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1 Abstract

Structures may be subjected to both mechanical loads and imposed deformation. On one hand, the mechanical loads
include, for example, the self-weight of the construction work (CEN, 2001), the action from normal use by person,
furniture and movable objects, vehicles (CEN, 2001), snow (CEN, 2003), wind (CEN, 2005), execution (CEN,
2005), etc. On the other hand, when the deformation of a structure is restrained, imposed deformation occurs
(Breugel, 2013, p. 1). The sources of deformation can be various, not only environmental conditions, such as
temperature and humidity changes, but also chemical or physical actions, such as sulphate ingress or creep

(H.W Reinhardt, 2014, p. 454).

If the shortening of a structure is restrained, the structure will be subjected to imposed deformation which results in
tensile stress. Since the tensile strength of concrete is relatively low, concrete structures, such as tunnels, bridges and
pavement roads, always suffer a high risk of cracking (S.Y.Gu, 2008, p. 1). Even if the concrete structure is
prestressed, the tensile stress resulting from imposed deformation would consume the compressive stress in concrete
and raise the risk of cracking. If the crack width exceeds the limit, leakage, corrosion and even structural failure may
happen.

According to the schematised N — ¢ diagram of reinforced concrete (Breugel, 2013, p. 9), the development of
cracking caused by imposed deformation and mechanical load are different. Suppose the cracking is caused by
imposed deformation, there is a developing stage for cracking. It means the cracks caused by imposed deformation
could be either fully or not fully developed. However, suppose the cracking is caused by mechanical loads, the
cracks could only be fully developed.

The stiffness of fully or not fully cracked members are different. The stress resulting from imposed deformation in a
structure is related to the stiffness of the structure. Therefore, cracking has significant impact on the magnitude of
stress resulting from imposed deformation. Therefore, when a structure is subjected to imposed deformation and
mechanical load together, it is necessary to take the impact of cracking into account during structure design.

The combination of imposed deformation and mechanic loads is referred to as combined actions. It is common to use
FEM software to analyse the stress resulting from the combined actions during structure design when cracking has to
be taken into account. However, FEM analysis only is not enough. It is also necessary to check the results calculated
by FEM software to avoid mistakes, for example a wrong input.

There is a project called 'Approach Ring South, Groningen' (Herepoort, 2019). In the project, widened deck
KWO03.01 is subjected to a combination of imposed deformation and prestressing force. FEM software called SCIA is
used to calculate the prestress consumption in the widened deck KW03.01. According to the data file of the project,
41% in maximum of the compressive stress resulting from prestressing is consumed when the structure is subjected
to combined actions, which is much more than the engineering experience. As a result, a simple approach is required
to check whether the prestress consumption in widened deck KW03.01 suits the expectation or not, where the
prestress consumption is calculated by FEM software.
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2 Glossary

To avoid misunderstanding, hereby provides definition of some keywords which are mentioned in this paper.

The Simple Approach: A method carried out to check whether the prestress consumption in widened deck
KW03.01 suits the expectation or not, where the prestress consumption is calculated by FEM software.

Prestress Consumption: Compressive stress in concrete which is consumed by the tensile stress resulting from
imposed deformation. Different from prestress loss in prestressing cables.

Prestress Consumption in Proportion: Ratio of stress resulting from imposed deformation and compressive stress
resulting from prestressing.

Mechanic Load: The self-weight of the construction work (CEN, 2001), the actions from normal use by person,
furniture and movable objects, vehicles (CEN, 2001), snow (CEN, 2003), wind (CEN, 2005), execution (CEN,
2005), etc.

Imposed Deformation: Restrained deformation. In this paper, if not emphasised, the imposed deformation is in-
plane only.

Restrained Deformation: The deformation of a member or structure which is prevented by the supports or boundary
conditions. The deformation may be caused by environmental change and/or chemical and physical reactions
(H.W Reinhardt, 2014).

Environmental Change: Temperature and humidity changes, etc.

Chemical and Physical Reactions: Sulphate ingress and abrasion, etc.

Combined Actions: Combination of imposed deformation and/or mechanical loads.

Tensile Member: Reinforced concrete member which is subjected to axial normal force and imposed deformation.
Cracking Force: Normal force applied to a reinforced concrete tensile member when the first crack appears.
Cracking Strain: Strain in a reinforced concrete tensile member when the first crack appears.

Cracking Strength: Stress in a concrete tensile member when the first crack appears in the tensile member.

Hydration: Procedure of a series of chemical reactions during which, In the presence of water, the silicates and
aluminates of cement form products which is firm and hard mass (A.M. Neville, J.J. brooks, 2010, p. 12). Hydration
of concrete causes autogenous shrinkage in concrete.

Heat of Hydration: The quantity of heat (in joules) per gram of unhydrated cement, evolved upon complete
hydration at a given temperature (A.M. Neville, J.J. brooks, 2010, p. 13).

Cooling: The loss of heat of hydration because the temperature of concrete is higher than the environment it exposed
to. Cooling of concrete causes thermal contraction in concrete.

Thermal Contraction: Shrinking of concrete as it is cooling down.

Drying Shrinkage: Shrinkage of concrete caused by withdraw of water from hardened concrete exposed to
unsaturated environment (A.M. Neville, J.J. brooks, 2010, p. 235).

Autogenous Shrinkage: Shrinkage of concrete caused by loss of water used up in hydration and except in massive
concrete structures (A.M. Neville, J.J. brooks, 2010, p. 234).

Creep: Additional deformation to the elastic deformation in concrete when it is subjected to sustained constant stress
(A.M. Neville, J.J. brooks, 2010, p. 212).

Impact of Connection: The strain and stress in widened deck KW03.01 resulting from the imposed deformation
which is caused by the appearance of connection. The connections are built between old decks and new decks.
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Impact of Cracking: Cracking decreases the stiffness of concrete member and the stiffness of concrete member is
related to the magnitude of stress resulting from imposed deformation. As a result, the strain and stress calculated
with and without cracking in widened deck KW03.01 are different. The difference is called the impact of cracking.

Input Data: Date of time history, material properties and combined actions to be used in the simple approach.

Time History of Construction: Data of important timing when the old decks, new decks and connections of
widened deck KW03.01 are constructed.
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3 List of Acronyms and Abbreviations

To avoid misunderstanding, hereby provides definition of all acronyms and abbreviations which are mentioned in
this paper.

FEM: Finite element model.
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4 Introduction

4.1 Background Information

When the deformation of structure caused by environmental change and/or chemical and physical reactions is
restrained, imposed deformation is produced (Breugel, 2013). An example of imposed deformation is shown in
Figure 1. The temperature drop AT is expected to cause a shortening of the bar in Figure 1. In Figure 1(a), the bar is
shortened freely because the right-hand end of the bar is free. However, in Figure 1(b), the bar is fixed on both ends.
So, the shortening of the bar Figure 1(b) is not free but restrained by the supports at the ends of the bar. Such a
restrained deformation is referred to as imposed deformation.

AT
. : a. Free
L deformation
N AL(AT)
I
AT
— b. Restrained
- deformation
L N aLaT)

Figure 1:Comparison between Free and Restrained Deformation.

Suppose the deformation prevented by the supports or boundaries is strain, the imposed deformation is referred to as
imposed strain Ae. Similarly, suppose the deformation prevented by the supports or boundaries is curvature, the
imposed deformation is referred to as restrained curvature Ax. Examples of structures subjected to imposed
deformation are shown in Appendix Al.

