of denied boarding are implemented. 

Frequencies are iteratively optimized using a gradient projection method. Information on the gradient 

is obtained by the assignment model in each iteration. The model is tested on a hypothetical network 

and numerical experiments show that the algorithm converges well to an optimal point. 
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Huang et al. (2013) proposed a bi-level formulation that is able to handle uncertain demand in terms 

of a mean trip matrix and associated variance. The objective of the upper level frequency optimization 

model is to minimize the weighted sum of operator costs and travel time variance. The lower level 

assignment model applies the theory of optimal strategies and computes the mean and variance of 

passenger flows through all links. A genetic algorithm is applied to the upper level model, which 

optimizes frequencies constrained by a fixed fleet size and the requirement of all lines being served by 

at least one vehicle. Practical implementation of the proposed algorithm to a network in China shows 

that costs resulting from current operations can be reduced by changing the supply characteristics in 

terms of frequencies. 

Next to the previously reviewed studies which used a bi-level structure in their proposed optimization 

models, there are other works proposing models for frequency optimization that cannot be classified 

according to a bi-level approach. That is, the problem is solved in one optimization procedure rather 

than using two hierarchical models.  

Martínez et al. (2014) propose an alternative formulation of the model proposed by Constantin and 

Florian (1995). By linearizing the bi-level structure, they are able to reformulate the problem into a 

mixed integer linear program (MILP) for which dedicated techniques can be applied to solve the 

problem to optimality. The problem considers discrete frequencies, unlimited capacity of vehicles, and 

limited fleet size. Although the proposed MILP formulation enables to compute optimal solutions to 

the problem, largely-sized instances are expected to be hard to solve. Therefore, a metaheuristic 

solution algorithm based on Tabu search is proposed by the authors as an alternative solution method. 

Both approaches are tested on real-life cases and numerical results show that current operations can 

be improved.  

Verbas et al. (2015) tested the influence of different demand elasticities corresponding to various levels 

of disaggregation on the solution of the frequency allocation problem by extending the model 

presented by Furth and Wilson (1981). The problem is formulated with a non-linear program which 

minimizes the weighted sum of ridership and wait time savings subject to constraints such as budget, 

fleet size, headway bounds for each line, and bounds for load factors. Route choice of passengers was 

assumed as fixed and estimated based on boarding and alighting data. Numerical results indicate that 

elasticities based only on temporal aggregation result in an underestimation of the potential 

improvements as compared to elasticities which account for some spatial characteristics, such as land 

use or the opportunity to transfer. 

A comprehensive model considering various components and interactions influencing the performance 

of a public transport system was proposed by Yu et al. (2011). In their approach, frequencies are 

optimized for an entire network allowing for a differentiation between line directions. Moreover, cost 

components related to crowding such as increased waiting times due to denied boarding, onboard 

comfort levels and the influence of crowding on dwell times are explicitly taken into account. For the 

sake of simplicity, route choice decisions of passengers are neglected and demand is assumed as 

constant boarding/alighting rates. The objective of minimizing total system cost is optimized using a 

parallel approach of genetic algorithm in combination with local Tabu search. Application of the model 

to a real-life public transport network shows that the current overall level of service can be improved 

by reallocating available resources. 
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2.2.2.2 Simultaneous determination of frequency and vehicle capacity 

All of the approaches presented in the previous section aim at optimizing supply in terms of choosing 

optimal line frequencies and thereby assuming vehicle size/capacity as given exogenous variable. 

However, there are two papers by Dell’Olio et al. (2012) and Ruisanchez et al. (2012) which optimize 

both decision variables at the same time using a bi-level approach. Line frequencies are modelled as 

continuous decision variables whereas bus sizes are assumed being discrete and constrained by a 

maximum number of available vehicles per type. At the upper level, the objective is to minimize the 

sum of operator and user costs. At the lower level, commercial software solving the public transport 

user equilibrium assignment is used. A Hook-Jeeves pattern search algorithm (Hook & Jeeves, 1961) 

proposes frequencies at the upper level and resulting vehicle sizes satisfying a demand constraint are 

computed. The proposed model is applied to a real-world bus network consisting of 15 lines in the city 

of Santander, Spain. Results indicate that using a mixed vehicle fleet in terms of bus capacities may lead 

to lower overall system costs than if a homogenous fleet was used. Ruisanchez et al. (2012) compared 

the results obtained by the Hook-Jeeves algorithm (Dell’Olio et al.) with those resulting from the 

application of a Tabu search algorithm. It turned out that Tabu search converges almost 50% faster 

than the other algorithm while the final optimal results are quite similar. Hence, Tabu search is more 

attractive if there is a need to solve the problem multiple times and for large networks. 

Similar to the previous studies, Canca et al. (2016) propose an optimization model which simultaneously 

determines line frequencies and vehicle capacities in dense railway rapid transit networks. Line 

frequencies are modelled as discrete integer decision variables and the capacity of a train unit can be 

modified by varying the number of carriages deployed between two self-propelling units at the front 

and the rear of the train. The two decision variables are constrained by defining a finite set of admissible 

frequencies and a lower and upper bound for the number of carriages on a train respectively. Due to 

the technical differences of rail-bound traffic in terms of safety and rail capacity requirements 

compared to road traffic, additional constraints are introduced that ensure that these requirements 

are met given a potential supply setting. The objective function used in the model considers both the 

operator and user points of view by minimizing total operational and generalized travel costs. In case 

capacity on a segment is not sufficient to serve demand, the objective function value of the respective 

solution is penalized by adding a high value to it. Passengers are assigned to line segments by solving a 

capitated minimum cost flow problem taking into account the k-shortest paths between each OD pair. 

Since the model is formulated as a Mixed Integer Non-Linear Programming model, it can be solved by 

dedicated methods. The authors use the Extended Cutting Plane method (Still & Westerlund, 2001), 

which decomposes the problem into a set of sub-problems by discarding the non-linear constraints and 

then generating a set of linear cuts from the non-linear constraints for each solution that is infeasible 

in terms of these constraints. This set is added to the sub-problem and resolved again until an integer 

solution is found. The practical applicability of the proposed model is demonstrated on a simplified 

version of the metropolitan railway network in Madrid consisting of 7 lines. Using this case study, the 

model’s sensitivity on certain input parameters such as overall demand and the specification of the 

value of time is tested indicating overall consistency among the resulting solutions and tendencies. 
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2.3 Summary and synthesis 

The literature review on headway and vehicle size determination showed that early studies focused 

mainly on analytical models that can be solved using exact optimization methods or closed analytical 

expressions. Most of these models neglected or strongly simplified network effects, service reliability 

and passenger route choice decisions. Many recent studies, however, aim at searching for a system-

wide optimum solution which takes into account the before mentioned aspects. Nonlinear correlations 

between the demand and supply model highly increases the complexity of the entire decision problem. 

In order to solve such problems efficiently, heuristic solution methods that produce approximate results 

of sufficient quality are needed.  

Most of the studies dealing with models for vehicle capacity determination were published between 

the years 1980 to 2000. Table 2.1 presents a comprehensive characterization of all reviewed papers 

according to assumptions and determining factors considered in the model. There is no consistency 

among the models concerning which trip time elements influence optimal vehicle size. Some of the 

approaches consider various elements in a detailed fashion whereas others only take into account some 

basic elements. It is also worth mentioning that different models show opposite viewpoints on the 

relationship between demand and vehicle size: in some, a high passenger flow will increase the vehicle 

capacity needed; in others, it will justify using smaller vehicles. The representation of dynamic effects 

such as increased waiting times due to denied boarding or onboard comfort levels are very limited 

among all the models.  

Recent models for public transport supply optimization are quite complex and require advanced 

solution methods. Table 2.2 presents a classification of the reviewed models according to selected 

characteristics including the present study. Most of the models aim at determining optimal supply 

conditions with respect to a certain objective in terms of line frequencies. Only very few studies tackle 

the simultaneous optimization of vehicle size and headway. In most of the works, the composition of 

the vehicle fleet is assumed as an exogenous input to the model. Most of the solution algorithms can 

be classified as gradient-based or metaheuristic algorithms such as genetic algorithms or Tabu search. 

The underlying public transport assignment models are mostly based on average and static supply 

conditions and do rarely consider effects related to crowding when determining passenger route choice 

decisions. There are some studies, however, that do explicitly account for certain crowding effects and 

dynamic demand-supply interactions. In all models, service is considered to be perfectly reliable in 

terms of stochastic supply variations. That is, running times of vehicles are assumed to be constant and 

headways perfectly regular. 

The present study can capture the missing or rarely considered features of earlier studies by including 

the following aspects and thereby filling certain gaps. Using a public transport simulation model for 

dynamic assignment of passengers will enable a detailed representation of demand and supply 

including stochastic behavior and issues related to reliability. In contrast to current models, the 

consideration of dynamic supply-demand interactions and resulting issues such as denied boarding, 

discomfort due to crowding, and headway regularity can be implicitly captured by the simulation model. 

A detailed output on demand and supply performance data produced by the simulation model will 

enable a targeted optimization which can consider various potential objectives. Finally, a simultaneous 

determination of headway and vehicle size is possible to implement but each decision variable can be 

easily optimized separately as well by assuming an exogenous input for the other one. This makes the 

model very flexible since a reformulation of the decision problem is not necessary.
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Table 2.1: Characteristics of reviewed analytical models for vehicle size determination. 

 
Jansson 

(1980) 

Walters 

(1982) 

Gwilliam et 

al. (1985) 

Oldfield & 

Bly (1988) 

Shih & 

Mahmassani 

(1994) 

Lee et al. 

(1995) 

Gronau 

(2000) 

Tisato 

(2000) 

Chang & 

Schonfeld 

(1991) 

Chien et al. 

(2001) 

Chien 

(2004) 

Assumptions            

Elastic/variable 

route demand 
No No No Yes Yes No No No No 

Any demand 

function 
No 

Consideration of 

road congestion 
No No No Yes No No No No No No No 

In-vehicle time 

dependency on bus 

occupancy 

No No No Yes No No Yes No No No No 

Consideration of 

denied boarding 
No No No Yes No No No No No No No 

Multiple periods of 

the day 
Yes No No No No Yes No No No No No 

Determining factors              

Subsidy No  No No  Yes No No No No No No No 

Fare No No No Yes No No No No No No No 

Waiting time Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes 

Access/egress time No No No Yes Yes No No No Yes/No Yes/No Yes 

In-vehicle time Yes No No Yes Yes Yes Yes No Yes/No Yes Yes 

Maximum vehicle 

load factor 
Yes No No No Yes No No Yes No No No 

Constant operating 

cost component  

per vehicle 

No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

per 

vehicle 

type 
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Jansson 

(1980) 

Walters 

(1982) 

Gwilliam et 

al. (1985) 

Oldfield & 

Bly (1988) 

Shih & 

Mahmassani 

(1994) 

Lee et al. 

(1995) 

Gronau 

(2000) 

Tisato 

(2000) 

Chang & 

Schonfeld 

(1991) 

Chien et al. 

(2001) 

Chien 

(2004) 

Vehicle size 

dependent 

operating cost 

component 

Yes No No No No No Yes No Yes/No Yes 

Fixed 

cost per 

vehicle 

type 

Route length or 

travel time 
Yes No No Yes Yes Yes No Yes Yes Yes Yes 

 

Table 2.2: Characteristics of reviewed models for public transport supply optimization including present study. 

 

Decision 

variable 

Frequency 

Decision 

variable 

Capacity 

Objective 
Solution 

method 
Fleet size 

Other 

constraints 

Assignment 

method 

Consideration of 

crowding 

Stochastic 

supply 

Constantin & 

Florian (1995) 
Continuous  exogenous 

Min total travel 

time 

Projected 

sub-gradient 

algorithm 

Fixed 

Lower 

frequency 

bound 

Optimal 

strategies 

No (but model 

can be 

extended) 

No 

Yu et al. (2010) Continuous  

Fixed per 

line/compa

ny 

Min total travel 

time 

Genetic 

Algorithm 
Fixed  

Upper and 

lower 

frequency 

bounds 

Optimal 

strategies 

Comfort level 

onboard 
No 

Dell’Olio et al. 

(2012) 
Continuous  Discrete  

Min total users’ 

and operator’s 

costs 

Hook-Jeeves 

pattern 

search 

algorithm 

Fixed per 

vehicle type 

Demand 

satisfaction  

Commercial 

software 

(User 

equilibrium) 

No No 

Ruisanchez et al. 

(2012) 
Continuous  Discrete  

Min total users’ 

and operator’s 

costs 

Tabu search 

algorithm 

Fixed per 

vehicle type 

Demand 

satisfaction  

Commercial 

software  
No No 
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Decision 

variable 

Frequency 

Decision 

variable 

Capacity 

Objective 
Solution 

method 
Fleet size 

Other 

constraints 

Assignment 

method 

Consideration of 

crowding 

Stochastic 

supply 

Martínez et al. 

(2014) 
Discrete  exogenous 

Min total travel 

time 

CPLEX solver/ 

Tabu search 

algorithm 

Fixed 

Demand 

satisfaction

, frequency 

bounds 

Optimal 

strategies 
No No 

Yoo et al. (2010) Continuous  exogenous Max demand 

Gradient 

projection 

algorithm 

Fixed 

Demand 

satisfaction

, frequency 

bounds 

Stochastic 

user 

equilibrium 

Increased 

waiting time 

because of 

denied boarding 

No 

Huang et al. 

(2013) 
Continuous  exogenous 

Min operator’s 

costs and travel 

time variance 

Genetic 

algorithm 
Fixed 

At least 

one bus 

per line 

Optimal 

strategies 
No No 

Verbas et al. 

(2015) 
Continuous  exogenous 

Max ridership 

and waiting 

time savings 

KNITRO solver 

(commercial 

software) 

Fixed, 

different bus 

sizes 

Subsidy, 

policy 

headway, 

max bus 

capacity  

Fixed route 

choice, 

based on 

boarding/ali

ghting data 

No No 

Yu et al (2011) 

Continuous 

(per line 

direction) 

exogenous 

Min total users’ 

and operator’s 

costs 

Parallel 

genetic 

algorithm in 

combination 

with local 

Tabu search 

Fixed 

Lower 

headway 

bound 

Fixed route 

choice, 

based on 

boarding/ali

ghting data 

Denied 

boarding, 

onboard 

comfort, 

crowding 

coefficient 

influencing 

dwell times 

No 
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Decision 

variable 

Frequency 

Decision 

variable 

Capacity 

Objective 
Solution 

method 
Fleet size 

Other 

constraints 

Assignment 

method 

Consideration of 

crowding 

Stochastic 

supply 

Canca et al. (2016) Discrete  Discrete  

Min total users’ 

and operator’s 

costs 

Extended 

Cutting Plane 

Method 

Not 

constrained 

Finite set 

of discrete 

headways , 

Track 

segment 

compatibili

ty, bounds 

for number 

of 

carriages 

per train 

Solving 

capacitated 

minimum 

cost flow 

problem 

Penalization of 

unserved 

demand,  

No 

Present study 

Discrete  

(setting per 

line direction 

possible) 

Discrete  

Min total users’ 

and operator’s 

costs 

Simulated 

Annealing 

Fixed per 

vehicle 

type/not 

constrained 

Finite set 

of discrete 

headways 

Dynamic / by 

simulation 

Denied 

boarding, 

onboard 

comfort, 

demand-

dependent 

dwell time 

functions 

Stochastic 

running 

and dwell 

time 

componen

ts 
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3 METHODOLOGY AND MODEL DEVELOPMENT 

This chapter presents the methodologies adopted to develop the proposed decision tool and 

introduces the theoretical formulations and concepts of the model step by step. First, a general 

overview of the modelling framework is provided in order to highlight each of the components the 

model is built of. Thereafter, each of the components is explained in detail. The chapter closes by 

applying the developed model to a simple example case for model verification. 

3.1 Modelling framework 

The basic framework of the model consists of three sub-models which together form the integrated 

headway and vehicle size determination model. Figure 3.1 depicts the model framework including the 

sub-models, inputs and outputs as well as input parameters. A dynamic public transport assignment 

model needs to be initialized with parameters corresponding to the situation to be modelled and 

analyzed. These external parameters include for instance information on the network such as routes or 

travel times and demand-specific parameters such as the specification of the route choice model or an 

OD-matrix. A solution in terms of headway and vehicle type per line is provided as an input to the 

simulation model. Feasibility of potential solutions is checked by user-specified constraints. These 

comprise network-specific features such as scheduled cycle times and line lengths and conditions 

regarding the availability of supply such as the number of vehicles per type available or an operational 

budget constraint. Moreover, headway constraints in terms of an upper and a lower bound can be 

defined as well. Outputs produced by the assignment model related to passenger travel times and 

vehicle movements are evaluated by another sub-model which is specified by an objective function that 

computes a performance measure for the given supply condition. Using the relative performance of 

potential solutions, a search algorithm computes new solutions which are again provided to the 

assignment model as an input. The procedure is repeated until a user-specified stopping criterion that 

is checked in every iteration is fulfilled and thus a final well-performing solution is found. 

Figure 3.1: Basic framework of the headway and vehicle size determination model. 
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3.2 Dynamic public transport assignment model 

This section describes the simulation model used for the dynamic assignment of passengers in this 

study. First, approaches and capabilities related to the modelling of demand and supply in BusMezzo 

are presented. Finally, it is explained how the simulation model is implemented and embedded within 

the model to be developed. 

BusMezzo is a dynamic public transport operations and assignment tool designed to support the 

analysis and evaluation of Advanced Public Transport Systems in terms of operation, planning and 

control (Cats et al., 2010). BusMezzo is built within the platform of Mezzo, an event-based mesoscopic 

traffic simulation model developed by Burghout (2004). This model replicates individual vehicles and 

queues without explicitly modelling microscopic elements such as lane changes or acceleration. In 

contrast to time-based models which update the network status at constant and discrete time steps, 

Mezzo is an event-based simulation model in which subsequent time steps are defined based on a 

chronological list of booked events. The mutual interactions of vehicles and passengers in BusMezzo 

are explicitly modelled using an agent-based approach. Previous studies using BusMezzo have shown 

that the model can replicate effects resulting from dynamic demand-supply interactions in public 

transport networks such as congestion effects including variations in onboard crowding levels and 

denied boarding (Cats et al., 2016) or the well-known bunching phenomenon which can be seen as a 

degradation of service reliability along a line (Cats et al., 2010). Therefore, BusMezzo was chosen as a 

suitable implementation of a dynamic public transport assignment model. 

 

3.2.1 Demand modelling 

There are multiple ways of defining travel demand as an input to BusMezzo. In general, boarding and 

alighting rates can either be defined as a fixed input on the line level or as a network-wide OD-matrix 

indicating the number of trips per pair of stops. The latter one requires the dynamic modelling of 

passengers’ route choice decisions whereas in the former one all paths are predefined. Since the 

present study aims at properly considering the relation between demand and supply, a complete 

network-wide modelling of route choice decisions and implications will be adopted. Hence, passenger 

demand is modelled using demand rates per OD-pair and a dynamic path choice model. During the 

simulation, passengers are generated randomly at the origins following Poisson-distributed and 

independent arrival processes.  

The generic method of passenger demand modelling in BusMezzo follows a two-stage modelling 

approach consisting of a choice-set generation and a dynamic path choice model. The former one 

produces a background path set for each pair of stops in the network at the beginning of the simulation. 

During the simulation, travelers might adapt their choices and consider paths that were not part of their 

choice-set in the beginning. The choice set is generated by an algorithm considering logical constraints 

such as no loops and no abrupt travel legs and behavioral filtering rules such as the maximum number 

of extra transfers or the maximum additional in-vehicle time of alternative paths (Cats, 2011). 

Overlapping paths are finally merged into hyperpaths. Note that the initial background path set 

generation process is solely based on the static topology of the network and thus independent from 

the supply offered in terms of line headways and vehicle capacities. Additional time-dependent filtering 

rules are applied during the simulation and may further filter the initially generated path set. Hence, 

the initial path set generation procedure only needs to be executed once for a given network. This 

approach is advantageous for the entire optimization in terms of running time since the path set 
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generation process may consume a significant amount of computation time depending on the size of 

the network. 

