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Exact Solution of the Zakharov-Shabat Scattering Problem
for Doubly-Truncated Multisoliton Potentials

V. Vaibhav

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2. 2628 CD Delft, The
Netherlands

Abstract

Recent studies have revealed that multisoliton solutions of the nonlinear Schrodinger
equation, as carriers of information, offer a promising solution to the problem of non-
linear signal distortions in fiber optic channels. In any nonlinear Fourier transform
based transmission methodology seeking to modulate the discrete spectrum of the mul-
tisolitons, choice of an appropriate windowing function is an important design issue on
account of the unbounded support of such signals. Here, we consider the rectangle
function as the windowing function for the multisolitonic signal and provide a recipe
for computing the exact solution of the associated Zakharov-Shabat (ZS) scattering
problem for the windowed/doubly-truncated multisoliton potential. The idea consists
in expressing the Jost solution of the doubly-truncated multisoliton potential in terms
of the Jost solution of the original potential. The proposed method allows us to avoid
prohibitive numerical computations normally required in order to accurately quantify
the effect of time-domain windowing on the nonlinear Fourier spectrum of the multi-
solitonic signals. Further, the method devised in this work also applies to general type
of signals admissible as ZS scattering potential, and, may prove to be a useful tool in
the theoretical analysis of such systems.

Keywords: Direct Scattering, Multisolitons.
PACS: 02.30.Zz, 02.30.1k, 42.81.Dp, 03.65.Nk

Notations

The set of non-zero positive real numbers (R) is denoted by R,. For any complex
number £, Re({) and Im(¢) refer to the real and the imaginary parts of , respectively.
The complex conjugate of ¢ is denoted by ¢*. The upper-half (lower-half) of complex
plane (C) is denoted by C, (C_) and its closure by C, (C_). The Pauli’s spin matrices

are denoted by
(01 {0 —i (1 0
= o) 27 o) Tlo -1)
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For the sake of uniformity of notation, we set oy = diag(1, 1). The support of a function
f:Q — Rin Qis defined as supp f = {x € Q| f(x) # 0}. The Lebesgue spaces of
complex-valued functions defined in R are denoted by L” for 1 < p < oo with their
corresponding norm denoted by || - [|L» or || - ||,

1. Introduction

In optical fiber communication, the propagation of optical field in a loss-less sin-
gle mode fiber under Kerr-type focusing nonlinearity is governed by the nonlinear
Schrodinger equation (NSE) [1, 2] which, in its standard form, reads as

i0.q = 0*q +2lqlq, (t,x) eRXR,, 4))

where ¢(, x) is a complex valued function associated with the slowly varying enve-
lope of the electric field, ¢ is the retarded time and x is position along the fiber. This
equation also provides a satisfactory description of optical pulse propagation in the
guiding-center or path-averaged formulation [3—-5] when more general scenarios such
as presence of fiber losses, lumped or distributed periodic amplification are included in
the mathematical model of the physical channel.

The initial value problem (IVP) corresponding to the NSE was first solved by Za-
kharov and Shabat [6], which is known to be one of the first successful implementations
of the inverse scattering transform (IST) method. Multisolitons or, more precisely, K-
soliton solutions were obtained as a special case of this theory. The IST method was
later extended to a wider class of nonlinear evolution equations known as the Ablowitz-
Kaup-Newell-Segur (AKNS) class of integrable equations [7, 8]. In this pioneering
work, IST was, for the first time, presented as a way of Fourier analysis for nonlinear
problems prompting researchers to coin the term nonlinear Fourier transform (NFT)
for IST. In this terminology, any subset of the scattering data that qualifies as the “pri-
mordial” scattering data [8] is referred to as the nonlinear Fourier spectrum.

The fact that the energy content of K-soliton solutions is not dispersed away as
it propagates along the fiber makes them promising as carriers of information in op-
tical communication. These ideas were first explored by Hasegawa and Nyu [9] who
proposed encoding information in the eigenvalues of the K-soliton solutions in a frame-
work which they described as the eigenvalue communication. With the recent break-
throughs in coherent optical communication [10, 11] and growing need for increased
channel capacity [12-14], these ideas have been recently revived. We refer the reader
to the comprehensive review article [15] and the references therein for an overview of
NFT-based optical communication methodologies and its potential advantage over the
conventional ones.