As shown in Appendix Al, a structure may be subjected to both imposed deformation and mechanical loads at same
time. The combination of imposed deformation and mechanical loads is referred to as combined actions.

Suppose the shortening of a structure is restrained, tensile stress would appear. Since the tensile strength of concrete
is relatively low, concrete structures, such as tunnels, bridges and pavement roads, always suffer a high risk of
cracking (S.Y.Gu, 2008, p. 1). If the concrete structure is prestressed, the tensile stress resulting from imposed
deformation will consume the prestress which also raises the risk of cracking. If the crack width exceeds the limit,
leakage, corrosion and even structural failure will happen.

Cracking may happen when a reinforced concrete tensile member, or in short tensile member, is subjected to normal
force N and/or impose deformation Ae. As shown in Figure 2, cracking of a tensile member consists of three stages
(Breugel, 2013, p. 9). The first stage is uncracked stage, starting from point (0,0) to point (&, N.,) where N, and
&, represent the cracking force and cracking strain. In first stage, N < N, and A¢ < &, the tensile member is
uncracked and linear elastic. When N = N, or Ae = ¢, the first crack appears and cracking comes to the second
stage. Suppose the cracking is caused by mechanical loads, the normal force N applied to the tensile member would
be constant. In this case, all possible cracks would appear together at same time. However, suppose the cracking is
caused by imposed deformation, instead of mechanic loads, the imposed strain Ae applied to the tensile member
would be constant. When first crack appears, the normal stiffness of tensile member decreases. As a result, with a
constant imposed deformation, the normal force in tensile member drops below the cracking force N,,.. Further
cracks will not appear unless the imposed strain keeps increasing, making the normal force in the tensile member
exceeds the cracking force N, again. For simplicity, when cracking is in second stage, it is assumed that the normal
force in tensile member is constant and equals to the cracking force N,,.. When the maximum cracks appear, cracking
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comes to the third stage. The mean strain of cracked tensile member at this moment is denoted as &4.. In this stage,

the crack pattern is taken fully developed. So, the third stage is referred to as fully developed stage, while the second
stage, where the crack pattern is not fully developed, is referred to as developing stage.

As mentioned above, cracking caused by imposed deformation and mechanical loads are different. Those caused by
imposed deformation consists of three stages, while those caused by mechanical loads consists of only the first stage
and the third stage. As a result, when a tensile member is subjected to both imposed deformation and mechanical
loads, the crack pattern can be either fully or not fully developed.

The mean stiffness of not fully cracked tensile member is larger than that of fully cracked one, which is expected to
result in different magnitudes of stress in concrete when further imposed deformation is applied. Therefore, when a
combination of imposed deformation and mechanical loads is applied, the structure should be designed with the
combination instead of equivaling imposed deformation into mechanical loads, so that it is enabled to take not fully
cracked pattern into account.

A

‘.\I’ ______________________________________
Fully Developed Stage
<
Ne \
y \ (EA)
Uncracked Stag

| 3 : ! -

0 Eer Ede &s

*It is assumed that the rebar will not be broken due to cracking. In this case, the mean strain of the tensile member is equal to the mean strain of
rebar &;. Therefore, the mean strain of tensile member is referred to as the mean strain of rebar &g in this diagram.

Figure 2:Schematised N — ¢ Diagram of Reinforced Concrete Tensile Member.

4.2 Motivation and Problem Statement

The combination of imposed deformation and mechanic loads is referred to as combined actions. It is common to use
FEM software to analyse the stress resulting from the combined actions during structure design when cracking is
taken into account. However, FEM analysis only is not enough. It is also important to check the results from FEM
software to make sure that the results are reliable.

There is a project called 'Approach Ring South, Groningen', where the viaduct of main roadway N7 over the Laan
Corpus den Hoorn in Groningen was widened (Herepoort, 2019). The viaduct deck is called KW03.01. Figure 3
shows the on-site picture, the satellite image of deck KW03.01 before being widened and the effect picture after
being widened. The aim of the project is to improve traffic flow, accessibility, safety and quality of life. Extra lanes,
new connections and level crossings will make the twelve-kilometre ring road safer and make city and region more
accessible.

Wednesday, 04 March COMBINED ACTIONS 6
2020



TU De Ift ‘“ ﬁgsﬂ:)nlngDHV

Figure 3:0On-site Picture, Satellite Image and Effect Picture of Deck KW03.01.

The existing decks were built in 2009, which consists of two parts with same dimensions (Herepoort, 2007, p. 5). For
simplicity, the existing decks of KW03.01 being widened are referred to as old decks, while the newly casted decks
to widened existing decks are referred to as new decks.

After being prestressed, new decks were connected to old decks by connections (Herepoort, 2019). So, the widened
deck KW03.01 consists of three parts: the old decks built in 2009, the new decks built in 2019 and the connections.
The sketch of the widened deck KW03.01 is shown in Figure 4. The thickness of the decks varies from h = 550 mm
at the ends to h = 850 mm at mid-support, where the mean thickness is h = 700 mm.

— New Deck
- .
L)
= o
— L)

Connection &

= =

= =
<|” o
I 01d Deck 3
= S
2 3

S S

ey Iy
= | Ll |s
b 900 20600 20600 900 2
=4 900 41200 900 s
8 11 1 [|°

— =
- 7S 5
S Ll |&

1200 40600 1200

Figure 4:Sketch of Widened Deck KW03.01.
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Old decks and new decks are prestressed while the connections are not. Since connections are made after old decks
and new decks being prestressed, the thermal deformation of old decks and new decks is assumed to be free. As
results, old decks and new decks only suffer the shortening due to drying, hydration and creep, while connections
suffer the thermal deformation and the shortening due to cooling, drying and hydration. As shown in Figure 4, the
width of new deck in north is variable. However, the distribution of prestressing tendons inside the deck, see Figure
5, enables it to deform without any bending (Herepoort, 2019).

10 ® ' ®
s " | * =
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e 5 M £ e |
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e ———— I N ——

| e ~__|
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Figure 5:Distribution of Tendons in the North New Deck.

The thermal deformation and the shortening due to drying, hydration and creep are time-dependent, which grow
faster in the early age and get slow gradually as the time goes. New decks were built at a time At = 11 years after
old decks being built. After new decks being built, new decks are expected to deform faster than old decks.
Therefore, after being connected, the old decks are expected to prevent the deformation of new decks, resulting in in-
plane imposed deformation. Similar to shortening of new decks, the shortening of connections also results in in-plane
imposed deformation. In addition to the imposed deformation, the prestressing force applied to old decks and new
decks is acting in-plane as well. So the widened deck KW03.01 is subjected to combined actions in-plane.

During the structure design of widened deck KW03.01, FEM software called SCIA is used to calculate the stress
resulting from imposed deformation, or in short resulting stress. The results of SCIA is shown in Appendix A2. As
shown in Appendix A2.4, the resulting stress consumes 41% in maximum of the compressive stress resulting from
prestressing, which is much more than engineering experience. So, a simple approach is required to check whether
the prestress consumption calculated by SCIA is reliable or not.

As shown in Section 4.1, the mean stiffness of not fully cracked tensile member is larger than that of fully cracked
one, which is expected to result in different magnitudes of stress in concrete when further imposed deformation is
applied. Therefore, to obtain a reasonable prestress consumption by the simple approach, the impact of cracking has
to be taken into account.

4.3 Research Questions

To carry out the simple approach mentioned in Section 4.2, four research questions have to be answered. Hereby
summarized the research questions.

1. What are the models to be used during the simple approach?
To answer this question, dimensions of the model has to be determined.
2. What is the mechanics to be used to calculate the impact of connection?