In contrast to static assignment models, passengers simulated in BusMezzo do not make a single 

decision in terms of path choice in the network. Their final route through the network is rather an 

outcome of individual successive decisions based on the current situation in the network. Therefore, a 

dynamic path choice model using the theory of random utility discrete choice models is implemented 

in BusMezzo. The core of the choice model are the three subordinate decision models for connection, 

boarding and alighting actions. Along the journey, each alternative action is evaluated by the choice 

model based on the joint utility of all alternative paths that may result from that action using the 

commonly applied logsum expression over the respective path utilities (Cats, 2011). Path utilities are 

dynamically updated throughout the simulation making travelers able to reconsider their decisions. 

Passengers’ expectations on downstream alternatives (e.g. expected travel time) may for instance be 

updated according to the experience onboard (e.g. experienced travel times considering vehicle-

specific passenger loads as function of demand and supply variations) and hence may lead to a 

reconsideration of the alighting decision. Note that also the optional provision of real-time information 

may have an effect on travelers’ behavior and is therefore incorporated within the choice model. 

Several levels of spatial aggregation of real-time information provision can be implemented in 

BusMezzo. Moreover, there is an additional feature implemented in BusMezzo which allows analyzing 

passengers’ learning process and adaption from day to day with respect to waiting time, onboard 

crowding levels uncertainty and travel information. That is done by the execution of multiple simulation 

runs (representing within-day dynamics) while iteratively updating the accumulated memory of each 

passenger by remembering the travel time attributes of all tried paths. In this way, it is possible to 

analyze the behavioral adaption of passengers as well as the credibility of provided real-time 

information and generate network-wide steady-state conditions (Cats & Gkioulou, 2014) which can be 

seen as an equivalent to the congested user equilibrium in static assignment models. This so-called day-

to-day learning feature will be used in the application presented in Chapter 4. 

 

3.2.2 Supply modelling 

BusMezzo simulates individual vehicle movements taking into account the key components of the 

supply side: riding and dwell times, timetables and vehicle schedules. In addition to that, disruptions 

and control strategies can be modelled explicitly as well. Hence, it enables the dynamic representation 

of public transport operations in its entirety. Note that since BusMezzo is implemented within the 

platform of Mezzo, a mesoscopic traffic simulation model (Burghout, 2004), the dynamic interaction 

between public transport and private traffic can be modelled as well. However, for the sake of 

simplicity, private traffic will not be modelled in this study. The influence of traffic congestion on the 

performance of public transport services can be partly considered by including stochastic riding time 

variations. 

Timetables in Busmezzo can be defined according to various formats dependent on the way travel times 

between stops and headways are defined. Both characteristics can be defined for each trip on a line 

separately. That is, travel times and/or headways may differ from trip to trip. Alternatively, both 

parameters remain constant on each line throughout the entire simulation. That is, a line is associated 

with a certain scheduled headway and travel times.  
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Vehicle schedules or driving rosters, i.e. the assignment of trips (defined in the timetable) to specific 

vehicles, need to be defined in BusMezzo as well. In this way, trip chains can be defined as a sequence 

of trips executed by one vehicle. It also allows to model the potential propagation of delays from trip 

to trip. Note that the construction of vehicle schedules needs to be performed as preprocessing and 

may require the implementation of layover and recovery times at terminal stops. 

Riding times (i.e. travel times between successive stops) in BusMezzo can be modelled deterministically 

or stochastically. That is, vehicles travel at constant speed between successive stops or riding times are 

subject to stochastic fluctuations respectively. Stochastic riding times can be modelled using so-called 

node servers that model the discharging rates of individual vehicles as a stochastic process having a 

mean and a standard deviation (Burghout, 2004). These server values can be estimated using field 

observations such as automatic vehicle location data (AVL). Next to riding times, dwell times constitute 

the second part of public transport trip travel times. It is the additional time needed to serve a stop. It 

includes the time needed to get off traffic and enter the stop, opening the doors, boarding and alighting 

of passengers, closing the doors and getting back to traffic. Due to its strong dependency on boarding 

and alighting passenger flows, dwell time is an important and dynamic determinant of service reliability 

when modelling travel times of passengers in a public transport network. In BusMezzo dwell times are 

modelled explicitly for each stop in the network using a predefined set of given dwell time functions 

which can be associated with different vehicle types. The general form of the dwell time function 

contains a constant delay, the passenger service time and a stochastic error term. The constant may 

vary across vehicle types as well as stop types. A bay stop for instance imposes an extra time for the 

vehicle to get back to traffic. Due to technical constraints such as door opening and closing mechanisms, 

the constant part of the dwell time depends on the type of vehicle as well. Therefore, BusMezzo offers 

the possibility to define different values depending on the vehicle and stop type. Moreover, it is possible 

to define an extra delay which is added to the constant delay in case the stop is already occupied when 

a vehicle is arriving. There are various models mentioned in literature to compute the passenger service 

time. Most of them take into account the number of boarding and alighting passengers at a stop and 

the service time needed for each boarding and alighting passenger respectively. The service time is the 

marginal contribution of each boarding/alighting passenger to the total passenger service time. Other 

models go more into detail and also consider vehicle occupation levels (crowding) when approaching a 

stop, door configurations as well as boarding/alighting regimes. Currently, there are six different forms 

of dwell time functions implemented in BusMezzo. The function coefficients can be estimated based 

on observed data per vehicle type or common values provided by literature can be adopted. All in all, 

it can be said that the representation of vehicle movements in BusMezzo can be modelled in a highly 

detailed fashion allowing for capturing the effect of dynamic demand-supply interactions on service 

reliability and overall system performance. 

Besides the strategic analysis of daily public transport operations, BusMezzo can also be used to 

evaluate the implementation of real-time control strategies and to analyze system behavior in case of 

disruptions. Travel time disruption scenarios can be modelled implicitly by the exogenous travel time 

distribution on the respective servers or explicitly by introducing a traffic incident on a defined link in 

the network. In terms of operational control, various holding strategies at stops can be implemented 

and thus their effects on selected performance indicators can be evaluated by the simulation model. 
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3.2.3 Implementation 

BusMezzo is implemented within the present model as it simulates the dynamics of a public transport 

network given a solution input in terms of line frequencies and vehicle capacities. Some of the outputs 

of BusMezzo are further processed to evaluate the relative performance of a potential solution. Figure 

3.2 depicts the input and output components which are relevant in the context of this study.  

Input elements to the simulation model can be grouped according to fixed and constant input 

parameters as well as variable solution inputs. The latter ones are provided by the search algorithm and 

may change in each iteration of the algorithm. That is, headways and vehicle types are assigned to each 

line according to the given input that satisfies all feasibility constraints. Note that each available vehicle 

type having associated properties such as dwell time functions and capacity values is defined within 

BusMezzo.  

For the sake of simplicity, vehicle scheduling in terms of trip chaining is not considered in the simulation. 

Instead, a vehicle is only assigned to one trip starting and ending at the respective terminals of a line. 

This assumption facilitates overall implementation since the vehicle scheduling problem can be very 

complex itself and would thus strongly increase the complexity of the entire model. Furthermore, in 

the tactical planning workflow, the vehicle and crew scheduling problems follow the frequency 

determination phase and are designed to find the minimum cost solution for a given service frequency. 

As a consequence, however, propagation of delays between trips and trip chaining across multiple lines 

are not replicated by the model. It is assumed that recovery times at terminals are set large enough to 

settle most of the delays accumulated along a line’s itinerary. Note that the disregarding of scheduling 

considerations also allows to set line frequencies differently for each direction of a line. 

Inputs related to the public transport network that are assumed to stay constant throughout the entire 

procedure include the specification of stops along lines. Various features such as length, overtaking 

possibility and additional dwell times can be associated to a stop in BusMezzo. Moreover, walking 

Figure 3.2: Input and output data items used by BusMezzo within the optimization model. 
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distances between stops allowing for transfers can be defined as well. The routes of lines are defined 

as a sequence of traversed links. In a periodic timetable assuming constant headways, scheduled 

dispatching times at terminal as well as travel times between stops need to be defined once for each 

line in order to constitute a complete timetable. Hence, the actual departure times at stops result from 

a given headway. Passenger demand is assumed to be inelastic and is given in from of an OD-matrix 

indicating the hourly passenger generation rates per OD pair of stops. Behavioral parameters specifying 

the dynamic path choice model described in Section 3.2.1 include threshold values acting as filtering 

rules for the choice set generation process and the coefficients of the utility function which reflect the 

relative costs associated with certain trip elements. Finally, the fundamental network consisting of links 

and nodes needs to be specified as a constant input to BusMezzo as well. So-called turning movements 

having associated stochastic servers need to be specified at node level for each pair of connected links. 

In this way, the stochastic processing of vehicles passing a node is modelled enabling the emulation of 

riding time distributions as described in Section 3.2.2. 

Outputs produced by BusMezzo and used for further evaluation include items related to the assignment 

of passengers, i.e. the realized travel path of each individually simulated traveler, and to the dynamic 

behavior of supply, i.e. the movement of vehicles. The dwell times of vehicles are considered as a 

dynamic component of supply which influences operational cost. Costs to be borne by passengers 

include walking, waiting, the time spent inside the vehicle and the disutility associated with transferring. 

The detailed use of the afore-mentioned figures and components when evaluating a potential solution 

is described in the following section. Note that BusMezzo produces various other outputs related to 

the performance of the public transport system including for instance detailed vehicle trajectories and 

performance measures such as headway and dwell time variability. The latter ones affect service 

reliability, which may itself have an impact on the fleet size requirement since larger travel time 

variations might require more vehicles to operate a certain schedule. However, due to the simplification 

made regarding vehicle scheduling, this impact will be disregarded in this analysis. 

The day-to-day learning feature available in BusMezzo is used by the decision tool since it is necessary 

to investigate passengers’ iterative behavioral adaptions towards a certain supply offered when making 

tactical planning decisions such as frequency and vehicle capacity determination. Multiple simulation 

runs representing successive days are simulated until travelers’ expectations and associated selected 

strategies converge with their actual experiences. In this way, network-wide steady-state conditions 

are generated which may be seen as an analogy to congested network equilibrium conditions in 

traditional static assignment models.  

Regarding the simulation of individual vehicles and passengers, the generation periods of demand and 

supply should be adjusted to ensure that the full supply is present as soon as the first passengers start 

their journey and all passengers can reach their final destination within the simulation period. Hence, 

the simulation of public transport supply should start earlier than the demand generation in order to 

fill the network and avoid unreasonable high waiting times (warm-up phase). On the other hand, supply 

should last long enough to provide enough capacity to carry all passengers and should thus last longer 

than the period of demand generation (cool-down phase).  

Since BusMezzo is a stochastic model, a certain number of simulation replications is required in order 

to obtain statistically significant averages. A commonly used formula to estimate the number of samples 

needed to calculate the population mean with a predefined allowable error is: 
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𝑁(𝑚) = (
𝑆(𝑚) ∙ 𝑡𝛼/2

�̅�(𝑚) ∙ 𝜀
)

2

                                                               (3.1) 

Where 𝑁(𝑚) is the number of required samples 

 �̅�(𝑚) is the mean value of the measured variable based on m initial samples 

 𝑆(𝑚) is the standard deviation of the measured variable based on m initial samples 

 𝑡𝛼/2 is the value of the student t-distribution for level of significance 𝛼 

 𝜀 is the allowable relative standard error to estimate the population mean 

Note that equation (3.1) can also be used to calculate the resulting allowable standard error in case a 

desired number of samples is known.  

In this study, the required number of simulation runs, in order to assess the quality of a potential 

solution, is estimated based on the objective function value. In order to do so, an initial sample of 

independent simulation runs having different random seeds is produced for each scenario and the 

mean and standard deviation of the resulting objective function values are computed. Based on these 

values, the sample size or the allowable error can be computed respectively.  

 

3.3 Performance evaluation 

In order to evaluate a potential solution in terms of its relative performance with respect to an 

objective, outputs obtained from the simulation model need to be transformed into a performance 

indicator. Therefore, an objective function is proposed. The objective is to minimize the total cost 𝑇𝐶 

of the system which should both contain users’ and operator’s interest. These are reflected in the costs 

𝑈𝐶 and 𝑂𝐶 respectively. Hence, the general objective function to be minimized is: 

𝑀𝐼𝑁 𝑇𝐶 = 𝑈𝐶 + 𝑂𝐶                                                              (3.2) 

The total user costs 𝑈𝐶 can be computed from the simulation output as follows: 

𝑈𝐶 = 𝜃𝑤,𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑊𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝜃𝑤,𝑑𝑒𝑛𝑖𝑒𝑑𝑇𝑊𝑇𝑑𝑒𝑛𝑖𝑒𝑑 + 𝜃𝑣𝑇𝐼𝑉𝑇𝑐𝑟𝑜𝑤𝑑𝑒𝑑 + 𝜃𝑡𝑇𝑇 +  𝜃𝑤𝑙𝑘𝑇𝑊𝐿𝐾𝑇     (3.3) 

Where 

𝑇𝑊𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 : total initial waiting time [hours]; 𝜃𝑤,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 : value of initial waiting time  [EUR/hour] 

𝑇𝑊𝑇𝑑𝑒𝑛𝑖𝑒𝑑 : total waiting time due to denied boarding [hours]; 𝜃𝑤,𝑑𝑒𝑛𝑖𝑒𝑑 : value of waiting time due to 

denied boarding [EUR/hour] 

𝑇𝐼𝑉𝑇𝑐𝑟𝑜𝑤𝑑𝑒𝑑 : total in-vehicle time multiplied by crowding factor reflecting discomfort [hours]; 𝜃𝑣: 

value of in-vehicle time [EUR/hour] 

𝑇𝑇 : total number of transfers ; 𝜃𝑡 : monetized value of one transfer [EUR] 

𝑇𝑊𝐿𝐾𝑇: total walking time [hours]; 𝜃𝑤𝑙𝑘: value of walking time [EUR/hour] 

The relative weights of each trip component can be estimated using stated or revealed preference or 

travel patterns surveys. Note that an extra waiting time due to denied boarding is a penalty to the 

passenger and thus may impose a higher cost than usual (initial) waiting. 

The total operational costs can be computed as the sum of direct and indirect costs. Usually, indirect 

costs (e.g. administration costs etc.) can be calculated as a fixed share of the direct costs (𝛼). The latter 
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ones consist of driving costs (kilometers covered) 𝐶𝐷, hourly costs due to standing still with the engine 

running while dwelling 𝐶𝑆, personnel costs 𝐶𝑃, and unit fixed costs 𝐶𝐹. Hence, the total operational 

costs are: 

𝑂𝐶 = (1 + 𝛼)(𝐶𝐷 + 𝐶𝑆 + 𝐶𝑃 + 𝐶𝐹)                                            (3.4) 

The total driving costs per hour can be computed as: 

𝐶𝐷 = ∑ ∑ 𝐿𝑙 ∙ 𝑓𝑙 ∙ 𝐶𝐷𝑐 ∙ 𝛿𝑙,𝑐

𝑐∈𝐶𝑙∈𝐿

                                                (3.5) 

Where 𝐿𝑙 is the length of line (or route variant) 𝑙 in km , 𝑓𝑙 is the determined frequency on line 𝑙 and 

𝐶𝐷𝑐 are the unit costs per kilometer covered by bus size c. 𝛿𝑙,𝑐 is a binary auxiliary variable indicating if 

bus capacity 𝑐 was assigned to line 𝑙. The set of all lines and vehicle capacities available is denoted as 𝐿 

and 𝐶, respectively. 

The cost of the buses standing still with the engine running is: 

𝐶𝑆 = ∑ ∑ 𝑇𝐷𝑇𝑙 ∙ 𝐶𝑆𝑐 ∙ 𝛿𝑙,𝑐

𝑐∈𝐶𝑙∈𝐿

                                                   (3.6) 

Where 𝑇𝐷𝑇𝑙 is the total dwell time on line 𝑙 within one hour summed over all busses and 𝐶𝑆𝑐 is the unit 

cost per hour of bus size 𝑐 standing still with engine running. 

The personnel cost is considered as the cost of staff who are actually working on the busses: 

𝐶𝑃 = 𝐶𝑝 ∙ ∑ ⌈
𝑇𝑙

𝐻𝑙
⌉

𝑙∈𝐿

                                                                      (3.7) 

Where 𝐶𝑝 is the hourly cost of personnel, 𝑇𝑙 is the minimum cycle time of line 𝑙 and 𝐻𝑙 the determined 

headway. The ratio of both variables is the theoretical number of vehicles needed and needs to be 

rounded to the next larger integer value. Note that these costs are independent from the type of vehicle 

used. 

Finally, the fixed costs are calculated considering the vehicles that are actually circulating. 

𝐶𝐹 = ∑ ∑ ⌈
𝑇𝑙

𝐻𝑙
⌉ ∙ 𝐶𝐹𝑐 ∙ 𝛿𝑙,𝑐                                                    (3.8)

𝑐∈𝐶𝑙∈𝐿

 

Where 𝐶𝐹𝑐 is the unit fixed cost per hour of bus type 𝑐. 

The complete objective function of the problem can finally be formulated as: 

𝑀𝐼𝑁 𝑇𝐶 = 𝜃𝑤,𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑊𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝜃𝑤,𝑑𝑒𝑛𝑖𝑒𝑑𝑇𝑊𝑇𝑑𝑒𝑛𝑖𝑒𝑑 + 𝜃𝑣𝑇𝐼𝑉𝑇𝑐𝑟𝑜𝑤𝑑𝑒𝑑 + 𝜃𝑡𝑇𝑇 + 𝜃𝑤𝑙𝑘𝑇𝑊𝐿𝐾𝑇 

+ (1 + 𝛼) ∙ [∑ ∑ 𝐿𝑙 ∙ 𝑓𝑙 ∙ 𝐶𝐷𝑐 ∙ 𝛿𝑙,𝑐

𝑐∈𝐶𝑙∈𝐿

+ ∑ ∑ 𝑇𝐷𝑇𝑙 ∙ 𝐶𝑆𝑐 ∙ 𝛿𝑙,𝑐

𝑐∈𝐶𝑙∈𝐿

+ 𝐶𝑝 ∙ ∑ ⌈
𝑇𝑙

𝐻𝑙
⌉

𝑙∈𝐿

+ ∑ ∑ ⌈
𝑇𝑙

𝐻𝑙
⌉ ∙ 𝐶𝐹𝑐 ∙ 𝛿𝑙,𝑐

𝑐∈𝐶𝑙∈𝐿

]                                                                                                   (3.9) 

Not all components of the objective function can be directly computed using a solution in terms of 
selected headways and vehicle capacities per line. However, most of the operational costs can be 
computed directly from a given solution except for the costs due to standing still with the engine 
running since the dwell times are an output of the simulation model. All components related to user 
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costs need to be computed using output data from the simulation model.  Summing the actual trip 
times experienced by each individual traveler in the simulation yields the respective trip time elements 
needed for the computation of the total user costs in (3.3).  

As an alternative to the minimization of total system costs, the objective could just consider either the 

costs to be borne by the users or the operator. In the first case, operational constraints in terms of an 

available vehicle fleet or budget constraint need to be defined to limit the maximum quantity of supply 

provided. In the latter case, a constraint ensuring that demand is served satisfactorily needs to be 

introduced. This could for instance be the condition that denied boarding should not occur on any line 

segment, i.e. provided capacity always suffices demand. 

 

3.4 Search algorithm 

This section presents two versions of a search algorithm that were implemented to find a solution to 

the present headway and vehicle size determination problem. A simple local descent search procedure 

is introduced as a basis for a more complex search algorithm that follows the theoretical foundations 

of simulated annealing. The functioning and structures of both algorithms with respect to the present 

model are explained in detail. Finally, it is introduced how feasible solutions as well as neighboring 

solutions are generated and represented by the model. 

 

3.4.1 Local search 

Local search is a heuristic method for solving computationally hard optimization problems. This type of 

algorithm aims at finding a locally optimal solution by moving from one candidate solution to the other 

in the solution space. Thereby, the algorithm only considers the local neighborhood of a solution when 

searching for the next direction to move. In contrast to gradient-based optimization approaches, local 

search does not need any information on the gradient, i.e. derivative, of the objective function but 

solely the function value of any solution. This makes the method particularly suitable for problems 

where the objective function is not differentiable or a closed analytical expression describing the 

mathematical relation between the decision variables and the objective function value is not present. 

The latter condition holds for the present study as a potential solution is not evaluated using a classical 

mathematical function but by applying a stochastic simulation model.  