In this article, we focus on a particular aspect of the NFT-based transmission method-
ologies which seek to modulate the discrete part of the nonlinear Fourier spectrum us-
ing K-solitons as information carriers. Given that the support of the K-soliton solutions
is infinite, it is mandatory to employ a windowing function [16]. The windowing func-
tion must be such that it does not considerably alter the nonlinear Fourier spectrum of
the original signal. In this work, we consider the simplest of the windowing functions,



the rectangle function. It is shown that the resulting scattering problem for the “win-
dowed” or the doubly-truncated K-soliton solution is exactly solvable. The idea is to
express the Jost solutions of the windowed potential in terms of the Jost solutions of
the original potential. Such an approach has already appeared in the work of Lamb [17]
where the scattering problem for a potential truncated from one side is solved exactly
using the Jost solutions of the original potential. In particular, the observation that trun-
cated K-soliton solution has rational reflection coefficient has been used to devise exact
techniques for IST [18-20]. Adapting Lamb’s approach, it is further shown that, in the
case of truncation from both sides, one can set up a Riemann-Hilbert (RH) problem to
obtain the Jost solutions of the doubly-truncated potential. It must be noted that this
method applies to general potentials; however, for K-soliton solutions, the evaluation
of certain integrals become a trivial task and the solution of the RH problem can be ob-
tained in a closed form. In particular, the method of Darboux transformation (DT) for
computing K-soliton solutions provide an adequate representation of the Jost solutions
in terms of the so called Darboux matrix which, as a function of the spectral parameter,
has a rational structure facilitating the solution of the RH problem. This representation
further enables us to obtain precise estimates for the effective temporal support as well
as spectral width of the K-soliton pulses. The rational structure of the aforementioned
Darboux matrix has also been recently exploited to develop fast numerical algorithms
for DT [21] and IST [22].

2. Direct Scattering: Doubly-Truncated Potential

The NFT of a given complex-valued signal ¢(¢) is introduced via the associated
Zakharov-Shabat scattering problem (or ZS problem in short) [6] which can be stated
as follows: Let / e Randv = (vi,v,)T € C2, then

v, = —ilozv + Uy, 2)

where the matrix elements of U are Uy = Uy = 0 and Uypp = g(8) = —U3, = —r*(p).
Here, g(¢) is identified as the scattering potential. Henceforth, we closely follow the
formalism developed in [8, 23]. We assume that the Jost solutions of the first kind,
denoted by y(r; ) and ¥(t; ), which are the linearly independent solutions of (2), are
known. These solutions are characterized by the following asymptotic behavior as
t — oco: Y(t; e — (0,1)T and Y(r; e’ — (1,0)T. We also assume that the Jost
solutions of the second kind, denoted by ¢(t, {) and E(t, {), which are also linearly inde-
pendent solutions of (2) are known. These solutions are characterized by the following
asymptotic behavior as 1 — —oo: ¢(t; )" — (1,0)T and ¢(z; O)e " — (0,-1)7. The
scattering coefficients corresponding to g(#) can be written in terms of the Jost solutions
by using the Wronskian relations [8]

aQ) =W @), bO=7(¥.9).

B SO z 3)
aQ =W (6.9), bO=7(s.9).
Furthermore, the symmetry properties,
Y60 = i (0, S0 = i (1,0, “



yield the relations a({) = a*({*) and E({ ) = b*({*). Here, we assume that the nonlinear
Fourier spectrum of the signal g(¢) is as follows: The discrete spectrum consists of the
eigenvalues {; € C, and the norming constants b;. For convenience, let the discrete
spectrum be denoted by the set

Gk ={(&, b eClk=1,2,...,K}. (3)

The continuous spectrum, also referred to as the reflection coefficient, is given by p(¢) =
b(&/a(§) for & e R.

In this article, we consider windowing using the rectangle function supported in
[-T_,T,] where T_,T, > 0. Define the left-sided signal ¢ (t; T,) = q()6(T, — 1),
where 6(¢) is the Heaviside step function so that the windowed signal is ¢™(#; T_, T,,) =
¢t T,)0(t + T_). Here, our objective is to solve the ZS problem corresponding to
the windowed potential q(”)(t; T_,T.). To this end, we first derive the Jost solutions for
the left-sided signal ¢ (¢; T.) supported in (—oo, T, ]. Starting from the Jost solution
of the second kind, it is straightforward to verify that (for € C,)

o), t<T,,

! 6
e TIN5 0), t>T,. ©

¢ = {
For ¢ > T, the potential is identically zero so that ¢ (z; ) = (0, l)Te’(L l e C,. Now,

using the Wronskian relations (3), the scattering coefficients, for £ € C,, work out to
be

a2 = (T 0™, I = ¢o(Ts; 0™, L eCy. (7
Next, our aim is to obtain ¥ (¢;) for t < T, for € C,. On the real axis, i.e.
£ € R, one can obtain 7 (t; &) using the linear independence of ¢ (¢; &) and ¢ (1; £):

YO8 = —a D@ (1 €) + PO©P (1 £). ®)

Evidently, the expression in the right-hand side of the equation above cannot be analyt-
ically continued into the upper-half of the complex plane. In order to circumvent this
limitation, we adopt a different approach in the following. Let us consider the relation

Ot 0) = aVOPO ) + BP0, ©)

for £ € R. Let a®)(¢) have K’ simple zeros in C, denoted by £,k = 1,2,...,K".
Following [6], we set up a Riemann-Hilbert (RH) problem for the sectionally analytic
function F({) = F({; t) with simple poles in C, defined by