In addition to the models to be used during the simple approach, the mechanics for structural analysis is
important as well. Without the mechanics for structural analysis, the stress resulting from the combined actions,
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especially the imposed deformation, cannot be calculated. To get reliable prestress consumption at the end of the
simple approach, a reliable mechanics for structural analysis is necessary.

3. How much is the prestress consumption calculated by the simple approach?

To answer this question, the answer to the first two research questions are required. Otherwise, the calculation of
prestress consumption cannot be carried out. The prestress consumption calculated by the simple approach will
be compared with that calculated by FEM software to answer the final research question.

4. Whether the prestress consumption calculated by FEM software is reliable?

This is the final research question of this thesis. To answer this question, the answer to the third research
questions is required.

4.4 Scope and Limitation

The simple approach is to check the mean prestress consumption which is calculated basing on the mean imposed
deformation and the mean dimensions. For simplicity, it is assumed that the stress distribution resulting from
combined actions is linear. However, the stress distribution resulting from combined actions is non-linear.

In the simple approach, prestress is taken constant and uniformly distributed in old decks and new decks. The
prestress loss consists of the losses due to elastic deformation, friction, shrinkage, creep and relaxation. For
simplicity, prestress loss is calculated without the impact of imposed deformation, see Appendix A15.1. However, in
reality, tensile stress resulting from imposed deformation decreases the shortening of the decks and, therefore,
decreases the prestress loss. Similarly, compressive stress resulting from imposed deformation increases the
shortening of the decks and, therefore, increases the prestress loss. For simplicity, the impact of imposed deformation
on the prestress loss mentioned above is neglected. So the prestress consumption calculated by the simple approach
is conservative in the tensed area but not in the compressed area.

In the simple approach, cracking is taken into account. The cracked area is taken as the parts of widened deck
KW03.01 where tensile stress resulting from combined actions exceeds the cracking strength of concrete, and the
tensile stress resulting from combined actions is calculated without the impact of cracking. However, in real case,
cracking decreases the stiffness of the decks and, therefore, decreases the tensile stress resulting from combined
actions. Since it is not effective to estimate the crack pattern step by step, the cracked area of the decks are estimated
without the impact of cracking. It is expected that the cracked area estimated in the simple approach is larger than
that in reality.

As a result, the simple approach can give a general prestress consumption which can be used to check the reliability
of the results calculated by FEM software. But the prestress consumption cannot be used directly to the structural
design, for example to determine the exact stress at specific position in the widened deck KW03.01 or to determine
the amount of reinforcement required.
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5 Reading Guide

There are eleven chapters and twenty appendix in this paper. To avoid readers getting lost when reading this paper, a
flow chart is provided below as a brief reading guide to show the relation between chapters and appendix.

introduction of the reason to carry out the simple approach (Cahpter 4)

data of calculation carried out by SCIA (Appendix A2)

simplified models used in the simpel approach (Chapter 7)

prestressing steps has no impact on the results of simplified dimensions have no impact on the
the simple approach (Appendix A7) results of the simple approach (Appendix AS8)

mechanics used in the simple appraoch (Chapter 8)

mechanics without impact of

shear deformtion (Appendix mechanics with impact of shear advantage and disadvantage of
Al12)

deformtion (Appendix A13) two mechanics (Appendix A14)

check the prestress consumption calculated by SCIA (Chapter 9)

difference between the reducing prestress reducing prestress
calculations carried out impact of cracking consumption by making consumption by redcing
by SCIA and the simple (Appendix A19) connection later prestressing force
approach (Chapter 9) (Appendix A15) (Appendix A20)
Wednesday, 04 March COMBINED ACTIONS 10
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6 Input Data

6.1 Time History of Construction

Both the material properties of concrete and the in-plane imposed deformation are related to the age of concrete. To
inform the age of concrete in the old decks, new decks and connections, time history of construction (Herepoort,
2019) is summarized. As shown in Figure 6, there are five important timing during the construction of widened deck
KWO03.01.

t; the timing when the construction of old decks was finished

ty the timing when the construction of new decks was finished

tir the timing when the construction of connections was finished, also referred to as the timing to make
connection

tiy the timing when the connections were stiff enough to restrain the deformation of free

shrinkage/creep, or in short to produce imposed deformation

ty the target timing to calculate the remaining prestress force, the imposed deformation and the
resulting strain and stress, also referred to as t,,
Ity Ui Ly Iy
. ‘.l' - - "- -
|
T Ay At
i 15 -1 HI-Iv s
Aty Atyy

Figure 6:Time History of Construction.

The data of time history of construction is shown in Table 1 and Table 2.

timing of old deck being built tr 0 years
timing of new deck being built ti 11 years
timing of connection being built At 1 28 days
connected age of connection At v 1 days

target time after new deck being built Aty 36500 days

*Aty -y = 1 days which means it takes one day for the concrete in connections to get stiff enough to produce imposed deformation, see Appendix
A3.

Table 1:Basic Data of Time History of Construction.

timing of connection being stiff At v 29 days
connected age of old deck At Ly 4044 days
connected age of new deck At v 29 days
target age of old deck At Ly 40515 days
target age of connection Aty 36472 days
target age of new deck At iy 36500 days

*The data in Table 2 is evaluated basing on the data in Table 1.

Table 2:Other Data of Time History of Construction.
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6.2 Material Properties and Environmental Conditions

As shown in Section 6.1, the material properties of concrete are related to the age of concrete, while the age of

concrete in old decks, new decks and connections are not same. For simplicity, here only summarized the material

properties of concrete at time t = 28 days. In addition, the material properties of prestressing cables and the

environmental conditions of the widened deck KW03.01 are also summarized, see Table 3, Table 4 and Table 5.

The material properties of concrete at other time in addition to t = 28 days are also used in this case study. The
expressions used to evaluate these data are shown in Appendix A3. For the convenience of reading, the data is not

summarized here.

Environment relative humidity RH 75 %
Cement (CEM I11I/B) coefficient related to cement s 0.25
characteristic strength Sek 35 MPa
gravity Ve 25 kN/m’
compresive strength Sem 43 MPa
Concrete (C35/45) tensile strength Setm 3.2 MPa
elastic modulus Ecn 34 GPa
poisson's ratio v 0.2
coefficient of thermal expansion oc | 0.00001 /°C
area of cross-section per cable Ay 1800 mm?
Prestressing Cable number of cables in the north one n 25
(Y1860) number of cables in the south one n 25
elastic modulus E, 195 GPa
Table 3:Basic Data of Material Properties and Environmental Conditions of Old Decks.
Environment relative humidity RH 75 %
Cement (CEM 111/B) coefficient related to cement s 0.25
characteristic strength Ser 35 MPa
gravity Ye 25 kN/m’
Concrete (C35/45) compression strength Sem 43 MPa
elastic modulus Eom 34 GPa
poisson's ratio v 0.2
coefficient of thermal expansion Oc 0.00001 /°C
Table 4:Basic Data of Material Properties and Environmental Conditions of Connections.
Environment relative humidity RH 75 %
Cement (CEM 111I/B) coefficient related to cement s 0.25
characteristic strength Sek 45 MPa
gravity Ve 25 kN/m’
Concrete (C45/55) compression strength Sfem 53 MPa
elastic modulus Een 36 GPa
poisson's ratio v 0.2
coefficient of thermal expansion oc | 0.00001 /°C
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area of cross-section per cable A, 2850 mm’
Prestressing Cable number of cables in the north one n 14
(Y1860) number of cables in the south one n 3
elastic modulus E, 195 GPa

Table 5:Basic Data of Material Properties and Environmental Conditions of New Decks.

