
A Recommender
System for a Legal
Search Engine
Bachelor Thesis at Bluetick
J.W. Nelen
J.M. Nederlof
T.R.D. van Graft
M.P.C. van der Werf

D
el
ft
U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

A Recommender
System for a Legal
Search Engine

Bachelor Thesis at Bluetick
by

J.W. Nelen
J.M. Nederlof

T.R.D. van Graft
M.P.C. van der Werf

To obtain the Bachelor degree of Computer Science and Engineering
at the Delft University of Technology,

Faculty of Electrical Engineering, Mathematics and Computer Science

To be defended publicly on Thursday January 28, 2021

Project duration November 9, 2020 ­ January 29, 2021
Thesis committee C.C.S. Liem TU Delft, Coach

T.A.R. Overklift TU Delft, Bachelor Project Coordinator
K. Kooijman Bluetick, Client

This thesis is confidential and cannot be made public until January 29, 2021

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This report concludes the TI3860 Bachelor­project course, a mandatory course in the bachelor program
of Computer Science and Engineering at the Delft University of Technology.

We want to thank everyone involved that made our project at Bluetick possible. In specific, we
would like to thank Cynthia, our coach from the university, who was a great source of inspiration during
the whole project. Her constructive feedback highly contributed to the quality of the final product.
Additionally, we would like to thank Kasper, the CPO of Bluetick, for his enthusiasm, faith, availability
and patience during this project. Lastly, we would like to thank everyone else at Bluetick namely Koen,
Martijn, Thijs, Daniel, Lotte, Pelle and Marlies for their frequent feedback and insights crucial for this
project’s success.

J.W. Nelen
J.M. Nederlof

T.R.D. van Graft
M.P.C. van der Werf
Delft, January 2021

iii

Executive Summary
Bluetick offers a juridical research platform that enables lawyers to search for cases and jurisprudence
efficiently. Most Dutch legal alternatives are still old­fashioned search engines. Bluetick wants to
move towards a zero­search­based approach where the system learns about the user’s preference
and provides them with recommendations. For the user, this means that they have to spend less time
searching for cases while still finding all the relevant material. To reach this goal of zero­search, the
quality of the recommendations must be high. Therefore improvements in this area are believed to
result in a more lucrative product.

This report describes the process of improving the version of the recommender system that was
already implemented by Bluetick. Themain contributions are evaluated by their effect on the recommender
system, and their role in creating a more maintainable, extensible and transparent product.

The first contribution of the team was a refactor of the old system. Using classes and interfaces,
the new version makes it easier to do advanced computations on the results, while the interface makes
it easier for Bluetick to add additional parts on which recommendations can be based. Secondly,
similar to many existing webshops, the new system provides the user with insight into why items are
recommended. Lastly, the user is now able to provide the system with relevant law articles at the start,
so that the recommender system can give recommendations before the first search.

v

Contents

1 Introduction 1
1.1 The Client . 1
1.2 Bluetick’s market . 1
1.3 Bluetick’s product . 1
1.4 How would a customer use Bluetick’s search engine? . 1
1.5 How do other legal search engines work? . 2
1.6 Structure of the report . 2

2 Project Plan 3
2.1 Time frame . 3
2.2 Acceptance criteria . 3
2.3 Deviations. 3

3 Research 5
3.1 Recommender system fundamentals . 5

3.1.1 Why is a recommender system necessary . 5
3.1.2 How does a recommender system work . 5
3.1.3 Recommender performance metrics . 5

3.2 Different recommender systems . 6
3.2.1 Collaborative filtering techniques . 6
3.2.2 Model based collaborative filtering. 7
3.2.3 Memory based collaborative filtering . 7
3.2.4 Hybrid collaborative filtering . 7
3.2.5 Content based methods . 7
3.2.6 Hybrid methods . 7
3.2.7 Issues with recommender systems . 8

3.3 Improving recommender systems with implicit feedback 8
3.3.1 What is implicit feedback . 8
3.3.2 Classification of the techniques . 9
3.3.3 How does implicit feedback improve a recommender system? 9

3.4 Data currently collected by Bluetick . 9
3.4.1 User Profile . 9
3.4.2 Marked cases. 10
3.4.3 Highlights . 11
3.4.4 Linked from . 11

3.5 Optimal setup for Bluetick . 12
3.5.1 Using implicit feedback. 12
3.5.2 What recommender system . 12

3.6 Research Conclusion. 12

4 Problem Definition 15
4.1 The foundation for an improved Recommender System 15
4.2 Updated problem definition . 15

5 P1 ­ Transparency 17
5.1 Refactor . 17

5.1.1 Design. 17
5.1.2 Implementation . 18
5.1.3 Evaluation. 20

vii

viii Contents

5.2 Testing . 20
5.2.1 Design. 20
5.2.2 Implementation . 20
5.2.3 Evaluation. 21

5.3 Transparency for users. 21
5.3.1 Design. 21
5.3.2 Implementation . 21
5.3.3 Evaluation. 22

5.4 Conclusion . 22

6 P2 ­ Analysis 23
6.1 Data Collection . 23

6.1.1 Design. 23
6.1.2 Implementation . 23
6.1.3 Evaluation. 23

6.2 Including weights and combining partial systems. 24
6.2.1 Design. 24
6.2.2 Implementation . 24
6.2.3 Evaluation. 25

6.3 Dashboard . 25
6.3.1 Design. 25
6.3.2 Implementation . 25
6.3.3 Evaluation. 26

6.4 Conclusion . 26

7 P3 ­ Recommender system improvements 27
7.1 Warm start . 27

7.1.1 Design. 27
7.1.2 Implementation . 27
7.1.3 Evaluation. 28

7.2 Reordering results . 28
7.2.1 Design. 28
7.2.2 Implementation . 28
7.2.3 Evaluation. 29

7.3 Conclusion . 29

8 Process 31
8.1 Communication . 31

8.1.1 Team . 31
8.1.2 Client . 31
8.1.3 Coach . 31

8.2 Meetings . 32
8.3 Scrum methodology . 32

8.3.1 Sprints. 32
8.3.2 Backlog . 32

8.4 Pull based development . 33
8.5 SIG feedback . 33

8.5.1 SIG Feedback first upload . 33
8.5.2 Changes made . 33
8.5.3 SIG Feedback round 2 . 35

8.6 Team Reflection . 35
8.7 Process Reflection . 36
8.8 Potential improvements . 36

9 Outlook 37
9.1 New partial recommender systems . 37

9.1.1 Collaborative Filtering . 37
9.1.2 Irrelevant cases. 37

Contents ix

9.2 Combining Recommendations . 37
9.2.1 Update­based influence . 37
9.2.2 Normalization . 37

9.3 Law Area Re­Ordering . 38
9.4 Enhancing User Feedback . 38

9.4.1 Explicit Feedback. 38
9.4.2 Implicit Feedback . 38

9.5 Code Quality and Maintenance . 38

10 Conclusion 39

A Info sheet 41

B Original Project Description 43
B.1 Company information. 43
B.2 Project information . 43
B.3 List of questions to ask the client . 43
B.4 Other information . 44

C Project Plan 45

D Feedback from the client 51

E Screenshots Recommendation Types 53

F Ethical implications 55

Bibliography 55

Acronyms 59

Glossary 61

1
Introduction

The goal of this project is to create an improved recommender system for Bluetick’s search engine.
First, in this introduction, additional context about Bluetick, their market and their product will be given.
The last section gives an overview of the rest of the report.

1.1. The Client
In late 2019, Bluetick was created by a recently graduated master student group. They met each other
on a master that combines data science and entrepreneurship. One of the courses of that master was
the assignment to set up a new startup. The founders of Bluetick wanted to go all in, and they started
Bluetick.

1.2. Bluetick’s market
The founders decided to disrupt the legal search engine market. Professionals in law, e.g. lawyers,
will spend a lot of their time looking for cases similar to the one they are currently working on. The
documents of these cases are called jurisprudence. The user reads these old cases to gain more
insight into how judges interpret specific laws, and the cases also provide different points of view for
a lawyer. Currently, the search engines that exist for this purpose are not very user friendly and often
limited to keyword searches.

1.3. Bluetick’s product
Bluetick’s search engine allows for search by keywords, European Case Law Identifier (ECLI), and
larger parts of a text. Next to this search engine, they have a recommender system. The system
creates a score for other cases based on the user’s search history, relevant marked cases, and pieces
of text that the user highlighted inside cases. All this information is stored in a collection. A user can
have multiple collections, most likely one for each of his clients or for a certain law area. Based on
these combined scores, an ordered list is made with recommendations which is shown to the user.

Bluetick aims to have a search­less system, where the user only does aminimal amount of searches.
To reach this goal, they want to use a recommender system that gives the user cases based on his
collection. If the recommendations are accurate enough, the user will have to perform less manual
searches, because the recommender system automatically presents relevant cases that can be used
for the current collections.

Bluetick’s system uses a front end in React, which is a JavaScript framework for reusable components
that enables building fast web application. The backend is written in Django, a REST framework for
Python.

1.4. How would a customer use Bluetick’s search engine?
A typical customer is a law firm that will pay a monthly subscription to Bluetick to make use of the
search engine. For every case that an employee of a law firm, e.g. a lawyer, is working on, he can

1

2 1. Introduction

create a new collection. The lawyer then enters his first search, to find the first relevant cases and to
give the recommender system information. The recommender system will suggest new similar cases
to the lawyer, that he will use to build up his collection. The lawyer will highlight applicable parts of the
text, and he will mark cases as ’relevant’ when he finds one.

The goal of this is that the lawyer can build up an understanding of the law and its interpretation. An
example of this would be to look up similar cases to the one the lawyer is working on, so he can give
his client an indication of the final verdict. Another example is that the lawyer can use the approach
that other lawyers took in a similar case.

1.5. How do other legal search engines work?
Existing Dutch legal search engines are still old­fashioned. They can be used for searching with an
ECLI or keywords. The legal search engines are not smart. For example, when searching for murder
with a baseball bat, the search engines will not return murder cases with a hammer, although the cases
would be very similar.

Internationally, search engines are a lot of smarter. For example, in the United States, Artificial
Intelligence is already being used to make search engines better at finding similar cases. On first
sight, it is a weird idea: Why are these techniques that are used in the United States not yet used
in The Netherlands? Firstly, this split is caused by the difference in lawsuits. A case in the United
States works differently than in The Netherlands. Secondly, text­based search and Natural Language
Programming (NLP) approaches are optimized for the language they were designed for, which means
that companies that have smart search engines can not easily add Dutch law and cases.

1.6. Structure of the report
In the next chapter, chapter 2, this report gives the original plan that the team created together before
the project started and how the plan changed during the project. In chapter 3, the original research
report is given, where the team describes the research they have done prior to implementation. The
next chapter, 4 gives a more concrete problem definition, taking the research into account. Chapter
5, 6 and 7 explain what the team has implemented and contributed to Bluetick’s product. After this, in
chapter 8, the development process of the project is explained and evaluated. In chapter 9 the team
gives an outlook for Bluetick, with recommendations for the future. Finally, in chapter 10, a conclusion
is given about the whole project.

2
Project Plan

This chapter entails a compact plan with criteria for the project, a timeframe to implement it and some
information regarding the process, meetings and more. This plan was created at the start of the project
and served as a guideline and beacon for the project. The team discussed this plan with both the TU
Delft coach and Bluetick to check and clarify the requirements and expectations. The original project
plan is included in Appendix C. What follows is a summary of the original project plan and the main
points in which the team deviated from it.

2.1. Time frame
In this project, the new features are an addition to an existing system; therefore, the time before
a feature reaches production will be relatively short. This is also reflected in the planning, as the
implementation will start from the first week.

2.2. Acceptance criteria
The original acceptance criteria were:

1. There is a working version of a recommender system

2. There is an improvement in the quality (which will be based on themetrics) of the recommendations
compared to the already existing baseline

3. The recommendations provided by the recommender system are verifiable and reproducible

4. The code is sufficiently maintainable by developers of Bluetick

5. The code and documentation is clean and easy to read

6. There is a research report that motivates the different design choices clearly and concise and
could be used as an additional explanation of the product.

These criteria helped the team prioritise feature requests from both the TU Delft and Bluetick.
Furthermore, these criteria eventually lead to the 3P plan that is discussed in Chapter 4, which allowed
the team to structurally plan each feature.

2.3. Deviations
After starting to work on the project, the team relatively early discovered a limitation resulting in some
of the acceptance criteria to receive more focus from the team than others. To be more specific, the
team decided that it would be more valuable for the project to lay a foundation for easy improvements
to the recommendations’ quality instead of building upon the existing one.