OO 'O 0, e,
F&D =15 i 10
«0 {I/I(_)(t; e, feC., (10)
with the jump condition given by
F(£ +i0) — F(¢ — i0) = PP (160, ¢ €R, (11)



where p (&) = b'(£)/a'~)(€). The solution of the RH problem can be stated as

1 K’ ol ¢(7)(t; éflg—)) 1 f dé
F() = E o lﬂ( ) = 12
&) (0) + Z, ({ ~ {]({_)) C'I(_)({]E_)) + 5= i (1 6)e i—¢ (12)

Note that for r < T, and & € R, we have

B
a2 (&)

The right-hand side of the above equation is known for all ¢ € R; therefore, F({) can
be obtained explicitly provided that the integral in (12) can be computed exactly. This
yields @7 (r;¢) for t < T, and ¢ € C., using the symmetry properties stated in (4).

Next, the windowed potential q(”)(t; T_,T,) is obtained as a result of truncation of
q(’)(t; T,) from left. Let the Jost solutions for this potential be 1/1('_')(1‘; {) (first kind)
and ¢™(t;¢) (second kind). Let the corresponding scattering coefficients be denoted
by a™(¢) and 5™ (Z). In the following, our aim would be to obtain an expression for
these Jost solutions in terms of the Jost solutions of ¢'~)(¢; 7). Evidently,

= e TN T 1), 1< -T-
UG} 1> -T.,

and ¢('_')(t; ) = (1,0)Te™# for t < —T_ where { € @r. Now using the Wronskian
relations, we have

a(@Q) =y T e’ = F{(¢"s-To),
bOQ) = ¢ (T e T = ~Fy (s =T e,

PO = b OO + =LV (13)

(14)

5)

for € C,. This implies b™ () = —Fa(Z;=T-)e*"- for ¢ € C_. Note that the
functional form obtained for the scattering coefficients a(™(¢) and 5™ () must hold for
all £ € Cif they hold true in any of the half-planes.

The expression in (12) appears to indicate that zeros of a(~)(¢) are required in order
to compute F({); however, a closer look at this expression shows that it is not the case:
Consider, fort < T,

| 03 Oy e et _E
i ) e P O
dé

I e B s v B S o ..
A e R LR =

Given that 1/a™)(¢) is holomorphic in C, with isolated poles at {,E_), this part of the
integrand can be computed easily by completing the contour in C, so that

~ ¢ 8) eff’df+i it 90w {[a<>(§>]‘¢(->(r;§)e'f’, cec,

i ) dO@ E-0TH ((-L0) @) o zec.,
yielding
F() = ()—— f [b< (OPO(1:6) + a (P f)] ety £ ()



3. Doubly-Truncated Multisoliton Potential

Having obtained the general recipe above, we now turn to the case of K-soliton
potentials. The K-soliton potentials along with their Jost solutions can be computed
quite easily using the Darboux transformation (DT) [24-26]. In this discussion, we
use the DT procedure described in [24]. Let Sk be the discrete spectrum of a K-
soliton potential. Define the matrix form of the Jost solutions as v(¢; ) = (¢, ¥). The
seed solution here corresponds to the null potential; therefore, vo(t; ) = e~73¢". The
augmented matrix Jost solution vk(; ) can be obtained from the seed solution vo(t; {)
using the Darboux matrix as vg(t; {) = ux(O)Dk(t; ¢, Sk)vo(t; {) for { € C, where the
Darboux matrix is written as

K
Di(:¢,@x) = ) D (1 80, (17)
k=0

where the coefficient matrices are such that D(If) = 0 and

&) &K &K
Dk = (_cio(lk’K)* d(()}(’K)*)’ k=0,1,...,K— 1. (18)

Also, let us recall ax(¢) = [Tj—y (( = 40 =)™ and (ux)™ = [Ty (€= &) [210.
For ¢ € C,, it is known that [8]

, 1+ 80 0] 1
io3dt _ 2i 2if _
vie ( —%{r(t) 1+2+.§8(+))+ﬁ(§2)’ (19)
where . .
890 = [ lwias 0= [ lawias 20)
—00 t
This allows us to conclude that g(¢) = 2idiK_1’K) and
K K
E7 =2idf 0 121 r, 89 =2idf O 21 Y 4 1)
k=1 k=1
The energy in the tails (i.e., the part of the signal outside [-7_,T.]) is
K
E_(-T)H)+&E.(Ty)
ity = p o where gl =4 ) Img. (22)
2 k=1

The Darboux transformation can be implemented as a recursive scheme [26]. Not-
ing that the seed potential is a null potential, its discrete spectrum is empty. Let us
define the successive discrete spectra ) = Sy € S, € S, C ... C Sk such that
S; =1{,bru S for j = 1,2,...,K where ({;,b;) are distinct elements of Sg.
The Darboux matrix of degree K > 1 can be factorized into Darboux matrices of degree
one as