In the present study, the solution space consists of all feasible combinations of headway and vehicle 

type per line. The generation of feasible solutions and the associated neighborhood is further discussed 

in Section 3.4.3. Figure 3.3 shows the schematic flowchart of the local search algorithm designed as a 

simple descent search for the present study. The algorithm is initialized by defining a starting point in 

terms of a solution respecting all feasibility constraints. This initial solution can be defined by the user 

or generated at random. In the next step, a set of feasible solutions in the direct neighborhood of the 

current solution is generated. Each solution, i.e. the starting solution as well as all neighboring solutions, 

are then evaluated by the simulation model and respective objective function values are computed 

using equation (3.9). The best solution among all neighboring solutions, i.e. the one having the lowest 

cost value, is selected as the next solution point if it is better than the current one. Thereafter, the 

procedure of direct neighborhood evaluation is repeated. The algorithm is terminated if the current 

solution cannot be improved by any solution in its direct neighborhood. That is, the algorithm follows 
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a descent path in the solution space until a point is reached which has no lower cost solutions around 

it. Hence, it can be guaranteed that the algorithm will always find a locally optimal solution.  

However, it cannot be guaranteed that a global optimum is found since different starting solutions may 

lead to different locally optimal solutions due to topology of the solution space. Figure 3.4 shows a 

simple example of a two-dimensional optimization problem having a decision variable x defined on the 

feasible interval 𝑥 ∈  [𝑥1, 𝑥2] and an objective function F(x). As can be seen from the function plot, the 

optimization problem has several local minima (points D, E, C and F) and a global minimum at point C. 

It is assumed that the direct neighbors of any point 𝑥 ∈  [𝑥1, 𝑥2] are defined as 𝑥 + ∆𝑥 and 𝑥 − ∆𝑥., 

where ∆𝑥 is the step size. From the function plot, it becomes obvious that the global optimum C can 

definitely be found by the local search algorithm if the starting solution is defined within the range 

[𝑥𝐴 + ∆𝑥, 𝑥𝐵 − ∆𝑥]. In case the initial solution is not defined within this interval, the algorithm may 

converge to any of the local optima (D, E or F). Hence, if the problem at hand possesses several local 

optima, a simple local search algorithm following the decent direction of the solution space may not be 

able to find the global optimum with respect to the entire solution space. 

Figure 3.3: Flowchart of the local descent search algorithm. 
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3.4.2 Simulated annealing 

Simulated annealing (SA) is a probabilistic metaheuristic to approximate the global optimum in large 

search spaces of combinatorial and continuous optimization problems. Although SA can also be applied 

to continuous optimization problems, i.e. where the set of potential decision variables is continuous, 

this section will present a SA algorithm that is applicable to discrete problems only.  

The name and inspiration of SA comes from the physical annealing of solids, which is the process of 

finding low energy states of a solid by initially melting the substance, and then lowering the 

temperature slowly and in a controlled way. The minimum energy configuration will have a particular 

structure, for instance as seen in a crystal. If the cooling is not done slowly, the resulting solid will not 

attain the ground state, but will be frozen into a metastable, locally optimal structure, such as a glass 

or a crystal with several defects in the structure. In the analogy, the different states of the substance 

correspond to the different feasible solutions to the optimization problem, and the energy of the 

system corresponds to the function to be minimized. 

Kirckpatrick et al. (1983) and Cerny (1985) were the first who, independently from each other, showed 

that a stochastic Monte Carlo method for simulating the annealing of solids as proposed by Metropolis 

et al. (1953) could be used for solving large combinatorial optimization problems such as the travelling 

salesman problem. Since then, SA has been applied to various problem domains including research in 

the field of public transport. Fan and Machemehl (2006), for instance, showed how a SA algorithm can 

be applied to solve the public transport route network design problem, while Zhao & Zeng (2006) used 

SA in combination with a genetic algorithm to solve this specific problem. 

SA is in fact a modification of the local search algorithm that tries to avoid the disadvantage of getting 

trapped in local optima by sometimes accepting neighborhood moves that worsen the current objective 

function value. In this way, local maxima can be overcome and the solution space can be examined 

more thoroughly, thereby increasing the probability of finding the global optimum. Figure 3.5 shows 

the SA algorithm in pseudo-code. Suppose that S is the solution space, i.e. the finite set of all feasible 

solutions, and f(x) is the cost/objective function defined on the members x ∈ S. Moreover, a 

temperature cooling function T(t) as well as an expression giving the number of iterations at each 

temperature N(t) need to be defined. 

Figure 3.4: Example of a simple optimization problem with multiple local minima. 
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The algorithm tries to avoid becoming trapped in local optima by sometimes accepting a neighborhood 

move which increases the cost function. For this sake, an acceptance function is used which computes 

the selection probability of a new (worse) solution considering the cost difference of the two 

neighboring solutions 𝑓(𝑛𝑒𝑤) − 𝑓(𝑜𝑙𝑑) as well as the current temperature 𝑇(𝑡). 

𝑝(𝑡) = 𝑒
−(

𝑓(𝑛𝑒𝑤)−𝑓(𝑜𝑙𝑑)
𝑇(𝑡)

)
                                                      (3.10) 

That is, the smaller the difference between the old (better) solution and the new (worse) solution is the 

more likely is it that the new solution is accepted as the next step. It also implies that when T is high 

most moves will be accepted, but as T approaches zero most uphill moves will be rejected. So, the SA 

algorithm is started with a relatively high value of T, to avoid being prematurely trapped in a local 

optimum, and the temperature is gradually decreased. The acceptance probability 𝑝(𝑡) is modelled by 

the stochastic sampling technique of drawing a random number between 0 and 1. 

The underlying assumptions of the stochastic approach in SA is the theory of Markov chains. If the 

temperature parameter is kept constant, then the transition matrix Pij representing the probability of 

moving from state i to state j is independent of the iteration number, which corresponds to a 

homogenous Markov chain (Eglese, 1990). 

It has been shown that the procedure of SA can converge to globally optimal solutions or regions. When 

applying any variety of the SA algorithm four generic choices regarding the parameters of the algorithm 

have to be made. According to Eglese (1990) these choices comprise: 

(i) the initial value of the temperature parameter T0  

(ii) a decreasing cooling function T(t) that determines how the temperature is changed over time 

(iii) the number of iterations N(t) to be performed at each temperature 

(iv) a suitable stopping criterion to terminate the algorithm 

The starting temperature T0  should be high enough such that during the initial phase of the algorithm, 

virtually all possible solutions are accepted. This corresponds to the physical analogy of heating up a 

Select an initial state i ∈ S; 

Select an initial temperature T > 0; 

Set temperature change counter t = 0; 

Repeat 

Set repetition counter n = 0; 

Repeat 

Generate state j, a random neighbor of i; 

Calculate δ = f(j) - f(i) ; 

If δ < 0 then i := j; 

else if random(0, 1) < exp(-δ/T) then i := j; 

n:=n+l; 

until n = N(t). 

t := t + l ; 

T := T(t), T ∈  ℝ; 

until stopping criterion true. 

Figure 3.5: Simulated annealing algorithm in pseudo-code. 
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substance until all the particles are randomly arranged in a liquid. Laarhoven and Aarts (1987) proposed 

the following equation for determining the initial temperature T0: 

𝜒0 = 𝑒
−Δ𝐹+̅̅ ̅̅ ̅̅ ̅̅

𝑇0                                                                (3.11) 

Where Δ𝐹+̅̅ ̅̅ ̅̅  is the average positive change of the objective function for a series of random transitions 

in the solution space. Using a value of 𝜒0  close to one (e.g. 𝜒0 = 0.9) ensures a high acceptance rate 

for the solutions during the initial phase of the algorithm. Hence, the starting temperature value can 

be determined by sampling a series of random neighborhood transitions for the problem at hand and 

is thus a problem-specific parameter. 

The cooling schedule, that is, the decreasing cooling function of the temperature over time, is crucial 

to the efficiency of simulated annealing. If the temperature is reduced too rapidly, a premature 

convergence to a local minimum may occur. In contrast, if cooling works too slowly, the algorithm is 

also very slow to converge and may pass the globally optimal solution several times. In order to 

guarantee Boltzmann annealing, the theoretical foundation of simulated annealing, to converge to the 

global minimum with probability one, the temperature value needs to decrease logarithmically with 

time which is practically way too slow. Therefore, a faster schedule based on the decreasing exponential 

function 𝑇(𝑡 + 1) = 𝛼𝑇(𝑡) with 0.85 ≤  𝛼 ≤ 0.96 is commonly used in practice to achieve a 

(sub)optimal solution (Du & Swamy, 2016). 

The number of iterations at each temperature N(t) can be determined by a fixed minimum number of 

neighborhood transitions being accepted subject to a constant upper bound (Kirpatrick et al., 1983). 

Simpler approaches may keep N(t) constant throughout the entire procedure and make it proportional 

to the size of the solution space or the size of the neighborhood defined (Eglese, 1990). Note that the 

determination of the cooling function and those of N(t) are two interdependent choices as they 

determine the length and the difference between each homogenous Markov chain respectively. 

Increasing the relative magnitude of the temperature drop requires, for instance, longer Markov chains, 

i.e. a larger value for N(t) (Herman, n.d.). 

The SA algorithm is finally terminated when the obtained solution is unaltered for a defined number of 

consecutive iterations. The final state then corresponds to the optimal (i.e. best-performing) solution 

or the ‘frozen’ state (Eglese, 1990). 

Figure 3.6 shows the flowchart of the SA algorithm as it is implemented within the framework of the 

present headway and vehicle size determination model. The initialization of the algorithm works the 

same as in the simple descent search algorithm presented previously. However, in contrast to the local 

search approach, not all neighbors of a solution are investigated during SA but only a randomly chosen 

one. Note that if a solution was selected from the set of neighbors as a new solution by the algorithm 

it is also removed from the set. Although this modification is not considered in the classical version of 

SA, it has been argued that it can increase overall efficiency of the algorithm (Eglese, 1990). Especially 

in the latter part of an SA run, when the temperature parameters gets low, the probability of accepting 

worse solutions than the current one becomes small. Thus, in regions close to a local optimum, most 

of the computer time is spent rejecting worse solutions. If there are only few moves which give 

improved solutions, the basic SA algorithm may take a lot of time to find them. Therefore, solutions are 

removed from the set of neighbors once they have been evaluated and a new neighborhood of 

solutions is only generated if a new solution is accepted by the algorithm or all neighboring solutions 

have been investigated, i.e. the current set of neighbors is empty. A solution is accepted as a new move 
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when it improves the objective function value. When a solution is worse than the current solution in 

terms of the objective, it is only accepted if a randomly drawn number between zero and one is smaller 

than the acceptance probability according to equation (3.10). Every time a solution is not accepted, a 

variable counting the number of successive rejections is increased by one and reset to zero if a new 

solution is accepted. After each change in temperature, it is checked whether the counter value is below 

a certain threshold value. The temperature is changed according to the cooling function after N 

iterations. N(t) is assumed to be constant throughout the entire search procedure. The algorithm is 

terminated once the number of successively rejected solutions exceeds this threshold criterion. Note 

that this threshold value should be equal to or larger than the maximum size of the neighborhood in 

terms of number of solutions in order to make sure that all neighboring solutions have been checked 

by the algorithm before it is terminated.  Also note that the best solution found during the run of the 

algorithm is stored as it is possible in any single SA run for the final solution to be worse than the best 

solution found during the run. Moreover, Glover and Greenberg (1989) argue that with this 

modification, there is less need for the SA algorithm to rely on a strong stabilizing effect over time. 

Figure 3.6: Flowchart of the developed algorithm based on simulated annealing. 
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3.4.3 Generation of feasible neighborhood moves 

The neighbors of a state are new states of the problem that are produced after altering a given state in 

some well-defined way. The well-defined way in which the states are altered in order to find 

neighboring states is called a "move" and different moves give different sets of neighboring states. 

These moves usually result in minimal alterations of the last state in order to help the algorithm keep 

the better parts of the solution and change only the worse performing parts. 

For the frequency and vehicle capacity determination problem, suppose we have the following discrete 

solution space arranged in an ascending order: 

Headways: 𝐻 = {ℎ1, ℎ2, … , ℎ𝑁𝐻
}  with:  ℎ1 < ℎ2 < ⋯ <  ℎ𝑁𝐻

 

and 

Vehicle capacities:  𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁𝐶
}   with: 𝑐1 < 𝑐2 < ⋯ <  𝑐𝑁𝐶

 

In order to make sure that the timetable resulting from a certain frequency is periodic, i.e. scheduled 

minutes of arrival/departure repeat in every hour with constant headway, the ratio of one hour (3600 

seconds) divided by potential headways in seconds needs to be an integer value. Table 3.1. shows all 

potential headways satisfying this condition between one hour and two minutes. Note that frequency 

and headway show an inversely proportional and non-linear relationship.  

3600

𝐻
 𝜖 ℤ                                                                       (3.12) 

Assuming that all potential solutions in terms of headway-vehicle combinations per line are feasible, 

the total number of possible solutions can be computed as: 

(𝑁𝐻 ∗ 𝑁𝐶)𝐿                                                                    (3.13) 

Where 𝐿 is the number of lines of the public transport network to be optimized and 𝑁𝐻 and 𝑁𝐶  are the 

number of elements in the set of discrete headways and vehicle capacities respectively. From equation 

(3.13), it becomes obvious that the size of the solution space increases exponentially with the number 

of lines. For 8 different headways, 3 vehicle types and 5 lines, the number of possible solutions becomes 

almost 8 million. For 7 lines, there are around 4.6 billion of different combinations.  Hence, with 

increasing network size and operational possibilities in terms of headways and vehicle types, the 

number of possible solutions will explode. In order to keep the size of the solution space as small as 

possible and thereby reduce complexity, it is favorable to limit the set of potential headways to 

reasonable values only. This can be done, for instance, by only considering headways of integer minutes 

and excluding certain headways a priori from the set that are operationally infeasible or unfavorable 

because of any reason (e.g. policy guidelines). 

A solution can be coded as a 𝐿 𝑥 (𝑁𝐻 + 𝑁𝐶) binary matrix. For an example case of 5 lines, 5 possible 

headways and 3 possible vehicle types, a possible solution could be coded as shown in Table 3.2. Line 

3, for instance, is operated by a vehicle capacity of 100 and a headway of 720 seconds (12 minutes). 

seconds 3600 1800 1200 900 720 600 514 450 400 360 327 300 277 257 240 225 212 200 189 180 171 164 157 150 144 138 133 129 124 120

minutes 60.0 30.0 20.0 15.0 12.0 10.0 8.6 7.5 6.7 6.0 5.5 5.0 4.6 4.3 4.0 3.8 3.5 3.3 3.2 3.0 2.9 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.1 2.0

frequency veh/hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

headway

Table 3.1: Potential discrete headways and associated frequencies. 
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For each possible solution, there exists only one unique binary matrix. Note that such a matrix can be 

easily randomly generated by a computer while respecting the condition that each line is only 

associated with one headway and vehicle type.  

A neighbor of a specific solution can now be generated by altering one characteristic of a certain line in 

a well-defined way and thereby keeping all other variables unchanged. This is done by changing the 

headway or capacity of a selected line to the next smaller or larger values, i.e. just flipping two 

neighboring bits. In that way, a set of neighboring solutions can be generated for any current solution. 

The maximum number of neighboring solutions is: 

𝑁𝑚𝑎𝑥 = (2 + 2) ∙ 𝐿                                                           (3.14) 

That is, either headway or capacity can be change to the next higher or lower value, yielding 4 possible 

changes per line. Note that a specific solution can have less neighbors than computed in equation (3.14) 

if it contains boundary values, i.e. the minimum or maximum headway/capacity is selected on any line, 

because there is only one possibility to switch from a boundary value to the next higher or lower value.  

Finally, it is worth mentioning how feasibility constraints are incorporated in the model when 

generating solutions. Not all solutions can be technically feasible since there are often vehicle 

availability, fleet size or budget constraints. By considering a discrete set of potential headways to be 

used in a solution, one implicitly incorporates lower and upper bounds for headways. Given the number 

of available vehicles of size 𝑐 called 𝑁𝑐 and the cycle time of a line 𝑇𝑙 one can easily determine if a 

potential solution is feasible by 

∑
𝑇𝑙

ℎ𝑙
𝑙∈𝐿

 𝛿𝑙,𝑐 ≤  𝑁𝑐      ∀ 𝑐 𝜖 𝐶                                                    (3.15) 

Where ℎ𝑙 is the chosen headway on line  𝑙, 𝐶 is the set of all vehicle capacities and 𝐿 the set of all lines 

considered and 𝛿𝑙,𝑐 is a binary variable: 

𝛿𝑙,𝑐 =  { 0,   otherwise
 1,   if capacity c is used on line l

                                         (3.16) 

Hence, inequality (3.15) checks whether a solution can be operated given the available number of 

vehicles per type and the assignment of headways and vehicle types to lines which have a certain cycle 

time. The latter one is used to estimate the number of vehicles needed on each line to operate the 

selected frequency. Note that, for the sake of simplicity, it is assumed that each line can solely be 

operated by one vehicle type and that vehicles are not circulating among multiple lines during the 

defined interval of operation. 

When generating random initial or neighboring solutions, an immediate feasibility check can be done 

using inequality 3.15 and thus infeasible potential solutions can be rejected or excluded from the list of 

Line 300 450 600 720 900 30 60 100

1 0 0 1 0 0 0 1 0

2 0 1 0 0 0 1 0 0

3 0 0 0 1 0 0 0 1

4 1 0 0 0 0 0 0 1

5 0 0 0 0 1 0 1 0

headway vehicle capacity

Table 3.2: Binary coding of an example solution. 
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neighboring solutions on beforehand. Depending on the case of application, the size of the solution 

space may be significantly reduced due to the infeasibility of certain solutions. 

 

3.5 Model verification 

The previously described model components were implemented in a computer program. MATLAB was 

used as a platform to code the search algorithms and coupled with the simulation model BusMezzo to 

obtain output data for solution evaluation. This required a mutual exchange of data between MATLAB 

and the simulation model during runtime. 

In order to confirm the proper functioning and plausibility of results of the model, a simple network 

consisting of two lines and 5 stops was designed. The small scale of this example case allows to examine 

and visualize the entire solution space of the discrete decision problem as well as the trajectories of the 

search algorithms. Figure 3.7 shows the network configuration and a given passenger demand matrix. 

There are a total of 800 passengers per hour travelling through the network. Note that there is only 

one possible route available per OD pair and therefore route choice effects do not play a role in this 

case. The cycletime on each line was assumed being 1800 seconds (30 minutes) and the line length in 

both directions was set to 10 kilometers for both lines. 

Table 3.3 shows the parameters and coefficients assumed for the verification of the model. Cost 

components such as value of time or operating cost components per vehicle type were reasonably 

assumed based on commonly known and used values in literature. Note that this analysis uses a purely 

hypothetical example that aims at investigating the topology of the solution space and the trajectory 

of search algorithms and not at finding optimal supply conditions. Therefore, knowing exact parameters 

and coefficients representing real-world conditions is not necessary in this case. 

Table 3.3: Assumed parameters and coefficients for model verification. 

User cost components 
Operational cost 

components [EUR/h] 

Vehicle capacities 

[pax/veh] Parameters SA algorithm 

10 20 30 

VOT 6.75 EUR/h Driving (𝐶𝐷𝑐) 0.1 0.2 0.3 Initial temp. T0 40.000 

𝜃𝑤,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  2 Standing (𝐶𝑆𝑐) 0.02 Cooling function T(t+1)=αT(t) 

𝜃𝑤,𝑑𝑒𝑛𝑖𝑒𝑑  2*3.5 Personnel (𝐶𝑝) 30 Factor α 0.9 

𝜃𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  5 Fixed (𝐶𝐹𝑐) 10 12 14 Iterations N(t) 2 (constant) 

𝜃𝑤𝑎𝑙𝑘  (2) Share indirect costs 0.3  

 

The number of required simulation runs (replications) was set to 10 yielding a maximum allowable 

relative error of 1.9% of the objective function value at a level of significance of 95%. The set of discrete 

headways in seconds was defined as: 

𝐻 = [180, 240, 300, 360, 450, 600, 720, 900] 

Moreover, three possible vehicles having different capacities in persons per vehicle are available: 

𝐶 = [10, 20, 30] 



35 
 

The initial temperature T0 for the simulated annealing algorithm was computed as 38642 according to 

equation (3.11) and rounded to 40000. The factor in the exponential decreasing cooling function was 

set to 0.9 and 2 iterations per temperature step were assumed. 