The application of more advanced ensemble methods such as a machine learning model was
considered the most logical way to improve. However, the system was considered not yet ready for

3

4 2. Project Plan

those methods. The refactor performed in this project would have been a pre­requisite to make it
reasonably maintainable and extensible. Secondly, the accuracy of these models would depend on
having a sufficiently large training and test set. The team did not expect that this would be viable within
the given time frame and, therefore, prioritised other areas. In Chapter 4 the new problem definition is
explained in more detail.

3
Research

As this project’s goal was to improve the current recommender system, the team decided to do extensive
research on recommender systems. The first section explains recommender systems and when they
are used. In section 3.2 the different types of recommender systems are described. After this, some
more context is given about the use of implicit feedback in recommender systems in section 3.3. The
current situation concerning data collection at Bluetick is discussed in section 3.4. The results are then
presented in 3.5 and this chapter finishes with the research conclusion in section 3.6

3.1. Recommender system fundamentals
This chapter gives a short overview of the well­known recommender systems. Furthermore, it will delve
into the reason why recommender systems are necessary. The last section will briefly sum up a few
problems that often arise when creating a recommender system.

3.1.1. Why is a recommender system necessary
Since the rise of the age of big data are recommender systems, an effective solution to the problem
of information overload. Recommender systems are also a solution to information overload in the field
of law, where more and more lawsuits are documented online, as mentioned in [1]. Lawyers want
to find the one lawsuit that helps their clients to win a lawsuit. This search creates the need for an
efficient searching algorithm; however, to search someone would need a suitable amount of domain
knowledge or have luck with guessing the right keywords. A recommender system helps to solve those
needs; it can help someone with less domain knowledge to still find the most relevant documents, whilst
discovering more information than with a regular search.

The information discovery can be especially useful for legal authorities because a more targeted
search can lead to faster and deeper insights. Furthermore, lawsuits that previously would be forgotten
about can appear in the recommendations based on searches that were conducted in other cases. This
discovery can further help those authorities to escape a ”filter bubble”, where either the lack of domain
knowledge or not­well specified queries could lead to insufficient or low­quality results.

3.1.2. How does a recommender system work
A recommender system generally works by trying to find similarities between users to recommend
users items that they usually would not have found. An excellent example of this would be YouTube.
When a user searches for cat videos on YouTube, the users might be recommended more cat videos
or, even, dog videos as the user might like animals in general. Recommender systems can be used a
lot broader than just for videos. For examples, webshops use it to recommend items that the customer
might be interested in buying, and dating apps use recommender systems to guess who would be a
good match for the user.

3.1.3. Recommender performance metrics
A recommender system can be evaluated in various ways. A novel way to evaluate a recommender
system is to split the available interaction profile into a training and test set. The training set contains

5

6 3. Research

a percentage of the items a user interacted with, whilst the test set contains the other items. The
recommender system is first trained on the training set and then asked to predict the rating a user
would give for each item in the test set. Based on this rating and a scoring metric, a score is calculated.
Possible scoring metrics are described in [11], the list below gives an overview of those described
ratings, where 𝑃 is the predicted rating and 𝑅 the actual rating.

Root Mean Squared Error = √
∑𝑟𝑎𝑡𝑖𝑛𝑔(𝑃 − 𝑅)2
#𝑟𝑎𝑡𝑖𝑛𝑔𝑠 (3.1)

Mean Absolute Error =
∑𝑟𝑎𝑡𝑖𝑛𝑔 |𝑃 − 𝑅|
#𝑟𝑎𝑡𝑖𝑛𝑔𝑠 (3.2)

Precision = |relevant item ∩ retrieved item|
|retrieved items| (3.3)

Recall = |relevant item ∩ retrieved item|
|relevant items| (3.4)

The performance metrics can be further classified into three different measurement strategies,
according to [10]:

• Offline: this is the easiest method of evaluation as it does not use user interaction. It is based on
the ground truth from which the accuracy is measured.

• Online: a useful way to evaluate the recommender system. Using the Click­Through Rate (CTR)
to evaluate the acceptance of recommendation in real­time.

• User study: a user study uses a questionnaire to evaluate the overall satisfaction of the system
through ratings.

Picking the correct measurement strategy is essential, as the strategy greatly influences how precise
the accuracy measurements reflect the system performance. While the offline measurement can be
trivially implemented, it does not reflect system performance, as it does not take into account user
behaviour like not buying lowly rated items, as is stated in [9]. The online system, on the other hand,
takes this behaviour into account as it measures the recommender systems interaction in real­time in
the production environment. Thismeasurement system strikes the right balance between implementation
cost and close system performance reflection; however, insights of the system­as­a­whole can not be
derived from those results. The user study is the most thoroughmeasurement technique, as the system
will be evaluated by a questionnaire given to users, as is described in [10]. This measurement technique
will give deep insights into how the recommender system works as a whole in an application from a
user’s perspective. This technique is, however, less frequently applied, as the success depends on
various factors; such as questions asked, how many people fill in the survey or whether there is enough
budget.

3.2. Different recommender systems
In this section, various types of recommender systems are discussed, giving insights into there strong
and weak points, according to [10]. The techniques that will be discussed are Collaborative Filtering
methods, Content based methods and Hybrid methods under these umbrella terms various possible
implementations are discussed, allowing for a brief general overview of what is currently available.

3.2.1. Collaborative filtering techniques
Collaborative Filtering (CF) is an approach to recommend concealed items using information from other
users. It computes a similarity matrix between all the users, usually using the K­nearest­neighbour
(KNN) algorithm to cluster similar users. CF can be further categorised into three different approached:
”Model based”, ”Memory based” and a ”Hybrid approach”. Those three techniques all have their
advantages and disadvantages, and picking the right approach can significantly influence the performance
of the CF recommender system.

3.2. Different recommender systems 7

3.2.2. Model based collaborative filtering
The model­based CF algorithm leverages a machine learning model to predict the ratings of items that
are not rated before. Using a machine learning model boosts the performance of the recommendation
over thememory­based approach, while also addressing the scalability and sparsity problem. However,
creating such a model is not a trivial task. Furthermore, explaining recommendations generated by a
model­based CF recommender system can be incredibly tricky. It’s difficult to explain because it is
hard to trace the recommendations through a non­deterministic model, as this model can be made
from random processes.

3.2.3. Memory based collaborative filtering
The memory­based CF algorithm uses, user interaction profiles in order to recommended items based
on some similarity function such as the Pearson correlation 3.5, cosine distance 3.6, Jaccard similarity
3.7, etc., where A and B are feature vectors. The creation of a memory­based collaborative system
is, therefore, a trivial exertion, where information that is normally logged by a system can directly be
used to create a recommender system. However, this type of recommender system faces a variety of
issues, such as the cold start problem and data sparsity. The cold start problem arises when a new
user starts to use the system, and no information is known about that user; therefore, no accurate
recommendations can be made for this user. The sparsity problem often appears where the system
contains few users­item interactions; this can lead to skewed recommendations or items not being
recommended since some items never have any interaction.

𝑟(𝐴, 𝐵) =
∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

√∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)2(𝑦𝑖 − 𝑦̄)2
(3.5)

𝑐𝑜𝑠(𝜃) =
∑𝑛𝑖=1 𝐴𝑖 ⋅ 𝐵𝑖

√∑𝑛𝑖=1 𝐴2𝑖 ⋅ √∑
𝑛
𝑖=1 𝐵2𝑖

(3.6)

𝐽(𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵 (3.7)

3.2.4. Hybrid collaborative filtering
The hybrid basedCF algorithm combines thememory­basedCFwith themodel­basedCF. This approach
tries to overcome the constraints of the othermethods, but this approach can drain serious programming
and computing resources, as it is the most complicated CF approach.

3.2.5. Content based methods
This form of recommender system does not take other users into account but tailors its recommendations
to a user’s interactions. Once a user likes or interacts with an item, similar items to the interacted item
will be recommended. These recommendations can lead to a lack of diversity in item recommendations
as only those items that are similar to the interacted item can be recommended. Similarly to the
memory­based CF, this algorithm faces the cold start problem, as users that did only interact with a few
items will get poor recommendations. Furthermore, this method of recommendation requires a good
understanding of users’ preferences. On the other hand, the content­based method does not have to
deal with the sparsity problem, where items lack reviews from users as those reviews are not taken
into account for the content­based recommender system. Next to not having to deal with the sparsity
problem, the content­based recommender system allows for easily explainable recommendations,
which can lead to increased user satisfaction.

3.2.6. Hybrid methods
The hybrid recommender system tries to circumvent the limitations of both the content­based recommender
system and the CF­based recommender system while improving the overall performance of the system
as a whole. Multiple recommender systems are combined by applying a hybridisation technique.
Standardised hybridisation techniques are well described in [2], in the list below a summary is given of
those techniques.

8 3. Research

• Weighted Aweighing schema is determined between the recommender systems based on statistical
information

• SwitchingA recommender system is used for particular recommendations while other recommender
systems are used for different parts of the application.

• Mixing All recommendation from all systems are combined to one list of recommendations

• Feature combination Features from different data sources are combined in one algorithm.

• Cascade The recommendations from the first algorithm are refined by the second.

• Feature augmentation The output from the first recommender system is used as a feature for the
second recommender system.

• Meta­level The model learned by the first recommender is used as input by the second.

Although the hybrid methods try to tackle issues like the cold start problem, they still arise as both
techniques require user­interaction data. The cold start problem should be taken into consideration
when applying a hybridisation approach for recommendations. A suitable combination of algorithms
needs to be found to find the most optimal recommendations.

3.2.7. Issues with recommender systems
This section will re­iterate three well­known problems that will likely occur when creating a recommender
system. The cold start problem occurs once a new user starts to interact with a recommender system
or when a new item is added to the list of recommendable items. The problem occurs because
recommender systems use information from the empty users’­ items’­ interaction matrix to recommend
new items. The sparsity in the user­item­interaction matrix often causes the sparsity problem, where
few items have been interacted with by the user. The Flexibility problem, which often occurs in CF
based recommender systems, can lead to some items not being recommended. These items might
not have been interacted with by any user or are recently added to the item list. When the recommender
system is flexible, this could lead to non­specific item recommendations, while a rigid system could lead
to new items never being recommended.

3.3. Improving recommender systems with implicit feedback
This chapter will explain Implicit Feedback (IF) and elaborate on how this technique improves a recommender
system. The explanation is done by categorizing different techniques after which the improvement is
explained. This research helps to back up the choice of which techniques will be used in this system
which is done in chapter 3.5.

3.3.1. What is implicit feedback
A user uses an Information Retrieval (IR) system, like Bluetick, to find information from an ’anomalous
state of knowledge’. The IR system transforms this search into a query which will approximate the
information needed [14]. However, this approximation may fall short when the information that is
needed is vague, incomplete or if the user is unfamiliar with the retrieval environment. Therefore,
Relevance Feedback is used to automatically improve the system, which can be Explicit Feedback
(EF) and Implicit Feedback (IF) [14]. EF is the feedback that is marked on purpose by the user, like
marking a document as relevant. Implicit Feedback, on the other hand, is taking advantage of user
behaviour to understand their interests and preferences better [5]. For example, when a user selects
a specific object from a list, this could be seen as an expression of his binary preference. Additionally,
could this preference infer a relationship between the selected object and the other visible objects in
the list that are ignored [8].

One major convenience of collecting IF is that it requires no additional effort from the user of the
system [8]. In the current recommender system of Bluetick, a suggestion is made on the explicit use of
the ’is­relevant’ button. By adding IF, a case could also be recommended based on more sophisticated
feedback, like scrolling, mouse events or click­through rates. Due to the effortlessness of the user, the
data can be collected in large quantities. One disadvantage is that the data is inherently noisy, messy,
and hard to interpret [8].

3.4. Data currently collected by Bluetick 9

3.3.2. Classification of the techniques
In this section, the different techniques are classified. In the paper by Diane Kelly and Jaime Teevan,
this is done by two axes, called the Behavior Category and the Minimum Scope [5]. The Behavior
is then split up into Examine (e.g. scroll, reading time), Retain (e.g. print, mark relevant), Reference
(e.g. Copy­and­Paste), Annotate (e.g. Mark up) and Create (e.g. type). Each behaviour category
can be examined at three different minimum scopes; Segment, Object and Class; however this can be
ambiguous as a bookmark can be categorized in multiple scopes [5].

Based on Núñez­Valdéz [7], a list of examples of implicit metrics can be depicted.

• Duration of the search session

• Number of clicks

• Viewing time of a document

• Number of visits to a document

• Number of interactions with the document

• Number of copy­and­paste actions

• Scroll behaviour

• Marked as relevant

• Downloaded a document

One of the most promising techniques is time viewed at the content, as a longer view time indicates
a greater user interest. Additionally, the number of visits is an indication that the user is more interested,
as an interested user rereads these documents [7]. To get an accurate estimation of the view time, it
might be helpful also to monitor scrolling behaviour.

