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Abstract
Magnetic resonance imaging (MRI) scanners are a crucial diagnostic tool for radiologists. They are able
to render two­ and three­dimensional images of the body without exposure to harmful radiation. MRI
systems are, however, costly to build and maintain. This adversely impacts access to these scanners
in developing regions. In an effort to combat this problem, a low­field MRI scanner is being developed.

Conventional MRI scanners utilize a superconducting solenoid to generate the main magnetic field.
The low­field scanner, on the other hand, induces the main magnetic field through a Hallbach array of
permanent neodymium magnets. While beneficial for production and maintenance costs, as well as
portability, the Hallbach array is not able to generate a perfectly homogeneous magnetic field.

The inhomogeneities present in the main magnetic field result in distortion of the images when
reconstructed using conventional fast Fourier transform (FFT) methods. To counteract this, a recon­
struction method that utilizes field information needs to be employed. In this thesis, existing methods
to determine and utilize the field information to correct image distortion are explored. From this analy­
sis, it is evident that model­based (MB) methods are most suitable for reconstruction of data from the
low­field scanner. Current MB methods are only implemented for two­dimensional reconstruction. The
goal of this thesis is to expand these methods to three­dimensional reconstruction.

A novel MB method for three­dimensional reconstruction is presented. This new method is able to
circumvent memory constraints that arise from reconstruction of large data sets.

Though the new method requires several hours to reconstruct a 128 × 128 × 30 data set, visual
inspection indicates that an accurate result is achieved.

iii





Acknowledgements
With the completion of this thesis, I have reached a milestone in my life. It has been a long and difficult
journey, but worth every moment. There are several people who have helped me along the way who I
want to acknowledge.

First and foremost, I would like to thank Dr. Ir. Rob Remis, whom without, I would not have been
introduced to this project. As supervisor, he showed me which bureaucratic hoops I needed to jump
through during the project, and motivated me to reach my deadlines. Together with Dr. Ir. Rob Remis,
Dr. Ir. Kirsten Koolstra was present along every step of the way. She was always available for all
questions and problems I had regarding the project. For that, I would like to thank her. I would also
like to thank BSc. Tom O’Reilly, whom without, the low­field project would not be the success that it is.
Furthermore, I am thankful for Dr. Neil Budko, who was able to fill a position in the thesis committee at
the last moment.

I am grateful for all the friends I havemade along the way, both in my study and student associations.
Without them, my time in Delft would have been noticeably less enjoyable.

Despite my family living almost on the other side of the world, they have continually shown their
support, for which I am eternally thankful.

Last but not least, I would like to thank my partner, who has always been there for me. She has
motivated me to reach the point I am at now. I can always count on her support, even in stressful times
like these.

Bas Liesker
Delft, May 18, 2021

v





Contents

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Low­Field MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Neonatal Hydrocephalus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Signal Model 5
2.1 Bloch Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Rotating Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Voltage Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Signal Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Spatial Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Current Methods 11
3.1 Field Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Phase Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Empirical Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Conjugate Phase Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Model­Based Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 With Compressed Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Effectiveness of CPR and MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Density Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Voxel Shift Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Optimal Correction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Two­Dimensional Reconstruction 17
4.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Sine­Bell Squared Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 CPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Model­Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Estimated Field Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Additive White Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Reconstruction of Low­Field MRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5.1 Tube Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.2 In Vivo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Iterative Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Multi­Slice Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



viii Contents

5 Three­Dimensional Reconstruction 27
5.1 Slice Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Memory Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Additive White Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Alternative Reconstruction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.8 In Vivo Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Regularization 35
6.1 Reconstruction Without Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Optimal Regularization Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Performance 41
7.1 Residual Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Two­Dimensional Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Two­Dimensional Multi­Slice Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4 Three­Dimensional Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5 In Vivo Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5.1 Comparison of 2D Multi­Slice and 3D Reconstruction . . . . . . . . . . . . . . . . 43
7.6 Implementation on the Low­Field Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.6.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.6.2 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Conclusion and Recommendations 47

A Noise Model 49
A.1 In Vivo Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Python Code 51



List of Figures

1.1 An example of a clinical 3.0T MRI scanner from Philips [3] (left) and the internal coils of
a typical MRI system (right), taken from Smith and Webb [4]. . . . . . . . . . . . . . . . 1

1.2 The cost distribution of the main components of a 1.5T MRI scanner. Adapted fromWald
et al. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Scanner availability (scanners permillion people) based on income. Taken fromGeethanath
et al. [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 The low­field (50mT) scanner developed by O’Reilly et al. [10]. . . . . . . . . . . . . . . 4

3.1 An example of a field map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The reconstruction results of the FFT, conjugate phase reconstruction (CPR), and MB

techniques on a distorted Shepp­Logan phantom. Image adapted from Koolstra et al. [16]. 14
3.3 A tube phantom scanned with a MRI scanner (top left) and a computed tomography

scanner (top right) for comparison. The corrected image (bottom left) and the differ­
ence between the reconstructed and original image (bottom right), using the voxel shift
correction technique are shown. Images adapted from Doran et al. [26]. . . . . . . . . . 16

4.1 The undistorted Shepp­Logan phantom. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 The simulated gradient fields in the x­direction (left) and y­direction (right). . . . . . . . . 18
4.3 The field map used in the simulations (left) and the resulting distorted Shepp­Logan

phantom (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 2D Sine­Bell squared filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 The simulated distorted phantom before (left) and after (right) pre­processing. . . . . . . 19
4.6 The original phantom (left) and CP reconstructed phantom (right). . . . . . . . . . . . . 20
4.7 The original phantom (left) and MB reconstructed phantom (right). . . . . . . . . . . . . 21
4.8 The simulation pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.9 The original phantom (left) and theMB recovered image (right), with distorted noisy phan­

tom as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.10 A tube phantom (left) reconstructed using the FFT (middle) and MB (right) methods. . . 23
4.11 The estimated field map over the object domain (left) and imaging domain (right) using

spherical harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.12 The in vivo image recovered using FFT (left) and MB reconstruction (right). . . . . . . . 24
4.13 The residual error, calculated using the relative two­norm error between the reconstructed

and the original image, after each iteration of reconstruction. The zeroth iteration indi­
cates the error between the FFT reconstructed and original image. . . . . . . . . . . . . 24

4.14 Two­dimensional FFT (top) and MB (bottom) multi­slice reconstruction of in vivo data. . 25

5.1 The gradient fields extended over the three­dimensional field of view (FoV). . . . . . . . 27
5.2 The three­dimensional Shepp­Logan phantom, developed by Matthias Schabel [30]. . . 29
5.3 Three­dimensional sine bell squared filter. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 The phantom after simulated distortion (left) and after downsampling (right). . . . . . . . 30
5.5 The recovered phantom using FFT (left) and one iteration of MB reconstruction (right). . 31
5.6 The recovered noisy phantom using FFT (left) and one iteration of MB reconstruction

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 A 128 × 128 × 30 noisy phantom recovered with the updated reconstruction method. . . 32
5.8 A 64 × 64 × 6 phantom recovered using MB reconstruction with the full system matrix

(left), and the subdivided system matrix (right). . . . . . . . . . . . . . . . . . . . . . . . 33
5.9 Recovered in vivo images from a three­dimensional data set utilizing FFT reconstruction

(top) and the proposed algorithm (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x List of Figures

6.1 Reconstructed noisy phantom with conjugate gradient least squares (CGLS) tolerance
of 10−2 (left), and 10−4 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 The L­curve for phantom data with identical signal­to­noise ratio (SNR) to in vivo data.
Several values of 𝛼 have been labeled. The optimum regularization parameter is located
directly after the bend of the L­curve, at 𝛼 = 3.59. The conjugate gradient least squares
(CGLS) tolerance is set to 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 The relative two­norm error between the reconstructed and original phantom. Several
values of the regularization parameter have been labeled. . . . . . . . . . . . . . . . . . 37

6.4 Reconstructed noisy phantom with conjugate gradient least squares (CGLS) tolerance
of 10−2 without regularization (left), and 10−4 with optimal Tikhonov regularization (right). 37

6.5 The L­curves for several different values of signal­to­noise ratio (SNR). conjugate gradi­
ent least squares (CGLS) tolerance is set to 10−2. . . . . . . . . . . . . . . . . . . . . . 38

6.6 The residual error for varying signal­to­noise ratio (SNR). . . . . . . . . . . . . . . . . . 38
6.7 Single­slice of in vivo data reconstructed with increasing regularization. The regulariza­

tion parameter ranges logarithmically from 10−10 to 1014. . . . . . . . . . . . . . . . . . 39

7.1 Recovered in vivo images utilizing multi­slice (top) and three­dimensional (bottom) re­
construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2 The processing time of a 64 × 64 × 10 in vivo data set in MATLAB and Python. . . . . . 45

A.1 Complete in vivo data set (left) and normalized susbet of in vivo data (right). . . . . . . . 49
A.2 Probability distribution of the noise. The solid line is a best­fit Gaussian distribution, while

the dotted line is a best­fit Rician distribution . . . . . . . . . . . . . . . . . . . . . . . . 50



List of Tables

2.1 The symbols used in the Bloch equation in the Cartesian reference frame. . . . . . . . . 5

4.1 Simulation parameters for three­dimensional data. In reconstruction of two­dimensional
data, the third dimension was omitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Sizes of data matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.1 Two­norm reconstruction error and processing time for four scenarios of two­dimensional
reconstruction after one iteration, averaged over three repetitions. The processing time
includes the time required for field map estimation, system matrix construction, and im­
age recovery, and excludes the time required for initialization and pre­processing. The
phantom is of size 128 × 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Two­norm reconstruction error and processing time of four scenarios of two­dimensional
multi­slice reconstruction after one iteration, averaged over three repetitions. The pro­
cessing time includes the time required for field map estimation, system matrix con­
struction, and image recovery, and excludes the time required for initialization and pre­
processing. The phantom has a size of 128 × 128 × 30. . . . . . . . . . . . . . . . . . . 42

7.3 Two­norm reconstruction error and processing time of four scenarios of three­dimensional
reconstruction after one iteration, averaged over three repetitions. The processing time
includes the time required for field map estimation, system matrix construction, and im­
age recovery, and excludes the time required for initialization and pre­processing. The
phantom is of size 128 × 128 × 30. Recovery of the data set requires almost 7 hours of
processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.4 Processing time of in vivo reconstruction after one iteration, averaged over three repe­
titions. The processing time includes the time required for field map estimation, system
matrix construction, and image recovery, and excludes the time required for initialization
and pre­processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5 The signal­to­noise ratio (SNR) before reconstruction, after pre­processing, and after
reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.6 The processing time of a 64 × 64 × 10 in vivo data set in MATLAB and Python . . . . . 45

xi





List of Acronyms
AWGN additive white Gaussian noise

CG conjugate gradient

CGLS conjugate gradient least squares

CPR conjugate phase reconstruction

CS compressed sensing

CSF cerebrospinal fluid

DFT discrete Fourier transform

EM electromagnetic

FFT fast Fourier transform

FID free induction decay

FoV field of view

MB model­based

MFI multifrequency interpolation

MRI magnetic resonance imaging

NMR nuclear magnetic resonance

PDF probability density function

PET positron emission tomography

RF radio frequency

SNR signal­to­noise ratio

xiii





1
Introduction

In the past century, the field of radiology has been intensely studied and researched, and now forms
an integral part of the medical system. Radiology focuses mainly on diagnostics, by forming images
of the body using a plethora of techniques. These techniques range from classic x­ray photography,
to positron emission tomography (PET), to magnetic resonance imaging (MRI). Most MRI systems
currently used in a clinical setting have main magnetic field strengths ranging from 1.5 to 7.0 teslas (T).
While these systems have high diagnostic capabilities, they come with some drawbacks. This chapter
will investigate the history and basic principles of MRI systems, after which it will introduce low­field
MRI scanners and why they are of importance.

1.1. Magnetic Resonance Imaging
In 1972, the first images using nuclear magnetic resonance (NMR) were taken by Paul Lauterbur [1].
This laid the foundation to what is now known as MRI. Since then, the development in the MRI field
has resulted in scanners that can image the brain with an isotropic resolution of 0.7mm [2]. This in
turn has allowed doctors to diagnose afflictions such as small tumors and lesions that were previously
undetectable.

MRI scanners, such as the one depicted in Figure 1.1, apply a strong homogeneous magnetic field
(main magnetic field, 𝐵0) to the patient inside the bore of the system. This magnetizes the body until
it is removed from the scanner. Once magnetized, spatial variation is introduced in the form of linear
gradient fields in the three Cartesian directions (𝐺𝑥, 𝐺𝑦, and 𝐺𝑧). This allows for position­based signal
acquisition.

Figure 1.1: An example of a clinical 3.0T MRI scanner from Philips [3] (left) and the internal coils of a typical MRI system (right),
taken from Smith and Webb [4].

To obtain signals from the body, radio frequency (RF) pulses are emitted to excite precessing pro­
tons, which then slowly return to their equilibrium state. As the protons return to their initial state, they
emit electromagnetic (EM) energy that can be measured using coils. These coils can be designed such
that they both transmit and receive RF pulses. Thanks to the gradient fields superimposed on the main
magnetic field, the RF coils receive position­dependent signals, which, when transformed to the spatial
domain, result in an image.

1



2 1. Introduction

In high­field (≥ 1.5T) MRI systems, the main magnetic field is produced by a superconducting
solenoid around the bore. To achieve this, liquid helium continuously retains the temperature of the
solenoid to below 9.3K, even when the scanner is not actively in use [5]. This produces a stable
homogeneous field throughout the bore.

The gradient fields are produced by a separate set of coils, one pair for each direction on the
Cartesian plane. To produce the gradient along the direction of the bore, a set of solenoids is typically
used, while along the other two directions, intricate coils are needed to produce a linear magnetic field
[6].

Together with the RF coils, the aforementioned solenoid and gradient coils are the main internal
components of a typical high­field MRI scanner. The external components consist mainly of amplifiers
and signal processing equipment. Lawrence Wald et al. estimated the relative costs of the main com­
ponents for a 1.5T scanner with market price of $800,000 USD [5]. Figure 1.2 summarizes this cost
distribution.

Cost Distribution

RF Coils: 10%

Computers: 5%

Small Signal Electronics: 7%

Gradiant Amplifier: 15%

Gradient Coils: 13%
RF Amplifier: 5%

Covers and table: 8%

Magnet & Cryostat: 38%

Figure 1.2: The cost distribution of the main components of a 1.5T MRI scanner. Adapted from Wald et al. [5].

Alongside the expenditure of acquiring an MRI system, there are significant costs for maintaining
and housing the scanner. Each scanner needs to be housed in a specialized room that electromag­
netically shields the system, both from outgoing and incoming signals. This is necessary in order to
prevent interference with external equipment and disturbances in the acquired signals. These rooms
can cost up to $100,000 USD [5].

The high costs of obtaining and maintaining MRI scanners has lead to a gap in the number of
scanners per capita between the developed and developing world (see Figure 1.3). This discrepancy
adversely affects the average lifespan of citizens from developing countries [7].

Figure 1.3: Scanner availability (scanners per million people) based on income. Taken from Geethanath et al. [7].