Dx(t; 4, GklSo) = D1(t; 4, GklSk-1)
X Di(t; 4, Gg_11Ck-2) X ... X D1(t; {, S1|Sp), (23)
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Figure 1: The figure shows the schematic of the Darboux transformation for a given discrete spectrum Sg
at the grid point #,. The input is the seed Jost solution, vo(#,; ) = e3¢t Here, Aqi(ty) = qj(ty) — qj-1(tn)
and A8 (1) = &7 (1) ~ &7, (1),

where Di(#;{,Sj|G;_1), j = 1,..., K are the successive Darboux matrices of degree
one with the convention that ({;,b;) = &; N G;_; is the bound state being added to
the seed potential whose discrete spectra is G;_;. The resulting scheme is depicted in
Fig. 1. Note that the Darboux matrices of degree one can be stated as

Bi-1PG+E (&G=E)B)-

1 12 1 112
Di(#:4,81S)-1) = oo — (.zjtlff)/%q ,(/:é“?l;?j]—lllz ’ 24)
1+8j-12 148112



and (-1 (-1
¢/ — by (1)
85 ) - by 58
for ({;,b;) € Sk and the successive Jost solutions, v; = (¢ I j), needed in this ratio
are computed as

Bi1(t: 4, b)) = (25)

1
vit; ) = le(I; LGS vt D). (26)
E J
The potential is given by
2,((; —{Bj-1 o
i =qj — 22—
R YT
and 41m(Z)) 4Im(Z))
m(; m(;
g =0 4 — 2 g g 2 28
! Ty 1Bj-1172 ! T 1Bj-11? 28)

Finally, let us observe that the computation of the Darboux matrix coefficients can be
carried out in ¢ (K 2) operations. With N samples of ¢(¢) over [-T-, T ], the complex-

ity of computing €i;s using the trapezoidal rule (TR) of integration is & (KzN ) which
can be contrasted with the method proposed here using DT coefficients which affords
a complexity of & (K2) yielding an accuracy up to the machine precision'. Further, if
one attempts to study the effect of propagation of the pulse over M points along the
fiber, our method affords a complexity of ¢ (KZM) as opposed to & (KZNM) of any
numerical method.

Next, the scattering coefficients corresponding to the truncated K-soliton potential
g (t; T,) work out to be

aQ) = ur(OIDK(T+3 4, S)lit, b7 = px(OID(T+3 ¢, Sp)lare 7+, (29)

In the following, we suppress the dependence on Sk for the sake of brevity and proceed
to construct the Jost solution 1//(‘). Firstly, in order to facilitate the solution of the RH
problem introduced above, we intend to compute the terms in (12) exactly by exploiting
the rational structure of the Darboux matrix. To this end, let us note that the expression
in (13), for t < T, can be written as

POEW (16 = P& e T 1+ Qg 1), (30)

where P(¢;1) and Q(¢; ¢) are vector-valued rational functions of &. These functions can
be explicitly stated in terms of the Darboux matrix elements as follows:

_ 2 ) [Dy(5;6)]21

P = —|ug I [Dg(T1;6€)]a (—[D}}(t;g)]”)’ (€29)
_ LDk (Te; &)l ([Dk(f; f)]ll)

Q= kx®O T o \IDx: Ol ©2)

IFor a given discrete spectrum and €5, one can also determine 7'; using a binary search method where
the bracketing interval can be chosen as described in Appendix B.



From these expressions, it follows that the poles of the rational function P(¢;¢) are i
and i while the poles of the rational function Q(¢; 1) are g, £ and zeros of a (). For
the sake of convenience, let us introduce the residues:

wi(&) =Res(Q(&0:4),  wi(¢”) =Res(Q;(&0:4”),

(33)
7j(8) = Res (P& 1:4), 7i(80) = Res (Pi(&:1:45).
for j = 1,2. For { € C_, define
I (g t) - Khj{.lo % é,:d_é\:é,P ({; I)EZlf(ffTﬂ, (34)
Q& ndE & wj@ X w,@o
= lim = 35
G P R N S e

where I', denotes the contour comprising the segment [—«, «] (x > 0) and a semicircular
arc with radius « oriented negatively in C_ and j = 1, 2. Observing,

P&D) = Z [”J(fk) mi(&y) } (36)
p

f (k _k

the integrals 7 ; work out to be

S (4D 57D [ o -
TG0 =— J £280=T}) J k 21((Z—T+) _ QHGG=T] (37)
! ,ZJ (=4 kz - gk ]

This allows us to write F({) = (1,0)T + I({;1) + J(; ) where we have used the fact
that the second term in the right-hand side of (12) is given by

, Dk (64 ,
K’ LKA I K’ (=)
Dkl | _ Z (&)

— O | k@ | T
=164 [Dx(T2:{ )l

with @ = (w1, w,)T. Next, let us show that the poles of F({) at {; (as well as at ;) are
removable. First let us observe that