6.3

The shape of prestressing tendons in the old and the new decks are similar (Herepoort, 2007) (Herepoort, 2019). The
sketch of prestressing tendons in both old deck and new deck is shown in Figure 7. The coordinates of points on the

Prestressing Tendons

prestressing tendons in old decks and new decks are summarized in Table 6 and Table 7.

L

|

l
111
BLE
o
|

P

L; L, L3 Ly Ls
*The linear part of tendons in new decks are not shown in Figure 7.
**L,, the horizontal length of tendon curve i
***R,, is the radius of tendon curve i
*¥*EXS is the vertical height of tendon curve i
Figure 7:Sketch of Tendons.
-600,275 600,366 1600,413 2600453 3600,488 4600,520 5600,546
6600,569 7600,588 8000,594 8600,602 9600,608 10600,606 [ 11600,596
12600,578 | 13600,553 [ 14600,520 [ 15600,480 [ 16600,431 | 17600,375 | 18600,310
19600,238 | 19861,218 [ 20600,190 [ 21339,218 | 21600,238 | 22600,310 | 23600,375
24600,431 | 25600,480 | 26600,521 | 27600,554 | 28600,579 | 29600,596 | 30600,607
31600,608 [ 32600,603 [ 33200,596 [ 33600,590 [ 34600,571 | 35600,549 | 36600,523
37600,491 [ 38600,456 | 39600,415 [ 40600,369 | 41800,275
*The data in Table 6 is form of (x, z).
** x, the horizontal position of certain point in longitudinal direction
**%7 the vertical distance from certain point to the top-surface of deck
Table 6:Coordinates of Tendons in Old Decks.

0,275 250,286 750,308 1000,320 2630,385 4270,437 5900475
7540,499 9170,510 10810,506 | 12440,488 | 14070,457 | 15710,411 | 17340,352
18980,279 | 20610,192 [ 20670,188 | 20730,185 [ 20780,183 | 20840,181 | 20900,179
20960,178 | 21070,176 | 21190,175 | 21310,176 | 21420,178 | 21480,179 | 21540,181
21600,183 | 21650,185 | 21710,188 | 21770,192 | 23400,279 | 25040,352 | 26670411
28310,457 | 29940,488 | 31570,506 | 33210,510 | 34840,499 | 36480475 | 38110437
39750,385 | 41380,320 | 41630,308 | 42130,286 | 42380,275

*The data in Table 7 is form of (x, z).

** x, the horizontal position of certain point in longitudinal direction
**%*z, the vertical distance from certain point to the top-surface of deck

****The tendons of which the coordinates in bold is not shown in Figure 7.

Table 7:Coordinates of Tendons in New Decks.
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According to Table 6, Table 7 and Figure 7, the horizontal length L; and the vertical height f; of tendon curve i can
be determined. Substitute the horizontal length L; and the vertical height f; into Expression 1 to evaluate the radius
R; of tendon curve i. Then, substitute the horizontal length L; and the radius R; into Expression 2 to evaluate the total
angular rotation of tendon. The results are summarized in .

R = M
*For Tendon Curve 3, L; in Expression 1 has to be replaced by L; /2.

% @

*Since the prestressing is applied from two sides of tendon, to evaluate the angular rotation for prestress loss, Expression 2 has to be replaced by

0= %Z Li/R;

L 2.2|m L, 8.17|m
L2 11.3|m L, 11.44|m
tendon length  [L ; 1.5|m tendon length | 3 1.16|m
Ly 11.3{m L4 11.44|m
Ls 9.2|m Ls 8.17|m
total length L 42 4|m total length L 42.38|m
f 1 0.3|m f1 0.13|m
1> 0.4|m 1> 0.40|m
deflection 3 0.0|m deflection /3 0.02|m
1f 4 0.4|m f4 0.40|m
f's 0.3|m fs 0.13|m
R, 132.4|m R 192.00|m
R, 168.6m R> 192.00|m
radius R; 96!m radius R3 10.00|m
R, 1677 |m R4 192.00|m
Rs 192.00|m
Rs 131.6|m -
angular rotation |@ 04 angular rotation |@ 032
Table 8:Data of Tendons in Old Decks. Table 9:Data of Tendons in New Decks.
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7 Models

7.1 General

As shown in Section 4.2, realistic dimensions of the widened deck KW03.01 is variable. For simplicity, the model
with realistic dimensions is referred to as realistic model. It is expected that, suppose simplified models with mean
thickness and width are used, the calculations carried out with simplified models would be much easier than those
carried out with realistic models.

As shown in Chapter 1, the aim of this thesis is to provide a simple approach to check the prestress consumption
calculated during the structure design of widened deck KW03.01. As shown in Section 4.4, the simple approach is to
check the mean prestress consumption which is calculated basing on the mean imposed deformation and the mean
dimensions. However, according to the expressions in Appendix A6, the magnitude of imposed deformation is
related to the dimensions of models. Therefore, before simplified models being used, it has to be proved that using
simplified models has no impact on the magnitude of mean imposed deformation. Otherwise, simplified models are
not usable. As a result, investigation is carried out to check whether it is possible or not to use simplified models.

During the investigation, calculations with mean thickness and mean width are carried out respectively to prove that
the mean thickness and the mean width can be applied. Suppose the mean imposed deformation calculated by mean
thickness and mean width is close to that calculated by realistic dimensions, simplified models would be used instead
of realistic models for the convenience of calculation.

According to Section 6.1, imposed deformation is produced when connections get stiff enough. As a result,
according to Table 1 and Table 2, the magnitude of imposed deformation in widened deck KW03.01 is the increment
of free deformation from time t = 11 years + 29 days to time t = 111 years. As shown in Section 4.2, old decks
and new decks only suffer the shortening due to drying, hydration and creep, while connections suffer the shortening
due to cooling, drying and hydration. Therefore, the source of imposed deformation in old decks and new deck are
shrinkage and creep, while those in connections are shrinkage and thermal deformation.

7.2 Reason of Using Three-layer Models

As shown in Section 4.2, impact of cracking has to be taken into account during the simple approach. According to
engineering experience and the results calculated by SCIA, see Appendix A2, connections between old decks and
new decks are expected to be in tension. Since the tensile strength of concrete is relatively small, connections would
be cracked due to tension.

As shown in Appendix A 16, cracking decreases the stiffness of connection. As shown in Appendix A19, when the
stiffness of connection decreases to 40% or less, there would be a large impact on the stress resulting from imposed
deformation. As a result, to take the impact of cracking into account, models with three layers are used, where the
layers represent old decks, connection and new decks respectively.
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7.3 Mean Thickness

7.3.1 Sketch of Models

In terms of mean thickness, the models of the south part of the widened deck KW03.01 are used. One is Realistic
Model 1. In Realistic Model 1, the cushion at the ends of the deck is neglected. As a result, the thickness of the deck
h in realistic model varies from 550 mm at the ends to 850 mm at the mid-support. The sketch of Realistic Model 1
is shwon in Figure 8. The other is Simplified Model 1. In Simplified Model 1, instead of using variable thickness, a
mean thickness of the deck h = 700 mm is applied. The sketch of Simplified Model 1 is shwon in Figure 9.