1.2. Low­Field MRI 3

1.2. Low­Field MRI
In an attempt to make MRI systems more affordable and accessible, low­field (< 0.5T) scanners are
currently actively researched and developed [5], [8]–[10]. The most significant difference between
high­field and low­field systems is the removal of the superconducting solenoid. To produce the main
magnetic field, some of these systems instead opt for an array of permanent neodymium magnets in
a cylindrical Halbach formation, such as the system developed by Cooley et al. [9]. Another possible
technique for inducing a strong magnetic field is the neodymium dipole design, introduced by Miyamoto
et al. [11]. Despite the strong field produced by this design (between 0.2 and 0.35T [5]), the mass of the
permanent magnets limits the mobility of these systems. In an effort to increase portability, Nakagomi
et al. have recently developed a car­mounted adaptation of the dipole system with a 200kg permanent
magnet [12]. Low­field scanners with a Hallbach array, on the other hand, have a lighter permanent
magnet design, such as the one developed by O’Reilly et al., which weighs 75kg [10].

With the replacement of the superconducting solenoid and removal of its cooling system, the manu­
facturing and maintenance costs have been significantly reduced. As an added benefit, these scanners
employ shielding directly around the system, eliminating the need for a specialized room for housing
the scanner. This results in a smaller footprint and increased portability.

Due to cost savings and the limitations of permanent magnets, low­field scanners come with a
significant drawback: decreased signal­to­noise ratio (SNR) and therefore lower resolution compared
to high­field scanners. This limits the diagnostic capabilities of the scanner. Despite this drawback,
these scanners can still be used as an early detection system to find physiological conditions that,
without a scanner, might go unnoticed.

1.3. Neonatal Hydrocephalus
One possible use case of low­field MRI scanners is the detection of neonatal hydrocephalus. Hydro­
cephalus is characterized by the accumulation of cerebrospinal fluid (CSF) within the brain [13]. This
build­up of fluid is caused by an obstruction in the brain [14].

Due to lower sanitary conditions and less access to health care, hydrocephalus is significantly more
prevalent in children in developing countries as opposed to children in developed countries [14]. Low­
field scanners, with their reduced costs and increased portability, provide an opportunity for early de­
tection of neonatal hydrocephalus in developing countries. Previously, these systems have already
been used in the diagnosis of hydrocephalus in dogs [15], suggesting the possibility of detection in
children.

With the current development of low­field scanners, the SNR and accuracy of acquired images is
gradually increasing. In time, this will lead to diagnostic capabilities of increasingly complex physiolog­
ical conditions.

1.4. Thesis Objective
In this thesis, the low­field scanner developed by O’Reilly et al. [10], depicted in Figure 1.4, will be
investigated. Currently, the scanner exhibits field disturbances due to inhomogeneities that are more
prevalent than desired. There are three main components that contribute to the inhomogeneity of the
fields:

• Imperfect Halbach array

• Non­linearity of the gradient coils

• Thermal effects

These field inhomogeneities lead to spatial distortion of the imaged volumes.
Current reconstruction techniques are either ineffective at completely correcting image distortion

due to field disturbances, or require additional scanning time. Hence, this thesis will focus on re­
construction efficiency, both in terms of processing time and accuracy. The techniques presented by
Koolstra et al. [16] and de Leeuw den Bouter et al. [17] will form the basis for the new algorithms. The
objective of this thesis is to answer the following question:

How can image distortion due to field inhomogeneities effectively be corrected in 3D imaging
volumes?
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Figure 1.4: The low­field (50mT) scanner developed by O’Reilly et al. [10].

The goal is to correct for the aforementioned field disturbances, as well as to implement the new
reconstruction technique on the scanner.

1.5. Thesis Structure
Chapter 2 will introduce the structure of the obtained signal. Following that, Chapter 3 explains the
existing methods used to correct for image distortion. Next, Chapter 4 investigates how model­based
(MB) reconstruction performs on single­ and multi­slice data. Chapter 5 highlights what changes need
to be made to two­dimensional reconstruction in order to be able to process three­dimensional data
sets. Afterwards, Chapter 6 will investigate the effect of regularization, after which Chapter 7 will give a
comparison of two­ and three­dimensional reconstruction on various data sets. Finally, Chapter ?? will
briefly inform how the algorithm was implemented and tested, followed by Chapter 8, which will form a
conclusion to the thesis, and highlight some recommendations.



2
Signal Model

To acquire an image using MRI, a signal describing the volume in question is required. The signal
describes the susceptibility to magnetization, which in turn describes the proton density distribution,
resulting in contrast between different media (such as fat and water). This chapter will describe how
inducing specific magnetic fields leads to a signal that can be transformed into an accurate image of a
volume. The chapter begins with the Bloch equation and concludes with the basic signal model.

2.1. Bloch Equation
The Bloch equation forms the basis of signal acquisition. It describe the magnetization of a volume
based on the applied magnetic field. Table 2.1 lists the symbols utilized in the Bloch equation when a
Cartesian reference frame is used.

Table 2.1: The symbols used in the Bloch equation in the Cartesian reference frame.

Symbol Description
M Magnetization
B Magnetic Field
i𝑥, i𝑦, and i𝑧 Basis Vectors of unit length
r Position Vector
𝑡 Time
𝑇1 Longitudinal Relaxation Time
𝑇2 Transverse Relaxation Time
𝛾 Gyromagnetic Ratio

Initially (𝑡 = 0), when only the background field is present, the magnetization of the volume is:

M0(r, 0) =M0
𝑥(r)i𝑥 +M0

𝑦(r)i𝑦 +M0
𝑧(r)i𝑧 (2.1)

The main magnetic field, B0, is a static background field along the longitudinal direction (z­direction).

B0(r) = 𝐵0(r)i𝑧 (2.2)

In the time interval 𝑡 = [0, 𝑡𝑓), the magnetic field is the sum of the background field and the applied
field, B𝑎.

B(r, 𝑡) = B0(r) + B𝑎(r, 𝑡) (2.3)

5



6 2. Signal Model

Bloch’s equation is [18]:

𝜕M(r, 𝑡)
𝜕𝑡 + 𝛾B(r, 𝑡) ×M(r, 𝑡) + 1

𝑇2(r)
M⊥(r, 𝑡) +

1
𝑇1(r)

M∥(r, 𝑡) =
1

𝑇1(r)
𝑀𝑒𝑞(r)i𝑧 (2.4)

The longitudinal and transverse magnetization are, respectively:

M∥(r, 𝑡) =M𝑧(r, 𝑡)i𝑧
M⊥(r, 𝑡) =M𝑥(r, 𝑡)i𝑥 +M𝑦(r, 𝑡)i𝑦

(2.5)

The equilibrium magnetization is:

𝑀𝑒𝑞(r) = 𝜌(r) 𝛾
2ℏ2
4𝑘𝐵𝑇

𝐵0(r) (2.6)

where 𝜌 is the spin density, ℏ Planck’s constant divided by 2𝜋, 𝑘𝐵 the Boltzmann’s constant, and 𝑇 the
absolute temperature. For protons, the gyromagnetic ratio is approximately: 42.577 ⋅ 106 Hz T−1 or
2.675 ⋅ 108 rad s−1T−1 [19].

2.1.1. Rotating Reference Frame
To find the general set of solutions to the Bloch equation, a rotating reference frame is introduced.

i′𝑥 = 𝑐𝑜𝑠(𝜔0(r)𝑡)i𝑥 − 𝑠𝑖𝑛(𝜔0(r)𝑡)i𝑦
i′𝑦 = 𝑠𝑖𝑛(𝜔0(r)𝑡)i𝑥 + 𝑐𝑜𝑠(𝜔0(r)𝑡)i𝑦
i′𝑧 = i𝑧

(2.7)

The magnetization in the rotating reference frame is then:

𝑀′𝑥 =M ⋅ i′𝑥 = 𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀𝑥 − 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀𝑦
𝑀′𝑦 =M ⋅ i′𝑦 = 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀𝑥 + 𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀𝑦
𝑀′𝑧 =M ⋅ i′𝑧 = 𝑀𝑧

(2.8)

Now in vector form:

𝑚 = [
𝑀𝑥
𝑀𝑦
𝑀𝑧
] 𝑚′ = [

𝑀′𝑥
𝑀′𝑦
𝑀′𝑧
] (2.9)

To transform to and from the rotating reference frame, the rotation matrix, 𝑅, is used.

𝑚′ = 𝑅𝑚
𝑚 = 𝑅𝑇𝑚′ (2.10)

𝑅 = [
𝑐𝑜𝑠(𝜔0(r)𝑡) 𝑠𝑖𝑛(𝜔0(r)𝑡) 0
−𝑠𝑖𝑛(𝜔0(r)𝑡) 𝑐𝑜𝑠(𝜔0(r)𝑡) 0

0 1
] (2.11)
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The components of the Bloch equation in the stationary frame are:

𝜕𝑀𝑥
𝜕𝑡 − 𝜔0(r)𝑀𝑦 +

1
𝑇2
= 0

𝜕𝑀𝑦
𝜕𝑡 + 𝜔0(r)𝑀𝑥 +

1
𝑇2
= 0

𝜕𝑀𝑧
𝜕𝑡 + 𝑀𝑧𝑇1

= 𝑀𝑒𝑞
𝑇1

(2.12)

In matrix form:

𝜕𝑚
𝜕𝑡 + 𝜔0(r) [

0 −1 0
1 0 0
0 0 0

]𝑚 +
⎡
⎢
⎢
⎢
⎣

1
𝑇2

0 0
1 1

𝑇2
0

0 0 1
𝑇1

⎤
⎥
⎥
⎥
⎦

𝑚 = [
0
0
𝑀𝑒𝑞
𝑇1

] (2.13)

Substitute 𝑚 = 𝑅𝑚′:

𝑅𝜕𝑚
′

𝜕𝑡 + 𝜕𝑅𝜕𝑡 𝑚
′ + 𝜔0(r) [

0 −1 0
1 0 0
0 0 0

]𝑅𝑚′ +
⎡
⎢
⎢
⎢
⎣

1
𝑇2

0 0
1 1

𝑇2
0

0 0 1
𝑇1

⎤
⎥
⎥
⎥
⎦

𝑅𝑚′ = [
0
0
𝑀𝑒𝑞
𝑇1

] (2.14)

Since:

𝜕𝑅
𝜕𝑡 + 𝜔0(r) [

0 −1 0
1 0 0
0 0 0

]𝑅 = 0 (2.15)

The system becomes:

𝑅𝜕𝑚
′

𝜕𝑡 +
⎡
⎢
⎢
⎢
⎣

1
𝑇2

0 0
1 1

𝑇2
0

0 0 1
𝑇1

⎤
⎥
⎥
⎥
⎦

𝑅𝑚′ = [
0
0
𝑀𝑒𝑞
𝑇1

] (2.16)

Premultiply by 𝑅𝑇:

𝜕𝑚′
𝜕𝑡 +

⎡
⎢
⎢
⎢
⎣

1
𝑇2

0 0
1 1

𝑇2
0

0 0 1
𝑇1

⎤
⎥
⎥
⎥
⎦

𝑚′ = [
0
0
𝑀𝑒𝑞
𝑇1

] (2.17)

The individual components of the system are:

𝜕𝑀′𝑥
𝜕𝑡 + 𝑀

′
𝑥
𝑇2

= 0

𝜕𝑀′𝑦
𝜕𝑡 +

𝑀′𝑦
𝑇2

= 0

𝜕𝑀′𝑧
𝜕𝑡 + 𝑀

′
𝑧
𝑇1
= 𝑀𝑒𝑞

𝑇1

(2.18)
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The solutions to the first­order partial differential equations are of the form:

𝑀′𝑥 = 𝐴𝑒(−𝑡/𝑇2)

𝑀′𝑦 = 𝐵𝑒(−𝑡/𝑇2)

𝑀′𝑧 = 𝐶𝑒(−𝑡/𝑇1) + (1 − 𝑒(−𝑡/𝑇1))𝑀𝑒𝑞
(2.19)

Using the initial conditions, the solution to the Bloch equation in the rotating reference frame be­
comes:

𝑀′𝑥 = 𝑀0𝑥𝑒(−𝑡/𝑇2)

𝑀′𝑦 = 𝑀0𝑦𝑒(−𝑡/𝑇2)

𝑀′𝑧 = 𝑀0𝑧 𝑒(−𝑡/𝑇1) + (1 − 𝑒(−𝑡/𝑇1))𝑀𝑒𝑞
(2.20)

In the stationary reference frame, the solution to the Bloch equation is (using equation 2.10):

𝑀𝑥 = 𝑒(−𝑡/𝑇2) [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑥 + 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑦]
𝑀𝑦 = 𝑒(−𝑡/𝑇2) [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑦 − 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑥 ]
𝑀𝑧 = 𝑀0𝑧 𝑒(−𝑡/𝑇1) + (1 − 𝑒(−𝑡/𝑇1))𝑀𝑒𝑞

(2.21)

2.2. Voltage Signal
After spending some time in the main magnetic field, the volume of interest enters a state of equilibrium
magnetization. An RF pulse forces the volume to leave this state, after which it will gradually return to
equilibrium. During this transition back to equilibrium, the precessing protons emit energy in the form
of EM waves. This results in a free induction decay (FID) signal which can be measured by the same
(or different) set of coils that transmitted the RF pulse.