3.3.3. How does implicit feedback improve a recommender system?
Implicit feedback can add value in two ways. Firstly, it can be used to improve the recommender
system by creating a better ranking of the recommendations. Having the best recommendations on
top is important in this system, and is called Learning to Rank. Learning to Rank is a core technology,
consisting of two categories: Personalized Ranking with Implicit Feedback (PRIF) and Personalized
Rankingwith Explicit Feedback (PREF). Themost used technique to achieve PRIF isMatrix Factorization
using the Bayesian Personalized Ranking [6], which ismost widely used and improved andwill therefore
most likely be a good start.

Secondly, the evaluation of the quality of the recommendations is always challenging, and the only
metrics currently available are the relevant marker and the search history. While this gives a great
starting point, it will not be enough feedback on what the user likes because sometimes the user is
not reviewing their recommendation explicitly. IF will guess their preference and can give additional
confidence on how relevant a recommendation was after it has been viewed/selected/marked [3].
Implicit feedback will provide more data to make better and extra recommendations, which will help
the user towards their goal without them explicitly reviewing the recommendations

3.4. Data currently collected by Bluetick
These sections contain an overview of all the user data being collected by Bluetick from July 2020
until the time of writing (November 2020). Accounts of Bluetick employees that are used for testing or
development have been removed from the results. Please note that changes to the product have been
made over the last couple of months that could have had an impact on the data.

3.4.1. User Profile
Bluetick provides new customers with several registration tokens. These can be used to create personal
accounts for those that are going to use the search engine. A recent addition is that during the
registration procedure, the user is asked about his profession and years of experience. Also, users
can select several options to indicate their use for the search engine and how much time they usually
spend on searching and looking at cases.

10 3. Research

(a) Amount of cases marked per collection (b) Number of times cases are marked by different
collections

Figure 3.1: Usage of marking feature in Bluetick

3.4.2. Marked cases
For each collection, the user can mark cases either relevant or irrelevant, or leave it unmarked. The
user has access to an overview of all marked cases such that he can quickly look at them again. Figure
4.1 shows the usage statistics of themarking feature within collections. It can be observed that there are
barely any cases that occur in more than a single collection. This sparsity raises the question of whether
a user­based recommender system, where collections are considered users, would be advantageous.

3.4. Data currently collected by Bluetick 11

(a) Highlighting feature in Bluetick (b) Amount of highlights per collection

Figure 3.2: Usage of highlighting feature in Bluetick

3.4.3. Highlights
The user has the option to highlights pieces of text in a case document, as visible in Figure 3.2a. The
user can retrieve a list of his highlighted pieces of text. From Figure 3.2b it can be observed that
highlighting does not occur as frequently as marking cases in collections. This difference is because if
a piece of text is highlighted, the case is automatically marked as ’relevant’. The lack of marking could
also be partially explained by the fact that highlighting is a relatively new feature compared to being
able to mark cases.

3.4.4. Linked from
There are different ways for a user to find a case. For example, users can click on cases that appear
on the top of their keyword search, but they can also open a case document when it gets suggested
to them from the recommendation page. Figure 4.3 contains an overview of how often a case gets
opened from different locations in the application.

Figure 3.3: Pie chart showing how users found a case

12 3. Research

3.5. Optimal setup for Bluetick
In this chapter, the recommendations are stated for Bluetick. Firstly, the recommendations are given
on how to collect more data by exploring possibilities in implicit data collection. Secondly, the type of
recommender system that Bluetick could use is given.

3.5.1. Using implicit feedback
To better analyse the quality of the recommendations, additional data in the form of user interaction
should be collected. As discussed in chapter 3.3 the most promising techniques is time viewed,
the number of visits and the scrolling behaviour. After this logging feature has been implemented,
the correlation between these metrics and the relevant­marked documents can be analysed. This
information can be used to find relationships. These relationships can then help define the weight of
each metric and how it can be used in the quality of the recommendation.

3.5.2. What recommender system
Bluetick has a small user base and is expected to slowly grow based on customer research done by
Bluetick. With over 600.000 cases and only around 30 users, the item space remains enormous when
compared to the number of users. Currently, there is no see sufficient overlap in relevant cases between
collections to make a user­based recommender system such that it benefits Bluetick in the near future.
For this reason, the CF­based recommender system is not a viable approach, but a content­based
recommender system could be viable. The content­based recommender system uses item’s features in
order to recommend similar cases and is therefore independent of user­item interactions. Furthermore,
the explain­ability that comes with this approach can be valuable for Bluetick because it gives their
customer greater insights into how recommendations are created for them.

3.6. Research Conclusion
Bluetick wants to offer its customers tools that are not available elsewhere. By adding a recommender
system to their search engine, they provide value to their customers by decreasing the times it takes
to search and by giving them more accurate results, even if the customers are looking for something
that they cannot explicitly name.

To conclude this research report, the answers to the four research questions are given below:

RQ 1: Which types of recommender systems exist?

As mentioned in chapter 3.1, there are multiple types of recommender systems that all have their
pros and cons. There is a collaborative filtering technique, which uses a similarity matrix to compute
the similarity between users and between items to be able to recommend new content. Another
method is content­based, where the recommendations are mainly based on the interaction of the user.
Where the collaborative filtering is suited when a large amount of data is available, this is not needed
for content­based recommender systems. Among this and other reasons, the team expects that a
content­based recommender system is best suited for the project in the near future.

RQ 2: How can implicit feedback be used to improve a recommender system?

Recommender systems can be evaluated by implicit feedback, as is discussed in chapter 3.3.
Using implicit feedback creates a more substantial data collection which consequently will result in
more accurate recommendations. Implicit feedback is gathered by looking at the behaviour of the user
instead of explicitly asking for feedback. As is explained in 3.5, time viewed, the number of visits and
the scrolling behaviour are the most potential metrics that will be used.

RQ 3: Which data does Bluetick currently collect?

Bluetick does not have a lot of available data. The data that is currently being collected is described
in chapter 3.4. This data comes down to the user profile data, marked cases, highlights and the
linked­from data.

RQ 4: What kind of recommender system is best suited for this project?

3.6. Research Conclusion 13

The team provided a solution to Blueticks problem by choosing suited techniques, as described in
chapter 3.5. The solution will be a content­based recommender system that uses implicit feedback and
other evaluation metrics to improve the recommendations.

4
Problem Definition

This chapter contains a reformed problem definition and an explanation of why this was necessary.
First, the team will delve into the situation of Bluetick after the research phase, then an oversight will
be given of the new goals, and finally, the strategy to solve them is discussed.

4.1. The foundation for an improved Recommender System
After the research, the team delved into the code base of Bluetick. The team mapped the structure of
their code in a class diagram. Analysing the code gave insights into the current state of the application.
From analysing the currently available data and the state of the application, the team concluded that
the application was not yet ready for the large­scale improvements discussed in the research section.
The problems found during this exploration of the code are summarised in the list below.

• A small user base. In the research report, the team discussed the implementation of implicit
feedback, which in turn would lead to an improvement in the recommendations. A small user
base could lead to unstable recommendations since there can be a large variety in searches
users do.

• Unstructured code. While the team wrote the research report, they thought that the recommender
system was written with standardized computer science design principles in mind. The team
discussed explainability as they wanted to explain to the user how a recommendation was created.
The code structure was not suitable to create such explanations.

• No testing. From a software engineering perspective, testing is an important concept, that can
help get confidence in the application. However, when the team started programming, it was
obvious that no tests where created.

The before mentioned reasons lead all to believe that a redefinition of the BEP goals was necessary,
as otherwise a high­quality result could not be ensured.

4.2. Updated problem definition
To guarantee a final product of high quality, the teammade a new problem definition. After the research,
this project’s focus shifted towards better code quality instead of improving the recommender system.
During the development phase, the team mostly wanted to focus on following the standardized design
goals. The problem definition is divided into the following points:

• Scalability: This is important as start­ups tend to grow quite explosively. The team should make
sure that the code can handle a large number of parallel users.

• Maintainability: This will lead to easily understandable and maintainable code. A maintainable
codebase is one that could easily be tested. Within well­maintained code, it should be easy to
solve bugs and other issues.

15

16 4. Problem Definition

• Transparency: The system should increase the transparency towards Bluetick and the users of
the application.

• Extensibility: This is important, as this will not be the last improvement done to the application.
Therefore the team should create a stable foundation that can be extended easily.

The design goals are further distilled into a three­pillar plan of P1: Transparency, P2: Analysis and
P3: ImproveRecommender system. P1mostly focuses on improving the traceability of the recommendations
towards Bluetick and the user. Features that belong to this pillar are discussed in the refactor (5.1), the
tests written after the refactor (5.2) and the recommendation explanations (5.3). P2 centres around the
following features: more data collection (6.1), including weights in the recommender system (6.2) and
the dashboard in section 6.3. Finally, P3 centers around improving the recommender system directly
by implementing the warm start in section 7.1 and reordering in section 7.2. This pillared structure
allowed for easy communication within the team and it gave insights into what a feature should tackle.

5
P1 ­ Transparency

The first pillar focuses on improving the transparency towards Bluetick and the user, as described
in chapter 4. This chapter will describe the features that contributed the most to this goal. Each
feature is split into three categories, design, implementation and evaluation. The design focuses
on what decisions on an abstract level had to be made for that feature. The implementation section
focuses on specific implementation details, and evaluation describes the review process of the specific
contribution. The features discussed in this chapter are the refactoring, the testing and the transparency
for the users.

5.1. Refactor
After analyzing the first version of the recommender system, it became quite clear for the team that
the current structure would not be appropriate for expansion. An image of this system is shown in 5.1.
The system already existed of different parts, but they were all used in the same functions, without
clear distinction. Not splitting the code made it hard to find bugs, test, and maintain the old code.
After discussions with the TU Delft coach, Bluetick, the team decided to refactor the old recommender
system. The functionality would remain mostly the same, but the approach would be different. The
team made a plan to split up all the parts with an eye on the product’s future. Code maintainability,
stability and future expansions were the main goals of this refactor.

5.1.1. Design
The design decisions that had to be made for the refactor only applied to the back­end code. For clarity,
the decisions have been split into Data transfer object (DTO) and recommender system interfaces.
The classes and interfaces were designed in such a manner that they would adhere to the Single
Responsibility Principle as much as possible.

Data transfer objects
The team decided to split the recommendation data logic into classes. Two classes form the backbone
of data handling: The ScoreStore and SplitScore. The system uses these classes to handle all data
that is in memory. Functions were written for each of these classes, to do computation or actions on
the recommendations: this improved code maintainability and decreased code duplication. An image
of the class diagram can be seen in 5.2.

Recommender system interfaces
For the recommender system itself, the team chose an interface design pattern [12]. The team split
up the recommender system’s partial functions into separate partial systems, which each have their
own database table and logic. However, they all have the same base functionality. Splitting up the
systems made them consistent and made sure they worked roughly in the same way, but it still allows
for different approaches where needed. By using an interface, it also makes it very easy to add new
partial recommender systems. The scaleability was a larger reason why the team chose to use an
interface design pattern. An essential part of the interface is that it allows for straightforward addition

17

18 5. P1 ­ Transparency

Figure 5.1: Workflow of the old recommender system

of new systems. In case Bluetick wants to expand the system, they can add a new part in an orderly
and maintainable way.

5.1.2. Implementation
In this section, the implementation is described. Because this consists of the Data transfer object and
the interface, this section will also elaborate on these parts.

Data transfer objects
A ScoreStore acts like a dictionary, where the key is an ECLI. The data is information for that ECLI:
Specifically a SplitScore (more information in the next paragraph) and information about the ECLI’s
features. Therefore, a ScoreStore instance holds a list of ECLI’s and a score, used as recommendations
which are sent to the front­end and displayed as a list of recommendations. The ScoreStore object
contains functions for computation and actions on the recommender system, like combining ScoreStores
from different partial systems, multiplying all scores by a factor, adding new entries, and more.

A SplitScore is a more simple object, containing two parts: a list of scores together with their reason,
and a total score, which is the sum of all separate scores. This way, the total score can easily be
retrieved, but the partial reasons and their importance is also easy to get. SplitScore contains some
functions as well, mostly for adding new partial scores and multiplication. Both classes can be seen in
5.2, together with their most­used functions.

Recommender system interfaces
For the interface, the team set up a few essential functions. At the very least, a partial recommender
system must retrieve its recommendations, update the recommendations with a new entry, and in
some partial systems have a remove function, for when, for example, a case marked as relevant is
un­marked. These are the interface’s functions; however, the partial systems are free to implement
helper functions. The partial recommender systems currently implemented all work in the same way:
Part one contains the raw entries. For example, in the partial system that handles cases marked
a relevant, there is a list of similar cases compared to the marked relevant cases. This list can

5.1. Refactor 19

contain duplicates, even cases already marked as relevant. Then there is the second part, with a
precomputed list of recommendations. Here, a function adds the scores together, so there are no
duplicates. Precomputing the recommendations increases the speed of the system drastically.