(asl(r; eyt e!
;e Yo (t; e

Using the symmetry relations for the Darboux matrix, let us also observe that

Dy ;g Qidit | [Dk(T+: 51 i

) = Dk(t; &)

[DK(t (k)]n [Dx(T+; &)l
_ Dk 4ol P2t _ [Dk(T+; {)lin LT,
[Dg(t; &) [Dr(T+; &)

_ @l (T3 )
(8D 61Ty )

=0,



on account of the property of the norming constant b;. Similarly,

(D3t ¢ In it [Di(T+; )] LT,
[Dk(t; )21 [Dk(T+;801n
_ [Dk(t; &)l ikt _ [Dk(T4; gk)]lzezigkﬂ
[Di(t; &i)lan [Dk(T+; &)n
_Yal)  nTd) _
&8 14580
Therefore, w;({x) + m;({i) expl2idi(t — T.)] = 0, so that

) |w;(@0) + (&) expl2id (e = T,)]| 20— T A exPL2iLe(t — T)]
lim -5 T omt@enEe ok

Consequently,

K .
TG+ T@n=- Y ZED [acer _ i)
=G 38)

K
Z ﬂ((k’t) LHG-TY) _ ezig;(z—m]

turns out to be a vector valued function analytic for all { € C. Finally, the scattering
coeflicients for the windowed potential q(”)(t; T_,T,) work out to be

dO) =1+ (5 -T) + (5 -To),
B = = [T2(L;-T-) + Ja(; ~T-)] 247,

for { € C. The discrete spectrum can be computed by first computing the zeros of
a™(¢) (using methods developed for analytic functions [27, 28]) which gives the eigen-
values and evaluating »™(Z) at the eigenvalues gives the norming constant.

We conclude this section by demonstrating that the scattering coefficients obtained
above are functions of exponential type (See Appendix A): Setting t = —T_ we have,
for I£] > maxc 1Zil;

(39)

K .
1@+ TGl < Yy N [tine 4 7
= - (40)

K SO
Z ”ﬂ(é’k’ Tl [e—4TIm{ + e_4TIm‘Vk].
L2l

From here it is straightforward to conclude that a™(¢) and 6™ (Z) satisfy an estimate
of the form (A.2).

3.1. Conserved quantities and spectral width
Consider the Fourier spectrum of the multisoliton potential denoted by

Q) = f q(ne™dr. (41)

10



For convenience, we introduce the notation

(& = 2_17rf|Q(§)|2§”d§ _ %I|Q(§)|2§ndf
G TT

for moments in the Fourier domain. Let us observe that the following quantities can be
expressed entirely in terms of the eigenvalues:

; (42)

Co=llgl} =4 Img, (43)
k
Cr=- f dq(ng" (Dt = 4i Y Ty, (44)
k
16
C:= [ [iaor - a4 o] ar = -3 Y img3 45)
k

These quantities do not evolve as the pulse propagates along the fiber. Further, from
the first moment

% [10©Pede  [idqng 0dr _icy

@== =-—, (46)
ligli3 llgll3 Co
and the second moment
oo 3 [10@PEdE  [lidgnlidig®] d
c ||CI|1|2 llgll3 (47)
2 4
= -+ — H*dt
C0+Cof|q()| dt,
we obtained the variance (A£?) = (£2) — (&)? as follows:
1 c: o c? G
Azz—f Ditde+ = — == <lgl%, + — — == 48
(AE7) o lg(0)] Cg o llall C(z) o (48)

This quantity characterizes the width of the Fourier spectrum. Note that the biquadratic
integral must be computed numerically. However, ||¢||- can be computed in a straight-
forward manner: From (27), we have ||l < llgj-1llo +2Im(Z;), we have

K
laxlle <2 )" Im(Z)), (49)
k=1
which yields
c: c* ¢
APy < 04 L2 50
(A7) < 2t e TG (50)

Note that this inequality holds irrespective of how the pulse evolves as it propagates
along the fiber.

11



Now, turning to the windowed multisolitons and denoting the conserved quantities
of the windowed signal by C;”) for j=0,1,2,..., we have
cM? oo
] : (51

(AT <llg ™I, + [—1 -~
© () ()
CO CO

Note that as the pulse evolves ||q('_')||oo may not remain bounded by ||g|| as it does at

the initial point, i.e., x = 0. The conserved quantities for the windowed potential can

be obtained from the asymptotic expansion of log[a™({)] as |{| — oo while keeping
{ € C,. To this end, let

(m () ()
a a a
O~ T 2 3 52
GO~ o T G @i 62

as |{| — oo in C,.. The coeflicients introduced above can be explicitly stated as

K K
@i7al" =) m@) e T + Y my e T (53)
k=1 k=1

Observing that Cg.n) are defined as

00 (M
loga™ () ~ .;.1, (54)
JZ; Qigy
the conserved quantities work out to be
m _ (M
COH - a]rl ’
(a(ﬂ))Z
m _ (M 1
Cil=a -——; (55)

(M3
o _ o oo, @)
C2 =a; —a, a, + —3

4. Examples

In the following, we treat a simple example of a doubly-truncated 1-soliton in order
to demonstrate how to use the recipe provided in this article. Further, we present a gen-
eral example of a doubly-truncated 6-soliton where the procedure outlined in this article
must be implemented numerically. Note that there are no explicit expressions provided
in this article for arbitrary K; however, this does not limit our ability to compute them

to machine precision thanks to the iterative Darboux transformation procedure?.