The induced potential difference, 𝑉, is given by [18]:

𝑉(𝑡) = −∫
r∈𝔻

𝜕M(r, 𝑡)
𝜕𝑡 ⋅ B𝑟(r) 𝑑r

𝑉(𝑡) = −∫
r∈𝔻

(𝜕𝑀𝑥𝜕𝑡 𝐵𝑟,𝑥 +
𝜕𝑀𝑦
𝜕𝑡 𝐵𝑟,𝑦 +

𝜕𝑀𝑧
𝜕𝑡 𝐵𝑟,𝑧) 𝑑r

(2.22)

where B𝑟 is the received field. Using equation 2.21, the derivatives are:

𝜕𝑀𝑥
𝜕𝑡 = −1

𝑇2
𝑒(−𝑡/𝑇2) [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑥 + 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑦] + 𝜔0(r)𝑒(−𝑡/𝑇2) [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑦 − 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑥 ]

𝜕𝑀𝑦
𝜕𝑡 = −1

𝑇2
𝑒(−𝑡/𝑇2) [𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑥 + 𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑦] − 𝜔0(r)𝑒(−𝑡/𝑇2) [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑥 + 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑦]

𝜕𝑀𝑧
𝜕𝑡 = 1

𝑇1
𝑒(−𝑡/𝑇1) (𝑀𝑒𝑞 −𝑀0𝑧 )

(2.23)

Since 𝜔0(r) ≫
1
𝑇2
and 𝜔0(r) ≫

1
𝑇1
:

𝜕𝑀𝑥
𝜕𝑡 ≈ 𝜔0(r)𝑒(−𝑡/𝑇2) [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑦 − 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑥 ]
𝜕𝑀𝑦
𝜕𝑡 ≈ −𝜔0(r)𝑒(−𝑡/𝑇2) [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑥 + 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑦]
𝜕𝑀𝑧
𝜕𝑡 ≈ 0

(2.24)
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The voltage signal then becomes:

𝑉(𝑡) ≈ −∫
r∈𝔻

𝜔0(r)𝑒(−𝑡/𝑇2)( [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑦 − 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑥 ] 𝐵𝑟,𝑥

− [𝑐𝑜𝑠(𝜔0(r)𝑡)𝑀0𝑥 + 𝑠𝑖𝑛(𝜔0(r)𝑡)𝑀0𝑦] 𝐵𝑟,𝑦) 𝑑r
(2.25)

Now let 𝑀±0 = 𝑀0𝑥 ± 𝑗𝑀0𝑦 and 𝐵±𝑟 = 𝐵𝑟,𝑥 ± 𝑗𝐵𝑟,𝑦. The signal then takes the form:

𝑉(𝑡) ≈ 𝑗
2 ∫r∈𝔻

𝜔0(r)𝑒(−𝑡/𝑇2) (𝑒(−𝑗𝜔0(r)𝑡)𝑀+0 𝐵−𝑟,𝑥 − 𝑒(𝑗𝜔0(r)𝑡)𝑀−0 𝐵+𝑟,𝑥) 𝑑r (2.26)

The signal is then modulated and amplified, after which it is passed through a low­pass filter:

𝑉𝑚𝑜𝑑(𝑡) = 2𝑒(𝑗𝜔𝑚𝑜𝑑𝑡)𝑉(𝑡)

𝑉𝑚𝑜𝑑(𝑡) = 𝑗∫
r∈𝔻

𝜔0(r)𝑒(−𝑡/𝑇2) (𝑒(−𝑗(𝜔0(r)−𝜔𝑚𝑜𝑑)𝑡)𝑀+0 𝐵−𝑟,𝑥 − 𝑒(𝑗(𝜔0(r)+𝜔𝑚𝑜𝑑)𝑡)𝑀−0 𝐵+𝑟,𝑥) 𝑑r

𝑉𝐿𝑃𝐹(𝑡) = 𝑗∫
r∈𝔻

𝜔0(r)𝑒(−𝑡/𝑇2)𝑒(−𝑗Δ𝜔0(r)𝑡)𝑀+0 𝐵−𝑟,𝑥 𝑑r

(2.27)

with Δ𝜔0(r) = 𝜔0(r) − 𝜔𝑚𝑜𝑑.

2.3. Signal Structure
With the voltage model in hand, the signal structure can be derived. The received signal is of the form:

𝑆(𝑡) = ∫
r∈𝔻

𝜔0(r)𝑒−𝑡/𝑇2𝑒−𝑗Δ𝜔0(r)𝑡𝑀+0 𝐵−𝑟,𝑥 𝑑r (2.28)

The sensitivity of the receiver coil, 𝐵−𝑟,𝑥, is assumed to be spatially invariant, hence eliminating this
term from the integrand.

𝑆(𝑡) ∝ ∫
r∈𝔻

𝜔0(r)𝑒−𝑡/𝑇2𝑒−𝑗Δ𝜔0(r)𝑡𝑀+0 𝑑r (2.29)

In the presence of magnetic fields, the magnetization of the volume can be described with a spin
density map, 𝜌(r). The signal in terms of spin density is:

𝑆(𝑡) ∝ ∫
r∈𝔻

𝜌(r)𝑒−𝑡/𝑇2𝑒−𝑗Δ𝜔0(r)𝑡 𝑑r (2.30)

Ignoring transverse relaxation effects, the intermediate signal model becomes:

𝑆(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗Δ𝜔0(r)𝑡 𝑑r

𝑆(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)𝑡 𝑑r
(2.31)

2.3.1. Spatial Encoding
Gradient fields are linear fields in the x­, y­, and z­direction, produced by their respective coils. These
fields introduce spatial encoding in the acquired signal. The fields are defined as:

𝐺𝑥 =
𝜕𝐵𝑧
𝜕𝑥 𝐺𝑦 =

𝜕𝐵𝑧
𝜕𝑦 𝐺𝑧 =

𝜕𝐵𝑧
𝜕𝑧 (2.32)
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The frequency­encoded one­dimensional signal then becomes:

𝑆(𝑡) = ∫
𝑥∈𝔻

𝜌(𝑥)𝑒−𝑗𝛾Δ𝐵0(𝑥)𝑡𝑒−𝑗𝛾𝐺𝑥𝑥𝑡 𝑑𝑥 (2.33)

With the addition of phase encoding, the signal takes the form of:

𝑆(𝑡, 𝜏) = ∫
𝑥∈𝔻

∫
𝑦∈𝔻

𝜌(𝑥, 𝑦)𝑒−𝑗𝛾Δ𝐵0(𝑥,𝑦)𝑡𝑒−𝑗𝛾𝐺𝑥𝑥𝑡𝑒−𝑗𝛾𝐺𝑦𝑦𝜏 𝑑𝑦𝑑𝑥 (2.34)

Or equivalently, when the position is vectorized, the signal per phase encoding step becomes:

𝑆𝜏(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏 𝑑r (2.35)

The total signal in k­space notation is:

𝑆(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)𝑡𝑒−𝑗2𝜋k(𝑡)⋅r 𝑑r (2.36)

2.3.2. Discretization
The continues range of spatial points over which the signal is acquired can be transformed to a set of
discrete points, if the step size, Δr, is sufficiently small. This discretization leads to a signal that, for
every time sample, is a summation over the complete set of discrete spatial points. Hence, the signal
is rewritten as:

𝑆𝜏(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏 𝑑r

𝑆𝜏(𝑡) = lim
Δr−→0∑

r∈𝔻
𝜌(r)𝑒−𝑗𝛾Δ𝐵(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏 Δr

𝑆𝜏(𝑡) ∝ ∑
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏

(2.37)

2.3.3. Linear System
The acquired signal can be written as a set of linear equations. Per phase encoding step, the system
takes the form:

S𝜏 = 𝐸𝜏𝜌𝜌𝜌 (2.38)
Where the signal and original image are:

S𝜏 =
⎡
⎢
⎢
⎣

𝑆𝜏(𝑡0)
𝑆𝜏(𝑡1)
⋮

𝑆𝜏(𝑡𝑁−1)

⎤
⎥
⎥
⎦

𝜌𝜌𝜌 =
⎡
⎢
⎢
⎣

𝜌(𝑟0)
𝜌(𝑟1)
⋮

𝜌(𝑟𝑝−1)

⎤
⎥
⎥
⎦

(2.39)

with 𝑝 = 𝑀 ⋅ 𝑁 the total number of encoding points, 𝑀 the number of phase encoding steps, and 𝑁 the
number of readout samples per phase encoding step. The system matrix for one phase encoding step
is:

𝐸𝜏 =
⎡
⎢
⎢
⎣

𝑒−𝑗𝛾((Δ𝐵(𝑟0)+𝐺𝑥(𝑟0))𝑡0+𝐺𝑦(𝑟0)𝜏) ⋯ 𝑒−𝑗𝛾((Δ𝐵(𝑟𝑝−1)+𝐺𝑥(𝑟𝑝−1))𝑡0+𝐺𝑦(𝑟𝑝−1)𝜏)
𝑒−𝑗𝛾((Δ𝐵(𝑟0)+𝐺𝑥(𝑟0))𝑡1+𝐺𝑦(𝑟0)𝜏) ⋯ 𝑒−𝑗𝛾((Δ𝐵(𝑟𝑝−1)+𝐺𝑥(𝑟𝑝−1))𝑡1+𝐺𝑦(𝑟𝑝−1)𝜏)

⋮ ⋮ ⋱ ⋮
𝑒−𝑗𝛾((Δ𝐵(𝑟0)+𝐺𝑥(𝑟0))𝑡𝑁−1+𝐺𝑦(𝑟0)𝜏) ⋯ 𝑒−𝑗𝛾((Δ𝐵(𝑟𝑝−1)+𝐺𝑥(𝑟𝑝−1))𝑡𝑁−1+𝐺𝑦(𝑟𝑝−1)𝜏)

⎤
⎥
⎥
⎦

(2.40)

The total system matrix is then obtained by stacking the system matrix of each phase encoding
step.



3
Current Methods

The efficient fast Fourier transform (FFT), based on the algorithm introduced by Cooley et al., is the
classic approach for transforming an acquired signal to the spatial domain [20]. This method is suited
for recovering images when the main magnetic field is homogenious [21]. When the main magnetic
field displays strong inhomogeneities, the FFT method can lead to deformation in the recovered image
[16]. Hence, other techniques for image reconstruction are required.

As of this moment, there are several methods that attempt to correct for image distortion due to
field inhomogeneities. In this chapter, some of the existing methods will be discussed, both in terms of
advantages and short­comings.

3.1. Field Map
Existing image deformation correction methods currently depend on the field map of the 𝐵0 field. This
field map describes the field at every coordinate. Ideally, the main magnetic field is spatially invariant,
thus leading to a field map that is constant throughout the volume. However, due to inhomogeniety
in the 𝐵0 field, there is a spatial dependence in the field strength. An example of such a field map is
illustrated in Figure 3.1. Future field maps will be depicted in hertz.
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Figure 3.1: An example of a field map.
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In subsequent chapters, the field map will depict the difference between the field strength at any
point in the field of view (FoV), and the center field strength. That is:

Δ𝐵0(r) = 𝐵0(r) − 𝐵𝑐𝑒𝑛𝑡𝑒𝑟
Δ𝜔0(r) = 𝛾Δ𝐵0(r)

(3.1)

3.1.1. Phase Difference
Acquiring the field map can be achieved in two ways, mathematically or empirically. Mathematically,
the field inhomogeneities result in a shift in the readout direction. Recall the signal model:

𝑆𝜏(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏 𝑑𝑟 (3.2)

One possible method to obtain the field map, Δ𝐵(r), is by performing two scans on the same volume
[22]. In the second scan, a time­shift, 𝑡𝑠ℎ𝑖𝑓𝑡, is introduced in the readout gradient. Alternatively, a dual­
echo gradient echo scan can be employed to decrease the scanning time [23].

The signal of the second scan is described as:

𝑆2,𝜏(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)(𝑡+𝑡𝑠ℎ𝑖𝑓𝑡)𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏 𝑑𝑟 (3.3)

Once the signals have been transformed to the spatial domain, the field map can be found using
the phase difference in the two images.

𝑆1(𝜏, 𝑡)
ℱ−1−−−→ 𝐼1(r)

𝑆2(𝜏, 𝑡)
ℱ−1−−−→ 𝐼2(r)

(3.4)

Δ𝐵0(r) =
∠𝐼2 − ∠𝐼1
𝑡𝑠ℎ𝑖𝑓𝑡

(3.5)

Where 𝑆(𝜏, 𝑡) takes the form:

𝑆(𝜏, 𝑡) =

⎡
⎢
⎢
⎢
⎢
⎣

S𝑇𝜏0
S𝑇𝜏1
⋮

S𝑇𝜏𝑀−1

⎤
⎥
⎥
⎥
⎥
⎦

(3.6)

Though this method can quickly obtain the field map once both scans are complete, its accuracy is
susceptible to noise. In typical high­field scanners, the SNR is sufficient to generate field maps using
this method. Low­field scanners, on the other hand, have reduced SNR, leading to inaccurate field
maps using this approach.

There are several methods that attempt to alleviate field map inaccuracies. One such method,
developed by Funai et al. [24], usesmultiple scans, eachwith a unique time­shift in the readout gradient,
in conjunction with regularization. Alternatively, a basis of spherical harmonics can be employed to
obtain a noiseless field map of the initial, noisy field map estimate, as shown by Koolstra et al. [16].
This mitigates the need for more than two scans, thus not adversely affecting the total scan time.
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3.1.2. Empirical Measurements
While the performance of the aforementioned analytical method depends on the quality of the obtained
images, the empirical method does not. Empirically, the field map can be acquired using a gaussmeter
connected to a 3D positioning robot. This results in a field map that, depending on the gaussmeter, can
be an accurate representation of the actual field inside the bore. Though accurate, the measurements
only provide a snapshot of the current field map. Due to thermal effects, the field map varies over time,
eventually resulting in obsolete measurements. To reacquire the measurements during scanning with a
gaussmeter is infeasible, in part due to significant amount of time needed for each set of measurements,
as well as the presence of the imaging volume in the bore. Therefore, obtaining the field map through
the aforementioned mathematical method is preferential.

3.2. Conjugate Phase Reconstruction
After the field map has been acquired, the image distortion can be compensated in the reconstruction
process. There are several methods that attempt to correct the image distortion. One such method is
conjugate phase reconstruction (CPR). In the CPR approach, the inverse signal model is approximated
as:

𝜌𝑐𝑝(r) ≈ ∫
𝑇

0
𝑆(𝑡)𝑒𝑗𝛾Δ𝐵0(r)𝑡𝑒𝑗2𝜋k(𝑡)⋅r 𝑑𝑡 (3.7)

With 𝑇 the length of the readout interval.
This method reconstructs each pixel individually, leading to long computation times. To alleviate

this, Man et al. developed a multifrequency interpolation (MFI) technique that requires significantly
less computations [25]. In the proposed algorithm, only 𝐿 + 1 inverse FFTs are required, where 𝐿 is:

𝐿 > 8Δ𝐵𝑚𝑎𝑥𝑇 (3.8)

The recovered image is then a linear combination of the 𝐿 + 1 inverse FFTs:

𝜌(r) ≈
𝐿

∑
𝑖=0
𝑐𝑖(Δ𝐵(r))∫

𝑇

0
𝑆(𝑡)𝑒𝑗𝛾Δ𝐵0𝑖 𝑡𝑒𝑗2𝜋k(𝑡)⋅r 𝑑𝑡 (3.9)

In the case that the center frequency, Δ𝐵0𝐿/2 is zero, the coefficients, 𝑐𝑖(Δ𝐵(r)), can be taken to be
the 𝐿 + 1 lowest discrete Fourier transform (DFT) coefficients of 𝑒𝑗𝛾Δ𝐵0𝑡𝑘 .

3.3. Model­Based Reconstruction
While CPR provides a fast approximation for the reconstruction, MB reconstruction delivers more pre­
cise distortion correction. Unlike CPR, MB reconstruction does not rely on an approximation of the
inverse signal model. Instead, MB reconstructs the image using iterative algorithms.

In MB reconstruction, the linear system S = 𝐸𝜌𝜌𝜌 is considered. Here, the system matrix, 𝐸, is of
the form: 𝐸 ∈ ℂ𝑁2×𝑀2 , while the vectorized signal and image matrices take the form: S ∈ ℂ𝑁2×1 and
𝜌𝜌𝜌 ∈ ℂ𝑀2×1.