8 different headways and 3 possible vehicle types yield a total of 576 solutions in the case of two lines 

provided that all solutions are feasible. In order to achieve this, the fleet size constraint was relaxed by 

setting the number of available vehicles per type to a sufficiently high number. Figure 3.8 shows the 

computed user and operating cost for the entire solution space. It can be observed that costs to be 

borne by the passengers increase heavily with decreasing vehicle sizes and line frequencies as supply 

in terms of transportable passengers per line segment per hour decreases. On the other hand, costs to 

be borne by the operator show an inverse relationship as they decrease with smaller vehicles and lower 

frequencies.  

Adding up the cost values depicted in Figure 3.8 yields the total system cost and thus the objective 

function value to be optimized. Figure 3.9 shows these values for the entire solution space. Note that 

for small values there is no clear differentiation in terms of colours and contour lines since the absolute 

difference between the largest and the smallest cost value is very large compared to the values inside 

the ‘valleys’ of the solution topology. Looking at the trajectories of both the local search and the 

simulated annealing algorithm (SA), one can nicely observe the behavior of both procedures. Starting 

at the same initial solution (headways 15 and 7.5 minutes / vehicle capacities 20 and 30 persons for line 

1 and 2 respectively), the local search algorithm directly proceeds towards regions of low cost values 

Figure 3.7: Simple test network and demand matrix in passengers per hour. 

Figure 3.8: User cost (left) and operating cost (right) for the entire solution space. 
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and reaches the minimum solution after 6 iterations. In contrast to that, SA first explores regions of 

higher cost values (upper left area) and then intensifies the search in low cost regions. After 108 

iterations, the final value is found. Hence, the developed model behaves as expected. The behavior of 

the SA algorithm may suggest an inefficiency regarding the fast convergence towards optimal regions 

of the solution space compared to local search in this example. However, in case of larger solutions 

spaces having a more complex topology with multiple altering high- and low-cost regions, the final 

solution obtained by SA may be significantly better than those obtained by LS and thus outperform the 

latter one. 

 

  

Figure 3.9: Total system cost for the entire solution space including search trajectories of 
local descent search and simulated annealing algorithm. 

 



37 
 

4 APPLICATION 

This chapter presents two applications of the proposed model. The first case study investigates the 

model’s behavior towards changes in certain input parameters using a hypothetical simple public 

transport network. In the second case study, the practical benefits and limitations of the model are 

identified using a real-world scenario of a bus network in the North of Amsterdam. 

 

4.1 Network by Spiess and Florian 

In this section, the first application of the developed model on a hypothetical case study is presented. 

As a network for numerical tests, the one proposed by Spiess and Florian (1989) was used. Figure 4.1 

shows a schematic representation of the network including the riding times between stops on the 

respective lines. This network offers interesting trade-offs regarding passengers’ route choices and is 

yet relative simple. A hypothetical symmetric passenger demand matrix is depicted in Table 4.1. In total, 

there are 1000 passengers using the network per hour. For the four lines, cycle times were set to 60, 

36, 26 and 18 minutes respectively (assuming 5 minutes of turn-around and slack at each terminal). 

Note that in the original network presented by Spiess and Florian, lines were assumed to operate in 

one direction only. The line lengths were computed based on the assumption of an average riding speed 

of 30km/h and the given travel times. Like in the application for model verification, cost components 

as an input to the objective function were reasonably assumed based on commonly used values in 

literature. The number of required simulation runs was set to 5 yielding a maximum allowable relative 

error of 1.0% of the objective function value at a level of significance of 95%. The day-to-day learning 

feature of BusMezzo was used in this case in order to mimic steady-state conditions in terms of 

passengers’ route choice adaptions towards supply conditions. The same set of 8 possible line 

headways as in the  example for model verification was used. Possible vehicle capacities were chosen 

as 60, 90 and 120 persons per vehicle, i.e. 3 types of vehicles are available. Note that the number of 

available vehicles per type was set high enough such that all theoretical combinations of headways and 

capacities are practically feasible. This yields a total of 331.776 feasible potential solutions. 

 

Figure 4.1: Hypothetical public transport network proposed by Spiess and Florian (1989) including travel 
times on line segments. 
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4.1.1 Scenario design 

In order to test the model’s behavior against various parameter settings, three test scenarios were 

designed. Table 4.2 gives an overview of the three test cases and associated parameter settings. 

Table 4.2: Summary of the test scenarios performed. 

Test 1: Initial solution Test 2: SA parameter 
Test 3: Waiting time 

sensitivity 

High 

capacity 

Medium 

capacity 

Low 

capacity 

Number of iterations per 

temperature step 

Cost ratio waiting/in-vehicle 

time 

SA LS SA LS SA LS N=1 N=2 N=3 N=4 N=5 1 1.5 2 2.5 

Test one aims at analyzing the sensitivity of the initial solution provided to the search algorithm on the 

final solution. Therefore, three significantly different solutions are provided to the model as a starting 

condition. First, a high-capacity situation is assumed, meaning all lines are served at the highest 

frequency (headway of 180 seconds, i.e. one vehicle every three minutes) and large vehicles (120 

person/vehicle). Second, a medium-capacity setting is provided with headways of 7.5 minutes and a 

capacity of 90 persons per vehicle on all lines. Finally, all lines operate at the lowest frequency and the 

smallest vehicle, i.e. 15 minutes headway and 60 persons per vehicle. For each of the scenarios, the 

final solution is computed using the local descent search algorithm (LS) presented in Section 3.4.1 as 

well as the simulated annealing (SA) procedure explained in Section 3.4.2. SA has a higher probability 

of finding a global optimum than LS since the structure of the SA algorithm allows for escaping local 

optima, whereas LS can only follow a descent path in the solution space that leads to the closest local 

optimum. Therefore, the results of both algorithms may differ depending on the initial solution 

selected. SA may arrive at similar final solutions independent from the starting point provided that all 

parameters of the algorithm are set appropriately. On the other hand, it is expected that solutions 

found by LS clearly differ from each other and show a similarity with or closeness to the respective 

starting solution in terms of the decision variables. 

The second test case examines the influence of different parameter settings in the SA algorithm on the 

quality of the final solution found. The model is applied for different numbers of iterations to be 

executed at each temperature (N), which influences overall running time of the algorithm and may also 

affect the final solution found. Since more iterations will lead to a more intensified search and 

exploration of the solution space, the probability that SA will visit areas close to the global optimum 

increases. Therefore, it is expected that more iterations, i.e. larger values of N, may result in better 

solutions with respect to the objective. However, this improvement comes at the price of longer 

computation time. 

Finally, a third test case was designed which investigates how the weighting of waiting time in the 

objective function and the route choice model affects the final solution found by the model. The model 

is applied to 4 different cases in which the relative weighting of waiting time in the objective function 

and passengers’ route choice factors differ accordingly. Hence, this scenario tests how the relative 

Stop 1 Stop 2 Stop 3 Stop 4

Stop 1 0 150 50 100

Stop 2 150 0 100 50

Stop 3 50 100 0 50

Stop 4 100 50 50 0

Table 4.1: Hypothetical demand matrix in passengers per hour. 
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importance of waiting as perceived by the passenger affects the optimal design of the supply. As the 

relative importance of waiting increases, also the waiting costs will increase and lead to an overall 

increase of the total costs. However, when supply in terms of frequencies is increased, nominal waiting 

times will decrease and cause the waiting costs to decrease. The question is whether the increase in 

operational costs associated with the increase in frequencies is larger or smaller than the savings in 

waiting costs. In the latter case, it is worth to increase the supply since overall costs will be less than if 

frequencies were not changed.  

 

4.1.2 Results 

Test 1 

Table 4.3 shows the final solutions in terms of frequencies and vehicle capacities per line as well as the 

average total costs obtained for different initial solutions and search algorithms applied. Note that due 

to the stochastic nature of BusMezzo the relative standard deviation of each average cost value is about 

1%. In Figure 4.2, the total cost associated with each solution found per scenario is depicted and divided 

according to cost components related to travelers and operator. 

From the table and the figure above it is obvious that solutions found by the SA algorithm do not differ 

significantly with respect to the frequency and capacity combinations found and the associated cost 

components. The final solutions yield low frequencies on lines 1 and 4 and relatively high frequencies 

on lines 2 and 3. Solutions obtained by the local search (LS) algorithm, however, differ significantly 

especially with respect to the costs related to waiting time and operation. It is obvious that the final 

solutions are affected by the initial solution since optimal waiting costs increase as the capacity of 

supply of the starting solution is reduced. The same holds inversely for the operational costs. Note that 

the final solution generated by LS and starting from a low-capacity solution even contains denied 

boarding. That is, LS cannot find a solution that completely satisfies demand if initialized from a very 

low capacity point in this case study. Hence, it can be concluded that final solutions found by the 

frequency capacity total cost frequency capacity total cost

1 4 60 4 60

2 10 60 12 60

3 10 60 12 60

4 4 60 12 60

1 4 60 4 60

2 8 60 6 90

3 10 60 8 60

4 6 60 8 90

1 4 60 4 60

2 10 60 6 90

3 12 60 5 60

4 5 60 4 60

0.81% 4.16%

4209.75

Simulated annealing Local search

1: high-capacity 

2: medium-capacity

3: low-capacity

Initial solution scenario

3785.41

Line

coeff. of variation

3832.31

3774.25

3874.82

4020.59

Table 4.3: Results obtained for different initial solutions and search algorithms. 
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proposed LS algorithm are dependent on the starting solution whereas SA finds similar solutions 

independent from the starting solution and is thus robust against this parameter.  

Test 2 

Figure 4.3 shows the evolution of the SA algorithm in terms of the objective function value of visited 

solutions for different values of N, i.e. the number of iterations performed at each temperature value, 

as well as the current temperature at each iteration. The cooling function is defined by the exponentially 

decreasing function 𝑇(𝑡 + 1) = 𝛼𝑇(𝑡) as described in Section 3.4.2. The parameter 𝛼 was set to 0.9 

and an initial temperature was estimated as 900 based on equation (3.11). Starting from the same initial 

solution, the algorithm gradually converges to a minimum cost value. During the initial phase of the 

search progress, the objective function value of visited solutions fluctuates a lot as high temperatures 

increase the probability that worse solutions are accepted. Since a higher value of N causes the 

temperature to decrease more slowly, the fluctuations and thus the time needed to converge takes 

longer for larger N than for smaller.  

Figure 4.2: Total cost of the final solutions found for different scenarios. 

Figure 4.3: Evolution (left) and temperature values (right) of the SA algorithm for different parameter settings. 
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Figure 4.4 clearly indicates that an increase in parameter N leads to an increase in the overall running 

time of the algorithm. This finding confirms the previous analysis on algorithm search progress since 

the number of iterations needed to converge is directly linked to the shape of the cooling function. 

Figure 4.4 shows that the average cost value of the final solution found is significantly reduced when 

making two iterations per temperature step instead of one. Hence, a longer runtime of the model, i.e. 

a more intensive search, can lead to better performing solutions. However, significant improvements 

are limited as the application of a student’s t-test shows no significant differences (at a level of 

confidence of 95%) among the mean cost values obtained for 3, 4 and 5 iterations. Thus, once a certain 

runtime is exceeded, the quality of the found solution cannot be further improved. 

Test 3 

In this test, the influence of different weight ratios of waiting to in-vehicle time on the final solution 

found by the SA algorithm was investigated. Table 4.4 shows the final results obtained for different 

weight ratios. A ratio of one implies, for instance, that waiting time is perceived and evaluated the same 

as the time spent on board a vehicle, whereas a ratio of two means that one minute of waiting is 

perceived the same as two minutes of in-vehicle time by the passenger and the cost value of waiting 

time is also twice as high. The results clearly show that with increasing weight associated with waiting, 

overall headways decrease since shorter headways result in smaller waiting times. 

Table 4.4: Final results obtained for different weight ratios of waiting to in-vehicle time. 

 Weight  ratio waiting / in-vehicle time 

 1 1.5 2 2.5 

 H [sec] C [Pax/veh] H [sec] C [Pax/veh] H [sec] C [Pax/veh] H [sec] C [Pax/veh] 

Line 1 900 60 900 60 900 60 900 60 

Line 2 600 60 720 120 360 60 300 60 

Line 3 600 60 360 60 360 60 300 90 

Line 4 900 60 900 60 900 60 720 90 

 

Figure 4.4: Cost value of final solution vs. runtime for different parameter settings 
of the SA algorithm. 
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Figure 4.5 shows the objective function value and its composition as well as the average waiting time 

per passenger for the different weight ratios. It is clearly visible that the overall cost of a solution 

increase with the relative importance associated with waiting. However, it is also interesting to observe 

that only an increase in operational cost leads to an overall raise of the costs as those components 

belonging to the users remain relatively constant. The increase in operational cost can clearly be 

explained by the change in supply towards smaller headways, which implies higher frequencies and 

thus more vehicles to operate. The cost of waiting remains more or less constant and thus independent 

from the increasing importance associated with waiting. Total weighted passenger waiting time 

remains at the same level because the increase in waiting time coefficient is fully compensated by the 

decrease in average waiting time per passenger. The objective function value associated with user costs 

remains relatively stable while the solution itself is quite sensitive. However, as the relative weighting 

of waiting time increases, an overall raise of the system’s cost is caused by an increase on the supply 

side, that is, higher operational cost. Hence, in this configuration, the absolute savings in waiting time 

costs are larger than the additional operational costs resulting from the increased supply. Note that in 

case resources are limited, the model may behave differently since supply is subject to an upper bound 

and cannot be increased arbitrarily.  

 

  

Figure 4.5: Cost values and average waiting time associated with the optimal solution 
for different weights of waiting time. 
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4.2 Real-world case study: R-net ‘Zaanstreek’ concession 

This section presents the second application of the developed model to a large-scale case study in order 

to explore and demonstrate its practical applicability, benefits and limitations. It starts with a 

description of the case study set-up followed by the presentation of the scenario design developed to 

explore several features of the model in real settings. Finally, the results obtained by the model for the 

different scenarios examined are presented and discussed. 

 

4.2.1 Case study description 

The case study deals with a bus network to the north of Amsterdam (The Netherlands) which is 

operated by Connexxion, a Dutch transportation company. The so-called ‘Zaanstreek’-concession is 

named after the area in the north of the Amsterdam metropolitan area which includes several 

municipalities in the province of ‘Noord-Holland’. This concession is currently operated by Connexxion 

and comprises a total of 14 different bus lines of which two are only operated at night. The entire 

network can be divided into two parts: 5 lines connecting the central locations of the ‘Zaanstreek’ area 

with different locations in Amsterdam and the remaining 7 lines connecting the more remote parts of 

the northern municipalities. The former group of lines is part of the R-net (or ‘Randstadnet’), which is a 

cooperation of local authorities and operators in the metropolitan area of the Randstad aiming to 

provide high-quality public transport services. The latter group of lines can be regarded as a local and 

feeder service to the R-net and is currently operated at low frequencies of 1 to 2 vehicles per hour and 

line. In the remainder of this chapter, these lines are referred to as local lines. Passengers using these 

lines usually consult the timetable before starting their journey in order to avoid long waiting times at 

their stop of origin. The developed model, however, is designed for high-frequency public transport 

services assuming a random arrival process of passengers at stops. Therefore, the case study will only 

consider the 5 lines belonging to the R-net, but without ignoring passenger demand using the local 

lines. More details about passenger demand modelling will follow later in Section 4.2.2. 

Figure 4.6 shows a geographical as well as a schematic representation of the considered bus network. 

In the former representation, some of the local lines are indicated in grey. The entire network belonging 

to the R-net consists of 5 lines (associated with different colors) and 62 stops in total. Most of the stops 

are served by multiple lines increasing the amount of supply offered at these stops. Moreover, multiple 

routes are available for the majority of OD pairs making this network especially interesting in terms of 

passenger route choice effects and considerations. All five lines are serving the stop ‘De Vlinder’, which 

can be regarded as a central transfer hub. Table 4.5 provides a tabular overview of the 5 lines including 

static properties such as number of stops, line length and origin/destination stops as well as dynamic 

properties such as period-dependent scheduled riding times and line frequencies during different times 

of the day. The three lines 391, 392 and 394 are connecting Amsterdam Central Station with the railway 

station in Zaandam and a location situated further north called Zaanse Schans. Although lines 392 and 

394 do have the same origin and destination terminals, their routes significantly differ. Line 392 is 

slightly longer and has more stops offering the only connection for a segment in the eastern part of the 

network. Line 395 connects the railway station Amsterdam Sloterdijk with a park-and-ride facility 

located at the highway A7 (exit ‘Wormerland’) in the northeast of Zaandam. Note that line 395 is 

operated with varying terminals during the day. That is, half of the service already ends at the hospital 

in Zaandam (Zaans Medisch Centrum) and thus the line frequency between the northern branch Zaans 

MC – P+R A7 is lowered. Due to the formulation of the model, these two varieties of line 395 are treated 
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as two separate lines. More information on the model specification will be given in Section 4.2.2. Line 

398 connects the southern business district in Amsterdam with the hospital in Zaandam. Note that this 

line is only operated in one direction depending on the period. In the morning service runs southbound 

towards Amsterdam, in the evening busses run northbound. Also note that this line is solely operated 

at peak times in the morning and the evening and not in operation during other times of the day and 

at night.  

According to a practical expert in the field of public transport service planning in The Netherlands, the 

frequency determination is usually done in a simplified fashion using norm capacity values. This value 

is defined as the maximum capacity a vehicle may reach, which is the seating capacity plus a certain 

share of the standing capacity. The frequency on a line is then determined by dividing the total number 

of passengers on the busiest line segment in the network by the defined norm capacity. This approach 

implies a reactive adjustment of supply towards (observed) demand conditions and does not consider 

demand-supply interactions which need to be computed iteratively using assignment models. In case 

an assignment model is used, however, crowding and congestion issues are hardly taken into account. 

If so, crowding is only considered as decreasing comfort onboard a vehicle by incorporating crowding 

factors and iteratively computing network equilibrium conditions in terms of (perceived) travel times. 

Hence, issues resulting from dynamic effects such as travel time reliability cannot be taken into account 

by current static assignment models. By applying the proposed model, these aspect can be addressed.  

 

 

N 

Figure 4.6: Geographical (left) and schematic representation (right) of the ‘R-net’ bus network. 

P+R A7 Wormerland 
Zaanse Schans 

Station 
Zaandam 

Amsterdam CS 
Station 
Sloterdijk 

IBM 

Zaans MC 

N 
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Table 4.5: Overview of the line-specific characteristics. 