Tf h=550~8%50
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Figure 8:Sketch of Realistic Model 1 (Decks in South).
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Figure 9:Sketch of Simplified Model 1 (Decks in South).
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7.3.2 Imposed Deformation Calculated by Realistic Model 1 and Simplified Model 1

The distributions of imposed deformation along the deck are calculated by both Realistic Model 1 and Simplified
Model 1. The imposed deformation of Simplified Model 1 is calculated basing on the data shown in Appendix
A9.3.3, Appendix A9.3.6 and Appendix A11.2. The imposed deformation of Realistic Model 1 is calculated in a
similar way as that of Simplified Model 1, where the difference is that the dimensions of Realistic Model 1 are not
constant but expressed into a function of x, see Appendix AS8.

As a result, the imposed deformation in Realistic Model 1 is a function of x as well. For simplicity, here only
summarized the results of the calculation.

7.3.2.1 In-plane Imposed Deformation in Old Deck

107 In-pl Defor ion of Old Decks
T T T T
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Figure 10:In-plane Imposed Deformation in Realistic Model 1 and Simplified Model 1 (Old Deck).

In Figure 10, the bold lines represent the distribution of imposed deformation Realistic Model 1 while the dashed
lines represent the distribution of imposed deformation Simplified Model 1. The shrinkage shown in Figure 10 is the
summation of drying shrinkage and autogenous shrinkage.

As shown in Figure 10, in terms of the creep in realistic model, point x = 10.6 m is the turning point of the diagram
of creep. This is caused by the coefficient §5. According to Expression 37, the relation between creep and the
coefficient Sy is as follow:

@(t,to) = @o - Be(t, o) 3)
where:

®o is the notional creep coefficient

= Qru * B(fem) - B(to)
Oru is the coefficient related to the effect of relative humidity on the notional creep coefficient

1-RH/100
=1+—F— o1h (fem < 35 Mpa)
1-RH/100
[1+ o1 “aq |- ay (fom > 35 Mpa)

ho is the notional size

= 24,(x)/u(x)

B.(t, ty) is the coefficient related to the development of creep after loading
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= [(t —to)/(By +t —t5)]3
Bu is the coefficient related to relative humidity and notional size
= 1.5[1 + (0.012RH)*®]hy + 250 - a5 < 1500 * a3 (fop, > 35 Mpa)

As shown in Figure 11, in the old deck, the value of coefficient 8, reaches the upper limit 1500 - a5 at point
x = 10.6 m. The value of coefficient B is variable for points x < 10.6 m, while it is a constant for points x >
10.6 m. So, in the old deck, the slop of the diagram of creep changes significantly at point x = 10.6 m.
However, in the new deck, the values of coefficient g, are always smaller than upper limit 1500 - a5. As a
result, in the new deck, there is no turning point in the diagram of creep, see Figure 24.

Coefficient ;’i"
1400 - :

Old Deck |
MNew Deck|
1300 F 1

1200

1100

LM |

LUl

0 5 10 15 20 25
Distance from Ends [m]

Figure 11:Coefficient B, in Old and New Deck.

In addition to the turning point, from point x = 0 m to point x = 21.2 m, the creep in old deck increases when x <
10.6 m while decreases when x = 10.6 m. This is caused by the coefficient ¢, and coefficient S, (t, t,). The relation
between creep and the coefficients is shown in Expression 3.

The in-plane imposed deformation Ae.. from creep is the increment of free creep from time t = t;, to time t = t;,.

Aece = gcc(ty) — cc(try) = @0 - [ Be(ty, to) — Bt to) ] €t

On one hand, coefficient ¢, is calculated by on @z which is a function of notional size h,. Since the notional size
h, is a function of x, the coefficient ¢, is not a constant but decreases from point x = 0 m to point x = 21.2 m, see
Figure 12. On the other hand, coefficient B, (t, t,) is calculated by duration t — t, and coefficient 8. Due to the
impact of both duration t — t, and coefficient S8y, the value of B.(ty, ty) — B.(t;y, to) is variable from point x = 0 m
to point x = 21.2 m, which increases when x < 10.6 m while is constant when x = 10.6 m, see Figure 14 and
Figure 15.

So, when x < 10.6 m, the speed of the increment of B.(t,, ty) — B.(tv, to) is faster than that of the decrement of
coefficient ¢, resulting a rising of Ag,.. However, when x = 10.6 m, 8.(ty, t,) — B:(t;y, to) becomes a constant,
resulting a drop of Aeg,..

In the new deck, from point x = 0 m to point x = 21.2 m, coefficient ¢, keeps dropping while B.(t,,ty) —

B.(ty, to) keeps rising, see Figure 13 and Figure 17. The speed of the increment of B.(ty, ty) — B.(t, to) is slower
than that of the decrement of coefficient ¢,, As a result, in the new deck, Ae.. keeps dropping from point x = 0 m
to point x = 21.2 m, see Figure 24.
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Figure 12:Coefficient ¢, in Old Deck.
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Figure 14:Coefficient B.(t, t,) in Old Deck.
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Figure 16:Coefficient B.(t,t,) in New Deck.
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7.3.2.2 In-plane Imposed Deformation in Connection

e 1ot In-plane Defor ion of Connections
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Figure 18:In-plane Imposed Deformation in Realistic Model 1 and Simplified Model 1 (Connection).

In Figure 18, the bold lines represent the distribution of imposed deformation Realistic Model 1 while the dashed
lines represent the distribution of imposed deformation Simplified Model 1. The shrinkage shown in Figure 18 is the
summation of drying shrinkage and autogenous shrinkage. Since the imposed deformation due to thermal contraction
is constant, see Appendix A3, it has no impact on proving the usability of simplified models and, therefore, is not
taken into account in Figure 18.

As shown in Figure 18, in terms of the shrinkage in realistic model, point x = 14.3 m is the turning point of
the diagram of total shrinkage. This is caused by the coefficient k;. According to Expression 36,
considering that there is not prestressing in connection, the relationship between total shrinkage at time t
and the coefficient kj, is as follow:

Ecs = €calt) + eca(t) 4)
where:
g.q(t)  isthe drying shrinkage
= Pas(t,ts)  kn " Ecap
ky is the coefficient depending on the notional size hy, see Figure 26
Bas(t, ts) is the coefficient related to drying shrinkage

=(t- ts)/<t —ts+ 0.04\/703)

Ecd,0 is the basic drying shrinkage

The in-plane imposed deformation Ae.; from shrinkage is the increment of free shrinkage from time t = t,,
to time t = t,. As shown in Figure 19, at time t = t;;, and time t = t,, the drying shrinkage is variable in
the longitudinal direction of the half deck while the autogenous one is constant. As a result, the variance of
in-plane deformation A¢., from shrinkage in the longitudinal direction of the half deck is only from the
drying shrinkage Ae_;.

Ageq = gcd(tv) - gcd(tlv) = [ﬁds(tVr ts) — .Bds(tIV' ts) I ky - €cd,0
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Figure 19:Drying Shrinkage and Autogenous Shrinkage in Connection at Time t = t;, and Time t = ;.

It is shown in Figure 20 that there is no turning point in the diagram of coefficient B4 (¢, ts) at time t = t;, and time
t = t,. However, as shown in Figure 21, turning point occurs at point x = 14.3 m in the diagram of coefficient k.
As shown in Figure 23, the notional size h, in connection varies from 262 mm to 314 mm. Substitute the notional
size hg into Figure 22, turning point appears when hy = 300 mm. Substitute hy = 300 mm into Figure 23, it is
corresponding to point x = 14.3 m. So, a turning point appears in the diagram of coefficient k; and, therefore,
appears in the diagram of total shrinkage.
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- - 0.0085 . .
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Figure 20:Coefficient B4(¢, t5) in Connection at Time t = t;;, and Time t = ty.
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Figure 21:Coefficient k;, in Connection.
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Figure 22:Relation between Coefficient k;, and Notional Size h,.