The old code has been split into six partial systems based on: relevant cases, highlights, keyword
searches, ECLI searches, text searches and law articles given in the description of a collection. These
systems operate apart from each other and are entirely separate. They all have a list of raw entries
and a list of precomputed recommendations. Relevant cases and highlights are very similar, so are all
the searches. Only the law article system has nothing that looks like it. How the systems interact with
each other can be seen in Figure 5.3.

Figure 5.2: Class diagram of the new version of the Recommender System

Figure 5.3: Workflow of the new recommender system

20 5. P1 ­ Transparency

5.1.3. Evaluation
Different aspects can be taken into account when evaluating the refactor performed in this project. First
of all, and as mentioned in the design part, the intention was to make it easier for Bluetick to maintain
the system and make changes on the go. When wanting to introduce a new sub­recommender system,
Bluetick can now create a class for it and inherit the functions from the interface.

Because the new design, the code has become less complicated. Functions are better split up, there
is less code duplication, and by giving classes a single responsibility, the code is easier to understand.
The team also added extensive documentation and type­hinting. The refactor also increases testability
drastically. While refactoring, the team created many new tests for separate functions. Creating tests
was almost impossible because most of the functions interacted with the database and were very large.
Now that the team has split everything up, it is more simplistic to test separate functions instead of single
functions with huge functionalities.

5.2. Testing
Having a well­defined testing strategy is vital to any company. However, automation in the testing
strategy varies significantly. In the beginning, there were little to no automated tests. Furthermore,
there was no clear testing strategy. This led the team to believe that quality improvement could be
achieved by setting up various test runners for Bluetick.

5.2.1. Design
Bluetick lives in a so­called mono­repository where the entire application, as the name suggests, is
contained within a single repository. The Bluetick application exists of a react front­end and two API
services. This has various benefits of which one is the ease of testing. Software testing generally
considers three levels of testing, namely unit, integration and end to end tests. To help Bluetick get
more insights into why and mostly how software needs to be tested, tests were created on all three
levels. For both API’s test packages were created that mirrored their respective application structure,
thereby ensuring that the test’s goal could be observedwith one glance. Additionally, two coverage tools
were installed that can measure code coverage on various metrics. The coverage tools allow Bluetick
to get a transparent overview of what still needs to be tested and where further test improvements can
be made.

5.2.2. Implementation
This section will discuss how the team implemented the testing strategy for Bluetick. This will be done
by going up the testing pyramid for all services within Bluetick.

The unit test followed mostly a strategy of using test doubles, where in­memory databases and
mocks were used to isolate a component. This isolation strategy is necessary as unit­tests should
be fast, reliable and easy­to­understand, however too much isolation leads to meaningless test as a
component never exists alone in an application. Therefore it is crucial to focus on getting meaningful
levels of isolation. This is achieved by mocking the responses from other services, or non­deterministic
elements of the application, such asmachine learning algorithms. Thosemocks give the team fine­grained
control over the components’ behaviour, which in turn leads to easy to write and understand test code.
An additional benefit of writing tests is that other developers can often look at the tests to understand
what the code is supposed to achieve, thereby reducing the time necessary to understand each others
code.

The integration test lives mostly at the boundary between different services, such as the Postgres
database, MongoDB and the two API services. As the name suggests, the integration tests focus on
testing the interaction between different services. These tests are harder to set up but give a higher
confidence level that the application is working according to specifications.

The end to end tests test the most significant paths through the application, ensuring that most of
the paths are working correctly. These tests are often flaky, meaning that the test can fail without an
apparent reason, but give the highest confidence that the application works properly. Since the Cypress
test allows each to write and maintain end to end tests, the test could be considered more like a hybrid
between integration and end to end tests.

5.3. Transparency for users 21

5.2.3. Evaluation
The tests were successfully added to the application and had a significant impact on the code quality,
furthermore, this lead to Bluetick being more interested in writing high­quality code. Finally, the list
of steps that Bluetick employees would generally run through when releasing a new version of the
application can now be fully automated. This can save time and improve consistency between releases.

5.3. Transparency for users
At the start of the project, there was a lack of transparency towards the user, which is defined as the
amount of information given to them about the recommendation source. The source means which
part of data was the most responsible for giving that particular recommendation. The goal of giving
more transparency to users was to improve the understanding of the search engine. The hypothesis
was that the more the user knows about the source, the more the user will feed the application with
useful information beneficial for the recommender system. Additionally, as described by Julie Daher [4],
explaining recommendations makes it easier for the user to make decisions and leads to a higher trust
in the system. More concrete, the hypothesis was that the user would interact more with the system
and give better search keywords. This was also the guess of the User Experience (UX) designer and
by the client. Therefore the team decided to design, implement and evaluate this feature.

5.3.1. Design
There are a few different places where recommendations were given, and therefore a design must fit
all these different locations for it to be consistent. Firstly, a small design was created by the team to
give an impression of the final result. This first version included an additional tag at the top, where
the information was given as displayed in figure 7.1. This version was sent to the UX designer, and a
meeting was scheduled to further brainstorm on how this should be implemented. When the design
was finished, it was time to implement this feature.

Figure 5.4: First design of the user transparency

5.3.2. Implementation
The refactor made it possible to have more information about the reason for the recommendation. This
enabled the frontend to display the source of the recommendation. For each type of recommendation,
a different number of reasons were needed to be shown; therefore, this was one of the variables.
Together with the reasons, which were structured in a way <type­information> e.g. <keywords­keyword1,
keyword2>, which were parsed at the frontend into a user­friendly sentence likeYou got this recommendation
because you searched on keyword1 and keyword2.

The final design was different from the first version. As shown in Figure 5.5, the reason is shown
beneath the dossier instead of the tag on top. This was done to prevent the design from being very
cluttered and because unimportant information should not draw too much attention. One of the features

22 5. P1 ­ Transparency

Figure 5.5: Final design of the user transparency

of the reason display is that the ECLI is clickable. This makes it possible for the user to navigate to the
source of the recommendation. The client liked the display of the recommendation source so much
that it was also implemented into the search results, which was a big compliment for the team.

5.3.3. Evaluation
For this evaluation, the team contacted two lawyers and asked them about this feature. The main
goal was to evaluate whether this feature was helpful for the user and to what extent it could positively
change the user’s behaviour.

Firstly, the feature was evaluated very positively by the two subjects. Both subjects claimed that it
was a handy feature to see where the recommendations are coming from. Mostly because they like to
know how certain things work instead of them being a black box. Secondly, they liked that it indicates
why certain documents might be similar and therefore, relevant. If the reason already stated that it had
been recommended because of a specific law article, it is a great help for the lawyer because they now
know where to look for inside the recommended case. Finally, the place and design were reviewed as
positive as is does not draw too much attention, but it is there when the user wants to read it.

5.4. Conclusion
By introducing the features described in this chapter, the team believes that the transparency for
Bluetick and the user has improved. The main contributions were, the refactor, thorough testing and
the recommendation explanation. All those features contribute to the entire transparency model that
was envisioned at the beginning of the project and was described in Chapter 4.

6
P2 ­ Analysis

The second pillar focuses on improving the analysis possibility for Bluetick, as described in Chapter 4.
The analysis will focus on gathering more data, having the means to visualize the data, and adjusting
the system based on the conclusion drawn from the visualization. In this chapter, the data collection,
combining strategy and the dashboard will be discussed, each similarly divided as done in Chapter 5.

6.1. Data Collection
In the old system, there was hardly any data collection. The only data collected was which user viewed
which case and the necessary things such as saving cases that a user marked as relevant. Additionally,
the path someone took to open a case (e.g., from the suggestion page or a search) was also already
being logged. To gain more insight into the product’s usage, the team believed it to be helpful to
log more and different data. This data could then also be used to measure the effectiveness of the
recommender system. Therefore, the idea arose to log the user activity when reading a case (e.g., the
reading time) and the opened cases’ law area. With this extra data, the team hoped to give Bluetick
more insights in the recommendations and user behaviour.

6.1.1. Design
For user activity tracking, it was necessary to ask the user for permission. Therefore, a new checkbox
was needed in the front­end, where the user fills in if he permits cookies and tracking or not. The
checkbox was added in coordination with Bluetick so that it would fit the rest of the design. The team
decided that the activity logger belongs in the front­end, in a separate file.

6.1.2. Implementation
The implementation was done in two different parts. First, the team wanted to collect data for the
recommender system, even if the data was not yet used. Therefore, the team made a JavaScript
file that tracked the time a user would actively spend on a page, how far the user scrolled/read the
page, and then sent it to the server’s back­end. The back­end would start saving the collection number
together with the gathered data.

The team also created a logger to see how often the recommendations were retrieved. This logger
was essential to see how often users would use the recommendations instead of using the search
function. This logger was simpler to build, as it only required code in the back­end. The data was then
also stored in the back­end, in the database.

The law area data collection focuses on tracking user interaction with regards to the documents
they open. The law field of the documents are tracked when the user clicks on them and after a certain
threshold is reached with a collection, a soft filter would be done on this law field. The soft filter would
help the recommender system to find better recommendations for the user.

6.1.3. Evaluation
When working on using the user’s activity to improve the recommender system, the coach pointed out
that this path did not have much potential. The team took this advice and ceased working on those

23

24 6. P2 ­ Analysis

plans. The activity logger and data saving have been finished. With the activity logger and data saving
finished, the data gathering began. However, the team never came to processing the data. The idea
was, that when the recommender system was ready, the team could see the differences in how users
made use of the recommender system, and how active they were in the recommended pages. Because
the team never proceeded, the data is currently only being logged, and not being processed. Valuable
time was spent on other parts of the system instead. Thanks to the coach, the team worked on parts
higher important parts, resulting in completing the second version of the recommender system. For
the future, the logger and activity tracker are still in the code, still gathering data, which are available
to compare different versions of the recommender system. Another possibility for the activity tracker is
to be used in the recommender system, by calculating a multiplier based on how much interest a user
had in a case and then applying it to the recommendations based on the case the user saw.

The law area data collection needs further work. However, a first version, where data is collected,
has been pushed to production. This collection will allow Bluetick to create a model that helps the user
to get more personalized recommendations.

6.2. Including weights and combining partial systems
As stated in section 5.1, the new recommender system is separated into multiple partial recommender
systems. Each system has its own set of recommendations and therefore, needed to be merged or
combined in some way to give a final list of recommendations. Conclusively, a system where each
partial system has its own weight solves this problem of merging. The system uses a normalization
technique to bring all separate values into the same range.

6.2.1. Design
To make a difference in the importance of the different systems, weights needed to be used. These
weights could be different for each recommendation type. In the application, there are three different
types; a collection recommendation, a document recommendation and recent recommendations. Every
type has a different set of weights to give more priority to one partial system. The recommendation
types are described in more detail in appendix E and screenshots of the front­end are displayed. The
importance of each subsystem is enforced by multiplying the weight with scores.

Normalization is a technique often used to normalize numerical values into standard range. Normalization
is needed because it ensures that any two partial recommender systems with equal weights have the
same influence over the final recommendations. The reason for this is that the current implementations
of partial recommender systems differ in the way they scale scores; in some the score values returned
by the partial recommender system are relatively low compared to others, even though they received
similar amount of updates.

6.2.2. Implementation
The team decided to save the weights into the Postgres database of the API. This made it easy to
review, add and adjust the weights according to the needs. However, the weights are also used in the
search engine, and therefore these values are added to the request to the search and used there. If
no weights are found, default values at the search engine are used, and a warning is raised for the
developers. At each partial system, the weights are then used to alter the individual scores.

For the normalisation, different algorithms could have been used by the team to normalise the
scores. The most notable difference between them is the extent to which they maintain the distance
between data points. However, due to this project’s scope, the team could not perform very detailed
research into the best algorithm for this particular use case. Therefore, the team decided to look into
a few papers that analysed different normalisation algorithms and implement one that looked most
promising. In [13] it was observed that the Ranksum algorithm, explicitly defined in equation 6.1,
resulted in the most accurate score predictions for their feature set. Therefore, it was decided to
implement the same algorithm and allow for Bluetick to make changes to this in the future easily.