2The aforementioned iterative scheme and the recipe provided in this article requires some care in im-
plementation in order to avoid arithmetic overflow/underflow of floating point operations. This discussion is
not central to the understanding of the main results presented in this article and is, therefore, being omitted.
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Figure 2: The figure shows the 6-soliton potential (left) corresponding to S¢ (see Fig. 3) where the dashed
lines mark the truncation points +10. The fraction of the total energy in the tails €qi;s(7) as a function of the
truncation point +7 is plotted on the right (TR: trapezoidal rule).

4.1. One Soliton

Consider a 1-soliton potential with the discrete spectrum (1, b1) where { = & +in;.
The Darboux matrix can be easily worked out as

(56)

BolP&i+g  (G=¢DBo
Dy | TTBor T+Bo P
DB =00 @ s aeibr |
1+[Bol 1+[80?
where Bo(t;£1,b1) = —(1/b))e™ V. Let 2T = T, + T_ and define Z, = 1/8y(T,) and
Z_ = Bo(-T-) so that |Z,| = |b;[Fle™>"T=. Now
477%Z+Z_ 1
B (E-mE-4)

Pi(&-T.) = -

where 2 = (1 + |Z,[)(1 + |Z_]*) so that

2im 7+ 7+ [ oHT _ 4T 4ilT _ 4T
aP(g) =1+ e |8 . . (57)
= C - ,Z] g - gl

The b-coefficient can be computed as follows: Observing

P (é: -T ) _ _2i7712+ [(5_ gl) + (tf_ §T)IZ_|2]
- R P )

s

we have

. ~2i(¢~L0Ts _ 2i~{)T- : ~2U((-ETe _ 2i—~E)T-
b(m(g)—z”“bl'z—lz(e R I A o AT

= (=& biE (=4

(58)
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Figure 3: The top row shows the discrete spectrum Sg of a 6-soliton as well as that of its windowed version,
ie., Gg_'). The scattering coefficients of windowed 6-soliton is plotted in the bottom row. A comparison is
made between our method (labeled with ‘RH’) and a numerical method of solving the ZS problem (labeled
with ‘TR’).

Using the asymptotic expansion of log[a™(¢)] as |{] — oo in C,, it is also straightfor-
ward to workout

217 2
Il = 4 +1|;_||§)_(|1|i+||z+|2)’ &9
To the leading order in |Z. |, the eigenvalue of the windowed 1-soliton is given by
0"~ o= 2im(Z-F +12.P), (60)
and the norming constant given by
b x by + 4 by(T-|1Z- = T,|Z.P). (61)
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4.2. 6-Soliton Case

For the second example, we choose a complex vector 4 = (4y,...,4d) = (1 +
Li, +1 + 2i, 1 + 3i) and by = ™@O*=D [k = 1, ..., 6. The eigenvalues are then
taken to be ¢ = A/k where k = 2(3°_, Tm 4;)'/2. The windowed potential is given
by ¢™(;T) = 6(T? — )g(t) where T = 10 (see Fig. 2). The energy in the tails
1S €,i1(10) = 10%. For the sake of comparison, we solve the scattering problem for
¢ (t; T) using the (exponential) trapezoidal rule (TR) proposed in [21] with 2'* sam-
ples. The method proposed in this article is labeled with ‘RH’ in order to signify the
fact that an RH problem is solved exactly to obtain the scattering coefficients. The
discrete spectrum for the windowed potential ‘Sém)—RH’ as depicted in Fig. 3 is deter-
mined numerically from the functional form of a™(¢) and 5™ (/) obtained above while
‘65(6'_')—TR’ is computed numerically as in [21]. Evidently, results in Fig. 3 confirm the
validity of the method proposed in this article.