 

Table 4.6 shows the current supply in terms of line frequencies offered on the R-net during the two 

peak periods considered. The selected morning and evening peak hours are the result of a passenger 

demand analysis which will be elaborated on in the Section 4.2.2. It can be seen that almost every line 

is operated at a frequency of 4 vehicles per hour (15 minutes headway) and line 398 at 3 vehicles per 

hour in both periods considered. Depending on the presence of multiple lines on a segment, this can 

add up to a frequency of up to 19 vehicles per hour (between stops ‘de Vlinder’ and ‘Barndegat’). Note 

that in the evening peak, the frequency setting on line 392 is asymmetrical. That is, there are 8 vehicles 

per hour on the northbound direction of line 392 and the usual 4 vehicles per hour on the southbound 

direction. According to information provided by Connexxion, there are currently 3 types of vehicles 

used to operate the Zaanstreek concession. The majority of the fleet (75%) consists of a standard (non-

articulated, 12m) bus type (see Figure 4.7) having 42 seats and an overall capacity of 83 passengers per 

Line Origin Destination 

Frequency 

[veh/h] 

# 

stops 

Length 

[km] 

Scheduled 

riding time AM 

peak/PM peak 

[min] 

During 

the day 

5:00 – 

19:00 

At 

night 

19:00 -  

1:00  

391a 
Centraal Station, 

Amsterdam 

Zaanse Schans, 

Zaandam 
4 2 24 21.5 45/48 

391b 
Zaanse Schans, 

Zaandam 

Centraal Station, 

Amsterdam 
4 2 24 21.1 49/45 

392a 
Centraal Station, 

Amsterdam 
Station, Zaandam 4/8 2 27 19.2 44.5/49 

392b Station, Zaandam 
Centraal Station, 

Amsterdam 
4/8 2 27 19.2 49.5/44 

394a 
Centraal Station, 

Amsterdam 
Station, Zaandam 4 2 21 17.9 40/43 

394b Station, Zaandam 
Centraal Station, 

Amsterdam 
4 2 21 18.1 44/40 

395a1 
Station Sloterdijk, 

Amsterdam 

P+R A7, afrit 2 

Wormerland 
4 2 18 17.2 32.5/35 

395b1 
P+R A7, afrit 2 

Wormerland 

Station Sloterdijk, 

Amsterdam 
4 2 17 16.4 36/33 

395a2 
Station Sloterdijk, 

Amsterdam 

Zaans Medisch 

Centrum, Zaandam 
4 0 12 12.2 21/25 

395b2 
Zaans Medisch 

Centrum, Zaandam 

Station Sloterdijk, 

Amsterdam 
4 0 11 11.9 25/22 

398a IBM, Amsterdam 
Zaans Medisch 

Centrum, Zaandam 
PM:3 0 19 18.1 42/40 

389b 
Zaans Medisch 

Centrum, Zaandam 
IBM, Amsterdam AM:3 0 19 18.0 39/41 
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vehicle, i.e. 41 standing places. In addition to that, a smaller (10m, 34 seats) and a larger (13m, 52 seats) 

type of vehicle is available. Since there is no information available on the assignment of vehicle types 

to lines and the relative differences in terms of capacity are marginal among the different vehicle types, 

it is assumed, for the sake of simplicity, that the standard bus type is currently deployed on all lines of 

the R-net. Note that this assumption might involve potential consequences for the assessment of 

benefits of an optimized supply setting. The magnitude of a reduction in crowding levels, for instance, 

would turn out to be lower in case a larger vehicle than the standard one was currently used on a 

specific line. Potential benefits in terms of reductions in waiting times, however, should not be 

significantly affected by this assumption. 

Table 4.6: Current supply in terms of line frequencies for both peak periods considered (base cases). 

 

 

In order to be able to determine the performance of potential solutions in terms of the supply 

characteristics line frequencies and vehicle capacities, the network was coded in the simulation tool 

BusMezzo. The fundamental network in BusMezzo consists of 150 nodes and 158 links. Each stop was 

explicitly modelled per line direction. At transfer hubs such as ‘De Vlinder’, walking distances between 

multiple stops served by different lines are introduced in order to allow for transfers. These distances 

and the average walking speed were reasonably specified with average values of 50 meters at transfer 

stops and a speed of 50 meters per minute, respectively. 

Riding times between stops can be modelled deterministically or stochastically in BusMezzo using 

predefined distributions. In order to fully capture the dynamic effects of riding time variability on overall 

public transport reliability and performance, stochastic node servers were implemented in the model. 

The running time distribution of bus services is characterized by a log-normal distribution (Mazloumi et 

al., 2010). In Busmezzo, each node server modelling the running time 𝑅𝑇𝑖𝑗 between stops 𝑖 and 𝑗 needs 

to be specified by a constant delay 𝐷𝐸𝐿𝐴𝑌𝑖𝑗 resulting from the free-flow travel time and a variable term 

𝑉𝐴𝑅𝑖𝑗 which is sampled from a log-normal distribution defined by a mean 𝑀𝐸𝐴𝑁𝑖𝑗  and a standard 

deviation 𝑆𝐷𝑖𝑗.  

𝑅𝑇𝑖𝑗 =  𝐷𝐸𝐿𝐴𝑌𝑖𝑗 + 𝑉𝐴𝑅𝑖𝑗(𝑀𝐸𝐴𝑁𝑖𝑗  , 𝑆𝐷𝑖𝑗)                                        (4.1) 

Line 

Frequency (vehicles/hour) 

AM peak 

(08:00-09:00) 

PM peak 

(17:00-18:00) 

391a 4 4 

391b 4 4 

392a 4 8 

392b 4 4 

394a 4 4 

394b 4 4 

395a1 4 4 

395b1 4 4 

395a2 4 4 

395b2 4 4 

398a 0 3 

389b 3 0 
Figure 4.7: Standard bus type currently deployed on the R-
net. 
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The constant delay is computed using the distance 𝐷𝐼𝑆𝑇𝑖𝑗 to be travelled between stops 𝑖 and 𝑗 as well 

as the average riding speed 𝑆𝑃𝐸𝐸𝐷̅̅ ̅̅ ̅̅ ̅̅
�̅�𝑗 which is dependent on the type of road and traffic (e.g. highway 

with dedicated bus lane vs. mixed traffic in urban area): 

𝐷𝐸𝐿𝐴𝑌𝑖𝑗 =
 𝐷𝐼𝑆𝑇𝑖𝑗

𝑆𝑃𝐸𝐸𝐷̅̅ ̅̅ ̅̅ ̅̅
�̅�𝑗

                                                                      (4.2) 

The mean of the remaining variable part of the riding time (𝑀𝐸𝐴𝑁𝑖𝑗) can be computed as the difference 

between the scheduled travel time 𝑇𝑇𝑖𝑗 and the sum of free flow travel time and average dwell time 

𝐷𝑇̅̅ ̅̅  which was set to 7 seconds in this case.  

𝑀𝐸𝐴𝑁𝑖𝑗 =   𝑇𝑇𝑖𝑗 − (𝐷𝐸𝐿𝐴𝑌𝑖𝑗 +  𝐷𝑇̅̅ ̅̅ )                                                   (4.3) 

Based on a study investigating the determinants of bus riding time variations using automatic vehicle 
location records (Cats, 2017), the coefficient of variation of the variable part of the running time (i.e. 
the size of the standard deviation relative to the mean) was set to 0.2. Hence, 𝑆𝐷𝑖𝑗 is always  0.2 ∗

 𝑀𝐸𝐴𝑁𝑖𝑗 . 

Next to stochastic variations in riding times, BusMezzo is able to simulate the effect of passenger flows 

on service reliability which is mainly manifested through the dwell time. In BusMezzo dwell times are 

modelled explicitly for each stop in the network using a predefined set of given dwell time functions. 

According to Cats (2011), the general form of the dwell time function of vehicle type 𝑓 on trip 𝑘 of line 

𝑙 at stop 𝑠 is: 

𝐷𝑠,𝑙
𝑘,𝑓

= 𝑙𝑜𝑠𝑡_𝑡𝑖𝑚𝑒𝑠
𝑓

+  𝑃𝑆𝑇𝑠,𝑙
𝑘,𝑓

+ 𝑣𝑠,𝑙
𝑘,𝑓

                                                   (4.4) 

Where:  𝑙𝑜𝑠𝑡_𝑡𝑖𝑚𝑒𝑠
𝑓

 is a constant delay associated with stop 𝑠 and vehicle type 𝑓 

 𝑃𝑆𝑇𝑠,𝑙
𝑘,𝑓

 is the total passenger service time 

 𝑣𝑠,𝑙
𝑘,𝑓

 is a stochastic error term 

There are various models mentioned in literature to compute the passenger service time. Most of them 

take into account the number of boarding and alighting passengers at a stop and the service time 

needed for each boarding and alighting passenger respectively. The service time is the marginal 

contribution of each boarding/alighting passenger to the total passenger service time. Other models go 

more into detail and also consider vehicle occupation levels (crowding) when approaching a stop, door 

configurations as well as boarding/alighting regimes. In this case study, a formulation for the calculation 

of the total passenger service time proposed by Weidmann (1994) is used. 

𝑃𝑆𝑇𝑠,𝑙
𝑘,𝑓

= 𝑚𝑎𝑥{𝛽𝑎
𝑓

∙  𝐴𝑠,𝑙
𝑘  , 𝛽𝑏

𝑓
∙  𝐵𝑠,𝑙

𝑘 } ∙ [1 +
3

4
(𝑚𝑎𝑥 {0,

𝐿𝑠,𝑙
𝑘 − 𝑠𝑒𝑎𝑡𝑠𝑓

𝑐𝑎𝑝𝑓 − 𝑠𝑒𝑎𝑡𝑠𝑓})

2

]                   (4.5) 

Where 𝛽𝑎
𝑓

 is the service time per alighting passenger from vehicle type 𝑓 

 𝐴𝑠,𝑙
𝑘  is the number of alighting passengers at stop 𝑠 on trip 𝑘 of line 𝑙 

 𝛽𝑏
𝑓

 is the service time per boarding passenger from vehicle type 𝑓 

 𝐵𝑠,𝑙
𝑘  is the number of boarding passengers at stop 𝑠 on trip 𝑘 of line 𝑙 

 𝐿𝑠,𝑙
𝑘  is the passenger load on trip 𝑘 of line 𝑙 when approaching stop 𝑠 

 𝑠𝑒𝑎𝑡𝑠𝑓 is the total number of seats available in vehicle type 𝑓 

 𝑐𝑎𝑝𝑓 is the total capacity of vehicle type 𝑓 

This model implies that not only the number of boarding and alighting passengers contribute to the 

passenger service time but also the crowding level inside the vehicle. Note that the extra dwell time 
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due to crowding increases non-linearly (quadratic) with the number of standing passengers. The service 

time coefficients 𝛽𝑎
𝑓

 and 𝛽𝑏
𝑓

 are specified for different public transport services depending on the 

respective boarding regime and number of doors. 

Although BusMezzo is able to simulate vehicle scheduling, i.e. the movement of vehicles executing 

multiple trips on one or multiple lines, this feature is disregarded in this application as already explained 

in Section 3.2.3. Instead, each vehicle is assigned to one trip on a line only, implying that dynamic effects 

related to trip chaining such as the propagation of vehicle delays over multiple trips are not taken into 

account. The supply for each line is specified by the dispatching time of the first vehicle run and the 

line’s headway which is assumed to be constant throughout the analyzed period. Recovery times at 

terminals for fleet size estimations and operational cost computations are assumed as 5 minutes on all 

lines. The dispatching times are based on the current timetable (Connexxion, 2016) and kept constant 

for all potential headway settings per line. That is, planning decisions related to timetabling in terms of 

the definition of vehicle arrival/departure times are not taken into account. The only decisions variables 

are headway, i.e. the frequency of vehicle arrival, and the vehicle capacities on the line level. Although 

the current timetable does not always imply perfectly equally spaced headways for the departure times 

at origin terminals of a line, departure headways are assumed to be homogeneous throughout the 

simulation.  

 

4.2.2 Passenger demand analysis 

In this case study, passenger demand is assumed to be given as a constant input in form of an OD matrix 

specifying the average flow of passengers per hour between each pairs of stops in the network. Using 

this input, the random arrival of passengers at stops is stochastically simulated in BusMezzo according 

to a process following a Poisson distribution. Note that a feedback loop between demand and supply 

in terms of demand elasticity is not taken into account in this model. 

Figure 4.8 shows the distribution of the average number of trips aggregated for a time interval of one 

hour during an average working day (Monday to Friday). The analysis is based on a large sample of 

recent smartcard transaction records for the entire month of February 2017 consisting of 

approximately 439.000 records. Each transaction record contains the time and date of check-in and 

check-out as well as the initial boarding and final alighting stop. Moreover, the line used for the first 

boarding and the final alighting is recorded as well. Note that this kind of demand description does not 

allow for an exact replication of the routes taken by passengers through the network as intermediate 

transfer stations and lines are not recorded. Yet, route choice is explicitly modelled by BusMezzo, hence 

allowing passengers to react to changes in supply. Figure 4.8 clearly indicates that the morning and 

evening peaks occur in the time between 08:00-09:00 AM and 05:00-06:00 PM, respectively. In the 

morning peak approximately 1.300 trips are performed on average whereas during the evening peak 

this values is slightly less with an average of 1.200 trips. 
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Figure 4.9 shows the spatial distribution of boardings and alightings in terms of locations of demand 

generation and attraction on the network during the both peak hours highlighting the four busiest 

stops. It is clearly visible that the general spatial distribution of origins in the morning matches those of 

the destinations in the evening. The same holds vice-versa for origins in the evening and destinations 

in the morning. This observation suggests a typical commuting pattern with a tour starting and ending 

at the same location in the morning and the evening respectively. However, if one takes a closer look 

at Figure 4.9 one can see that there is not a perfect symmetry between the patterns in the morning 

and the evening. In the morning, for instance, Amsterdam Central Station is the busiest stops in terms 

of origins whereas in the evening destinations are more balanced between Central Station and Prins 

Hendrikkade. This asymmetry becomes even more obvious when Figure 4.10 is observed. Although 

there are some similar patterns visible when comparing passenger OD flows in the two periods, there 

are also significant differences. Especially the flow patterns originating/ending at Amsterdam Central 

Station significantly differ among the two periods since this stop far busier in the evening than in the 

morning. Other asymmetries can be observed at the stops of Station Sloterdijk and Zaandam. All in all, 

these observations suggest that some passengers tend to use the services on the R-net only in one 

direction of their commute and might thus use alternative modes such as train/metro/tram for the 

other direction or simply use different routes in terms of different origin/destination stop depending 

on the period. 

 

  

Figure 4.8: Distribution of average number of trips on the network during a working day 
according to time intervals. 
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Figure 4.9: Average total number of passengers boarding/alighting per origin/destination stop during the morning and the 
evening peak hour including the four busiest stops. 

 
Average total number of passengers boarding/alighting per origin/destination stop  

 Morning peak (8:00-9:00) Evening peak (17:00-18:00) 

Origins 

  

Destinations 

  

A’dam CS: 162 

De Vlinder: 
130 

Weerpad/Wachterstr: 94 

Dodonaeusstr: 69 

Station 
Zaandam: 168 

De Vlinder: 
105 

Station Sloterdijk: 138 
Prins Hendrikkade: 277 

Station 
Zaandam: 121 

De Vlinder: 
126 

Station Sloterdijk: 80 
A’dam CS: 308 

Weerpad/Wachterstr: 
57 

De Vlinder: 
118 

A’dam CS: 75 

Prins Hendrikkade: 97 
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Figure 4.10: Trips made on the network during the morning peak (top) and evening peak (bottom), colored by station of origin 
(top) and station of destination (bottom) respectively. 

Amsterdam CS 

Prins Hendrikkade 

Weerpad/Wachterstraat 

Station Sloterdijk 

Station Zaandam 

De Vlinder 

Dodonaeussstraat 

Amsterdam CS 

Prins Hendrikkade 

Weerpad/Wachterstraat 

Station Sloterdijk 

Station Zaandam De Vlinder 

Dodonaeussstraat 
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Figure 4.12 shows the results of a passenger assignment to the network using the BusMezzo simulation 

tool. Note that the day-to-day learning feature was used in order to create steady-state conditions. The 

thickness of the network links indicates the total number of passengers traversing that link within the 

considered peak hour. The link color indicates the average seat occupancy level 𝑂𝐶𝐿𝑖𝑗 on the line 

segment between stops 𝑖 and 𝑗 which is computed by the passenger flow on the link 𝑃𝐿𝑖𝑗, the seating 

capacity 𝐶𝐿 of a vehicle deployed on line 𝐿 traversing the link and the line’s frequency 𝑓𝐿. Note that the 

total seating capacity of a link is added over all lines traversing the link.  

𝑂𝐶𝐿𝑖𝑗 =
𝑃𝐿𝑖𝑗

∑ 𝐶𝐿 ∗ 𝑓𝐿𝐿∈(𝑖𝑗)
                                                                (4.6) 

As can be clearly observed from Figure 4.12, average occupancy levels are higher in the morning than 

in the evening peak. On the southbound direction of line 392, maximum occupancy levels of almost 

100% are reached in the morning peak. That is, on average all seats are occupied on the respective 

segments of line 392. Note that this also implies that total vehicle capacities are (on average) never 

exceeded in any period and any point in the network. 

Moreover, a clear direction of flows depending on the period can be observed as flows are not always 

balanced between the two directions of a line segment during a given time period. Figure 4.11 shows 

the average passenger flow on a line segment per line, peak period and direction. Moreover, the 

absolute difference in passenger flows between the two directions of a line is depicted for both periods. 

This difference is slightly larger on lines 394 and 395 in the evening than in the morning. On line 392, 

this difference is most pronounced as in the morning, flows are almost equally balanced in both 

direction and in the evening the directional difference is more than doubled. 

Another way of quantifying the spatial balance of demand in a network is to examine the symmetry of 

the OD matrix. Since a symmetric matrix 𝑂𝐷 is equal to its transposed matrix 𝑂𝐷𝑇, a measure 

quantifying the degree of symmetry of a matric can be defined as (Mathforum, 2017): 

𝑆𝑦𝑚(𝑂𝐷) =
|(𝑂𝐷 + 𝑂𝐷𝑇) 2⁄ |

|𝑂𝐷|
                                                         (4.7) 

Where |  | denotes the norm of a matrix which is the square root of the sum of the squared matrix 

entries. 𝑆𝑦𝑚(𝑂𝐷) is normalized and ranges over [0,1] with 𝑆𝑦𝑚(𝑂𝐷) = 1 meaning perfect symmetry 

and 𝑆𝑦𝑚(𝑂𝐷) = 0 total asymmetry. Using equation 4.7, this value yields 0.5541 for the morning peak 

and 0.5522 for the evening peak. Hence, the OD matrix in the morning peak is slightly more symmetric 

and balanced than in the evening peak which is in line with the results depicted in Figure 4.11. 
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Figure 4.12: Total passenger flows on the network during the morning and the evening peak hour including average seat 
occupancy levels. 

Figure 4.11: Average passenger flow on a line segment (between two successive stops) for different line directions 
and periods including the absolute flow difference between the directions of each line per peak period. 
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4.2.3 Scenario design 

In order to examine the effect of different assumptions regarding input parameters and constraints on 

the model outputs different scenarios have been designed. All of them can be categorized according to 

three characteristics regarding the specification of decision variables, the formulation of the objective 

function and the passenger demand setting. Table 4.7 lists an overview of all 12 scenarios categorized 

according to these characteristics.  

The model aims at finding a good solution in terms of line frequencies and/or vehicle capacities. Since 

the two decision variables can be determined simultaneously or separately, it is interesting to 

investigate the effect of the assumption on these settings on the final solution. Therefore, some 

scenarios do not take into account the decision variable vehicle capacity but consider a given 

homogenous vehicle type as an exogenous input variable. Other scenarios determine vehicle capacities 

as well as line frequencies by selecting appropriate types of vehicles from a given heterogeneous vehicle 

fleet. In that way, the influence of deploying different vehicle capacities in the network can be tested. 

Using small vehicles on lines with low demand can, for instance, save operational costs that can instead 

be used to increase capacity on highly-utilized lines.  

As presented in the previous section, the case study is characterized by significant differences regarding 

the passenger demand during different periods of the day. Also, currently provisioned supply is 

different during these periods. Therefore, it is interesting to make a further distinction between the 

input parameter passenger demand in order to explore how the structure of different OD matrices may 

affect the final result. Moreover, it is worth exploring and comparing the potential of improvement for 

the two base situations. Since the overall quantity of supply provided in the morning peak is currently 

less than in the evening there might be a greater potential for improvement from a passenger’s point 

of view. 

Given the asymmetric distribution of demand within the network it is moreover worthwhile 

investigating how different assumptions on the decision variable line frequency can affect the quality 

of the final result. Next to the standard way of setting frequencies equally in both directions of a line, 

other scenarios are investigated in which the frequency is determined separately per line direction. This 

relaxation of constraints on the decision variable might lead to a more efficient allocation of resources 

since supply can be adjusted to the present demand in a more accurate and targeted fashion than by 

setting the same frequency for both directions of a line. Note that the set of all symmetric solutions is 

a subset of the set of all asymmetrical solutions. 