Wednesday, 04 March COMBINED ACTIONS

2020

Notional Size
320 T T

3l0f

300+

290t ~

280

270t o

260

5 10 15 20
Distance from Ends [m]

Figure 23:Notional Size h, in Connection.

22



e 3>
TU De Ift ﬁggﬂ)ning DHV

7.3.2.3 In-plane Imposed Deformation in New Deck

< 107 In-plane Deformation of New Decks
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Figure 24:In-plane Imposed Deformation in Realistic Model 1 and Simplified Model 1 (New Deck).

As shown in Figure 10, Figure 18 and Figure 24, a larger height of cross-section results in a larger in-plane imposed
deformation from shrinkage in old deck, which is opposite to the situations in connection and old deck. This is
caused by the coefficient k. According to Expression 36, the relationship between drying shrinkage and the
coefficient ky, is as follow:

Ecs = €calt) + eca(t) (5)
where:
gq(t) s the drying shrinkage
= [ﬁds(t: ts) - .Bds(tp! ts) ] “kp - €cd,0
ky, is the coefficient depending on the notional size hy, see Figure 26
Bas(t, ts) is the coefficient related to drying shrinkage

=(t— ts)/<t —t, + 0.04\/h703>

ﬁds(tp, ts)is the coefficient related to drying shrinkage

= (¢, - ts)/<tp —ts+ 0.04\/:03)

Ecd0 is the basic drying shrinkage

The in-plane imposed deformation Agg from shrinkage is the increment of free shrinkage from time t = ¢, to time

t = ty. As shown in Figure 19, at time t = t;;; and time t = ty,, the drying shrinkage is variable in the longitudinal
direction of the half deck while the autogenous one is constant. As a result, the variance of in-plane deformation Ae_
in the longitudinal direction of the half deck is only from the drying shrinkage Ae,.

Aecq = ecq(ty) — ecaltyy) = [ Bas(ty ts) — Bastw,ts) 1 ky - €cd,0
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Figure 25:Drying Shrinkage and Autogenous Shrinkage in Old and New Deck at Time t = t;;, and Time t = t;.

The coefficient B45(ty, ts) and By (t;y, ts) in old deck are shown in Figure 28, while those in connection and new
deck are shown in Figure 29. In these figures, a larger height of cross-section results in a larger the difference
between coefficient By, (ty, ts) and B (ty, ts).

As shown in Figure 27, the notional size hq of the old deck is always larger than 500 mm. Substitute the notional
size hy into Figure 26, the coefficient kj, in old deck is a constant. So, the magnitude of the in-plane imposed
deformation Agg from shrinkage is dominated by the difference between coefficient By, (ty, ts) and Bys(ty, ts), and,
therefore, a larger height of cross-section results in a larger in-plane imposed deformation from shrinkage in old
deck.

However, when it comes to the connection and new deck, the notional size h; is between 100 mm and 500 mm.
Substitute the notional size h into Figure 26, a larger h results in a smaller coefficient kj, in connection and new
deck which dominates the magnitude of the in-plane imposed deformation Ag from shrinkage, and, therefore, a
larger height of cross-section results in a smaller in-plane imposed deformation from shrinkage in old deck.
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Figure 26:Relation between Coefficient k; and Notional Size h,. Figure 27:Notional Size h.
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Figure 28:Coefficient 8, in Old Deck.
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Figure 29:Coefficient 8,5 in Connection and New Deck.
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7.3.3

The mean imposed deformation calculated by both Realistic Model 1 and Simplified Model 1 are shown in Table 10.
According to Table 10, the mean imposed deformation of Realistic Model 1 is close to those of Simplified Model 1.

Royal

Data of Mean Imposed Deformation

As a result, simplified models with mean thickness can be used in the following calculation.

Name of Data | Simplified Model Reallistic Model
Old Decks
imposed deformation Ag 4.64E-05 m/m 4.62E-05 m/m
shrinkage strain|4e . (2) 2.65E-05 m/m 2.64E-05 m/m
creep strain|Ae . (t) 1.99E-05 m/m 1.98E-05 m/m
Connection
imposed deformation Ae 3.89E-04 m/m 3.91E-04 m/m
shrinkage strain|A¢ . (2) 2.77E-04 m/m 2.79E-04 m/m
thermal strain|A4¢€ mpermar 1.12E-04 m/m 1.12E-04 m/m
New Decks
imposed deformation Ag 4.37E-04 m/m 4.39E-04 m/m
shrinkage strain|4e . (2) 2.03E-04 m/m 2.04E-04 m/m
creep strain |4 . (1) 2.34E-04 m/m 2.35E-04 m/m

Table 10:Summary of Mean Imposed Deformation Calculated in Section 7.3.

7.4 Mean Width

7.4.1

In terms of mean width, the models of the north part of the widened deck KW03.01 are used. One is Realistic Model
2. In Realistic Model 2, the width of the deck b in realistic model varies from 7900 mm at one end to 11800 mm at
the other end. The sketch of Realistic Model 2 is shwon in Figure 30. The other is Simplified Model 2. In Simplified
Model 2, instead of using variable thickness, a mean width of the deck b = 9850 mm is applied. The sketch of
Simplified Model 2 is shwon in Figure 31. It is proved in Section 7.3 that the mean thickness can be applied. So, in
Realistic Model 2 and Simplified Model 2, the mean thickness is applied.

Sketch of Models
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Figure 30:Sketch of Realistic Model 2 (Decks in North).
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Figure 31:Sketch of Simplified Model 2 (Decks in North).

7.4.2 Imposed Deformation Calculated by Realistic Model 2 and Simplified Model 2

The distributions of imposed deformation along the deck are calculated by both Realistic Model 2 and Simplified
Model 2. The imposed deformation of Simplified Model 2 is calculated basing on the data shown in Appendix
A9.3.3, Appendix A9.3.6 and Appendix A11.3. The imposed deformation of Realistic Model 2 is calculated in a
similar way as that of Simplified Model 2, where the difference is that the dimensions of Realistic Model 2 are not
constant but expressed into a function of x, see Appendix AS.

As aresult, the imposed deformation in Realistic Model 1 is a function of x as well. For simplicity, here only
summarized the results of the calculation.
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7.4.2.1 In-plane Imposed Deformation in Old Deck

107 In-plane Deformation of Old Decks
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Figure 32:In-plane Imposed Deformation in Realistic Model 2 (Old Deck).

7.4.2.2 In-plane Imposed Deformation in Connection
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Figure 33:In-plane Imposed Deformation in Realistic Model 2 (Connection).

Since the imposed deformation due to thermal contraction is constant, see Appendix A3, it has no impact on proving
the usability of simplified models and, therefore, is not taken into account in Figure 89.
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7.4.2.3 In-plane Imposed Deformation in New Deck

< 107 In-plane Deformation of New Decks
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Figure 34:In-plane Imposed Deformation in Realistic Model 2 (New Deck).

7.4.3  Data of Mean Imposed Deformation

The mean imposed deformation calculated by both Realistic Model 2 and Simplified Model 2 are shown in Table 11.
According to Table 11, the mean imposed deformation of Realistic Model 2 is close to those of Simplified Model 2.

35 40

As a result, simplified models with mean width can be used in the following calculation.

