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Abstract

Various novel computing architectures, like massively parallel and multi-core, as well as computing
accelerators, like GPUs or TPUs, keep regularly expanding. In order to exploit the benefits of
these architectures to the full extent and speed up reservoir simulation, the source code has to be
inevitably rewritten, sometimes almost completely. We demonstrate how to extract complex physics-
related computations from the main simulation loop, leaving only an algebraic multilinear interpolation
kernel instead. In combination with linear solvers, which usually have made available soon once the new
architecture is introduced, the approach accommodates execution of the entire nonlinear loop on the latest
hardware and computational architectures. We describe the integrated simulation framework built on top
of this technique and show the applicability of the approach to various challenging physical and chemical
problems. All simulation engines along with linear solvers, well controls, interpolation engines, and state
operator evaluators are implemented in C++11 and exposed into Python coupling the flexibility of the script
language with the performance of C++.

Introduction

Following the desire to cut production costs and reduce risks, the petroleum industry is constantly pushing
reservoir simulation to the leading edge. High-fidelity multimillion-cell models are required for better
understanding and prediction of fluid behavior in the subsurface. Fast simulation times are essential for
history-matching, optimization, and uncertainty quantification. Therefore, the performance of reservoir
simulations in terms of both speed and scalability becomes a major issue.

Over the last decades, reservoir simulation evolved together with scientific computing hardware. First,
simulation performance benefited from the evolutionary growth of processors clock speed by running
on newer hardware. Then, simulators were endowed with the capability to distribute the computational
workload among several computers using message passing libraries (e.g., Dogru et al., 2002; Intersect,
2014). This parallelism not only increased simulation performance but also enhanced scalability. Later,
despite the halt of the clock speed growth caused by physical limitations, hardware performance continued
to increase utilizing multicore architectures. In order to benefit from them, simulators were redesigned
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once again to share computations between several threads, keeping, however, coarse-grained parallelism
approach (Zhou et al., 2013).

Many-core computing architectures (GPUs) continue to evolve and evidently keep an order of magnitude
advantage over CPUs in both processing speed, which is important for computing-bound problems, and
memory bandwidth, which is important for memory-bound problems. The vast majority of GPU-related
studies cover acceleration of only linear solution stage (Klie et al., 2011; Bayat and Killough, 2013; Fung et
al., 2014; Zhou and Tchelepi, 2013; Yu et al., 2012; Chen et al., 2014). In order to exploit the benefits of the
accelerator architecture to the full extent for challenging reservoir simulation problems, that is not enough
Appleyard et al. (2011). Depending on the complexity of a physical problem, Jacobian matrix assembly
(linearization) could take up to 50% of simulation time. Taking into account a limited memory bandwidth
between CPU and GPU and an impossibility to overlap linear matrix transfer with its solution, it is evident
that the entire simulation loop should be executed on GPU for the best performance (Esler et al., 2014;
Mukundakrishnan et al., 2015).

The offloading of the linearization stage to GPU is a challenging problem due to a large size, specificity
and complexity of its source code for general purpose applications (Gandham et al., 2016). Recently, a
novel Operator- Based Linearization (OBL) approach was proposed Voskov (2017). It allows extracting
complex physics-related computations from the main simulation loop, leaving only an algebraic multilinear
interpolation kernel instead. It has been shown that the approach is applicable to various challenging physics,
including thermal-compositional problems Khait and Voskov (2017b), buoyancy-dominated flow Khait and
Voskov (2018a) and chemical multiphase flow and transport Kala and Voskov (2018).

The OBL approach helped to developed a Delft Advanced Research Terra Simulator (DARTS, 2019). The
OBL technique separates physics-based rock and fluid property calculations from linearization procedure.
In addition to conventional space and time discretizations, a physical parameter space discretization
is introduced. The state-based terms of governing equations are parametrized in the physical space
of the problem forming dynamically expanding lookup tables. These tables are used in linearization
to approximate operators along with derivatives with respect to governing unknowns using piecewise-
multilinear interpolation in physical space. The method not only significantly reduces the amount of
property-related computations, but detaches physics and simulation kernels. They are built and launched
separately and are able to efficiently run on hybrid platforms including the combination of CPU and GPU.