To obtain the unknown image 𝜌𝜌𝜌, minimization is employed. The minimization problem is of the form:

�̂�𝜌𝜌 = argmin
𝜌𝜌𝜌

‖𝐸𝜌𝜌𝜌 − S‖22 (3.10)

Due to the nature of the field inhomogeneities and presence of noise, the minimization problem is
often ill­posed. To counteract this, regularization in the form of a penalty term can be employed in the
cost function. One possible minimization formulation that includes regularization is:

�̂�𝜌𝜌 = argmin
𝜌𝜌𝜌

{𝜇2‖𝐸𝜌𝜌𝜌 − S‖22 +
𝜆
2 (‖∇𝑥𝜌𝜌𝜌‖1 + ‖∇𝑦𝜌𝜌𝜌‖1)} (3.11)
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This can be solved using, for example, the Split Bregman scheme.
Alternatively, Tikhonov regularization, which does not require an L1 norm minimization, can be

employed. The minimization problem with Tikhonov regularization takes the form:

�̂�𝜌𝜌 = argmin
𝜌𝜌𝜌

{‖𝐸𝜌𝜌𝜌 − S‖22 + ‖Γ𝜌𝜌𝜌‖
2
2}

Γ = 𝛼𝐼
(3.12)

where 𝐼 is the identity matrix and 𝛼 the regularization parameter.
There are a myriad of possible regularization schemes and iterative solvers. De Leeuw den Bouter

et al. [17] have investigated several of those regularizers and solvers.

3.3.1. With Compressed Sensing
Compressed sensing (CS) can be employed to reduce imaging time. In CS, a diagonal sampling matrix,
𝑅 ∈ ℝ𝑁2×𝑁2 , is introduced in the model. The minimization problem then becomes:

�̂�𝜌𝜌 = argmin
𝑚

{𝜇2‖𝑅𝐸𝜌𝜌𝜌 − S‖22 +
𝜆
2 (‖∇𝑥𝜌𝜌𝜌‖1 + ‖∇𝑦𝜌𝜌𝜌‖1)} (3.13)

3.4. Effectiveness of CPR and MB
Koolstra et al. [16] have investigated the effectiveness of the CPR and MB reconstruction methods on
both simulated and in vivo data. Figure 3.2 gives an overview of the reconstruction results, together
with the outcome of the FFT method.

Figure 3.2: The reconstruction results of the FFT, CPR, andMB techniques on a distorted Shepp­Logan phantom. Image adapted
from Koolstra et al. [16].

From Figure 3.2 it is apparent that both the CPR and MB methods are able to recover the original
shape of the phantom. Furthermore, the MBmethod is able to provides a more accurate reconstruction
of the pixel intensities compared to the CPR method.

3.5. Density Correction
Sekihara et al. [22] propose to correct for distortion by applying density correction to the acquired
image. The two­dimensional distorted image, 𝑆(𝑥′, 𝑦′), is of the form:

𝑆(𝑥′, 𝑦′) = 𝜌(𝑥, 𝑦)/𝑊(𝑥, 𝑦)
𝑥′ = 𝑥

𝑦′ = 𝑦 + Δ𝐵0(𝑥, 𝑦)𝐺𝑦

𝑊(𝑥, 𝑦) = 1 + 𝜕Δ𝐵0(𝑥, 𝑦)𝜕𝑦
1
𝐺𝑦

(3.14)
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The original image, 𝑆𝑟(𝐼, 𝐽), is then resolved using discrete pixel units 𝐼 and 𝐽 as follows:

𝑆𝑟(𝐼, 𝐽) = 𝑆𝑔(𝐼, 𝐽)𝑊(𝐼, 𝐽)

𝑊(𝐼, 𝐽) = 1 + Δ𝐵0(𝐼, 𝐽 + 1) − Δ𝐵0(𝐼, 𝐽)𝐺𝑦𝑝𝑦
𝑆𝑔(𝐼, 𝐽) = (1 − 𝜂)𝑆(𝐼, 𝐽′) + 𝜂𝑆(𝐼, 𝐽′ + 1)

𝜂 = ℎ − 𝐽′
𝐽′ = ⌊ℎ⌋

ℎ = 𝐽 + Δ𝐵0(𝐼, 𝐽)𝐺𝑦𝑝𝑦

(3.15)

Where 𝑝𝑦 is the pixel width in the y­direction.
Although this technique offers accurate image reconstruction, there is degradation in the SNR. This

is undesirable in the case of low­field imaging, where the SNR is already low.

3.6. Voxel Shift Correction
Both the CPR and MB methods attempt to correct the image distortion due to 𝐵0 field inhomogeneities;
their current formulation does not take into account other sources of field disturbances. Rather than
correcting for each individual component of field inhomogeneity in the signal model, the voxel shift
method directly translates the image voxels from their original location to their estimated location.

This method requires an accurate distortion map of the scanner. To that end, Doran et al. [26]
designed a custom three­dimensional phantom with orthogonal grids of fluid­filled rods. Once the dis­
tortion map is known, the original image is resolved by shifting the voxels by the amount prescribed by
the map. Figure 3.3 illustrates the degree of correction achieved using this method.
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Figure 3.3: A tube phantom scanned with aMRI scanner (top left) and a computed tomography scanner (top right) for comparison.
The corrected image (bottom left) and the difference between the reconstructed and original image (bottom right), using the voxel
shift correction technique are shown. Images adapted from Doran et al. [26].

The method proposed by Doran et al. is able to efficiently correct for large distortions (> 25mm)
[26]. There is, however, one drawback. When the field changes, due to either the use of a different
scanner or the usage of a time­varying field, a new distortion map is required.

3.7. Optimal Correction Method
With the low­field scanner currently in development, the field map of the scanner might change due to
updated components. Furthermore, thermal effects lead to a field map that gradually varies over time.
This makes the voxel shift method, which relies on an accurate distortion map, impractical, as it would
require a new distortion map for every scan.

Density correction, on the other hand, does not require a pre­computed distortion map. It does,
however, decrease the SNR.

CPR and MB methods do not suffer from the aforementioned drawbacks. Both are able to recover
the image, with MB reconstruction taking preference over CPR due to increased pixel intensity accu­
racy.

Thus, the work presented in the forthcoming chapters builds forth on techniques used in MB recon­
struction.



4
Two­Dimensional Reconstruction

This chapter investigates how current reconstruction methods perform on simulated and in vivo single­
slice MRI data. These methods are subsequently build into an iterative and a multi­slice framework.
Both the processing time and degree of distortion correction will be taken into account. Initially, the
simulated data will be noiseless, after which the effects of additive noise will be examined. Additionally,
the difference in utilizing a measured and estimated field map will be investigated.

4.1. Simulation Model
In this chapter, all reconstruction simulations are applied on a distorted Shepp­Logan phantom. The
distortion arises from 𝐵0 field inhomogeneities. The Shepp­Logan phantom, illustrated in Figure 4.1,
designed by L. A. Shepp and B. F. Logan [27], forms an ideal basis on which to perform MRI recon­
struction techniques. The phantom models the contrast present in in vivo images, utilizes symmetrical
shapes, and is free of noise. Hence, simulations with the parameters noted in Table 4.1, are done on
this phantom unless mentioned otherwise.
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Figure 4.1: The undistorted Shepp­Logan phantom.

Table 4.1: Simulation parameters for three­dimensional data. In reconstruction of two­dimensional data, the third dimension was
omitted.

Parameter Value
Readout Bandwidth 20 kHz
Field of View 225 × 225 × 225 mm3

Data Size 128 × 128 × 30
Resolution 1.75 × 1.75 × 7.50 mm3

17
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To simulate the incoming signal, the previously introduced signal model (Equation 4.1) is applied
on the phantom (𝜌(r)).

𝑆𝜏(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏 𝑑r (4.1)

The vectorized matrices are of the form mentioned in Table 4.2, where 𝑁 is the number of samples per
phase encoding step.

Table 4.2: Sizes of data matrices.

Data Form
r ℝ1×𝑁2

𝜌 ℝ𝑁2×1
Δ𝐵0 ℝ𝑁2×1
𝐺𝑥 ℝ𝑁2×1
𝐺𝑦 ℝ𝑁2×1

For simulations, the gradient fields are linear functions which model ideal MRI gradients. Figure 4.2
illustrates the gradient fields using the previously introduced parameters. In this work, the frequency
and phase encoding are in the x­ and y­direction respectively.
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Figure 4.2: The simulated gradient fields in the x­direction (left) and y­direction (right).

To distort the phantom, the field map in Figure 4.3 is applied to the signal. This field map represents
a realistic scenario for an off­center slice. The center field strength is subtracted from the field map,
after which it is converted to hertz.
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Figure 4.3: The field map used in the simulations (left) and the resulting distorted Shepp­Logan phantom (right).
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The resulting distorted phantom (Figure 4.3) is then obtained by applying a 2D FFT on the simulated
signal.

4.1.1. Sine­Bell Squared Filter
Currently, the data obtained with the low­field scanner is plagued with noise, which, due to the low
signal intensity, results in a less than ideal SNR.

To reduced the impact of low SNR on the reconstruction, a pre­processing step is introduced, in
which the signal is filtered to remove high­frequency components. One possible filter is the 2D sine­
bell squared filter illustrated in Figure 4.4. Mathematically, the filter is:

𝐻(𝑡, 𝜏) = 𝑠𝑖𝑛2 (𝜋𝑡𝑇𝑓
) 𝑠𝑖𝑛2 (𝜋𝜏𝑇𝑝

) (4.2)

with 𝑡 and 𝜏 the time steps of the frequency and phase encoding directions, and 𝑇𝑓 and 𝑇𝑝 the times to
complete a full set of frequency and phase encoding.

Figure 4.4: 2D Sine­Bell squared filter.

As part of the simulation process, the filter is also applied to the phantom data. This results in the
image in Figure 4.5.
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Pre-Processed Phantom
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Figure 4.5: The simulated distorted phantom before (left) and after (right) pre­processing.
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4.2. Reconstruction
From the previous section it is apparent that a 2D FFT is not capable of reproducing the undistorted
phantom, hence the methods in Chapter 3 have been developed.

4.2.1. CPR
Recall that the CPR method attempts to reconstruct the image by multiplying the conjugate phase with
the time domain signal. When discretized and written as a linear system, this becomes a Hermitian
transpose.

S = 𝐸𝜌𝜌𝜌
𝜌𝜌𝜌 ≈ 𝐸𝐻S (4.3)

Reconstructing the image with CPR in the absence of noise and with the original field map results
in a near perfect rendition of the original phantom. The reconstructed image is displayed in Figure 4.6.
The residual two­norm error, compared to the original phantom, is 0.4734. In the absence of noise,
CPR is able to recover a visually identical image compared to the original.
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Figure 4.6: The original phantom (left) and CP reconstructed phantom (right).

4.2.2. Model­Based
As mentioned in the previous chapter, the goal of MB reconstruction is to solve the inverse problem
𝐸x = y, where x is the original image and y the acquired MRI signal.

A myriad of solvers use the conjugate gradient (CG) method, developed by M.R. Hestenes and E.
Stiefel [28], as a basis. One such solver is the conjugate gradient least squares (CGLS) algorithm,
introduced by P. Sonneveld, which offers improved stability over CG [17], [29]. The CGLS method is
depicted in Algorithm 1.

In order for CG­based methods to converge, the system matrix, 𝐴, needs to be symmetric positive­
definite. To ensure this condition, the normal equations are introduced, which take the form:

𝐸𝐻𝐸x = 𝐸𝐻y
𝐴x = b (4.4)
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Algorithm 1: Conjugate Gradient Least Squares (CGLS)
Input: 𝐴 ∈ ℂ𝑀2𝑥𝑁2 , b ∈ ℂ𝑀2𝑥1,x0 ∈ ℂ𝑁

2𝑥1,𝑇𝑂𝐿 ∈ ℝ+, 𝑘𝑚𝑎𝑥 ∈ ℕ1
1 x0 = 0
2 𝜏0 = ‖𝐴x0 − b‖22
3 r0 = b− 𝐴x0
4 s0 = 𝐴r0
5 p0 = s0
6 𝑘 = 0
7 while 𝜏𝑘 > 𝑇𝑂𝐿 or 𝑘 < 𝑘𝑚𝑎𝑥 do
8 𝛼𝑘 =

⟨s𝑘 ,s𝑘⟩
⟨𝐴p𝑘 ,𝐴p𝑘⟩

9 x𝑘+1 = x𝑘 + 𝛼𝑘p𝑘
10 r𝑘+1 = r𝑘 − 𝛼𝑘𝐴p𝑘
11 s𝑘+1 = 𝐴𝐻r𝑘+1
12 𝛽𝑘 =

⟨s𝑘+1 ,s𝑘+1⟩
⟨s𝑘 ,s𝑘⟩

13 p𝑘+1 = s𝑘+1 + 𝛽𝑘p𝑘
14 𝜏𝑘+1 = ‖𝐴x𝑘+1 − b‖22
15 𝑘 = 𝑘 + 1
16 end

The ensuing reconstructions utilize a tolerance, 𝑇𝑂𝐿, and maximum number of iterations, 𝑘𝑚𝑎𝑥, of
𝑇𝑂𝐿 = 10−2 and 𝑘𝑚𝑎𝑥 = 100. A tolerance of 10−2 leads to adequate image recovery, while a lower or
higher tolerance might lead to an increase in computation time or a decrease in reconstruction accuracy
respectively.

Employing the CGLS algorithm in the reconstruction of the distorted, noiseless phantom, results in
the recovered image shown in Figure 4.7. The resulting image is similar to the image recovered using
the CPR method, and is visually identical to the original phantom. The residual error, compared to the
original phantom, is 0.1641.

Original Phantom

-100 -50 0 50 100

Position [mm]

-100

-50

0

50

100

P
o

s
it
io

n
 [

m
m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
.U

.

MB Reconstructed Phantom

-100 -50 0 50 100

Position [mm]

-100

-50

0

50

100

P
o

s
it
io

n
 [

m
m

]

0.1

0.2

0.3

0.4

0.5

0.6

A
.U

.

Figure 4.7: The original phantom (left) and MB reconstructed phantom (right).

4.3. Estimated Field Map
Thus far, the field map utilized in the reconstruction is the field map used to distort the phantom. In
practice, the original field map is unknown. However, as expressed in section 3.1.1, an estimate of the
field map can be made by exploiting the phase difference between two sets of images.
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4.3.1. Spherical Harmonics
Computing the field map through the use of phase shift leads to an estimation of the field strength over
the domain of the volume. MB algorithms, however, rely on a field map that extends over the complete
FoV. Moreover, a method that estimates the field map outside the imaging volume is required.

One approach to this obstacle is the use of spherical harmonics. In this method, the initial field map
(the estimate over the object domain), is fitted on a set of spherical harmonics, resulting in an estimate
of the field map over the complete FoV.

The exact mathematics behind spherical harmonics fall outside the scope of this thesis. Thus, an
in­house spherical harmonics Matlab code developed at the Leiden University Medical Center by Tom
O’Reilly is used in subsequent reconstructions. For more information on spherical harmonics in the
context of low­field MRI and image reconstruction, refer to the paper by Koolstra et al. [16].

4.4. Additive White Gaussian Noise
Real­world signals suffer from noisy measurements. Due to low signal power in low­field MRI systems,
noise is significantly more prevalent than in high­field scanners.