Finally, a further distinction regarding the formulation of the objective function is introduced by 

defining two different objectives: First, the minimization of total system costs as already presented in 

the first case study, and second, the minimization of user-related costs subject to a defined budget 

constraint. The latter one aims at minimizing generalized travel costs or time by changing supply in a 

way such that a maximum budget is not exceeded. A distinction regarding the objective function will 

demonstrate the capabilities of the model when applied with different practical intentions. The 

optimization of total costs facilitates the process of decision making and trade-off while considering the 

interests of both the operator and the passengers. In contrast to that, the model can also be used to 

find an optimal allocation of a given set of resources or budget while considering exclusively passenger 

benefits.  
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Table 4.7: Scenarios examined in the case study categorized by formulation of objective, passenger demand input and 
assumptions on the decision variables frequency and vehicle capacity. 

vehicle fleet homogeneous heterogeneous 

frequency setting symmetrical asymmetrical symmetrical 

Objective Min UC Min TC Min UC Min TC Min UC Min TC 

AM peak demand AM_UC_SYM AM_TC_SYM AM_UC_ASYM AM_TC_ASYM AM_UC_VEHCAP AM_TC_VEHCAP 

PM peak demand PM_UC_SYM PM_TC_SYM PM_UC_ASYM PM_TC_ASYM PM_UC_VEHCAP PM_TC_VEHCAP 

 

Each of the 12 scenarios is formulated as an abbreviation indicating the demand period (AM or PM), 

the objective (UC=User cost, TC=Total cost) and constraints on the decision variables 

(SYM/ASYM=symmetrical/asymmetrical frequency setting; VEHCAP=consideration of multiple vehicle 

capacities). Those abbreviations will be used throughout the remainder of this chapter. 

Table 4.8 shows the three different vehicle types considered for the ‘VEHCAP’-scenarios. The normal 

bus is the standard city bus currently deployed in the network as depicted in Figure 4.7. According to 

information provided by Connexxion, two other bus types can be used for the operation of the 

concession as well. However, due to the marginal differences in seating and standing capacity values 

compared to the standard bus type which might lead to negligible small differences in the performance 

of potential solutions, two other types of vehicles providing that exercise more profound trade-offs 

regarding vehicle capacities and operational costs were selected. A minibus having about half of the 

seating capacity of the standard bus and fewer standing places relative to the number of seats was 

selected as a cheaper option with lower capacity. In contrast to that, a larger articulated bus (MAN 

Truck & Bus AG, 2017) was chosen as a more expensive option with a high standing capacity which is 

about double that of the standard bus. 

 

Table 4.8: Vehicle-specific characteristics and operational cost components for the three different vehicle types considered. 

 Minibus Normal bus Articulated bus  

# seats 20 42 53 

Total capacity [pax] 35 83 158 

Length [m] 8 12 18 

# doors front/rear 1/1 1/1 1/2 

Boarding coeff. [s] 2.5 2 2 

Alighting coeff. [s] 1.5 1 0.5 

Time-base costs Cp 

[EUR/veh.h] 
48 48 48 

Fixed costs CFc 

[EUR/veh.h] 
4.46 4.91 6.62 

Distance-based costs 

CDc [EUR/veh.km]  
0.37 0.58 0.93 

Cost factor per veh.km 

βc  
0.93 1.0 1.13 
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Depending on the number of doors and the boarding regime, coefficients for the calculation of the 

passenger service time (according to equation (4.5)) have been chosen in accordance with common 

values used in the literature (Weidmann, 1994). It was assumed that boarding solely takes place at the 

front door whereas all rear doors can be used by alighting passengers only. In case of multiple rear 

doors (articulated bus), the marginal time per alighting passenger decreases because more passengers 

can simultaneously alight from the vehicle.  

The operational costs consist of three components. Time-based costs 𝐶𝑃 include salaries for personnel 

on the bus and administration costs. This cost component is independent of the type of vehicle used. 

Fixed costs 𝐶𝐹 include insurance costs, vehicle taxes, supplement for carriage reserves, depreciation of 

investment costs etc. and are therefore dependent on the type of vehicle. Distance-based costs 𝐶𝐷 

include the cost of fuel, lubricating oil, tires, spare parts etc. and are also specified per type of bus. The 

cost values for standard and articulated buses are based on Swedish recommendations for cost/benefit 

analyses (Trafikverket, 2016) (assumption 10 SEK = 1 EUR) and the values for minibuses are based on a 

German study on the determination of operational costs for bus services (Frank et al., 2008). Note that 

costs related to the fuel consumption while standing still with the engine running as originally 

considered in the model are very small and already included in the distance-based costs and therefore 

not taken into account separately. Moreover, the factor 𝛼 which is used to consider indirect costs in 

the original model is not used either since indirect costs such as administration costs are already 

included in the cost factors mentioned. The total operational costs 𝑂𝐶 can eventually be computed as: 

𝑂𝐶 =   𝐶𝐷 + 𝐶𝑃 + 𝐶𝐹 =  ∑ ∑ 𝐿𝑙 ∙ 𝑓𝑙 ∙ 𝐶𝐷𝑐 ∙ 𝛿𝑙,𝑐

𝑐∈𝐶𝑙∈𝐿

+ 𝐶𝑝 ∙ ∑ ⌈
𝑇𝑙

𝐻𝑙
⌉

𝑙∈𝐿

+ ∑ ∑ ⌈
𝑇𝑙

𝐻𝑙
⌉ ∙ 𝐶𝐹𝑐 ∙ 𝛿𝑙,𝑐         (4.8) 

𝑐∈𝐶𝑙∈𝐿

 

Where 𝐿𝑙 is the length of line 𝑙 in km, 𝑓𝑙 is the determined frequency on line 𝑙 and 𝛿𝑙,𝑐 is a binary  variable 

indicating if bus capacity 𝑐 was assigned to line 𝑙. 𝑇𝑙 is the minimum cycle time of line 𝑙 and 𝐻𝑙 the 

determined headway. Note that this formulation allows considering both a line in two directions as well 

as each direction separately. In the former case, values for 𝐿𝑙 and 𝑇𝑙 are just summed over the two 

directions. The set of all lines and vehicle capacities is denoted as 𝐿 and 𝐶, respectively. 

Total costs to be borne by the passengers (or users) of the public transport service 𝑈𝐶 are computed 

using the value of in-vehicle time 𝑉𝑂𝑇 and the (total) generalized travel time 𝐺𝑇𝑇. 

𝑈𝐶 = 𝑉𝑂𝑇 ∙ 𝐺𝑇𝑇 

= 𝑉𝑂𝑇 ∙ [𝜃𝑤,𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑊𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝜃𝑤,𝑑𝑒𝑛𝑖𝑒𝑑𝑇𝑊𝑇𝑑𝑒𝑛𝑖𝑒𝑑 + 𝜃𝐼𝑉𝑇𝑇𝐼𝑉𝑇 + 𝜃𝑡𝑇𝑇 +  𝜃𝑤𝑙𝑘𝑇𝑊𝐿𝐾𝑇]        (4.9) 

Where 𝑇𝑊𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑇𝑊𝑇𝑑𝑒𝑛𝑖𝑒𝑑 are the total waiting times for initial waiting and due to denied 

boarding; 𝑇𝐼𝑉𝑇 is the total nominal in-vehicle time, 𝑇𝑇 is the total number of transfers and 𝑇𝑊𝐿𝐾𝑇 is 

the total walking time. The factors 𝜃 represent the relative weights that each of the travel time 

components contributes to the generalized travel time, expressed as multipliers of the nominal in-

vehicle time. Waiting time for the first desired boarding, either at the first stop or when interchanging, 

and walking time spent for access, egress and transfers are valued as  𝜃𝑤,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝜃𝑤𝑙𝑘 = 2 (Wardman, 

2004). Each transfer is valued as a fixed penalty equal to 5 minutes of in-vehicle time, thus  𝜃𝑡 = 5 

(Balcombe et al., 2004 ). Waiting time due to denied boarding probably imposes a higher disutility for 

passengers than normal waiting times since they are unpredictable and cause delays. Hence, it can be 

considered equal to the value of delay time for which a multiplier of 3.5 was estimated by Börjesson et 

al. (2012). Thus, the weight associated with waiting time due to denied boarding becomes 
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𝜃𝑤,𝑑𝑒𝑛𝑖𝑒𝑑 = 2 ∙ 3.5 = 7. Note that the values specified for the utility functions of the route choice 

model in BusMezzo are consistent with the weights used for evaluating user travel costs. 

Crowding onboard a vehicle which imposes a disutility in form of reduced comfort to passengers is 

taken into account by multiplying the nominal in-vehicle time experienced by each passenger with a 

crowding factor that depends on the level of crowding and also considers whether the passenger is 

seated or standing. A meta-study by Wardman and Wehlan (2011) proposes in-vehicle time multipliers 

for seating and standing passengers which depend on the load factor in terms of seat occupancy levels. 

Figure 4.13 shows the multipliers for different load factors. For seated passengers, multipliers range 

from 0.95 at 50% occupancy and less to 1.71 at 200% (i.e. vehicle filled at full capacity). Standing 

passengers are considered separately once all seats are taken (at an occupancy level larger than 100%) 

with multipliers ranging from 1.78 to 2.69. Note that the in-vehicle multiplier increases non-linearly 

with the load factor and the relative increase is faster for standing than for seated passengers: The 

perceived in-vehicle time is always larger for standing passengers as comfort is generally lower when 

standing onboard. Note that the multiplier 𝜃𝐼𝑉𝑇 can be seen as an aggregated weight summarizing the 

total level of comfort of all passengers overall all vehicle rides during the considered period. 

The value of time 𝑉𝑂𝑇 can be determined for different modes and travel purposes and is dependent 

on the location as well since economic aspects such as average income levels influence the value of 

time. In this case study, the value of time determined for the modes bus, tram and metro and averaged 

over all travel purposes in The Netherlands is used. This value currently equals 6.75 EUR per hour 

(Kouwenhoven et al., 2014). 

For the scenarios only taking into account passenger benefits by minimizing user-related costs (UC), a 

budget constraint needs to be introduced. Therefore, an operational budget in terms of total vehicle 

kilometers provided is defined. When multiple types of vehicles are considered (UC_VEHCAP scenarios), 

the operational costs in terms of total vehicle kilometers need to be adjusted according to the 

differences in costs components per type of vehicle. That is, the amount of vehicle kilometers is 

computed using costs factors per vehicle type relative to the standard normal bus size. These factors 

are computed by relating all operational cost components to the unit of one vehicle kilometer and 

finally adding them up. In order to convert cost components related to the time unit vehicle hour to 

the distance based formulation, an average vehicle speed needs to be assumed. In accordance with 

literature on bus operations (Frank et al., 2008), this speed value was set to 20 km/h. For the time-

based costs Cp,, for instance, this translation becomes: 48 EUR/veh.h / 20 km/h = 2.40 EUR/veh.km. The 

final cost values obtained per vehicle kilometer are set in relation to the standard bus. These factors 𝛽𝑐 

Figure 4.13: In-vehicle crowding multipliers. 
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are listed in Table 4.8. The operational costs per vehicle kilometer increase for instance by 13% for the 

articulated bus compared to the standard bus. The total operational costs in terms of vehicle kilometers 

equivalent per hour can be computed as: 

𝑇𝑉𝐾𝑀 = ∑ ∑ 𝐿𝑙 ∙ 𝑓𝑙 ∙ 𝛽𝑐 ∙ 𝛿𝑙,𝑐

𝑐∈𝐶𝑙∈𝐿

                                                       (4.10) 

A maximum amount of total vehicle kilometers is needed as a budget constraint in order to define the 

feasibility of potential solutions. This budget limit was set to 907.28 vehicle kilometers which 

corresponds to the current supply offered in the morning hour between 07:00-08:00 AM on working 

days (Connexxion, 2016). 

The developed frequency and vehicle capacity determination model using the simulated annealing 

algorithm was run for all 12 scenarios depicted in Table 4.7. Due to the different degrees of freedom 

regarding the decision variables, the number of potential and feasible solutions is varies among 

scenarios. Table 4.9 shows some properties of the different TC scenarios relevant for the specification 

of the SA search algorithm. The number of potential solutions is highest in the ASYM scenarios since 

the determination of frequencies is performed for 11 individual lines and the number of combination 

increases exponentially with the number of lines. For the VEHCAP scenarios, the solution space is 

smaller since only 6 lines are considered (with symmetric frequency setting). Note that the number of 

feasible solutions is smaller in the UC scenarios since feasibility constraints in terms of the budget limit 

become binding. For the SYM scenario, the number of feasible solutions is reduced by about 96% (4.802 

feasible solutions) compared to the number of all potential solutions. Note that due to the large number 

of potential solutions in the ASYM and VEHCAP scenarios, it is very costly in terms of computation time 

and internal memory to determine the exact number of feasible solutions for the UC scenarios using 

conventional computers. The discrete set of potential headways was chosen as: 5, 6, 7.5, 10, 12, 15 and 

20 minutes. 

The total runtime of the search algorithm can be approximated by the product of 4 factors: the number 

of days (#𝑑𝑎𝑦𝑠) needed to simulate the day-to-day adaption of passengers, the number of replications 

(#𝑟𝑒𝑝𝑙) needed in order to obtain statistically sound results from the stochastic simulation, the number 

of iterations of the SA algorithm (i.e. the total number of solution evaluations, 𝑖𝑡𝑒𝑟𝑆𝐴) and the runtime 

of one simulation instance in BusMezzo (𝑅𝑇𝐵𝑀). 

𝑅𝑇 = #𝑑𝑎𝑦𝑠 ∙ #𝑟𝑒𝑝𝑙 ∙ 𝑅𝑇𝐵𝑀 ∙ 𝑖𝑡𝑒𝑟𝑆𝐴                                                    (4.11) 

Table 4.9: Average total runtimes of the SA algorithm for the different TC scenarios considered. 

Scenario Number of potential 
solutions 

Average number of SA 
algorithm iterations 

Average total runtime 
[min] 

SYM 1.18*105 80 40  

ASYM 1.98*109 500 240  

VEHCAP 8.58*107 300 150  

 

The number of replications needed in order to obtain statistically sound average results from the 

simulation outputs was set to 10 yielding a maximum allowable error of 1% of the average objective 

function value (using equation 3.1). The number of days needed in BusMezzo to simulate the day-to-

day learning of passengers is dependent on a parameter which determines the degree of convergence 

at which the day-to-day loop is terminated. Setting this parameter to 0.2 results in an average of 10 

days per simulation run. The number of iterations of the SA algorithm are finally dependent on the 
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number of iterations per temperature step and the termination criterion which are both external 

parameters to be specified by the user. With respect to this, it is important to choose appropriate 

parameters to make the runtime of the algorithm proportional to the size of the solution space since 

more potential solutions require a more intensive search. The number of iterations per temperature 

step were chosen based on the practical experience gained in the previous application in which the 

number of feasible solutions was around 3.3*105 and thus of a similar magnitude as in the current SYM 

scenarios. For the other scenarios, the parameter was increased in order to account for a larger solution 

space, yet still ensuring that overall running time stays within reasonable ranges of a maximum of a few 

hours. The termination criterion was determined by the number of possible neighbor solutions given 

the decision variable setting of a certain scenario, thus ensuring that the found solution is a local 

optimum (as described in Section 3.4.2). The initial temperature value was estimated using Equation 

(3.11).  
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4.2.4 Results 

This section presents and discusses the results obtained by the model for the various scenarios. First, 

the found solutions in terms of supply are presented and contrasted. Then, the relative qualities and 

performances of the found values with respect to the objectives are presented and analyzed. Finally, 

resulting passenger flows through the network in different scenarios in the morning peak and the 

implications on capacity utilization is presented and discussed. 

 

4.2.4.1 Decision variable values 

Table 4.10 lists the solutions in terms of headways and vehicle types per line found by the SA algorithm 

for the 12 different scenarios including the base cases. Moreover, the total amount of vehicle 

kilometers is included as well which quantifies the total intensity of the service.  

 

In the UC scenarios this value is approximately equal for all scenarios being close to the budget limit. 

Note that the value associated with the VEHCAP scenarios is the real value in terms of vehicle kilometers 

provided and not adjusted by the cost factors yet. If adjusted, the equivalent value is close to the values 

of the other two scenarios as well. The model finds thus solutions which all (nearly) fully exploit the 

budget when maximizing the benefits of passengers by allocating the amount of available resources. 

The solutions in terms of frequency settings are significantly different between the two peak periods 

considered. Especially in the ASYM scenarios, differences resulting from the directions in passenger 

flows are clearly present and thus confirm the expectations formulated in the previous section. In 

general, results obtained for the UC scenarios suggest that in the evening peak supply should only be 

increased on lines 391, 392 and 394 whereas in the morning peak supply increments and decrements 

should be more balanced over all lines of the network. 

 

period

Scenario AM_UC_SYM AM_UC_ASYM AM_TC_SYM AM_TC_ASYM

Line headway [min] vehicle type headway [min] headway [min] headway [min] vehicle type headway [min] headway [min] headway [min] vehicle type

391a 12 10

391b 7.5 12

392a 10 15

392b 12 10

394a 15 12

394b 20 10

395a1 20 20

395b1 12 15

395a2 20 20

395b2 15 15

398b 20 normal 12 15 15 normal 20 15 15 mini

total veh kms 903.5 905.1 779.1 898.3

period

Scenario PM_UC_SYM PM_UC_ASYM PM_TC_SYM PM_TC_ASYM

Line headway [min] vehicle type headway [min] headway [min] headway [min] vehicle type headway [min] headway [min] headway [min] vehicle type

391a 10 15

391b 12 15

392a 7.5 10 7.5

392b 15 12 15

394a 12 15

394b 15 15

395a1 15 15

395b1 15 20

395a2 15 15

395b2 20 15

398a 20 normal 20 15 15 mini 20 20 10 mini

total veh kms 907.0 899.4 737.0 814.3

PM_BASE PM_UC_VEHCAP PM_TC_VEHCAP

753.5 920.4 979.1

830.3 927.5 869.9

15 normal

15 normal

Evening peak

AM_BASE AM_UC_VEHCAP AM_TC_VEHCAP

15

Morning peak

normal

15

10

10

15

15

15 normal

15 normal

10

12

15

20

12

normal

15 normal

15 normal

normal

15 normal

15 normal

normal

mini

normal

mini

mini

10

10

12

12

20

12

10

20

20

20

large

mini

mini

mini

12

10

12

15

15

12

12

10

15

15

15

10

20

20

20

large

mini

mini

mini

mini

normal

mini

mini

normal

normal

12

10

15

20

20

Table 4.10: Solutions found by the SA algorithm for the different scenarios in both peak hours considered. 
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In addition to the tabular description of the found solutions, Table 4.11 and Table 4.12 show a spatial 

visualization of the supply setting found by the model for the TC scenarios. The thickness of each link is 

proportional to the joint frequency (over all lines) and the color indicates the total link capacity in terms 

of maximum numbers of passengers transportable per hour. It is clearly observable that in the evening 

peak, the resulting solutions are less different from the current supply situation than in the morning 

peak. In the morning peak, overall network capacity is highest for the ASYM solution which significantly 

differs from the current supply setting. It is, moreover, remarkable that the link capacities significantly 

decrease for the VEHCAP scenario in both periods. The employment of minibuses seems to be a 

beneficial option on some lines and, although line frequencies are increased, the reduction in vehicle 

capacity causes overall supply capacity to decrease.  
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Table 4.11: Spatial visualization of the determined supply for different scenarios during the morning peak. 

AM_BASE 

 
AM_TC_SYM 

AM_TC_ASYM 

 

AM_TC_VEHCAP 

 

 

Link capacity [pax/h] : 

Link frequency [veh/h] :  
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Table 4.12: Spatial visualization of the determined supply for different scenarios during the evening peak. 

 

PM_BASE 

 

PM_TC_SYM 

PM_TC_ASYM PM_TC_VEHCAP 

 

 Link capacity [pax/h] : 

Link frequency [veh/h] :  
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4.2.4.2 Objective function values 

This sections elaborates on the performance of the found solutions with respect to the objective 

function value. The performance of the solutions found for the different scenarios are presented and 

compared to both the current situation as well as to the other scenarios.  

Figure 4.14 shows the quality of the found solutions in terms of average generalized travel time per 

passenger for the morning and the evening peaks as well as the total vehicle kilometers equivalent 

needed to operate the found solution. The budget limit is almost reached in all solutions meaning that 

the full potential is exploited to maximize passenger benefits. Waiting times resulting from the 

determined supply significantly decrease in both peak periods whereas perceived in-vehicle times only 

slightly change. Note that although walking time is considered in the model its share as of the total 

generalized travel time is very low (about 0.2%) and thus not relevant. The number of transfers does 

not seem to be affected by the change in supply as this travel cost component remains at a similar level 

in all scenarios.  