𝑅𝑖 ∶ 𝑟𝑎𝑛𝑘 by feature 𝑖 in which the item with the highest feature value 𝑓𝑖 gets a lowest 𝑅𝑖

𝑛𝑜𝑟𝑚𝑅𝑎𝑛𝑘(𝑖) = 𝑀𝐴𝑋𝑅𝐴𝑁𝐾 − 𝑅𝑖
𝑀𝐴𝑋𝑅𝐴𝑁𝑘

(6.1)

6.3. Dashboard 25

6.2.3. Evaluation
Currently, the weights are stored at a different place than where they are used. This implementation is
somewhat counter­intuitive. So while this was the best option for the current situation at Bluetick, it is
desirable to make it more intuitive by changing this in the future. Apart from this, the code is relatively
easy to understand and can be easily extended by more weights. Additionally, it can be concluded that
it is hard to see the actual effect the weights have on the recommendations. More information should
be gained in the future to get a better understanding of the effect. Also, there is still some room for
improvement at the loading of the weights into the database. No default CSV can be loaded, which
results in the manual creation of the weights. This could have been done better.

Due to limitations described in Section 6.2.2, it was not possible to verify the Ranksum normalization
algorithm’s performance. However, choosing this algorithm was not done on a completely arbitrary
basis; the team considered it as the most promising candidate.

6.3. Dashboard
At the start of the project, little to no quantitative information was available to Bluetick regarding the
recommender system’s performance. With that in mind, the team decided to implement a dashboard.
The dashboard’s main goal was to increase the data analysis possibility for Bluetick, as described in
Chapter 4.

6.3.1. Design
Before working on the dashboard, the team created some mock­ups of visualizations (figure 6.1) that
ideally should be included. Since the team briefly went over thesemock­ups with the Client and adjusted
them after receiving feedback, they already had an idea of what kind of visualizations would prove
valuable and thus saved some time by limiting the time spent on redundant parts.

Figure 6.1: Mock­ups used for the recommender system dashboard

6.3.2. Implementation
As described in Section 3.4, much user data was already collected by Bluetick that could be used to
provide useful insight into the usage of recommendations. However, the team and the client also wanted
to display the Click­Through Rate (CTR), which was not yet possible due to the lack of data about the
number of times recommendations were fetched from the system. Therefore, the team created a new
table were the amount of calls to the recommender system is logged, as is described in section 6.1.

26 6. P2 ­ Analysis

Regarding the platform used to host the dashboard, the team decided to use Metabase, a business
intelligence tool already in use by Bluetick. The main issues with this tool for the team’s purpose were
its limitation to SQL queries and its limited visualization capacity, making it more challenging to create
some of the visualizations. However, the team believed that its benefits outweighed its downsides.
First of all, Metabase was easy to use, extend and maintain, and thus it already adhered to most of the
design goal pillars as described in Chapter 4. Secondly, Metabase was already a familiar tool for most
of the maintainers of Bluetick.

Not all of the visualizations, in the end, matched their mock­up. This could be mainly attributed to
some of the limitations of Metabase and the fact that working with the data for a longer time resulted in
some new insights in better ways to display the data. Due to a lack of time, the team could not create
visualizations that used recommender system scores. As can be seen in Figure 6.2, the visualisations
that were implemented are limited to the usage of recommendations and not the way they are composed.

Figure 6.2: Final implementation of the recommender system dashboard

6.3.3. Evaluation
As described in section 6.3.1, the team alreadyworkedwithmock­ups for the visualizations and received
feedback on them from the maintainers of Bluetick. However, during the implementation phase of
the dashboard, some slight changes to these were made without intermediate review (Section 6.3.2).
Therefore, the team decided to have a second round of feedback on the dashboard by the same client
and made slight changes according to the feedback received.

6.4. Conclusion
This chapter discussed the improved data collection and the combining strategy that were implemented
for P2: Analysis. The team believes that a great effort has been made for Bluetick to start analysing the
recommender system properly. In the future, Bluetick can combine the implicit feedback collected in
6.1 with other data they have collected and improve the recommender system by tweaking the weights
that were described in 6.2.

7
P3 ­ Recommender system

improvements

In this chapter the improvement that the team made for the recommender system are discussed. First
the warm start will be introduced, after which the reordering of results is discussed. This chapter will
be similarly divided as Chapter 5.

7.1. Warm start
Recommender systems only work when data is available. Bluetick encourages its users to create a new
collection for each new case, thereby organising case­relevant information in a structured manner. An
added benefit of this is that the recommender system can personalise recommendations on a collection
base. This does however lead to the problem that for each newly created collection the cold start
problem arises, as described in section 3.2.7. To combat this issue, the team implemented a feature
that allows users to initialise a collection with additional information.

7.1.1. Design
A lawyer often has a general idea of what they want to search due to experience, general knowledge,
or searching outside of Bluetick’s product. Therefore, the team designed a feature that would capture
this information, as it can help to reduce the cold start problem. A small meeting was organised with the
team and the User Experience (UX) designer to discuss how the UI should be changed to accommodate
this feature. From this meeting, the team concluded that the information should be asked subtly.

This feature was designed to improve the quality of recommendations by reducing the severity of
the cold start problem; however, this leads to added complexity to the recommender. Therefore the
primary design goals should still be considered when the warm start is implemented. Firstly, the warm
start should be written in a maintainable way, such that Bluetick can find bugs quickly, and code can be
changed easily. Secondly, the warm start should be scalable, thereby not having a tremendous impact
on the application’s responsiveness. Finally, the warm start should be traceable through the application
for Bluetick and the user.

This feature focuses on improving the recommender system by adding new input options for the
user. This leads to an improved user experience and more relevant recommendations.

7.1.2. Implementation
From the design phase, the team decided that the warm start would focus on active data collection,
which was successfully implemented. The active data collection focuses on getting a user to add
law­articles to their collection, as shown in figure 7.1, which would initialize the recommender system
with suggestions related to those law­articles. Next to having an idea of what the user is interested in,
the system can also start giving recommendations when the collection is created. These suggestions
actively reduce the cold start problem.

27

28 7. P3 ­ Recommender system improvements

Figure 7.1: Final design of the active warm start

7.1.3. Evaluation
The active data collection has successfully made it to the production environment. It allows users
to create collections with law articles, which give them a feeling of control over the recommender
system. Furthermore, this system has been extensively tested through unit, integration and e2e tests.
It successfully improves the recommender system’s usability by giving the user more control over the
recommender system. Bluetick also came to the same conclusion. Finally, the team evaluated this
feature with two subjects that work directly in the law area. The feature was positively received by both
of them, stating that it can be advantageous as a soft filter. However, the feature is not user­friendly
enough as it is not giving feedback on when the system accepts a law­article. Furthermore, not all
lawyers will know what law­articles they are interested in from the beginning of the case. Therefore it
would be helpful if the user is reminded that law­articles can be explicitly added to the recommender
system.

7.2. Reordering results
Another feature requested by Bluetick is the ability to reorder the results from the recommendation
system. For example, a recent (less than three weeks old) case is more important to the user than
a more than three­year­old case. However, unlike a regular search, where a user would be able
to sort all the results on the date, this is not useful in the recommendations. Instead of sorting the
recommendations on data, a reordering is applied. This reordering is done so that the underlying
structure of the recommendations perseveres. This is necessary since a sort would rearrange recommendations
based on dates, not considering the actual score a recommendation had. Therefore a soft­reordering
was applied. This reordering would boost a recent case to a higher place while taking into account the
original score that the recommender system calculated.

The criteria for the soft reordering were discussed in a meeting with Bluetick. It was concluded that
the following criteria should be applied in the reordering: the date and the court belonging to the case.
A more recent case is more important, as it can over­rule older cases. The same goes for a higher
court: A higher court can over­rule a lower court.

7.2.1. Design
Due to the extensive refactor as was described in section 5.1, it was not necessary to change neither
the interface nor the classes of the recommender system. The design of the recommender system was
able to support the reordering natively. Thereby further reinforcing how important the refactor was, for
the new functionality that was added.

7.2.2. Implementation
The reordering feature required two new implementations. First of all, the reordering features for each
case need to be retrieved from the system. The team decided to refactor the ScoreStore class and
decided to add extra fields for the reordering. Each feature could then be added together with the case
to the database.

The second part of this feature was trivial to implement. After storing the features in the database,

7.3. Conclusion 29

the next stop was to multiply the score that the recommender system assigned to each case by a
multiplier, influenced by the features and theweight assigned in the admin dashboard. The recommender
system now multiplies the scores of each case by their features and weights. For the date, the team
made a function that boosts cases that are less than three weeks old, with a value from a settings
file used as a power over the resulting multiplier. There is a dictionary in the settings file for the court
weights, where different multipliers can be supplied for each court.

By multiplying the scores of the cases, the order of the cases is also changed. The change of order
is because of their score in the recommendations that orders all the cases.

7.2.3. Evaluation
The approach the team took required a refactor of the ScoreStore class, which was not optimal. It
also made the system a lot slower, as now data had to be collected about the case’s date and court.
This information has to be retrieved from the external system, sometimes many times, causing the
processing of new recommendations to be a lot slower. The slow speed is especially evident in the
Youtube­style recommendations. In these recommendations, an ECLI search is done first on the
opened case, and then the data is processed, then the recommendations are computed, and only
then are they shown to the user. The Youtube­recommendation is the only time the user will see the
recommendation system’s long loading and processing time.

The approach of the team, therefore, took more time than necessary. The team should have
planned for this earlier when they did not create the ScoreStore class yet. The structure also does not
allow formissing information, because it causes the recommender system not to produce recommendations.
Later on, this could be improved by Bluetick. A positive side of this refactor, is that it is very straightforward
to add more fields. These new fields can then easily be re­ordered in the recommender system.

7.3. Conclusion
The team believes that the added functionality will help Bluetick in the future, as the new features are
closely related to what was already on Bluetick’s future development plans. Although both features
are not fully implemented, the team thinks that a solid foundation has been made for each of them and
hopes that Bluetick will further improve upon them.

8
Process

In this chapter, the development process will be described. To stay on schedule and up­to­date with
each other, different tools have been used during the project. Additionally, different meetings structures
have been used to create consistent communication between all parties involved. To further explain the
process, it is divided into communication, meetings, the scrum methodology, pull­based development.
After that, the SIG feedback is presented to give an overview of the software quality. Lastly, the team
reflects on the team members and the process.

8.1. Communication
Communication is always a key part of the process. Between team members, it is essential to know
which features are implemented by whom. Furthermore, the client plays an important role in the
problem definition and product feedback and should often be talked to. Additionally, it is important
to discuss problems that arise as quickly as possible, not only with the team but also with the coach
to not further delay progress. Due to the external factors, a global pandemic, the team could not go to
the office, so all meetings were done online.

8.1.1. Team
The team met every day, often twice a day. During these meetings, progress and problems were
discussed. During the first few weeks, these meetings included multiple presentations to keep the rest
of the team informed about new discoveries of the codebase. This helped the team to reduce the
learning curve instead of reinventing the wheel individually. More towards the end, these meetings
also included demos of new features to gain feedback from the team. These meetings were done via
Discord, which also included different channels based on the different parts of the project, including
large branches, logistics, research and off­topic channels.

8.1.2. Client
Every Tuesday, a meeting was scheduled with the client. During these meetings, the team tried to
ensure that they understood the problem at hand correctly. When the research was done, the team
reported back to the client what the possibilities were and presented a plan to tackle the problem. Lastly,
when a feature was implemented, the team showed this to the client and asked for additional feedback
to make sure the feature fit the client’s original needs. Additionally, one of the team members attended
the daily stand up with all employees of Bluetick. This made sure that the team was up to date with the
company’s most recent pursuits and made sure that other employees of Bluetick were up to date with
the progress of the team.

8.1.3. Coach
Every Thursday morning, a meeting was planned with the coach. In this session, the progress was
presented to the coach, and additional ideas and feedback were given by the coach. This weekly
basis helped the team as the coach was well informed about the project’s progress and problems.

31

32 8. Process

Consequently was the feedback of high quality and all problems that arose was addressed quickly.
This guidance was a great addition to the productivity and focus of the project.

8.2. Meetings
For each meeting, various preparations were made. This included stating an agenda, which was send
a day in advance so everybody could prepare their part. This made sure that all participants were
on the same page before the meeting started, which significantly improved the meeting’s efficiency.
Additionally, at the start of the meeting, the agenda was discussed to ensure that no crucial points were
missed. This proactive attitude of the team was evaluated as very positive by others. All meetings were
every week at the same time, which made the week very structured. All team members enjoyed this
structure.

8.3. Scrum methodology
For this project, an agile methodology is used to plan, design, implement and evaluate product and
process. Scrum allowed for a flexible workflow where new problems are easily planned into the next
sprint. After the research was done, it was concluded that some of the earlier ideas were not feasible,
and therefore, the team should shift their planning and design to make it more feasible.

8.3.1. Sprints
Because the project’s focus shifted quite often in the start, the team decided to stick to weekly sprints.
This enabled flexibility, which made sure their shift of focus could be done quickly. Each sprint consisted
of a sprint planning onMonday morning, daily stand­ups, daily stand­downs, a sprint review and a sprint
retrospective.