Framework design

Currently, we consider the conservation of mass and energy in a system with n, phases and n. components:

3 n, ‘ n, B np
ot (¢ Z Xf'[’pPSP> il Z XepPpltp + Z XepPpdp = 0, c=1,...,n, (1)
1 p=1 p=1 p=1
a p "y np
= (q) Y ppspUp+ (1 q))U,.) +div Y hpppity +div(kVT) + Y hyppd, = 0. (2)
p=1 p=1 p=1

All terms of the system (1)—(2), can be characterized as functions of physical state ®, spatially variable
properties &, and well control variables u as follows:

e O(&, ) - effective rock porosity,
e Xx.,(®) - component mole fraction in a phase,
e p,(®) - phase molar density,

e 5,(®) - phase saturation,
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e i,(E.m) - phase velocity,

e §,(& o,u) - phase in/outflux,

e U, (®) - phase internal energy,
e U, (&, o) - rock internal energy,
e h,(®) - phase enthalpy,

e k(& ®) - thermal conduction.

The Darcy law describes phase flow velocity
7 = —(Kn(Vpj—8,VD)), 3)
where

o K(&) - effective permeability tensor,
A; () - phase mobility,

p/« - phase pressure,

d; (w) - vertical pressure gradient,

D(E) - vertical depth vector (up-down oriented).

Time discretization

Equations (1-2) are discretized in time using Backward-Euler scheme and approximated in time using
the Fully Implicit Method (FIM). It provides unconditional stability and is preferred for general purpose
reservoir simulation. This brings strong nonlinearity into the system to be solved, which is further increased
by the closure assumption of instantaneous thermodynamic equilibrium.

Space discretization

In order to keep the framework general and flexible, space discretization procedure is left out of simulation
engines. They are initialized by a connection list, which represents the connectivity between control volumes
in the reservoir and can be built in the same format for both structured and unstructured grids. The connection
list for two-point flux approximation (TPFA) is defined by the total amount of grid blocks and a list of
connections. Each connection is defined by the set (i, j, [,I'y), where i and j are indexes of neighboring
control volumes, I" is transmissibility of fluxes and I'; is diffusion transmissibility. The sparsity pattern of the
Jacobian matrix is computed directly based on the connection list and remains fixed during the simulation.

Linearization
Following the main idea of OBL, the DARTS framework distinguishes operators from governing equations
and treats them in a special way. Operators are functions of the state in a single control volume. Typically,
they represent a combination of fluid and rock properties and correspond to the most complex and nonlinear
part of the governing equations. Sometimes, the dependency of operators on the state is determined
through indirect procedures like phase-split, and therefore it is hard to linearize them in a general way.
Suggesting an alternative to an automatic or direct hand-differentiation solution to this problem, OBL
replaces the operators with their piecewise multilinear approximations. For those, it is possible to express
their derivatives with respect to state variables in a general way.

In DARTS, approximated operators values (along with partial derivatives) are computed via multilinear
interpolation, where the amount ofdimensions matches the number of nonlinear variables (i.e. the length
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ofthe state, or the number of degrees of freedom) in a single control volume. The true operator values, which
are used in interpolations, are called supporting points or base points. They are computed in an adaptive
manner during simulation (Khait and Voskov, 2018a) once for given state and saved in a special two-level
sparse storage for further re-use (see below for details). This approach has proven to be especially effective
when property calculations, involved in the evaluation of operator values, are computationally expensive
(e.g., complex phase behavior). Since supporting points are values of functions of the state, they do not
depend on spatial location and can be applied either across the whole reservoir or at least within the sub-
regions where fluid and rock properties remain constant (e.g. PVT regions). Thereby in DARTS, property
calculations occur relatively rare and their amount depends not on spatial discretization, but rather on a
discretization of parameter space used for operators approximation and development of the simulation in
that space.