The total costs resulting from the solutions found in the TC scenarios are depicted in Figure 4.15. Similar 

to the UC scenarios, transfer costs are not affected by the supply settings and costs associated with 

walking can be neglected. In the morning peak, the determined supplies lead to a reduction in both 

waiting and in-vehicle times while operational costs increase for all scenarios. In the evening, this trend 

is less prevalent as increases and decreases in user-related and operational costs are traded-off all the 

scenarios investigated.  

Figure 4.14: Performance of the found solutions in terms of average generalized travel time per passenger and supply in 
terms of total vehicle kilometers (UC scenarios). 

Figure 4.15: Performance of the found solutions in terms of total system costs (TC scenarios). 
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An overview of all solutions with respect to user-related and operational costs is shown in Figure 4.16. 

This visualization shows the position of each solution within a two-dimensional space. All points lying 

on the dashed line traversing the point marking the base scenarios have equal total costs. Moving up 

(to the left) on these lines implies decreasing passenger-related costs while at the same time increasing 

operational costs by the same amount. It also implies that all points lying to the right of the dashed line 

will have higher total costs while those on the left side (towards the south-west corner) will have lower 

total costs. It becomes evident that total system costs are currently higher in the morning than in the 

evening peak. This difference can mainly be attributed to the difference in total passenger-related costs 

as these are about 14% higher in the morning compared to the evening, although the relative difference 

in the average total number of passengers is only about 8%. Since the overall amount of supply in terms 

of total vehicle kilometers provided in the existing service provision is less in the morning than in the 

evening, operational costs are also higher in the latter period.  

With respect to the multi-objective optimization problem of minimizing total costs, a solution is called 

non-dominated or Pareto optimal if neither user-related nor operational costs can be decreased 

without increasing the respective other component of the total costs. Hence, all solutions found for the 

TC scenarios in the respective periods are non-dominated since when these are compared a decrease 

in operational costs always implies an increase in user-related costs and vice-versa. The solution 

obtained for the scenario AM_UC_VEHCAP, for instance, requires more operational cost but causes 

lower user-related costs than the respective SYM scenario. In contrast to that, one can also observe the 

opposite case as the solution obtained for the scenario PM_UC_SYM is clearly dominated by the two 

other solutions for the VEHCAP and ASYM scenarios which result in both lower passenger-related and 

operational costs.  

Overall, it can be concluded from Figure 4.16 that the relative position of the current supply provision 

in the evening peak in terms of user and operational costs is closer to the solutions obtained for the TC 

scenarios than those for the UC scenarios. This means that the current supply provided in the evening 

is close to system optimal conditions, yet user benefits can still be yielded when minimizing passenger-

related costs in the UC scenarios. In contrast to that, solutions obtained for all scenarios in the morning 

Figure 4.16: Overview of the performance of all solutions found for the different scenarios in terms of 
associated passenger-related and operational costs. 
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peak are positioned further away towards the north-west from the current situation, thus reducing 

passenger-related costs while increasing operational costs. This indicates a clear potential of 

improvement in terms of user benefits both when optimizing for total and passenger-related costs only.  

Table 4.13 shows the relative change of cost and time components compared to the base case for the 

respective periods and scenarios. Note that the performance indicators were determined as averages 

resulting from multiple simulation runs. Using a student’s t-test, it can be determined whether the 

mean values of two performance indicators obtained from a sample of output data records produced 

by BusMezzo are statistically significantly different from each other. The fields marked grey in Table 

4.13 are statistically insignificant (at a level of confidence of 95%), which means that the depicted mean 

value of these indicators is not significantly different from the value of the current situation in the 

respective period. Note that since operational costs are solely deterministically approximated based on 

the static supply setting and thus independent from stochastic outputs produced by the simulation 

model, the relative difference (if present) is always statistically significant. 

In the UC scenarios, operational costs are increased by approximately the same share independently of 

the assumptions on the decision variables. The relative increase amounts to about 20% in the morning 

and 9% in the evening. Supply is increased up to the same level of operational costs (about 2500 EUR/h) 

corresponding to the budget limit set by the maximum vehicle kilometers equivalent value which can 

be interpreted as a vertical line the UC-OC-space (Figure 4.16). Although a similar level of operational 

costs is reached for all scenarios, the relative improvement in terms of passenger-related costs is 

significantly different among the scenarios. Both in the morning and in the evening, the VEHCAP 

solutions perform best with respect to user benefits. Since in this case study, the deployment of smaller 

types of vehicles can decrease the average operational costs per bus compared to the current situation 

and the other scenarios, a larger number of busses can be provided which leads to more passenger 

benefits (i.e. lower waiting times) compared to the other solutions at a similar level of operational 

expenses. Solutions obtained by the ASYM scenarios perform better than the SYM options since supply 

can better match the asymmetric utilization of the network during peak hours. The supply option 

obtained from the SYM-scenarios leads to the least user benefits. In all scenarios, most of the benefits 

can be attributed to savings in waiting time which amount up to 18.5% and 10.6% relative decrease in 

the morning and the evening peak respectively. In the morning, reductions in the perceived in-vehicle 

time contribute to the benefits as well by an equal amount of about 1.8% for all scenarios. In contrast 

to that, in-vehicle times increase by 1.7% in the evening peak for the SYM solution and do not change 

significantly for the other options found. When comparing the found solutions with each other, neither 

in the morning nor in the evening resulting in-vehicle times differ from each other. In the morning peak, 

the found solutions for ASYM and VEHCAP can be regarded as equivalent with respect to passenger 

benefits. 

 

demand

objective

scenario SYM ASYM VEHCAP SYM ASYM VEHCAP SYM ASYM VEHCAP SYM ASYM VEHCAP

Total cost 0.9% -0.1% -0.4% -1.6% -0.5% -1.1% 2.2% 0.8% 0.1% 0.3% -0.3% 0.4%

User cost -7.3% -9.0% -9.2% -4.1% -9.5% -12.1% -1.8% -3.2% -4.6% 6.2% 0.6% -0.8%

Operat. Cost 20.1% 20.7% 20.2% 4.2% 20.3% 24.6% 9.4% 8.2% 8.9% -10.7% -2.0% 2.5%

waiting time -14.5% -17.7% -18.5% -7.3% -18.1% -24.0% -7.2% -9.1% -10.6% 9.3% 0.6% -4.0%

in-vehicle time -1.9% -1.8% -1.7% -1.9% -2.5% -2.3% 1.7% 1.1% -0.3% 4.0% 0.2% 1.1%

Total cost minimization

Morning peak

Total cost minimization

Evening peak

User cost minimizationUser cost minimization

Table 4.13: Relative change of cost and time components compared to the base case for both peak periods considered. 
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The solutions obtained for the TC scenarios significantly differ among the two periods regarding their 

performances relative to the respective base cases. In the morning peak, passenger-related costs can 

be reduced up to about 12% whereas in the evening peak no passenger benefits can be yielded. As with 

the UC scenarios, most of the savings in user costs can be attributed to reductions in waiting times, yet 

in-vehicle times can also be slightly reduced by up to 2.5%. In contrast to that, the solution found by 

the SYM scenario in the evening peak decreases passenger benefits while operational costs are 

decreased. A consistent feature that can be observed in all solutions and both periods is that user-

related costs are always lowest for the VEHCAP scenario and highest for the SYM solution. As a 

consequence, the inverse relation holds for operational costs which increase with increasing passenger 

benefits.  

Total costs can only be significantly reduced in the morning peak in the scenarios SYM and VEHCAP. In 

the evening, none of the solutions found can significantly reduce total costs. Figure 4.17 shows the total 

user benefits in terms of monetary savings per hour in relation to the additional operational expenses 

needed to generate these benefits in the morning peak. As already mentioned, these cost values are 

highest for the VEHCAP scenario. The benefit-cost-ratio is slightly higher for the VEHCAP than for the 

ASYM scenario which means that the marginal decrease in user costs per unit of additional operational 

expenses is higher when determining both vehicle capacities and frequencies simultaneously than just 

determining frequencies asymmetrically per line using the same type of vehicle. Interestingly, the 

benefit-cost-ratio is highest for the SYM scenario which suggests that this solution is most efficient in 

terms of marginal cost savings per additional operational expense. Note that in the evening peak, no 

significant user benefits can be generated for the ASYM and VEHCAP scenarios and the operational cost 

savings that result from the solution obtained from the SYM scenario do not exceed the extra costs to 

be borne by the passengers. Hence, none of the solutions found by the model for the TC scenarios in 

the evening peak can beneficially improve the current situation. Yet, solutions turned out to be 

beneficial during this period as well if only passenger costs are minimized subject to an available budget. 

All in all, it can be stated that the obtained solutions and results of the model are in line with the 

expectations formulated in Section 4.2.3. It could be shown that using small vehicles can decrease the 

average operational costs per deployed vehicle which allows to increase overall network capacity and 

thus reduce passenger-related costs. Moreover, it proved clearly evident the relaxation of constraints 

related to the decision variable frequency in terms of independence on the line’s direction leads to a 

more efficient allocation of resources. That is, lower user costs are generated at the same amount of 

operational expenses than if frequencies were set equally in both directions of a line. The fact that the 

potential of improvement of the current supply provisions is greater in the morning than in the evening 

peak is also in line with previous expectations. Notwithstanding, it is remarkable that the model is able 

to find solutions at similar total cost levels compared to the current supply provision in the evening. 

This emphasizes the quality of the current service provision from a total cost point of view and also 

proves that the model can produce reasonable and realistic results.  
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Figure 4.17: Total user cost savings vs. additional operational expenses found for the TC 
scenarios in the morning peak. 
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4.2.4.3 Passenger flows: morning peak 

This section analyzes the different results obtained for the scenarios minimizing total costs in the 

morning peak in terms of passenger flows through the network and supply utilization on individual lines. 

The latter attribute is investigated using the average seat occupancy levels as an indicator. 

Figure 4.18 shows a visualization of the average total passenger flows on the network during the 

morning peak hour for the three scenarios and the current situation. The thickness of a link is 

proportional to the magnitude of flow between two successive stops. Note that the flows are the results 

of a dynamic passenger assignment averaged over multiple simulation runs. Different colors are 

indicating the average level of seat occupancy which is computed by the ratio of the load to the total 

hourly seat capacity of a line segment which is the product of the number of seats of the employed 

vehicle and the line’s frequency. It can be clearly observed that overall flow patterns do not change 

significantly among the scenarios and thus passengers’ route choices do not change in consequence of 

the found supply settings. However, since supply is different in each scenario the resulting levels of 

vehicle utilization do significantly differ. The supply setting resulting from the SYM and ASYM scenarios 

significantly reduces the average occupancy of vehicles since total supply is increased compared to the 

base case without changing the vehicles’ capacities. The VEHCAP supply setting, however, significantly 

increases vehicle utilization on some line segments since link capacities are reduced due to the 

deployment of smaller vehicles. These observation are in line with and directly resulting from the 

network capacities presented earlier in Table 4.11. 

A more comprehensive visualization of the results concerning passenger flows is given in Table 4.14 

which shows capacity utilization for each scenario at the individual line level. Overall, these results 

indicate that occupancy levels are decreasing on all lines in the ASYM and on some lines in the SYM and 

VEHCAP scenarios. This is in line with the fact that the relative decrease of the total perceived in-vehicle 

time is also the largest among all scenarios. On line 391, current seat occupancy levels of around 80% 

on a large part of the line in both directions can be significantly reduced by the supply setting found for 

all three scenarios. Line 392 shows current seat utilizations of nearly 100% on a small part in one 

direction which can be significantly reduced by the SYM and ASYM scenarios. Supply proposed by the 

VEHCAP scenario, however, is lower in terms of overall seat capacity than the current situation. 

Therefore, occupancy levels increase up to 130% on a small part. A similar result can be observed on 

line 395 and 398 on which also smaller buses are used in the VEHCAP solution. Results of the SYM 

scenario will increase seat occupancy on some lines (394, 395 and 398) as well since supply in terms of 

frequency is reduced from 4 to 3 vehicles per hour on these lines.  

It is moreover remarkable that, although crowding levels will increase on some lines for the SYM and 

VEHCAP solutions, overall in-vehicle times do still decrease compared to the current situation. Note 

that nominal in-vehicle times do not change significantly in any of the new supply settings found. Hence, 

all savings regarding in-vehicle times can be attributed to reductions in crowding levels. Since crowding 

multipliers start to increase the nominal in-vehicle times at occupancy levels of about 70% and higher 

(see Figure 4.13), only changes in vehicle occupancies on lines 391 and 392 contribute to the savings. 

Especially the benefits on line 391 seem to be decisive since crowding levels are significantly reduced 

for all scenarios and will affect a relatively large number of passengers. 
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Figure 4.18: Total passenger flows on the network during the morning peak hour for different supply settings. 
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Table 4.14: Average total loads and seat occupancy levels for all TC scenarios and lines in the morning peak hour. 

Line 391 

Average seat occupancy levels [Passenger load per hour/(#seats * line frequency)] 

AM_BASE AM_TC_SYM AM_TC_ASYM AM_TC_VEHCAP 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Line 392 

Average seat occupancy levels [Passenger load per hour/(#seats * line frequency)] 

AM_BASE AM_TC_SYM AM_TC_ASYM AM_TC_VEHCAP 
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Line 394 

Average seat occupancy levels [Passenger load per hour/(#seats * line frequency)] 

AM_BASE AM_TC_SYM AM_TC_ASYM AM_TC_VEHCAP 

 

 

 

 

 

 

 

 

 

 

  

 

 

Line 395 

Average seat occupancy levels [Passenger load per hour/(#seats * line frequency)] 

AM_BASE AM_TC_SYM AM_TC_ASYM AM_TC_VEHCAP 
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Line 395 shortened 

Average seat occupancy levels [Passenger load per hour/(#seats * line frequency)] 

AM_BASE AM_TC_SYM AM_TC_ASYM AM_TC_VEHCAP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line 398 

Average seat occupancy levels [Passenger load per hour/(#seats * line frequency)] 

AM_BASE AM_TC_SYM AM_TC_ASYM AM_TC_VEHCAP 

 

 

 

 

 

 

 

 

 

 

   



74 
 

5 CONCLUSIONS 

This study presented the formulation and application of a model which simultaneously determines line 

frequencies and vehicle capacities in a public transport network by minimizing total costs in terms of 

operational costs and passenger-related generalized travel costs. The latter ones are computed by a 

dynamic public transport assignment model which simulates the individual movements of passengers 

and vehicles in the network using an agent-based approach. Since this model is able to simulate the 

dynamic interaction of demand and supply, effects related to crowding and service reliability can be 

fully captured by the model. A search algorithm based on the method of simulated annealing was 

developed to iteratively select potential feasible solutions based on their performance regarding the 

objective function and finally finds a well-performing supply setting.  

This chapter presents the conclusions of the present study and is structured as follows: Section 5.1 

comments on the main scientific contributions of this research, Section 5.2 presents the main findings 

and gives answers to the research questions which lead to the practical implications and 

recommendations discussed in Section 5.3. The chapter closes with an examination of the limitations 

and shortcomings of the developed model and further proposes some aspects for future research 

projects and model enhancements in Section 5.4. 

 

5.1 Scientific contribution 

The main scientific contribution of this study is the use of a dynamic assignment model for the tactical 

planning purposes of frequency and vehicle capacity determination. Recent existing studies within this 

domain of research use conventional static assignment models which determine passenger flows based 

on average demand and supply conditions. Hence, these models are not able to capture the dynamic 

interaction between demand and supply which may strongly influence overall system performance.  

The dynamic and stochastic simulation model used in this study for the assessment of the performance 

of a supply setting can fully capture the three congestion effects in public transport networks, those 

are (Cats et al., 2016): 

 1) Deteriorating comfort onboard a crowded vehicle 

 2) Denied boarding in case of insufficient vehicle capacity 

 3) Service headway fluctuations resulting from riding and dwell time variations 

The first effect is included in the assessment of passenger benefits as the perceived in-vehicle time 

computed by vehicle-load-dependent crowding multipliers. The second effect imposes an additional 

disutility to passengers in form of an extra waiting time which is taken into account separately in the 

generalized cost function. The third effect results indirectly from the dynamic interaction between 

demand and supply since dwell times at stops are dependent on boarding and alighting passenger flows 

as well as vehicle occupancy levels and vehicle riding times between stops are modelled stochastically. 

The mutual relation between passenger flows, dwell times and headways between successive vehicles 

results in a positive feedback loop that magnifies variations in headways and can thus cause delays and 

a reduction in service reliability. In order to capture the implications of all these effects on passengers’ 

route choices, an iterative network loading is performed in the simulation that accounts for the day-to-
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day learning of passengers who may adjust their routes based on experienced service reliability 

attributes in terms of waiting times and on-board crowding levels. Using this feature results in network-

wide steady-state conditions which can be regarded as an equivalent to the user equilibrium computed 

in conventional static assignment models. 

A second important contribution of the present study is the simultaneous determination of line 

frequencies and vehicle capacities with one supply optimization model. This contrasts with most of the 

reviewed models for tactical public transport supply optimization which determine either one of the 

two decision variables and consider the other one as an exogenous input (vehicle capacity) or a direct 

result of the decision variable value (frequency resulting from determined vehicle capacity). Only two 

recent studies in the domain of bus (Dell’Olio et al., 2012) and rail transport (Canca et al., 2016) 

performed a simultaneous approach (see Section 2.2.2.2). Unlike these two studies, the formulation of 

the present model allows to simultaneously determine both decision variables, or consider either of 

them as an exogenous input. This feature makes the model even more suitable for practical 

applications. 

Finally, it is worth mentioning that the metaheuristic search method of simulated annealing applied in 

this study has insofar not been used by any of the reviewed models on public transport supply 

optimization. Although SA algorithms were applied in models dealing with the strategic design of public 

transport networks (Zhao & Zeng, 2008; Fan & Machemehl, 2006), the use of other metaheuristics such 

as Genetic Algorithms (GAs) or Tabu Search seems to be more common for the tactical decision level. 

Hence, the present study offers an alternative method to those commonly used in this domain. An 

advantage of SA is the simple and easily understandable structure of the algorithm itself which makes 

it convenient to implement and adapt to any kind of problem at hand. 

 

5.2 Main findings 

This section concludes on the main findings gained during the development and application of the 

proposed model to the case studies. It provides answers to the research questions stated in Section 

1.2. 

The main objective of this study was the formulation of a model as a tactical decision tool for frequency 

and vehicle capacity determination which accounts for the dynamic behavior of demand and supply 

components in public transport networks and considers the interests of both passengers and the 

operator. The latter aspect was taken into account by formulating the objective function as the total 

costs of the system in terms of user and operator costs. Since these two components are inherently in 

conflict, a trade-off is required for which well-balanced solutions can be found using a multi-objective 

optimization approach. As parts of objective function are computed based on stochastic simulation 

outputs no closed analytical formulation describing the mathematical relation between the decision 

variables and the objective function value is available and the topology of the solution space is also 

unknown. Hence, dedicated standard methods for finding the optimum of a given objective function 

such as gradient-based optimization methods are not suitable for this specific problem. Finding a 

solution by merely evaluating all possible combinations of decision variable values is not feasible in 

many real-sized instances of the problem since the number of solutions increases exponentially with 

the size of the problem and thus increases computational time. Therefore, an intelligent search 

algorithm is needed that systematically explores the solution space by solely using the objective 

function value as an input. Simulated annealing was chosen as a suitable metaheuristic search algorithm 
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because of its applicability to diverse optimization problems, the absence of requirements on the type 

of problems and the topology of the solution space as well as the ability to avoid getting trapped in 

local optima and thereby increasing the probability of finding solutions within globally optimal regions. 

A discrete formulation of the problem’s decision variables as a binary matrix enables a convenient and 

easily traceable generation of sets of neighboring solutions. Since the feasibility of the solutions does 

not depend on simulation outputs, infeasible options can be excluded from the evaluation upfront and 

thus reduce the size of the solution space as well as computation time. 

The second objective of this thesis was to test and show the practical applicability and benefits of the 

proposed model. Therefore, the first case study on a hypothetical public transport network aimed at 

exploring the influence of different input parameters of the developed model on the objective function 

value and decision variables of obtained solutions. Hence, this numerical experiment aimed at gaining 

insight into the sensitivity of model outputs towards certain input parameters.  