The daily stand­ups made sure the team was up to date with each other progress, and there was
room for feedback if somebody needed that. These meetings could take quite long in the first few
weeks, as a lot needed to be discussed and decided. However, after these weeks, the stand up took
no more than 15 minutes before everybody got to work. The daily stand­down was mostly to prepare
upcoming meetings and show the progress that was made during the day. This made sure all team
members also saw what the others were doing.

The sprint retrospective evaluated the process, including themeetings, communication, issue definitions,
merge­request and more. Every week, the team evaluated based on these categories what the team
should ’start doing’, ’keep doing’ and ’stop doing’. Every review, the team looked back and the older
reviews if the feedback was adopted correctly. Additionally, this review included a round of personal
feedback. This feedback tries to keep the team together and resolve any conflicts that might come
up as soon as possible. Giving constructive personal feedback and compliments improved the overall
teamwork and positive vibe. It also created an open environment where all team members could say
it if something was on their mind.

The sprint review was a structured meeting to look back at the product backlog and see which
progress is made. This was the moment to reflect on the priority of the issues and whether the
team is still on track. The progress was then shared with the client in the upcoming meeting to also
communicate the product’s current state.

8.3.2. Backlog
For the general product backlog, Trello was used. Trello allowed the team to describe each part of
the problem into smaller parts. Each of these parts was then constructed into concrete issues which
should be implemented in the sprint. This sprint backlog contained all issues, where each issue must
contain the corresponding labels, priority, checklist, description and assignee. The checklist was vital
because it forced the team to further breakup issues into concrete steps to complete the original issue.
Additionally, others could see very detailed information about the current state was. Together with the
description, this gave a very nice overview of which goal was met and the definition of done and the
goal. Also, Trello made it easy to keep track of the reported bugs, problems that have come up and
more.

8.4. Pull based development 33

8.4. Pull based development
For this project, pull­based development is used. Every feature or bug gets their own branch on which it
is implemented. When the feature is done, it gets reviewed by at least two teammembers which means
giving feedback on code quality and running the application locally. All will be done before it is merged
into themaster branch. In this specific case, the team had their ownmaster branch called bep­recsys,
which was then merged into the master of Bluetick. The team made sure that bep­recsys was up to
date with the master of Bluetick. The Master branch is then deployed to the staging environment, which
is tested by other Bluetick employees. This feedback will be reported back to the team and was fixed
as soon as possible. When everything works as expected, the feature gets deployed to the production
environment.

8.5. SIG feedback
At the end of week 6 and 8, the code must be submitted to the Software Improvement Group (SIG).
This is an assessment of the code quality. Metrics such as code duplication, unit complexity, module
coupling and more are used to qualify how scalable and maintainable the code base is. In this section,
the team will present the received feedback and the changes that were made. Note that for this upload,
only code that was produced by the team was uploaded. Therefore the test code ratio is quite large.

8.5.1. SIG Feedback first upload
In figure 8.1, the overall feedback is described. With a 4,2 out of 5,5­star rating, it can be concluded
that the overall quality is already quite good. The most improvement can be made by looking at the
duplication, unit size and unit complexity. The team was quite happy with this feedback, as it means
that they were on the correct path. Especially comments, tests, and description of functions had a lot
of focus in the work process because the team wanted to make sure that Bluetick would be able to use
the code when the team members were gone. In this feedback, it did not say a lot about comments,
so that is good.

What seems to be an issue with the feedback, is that some parts are rated as 5.5 stars, while the
code is not perfect. This probably has to do with the fact that the team worked on an extension of the
code that Bluetick produced. For the SIG report, the code created by Bluetick was left out. This can
create the illusion that the code is very well written, while it is only a small part of the total code.

Figure 8.1: SIG report of first deadline

8.5.2. Changes made
Most of the changes were made to reduce the code duplication and unit size. The code duplication was
mostly because of the tests written, which mostly relates to the test suite setup. The tests have only be

34 8. Process

re­written slightly, as they are not the source code. For the other code duplication, most functionalities
were brought into new functions. In some cases, there were only minor differences in the code. An
example of this is how the partial recommender systems interact with the database. However, creating
a new function while passing the connection with the required database as an argument would require
about the same number of code lines in the functions. Therefore, the team choose not to do this.

After looking at a detailed version of the feedback, it can be seen that one case of code duplication
that was found was located in collection.py from the API folder. This is were all API calls are
redirected to the search API. This is indeed duplication, but removing this duplication will make the
code less readable in the opinion of the team. Therefore the team chose to not focus on this particular
issue. The other issues were also very hard to fix.

The unit complexity refers to the number of paths that exist in a method. This is, for example,
because of if­statements in the code. Some complexity was taken away by moving parts of functions
into a new function, which was the solution to some high unit size files. This fixed some complexity
problems as well, but sadly many remained. Most of the files marked by the SIG system contain large
functions with many switch cases. The complexity can not easily be removed from those functions,
without unnecessarily splitting up the function. An example is given below, in the function where reasons
are processed. Splitting up the function is unnecessary and drastically decreases the readability of the
code. This function also focuses on only one process: parsing reasons into something more readable.
Therefore the team did not split up these functions, and some others who have similar issues.

Another problem with the large unit size comes from the function that handles API requests. They
are enormous because the input has to be divided into separate variables. The API function is responsible
for calling many other functions, for processing the data from the request. These functions exist to
combine all the other function, and splitting them up does not make sense. Functionality could be put
in 2 different parts, but then the second function would need many parameters to take in the data from
the first function properly. That did not seem helpful to the team. Some functionality could be moved,
so the team decided to do what seemed like the best option for them. Sadly the remaining functions
are still too large to get a good rating on the SIG platform.

Figure 8.2: The function with a too high complexity

8.6. Team Reflection 35

8.5.3. SIG Feedback round 2
In this part the second round of feedback from the SIG will be discussed, the result can be seen below
in image 8.3.

Figure 8.3: SIG report of the second deadline

The difference in scores was mostly due to a single problem: Because old code was cleaned up
and removed, the functions for the API calls were now mainly written by the BEP team, instead of
Bluetick’s programmers. That is why the team also decided to include them in this new report, but
not in the old one. These functions are, according to the metrics, poorly written functions. However,
when inspecting these functions more closely, they all have a single functionality: to serve as API
endpoint. They need to gather a lot of different data and combine different sources. This results in
many calls, many if­statements and extended functions, sometimes with more than three parameters.
The problem that the team faced was that these functions are not, in the team’s opinion, more readable
or more understandable when they are split up, as stated in section 8.5.2. Therefore, the team also
decided not to ”treat the metric” and therefore kept the code as it is now.

To end this section on a more positive note, the duplication was improved a bit. The team has
actively tried to remove code duplication and were glad to see that there was now less duplication.

8.6. Team Reflection
Everybody had their own role inside the team, which mostly complemented each other. This resulted
in an intuitive and healthy group dynamic right from the start. While this was the case, everybody still
wanted to learn new skills and positions inside the group. Therefore, the team decided that the chairman
switched with everymeeting. This made sure that everyone got more experience with leading ameeting
with the client, coach or others. Switching was evaluated as positive because everyone learned a lot
from each other.

All team members worked in a different manner. Some worked better alone while others worked
better with company. Some communicated in one way, other in another way. Nevertheless, this
difference in work style was quite a positive thing, because it was in balance, just as the different
interests in subjects. The one prefers working on the backend, while others prefer frontend. This made
dividing tasks very easy without any conflicts.

By giving weekly individual feedback, everyone could improve on their weaker points and further
develop their qualities. This weekly feedback was prepared individually beforehand to make sure all
feedback could be described clearly. A list of the roles inside the group and improved points a given
below:

36 8. Process

• Chris was always there when others needed help. He was the rubber­duck of the group, which
helped during development. Additionally, Chris was the onewho really dived into the normalisation
theory and gave multiple engaging presentations about this. During the project, he learned how
to sound less rushed during meetings and stay focused during the long online meetings.

• Thijs took (almost always on the right moment) care of the entertainment during group meetings.
His humour was a great addition to the meeting to keep a positive mood. He worked mostly on the
backend and made a slick new version of the recommender system. In this project, he learned
how important it is to review each others code and the importance of communicating well what
the progress is of your feature. He also learned a lot from the rest of the team in terms of leading
meetings.

• Tijmen is a critical thinker, to himself and to others. This characteristic became very handy as he
could use this critical view to look at merge request, papers and more and give relevant feedback.
This took the code and written text to the next level. In the ten weeks, he worked on all ends of
the code, but his main contribution is the warm start that was implemented. Tijmen learned how
to convey a solution more subtly and have an open attitude in a discussion.

• Jeroen communication skills were most appreciated during this project. He is more worried about
the usability then whether it works or not, which complements the rest of the team. Together with
his perseverance, he mostly set up new things inside the project, such as the Cypress framework
and the new design for the reason of the recommendation. During the project, he learned more
about when to seek help instead of figuring it out independently. Additionally, he improved upon
his presenting by sometimes taking some breaks

8.7. Process Reflection
It can be concluded that the process worked quite well for the product. Themeetings were well prepared
and therefore, most of the time, very useful and efficient. The agile methodology worked well for the
project. It made sure the teamwas flexible and often reflected on the direction of the project. The weekly
sprints were evaluated thoroughly to improve the process’s inconsistencies, and personal feedback
was taken seriously, which resulted in fast adoptions in behaviour and communication. This resulted
in much improvement over the weeks, on personal development and the overall process. Additional
reflection is given by the Client, which is described in Appendix D

8.8. Potential improvements
While the team is quite happy with the overall process, there will always be potential improvements.
The first had to do with the definition of the issues. While they were well defined, they sometimes could
be split into multiple smaller issues. Some issues had a checklist of 14 points, which should have raised
the question if the issue was small enough.

Additionally, some progress could have been made in keeping the master branch up to date with
bep­recsys. The lack of a low amount of merge requests to master resulted in large merge requests
with lots of features and bug fixes. This made it unclear for the client how much progress there was
and which issues were already fixed or not.

Lastly, communication between the team members could have been better. Sometimes, it occurred
that a bug was fixed by multiple persons. This could have been prevented by better communication of
who will fix the bug.

9
Outlook

In the relatively short time span of this project, the team had to prioritize when it came to choosing what
to research and implement in the final version. As a result, some recommendations and suggestions
are given for the Client for further improvement.

9.1. New partial recommender systems
The new version of the recommender system makes it possible to extend easily upon the pool of
techniques used to form the final recommendations. The team has some suggestions for new partial
recommender systems whose introduction could have potential in the future.

9.1.1. Collaborative Filtering
As described in Section 3.4, it was predicted that applying Collaborative Filtering techniques would
rarely result in significant gains to the quality of recommendations. However, if the user base of
Bluetick shows signs of significant growth, it is suggested to Bluetick that they re­analyse the potential
of applying these techniques.

9.1.2. Irrelevant cases
Currently, marking cases as irrelevant has little effect on the recommendations. An option to change this
would be to introduce a new partial recommender system for this purpose. It could be implemented
similarly to its negation, the partial system that handles relevant marked cases, with the significant
difference being that it assigns negative values instead of positive ones. The easiest way to achieve
this would probably be to assign the partial system a negative weight whilst internally only using positive
values.

9.2. Combining Recommendations
The team foresees different approaches for Bluetick if they decide to take a step further when it comes
to the process of combining partial recommender systems. Here, a few are listed.

9.2.1. Update­based influence
Currently, it does not matter for the influence of a recommender system on how much user data its
recommendations are based. This raises the question of whether a system that takes this into account
could possibly result in a quality gain for the recommendations. Bluetick could perform analysis on this
area and introduce a weighting system that performs precisely this trick, giving more weight to systems
that are based on more user data than others.

9.2.2. Normalization
A more detailed analysis could be performed on the characteristics of the score values to see which
normalization process would, in theory, be most promising. However, the most straightforward and

37

38 9. Outlook

most accurate approach would be to verify the performance of different normalization algorithms on
either real user data or by introducing a labelled dataset.

It should be pointed out that it is also an option to apply different normalization algorithms simultaneously.
This could be a suitable option if it is deemed desired that for some partial recommender systems, the
relative distance between data points is maintained. In contrast, for others, only keeping in mind the
order might result in the best recommendations.

9.3. Law Area Re­Ordering
It can be observed that some users are primarily interested in cases and jurisprudence that relate to
only one or more law areas. The search interface already contains a filter for this purpose but does not
seem to be used that frequently. Therefore, Bluetick mentioned their desire to asks users whether or
not they want to limit their future searches to a set of law areas if these are the only ones that contain
material with user interactions. The received feedback could also be used in the re­ordering of the
recommender system, giving more value to cases and jurisprudence that are part of a law area the
user is interested in.