From the perspective of simulation nonlinear loop, the operators’ interpolation replaces properties
calculation in the Jacobian assembly step. In addition, it also ‘shadows’ physical phenomena behind the
operators, leaving out only the values of supporting points, which are rarely computed but utilized all the
time during interpolation. This allows to detach fluid and rock properties calculation (operators) from the
main nonlinear loop, as well as to relax the performance requirements for such calculations. The Jacobian
assembly now depends on the choice of nonlinear variables and governing physical mechanisms which are
taken into account. The former determines the dimensionality of parameter space, while the latter defines
the operators required for the assembly. Once the choice is made, the Jacobian assembly is simply the right
combination of approximated operator values with spatial properties and states, which we refer to as the
engine.

Detaching operators and engines create unique opportunities in terms of both flexibility and performance.
From the perspective of the engine, the exact implementation of evaluation of operators supporting points is
not relevant, because operators values along with their derivatives are computed by interpolation. Receiving
those, the Jacobian assembly is then done using straightforward computation of derivatives, which is feasible
because of the simplicity of the governing equations written in operator form even for a complex physical
applications.

Parameter space discretization

The description of fluid and rock properties in DARTS is simplified via approximation interpolants for
the operators within the parameter space of a simulation problem. The dimensionality N and axes of that
space are defined by the choice of nonlinear unknowns ®. The bounds of axes correspondent to pressure,
temperature or enthalpy can be derived from initial and boundary conditions, while the overall mole fraction
is naturally bounded by the interval [0,1].

Then, we apply uniform discretization of parameter space by splitting the bounds for each axis by the
same number of points evenly distributed. This results in a set of supporting points in N-dimensional
space @”, which can be interpreted as a discrete representation of the parameter space in the model. Values
of operators are evaluated only for those supporting points in the discrete parameter space which are
requested by the interpolation engine during simulation for the first time. Evaluated values are then stored
for subsequent requests of interpolation engine. By the end ofthe simulation, the resulting sparse multi-
dimensional table of stored supporting points represents an actual subspace of physical parameters being
used in the process. For example, Fig. 7 shows a representation of such subspace for a black-oil problem in
the beginning (on the left) and by the end (on the right) of simulation.

The evaluated values ofoperators are stored in separate two-level storage, where the first level is
optimized for fast data access by the interpolation engine, while the second maximizes the re-use of already
computed values. Both levels are associative containers of key-value(s) pairs with unique hash-based keys.
This choice was made to ensure fast data access for high-dimensional cases. The first level stores all operator
values which belong to a given hyper-rectangular element in the parameter space - all the data required for
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interpolation at any point inside that element. The second level stores all operator values that belong to a
given vertex (node) ofa hyper-rectangle. The vertex storage helps to avoid re-computations and provides
fast data access when a new element is requested by the simulation process. If the new hyper-rectangle
shares some vertices with already visited hyper-rectangles, then that vertices will be simply copied to the
first level storage. Missing supporting points will be calculated and added to both storages. This approach
is crucial in high-dimensional cases when each vertex is shared among many hyper-rectangular elements.
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2 200 -
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100 | L & 100
LY I ]
50 sl © 504
1 i 1 :
08 . s - : 0.8 i
08 - Bee ol = 08 :
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Gas composition o1 = Gas composition

Qil composition

Oil composition

After 10 days of simulation After 1900 days of simulation

Figure 1—Adaptive parametrization

A simple example of this algorithm is displayed in Fig. 2. On the left, an example of two-dimensional
parameter space is shown at the moment, when simulation requests rectangle 2, while rectangle 1 was
already used. Each rectangle has 4 vertices (for n-dimensional space there will be hyper-rectangles, or
n-orthotopes, with 2 vertices each), depicted as colored circles. They represent supporting points (i.e.,
operator values) required to perform interpolation within the rectangle. Since rectangles share vertices, and
simulation process is likely to spread continuously over parameter space, in the most cases operator values
are re-used. On the right, black arrows represent the process of copying already computed data from vertex
storage to hyper-rectangle storage. Green arrows correspond to the supporting points which have never been
computed before.

W

Hyperrectangle

storage
2

Vertex storage

Figure 2—Representation of adaptive OBL storage

DARTS engines

To support the best performance for simulation, there are multiple engines implemented in DARTS. In this
section, the main engines are briefly described.