The noise in the real and imaginary components of the signal of the low­field scanner can be mod­
elled as zero­mean additive white Gaussian noise (AWGN). This can be inferred by considering the
measured signal outside the image domain. In the in vivo data set used in this thesis, the first few
slices are void of the imaged object, thus making them ideal for noise measurements. Appendix A
explains this in more detail. The measured noisy signal, 𝑆, thus takes the form:

𝑆 = 𝑋𝑅 + 𝑁𝑅 + 𝑗(𝑋𝐼 + 𝑁𝐼)
{𝑁𝑅 , 𝑁𝐼} ∼ 𝒩(0, 0.0014)

(4.5)

where 𝑋 is the noiseless signal and 𝑁 the AWGN.
With the addition of noise on the distorted phantom, the simulated reconstruction process represents

a more accurate picture of reconstruction of low­field MRI data.
The resulting simulation pipeline is depicted in Figure 4.8. With this pipeline, the recovered image

shown in Figure 4.9 is obtained.
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Prepare Phantom Data Pre-Processing Reconstruction

Field Map Estimation

Create Mask

IFFT

Figure 4.8: The simulation pipeline.
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Figure 4.9: The original phantom (left) and the MB recovered image (right), with distorted noisy phantom as input.

4.5. Reconstruction of Low­Field MRI Data
To validate the reconstruction algorithm, two sets of data obtained using the low­field scanner are recon­
structed. The first set comprises of 45 equally spaced tubes of sunflower oil, which, when recovered,
will indicate the degree of distortion correction. A second set of data will illustrate the effect of the
algorithm on an in vivo scan.

4.5.1. Tube Phantom
The tube phantom, depicted in Figure 4.10, presents distortion congruent with the simulated phantom
when recovered using the FFT method. Reconstruction with the MB algorithm, on the other hand,
returns the expected square array of tubes. This indicates that the MB method is able to accurately
correct for field inhomogeneities in a single­slice data set.
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Figure 4.10: A tube phantom (left) reconstructed using the FFT (middle) and MB (right) methods.

Before reconstruction, the field map is estimated. The field map based on the phase shift in the two
data sets of the tube phantom, together with the fit on a basis of spherical harmonics, are displayed in
Figure 4.11.
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Estimated Field Map Using Spherical Harmonics
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Figure 4.11: The estimated field map over the object domain (left) and imaging domain (right) using spherical harmonics.
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4.5.2. In Vivo
Reconstruction will ultimately be applied on in vivo data. To that end, the reconstruction algorithm is
tested on a slice of a brain scan. Figure 4.12 illustrates the distortion correction of the MB this method
on the data in comparison to the classical FFT method. Similar to reconstruction of the tube data set
and simulated phantom, MB recovery is able to correct the image distortion.
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Figure 4.12: The in vivo image recovered using FFT (left) and MB reconstruction (right).

4.6. Iterative Reconstruction
Post reconstruction of the two sets of in vivo data (one with, and one without a readout time­shift),
a new estimate of the field map can be realized. This new field map possesses enhanced accuracy
compared to the previous estimate, according to Koolstra et al. [16]. Through passing this field map to
the start of the pipeline and repeating reconstruction, an iterative MB method is achieved.

To verify this, the simulated phantom is reconstructed with this iterative framework. After every
iteration, the residual error is calculated. The resulting residual error plot is displayed in Figure 4.13.
From the figure it is apparent that a second iteration of reconstruction is beneficial to the results, while
three or more iterations do not contribute to an improved image.
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Figure 4.13: The residual error, calculated using the relative two­norm error between the reconstructed and the original image,
after each iteration of reconstruction. The zeroth iteration indicates the error between the FFT reconstructed and original image.
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4.7. Multi­Slice Reconstruction
Analogous to iterative reconstruction, the full three­dimensional data set can be recovered by sequen­
tially passing the individual slices of data through the system. Figure 4.14 displays a subset of slices
from the three­dimensional data, both pre­ and post­reconstruction.
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Figure 4.14: Two­dimensional FFT (top) and MB (bottom) multi­slice reconstruction of in vivo data.
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To obtain the in vivo data set used in reconstruction, the original signal was first transformed to
the spatial domain using a three­dimensional FFT. From this spatial data, leading and trailing slices
absent of in vivo data were omitted. A subset of equally spaced slices was then selected. Each slice
was transformed back to the time domain with a two­dimensional FFT, leading to a 128 × 128 × 30
multi­slice data set.

From visual inspection, it is apparent that the reconstruction system does indeed correct for the
image distortion. In the FFT reconstructed images, slice 25 and onward exhibit a visual artifact in the
form of a bright spot, which MB reconstruction is unable to correct. This artifact is likely caused by non­
linearities in the gradient fields, which are more pronounced near the edges of the imaging domain.
These non­linearities furthermore cause the MB method to inadequately correct the image distortion in
the last six slices.

Gradient correction might be able to relieve the problem, depending on whether or not the encoding
remains unique. Furthermore, transforming the two­dimensional multi­slice reconstruction algorithm to
a three­dimensional reconstruction system might improve the reconstruction.



5
Three­Dimensional Reconstruction

Two­dimensional reconstruction offers the ability to recover images on a slice­by­slice basis. While ef­
fective, the techniques that reconstruct the images are limited to data sets comprised of individual slices
of data. In certain cases, MRI systems perform volumetric scans, with concomitant three­dimensional
spatial encoding.

This chapter builds forth on the two­dimensional multi­slice reconstruction system. To that end, a
second phase encoding step is introduced, accompanied by a third gradient vector. Subsequently, the
effectiveness of three­dimensional reconstruction will be explored and compared to its two­dimensional
counterpart.

5.1. Slice Encoding
Thus far, the simulatedMRI data has been encoded using a frequency and a phase encoding step. With
the addition of a third dimension, a second phase encoding step becomes necessary. This encodes
the data along the slice direction.

The additional phase encoding step calls for a third gradient, 𝐺𝑧. Expanding the previously intro­
duced gradients, 𝐺𝑥 and 𝐺𝑦, over the three­dimensional FoV leads to gradient fields exhibited in Figure
5.1.

Figure 5.1: The gradient fields extended over the three­dimensional FoV.

27
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With the extra phase encoding step, the three­dimensional signal model becomes:

𝑆𝜏𝑝𝑒 ,𝜏𝑠𝑒(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏𝑝𝑒𝑒−𝑗𝛾𝐺𝑧(r)𝜏𝑠𝑒 𝑑r (5.1)

where 𝜏𝑠𝑒 represents the time step in the slice encoding direction.
Discretizing the signal model leads to a set of systemmatrices, where each systemmatrix describes

one phase encoding step. Stacking these matrices leads to a two­dimensional matrix which contains
the complete three­dimensional encoding information.

𝑆𝜏𝑝𝑒 ,𝜏𝑠𝑒(𝑡) = ∫
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵0(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏𝑝𝑒𝑒−𝑗𝛾𝐺𝑧(r)𝜏𝑠𝑒 𝑑r

𝑆𝜏𝑝𝑒 ,𝜏𝑠𝑒(𝑡) = lim
Δr−→0∑

r∈𝔻
𝜌(r)𝑒(−𝑗𝛾Δ𝐵(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏𝑝𝑒𝑒−𝑗𝛾𝐺𝑧(r)𝜏𝑠𝑒 Δr

𝑆𝜏𝑝𝑒 ,𝜏𝑠𝑒(𝑡) ∝ ∑
r∈𝔻

𝜌(r)𝑒−𝑗𝛾Δ𝐵(r)𝑡𝑒−𝑗𝛾𝐺𝑥(r)𝑡𝑒−𝑗𝛾𝐺𝑦(r)𝜏𝑝𝑒𝑒−𝑗𝛾𝐺𝑧(r)𝜏𝑠𝑒

S𝜏𝑝𝑒 ,𝜏𝑠𝑒 = 𝐸𝜏𝑝𝑒 ,𝜏𝑠𝑒𝜌𝜌𝜌

(5.2)

For one step in both the phase encoding directions, the system matrix has the following form:

𝐸𝜏𝑝𝑒 ,𝜏𝑠𝑒 =

⎡
⎢
⎢
⎣

𝑒−𝑗𝛾((Δ𝐵(𝑟0)+𝐺𝑥(𝑟0))𝑡0+𝐺𝑦(𝑟0)𝜏𝑝𝑒+𝐺𝑧(𝑟0)𝜏𝑠𝑒) ⋯ 𝑒−𝑗𝛾((Δ𝐵(𝑟𝑝−1)+𝐺𝑥(𝑟𝑝−1))𝑡0+𝐺𝑦(𝑟𝑝−1)𝜏𝑝𝑒+𝐺𝑧(𝑟𝑝−1)𝜏𝑠𝑒)
𝑒−𝑗𝛾((Δ𝐵(𝑟0)+𝐺𝑥(𝑟0))𝑡1+𝐺𝑦(𝑟0)𝜏𝑝𝑒+𝐺𝑧(𝑟0)𝜏𝑠𝑒) ⋯ 𝑒−𝑗𝛾((Δ𝐵(𝑟𝑝−1)+𝐺𝑥(𝑟𝑝−1))𝑡1+𝐺𝑦(𝑟𝑝−1)𝜏𝑝𝑒+𝐺𝑧(𝑟𝑝−1)𝜏𝑠𝑒)

⋮ ⋱ ⋮
𝑒−𝑗𝛾((Δ𝐵(𝑟0)+𝐺𝑥(𝑟0))𝑡𝑁−1+𝐺𝑦(𝑟0)𝜏𝑝𝑒+𝐺𝑧(𝑟0)𝜏𝑠𝑒) ⋯ 𝑒−𝑗𝛾((Δ𝐵(𝑟𝑝−1)+𝐺𝑥(𝑟𝑝−1))𝑡𝑁−1+𝐺𝑦(𝑟𝑝−1)𝜏𝑝𝑒+𝐺𝑧(𝑟𝑝−1)𝜏𝑠𝑒)

⎤
⎥
⎥
⎦
(5.3)

where 𝑝 is the total number of encoding points (𝑀 ⋅ 𝑁 ⋅ 𝐿).
With 𝑀 phase encoding steps, 𝑁 frequency encoding steps, and 𝐿 slice encoding steps, the total

encoding matrix takes the form: 𝐸 ∈ ℂ𝑀⋅𝑁⋅𝐿×𝑀⋅𝑁⋅𝐿. Meanwhile, the encoded signal and phantom take
the form S ∈ ℂ𝑀⋅𝑁⋅𝐿×1 and 𝜌𝜌𝜌 ∈ ℝ𝑀⋅𝑁⋅𝐿×1 respectively.

5.2. Simulation Parameters
To analyze the performance of three­dimensional reconstruction, the system is initially tested on a
simulated phantom. Similar to the two­dimensional situation, the Shepp­Logan phantom provides an
ideal basis for simulation. The three­dimensional phantom used henceforth, based on the Shepp­
Logan phantom, was created by Matthias Christian Schabel [30]. This phantom is illustrated in Figure
5.2. The accompanying simulation parameters are depicted in Table 4.1.
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Figure 5.2: The three­dimensional Shepp­Logan phantom, developed by Matthias Schabel [30].

5.3. Memory Constraint
In order to build the complete system matrix for an imaging volume of 128 × 128 × 30 data points,
a matrix of size 491520 × 491520 is required. At double precision, the matrix will occupy roughly
491520 ⋅ 491520 ⋅ 64 = 1.54 ⋅ 1013 bits = 1.93 TB. Working with a matrix of this size is infeasible for
most desktop computers, and thus poses a memory constraint.

The forward problem, which encompasses encoding of the phantom using the channel information
(the system matrix) to achieve a simulate MRI signal, can be solved by multiplying the system matrix
with the phantom data. Alternatively, the simulated signal can be obtained by sequentially multiplying
the individual rows of the systemmatrix with the phantom data. This nullifies the requirement of forming
the complete system matrix, and thus eliminates the memory constraint.

Antipodal to the forward problem is the inverse problem, where the scanned image is recovered
using estimated channel information and the time­domain signal. Analogous to the two­dimensional
situation, the inverse problem can be solved using methods such as CPR andMB reconstruction. While
CPR is able to recover the image employing individual rows of the system matrix, MB reconstruction
relies on the complete system matrix.

To ensure that MB reconstruction remains feasible, the time­domain signal is downsampled to a
workable size. On a computer with 16GB of RAM, the largest possible system matrix is approximately
44700 × 44700. Thus, unless otherwise mentioned, the downsampled dimensions of the time­domain
signal are 64 × 64 × 6, which satisfies the constraint.

With this memory constraint, the pipeline for three­dimensional simulation with MB reconstruction
changes slightly with respect to the two­dimensional pipeline with the addition of a downsampling step.

5.4. Filter
When processing in vivo MRI data, a filter is employed to combat the noise. For completeness, this step
is also included in the simulated reconstruction. The same filter is chosen as in the two­dimensional
scenario, and expanded to the three­dimensional FoV (Equation 5.4). This filter is illustrated in Figure
5.3.
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𝐻(𝑡, 𝜏𝑝𝑒 , 𝜏𝑠𝑒) = 𝑠𝑖𝑛2 (
𝜋𝑡
𝑇𝑓𝑒

) 𝑠𝑖𝑛2 (
𝜋𝜏𝑝𝑒
𝑇𝑝𝑒

) 𝑠𝑖𝑛2 (𝜋𝜏𝑠𝑒𝑇𝑠𝑒
) (5.4)

with 𝑡, 𝜏𝑝𝑒, and 𝜏𝑠𝑒 the time steps of the frequency, phase, and slice encoding directions, and 𝑇𝑓𝑒, 𝑇𝑝𝑒,
and 𝑇𝑠𝑒 the times to complete a full set of frequency, phase, and slice encoding.

Figure 5.3: Three­dimensional sine bell squared filter.

In addition to the noise reduction, this filter ensures that the edges of the k­space data are brought
to zero. This prevents discontinuity in the data when performing Fourier transforms.

5.5. Reconstruction
Following the steps from the pipeline in Figure 4.8 with the addition of a downsampling step, results in
the intermediate images displayed in Figure 5.4, which depicts the simulated distorted phantom and the
downsampled image, and Figure 5.5, which displays the FFT reconstructed image and the recovered
image, using MB reconstruction.
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Figure 5.4: The phantom after simulated distortion (left) and after downsampling (right).
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Figure 5.5: The recovered phantom using FFT (left) and one iteration of MB reconstruction (right).

While MB reconstruction is able to correct the image distortion, the ringing artifacts induced by
downsampling of the k­space data remain unchanged.

5.6. Additive White Gaussian Noise
For increased simulation accuracy, zero­mean Gaussian noise is introduced in the signal according to
the model presented in section 4.4 of the previous chapter. Reconstruction with the noisy signal leads
to the recovered volumetric image depicted in Figure 5.6.
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Figure 5.6: The recovered noisy phantom using FFT (left) and one iteration of MB reconstruction (right).

With the exception of noise in the recovered image, MB reconstruction leads to a visually identical
image compared to the noiseless scenario.

5.7. Alternative Reconstruction Method
Due to significant downsampling of the original image, ringing artifacts appear. Neither the filter nor
the reconstruction are able to alleviate this. To that end, a new reconstruction method that does not
employ downsampling, nor exceed the memory constraint, needs to be designed.