Name of Data | Simplified Model Reallistic Model
Old Decks
imposed deformation Ag 4.64E-05 m/m 4.64E-05 m/m
shrinkage strain|4e . (2) 2.65E-05 m/m 2.65E-05 m/m
creep strain|Ae . (t) 1.99E-05 m/m 2.00E-05 m/m
Connection
imposed deformation Ae 3.90E-04 m/m 3.90E-04 m/m
shrinkage strain|Ae . (2) 2.77E-04 m/m 2.78E-04 m/m
thermal strain|A4¢€ merma 1.12E-04 m/m 1.12E-04 m/m
New Decks
imposed deformation Ag 3.50E-04 m/m 3.47E-04 m/m
shrinkage strain|4e . () 2.05E-04 m/m 2.05E-04 m/m
creep strain|4e . (1) 1.45E-04 m/m 1.42E-04 m/m

Table 11:Summary of Mean Imposed Deformation Calculated in Section 7.4.
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7.5 Conclusion

According to Section 7.3.3 and Section 7.4.3, the mean imposed deformation calculated basing on realistic models
and simplified models are close. It means that, although the magnitude of imposed deformation is related to the
dimension of structure, using mean dimensions has no impact on the mean imposed deformation.

So, Simplified Model 1 and Simplified Model 2, representing the south part and the north part of widened deck
KWO03.01, are used, see Figure 35 and Figure 36.
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Figure 35:Sketch of Simplified Model 1 (Decks in South).
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Figure 36:Sketch of Simplified Model 2 (Decks in North).
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8 Mechanics for Structural Analysis

8.1 General

In addition to the models used in the simple approach, the mechanics used to calculate stress resulting from imposed
deformation has to be determined as well. The mechanics used in the simple approach is a mechanics of composited
cross-section with Bernoulli’s rule.

At the beginning, the impact of shear deformation is not taken into account (Breugel, 2013, pp. 179 - 183). For
simplicity, this mechanics without the impact of shear deformation is referred to as Mechanics 1. The introduction of
Mechanics 1 is shown in Appendix A12. As shown in Appendix A12, equivalent loads of imposed deformation,
normal force N and bending moment M, are applied to the cross-section of the composited cross-section to calculate
the strain and stress resulting from imposed deformation. This causes problem when there are three or more layers,
see Section 8.2 and Section 8.3.

To solve the problem, shear deformation has to be taken into account. Therefore, another mechanics basing on plate
theory is studied (Blaauwendraad, 2006, pp. 13 - 25). For simplicity, this mechanics is referred to as Mechanics 2.
The introduction of Mechanics 2 is shown in Appendix A13. As shown in Appendix A13, deformation of plate is
simplified into nodal displacement which is the product of stiffness matrix and nodal forces. The stiffness matrix is
the summation of normal stiffness matrix and shear stiffness matrix, where normal stiffness matrix is about normal
deformation and shear stiffness matrix is about shear deformation.

8.2 Disadvantage of Mechanics 1

In a three-layer structure, suppose the stiffness of mid-layer is zero, it is expected that the deformation in the bottom-
layer would not be transferred to the top-layer due to the extremely soft mid-layer. Therefore, the strain and stress
resulting from imposed deformation in top-layer are zero. However, this is not the case according to Mechanics 1,
see Figure 37 and Figure 38. Detailing information of the calculation is shown in Appendix A14.3. For the
convenience of reading, here only summarized the results of the calculation.

Suppose there is imposed deformation applied to the bottom layer only, according to Mechanics 1, the equivalent
bending moment is always non-zero. It means, according to Mechanics 1, the three-layer structure can be taken as a
beam, where the top- and bottom-layer are the flanges while the mid-layer is the web. The stiffness of web has
almost no impact on the bending resistance of the beam. Similarly, the stiffness of mid-layer has almost no impact on
the stress in top- and bottom-layer.

As a result, according to Mechanics 1, the deformation in the bottom-layer is always transferred to the top-layer even
if the mid-layer is ‘soft’. It means, in terms of the widened deck KW03.01, Mechanics 1 would give unreliable
results suppose the stiffness of connection decreases due to cracking. Therefore, to check whether the mid-layer of
model used in the simple approach is ‘soft’ or not, an improved mechanics taking shear deformation into account is
introduced. For simplicity, it is referred to as Mechanics 2.
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Figure 37:Strain Distribution Calculated by Mechanics 1 (M1). Figure 38:Stress Distribution Calculated by Mechanics 1 (M1).

*It is expected that the strain and stress resulting from imposed deformation in top-layer are zero. However, the strain and stress calculated by
Mechanics 1 (M1) are non-zero.

8.3 Advantage of Mechanics 2

The reason of Mechanics 1 being unreliable is that it does not take shear deformation into account. As an improved
alternative to Mechanics 1, an improved mechanics taking shear deformation into account is introduced. For
simplicity, it is referred to as Mechanics 2. The detailing introduction of Mechanics 2 are shown in Appendix A13.
For the convenience of reading, here provided the brief introduction to the difference between Mechanics 1 and
Mechanics 2:

Mechanics 1:

In this mechanics, it is assumed that, when a composited cross-section is subjected to mechanical load and/or
imposed deformation, the in-plane curvatures of the composited cross-section is uniform. It means the composited
cross-section remains flat when it is deformed.

Equivalent loads of imposed deformation, normal force N and bending moment M, are applied to the cross-section of
composited cross-section to calculate the strain and stress resulting from imposed deformation. The disadvantage of
Mechanics 1 is that, with normal force N and bending moment M only, shear deformation is neglected.

Mechanics 2:

Mechanics 2 is basing on plate theory. According to Mechanics 2, deformation of plate is simplified into nodal
displacement which is the product of stiffness matrix and nodal forces. When a composited structure subjected to
imposed deformation is analyzed by Mechanics 2, the layers of the composited cross-section are spit which makes
the layers free to deform. Then deformation compatibility is restored so that the deformed layers are able to be
connected.

Since the stiffness matrix and nodal forces in the layers could be different, the in-plane curvature of each layer could
be different. It means the composited cross-section will not remain flat when it deforms due to imposed deformation.
The advantage of Mechanics 2 is that, with shear stiffness taken into account, the shear deformation is taken into
account.
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Calculation is carried out to the same three-layer structure mentioned in Section 8.2, see Figure 39 and Figure 40.
Detailing information of the calculation is shown in Appendix A14.3. For the convenience of reading, here only
summarized the results of the calculation. As a result, according to Mechanics 2, the deformation in the bottom-layer
cannot be transferred to the top-layer if the elastic modulus applied to mid-layer is close to zero.
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Figure 39:Strain Distribution Calculated by Mechanics 2 (M2). Figure 40:Stress Distribution Calculated by Mechanics 2 (M2).

*It is expected that the strain and stress resulting from imposed deformation in top-layer are zero. The strain and stress calculated by Mechanics
2 (M2) suit the expectation.

8.4 Conclusion

As for three-layer models, suppose the normal stiffness of mid-layer is relatively small, Mechanics 2 would be
preferred which is able to give more reliable results than Mechanics 1. However, according to Appendix A19.4, in
terms of widened deck KW03.01, There is no advantage of Mechanics 2 unless the elastic modulus of concrete in
connections decrease to about 40% or less. According to Appendix A19.3, the elastic modulus of concrete in south
and north decreases to 96% and 99% respectively due to cracking, which are much larger than 40%. Therefore, both

Mechanics 1 and Mechanics 2 are capable to calculate the stress resulting from imposed deformation in widened
deck KW03.01.
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9 Calculation

9.1 General

With models and mechanics determined, see Chapter 7 and Chapter 8, the simple approach is carried out to calculate
the stress resulting from imposed deformation and the compressive stress in concrete consumed by the stress
resulting from imposed deformation. The final results of the simple approach are used to check the results of
calculation carried out by SCIA.