Multiphase multi-component mass transport
For the isothermal engine, the physical state is characterized by ® = {p, z,, ...,z,_;}. The discretized versions
of equations (1) written for block i

a(§) (oe(@) —ac(@,)+ Y Y b,(8.0.0,)B,(0,)+6.(§,0.u)=0. c=1...n, @)

JEL(i) P

where
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a§) = ooV, &)
by(§.0.@;) = AT;®P,;;, (6)

~ Op(@) +9)(w))
2

D, = (P_," 7+ Yp(mj) —pi—Yp(®) (Dj - Dr’)) ) (7)

while

e O - the physical state of block i,
e ®, - the physical state of block i on the previous time step,
e ;- the physical state of block j,

e o, - the physical state of upwind block determined by @,

,ij9

e 0. m) - the mass accumulation operator for component ¢ with physical meaning of the molar mass
of component ¢ per unit pore volume of uncompressed rock under physical state o,

e P (®) - the mass flux operator for component ¢ in phase p with physical meaning of the movable
molar mass of that component in that phase in the mixture under physical state @ per unit time,
pressure gradient and transmissibility,

¢ 7,(®) - the capillary pressure operator for phase p with physical meaning ofthe difference between
phase p pressure and p; in the mixture under physical state @,

e O, () - the density operator for phase p with physical meaning of the density of phase p in the
mixture under physical state .

Multiphase multi-component mass and energy transport

The physical state of the thermal system is characterized by @ = {p,T,zy,...,2,.—1}. In addition to mass
balance equation (4), which form is preserved and the only change is extended physical state vector, the
energy balance equation is introduced:

”".f‘(g)(at'f(m) - at’_/A(mH )) +(l(,,~(g)(0’.w(m) - a‘t'r‘(mﬂ)) T Z Zb"f’(g‘ . (D_',‘)B(,I,((D”) +

JeL(i) P )
ie;ﬁ) (Cef(8, @, 0))€ (®p) + Cor(E, @, @) €cr (@) ) +0,(E, @,u) =0,
where
acr(§) = a(§), ©9)
a.r(&) = (1—=00)VU,, (10)
bep(§.@.0;) = Dy(§ 0 0)) (11)
Cer(§:@@;) = ATy;i(Tj—T:)00.eu; (12)
cr(§@®;) = ATy ;i(T;—T;) (1 — 00.eu)Kreu: (13)
while

e O, - the physical state of energy upwind block determined by 7, — T,

e K, - the rock thermal conduction of energy upwind block determined by 7, — T,
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e 0,(®) - the energy accumulation operator for the fluid with physical meaning of the internal energy
of fluid per unit pore volume of uncompressed rock under physical state o,

e 0,(m) - the energy accumulation operator for rock with physical meaning of the internal energy of
rock per unit uncompressed volume ofrock under physical state o,

e [, (®) - the energy flux operator for phase p with physical meaning of the movable energy of that
phase in the mixture under physical state @ per unit time, pressure gradient and transmissibility,

e £,®) - the energy conduction (diffusion) operator for the fluid with physical meaning of the
conducted energy of fluid under physical state @ per unit time, temperature gradient, diffusion
transmissibility and uncompressed pore volume,

e &.,(®)-the energy conduction (diffusion) operator for rock with physical meaning of the conducted
energy of rock under physical state @ per unit time, temperature gradient, diffusion transmissibility
and uncompressed rock volume.

Enthapy-based thermal formulation

Forthermalapplications, there are specific cases, when the physical state @ = {p,T,zj,...,2,,—1} cannot
describe the phase composition ofthe system. For example, for high enthalpy geothermal formulation n, =2
and n. = 1. According to the Gibbs phaserule, in 2-phaseregion the systemhas only 1 degree offreedom, and
steam saturation cannot be derived from the state. For such cases, an alternative is to use the fluid enthalpy
for a thermal description ofthe system: the physical state @ = {p, T, z1,...,2s.—1}. In this case, the form of
equations (4) and (8) remains the same with only the difference that temperature now becomes an operator:

cer(§, @) = ATy;i(T(®)) —T(®))d0,cu; (14)

Cer(&,“).mj) = All—‘d,iJ'((T(O)j) — T((D))(l —q)(),e,,,)K,-,e,,,. (15)

Physical operators
In this section, we briefly describe all physics-based operators used in governing equations.