By dividing the complete system matrix into subsets, the maximum memory required per set can
be controlled. There are several methods to approach this subdivision, two of which are dismembering
the system into sets of rows or into sets of columns. The former leads to a set of underdetermined
systems, while the latter leads to a set of overdetermined systems. An underdetermined system has
either an infinite amount of solutions or no solution, while an overdetermined system might display
inconsistencies. Nevertheless, if a solution exists, CGLS is able to determine the optimal solution by
minimizing the least squares residual.
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In the case of column subdivision, the system takes the form shown in Equation 5.5, where 𝐸𝑖,𝑗 is
the i,j­th element of the total system matrix and 𝑃 the total number of time samples. The column width
is then determined based on the maximum amount of available virtual memory.

𝐸 =
⎡
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎣

𝐸0,0 𝐸0,1 ⋯
𝐸1,0 𝐸1,1 ⋯
𝐸2,0 𝐸2,1 ⋯
⋮ ⋮ ⋮

𝐸𝑃−1,0 𝐸𝑃−1,1 ⋯

⎤
⎥
⎥
⎥
⎦

⋯
⎡
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⎢
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⎣
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⎥
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⎥
⎦

⎤
⎥
⎥
⎥
⎦

(5.5)

The new three­dimensional reconstruction method now consists of sequentially generating subsets,
for which the normal equations are subsequently calculated, after which CGLS finds the least squares
solution for each subset. The recovered image is then, in the case of sets of columns, the concatenation
of the subset solutions.

Figure 5.7 displays the noisy phantom after reconstruction with the new method.
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Figure 5.7: A 128 × 128 × 30 noisy phantom recovered with the updated reconstruction method.

Visually, the reconstructed image closely resembles the original image. The ringing artifacts present
in the recovered 64 × 64 × 6 data set are now limited to the outer slices.
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To investigate the extend of subdivision of the system matrix on the complete solution, the relative
two­norm error for two reconstructed data sets has been calculated. In both sets, a 64 × 64 × 6 noisy
phantom is used as input. The first set is reconstructed without subdivision of the system matrix, while
the system matrix in the second set is divided into four subsets. Their respective errors are 1.1464
and 1.1512, which, together with visual inspection (see Figure 5.8), indicates that the new method is
sufficient at recovering the original images.
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Figure 5.8: A 64 × 64 × 6 phantom recovered using MB reconstruction with the full system matrix (left), and the subdivided
system matrix (right).

5.8. In Vivo Reconstruction
With the revised reconstruction system in hand, 128 × 128 × 30 in vivo data can now be recovered.
Figure 5.9 displays the reconstructed image in conjunction with FFT recovery.

Reconstruction of the in vivo data leads to a volumetric image in which the initial distortion is cor­
rected. Comparable to two­dimensional multi­slice reconstruction, the trailing slices are not accurately
corrected due to gradient non­linearities.
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Figure 5.9: Recovered in vivo images from a three­dimensional data set utilizing FFT reconstruction (top) and the proposed
algorithm (bottom).



6
Regularization

MB reconstruction relies on solving an inverse problem, which, in the presence of noise, is often ill­
posed. Slight variations in the input signal from, for example, a Gaussian noise source, can lead to an
unstable solution procedure.

To counteract instability, a regularizer is introduced in the inverse problem. This chapter focuses on
what form this regularizer takes and how it affects the results. Furthermore, a method for finding the
optimal regularization parameters is proposed.

6.1. Reconstruction Without Regularization
In the present two­dimensional reconstruction framework, CGLS is able to recover the image when the
tolerance is set to 10−2. When the tolerance is set to 10−4 for increased accuracy, the recovered image
displays reconstruction artifacts, as depicted in Figure 6.1. This is caused by noise, which causes CGLS
to converge to a non­optimal solution when the tolerance is too strict.
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Figure 6.1: Reconstructed noisy phantom with CGLS tolerance of 10−2 (left), and 10−4 (right).

Similarly, when the filter is omitted from the reconstruction process, CGLS fails to accurately recover
the original image. Hence, a regularizer is introduced.

6.2. Tikhonov Regularization
The current inverse problem constitutes solving the least squares minimization:

�̂�𝑥𝑥 = argmin
𝑥𝑥𝑥

‖𝐴𝑥𝑥𝑥 − b‖22 (6.1)

To reinforce stability in the output solution, a regularizer can be employed. One possible regular­
ization technique is Tikhonov regularization. Tikhonov regularization introduces a diagonal matrix with

35
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constant value to the system, which decreases the sensitivity of the output due to the input. The general
minimization problem then becomes:

�̂�𝑥𝑥 = argmin
𝑥𝑥𝑥

‖𝐴𝑥𝑥𝑥 − b‖22 + ‖Γ𝑥𝑥𝑥‖
2
2

Γ = 𝛼𝐼
𝛼 ∈ ℝ≥0

(6.2)

where 𝐼 is the identity matrix and 𝛼 the regularization constant.
Determining the optimum value of the regularization parameter, 𝛼, to use is integral to the solver. A

higher­than­optimal value for 𝛼 might annul the results, while a value close to or equal to zero reverts
the system to the unregularized scenario.

The regularization parameter can be found empirically by minimizing the 2­norm error between
the recovered image and the original image. Alternatively, when the original image is not available,
methods such as the L­curve can help find the optimal value for the regularization parameter [31]. The
L­curve compares the residual norm, ‖𝐴𝑥𝑥𝑥 − b‖2, with the solution norm, ‖𝑥𝑥𝑥‖2, where the solution is
found using Tikhonov regularization. The optimum value of 𝛼 is then located directly after the corner
of the L­curve. Here, both the residual error and solution norm are at a minimum. Figure 6.2 illustrates
the L­curve for the two­dimensional phantom data, recovered using MB reconstruction with Tikhonov
regularization.
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Figure 6.2: The L­curve for phantom data with identical SNR to in vivo data. Several values of 𝛼 have been labeled. The optimum
regularization parameter is located directly after the bend of the L­curve, at 𝛼 = 3.59. The CGLS tolerance is set to 10−4.

From Figure 6.2, the optimal regularization parameter for this scenario is determined to be 𝛼 = 3.59.
To verify this, the relative two­norm error between the reconstructed and original phantom has been
plotted in Figure 6.3. Indeed, the aforementioned optimal regularization parameter falls within the
acceptable range.
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Figure 6.3: The relative two­norm error between the reconstructed and original phantom. Several values of the regularization
parameter have been labeled.

Employing this optimal value, the reconstructed two­dimensional phantom is displayed in Figure
6.4. This leads to a visually identical image compared to unregularized reconstruction with tolerance
of 10−2.
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Figure 6.4: Reconstructed noisy phantom with CGLS tolerance of 10−2 without regularization (left), and 10−4 with optimal
Tikhonov regularization (right).

6.3. Optimal Regularization Parameter
In the former section, a regularization parameter was found that is optimal for the reconstruction of a
noisy two­dimensional Shepp­Logan phantom. This optimal parameter might not hold when performing
reconstruction on different phantoms or in vivo data. Finding the optimal parameter for each individual
scenario via, for example, the L­curve method, is a time­consuming task. An alternative time­efficient
method that automates this procedure is thus required.

As previously mentioned, regularization is necessary in part due to the noise present in the images.
This leads to the assumption that the optimal regularization parameter is correlated to the relative noise
power present in the image. If the regularization parameter is indeed inversely proportional to the SNR,
a function to determine the optimal parameter can be derived. To that end, the L­curves for varying
SNRs have been plotted in Figure 6.5.
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Figure 6.5: The L­curves for several different values of SNR. CGLS tolerance is set to 10−2.

The absence of a bend in the L­curves indicates that regularization hasminimal impact on the recon­
struction when CGLS tolerance is set to 10−2, regardless of SNR. This can be verified by considering
the residual error, illustrated in Figure 6.6.
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Figure 6.6: The residual error for varying SNR.
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Figure 6.7 confirms this result. In this figure, a single­slice of in vivo data has been reconstructed with
increasing regularization. The regularization has no beneficial effect on the result, and from iteration
14 and onward suppresses the output towards zero.
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Figure 6.7: Single­slice of in vivo data reconstructed with increasing regularization. The regularization parameter ranges loga­
rithmically from 10−10 to 1014.
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Performance

To assess the performance of the reconstruction algorithms, this chapter delves into the analytical
results. Two key factors to consider are the residual error and the processing time. Furthermore, the
effect of Tikhonov Regularization on the error will be investigated.

7.1. Residual Error
Thus far, the primary method for determining the effectiveness of the reconstruction algorithms was via
visual inspection. An empirical approach to analyzing the recovered images is essential in ascertaining
the performance.

In the case of simulated data, the original, undistorted image is available. This allows for error
calculations based on the residual error between the recovered and original image. One method to
determine the residual error is the relative two­norm error, which is determined as followed:

𝜖 =
‖�̂�𝜌𝜌 −𝜌𝜌𝜌‖2
‖𝜌𝜌𝜌‖2

(7.1)

Here, 𝜖 is the error, 𝜌𝜌𝜌 the original image, and �̂�𝜌𝜌 the recovered image.

7.2. Two­Dimensional Reconstruction
Employing the aforementioned error function, the performance of two­dimensional reconstruction on a
128 × 128 phantom can be analyzed. The error and processing times for the scenarios examined in
Chapter 4 are tabulated in Table 7.1.

Table 7.1: Two­norm reconstruction error and processing time for four scenarios of two­dimensional reconstruction after one
iteration, averaged over three repetitions. The processing time includes the time required for field map estimation, system matrix
construction, and image recovery, and excludes the time required for initialization and pre­processing. The phantom is of size
128 × 128.

Case Field Map Noise Regularization Two­Norm Processing
Error Time [s]

1 Original None No 0.21 17.74
2 Estimated None No 0.43 16.56
3 Estimated AWGN No 0.43 17.18
4 Estimated AWGN Yes 0.43 17.16

In the two­dimensional reconstruction, the type of field map used has the most significant impact on
the results. Utilizing the estimated field map, as opposed to the measured field map, leads to roughly
twice the two­norm error compared to the noiseless scenario. A second iteration of field map estimation
leads to a comparable error, though at the cost of additional processing time.
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7.3. Two­Dimensional Multi­Slice Reconstruction
Likewise, the empirical results for two­dimensional multi­slice reconstruction on a 128×128×30 phan­
tom are tabulated in Table 7.2.

Table 7.2: Two­norm reconstruction error and processing time of four scenarios of two­dimensional multi­slice reconstruction after
one iteration, averaged over three repetitions. The processing time includes the time required for field map estimation, system
matrix construction, and image recovery, and excludes the time required for initialization and pre­processing. The phantom has
a size of 128 × 128 × 30.

Case Field Map Noise Regularization Two­Norm Processing Processing Time
Error Time [s] per Slice [s]

1 Original None No 1.05 256.26 8.54
2 Estimated None No 1.04 253.87 8.46
3 Estimated AWGN No 1.24 277.22 9.24
4 Estimated AWGN Yes 1.24 279.02 9.30

Dissimilar to single­slice reconstruction, noise has the largest impact on the error and processing
time. Regularization, on the other hand, has no noticeable effect.

In the multi­slice reconstruction, the system matrix only needs to be constructed once, after which
it is updated with the field map of the slice being reconstructed. This almost halves the reconstruction
time per slice compared to single­slice reconstruction.

7.4. Three­Dimensional Reconstruction
The numerical results for three­dimensional reconstruction of a 128 × 128 × 30 phantom are tabulated
in Table 7.3.

Table 7.3: Two­norm reconstruction error and processing time of four scenarios of three­dimensional reconstruction after one
iteration, averaged over three repetitions. The processing time includes the time required for field map estimation, system matrix
construction, and image recovery, and excludes the time required for initialization and pre­processing. The phantom is of size
128 × 128 × 30. Recovery of the data set requires almost 7 hours of processing.

Case Field Map Noise Regularization Two­Norm Processing Processing Time
Error Time [s] per Slice [s]

1 Original None No 0.91 24911.87 830.40
2 Estimated None No 0.94 24903.15 830.10
3 Estimated AWGN No 0.94 24912.32 830.41
4 Estimated AWGN Yes 0.94 24923.57 830.79

Three­dimensional reconstruction requires significantly longer computation time per slice of data
compared to two­dimensional single­ and multi­slice. This is due to the scaling of the system matrix
with the size of the data set. A cubic data set of 𝑁×𝑁×𝑁 data points requires a system matrix with 𝑁6
points for three­dimensional reconstruction, while the same data set only needs a system matrix with
𝑁4 points when reconstructing with the two­dimensional multi­slice technique, due to the absence of a
third encoding direction.

Despite the increase in computation time, three­dimensional reconstruction is able to recover the
image with less error compared to multi­slice reconstruction.
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7.5. In Vivo Reconstruction
Dissimilar to reconstructed simulated phantoms, the residual error of recovered in vivo images cannot
be calculated due to the absence of the original image. Hence, Table 7.4 only depicts the processing
time for the various types of reconstruction.

Table 7.4: Processing time of in vivo reconstruction after one iteration, averaged over three repetitions. The processing time
includes the time required for field map estimation, system matrix construction, and image recovery, and excludes the time
required for initialization and pre­processing.

Type Field Map Regularization Processing Processing Time
Time [s] per Slice [s]

2D Measured No 18.15 18.15
2D Estimated No 18.53 18.53
2D Estimated Yes 18.65 18.65

2D Multi­Slice Measured No 490.63 16.35
2D Multi­Slice Estimated No 299.99 10.00
2D Multi­Slice Estimated Yes 297.47 9.92

3D Measured No 24933.92 831.13
3D Estimated No 24906.74 830.22
3D Estimated Yes 24908.76 830.29

The processing times for the in vivo data set are similar to that of the simulate phantom. On ex­
ception is the two­dimensional multi­slice reconstruction with measured field map. The reconstruction
algorithm required almost twice the time needed to recover the images in this scenario compared to
other scenarios of multi­slice reconstruction. The source of this increase is currently unknown and
needs to be investigated.

7.5.1. Comparison of 2D Multi­Slice and 3D Reconstruction
There is a significant difference between the two­dimensional multi­slice and three­dimensional re­
constructed in vivo data set. This is due to how each initial data set was created. While the three­
dimensional method utilized undersampling of the k­space data, the multi­slice technique used a subset
of the FFT reconstructed slices. In order to give a fair comparison, both methods are used to recon­
struct the same k­space undersampled data set. The resulting reconstructions are depicted in Figure
7.1.

The multi­slice reconstructed image displays higher contrast compared to the three­dimensional
counterpart. Additionally, a sharper image is achieved.

To analyze the effect of the reconstruction methods on the SNR, the SNR before and after recon­
struction are tabulated in Table 7.5. Here, the SNR is estimated by dividing the mean pixel intensity
inside the object domain with the standard deviation of pixel intensity outside the object domain.

Table 7.5: The SNR before reconstruction, after pre­processing, and after reconstruction.

2D Multi­Slice 3D
Before Reconstruction 2.18 1.98
After Pre­Processing 2.23 2.04
After Reconstruction 6.20 2.06

Contrary to initial assumption, the SNR of the reconstructed image is higher when reconstructed
with the multi­slice method compared to three­dimensional algorithm.

The results indicate that two­dimensional multi­slice reconstruction is more effective than three­
dimensional reconstruction, both in terms of processing time and SNR improvement.
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Figure 7.1: Recovered in vivo images utilizing multi­slice (top) and three­dimensional (bottom) reconstruction.
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7.6. Implementation on the Low­Field Scanner
The results presented in this chapter are obtained with a computer which has an Intel Core i5­4670K
CPU at 3.40 GHz, 16 GB of internal memory, and runs on 64­bit Windows 10 operating system.