5. Conclusion

To conclude, we have discussed a method to solve the Zakharov-Shabat scatter-
ing problem for the doubly-truncated scattering potential in terms of the Jost solutions
of the original potential using the standard techniques of Riemann-Hilbert problems.
Exploiting the rational structure of the Darboux matrix, it was possible to obtain the
scattering coefficients for the doubly-truncated multisoliton potentials. Significance of
this result lies in the fact that on account of the unbounded support of multisolitons,
windowing is a practical necessity and an important design issue in optical communi-
cation which can now be addressed quite efficiently. Furthermore, it is interesting to
note that the results presented in this article may enable us to determine optimal values
for various design parameters for K-soliton solutions via the solution of a nonlinear
optimization problem. These aspects will be explored in a future publication.
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Appendix A. Scattering coefficients of compactly supported potentials

It is well know that Jost solutions and, consequently, the scattering coefficients for
compactly supported potentials are entire functions of the spectral parameter , i.e. an-
alytic for all £ € C [8, 23]. Let us consider the scattering coeflicients in the following.
It turns out that, for compactly supported potentials, the scattering coefficients are an-
alytic functions of exponential type (see [29] for properties of such functions) in C. A
simple proof of this statement is provided below. Now, given that a doubly-truncated
scattering potential is compactly supported, the method proposed in this article must
yield scattering coefficients that are of exponential type in C. This is verified in Sec. 3.

Introducing the “local” scattering coeflicients a(t; {) and b(¢; {) such that ¢(¢; ) =
(a(t; O)e ™, b(t; £)e")T, the scattering problem in (2) reads as

da(t; ) = q(Ob(t; ™™, 9,b(t;0) = r(Ha(t; He . (A1)

Let Q = [-T_,T,] where T. > 0. The initial conditions for the Jost solution ¢ are:
a(-T-;¢) = 1 and b(-T-;{) = 0. The scattering coefficients can be directly obtained
from these functions as a({) = a(T+;¢) and b({) = b(T4;{). The following estimate
establishes that a({) and b({) are of exponential type in C:

Theorem 1. Let g € L' with support in Q and set k = llgllLi). Let f({) denote either
[a(¢) — 11e7 2T+ or b((); then the estimate

CeMmi ey,

FQl < {Ce-zr m sec., (A2)

holds for C = ||D|| cosh k where D = (k*/2,k)7.
Proof. Let us define for convenience the modified Jost solution

= it 1 t; -1
P = g0 - ) = (3020 ) (A3)

so that P(T,; O)e 24T+ = ([a({)—11e 24T+, b({))T. The system of equations in (A.1) can
be transformed into a set of Volterra integral equations of the second kind for P(¢; {):

P:0) = D10 + fg K(t,y; O)PO: O)dy, (A4)
where ®(t; ) = (D, ;)T € C? with

Q,(1;0) = fT 9(2)P2(z; {)dz,

' (A5)
Dy (1;0) = f r(y)e.Zz((t—y)dy’
-T_
and the Volterra kernel K(x, y;¢) = diag(K, Kz) € C>? is such that
Ki(x, ;) = r(y) f q(2)e**Vdz,
>’ (A.6)

Ta(x,y:0) = q0) f (),
y
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with K(x,y;{) = 0 fory > _x. Now, the proof can be obtained using the same method
as in [8]. For fixed { € C,, let # denote the Volterra integral operator in (A.4)
corresponding to the kernel K'(x, y; ¢) such that

4RI (y; 5)) _

Ji/ﬁ;: ,;T’;dztd Zd =
P = [ weroboion= [ e [ afios 000

(A7)
Consider the L*(Q)-norm [30, Chap. 9] of " given by
1 I () = ess SUPf 1K (2, y; Olidy, (A.8)
teQ Q

so that ||Z ]|L~q) < k*/2 [8]. The resolvent Z of this operator exists and is given by
the Neumann series Z = ), J, where %, = J o J&,_; with £ = ¢ . It can also
be shown using the methods in [8] that || ||L~q) < K (2n)!, yielding the estimate
lZ||.~ < [cosh(x) — 1]. Therefore, for any ®(t;¢) € L>(Q; C?), the relationship
P(1;0) = ®(t; ) + Z[®(t; £) implies, for £ € C,,

IP(z; Dlle@) < cosh()||P(t; DllLe()- (A.9)

The result for C, in (A.2) follows from the observation that, for le C,, o, Dle@) <
|ID|| where D = («%/2,)7. Therefore, C can be chosen to be ||D| cosh«. For the
case C_ of (A.2), we consider P_(t;{) = P(t;{)e " so that P_(T,;{) = ([a(Q) -
1]e 24T+ b({))T. The Volterra integral equations then reads as P_(t; {):

P_(:0)=®_(50) + fg K_(1,y: O)P-(y; O)dy, (A.10)

where ®_(t; ) = ®(t;)e " € C? and the Volterra kernel K_(x, y; () = diag(‘K’ 1(_), ‘KE_)) €
C%< is such that

KO, y:0) = 1) | g@e 0z,
. (A.11)
K ey 0) = q0) f H2)e s,
)

with K_(x,y;{) = 0 for y > x. Using the approach outlined above, it is possible to
show that, for £ € C_, ||P_(#; {)llL~@) < cosh(k)||®_(#; OllL~(). The result for the case
£ € C_in (A.2) then follows from the observation that ||®_(t; {)||L=) < ||D|le"2m&T-
forf e C_. 0