Isothermal compositional
In the conventional compositional problem, only conservation of mass is involved in governing equations.
All physics-based operators can be present in the generic form for each component as

np

0c(@) = (1+c (p—Prer)) Y, XepPpSp: (16)
p=l1

Bep(®) = xcppphp, (17)

'Yp(“)) = Pp—D; (18)

3p(@) = pp. (19)

Here, all fluid-phase equilibrium calculations and property evaluation performed based on Peng-
Robinson Equation of State (EoS) and different EoS-based correlations as described in Iranshahr et al.
(2013) or mixed treatment of EoS and PVT correlations as used in Ganapathy and Voskov (2018).

Thermal-compositional operators

The last formulation is thermal-compositional operators involved in the energy balance equation. All
thermal properties are calculated based on correlations described in Zaydullin et al. (2015). The physical
operators can be present in the following form

120Z AInF G| uo Jesn yiaa N1 deauiolqig Aq 14pd sw-ze6e6 L-2ds/L.8yS9 1L L/Y00ME00S L L0A/OSH6 L-L/OSH6L/APd-sBuipesdoid/osiads/bio onedeuo)/:dpy woly pepeojumoq
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np

Up(®) = (1+c(p—pres)) Y. PpspUp (20)
p=1
Oer(@) = 1 (21)
T (Ledp—prey))’
Be(@) = Y ypphy, (22)
p=1
ef(@) = (I+¢/(p—prer)) Y, p%p, (23)
p=1
Eor(@) = ] (24)

(I+c(p— pn{;")) .
(25)

The operators for geothermal formulation are computed using the open-source implementation of
TAPWS-97 formulation (Cooper and Dooley, 2007). The performance of the simulation does not deteriorate
significantly despite the library is implemented in Python.

Modeling of wells

Following the general unstructured grid framework, a well is discretized by a set of control volumes of well
segments, chained together by connections. The current implementation only includes the homogeneous
flow model in segments. Any well segment can be connected with an arbitrary number of reservoir
control volumes, representing well perforations. For well discretization, we use a connection-based
approach, suggested by Lim et al. (1995). Each perforation is characterized by geometrical transmissibility
representing the connectivity of corresponding well segments to the reservoir, also referred to as well index.
Similar to the connections between reservoir grid blocks, well indexes are computed outside simulation
engine taking into account geometry and orientation of wellbore and perforated grid block in general
unstructured grid. In addition, the top well segment is also connected to a ghost control volume, which has
exactly one connection and is used as a placeholder for well control equations, see details in Jiang (2007).

Two examples are shown in Fig. 3: one-segment well configuration (similar to regular well) is on the left
and multi-segment well configuration is on the right. Reservoir control volumes are shown in gray; well
control volumes including the top segment w, - in blue; well ghost control volume wy - in red. The interface
between w, and w; is denoted as w. Black arrows represent connections between reservoir control volumes;
blue arrows - perforation connections; red arrows - intra-well connections. Even though the examples show
structured grid case with a vertically oriented wellbore, the well configuration in DARTS can be arbitrary
owing to connection-based approach to describe well perforations. All well control volumes are considered
as the extensions of a reservoir and treated exactly the same way during Jacobian assembly, except for wy.
Each well segment is defined by a volume dependent on a wellbore diameter and a segment length, while
other properties are neglected. The flow in the multi-segment well is following the homogeneous multiphase
flow in an idealized tube without roughness and slip (Jiang, 2007).
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Figure 3—Example of multi-segment well discretization for structured reservoir

BHP well control

One of the two most common controls for wells in reservoir simulation is fixed bottom hole pressure. The
following system of equations is applied to w0 control volume instead of Eq. 4 in order to maintain target
pressure plarset;

p_ptarget — O, (26)

te—2F = 0, #=Laaf—1, 2Ff= (27)

z.'  for producer

{Zinj for injector
Rate well control

Another common way to define well regime is to specify volumetric phase rate at surface conditions. In
order to parametrize this rate, we first define the state at separator (or surface) conditions using the overall
composition of the flux B} over interface w, which is evaluated according to 18:

SC sc msc PY ne—1
o = [p, T, v 28
TR LB (28)
c c
Now, we can obtain target rate introducing rate operator {}(®):
PYEBE ¢ (aSC .
Si(® B* /(@) forinjector
Qj _ c ./( SC) i W(o))’ Cy(m) _ Cj( ) ] (29)
d p/(@°¢) dt Cj(@") for producer
Next, we write down equations for control volume w, to maintain target rate Q}arger
bW
w _
—L@-0; = o, (30)
_inj G
- Z?P — O., c=1... i = 1 | ng i (.{L‘v {jO!" ln_]eCtOI' (3 1)
ze' for producer

Due to more nonlinear relations involved in operator evaluation for well controls, parametrization tables
with higher than in reservoir resolution are often needed to control an error.

Numerical models

This section presents different test cases utilized for performance comparisons. Models introduced by
ascending order in the number of control volumes, the number of unknowns per control volume and the
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complexity of physics. All test cases used in this study can be downloaded from the project page (DARTS,
2019).

Brugge field model

The Brugge test case is often used as the optimization benchmark problem in reservoir simulation (Peters et
al., 2010). In our study, we used a particular permeability realization and production scenario described in
Bukshtynov et al. (2015). The simulation time spans 10 years with BHP controls changing every 3 months
for both injection and production wells. In this study, we only use this test case for performance comparisons.
The detailed convergence analysis and the comparison with the reference physics can be found in Khait and
Voskov (2018a). The number of control volumes in this model is equal to 43,846 and 124,370 connections
with 2 unknowns per control volume and dead-oil reference physics.

Porosity scaled 3 times along Z axis Pressure along the water distribution

Figure 4—Brugge field

Geothermal model

To test thermal-compositional formulation in the DARTS framework, we use a geothermal model from
Khait and Voskov (2018b). This model is one of the realizations of process-based geological simulation for
the Nieuwerkerk sedimentary formation in the West Netherlands Basin used to investigate the performance
of a geothermal doublet in low-enthalpy geothermal systems in Shetty et al. (2018). Here we use a
modification of the original model where brine and the dissolved methane is present at reservoir conditions.
Details on validation of the geothermal model and the convergence analysis for OBL resolution accuracy
can be found in Khait and Voskov (2018b). This model has 100,800 control volumes with 295,882
connections, 3 independent unknowns (pressure, enthalpy and composition) and mixed EoS-based and
thermal-compositional reference physics (Zaydullin et al., 2015).
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Figure 5—Geothermal model
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SPE10 model with gas injection

The results of isothermal compositional simulation for gas injection processes is demonstrated using a
four- component model described in Khait and Voskov (2018a). In this model, the original distribution of
permeability and porosity was taken from SPE10 problem Christie and Blunt (2001). The compositional
properties were processed using the Peng-Robinson Equation of State (Peng and Robinson, 1976) with
original oil composition from Orr Jr. et al. (1995). The details of the model, comparison with the reference
physics and convergence analysis for numerical results can be found in Khait and Voskov (2018a). This
model has 1,122,000 control volumes with 3,329,020 connections, 4 nonlinear unknowns per control
volume and compositional reference physics.

32 points resolution 256 points resolution

Figure 7—SPE 10 model compositional parameter space for pressure range 53-85 bar

Sensitivity to OBL resolution

Here, we present the results of numerical simulation for the models described above. The models order in the
ascending order of complexity where the first model has 87,728 degrees of freedom and simplest physics,
the second model has 302,400 degrees of freedom and more complicated physics and the last model has
4,488,000 degrees of freedom with the most nonlinear physics.