9.4. Enhancing User Feedback
Recommender systems depend on the users’ feedback, and the team foresee twoways of how enhancing
this feedback can result in better recommendations. First of all, more precise feedback can determine
the desired type and severity of the update to the recommender system. Secondly, they could be used
by Bluetick to see the quality of the recommendations over time. In this section, suggestions are made
where the user feedback could be improved upon in their product.

9.4.1. Explicit Feedback
As discussed in section 3.4, the current system of Bluetick allows users to mark cases and place
highlights in them. Users may, however, have different reasons for performing these actions. For
example, some users might put much value in the quality of recommendations and try to improve its
accuracy, whereas others, might primarily use it as a ’watch­later’ overview.

To better distinguish between these, users could be asked more about its motivation. Similar to how
many web­shops implemented their rating system, the second phase of feedback could be introduced
that asks the user, in more detail, for their motivation behind marking a case as relevant or placing the
highlight. As a result, the updates on the recommendations could be or more severe, or be performed
on a different partial recommender system that more suites the user’s goal.

9.4.2. Implicit Feedback
In section 3.3, it was discussed that Bluetick could use implicit user data to improve their recommender
system and evaluate its performance more accurately. However, due to time constraints and privacy
concerns, the team prioritised the work on other areas and only started logging a few implicit feedback
metrics. A more detailed analysis could be performed in this area to determine to what extent it is
possible to introduce a scoring system that can accurately predict the relevance of previously encountered
cases to users.

9.5. Code Quality and Maintenance
As discussed in Section 5.2, having awell­defined testing strategy is of great importance to any company
in order to ease the code development process and increase maintainability.

Before working on the project, the CI/CD pipeline that ran after every commit to the Gitlab repository
was limited to a check whether the docker was build or not. This could be improved by automating the
tests for every merge request. This would serve as a smoke test to see if the changed code did not
break anything. This would also prevent the works on my machine problem.

Additionally, some improvement can be made in the code style. Currently, no linter is runned in
the pipeline. This will improve the consistency of the code between different developers and therefore
improve the readability.

10
Conclusion

At the start of the project, the goal was to create an improved version of the recommender system,
namely an optimized, faster, higher quality and more accurate recommender system than the current
one. It can be concluded that creating a high quality recommender system is not trivial, especially in
only ten weeks. It requires clean code, lots of data, a model that can use this data, enough time and
sufficient knowledge about the subject to correctly create a working system.

As can be seen in chapter 4 of this report, not all of these requirements were met when the project
started, such as the amount of data required and the extensibility of the codebase. To collect more
data, implicit feedback would help, but it would not fully solve the lack of data problem. Consequently,
other paths were taken to create a better basis for an improved version of the recommender system.
This included a refactor of the code base, a modular system of sub recommender systems and giving
control and insight to Bluetick about the recommendations’ quality.

The implemented product is maintainable, extensible and traceable. The traceability is used to give
the user a better feeling of the source of recommendation, contributing to a better understanding of
what the underlying system is doing and how the user can contribute to its accuracy.

Additionally, some quality improvements were made to the recommender system. The user can
now give more information at the start, which gives some momentum to the recommender system and
improves usability. Next to this, a reordering is implemented, which is a rule­based system to further
improve upon the ranking of the system’s different results.

The team also kept the ethical implications of the system in mind. This is more elaborated upon in
Appendix F

Lastly, there are only so many things achievable in ten weeks. This project will allow the client to
efficiently improve upon the system in the near future, with some suggestions given in the outlook.

39

A
Info sheet

41

42 A. Info sheet

Title: A Recommender System for a Legal Search Engine
Client: Bluetick
Date presentation: January 28th, 2021

Description
In this project, an improved version of a recommender
system is build for Bluetick. Bluetick is a startup
that has created a new search platform for the legal
sector. This platform uses optimization algorithms and
AI solutions to improve the search results, and give
the user a high quality and friendly tool. This search
platform works together with a recommender system to
recommend new cases based on search history and
other user activity. The challenge of the team was
to create an improved version of this system, which
the team defined as a more scalable, maintainable
and transparent system which would give the client the
handles to increase the quality of the system.

Most research is done in the area of information
retrieval and types of recommender systems. As
Bluetick is still quite small, the research was mainly
focused on how to recommend based on a small user
collection and on how to collect more relevant user
data. This research is used to further narrow down
the scope of the problem and conclude were the most
improvement could be made.

After the research was done, the team concluded
that the most improvement could be made by
restructuring the existing system in such a way that

the source of recommendations was traceable and new
parts of the recommendations should be easily added.
This was quite a challenge to create a system that not
needed a lot of user data and to create a new version
of an already existing system.

But the final product is something the team is
quite proud of. It is a new system that is scalable,
maintainable and gives the Bluetick and the user more
insight on were a recommendation was based on.
Additionally, features like a warm start and reordering
give already a improvement in the quality of the actual
results. Lastly, the dashboard and weights give Bluetick
the option to improve the system even more without any
effort.

While the final product of the team is
already used in production, there are always new
improvements imaginable. The new system includes
a normalization algorithm to combine the different
partial recommendation systems, but there are more
sophisticated ways to normalize. Additionally, the actual
testing of the quality of the system is done manually,
while this can be automated therefore this is part of the
recommendations the team gives to Bluetick.

Team
Chris van der Werf
I enjoy working on innovative Data Science and AI
solutions to problems we encounter in real life. During
the project, I have beenmainly involved on the back­end
design and implementation of the new version of the
Recommender System. Additionally, I contributed to
the dashboard and normalization algorithm used in the
system.

Thijs Nederlof
My interests are Blockchain, Cryptocurrency and
Decentralised Finance, from trading bots to smart
contract development. Mymost significant contributions
to the project were done in the back­end, where I worked
on creating the logic, structure, and processing of the
new recommender system. I was also responsible for
the code quality.

Tijmen van Graft
I am generally interested in how AI can be better
integrated into our day to day live, taking over
tedious/repetitive tasks from us so that we have
more time for things we are truly interested in. My
main contributions to this project were the warm­start,
the improvement to test ability, the recommendation
explanations and contributing in discussions on how
structural changes should be made.

Jeroen Nelen
My personal interest mostly relates to the impact
technology has on society and how to can innovate
responsibly with great solutions like AI and data
science. My main contributions to the project were the
implementation of the weights, the front­end design and
usability aspect and testing.

All team members
All team members contributed to preparing the reports
and the final project presentation.

Client
Kasper Kooijman
Co­found & Developer at Bluetick

Coach
C.C.S. Liem
EEMCS, Intelligent Systems

Contact Person
Jeroen Nelen
jwnelen@gmail.com
Developer of project team

The final report for this project can be found at: http://repository.tudelft.nl

http://repository.tudelft.nl

B
Original Project Description

B.1. Company information
Bluetick is a start up from Amsterdam, founded in november 2019. We are developing an online search
engine for the legal market. We aim to use state of the art NLP models to gain a better understanding
of Dutch legal cases, and to make the life of a lawyer as easy as possible.

B.2. Project information
Legal search engines exist, but they are operating in a traditional market where little innovation has
happened during the last decades. Where huge steps have been taken in the field of NLP, legal search
engines have taken minor steps. At Bluetick, we use state of the art techniques to recognize which
cases are similar to each other. For example: a murder case with a hammer is somewhat similar to
a murder case with a baseball bat. However, with the traditional keyword­based search engines, our
users wouldn’t find the former case, given the latter.

For this bachelor end project the group aims to use a recommender system that finds relevant
jurisprudence for the end user based on user data: different types of search queries, highlights, viewed
cases, etc. The aim of this recommender system is to recommend cases the user otherwise wouldn’t
have found, and gain a better understanding of a particular area of law.

This project is created in cooperation with BEP group:

• Tijmen van Graft

• Thijs Nederlof

• Jeroen Nelen

• Chris van der Werf

B.3. List of questions to ask the client
• Is the topic of the bachelor project a real (i.e., not artificial or otherwise constructed) challenge
faced by your organization (company or other)? Yes.

• Is it the case that there is not an off the shelf software solution that would solve the problem?
There is a lot of research available on recommender systems that can be used as a starting
point. However, our use case is unique and requires the necessary research.

• Is it the case that very similar solutions/products do not already exist? Legal search engines exist,
but they are operating in a traditional market where little innovation has happened during the last
decades. In the United States, more innovation is done on American case law, which can be
used as an example for our problem, but making the translation from American case law to Dutch
law is a whole new challenge.

43

44 B. Original Project Description

• Is it the case that detailed specifications for the product have not already been formulated? The
moments when the recommender system has to perform are specified, and the data that can be
used are available. The step from data to recommendation will be up to you! (In cooperation with
Bluetick, of course.)

• Does the project involve implementing a complete working prototype or a system? Yes, probably
by creating an API with which our product can communicate, and by creating a database where
recommendations and user behavior are stored continuously.

• Will the students have the opportunity within the scope of the project (10­11 weeks; 420 hours
for each team member) to experience the whole development trajectory from problem analysis
through testing? Yes

• Do you have enough capacity (i.e., time in your schedule and supporting colleagues) to hold
regular meetings with the team, answer questions that arise, and guide the project to a successful
conclusion? Yes, I will schedule one weekday in which I am freely available for the team. And if
necessary one other meeting each week. On other days I will also be available for the team to
be contacted, but I might not respond instantly.

• Do you have the time/experience to sit down with the team at the start of the project and make
clear agreements about expectations and how communication will take place during the project?
Four of us have a Data Science master’s degree. In case development questions arise, I will
make sure that our developer will also be available.

• Do the students have room to make decisions with respect to the type of solution and tools
used to approach the solution? Does the project require the team to address one or more
research questions? I trust four end­bachelor computer science students to be able to make solid
decisions. Multiple research questions can be addressed regarding: the right database structure,
combining different high dimensional vectors to find the right document similarity, combining
different scoring mechanisms from different models on different scales, testing and training the
model based on live user data.

• Does the project require the students to actively engage in risk management? In other words,
could the project possibly potentially fail? If cases recommended by the resulting recommender
system are not interesting to our users, it could be considered a failure.

• Can the project be extended if necessary (for example, if the original problem turns out to be
not challenging enough)? The initial challenge would be to improve on our current recommender
system: in terms of recommendations, speed, and reliability. Whilst recommendation quality can
endlessly be perfected, another extension could be to introduce live learning, or to find a way to
easily improve the system after gathering a few weeks of user data.

B.4. Other information
The team will preferably come to the office once a week to work there (if the situation allows). Bluetick
will pay each member of the team a stipend of €200 monthly. The preferred language can either
be English or Dutch. A group of around 4 students is preferred. We require the group to sign a
Non­Disclosure Agreement, so we can discuss everything we want with them, and make them feel
part of our company. The information shared during their final presentation or published in the thesis
will not be our top secret information.

C
Project Plan

45

BEP - Project Plan @Bluetick
Team: Chris van der Werf

Jeroen Nelen
Tijmen Graft
Thijs Nederlof

Coach: Cynthia Liem
Client: Kasper Kooijman
Version: V1.3

Motive
Bluetick is a company that aims to make a tool for professionals working in the dutch legal
industry. Their product is a smart search engine that helps the customers to speed up their
research into cases. By showing them the cases they need the most, they can better
interpret their current case that they are working on.

An average customer is a lawyer that works for one or more clients and on multiple cases at
once and searches separately for each of his cases. He uses the results to gain a better
understanding of how a judge interprets a specific law. By finding similar cases like the one
he is working on, he can adjust his stance on the current case to better fit his goal. For
example, he might see a case which gives insight into how he can better defend his client in
his case. Bluetick’s search engine tries to find the most fitting case that will help the
customer the most.

Objective
Currently, the search history of the user has a limited effect on the recommendations offered
by the tool. We plan on creating a search profile for the user that improves the quality of the
recommendations offered to the user.

Final Product
The final product will be an improvement of a feature. The product will be a new
recommender system that will recommend similar cases based on the search activity of the
user within a file. Additionally, a research report will be written, which consists of a literature
review, an explanation of the different options that were considered and why the
implemented product needed that particular option.

Acceptance criteria
The final product is accepted if

a) There is a working version of a recommender system
b) There is an improvement in the quality (which will be based on the metrics) of the

recommendations compared to the already existing baseline
c) The recommendations provided by the recommender system are verifiable and

reproducible
d) The code is sufficiently maintainable by developers of Bluetick

46 C. Project Plan

e) The code and documentation is clean and easy to read
f) There is a research report that motivates the different design choices clearly and

concise and could be used as an additional explanation for the product.