In a first test, different initial solutions were provided to both the simulated annealing (SA) and a simple 

local search (LS) algorithm in order to test the effect of different starting solutions as stated in the 

research sub-question in Section 1.2. Solutions found by SA in terms of both decision variables and 

objective function values are similar and thus independent from the initial solution whereas solutions 

found by LS indicate a clear dependence on the initial solution and perform worse than the solutions 

obtained by SA. These results indicate the presence of multiple locally optimal solutions in the specific 

problem and thus confirm and justify the suitability and advantages of the application of the SA 

methodology. 

In order to test the effect of different model parameters on the final solution obtained, two parameters 

were selected that relate to the strategy of the search method and the model used for evaluation of 

potential solutions. Selecting these two parameters allows to investigate the sensitivity of those two 

different sub-models as presented in Figure 3.1. 

A test on a SA algorithm parameter setting influencing overall runtime showed that a longer execution 

time of the algorithm, meaning a more intensive search, can lead improve the quality of the obtained 

solutions. Hence, investing more resources in terms of computation time can pay off in yielding a lower 

objective function value. Nevertheless, marginal improvements in the objective function value are 

limited once a certain number of iterations is exceeded. 

The results of another third test indicate that increasing the relative weighting of waiting costs in the 

objective function can lead to an overall increase of supply and thus operational costs while user costs 

remain relatively stable. Hence, when the marginal increase in operational costs is lower than the 

increase in user costs resulting from a higher weighting of waiting costs, it is beneficial to increase 

supply such that additional waiting costs are compensated and the average waiting time per passenger 

decreases. This result clearly shows how the relative importance attached to a certain aspect in the 

objective function can significantly affect the final solution found by the model. Hence, special attention 

needs to be paid to the weighing factors in the objective function which reflect the (potentially 

conflicting) interests of the different stakeholders involved.  

In a second step, the model was applied to a real case study in order to demonstrate its practical 

applicability to real-sized problems and identify potential benefits of supply optimization. The model 

was run under two different demand levels (morning and evening peak) in order to test the 

robustness/sensitivity of the model against varying demand conditions. Multiple scenarios regarding 

decision variable settings and objective function formulations were executed and the results were 
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compared to the current reference situation in order to reveal the potentials of improvement. The 

determination of supply for different objectives allowed to investigate the effect of different interests 

of involved stakeholders on the solutions obtained and to contrast the results against each other. 

Overall results indicate that the potential for improving total costs and passenger-related costs is larger 

in the morning than in the evening peak. While passenger benefits can be attained in both periods, 

total costs can only be significantly reduced in the morning peak. Moreover, results obtained for the 

two different demand settings are clearly different which indicates a significant influence of both the 

structure and overall demand level on the final model outputs. Hence, the model is sensitive against 

varying demand conditions. 

New supply settings were found when minimizing passenger costs subject to a budget constraint 

resulting with significant reductions in generalized travel times (user costs) of up to 9.2% and 4.6% in 

morning and evening peaks, respectively. While most of the saving are attributed to waiting time 

reductions and operational costs have increased up to a similar level in all scenarios. Absolute annual 

travel cost savings when determining line frequencies symmetrically, asymmetrically and both vehicle 

capacities and frequencies simultaneously amount to approximately 92.000, 114.000, and 116.000 EUR 

in the morning peak as well as 21.000, 39.000, and 56.000 EUR in the evening peak periods, 

respectively. These results are consistent with the results found by Dell’Olio et al. (2012) who showed 

that using a mixed vehicle fleet in terms of bus capacities may lead to lower costs (i.e. higher benefits) 

than if a homogenous fleet was used. Moreover, it becomes evident that an asymmetric frequency 

setting allows for a more effective allocation of available resources in case of a directed demand profile. 

The minimization of total costs results in user cost reductions of up to 12.1% compared to the current 

situation in the morning peak. Absolute annual benefits amount to approximately 52.000, 120.000 and 

154.000 EUR for the different scenarios SYM, ASYM and VEHCAP respectively. It is remarkable that 

additional operational costs required to increase passenger benefits are always lower than the benefits 

attained, meaning that an additional investment in supply is socially viable. In contrast to that, the 

solution found for the TC_SYM scenario in the evening peak allows to decrease operational costs 

without changing total costs by 10.7% which corresponds to an absolute annual value of about 64.000 

EUR. These results suggest that a potential reduction of current supply in the evening peak may be 

reasonable when trading off user against operational costs, while in the morning peak an increase of 

the current supply provision would be favorable. Overall results obtained when determining both 

frequencies and vehicle types suggest slightly higher line frequencies and a larger number of smaller 

vehicles in the morning compared to the evening (during which overall passenger demand is slightly 

lower). These findings match with the observations by Walters (1980) who established that for 

increasing passenger volumes, vehicles sizes and corresponding headways decrease.  

All in all, it can be said that the objectives of this study have been successfully met and it could be shown 

that the proposed model can be applied to problems of real scale and yield practical benefits. 

Depending on the objective, the degrees of freedom of the decision variables and the level of demand, 

the model yields different solutions that partly differ from the current situation and can lead to 

significant cost savings. 
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5.3 Practical implications and recommendations 

This section elaborates on the practical implications resulting from the findings gained in this research. 

Furthermore, practical recommendations to potential users of the model such as public transport 

authorities and operators are provided.  

 

5.3.1 Implications of the gained findings 

Due to the flexible and universal formulation of the model and the inclusion of dynamic effects, some 

generic implications and recommendations for practical applications of the model as a decision tool for 

frequency and/or vehicle capacity determination can be given. 

Thanks to its ability to fully consider the dynamic interaction of demand and supply settings, the model 

is able to capture the complex implications of a potential supply provision on overall transport system 

performance already at the early planning stage of tactical decision making. Hence, operational issues 

such as service reliability are already explicitly taken into account during this planning phase and may 

thus lead to smoother daily operations and consequently fewer real-time measures are required in 

order to improve the level of service than if conventional tactical decision tools or mere reactive 

adjustments of supply provision were used. The application of the model for the tactical revision of 

supply provision is therefore expected to be particularly beneficial in public transport networks that are 

highly-utilized and potentially crowded given the current level of supply, independent of the type of 

mode. 

The detailed output of the simulation model enables the formulation of different objective functions 

and constraints allowing the application to be used for different planning proposes. There are various 

stakeholders involved having different and potentially conflicting viewpoints and interests related to 

the public transport service. The public authority seeks for an overall attractive and socially acceptable 

transport service that maximizes social welfare in terms of minimum total costs. Depending on the type 

of concession awarded, the operator may want to improve the provided service in order to attract more 

passengers and thus create more revenue or reduce his operational costs by cutting inefficiently utilized 

supply. The first objective can be met by minimizing passengers’ costs subject to a budget constraint 

which corresponds to a re-allocation of available resources in order to increase effectiveness (as 

demonstrated in the real case study). The latter objective can be met by minimizing operational costs 

subject to a defined level of service which may for instance relate to vehicle occupancy levels. As 

explained in the previous section, the formulation of the objective function in terms of the relative 

weighting of individual components may strongly influence the final results. Hence, it is advised to 

choose these values with care to ensure that they reflect the perspective of the stakeholder under 

consideration.  

The application of the model to a real case study demonstrated its practical applicability and usefulness. 

Overall results indicate that the potential of improvement of the current supply provision is largest in 

the morning peak between 08:00 and 09:00 o’clock. During this period, significant travel cost savings 

can be generated by a change in supply resulting from both total and user cost minimizations. Thus, it 

is advised to the incumbent operator Connexxion to increase supply during this period. 

In the evening peak, the decision on a change in service provision is dependent on the objective 

considered. From a social point of view (total costs) a change of the current provision is not necessary 

since no significant travel cost savings can be generated. This result confirms the quality and optimality 
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of the current situation. Although one of the found solutions would allow to decrease operational costs 

while not changing total costs, it would need to be investigated whether this reduction in supply would 

indeed generate benefits for the operator given the reduction in demand and thus revenues which is 

usually triggered by a decrease in supply.  

When determining supply from the passengers’ point of view, significant travel cost savings can be 

generated by increasing supply up to the maximum operational cost level which is currently provided 

in the morning peak (between 07:00 and 08:00 o’clock). In case of a concession issued as net-cost 

contract which gives an incentive to operators to increase ridership and revenue by improving the level 

of service, this option could be beneficial for the operator as well. However, it would need to be checked 

whether the additional fare revenues by induced demand can generate sufficient profit given the 

additional operational costs and the available amount of subsidy. 

The separate determination of line frequencies per direction yielded lower user costs compared to a 

conventional symmetric supply setting at the same level of operational expenses in both demand 

periods considered. This result clearly highlights the advantages of asymmetric service provision during 

periods of directed passenger demand which is currently present in the regarded network. However, 

the associated benefits may be accompanied by additional operational costs resulting from a larger 

fleet size. This can be a consequence of a more complex vehicle scheduling involving longer layover 

times due to the asymmetric frequency settings. Depending on the difference in overall frequencies 

between incoming and outgoing lines at a certain terminal, often applied strategies may also include 

deadheading or short-turning trips. The realization of a certain frequency setting is therefore 

constrained by the deadhead travel times for vehicles as well as the locations of vehicle depots within 

the network. Nevertheless, the application showed that the use of asymmetric frequency settings can 

lead to a more effective satisfaction of the present demand and also confirms the suitability of the 

current asymmetric supply setting in the evening peak. 

A simultaneous determination of vehicle capacities and line frequencies indicates the benefits of 

deploying different vehicle sizes per line. Found solutions suggest that smaller busses are an attractive 

alternative to the currently used type of bus both in the morning and evening peaks. Although 

occupancy levels will increase on some line segments, overall user benefits prevail and cost savings are 

even slightly higher than in the found asymmetric frequency settings. So, if the occasionally raised 

vehicle loads are justifiable given potential level of service requirements, a deployment of a mixed 

vehicle fleet on the regarded network is clearly advisable. Yet, having available a mixed vehicle fleet 

might also cause disadvantages to particular small operators with a small fleet who are less flexible in 

responding to changes in demand or bidding for a different concession. The determination of the size 

and composition of an operator’s vehicle fleet is usually regarded as a strategic long-term decision 

requiring a significant amount of capital investment. Therefore, this decision often imposes a hard 

constraint to problems situated further down the decision cycle of public transport service planning 

such as the tactical frequency determination. A solution to this could be the flexible provision of vehicles 

by third parties such as leasing companies.  
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5.3.2 Generic recommendations for practical users 

Finally, it is worth mentioning some recommendations for the practical application of the model to real 

problems. These practical advices are based on the experiences gained during the development and 

application of the model. 

Since an exact determination of the SA algorithm parameters influencing runtime by an analytical 

expression is not possible, values have to be estimated based on the size of the problem and prior 

experience in using the model. It is therefore recommended to run the model multiple times using 

different numbers of iterations per temperature step to check the qualitative effect of prolonged 

computation times on the final solution found. The advantage of this procedure is also that multiple 

non-dominating solutions obtained can be weighed against each other. 

As the runtime of the simulation model contributes the most to the overall execution time of the 

algorithm, it is worth knowing the effect of certain model properties on the simulation time. Due to the 

agent-based approach of BusMezzo, especially the total number of simulated passengers significantly 

affects the runtime. Hence, in cases with large number of passengers (multiples of 10.000), one 

simulation run can take several seconds using conventional computers. It might therefore be 

interesting, particularly in case of large-scale networks, to use high-performance computers or cloud 

computing techniques to reduce overall algorithm execution time when evaluating a larger number of 

solutions and scenarios. 

Since the path set needed for the dynamic route choice model is only dependent on the static network 

properties such as line routes (i.e. independent from supply provision), it is always recommended to 

generate it once for a specific network only prior to the execution of the algorithm and provide it as an 

input to BusMezzo. This approach can save a lot of computation time especially in large networks having 

many stops. 

Finally, it is important to note that the simulation set-up in terms of the provision of warm-up and cool-

down phases of supply generation is a crucial factor ensuring that full supply is present in all areas of 

the network once the first passengers are generated and that all passengers can eventually reach their 

destination within the simulation period. This becomes particularly relevant when evaluating low supply 

solutions. To this end, the timespan of supply simulation before and after demand generation should 

be chosen sufficiently high considering the size of the network. Otherwise, the simulation model might 

produce errors leading to biased outputs.  
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5.4 Limitations and future research 

The present study has fulfilled its objective of developing a public transport supply determination model 

which considers network-wide dynamic interactions of passengers and vehicles and proved its practical 

applicability as well as potential to yield benefits. Notwithstanding, there are some crucial aspects that 

are not or only inadequately considered by the model. This section presents these limitations and 

discusses the resulting consequences as well as proposes ideas for future enhancements to the model 

in order to overcome the limitations and expand the functionalities. Moreover, potential future 

directions of research in the field of public transport service planning that may build up on the gained 

findings are outlined. 

For the sake of simplicity, vehicle scheduling was not considered in the present model. That is, a vehicle 

is assigned to one trip on a specific line only, which implies that potential delays being present at the 

destination terminal of a line cannot affect the punctuality of the following departure from the terminal. 

Hence, effects related to the propagation of delays and degraded service reliability among multiple 

lines and line directions were not properly accounted for. Another consequence of not including vehicle 

scheduling considerations in the present model is the potentially incorrect determination of operational 

costs resulting from a certain supply setting. These costs are computed based on an estimated fleet 

size which is given by the ratio of cycle time to headway of a line. In fact, the exact cycle time and fleet 

size is a result of vehicle scheduling which might lead to significant differences in operational costs in 

reality. Especially in cases of asymmetric frequency settings per line direction as elaborated on in 

Section 4.2, constraints imposed by vehicle scheduling considerations may severely affect the required 

fleet size and thus operational costs. In order to improve these limitations, future research should focus 

on the integration of a vehicle scheduling model into the present framework. This would allow to 

further increase the practical utility of the developed tool. 

Another aspect that the model disregards is the implication of supply changes on the overall passenger 

demand. As overall travel demand between a specific OD pair usually splits up to multiple available 

modes according to the relative utility associated with each mode, an increase in the utility of one mode 

usually leads to a shift of demand between competing modes, or more generally to induced/latent 

demand if a certain mode gets more attractive. Since a change of supply in terms of line frequencies 

and or vehicle capacities will lead to changed generalized travel costs for certain OD pairs, the number 

of passengers travelling between this OD pair will also change and cause itself demand-dependent 

changes to the generalized travel costs such as altered crowding levels. In order to account for these 

implications, an additional iterative procedure needs to be implemented into the modelling framework 

that adjusts the OD matrix based on the relative changes of generalized travel times per OD pair using 

a demand elasticity function. Note that this feature will increase the overall complexity of the model 

and might lead to instability issues related to the convergence of the algorithm since demand is 

introduced as an additional dynamic factor that affects system performance. Incorporating this 

feedback loop will allow to investigate crucial topics such as forecasting ridership growth and resulting 

additional revenues or supply determination given the objective of operator profit maximization or 

subsidy minimization. 

Further areas of research within the domain of public transport service planning in which the model 

could be applied beyond the tactical level are the strategic network design and the management of 

supply provision during special events. In the former case, the model could be used to identify attractive 

lines given a set of potential routes by applying the frequency determination procedure for all potential 

lines without taking into account a lower bound for the frequency setting. Hence, lines resulting in zero 
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supply (or very low frequencies) can be excluded from the final network layout. Running the model on 

a modified network or demand configurations in case of special circumstances such as construction 

works or big events can create valuable outputs which can be used as a tactical basis for service plans 

aimed at mitigating the negative consequences of exceptional situations in the network. For instance, 

the model can determine the supply of the entire network in case there is a high trip 

attractor/generator at a specific location or the routes of certain lines have been changed due to 

exceptional circumstances. Thus, a basis for a predefined strategy can be found and its robustness (for 

instance regarding demand fluctuations and uncertainty) can be evaluated. Canca et al. (2016) 

concluded that their tactical frequency and capacity determination model for railway services could 

also deal with exceptional situations such as track failures by removing the affected link.  

Given the recent attention of research and technological advancements within the field of automated 

traffic and transportation, it is worth investigating the capabilities of the developed modelling 

framework as a decision tool for the design of automated public transport services. Winter et al. (2016) 

have already demonstrated the usefulness of event-based simulation techniques for the design of 

automated demand-responsive point-to-point services. Since on-board staff costs will disappear in the 

case of fully automated vehicles, the operational cost differences between different types of vehicles 

will get more pronounced and thus enable a greater potential for vehicle capacity optimization. 

Moreover, operational constraints imposed by vehicle scheduling might become more relaxed since 

automated vehicles are more flexible in terms of intermediate vehicle depots and empty deadheading 

trips. As driving staff is no longer required, the parking and movement of vehicles that are not in service 

would be possible at any location in the network for any period of time without increased operational 

costs related to personnel. From a passenger’s perspective, it should be examined whether and to 

which extent the automatization of public transport services leads to a change in user perceptions and 

thus costs as compared to conventional public transport services. Increased levels of comfort and safety 

and different perceptions of crowding may imply a significant change in generalized travel costs. 

Another future study could conduct a comparative analysis between the developed model and 

conventional supply optimization models using static assignment approaches or no passenger route 

choice implications at all (i.e. a mere adjustment of supply given observed demand conditions). In this 

way, the added value of the present model could be validated and quantified. In terms of practical 

considerations, issues relating to runtime, data requirements and model calibration should be 

contrasted against the quality of the results obtained by the different modelling approaches in order to 

identify practical advantages and disadvantages. Moreover, the robustness of the proposed model and 

other approaches against uniform changes in demand should be examined and compared as well, since 

this aspect was not thoroughly analyzed in this study.  
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5.5 Personal reflection 

This final section provides a personal reflection on the thesis work and process as well as the lessons 

learned during the project. It is therefore written from a personal and subjective point of view. 

The origin of this thesis can be ascribed to an internship I performed as a part of my studies at the 

consultancy company Goudappel Coffeng. During this internship, I got acquainted with the simulation 

tool BusMezzo and deepened my passion for transport modelling and especially public transport. After 

the internship, I started, together with Oded Cats, thinking about potential topics. Since I really liked 

working with BusMezzo and also appreciated the good cooperation and support of my internship 

supervisor Oded, he encouraged me to incorporate this tool in my Master thesis and offered me his 

support during this project.  

During the initial phase, it was difficult for me to define the right topic since there were many 

possibilities available and I had to read a lot of literature. Thanks to the support of Oded and intensive 

reflection about my personal interests, I could define a topic that teased me and offers the right portion 

of challenge and scientific demand to be considered as a Master thesis. After the first kick-off meeting 

with the committee, my vision about the topic was even clearer since they provided me with helpful 

feedback and guidance to get on the right track from the beginning of the work. Particularly Henk and 

Bruno, who are both experienced in mathematical optimization models and techniques, provided me 

with some helpful advice regarding the implementation and application of certain methods. For 

instance, they convinced me not to use the complex population-based method of genetic algorithms 

which I originally intended to apply. In retrospect, I think that this decision was crucial for facilitating 

the development and implementation of my model since I decided for a less complex single-search 

method (SA) which is easier to understand and implement than population-based methods (at least 

from my perspective as a student having little experience with such methods).  

For the implementation of my proposed model, BusMezzo needs to be executed by an automated 

procedure and a transfer of input and output data between the simulation model and the procedure 

needs to be implemented. This was a challenging task that took me a lot of hours of work until 

everything went smoothly. During the programming work, I really experienced what it is like to 

iteratively learn by doing, which can be quite frustrating sometimes. Next time, I would first construct 

the entire framework of the entire model including all details and then start implementing it step by 

step instead of immediately diving into the matter and working on small modules without seeing the 

big picture. This would surely help to get work better structured and avoid repetitive and redundant 

steps. Nevertheless, I can definitely say that by doing this work I have evolved from a beginner to an 

advanced user when it comes to programming in Matlab and this makes me proud. 

When designing the scenarios of the case studies, it was hard for me to decide on which things to focus 

since there a so many aspects you could theoretically examine. In retrospect, I would have also included 

a scenario investigating the model’s robustness against uniform changes in demand, not only structural 

differences as shown by AM and PM demand distributions. Investigating this aspect could certainly 

reveal further valuable insights. 

Overall, I dare to say that I managed the graduation project quite well and I am proud of my 

accomplishments. I think that by working on this project, I could particularly further improve my 

programming and abstraction skills and learned what it means to comply with a scientifically sound way 

of working. But I also have to say that without the help and support of the graduation committee and 

particularly my daily supervisor Oded, I would not have been able to achieve all this.  
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