The table below presents inclusive simulation time for each model where the first column ‘Sim’
corresponds to the total simulation time, the second column ‘Jac’ represents the linearization time (Jacobian
assemble) and the last column ‘Gen’ corresponds to the time spent on generation of supporting points in
OBL parametrization. It is clear that for the simplest (Dead-Oil) physics in the first model, the generation
time is almost negligible since the property evaluation is extremely cheap (table-based). Even at the most

120Z AInF G| uo Jesn yiaa N1 deauiolqig Aq 14pd sw-ze6e6 L-2ds/L.8yS9 1L L/Y00ME00S L L0A/OSH6 L-L/OSH6L/APd-sBuipesdoid/osiads/bio onedeuo)/:dpy woly pepeojumoq



12 SPE-193932-MS

expensive OBL resolution, the total cost of linearization is below 15% of total simulation time. For the
larger model with more complex binary thermal- compositional physics, the cost of generation is growing
much faster and soon enough (with the resolution above 256 points) becomes dominant in the simulation.
For bigger and more involved four-component compositional model, the linearization cost only becomes
noticeable at extremely high OBL resolutions.

Notice that according to our previous investigations (see Khait and Voskov, 2017a, 2018a), the resolution
above 64 points already guarantee an error in simulation results below 1%. It is also worth to mention that
our multiphase flash solver is not optimized for the performance and only tuned for the accuracy of the
phase behavior prediction especially in the near-miscible gas injection regime (close to the critical point).
In addition, the parameterized points in OBL can be effectively reused for repeated simulations since the
solution in compositional space is mostly controlled by the thermodynamics of the problem (Zaydullin et al.,
2013). Therefore, for subsequent launches of Brugge field and Geothermal models, the effective simulation
time remains nearly constant for any resolution of parameter space discretization.

Conclusions

The Delft Advanced Research Terra Simulator (DARTS) was introduced and described in this study.
We demonstrate how OBL approach predetermined the composition of the computational framework by
detaching physics- based rock and fluid property calculations from linearization procedure. The engines and
operators concepts were introduced. The major computational load of the simulation process is delegated
to a relatively simple engine object. The simplicity of the governing equations written in operator form
allows computing all derivatives of Jacobian in a straightforward manner. For operators, DARTS introduces
a physical parameter space discretization in addition to conventional space and time discretizations. The
actual implementation of operator evaluation becomes almost irrelevant for simulation engine in terms of
performance and complexity.

Table 1—Performance results

Brugge Geothermal SPEI0O
Sim,s Jac,s Gen,s | Sim,s Jac,s Gen, s Sim,s Jac,s Gen,s
16384 84.6 17.2 5.23 | 1441.1 1316.1 1300.56 - - -
8192 83.5 15.5 4.02 | 1214.6 1082.7 1066.76 - - -
4096 81.5 134 2.19 | 1089.6  959.7  944.00 - - -
2048 80.0 11.7 0.88 | 809.1 683.4 668.40 | 14731.3 2639.2 2029.9
1024 79.6 11.0 0.30 | 491.5 368.5 354.22 | 13359.9 1020.1 419.6
512 79.1 104 0.09 | 266.3 139.3 125.19 | 10947.5 583.3 71.8
256 80.3 10.3 0.03 | 170.3 45.1 32.10 | 9627.5 476.8 12.3
128 78.0 9.8 0.01 137.0 17.6 6.35 | 7360.8  366.1 2.3
64 82.7 10.2 0.00 | 1334 11.3 1.14 | 6323.8 327.3 0.5
32 84.8 10.3 0.00 | 130.2 9.7 0.21 | 5425.8 290.7 0.1
16 81.5 10.0 0.00 | 129.0 94 0.03 | 54324 307.2 0.1

Resolution

The architecture of DARTS creates unique opportunities in terms of both flexibility and performance.
Various formulations were implemented in DARTS, including multiphase thermal-compositional and
geothermal models. For the latter, an external library was adopted and utilized without sacrificing in
simulation performance. Thanks to the relative simplicity of engine implementation, the whole simulation
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is now able to run effectively on a different computing architecture such as GPU, while the calculations of
operator values can still be performed on CPU. Adaptive parametrization of operators and localized behavior
of simulation development in the parameter space significantly reduce the number of such calculations
and prevent them to become a bottleneck. We demonstrate the robustness of the developed framework for
models with growing complexity in the number of control volumes, nonlinear unknowns per control volume
and complexity of the physics for different table resolutions.
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