Baseline
The current system works as follows: When a user opens a new file, he will first search for
relevant cases using keywords. After his first search, the recommendation system goes to
work. It will select cases that it thinks will be relevant from the following data:

● Cases marked as relevant by
● Pieces of text highlighted
● Search history (either by keyword, ELCI, or part of the text)

The recommender will assign scores to cases it thinks are relevant. In a sidebar that is
shown to the user, it will show a list of the cases in order of the score. By clicking on more
cases and searching with different keywords/highlights/ECLI, the score is adjusted to suit the
wishes of the user better.

Currently, this system is far from optimal according to the product owner. For example, there
is no way to measure the quality of the recommendations, and there is no way to find similar
cases in another way than the search does.

Our baseline is a recommender system that is better than the current system. Once our
system works better than the old system, we will consider our project a success. To compare
the two systems, we will also need a way to properly compare them in terms of recall.

Metrics
The improvements made to the system will be compared to the baseline implementation.

We evaluate the usefulness of cases to the user by looking at its behaviour:

- Whether or not the case was viewed in the first place
- Whether a case is marked as relevant
- The activity of a user on a case
- The number of highlights inserted by the user
- Whether a user interacted with a case referenced by this case

Our recommendations should be as close as possible to the optimal scenario: A list of cases
that is sorted on (future) usefulness to the user.

Available data
A user can have multiple files at the same time. These files are separated from each other
such that they don’t influence each other.

Currently, the following data is being tracked on a file basis:

- ECLI search history
- Keyword search history
- Highlighted text search history

47

- Timestamp of search actions
- A list of currently recommended cases
- Opened cases
- Saved cases
- Case found by search or by recommendation

The following information is available from every user:

- Profession in the legal system
- Years of experience
- Area of expertise in the legal system
- How much time per week a user invested in looking for other jurisprudential
- What a user spends the most time on (e.g. complex cases, simple questions, staying

up-to-date)

Planning
To reach the goal of this project, we will need a schedule. In the following table are our
deadlines and general activities during that time.

Week Date Activities Deadlines

0 Up to 9 November Finding a suitable project, a TU
Delft Coach and getting approved

9 November

1 9 - 13 November Getting more information from the
company about the project, writing
a project plan

2 16 - 20 November Researching, writing the research
report

Research Report,
Project Plan

3 23 - 27 November Setting up the environment.
Starting to work on gathering
more data. Implement a more
advanced logger

4 30 Nov - 4 Dec Start implementing content-based
recommender system

5 7 - 11 December Deploy first recommender system/
improve logger if necessary

6 14 - 18 December Evaluate and improve
recommender system

Hand in code for first
SIG report

 21 dec - 3 jan Holiday
(Collecting data)

7 4 - 8 January Deploy improved recommender

48 C. Project Plan

Meetings
To make sure the project stays on course, and to make sure it is what the clients want, we
will have a lot of contact with each other. Every week, there will be a meeting between the
team and the client. These meetings will take place on Tuesday, at 9:15.

With the coach from the TU Delft, Cynthia Liem, there will be a meeting every week on
Thursday 8:30.

system

8 11 - 15 January Writing the final paper/implement
last features

Hand in code for
second SIG report

9 18 - 22 January Final report

10 25 - 29 January Creating/finishing and giving final
presentation

Presentation

49

D
Feedback from the client

Dear Chris, Jeroen, Thijs, Tijmen,

Ten weeks ago, you started working on your Bachelor Project at Bluetick. At first, you were met with
disappointment, due to your expectations not being fully met. In order to build an all out recommender
system, data (collection) was lacking. Despite this early setback, you decided to find a solution for our
data shortage by developing a system that allows us to collect and monitor user data. Your system
makes decisions based on these data, is easy to adapt, and provides our users with valuable insights.

When the definitive plan for the project was set, you could finally start the actual coding. You created
your own branch and decided that it should be polished into perfection. Despite all my efforts to get it
merged into master, I could not come between you and your branch. Every time I asked for it, you just
started something new, which really had to be finished before it could be merged.

A week before your code was planned to be productionalized, you finally dared to hand the branch
over to me. By now, the branch had become so big, that merging it into our staging environment
resulted in some serious issues. However, thanks to sheer willpower and debugging skills from your
side, and minor pressure from my side, you managed to fix (almost) all the problems just in time.

At this moment, your project is running in our production environment. It helps our customers to
fulfill their information needs, and improves our product significantly. Thank you for your hard work. I
have really enjoyed working together with you, seeing you learn and becoming part of Bluetick. I have
learned a lot from you as well. Congratulations on finishing your Bachelor Project. I wish you all the
best.

Kasper

51

E
Screenshots Recommendation Types

There are three types of recommendations. The collection recommendation page is depicted in figure
E.1. Here, the recommendation is based on all activity of that particular collection. In the recent
recommendations, the newest case that is relevant to a specific collection is given. This is displayed
as can be seen in figure E.2. Lastly, the document recommendations are displayed as figure E.3 and
are based on the current document.

Figure E.1: Collection Recommendations

53

54 E. Screenshots Recommendation Types

Figure E.2: Recent Recommendations

Figure E.3: Youtube Recommendations

F
Ethical implications

The ethical implications are mostly about privacy concerns. Currently, the recommender system does
not use more additional data then it used to, as only the internal code has changed. However, this
project added additional data collection, which is not being used at the moment, which could invade
the privacy of the users.

In the first iteration of the logger, all data about user behaviour was collected: a message was
sent to the back­end every few seconds if the user was active or inactive, and the scrolling behaviour
was actively logged as well. After this first version was produced, the team had a talk with the person
responsible for GDPR and data collection at Bluetick. He pointed out to the team that this collection
was excessive, and suggested that the team changed the way the data was collected and sent to the
back­end.

After re­writing the code, two major changed were introduced by the team: First of all, the activity
data was longer recorded by timestamp, but it was changed to a counter that kept track how long a
user was on the page (active or non­active). This was done via JavaScript, on the client’s computer, to
make sure nothing excessive was logged. The second adjustment was that instead of sending the data
every few seconds, the data would only be sent to the back­end whenever the user moved to a new
view: the clients web­browser would post an API request to a new endpoint only when he opened a
new case or went back to a list view. This data contains total time active in seconds, total time passive
in seconds, and scrolling behaviour. If for some reason, this information was to leak out or be misused,
the implications would be a lot less severe than timestamps with which time frame a user was using
his computer.

The additional data that was collected was kept to a minimum as to not collect more than necessary.
A new checkbox was introduced to new users informing users about this data collection and asking them
whether or not they would allow their data to be collected as well. This checkbox is not mandatory and
is unchecked as default.

In the near future, this data is most likely only used to improve the quality of the recommendations
and will not be sold to third parties.

The collected data is only accessible by a small number of employees of Bluetick, which creates
the security of the system. The data is stored on Bluetick’s back­end, so no other companies except
the hosting partner can reach this data.

55

Bibliography
[1] Someren van Alexander et al. “Towards a Legal Recommender System”. In: Frontiers in Artificial

Intelligence and Applications 271 (2014), pp. 168–178.
[2] Robin Burke. “Switching CF + KB: Hybrid Recommender Systems for Electronic Commerce.” In:

User Modeling and User­Adapted Interaction 12.4 (2002), pp. 331–370.
[3] Yifan Hu, Yehuda Koren, andChris Volinsky. “Collaborative filtering for implicit feedback datasets”.

In: 2008 Eighth IEEE International Conference on Data Mining. Ieee. 2008, pp. 263–272.
[4] Anne Boyer Julie Daher Armelle Brun. “A Review on Explanations in Recommender Systems”.

In: (2017).
[5] Diane Kelly and Jaime Teevan. “Implicit feedback for inferring user preference: a bibliography”.

In: Acm Sigir Forum. Vol. 37. 2. ACM New York, NY, USA. 2003, pp. 18–28.
[6] Gai Li and Qiang Chen. “Exploiting explicit and implicit feedback for personalized ranking”. In:

Mathematical Problems in Engineering 2016 (2016).
[7] Edward Rolando Núñez­Valdéz et al. “Implicit feedback techniques on recommender systems

applied to electronic books”. In: Computers in Human Behavior 28.4 (2012), pp. 1186–1193.
[8] Ladislav Peska and Peter Vojtas. “Using implicit preference relations to improve recommender

systems”. In: Journal on Data Semantics 6.1 (2017), pp. 15–30.
[9] Peter Peska Ladislav Vojtas. “Off­line vs. on­line evaluation of recommender systems in small

e­commerce”. In: Proceedings of the 31st ACM Conference on Hypertext and Social Media, HT
2020 (2020), pp. 291–300.

[10] Ibrahim M. S. and Saidu C. I. “Recommender Systems: Algorithms, Evaluation and Limitations.”
In: Journal of Advances in Mathematics and Computer Science 35.2 (2020), pp. 121–137.

[11] GSasibhushana, GVimala, and BPrabhakara. “Recommendation systems: Techniques, challenges,
application, and evaluation”. In: Advances in Intelligent Systems and Computing 817 (2019),
pp. 151–164.

[12] Software engineering group of Vienna. Interface Pattern. URL: http://best­practice­
software­engineering.ifs.tuwien.ac.at/patterns/interface.html.

[13] Yaoshuang Wang, Xiaoguang Qi, and Brian Davison. “Standing on the Shoulders of Giants
Ranking by Combining Multiple Sources”. In: (Jan. 2021).

[14] Ryen W White, Joemon M Jose, and Ian Ruthven. “An implicit feedback approach for interactive
information retrieval”. In: Information processing & management 42.1 (2006), pp. 166–190.

57

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/interface.html
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/interface.html

Acronyms
API Application programmable interface. 20, 24, 34, 35

CF Collaborative Filtering. 6–8

CTR Click­Through Rate. 6, 25

DTO Data transfer object. 17, 18

ECLI European Case Law Identifier. 1, 2, 18, 19, 22, 29

EF Explicit Feedback. 8

IF Implicit Feedback. 8

IR Information Retrieval. 8

KNN K­nearest­neighbour. 6

NLP Natural Language Programming. 2

UX User Experience. 27

59

Glossary
case A single lawsuit which contains one file with text, the legal document, with information about

where the trial took place, what year, what the final judgement was and so on. 1, 2

collection A separate collection of saved cases, search history etc. A user can havemultiple collections.
An example would be a lawyer who has two different customers. The lawyer will make a different
collection for each client. A collection can also be called a file. 1, 19, 24

user A customer of Bluetick, someone who uses the platform/search engine . 1

61

	Introduction
	The Client
	Bluetick's market
	Bluetick's product
	How would a customer use Bluetick's search engine?
	How do other legal search engines work?
	Structure of the report

	Project Plan
	Time frame
	Acceptance criteria
	Deviations

	Research
	Recommender system fundamentals
	Why is a recommender system necessary
	How does a recommender system work
	Recommender performance metrics

	Different recommender systems
	Collaborative filtering techniques
	Model based collaborative filtering
	Memory based collaborative filtering
	Hybrid collaborative filtering
	Content based methods
	Hybrid methods
	Issues with recommender systems

	Improving recommender systems with implicit feedback
	What is implicit feedback
	Classification of the techniques
	How does implicit feedback improve a recommender system?

	Data currently collected by Bluetick
	User Profile
	Marked cases
	Highlights
	Linked from

	Optimal setup for Bluetick
	Using implicit feedback
	What recommender system

	Research Conclusion

	Problem Definition
	The foundation for an improved Recommender System
	Updated problem definition

	P1 - Transparency
	Refactor
	Design
	Implementation
	Evaluation

	Testing
	Design
	Implementation
	Evaluation

	Transparency for users
	Design
	Implementation
	Evaluation

	Conclusion

	P2 - Analysis
	Data Collection
	Design
	Implementation
	Evaluation

	Including weights and combining partial systems
	Design
	Implementation
	Evaluation

	Dashboard
	Design
	Implementation
	Evaluation

	Conclusion

	P3 - Recommender system improvements
	Warm start
	Design
	Implementation
	Evaluation

	Reordering results
	Design
	Implementation
	Evaluation

	Conclusion

	Process
	Communication
	Team
	Client
	Coach

	Meetings
	Scrum methodology
	Sprints
	Backlog

	Pull based development
	SIG feedback
	SIG Feedback first upload
	Changes made
	SIG Feedback round 2

	Team Reflection
	Process Reflection
	Potential improvements

	Outlook
	New partial recommender systems
	Collaborative Filtering
	Irrelevant cases

	Combining Recommendations
	Update-based influence
	Normalization

	Law Area Re-Ordering
	Enhancing User Feedback
	Explicit Feedback
	Implicit Feedback

	Code Quality and Maintenance

	Conclusion
	Info sheet
	Original Project Description
	Company information
	Project information
	List of questions to ask the client
	Other information

	Project Plan
	Feedback from the client
	Screenshots Recommendation Types
	Ethical implications
	Bibliography
	Acronyms
	Glossary