Post development, the reconstruction algorithm was implemented on the computer responsible for
scanning. This system has an AMD Ryzen 5 3400G CPU at 3.70 Ghz, 32 GB of internal memory, and
runs on 64­bit Windows 10 operating system.

7.6.1. Code
Initial development of the algorithm was done in MATLAB due to its versatility. Due to the expensive
licence required to operate MATLAB, the algorithm was also written in Python. This ensures future
access to the code and is in line with other code written for the low­field scanner.

The main and reconstruction modules of the Python code can be found in Appendix B.

7.6.2. Processing Time
To evaluate the difference in reconstruction time between MATLAB and Python, a 64 × 64 × 10 data
set has been processed. The resulting computation times are displayed in Table 7.6 and visualized in
Figure 7.2.

Table 7.6: The processing time of a 64 × 64 × 10 in vivo data set in MATLAB and Python

Segment Processing Time Processing Time
in MATLAB [s] in Python [s]

Initialization 1.77 2.55
Pre­processing 0.01 0.77
Field map estimation 0.25 0.13
System matrix construction 87.53 345.72
Update system matrix 36.28 119.34
CGLS 41.64 198.85
Plotting 4.68 0.21
Total reconstruction time 168.08 676.54
Total program time 174.69 680.35
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Figure 7.2: The processing time of a 64 × 64 × 10 in vivo data set in MATLAB and Python.
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Python shows a significant increase in processing time compared to MATLAB, despite the recon­
struction parameters remaining unchanged. This might be due to MATLAB’s utilization of built­in func­
tions, which python lacks [32]. Nevertheless, Python will continue to be used in order to remain open­
source.

Preliminary analysis of the Python implementation on the scanner computer has shown that a sig­
nificant decrease in processing time is achieved, due to increased computational power and available
internal memory. A rough estimate indicates that a data set of size 128×128×30 can be reconstructed
in one to two hours. This is a 70 to 80 percent reduction in processing time compared to the previous
results.



8
Conclusion and Recommendations

In this thesis, the goal was to design and implement a reconstruction algorithm for three­dimensional
data sets from a low­field MRI scanner. Data sets from the low­field scanner that are reconstructed
using the classical FFT method contain distortion due to field inhomogeneities in the main magnetic
field. These inhomogeneities arise from factors such as an imperfect Halbach array. To counteract the
inhomogeneities, a map of the spatial variation in main magnetic field is required. With this field map,
a model can be build, which allows for reconstruction of the data through the inverse model. To solve
the inverse problem, CGLS was utilized.

Reconstruction was initially limited to two­dimensional data sets to analyse the efficacy and compare
the results with those obtained in an identical study by Koolstra et al. [16]. Subsequently, an iterative
framework was build. After each iteration, the field map is updated using themost recent reconstruction.
This new map is then used to obtain a more accurate reconstruction.

A similar framework was applied to a two­dimensional multi­slice data set. In this framework, the
individual slices are reconstructed sequentially. The resulting computation time per slice is roughly
halved compared to single­slice reconstruction. This is due to the lack of system matrix construction
at each iteration. The matrix only needs to be constructed once, after which it is updated with the field
map of the slice being reconstructed.

The next step was to introduce a third encoding direction in the system matrix to allow for three­
dimensional reconstruction. This resulted in a system matrix that required significantly more memory
than available on a conventional computer. To circumvent this problem, the system matrix is split into
sets of columns, which leads to a set of overdetermined systems. The concatenated results from the
individual sets lead to the reconstructed volumetric image.

From visual inspection, the single­ and multi­slice, as well as three­dimensional reconstruction are
able to counteract the distortion in the images of several data sets.

The exception to accurate distortion correction is the outer slices of the in vivo data set. Here,
gradient non­linearities are a non­negligable source of distortion. The current algorithm is limited to
correction of distortion due to field inhomogeneities in the 𝐵0 field, and is thus unable to correct other
types of distortion. In future work on this algorithm, alternative sources of distortion need to be consid­
ered.

On the computer system used for development and testing, reconstruction of a data set of size
128×128×30 requires roughly seven hours. This makes the algorithm infeasible for reconstruction of
multiple data sets on a daily basis. Preliminary results however, indicate that the computer on which
the algorithm is ultimately implemented is able to reconstructed the data sets in roughly one to two
hours. Nevertheless, the algorithm needs to be optimized for reconstruction of large data sets before
it can efficiently be utilized.

Thus, the proposed algorithm partially answers the original research question: How can image
distortion due to field inhomogeneities effectively be corrected in 3D imaging volumes? The
method is able to correct the image distortion, though requires additional work in order to reconstruct
data in a timely manner. This might be achieved by investigating how Python can most effectively
construct and utilize the system matrices.
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Furthermore, multi­slice reconstruction leads to a larger SNR gain compared to three­dimensional
recovery. Thus, two­dimensional multi­slice reconstruction is currentlymore effective than three­dimensional
reconstruction. This might in part be due to subdivision of the system matrix. Hence, in future work,
the effect of matrix subdivision of the SNR needs to be examined.



A
Noise Model

Gaining a deeper understanding of the noise present in the in vivo data can lead to an improved sim­
ulation model. To that end, this chapter of the appendix will investigate how the noise behaves, and
from that, create a noise model.

A.1. In Vivo Data
The complete in vivo data set consists of 128×128×50 data points. This k­space data set is transformed
to the spatial domain by means of an FFT. The tailing slices are then disregarded due to unwanted
artifacts (see Figure A.1). Following this, the data is normalized, after which the leading 16 slices are
isolated. These isolated slices are absent of in vivo data, and thus solely contain noise.
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Figure A.1: Complete in vivo data set (left) and normalized susbet of in vivo data (right).

A.2. Probability Distribution
To visualize the distribution of noise, the noise histogram in Figure A.2 has been created. A Gaussian
probability distribution has been fitted to the data and plotted alongside the histogram. The mean and
standard deviation of the Gaussian probability density function (PDF) respectily, are 𝜇 = 0.1580 and
𝜎 = 0.0947.

Though less common, a more accurate fit for the PDF is the Rician distribution. The PDF of the
Rician distribution is described as:

𝑓(𝑥|𝑠, 𝜎) = 𝑥
𝜎2 𝑒

(−(𝑥
2+𝑠2)
2𝜎2 )

𝐼0 (
𝑥𝑠
𝜎2 ) (A.1)
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50 A. Noise Model

where 𝐼0(𝑧) is the modified Bessel function.

The parameters of the best­fit Rician distribution are 𝑠 = 0.0014 and 𝜎 = 0.0380. Figure A.2
illustrates the noise distribution in conjunction with a best­fit Guassian and Rician distribution.

Figure A.2: Probability distribution of the noise. The solid line is a best­fit Gaussian distribution, while the dotted line is a best­fit
Rician distribution

Alternatively, complex noise can be simulated, which more accurately represents noise in MRI data.
The Rician distribution of noise on the magnitude of the signal suggests that the individual real and
imaginary signal components contain AWGN [33]. In the aforementioned noise data, the mean and
standard deviation of the real and imaginary data are approximated as: 𝜇𝑅 = 𝜇𝐼 ≈ 0 and 𝜎𝑅 = 𝜎𝐼 ≈
0.0379.



B
Python Code

In this appendix, the main and reconstruction code module can be found. Note that both sets of code
require additional functions that are not displayed here.

1 import numpy as np
2 import ma t p l o t l i b . pyp lo t as p l t
3 import t ime
4 import sc ipy . f f t as f f t
5 from Code . get_data_package import get_data , save_data
6 from Code . down_sample_k_space_package import down_sample_k_space
7 from Code . pr in t_est_recon_t ime_package import pr in t_es t_ recon_ t ime
8 from Code . pre_process_data_package import pre_process_data
9 from Code . field_map_package import spher ica l_harmonics
10 from Code . reconst ruct ion_package import r econs t r uc t i on
11 from Code . colormap_package import get_color_map
12
13 # Show or hide f i g u r e s o f i n te rmed ia te steps
14 # 0: Hide p l o t s
15 # 1: Show p l o t s
16 debug_plots = 1
17
18 # Time in te rmed ia te steps f o r debugging
19 # 0: Don ’ t t ime
20 # 1: Time
21 debug_time = 1
22
23 # Au tomat i ca l l y save data i n f o l d e r ’ Reconstructed ’
24 # 0: Don ’ t save recons t ruc ted data
25 # 1: Save recons t ruc ted data
26 save_data_bool = 1
27
28 # Locat ion and name of saved data
29 save_name = ’ Reconstructed / recon . csv ’
30
31 # Locat ion o f data sets
32 l o ca t i o n = [None ] * 2
33 l o ca t i o n [ 0 ] = ’ . . / Data /201001�B0�bre in�SNR/201001�B0�bre in�SNR/103 ’ # Locat ion o f data set 1
34 l o ca t i o n [ 1 ] = ’ . . / Data /201001�B0�bre in�SNR/201001�B0�bre in�SNR/104 ’ # Locat ion o f data set 2
35
36 num_iter = 1 # Number o f ou ter i t e r a t i o n s to perform to f i n d B0
37 M = 64 # Number o f samples i n phase encoding d i r e c t i o n ( y )
38 N = 64 # Number o f samples i n readout encoding d i r e c t i o n ( x )
39 L = 10 # Number o f samples i n s l i c e encoding d i r e c t i o n ( z )
40
41 alpha = 10**2 # Regu la r i za t i on parameter
42
43 parula_map = get_color_map ( ) # MATLAB− l i k e colormap
44
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45 if __name__ == ’ __main__ ’ :
46 t i c _ t o t a l = t ime . per f_counter ( )
47 t ic_temp = t ime . per f_counter ( )
48
49 print( ’ I n i t i a t i n g . . . ’ )
50
51 print( ’ Reading�data ’ )
52
53 # Read the data
54 data = get_data ( l o ca t i o n )
55
56 # Load parameters
57 from parameters import bandwidth as BW
58 from parameters import dwellTime as td
59 from parameters import echoSh i f t as t s
60 from parameters import plane
61
62 # Adjus t sca le o f parameters
63 BW = BW * 1000
64 td = td * 10**( −6)
65 t s = t s * 10**( −6)
66
67 # Downsample data
68 S1 = down_sample_k_space ( data [ 2 ] , M, N, L )
69 S2 = down_sample_k_space ( data [ 3 ] , M, N, L )
70
71 # FFT recons t ruc ted images before f i l t e r i n g
72 m1 = np . f l i p ( f f t . f f t s h i f t ( f f t . i f f t n (S1) ) ,1 )
73 m2 = np . f l i p ( f f t . f f t s h i f t ( f f t . i f f t n (S2) ) ,1 )
74
75 t ime_ i n i t = t ime . per f_counter ( ) − t ic_ temp # I n i t i a l i z a t i o n t ime
76 t ic_temp = t ime . per f_counter ( )
77
78 pr in t_es t_ recon_ t ime (M, N, L , num_iter )
79 print( f ’ Reconst ruc t ion�w i l l�make�{ num_iter :�d }�i t e r a t i o n ( s ) . ’ )
80
81 print( ’ Pre−processing�data ’ )
82
83 # F i l t e r data
84 S1F i l t = pre_process_data (S1)
85 S2F i l t = pre_process_data (S2)
86
87 # FFT recons t ruc ted images a f t e r f i l t e r i n g
88 m1Fi l t = np . f l i p ( f f t . f f t s h i f t ( f f t . i f f t n ( S1F i l t ) ) , 1)
89 m2F i l t = np . f l i p ( f f t . f f t s h i f t ( f f t . i f f t n ( S2F i l t ) ) , 1)
90
91 t ime_pre_proc = t ime . per f_counter ( ) − t ic_ temp # Pre−processing t ime
92 t ic_temp = t ime . per f_counter ( )
93
94 # Est imate f i e l d map
95 print( ’ Apply ing�sphe r i ca l�harmonics ’ )
96 df0SH = spher ica l_harmonics ( m1Fi l t , m2Fi l t , t s )
97
98 t ime_f ie ld_map = t ime . per f_counter ( ) − t ic_temp # F ie l d map es t ima t ion t ime
99 t ic_temp = t ime . per f_counter ( )
100
101 # Apply r econs t r uc t i on
102 print( ’ S t a r t i n g�recons t r uc t i on ’ )
103 ( pRec1 , pRec2 , time_pcg , time_sysmat , t ime_update_sysmat ) = recons t r uc t i on ( m1Fi l t , m2Fi l t

, S1F i l t , S2F i l t , df0SH , BW, num_iter , ts , plane , debug_plots , alpha )
104
105 pRec1 = np . f l i p ( pRec1 , 1)
106 pRec2 = np . f l i p ( pRec2 , 1)
107
108 time_recon = t ime . per f_counter ( ) − t ic_ temp
109 t ic_temp = t ime . per f_counter ( )
110
111 # Prepare p l o t s ( s im i l a r e to montage ( ) i n MATLAB)
112 num_plots = pRec1 . shape [ 2 ]
113 rows_plots = int( np . c e i l ( np . sq r t ( num_plots ) ) )
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114 counter = 0
115
116 # P lo t MB recons t ruc ted images
117 f i g , axs = p l t . subp lo ts ( rows_plots , rows_plots )
118 for i in range( rows_plots ) :
119 for j in range( rows_plots ) :
120 if counter < num_plots :
121 axs [ i , j ] . imshow ( np .abs( pRec1 [ : , : , counter ] ) , cmap= ’ gray ’ )
122 counter += 1
123
124 t ime_p lo t = t ime . per f_counter ( ) − t ic_temp
125
126 # Save recons t ruc ted images
127 if save_data_bool == 1:
128 save_data ( pRec1 , save_name )
129
130 # Disp lay processing t ime
131 t ime_process = t ime . per f_counter ( ) − t i c _ t o t a l
132 print( f ” Took�{ t ime_process : 0 . 4 f }�seconds ” )
133 print( ’Done ’ )
134
135 if debug_time == 1:
136 print( ’ \ n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
137 print( f ’ Processing�Times�( {M: d } x {N: d } x { L : d } ,�{ num_iter : d }�i t e r a t i o n ( s )�\ n ’ )
138 print( f ’ I n i t i a l i z a t i o n :�{ t ime _ i n i t :�.2 f } s ’ )
139 print( f ’ Pre−processing :�{ t ime_pre_proc :�.2 f } s ’ )
140 print( f ’ F i e l d�map�es t ima t i on :�{ t ime_f ie ld_map :�.2 f } s ’ )
141 print( f ’ System�mat r i x�cons t r uc t i on :�{ time_sysmat :�.2 f } s ’ )
142 print( f ’ Update�system�mat r i x :�{ time_update_sysmat :�.2 f } s ’ )
143 print( f ’PCG:�{ time_pcg :�.2 f } s ’ )
144 print( f ’ P l o t t i n g :�{ t ime_p lo t :�.2 f } s ’ )
145 print( f ’ To ta l�recons t r uc t i on�t ime :�{ t ime_recon :�.2 f } s ’ )
146 print( f ’ To ta l�program�time :�{ t ime_process :�.2 f } s ’ )
147 print( ’ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )

Listing B.1: The main Python code module used to execute the reconstruction pipeline.
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1 import numpy as np
2 import ma t p l o t l i b . pyp lo t as p l t
3 import sc ipy . sparse as sp
4 import sc ipy . sparse . l i n a l g as l a
5 import sc ipy . op t im ize as op
6 import t ime
7 import mul t i p rocess ing as mp
8 from sys import e x i t
9 from p s u t i l import vir tual_memory
10 from Code . field_map_package import *
11 from Code . colormap_package import *
12 from Code . field_map_package import *
13
14
15 def r econs t r uc t i on (m1, m2, S1 , S2 , df0 , bw, num_iter , ts , plane , debug_plots , alpha ) :
16 time_pcg = 0
17 time_sysmat = 0
18 time_update_sysmat = 0
19 (m, n , l ) = S1 . shape
20
21 # Determine the number o f sets to d i v i de the system mat r i x i n t o based on ava i l ab l e RAM
22 mem_avail = v i r tual_memory ( ) . t o t a l # V i r t u a l memory ava i l ab l e
23 mem_avail = mem_avail / 8 # Set margin
24 mem_total = ( (m * n * l ) ** 2) * 16 # To ta l memory needed f o r complete system mat r i x
25
26 if mem_total >= mem_avail :
27 mem_per_col = (m * n * l ) * 16 # Memory needed per column of the system mat r i x
28 num_cols = int( mem_avail / mem_per_col ) # Maximum number o f rows to handle per loop
29 if num_cols < 1:
30 print( ’ System�i s�to�la rge�to�recons t ruc t . ’ )
31 e x i t ( )
32
33 num_sets = int( np . c e i l ( (m * n * l ) / num_cols ) ) # Number o f sets to d i v i de system

mat r i x i n t o
34
35 # Determine order o f sets
36 O = order ( num_sets )
37 else:
38 num_sets = 1
39 num_cols = m * n * l
40 O = np . ar ray ( [ 0 ] )
41
42 print( f ’ The�system�w i l l�be�s p l i t�i n t o�{ num_sets : d }�set ( s ) ,�wi th�each�{ num_cols : d }�column (

s ) . ’ )
43
44 parula_map = get_color_map ( ) # Colormap f o r p l o t s ( based on de f au l t Matlab colormap )
45
46 df0SH = df0
47 df0 = np . r ea l ( to_1D ( df0 ) . T )
48 S1 = to_1D (S1)
49 S2 = to_1D (S2)
50
51 # Err = norm_err ( p , m1)
52 (Gx, Gy, Gz, Tx , Ty , Tz ) = c rea te_grad ien ts (m, n , l , bw)
53
54 global A
55 global a
56 a = alpha **2
57
58 mask = make_mask (m1)
59 df0_mask = est imate_f ie ld_map (m1, m2, t s )
60 df0_mask [mask == 0] = 0
61
62 # Prepare p l o t s ( s im i l a r e to montage ( ) i n MATLAB)
63 num_plots = l
64 rows_plots = int( np . c e i l ( np . sq r t ( num_plots ) ) )
65
66 # P lo t MB recons t ruc ted images



55

67 f i g , axs = p l t . subp lo ts ( rows_plots , rows_plots )
68
69 # Perform outer i t e r a t i o n s t ha t update B0 est imate
70 for counter in range( num_iter ) :
71 print( f ’ I t e r a t i o n�{ ( counter�+�1) : d }�of�{ ( num_iter ) : d } ’ )
72
73 p_rec_1 = np . zeros ( (m * n * l , 1) , dtype= ’ c8 ’ )
74 p_rec_2 = np . zeros ( (m * n * l , 1) , dtype= ’ c8 ’ )
75
76 t i c_ t ime_rema in ing = t ime . per f_counter ( )
77
78 # Sequen t i a l l y run through subsets o f the system mat r i x
79 for set_count in range( num_sets ) :
80 col_count = O[ set_count ]
81
82 co l_coun t_s ta r t = int( num_cols * col_count )
83 if set_count == num_sets :
84 col_count_stop = int(m * n * l )
85 else:
86 co l_count_stop = int( num_cols * ( co l_count + 1) )
87
88 print( f ’ Set�{ ( set_count�+�1) : d }�of�{ num_sets } ’ )
89
90 # Update t ime est imate every set
91 if np .mod ( ( set_count + 1) , 1) == 0 and set_count > 0 :
92 t ime_remaining = ( ( t ime . per f_counter ( ) − t i c_ t ime_rema in ing ) / set_count ) * (

num_sets − set_count )
93 t ime_remaining_hour = int( t ime_remaining / 3600)
94 t ime_remaining −= t ime_remaining_hour * 3600
95 time_remaining_min = int( t ime_remaining / 60)
96 t ime_remaining −= time_remaining_min * 60
97 t ime_remaining_sec = int( t ime_remaining )
98 print( f ’ Est imated�t ime�remaining :�{ t ime_remaining_hour :�d }h ,�{

t ime_remaining_min :�d }m,�{ t ime_remaining_sec :�d } s ’ )
99
100 t i c = t ime . per f_counter ( )
101 E = make_system_matrix ( co l_coun t_s ta r t , col_count_stop , Gx, Gy, Gz, Tx , Ty , Tz )
102 time_sysmat = time_sysmat + ( t ime . per f_counter ( ) − t i c )
103
104 t i c = t ime . per f_counter ( )
105 A = update_system_matrix (E, df0 , co l_coun t_s ta r t , col_count_stop , Tx )
106 time_update_sysmat = time_update_sysmat + ( t ime . per f_counter ( ) − t i c )
107
108 del E
109
110 t i c = t ime . per f_counter ( )
111 p_rec_1_temp , p_rec_2_temp = recon (S1 , S2 , A, co l_coun t_s ta r t , col_count_stop ,

counter , num_iter )
112 time_pcg = time_pcg + ( t ime . per f_counter ( ) − t i c )
113
114 del A
115
116 p_rec_1 [ co l _coun t_s ta r t : co l_count_stop ] = p_rec_1_temp
117 p_rec_2 [ co l _coun t_s ta r t : co l_count_stop ] = p_rec_2_temp
118
119 if debug_plots == 1:
120 # Show in te rmed ia te p l o t s
121 temp = to_3D ( p_rec_1 , m, n , l )
122
123 f i g , axs = p l t . subp lo ts (2 , 2)
124 cs1 = axs [0 , 0 ] . imshow ( np .abs(m1 [ : , : , int( l / 2 ) ] ) , cmap= ’ gray ’ )
125 f i g . co lo rba r ( cs1 , ax=axs [0 , 0 ] )
126 cs2 = axs [0 , 1 ] . imshow ( np . r ea l ( df0_mask [ : , : , int( l / 2 ) ] ) , cmap=parula_map ,

vmin=−1500, vmax=1500)
127 f i g . co lo rba r ( cs2 , ax=axs [0 , 1 ] )
128 cs3 = axs [1 , 0 ] . imshow ( np . f l i p ( np .abs( temp [ : , : , int( l / 2 ) ] ) , 1) , cmap= ’ gray ’ )
129 f i g . co lo rba r ( cs3 , ax=axs [1 , 0 ] )
130 cs4 = axs [1 , 1 ] . imshow ( np . f l i p ( np . r ea l ( df0SH [ : , : , int( l / 2 ) ] ) , 1) , cmap=

parula_map , vmin=−1500, vmax=1500)
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131 f i g . co lo rba r ( cs4 , ax=axs [1 , 1 ] )
132 p l t . show ( )
133
134
135 p_rec_1 = to_3D ( p_rec_1 , m, n , l )
136 p_rec_2 = to_3D ( p_rec_2 , m, n , l )
137
138 df0 = spher ica l_harmonics ( p_rec_1 , p_rec_2 , t s )
139
140 return p_rec_1 , p_rec_2 , time_pcg , time_sysmat , t ime_update_sysmat
141
142
143 def recon (S1 , S2 , E, coun t_s ta r t , count_stop , counter , num_iter ) :
144 t o l = np . f loa t_power (10 , −2)
145 max_i ter = 100
146
147 x0 = np . zeros ( ( count_stop − coun t_s ta r t , 1) , dtype= ’ complex ’ )
148
149 b1 = np . reshape ( ( np . con j (E . T ) @ S1) , ( −1 , 1) )
150 b2 = np . reshape ( ( np . con j (E . T ) @ S2) , ( −1 , 1) )
151
152 fun = la . L inearOperator ( ( b1 . shape [ 0 ] , b1 . shape [ 0 ] ) , f )
153 p_rec_1 = la . cgs ( fun , b1 , x0 , t o l , max_i ter )
154
155 if counter != num_iter :
156 p_rec_2 = la . cgs ( fun , b2 , x0 , t o l , max_i ter )
157 else:
158 p_rec_2 = np . zeros ( p_rec_1 [ 0 ] . shape )
159
160 return np . reshape ( p_rec_1 [ 0 ] , ( −1 , 1) ) , np . reshape ( p_rec_2 [ 0 ] , ( −1 , 1) )
161
162
163 def f ( v ) :
164 return ( np . con j (A . T ) @ np . reshape ( (A @ v ) , ( −1 , 1) ) ) + np . reshape ( ( a * v ) , ( −1 , 1) )
165
166
167 def update_system_matrix (E, df0 , coun t_s ta r t , count_stop , Tx ) :
168 df0 = np . reshape ( df0 [0 , coun t_s ta r t : count_stop ] , (1 , −1) )
169 Aw = np . exp(−1 j * 2 * np . p i * ( Tx @ df0 ) )
170 A = Aw * E
171
172 return A
173
174
175 def make_system_matrix ( coun t_s ta r t , count_stop , Gx, Gy, Gz, Tx , Ty , Tz ) :
176 gx = np . reshape (Gx[0 , coun t_s ta r t : count_stop ] , (1 , −1) )
177 gy = np . reshape (Gy[0 , coun t_s ta r t : count_stop ] , (1 , −1) )
178 gz = np . reshape (Gz[0 , coun t_s ta r t : count_stop ] , (1 , −1) )
179
180 AGx = np . exp(−1 j * 2 * np . p i * ( Tx @ gx ) )
181 AGy = np . exp(−1 j * 2 * np . p i * ( Ty @ gy ) )
182 E = AGx * AGy
183 del AGx
184 del AGy
185 AGz = np . exp(−1 j * 2 * np . p i * ( Tz @ gz ) )
186 E = E * AGz
187
188 return E
189
190
191 def c rea te_grad ien ts (m, n , l , bw) :
192 td = 1 / bw # Time step ( x ) [ s ]
193 tpeyd = td # Phase step ( y ) [ s ]
194 tpezd = td # S l i ce step ( z ) [ s ]
195
196 # Generate g rad ien ts
197 Gx = np . l i nspace (−bw / 2 , bw / 2 , n + 1)
198 Gx = Gx[ : −1 ] # Remove l a s t element
199 Gy = np . l i nspace (−bw / 2 , bw / 2 , m + 1)
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200 Gy = Gy[ : −1 ] # Remove l a s t element
201 Gz = np . l i nspace (−bw / 2 , bw / 2 , l + 1)
202 Gz = Gz[ : −1 ] # Remove l a s t element
203
204 # Expand over 2D sur face
205 Gx2 = np . ones ( (m, 1) ) * Gx
206 Gy2 = np . ones ( ( n , 1) ) * Gy
207 Gz2 = np . ones ( ( n , 1) ) * Gz
208
209 # Expand over 3D volume
210 Gx3 = np . moveaxis ( np . t i l e (Gx2 , ( l , 1 , 1) ) , [ 0 , 1 , 2 ] , [ 2 , 1 , 0 ] )
211 Gy3 = np . moveaxis ( np . t i l e (Gy2 , ( l , 1 , 1) ) , [ 0 , 1 , 2 ] , [ 2 , 0 , 1 ] )
212 Gz3 = np . t i l e (Gz2 , (m, 1 , 1) )
213
214 # Convert matr ices to vec to rs
215 Gx = np . reshape (Gx3 , (1 , −1) , order= ’F ’ )
216 Gy = np . reshape (Gy3 , (1 , −1) , order= ’F ’ )
217 Gz = np . reshape (Gz3 , (1 , −1) , order= ’F ’ )
218
219 # Create time −step vec to rs
220 t = np . reshape ( np . l i nspace (−n / 2 , ( n / 2) − 1 , n ) , (1 , −1) )
221 tpey = np . reshape ( np . l i nspace (−m / 2 , (m / 2) − 1 , m) , (1 , −1) )
222 tpez = np . reshape ( np . l i nspace (− l / 2 , ( l / 2) − 1 , l ) , (1 , −1) )
223
224 Tx = np . reshape ( np . t i l e ( t * td , (m * l , 1) ) , ( −1 , 1) )
225
226 for index in range(m) :
227 tauy = tpey [0 , index ] * tpeyd
228 Tauy = np . t i l e ( tauy , ( n , 1) )
229 if index == 0:
230 Ty = Tauy
231 else:
232 Ty = np . append (Ty , Tauy )
233
234 Ty = np . reshape (Ty , ( −1 , 1) )
235 Ty = np . t i l e ( Ty , ( l , 1) )
236
237 for index in range( l ) :
238 tauz = tpez [0 , index ] * tpezd
239 Tauz = np . t i l e ( tauz , (m * n , 1) )
240 if index == 0:
241 Tz = Tauz
242 else:
243 Tz = np . append (Tz , Tauz )
244 Tz = np . reshape (Tz , ( −1 , 1) )
245
246 return Gx, Gy, Gz, Tx , Ty , Tz
247
248
249 def norm_err ( p , m) :
250 d i f = m − p
251 nd i f = np . l i n a l g . norm ( d i f , ord=2)
252 nm = np . l i n a l g . norm (p , ord=2)
253 e r r = nd i f / nm
254
255 return e r r
256
257
258 def order ( n ) :
259 A = np . l i nspace (0 , n − 1 , n )
260 LA = n
261 A1 = A [ 0 :int( np .round(LA / 2 ) ) ]
262 A1 = A1 [ : : − 1 ]
263 A2 = A[int( np .round(LA / 2 ) ) : ]
264
265 B = np . zeros (A . shape )
266 counter = 0
267
268 for i in range(1 , LA , 2) :
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269 B[ i −1] = A1 [ counter ]
270 B[ i ] = A2 [ counter ]
271 counter += 1
272
273 if np .mod(LA , 2) == 1:
274 O = B[0 : −2 ]
275 else:
276 O = B
277
278 return O
279
280
281 def to_1D ( d3 ) :
282 temp = np . moveaxis ( d3 , [ 0 , 1 , 2 ] , [ 1 , 0 , 2 ] )
283 d1 = np . reshape ( temp , ( −1 , 1) , order= ’F ’ )
284
285 return d1
286
287
288 def to_3D ( d1 , m, n , l ) :
289 temp = np . reshape ( d1 , (m, n , l ) , order= ’F ’ )
290 d3 = np . moveaxis ( temp , [ 0 , 1 , 2 ] , [ 1 , 0 , 2 ] )
291
292 return d3

Listing B.2: The Python module used to reconstruct the data set.
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