Appendix B. Some bounds on the energy in the tails

The unknown Darboux matrix coefficients introduced in the article can also be
obtained as the solution of a linear system [21, 24]. From @ (t; &) = by (; &), we
have

D (t; &k, Sl o (t; &) — bt (25 )] = 0. (B.1)
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Note that ¢ (t; &) — br()W(t; &) # 0 on account of the fact that i is not an eigenvalue
of the seed potential. Define the Vandermonde matrix V = {V}xxx where

Vi=4, j=12,.... K k=01,....K-1,

and the diagonal matrix I' = diag(y,,y», ..., yk). Let the vectors

K I
X &y
f={. | ¢=0f=|". | (B.2)
K Ry
where o o
by (15 8k) — by (13 8) ;
%= 5 = —bie. (B.3)
¢y (658) — by (85 4k)
The unknown Darboux coefficients can be put into the vector form
(0.K) 0.K
dy d"
d(]’K) d(]’K)
D= " |, p=| | (B4)
K1LK) (K-1.K)
dy d,
The 2K linear system of equations (B.1) can be written as
f\ [V I'v\ (Do
(g* “\rv —ve /by (B.5)
Let 7min = ming(Im ;) and
@, = max(lbi), @ = max(|bil ). (B.6)

Consider the case t = T, > 0. Denoting the spectral norm of matrices by || - ||;, we have
ITll; = max ([bele m4T) < e 2T (B.7)

so that |||y — 0 as T, — co. Define Dy(c0) = —V~! f. Putting Dy = Dy(c0) + l~)0, we
have

Dy =-MD,

Dy = (1+M"M)™' M*|Dy(e0) - Dj()],

where M = V~'TV. Let «(‘V) = ||'V!I,/'V|ls denote the condition number of <V, then
[IM]|s < «|||s. If T, is such that «||T||; < 1, then

Dol < KIITIINID: I,

2kl

D <
1D1l> < -

K—2||1"||§) | Tm[Do(c0)]|l>.
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Note that déK_l’K)(oo) =— Z,’le i, therefore,

) 22|12
Ep (1)) < a [ Tm[Do(c0)]|l>. (B.8)

- «2IICI1)

Next we consider the case t = —T_ < 0. The linear system (B.5) can be written as

r-'y\_(rlv % D,
Observing
e—ZIm{kT,
IIT~"|, = max (—) < w_e 2minT-
k |Dx]

implies [["!l; — 0 as T_ — co. Define Dy(—c0) = —[V~!f]*. As before, putting
Dy = Dy(—o0) + Dy, we have

Dy =My Dy,
—1 —1y* -1 *
D =-(1+M'M7"Y) M[DO(—oo) - DO(—oo)].
If T_ is such that <||T""||; < 1, then

D -1
1Doll2 < €Ul Dl2s

2Tl

Dl —"_
R e )

[ Tm[Do(=c0)]ll2-

Note that d(()Kfl’K) (—o0) = — Z,’f:l ;. therefore,

£01 )« 2R ipy—oo (B.10)
—1_ —_— m —00 . .
K = (1 -RIr1p) 0 2
Define

T = log(kw )/ 20min, T = 10g(kw_)/ 2, (B.11)

then, T, > Tio) and T_ > T2 ensures that the estimates (B.8) and (B.10) hold, re-
spectively. Now, the effect of propagation can also be incorporated by plugging in the
x-dependence of the norming constant in (B.7). For fixed x € [0, L], we seek T, € R
such that ||T|; < «~!, where

IIT1l; = max (Jbgle™2nT+—469)
k
Let kmin be such that Im(¢g,,,) = 7min, then putting &min = Re(¢,,, ), we have
[Ty < w+e_2n|nin(T+—4§mmx).

Therefore, choosing Ty — 4&yinx > Tio) ensures that the estimate (B.8) holds. Using
similar arguments as above, it follows that choosing 7_ + 4&inx > T ensures the
validity of estimate (B.10).
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Now, in the design of K-soliton pulses, if the tolerance for the fraction of total
energy in the tails is €;s, then the domain [-7-, T, ] must be chosen such that

EL(T,) +E(-T.)

438 Img
If we choose to satisfy the equality above, then one has to solve a nonlinear equation
for T,,T-. For the sake of simplicity, we let T = max(7T_,T,). The inequalities

obtained above can be used to compute an upper bound for 7" as follows: set X =
exp(_4nminTmax), then

< €uils-

22w2 X 2wEX A€ Y Im &

+ = . B.12
1-o?X  1-@?X  [Im[Vf]ll ®-12
A good estimate for T is
1 Im[V-! (@2 + @2
T = log [V [k (@ + @2) , (B.13)
47]min 2etails Zk Im {k

provided that the right-hand side of the equation above is positive. Finally, a search
algorithm such as the bisection method can be used to obtain the true value of T by
choosing a bracketing interval of the form [0, T, ].
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