In the simple approach, the calculation consists of two steps. In first step, calculation is carried out without cracking
taken into account. The aim of the first step is to determine cracked area of widened deck KW03.01 when it is
subjected to combined actions, where combined actions are the imposed deformation and prestressing forces. The
cracked area is taken as the parts of widened deck KW03.01 where tensile stress resulting from combined actions
exceeds the cracking strength of concrete. According to the calculation of first step, only connections are cracked,
see Appendix A19.2. In second step, to take cracking into account, the normal stiffness of connections is re-
evaluated by the expressions shown in Appendix A16 basing on the magnitudes of tensile deformation. Then, the
stress resulting from imposed deformation and the compressive stress in concrete consumed by the stress resulting
from imposed deformation are calculated as the final results of the simple approach.

The final results of the simple approach are used to check the results of calculation carried out by SCIA. The
calculation carried out by SCIA is linear elastic. The inputs of the calculation, for example the magnitude of imposed
deformation and material properties are constant, which are calculated by engineers instead of SCIA basing on the
time history of constructions. During the calculation carried out by SCIA, 4-nodes Mindlin element are used where
the mash size is 250 mm.

9.2 Results of SCIA and the Simple Approach

The aim of this thesis is to provide a simple approach to check whether the prestress consumption in widened deck
KW03.01 is reliable or not which is calculated by FEM software called SCIA. According to Chapter 7, Simplified
Model 1 and Simplified Model 2 with mean dimensions are used in the simple approach. According to Chapter 8 and
Appendix A19.4, both Mechanics 1 and Mechanics 2 without the impact of cracking is capable to calculate the stress
resulting from imposed deformation in widened deck KW03.01.

In Appendix A19.4, to estimate the area which is possible to be cracked, calculation without cracking is first carried
out. As shown in Appendix A15, if connections are made at time At;;_;;; = 28 days, connections will be the only
area which are possible to be cracked. Then re-calculation with the impact of cracking is carried out to investigate the
stiffness of layers in widened deck KW03.01, see Appendix A19. As shown in Appendix A19, both Mechanics 1 and
Mechanics 2 give sufficiently accurate results.

Now that models and mechanics used in the simple approach have been determined, calculations are carried out to
the widened deck KW03.01 for the stress resulting from imposed deformation and the prestress consumption in
proportion, where prestress consumption in proportion is the ratio of stress resulting from imposed deformation and
compressive stress resulting from prestressing.

The stress resulting from imposed deformation calculated by SCIA are shown in Figure 41 and Figure 43, while
those calculated by the simple approach are shown in Figure 42 and Figure 45. Figure 42 and Figure 45 are also
shown in Appendix A19.2. The magnitudes of stress in each layer are shown in the tables next to the figures. As
shown in the tables, although there are large prestress consumption in both SCIA and simple approach, the stress
resulting from imposed deformation and prestress consumption in proportion calculated by SCIA are smaller than
those calculated by the simple approach. Therefore, investigation is carried out to check the source of difference, see
Section 9.3.
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Figure 41:Stress Calculated by

SCIA in South.
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Figure 42:Stress Calculated by
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SCIA Simple Approach
1 MPa| 15%| 1.9 MPa| 26%
Old Deck
X 27 MPa | -40%| -3.3 MPa | -46%
Connection 1 MPa 2.1 MPa
0.9 MPa 1.9 MPa
New Deck 32 MPa| 40%| 43 MPa| 51%
2.3 MPa| 29%| 3.6 MPa| 44%
SCIA (Axis 1-2) | Simple Approach
0Old Deck 1.5 MPa| 22%| 1.9 MPa| 26%
-2.3 MPa| -34%| -3.4 MPa | -47%
Connection 1.1 MPa 2.0 MPa
1 MPa 1.9 MPa
New Deck 24 MPa| 41%| 2.7 MPa| 41%
-1 MPa| -17%| -1.2 MPa| -19%
SCIA (Axis 2-3) | Simple Approach
1.5 MPa| 22%| 1.87 MPa| 26%
Ol Deck 1 MPa | 38%| 3.4 MPa| 47%
. 1 MPa 1.98 MPa
Connection
0.9 MPa 1.85 MPa
New Deck 2.9 MPa| 40%| 2.65 MPa| 41%
-1.6 MPa| -22%)| -1.2 MPa| -19%
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9.3 Sources of Different Stress Resulting from Imposed Deformation and
Prestress Consumption in Proportion

9.3.1 Models and Mechanics

Models used in SCIA and the simple approach are different. In the simple approach, simplified models with mean
dimensions are used, see Section 7.5. However, in SCIA, realistic models are used, see Appendix A2.2.

In addition to the dimensions of models, the mechanics in SCIA and the simple approach are different as well. On
one hand, the mechanics of FEM is different from the mechanics of composited cross-section mentioned in
Appendix A12 and Appendix A13. On the other hand, it is assumed that the deformation of models are fully
restrained in the simple approach, but not in SCIA. As a result, it is expected that the results of the simple approach
would be larger than those of SCIA.

9.3.2 Elastic Modulus

The elastic modulus of concrete applied to models in SCIA and the simple approach are different. For simplicity,
hereby only summarized the situation in the south part of widened deck KW03.01, see Table 12. The elastic modulus
of concrete applied in SCIA is shown in Appendix A2.6, while those applied in the simple approach is shown in
Appendix A19.2. The evaluation of other elastic modulus are shown in Expression 6 to Expression 10.

elastic modulus of concrete SCIA Simple Approach
Old Deck Eon @) 13.4 GPa 23.4 GPa
Connection Ecn@®) 5.1 GPa 9.7 GPa
New Deck Ecn(®) 15.8 GPa 17.9 GPa

Table 12:Elastic Modulus of Concrete in South.

old deck (uncracked — SCIA)

Eqn(t) = Fem =8 i3400p 6
m =108 o(tt,) 1+08x193 o0 ©)
connection (cracked — SCIA)
Er = (3.10+ 670 p) x 10* = (3.10 + 670 x 2.99 x 1073) x 10® = 5.11 GPa @)
where:
p is the reinforcement ratio
= 2094 mm? /(1000 x 700) mm? = 2.99 x 1073
new deck (uncracked — SCIA)
Ecm 36.28
Eem(®) = 1308 o6t - 1108 x 162 >80 CPa ®)
old deck (uncracked — simple approach)
Ecm 34.00
Eem(t) = 14+08-¢(tt,) 1+08x0.57 2340 GPa ©)
new deck (uncracked — simple approach)
E 36.00
E.m() = i = 17.89 GPa (10)

1+08-9(tt) 1+08x126
According to Expression 6 to Expression 10, the creep factor ¢ (¢, t,) evaluated in SCIA are larger than those

evaluated in the simple approach. Besides, in SCIA and the simple approach, the expressions to evaluate the elastic
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modulus of concrete in connections are different as well. According to Appendix A2.6 and Appendix A19.2, only
connections are expected to be cracked. As for the calculation carried out by SCIA, expressions from NEN 6720 are
used evaluate the elastic modulus of concrete, see Expression 7. However, in terms of widened deck KW03.01 where
in-plane loads are taken into account, the expressions introduced in Appendix A16 are recommended to evaluate the
elastic modulus of concrete. For detailing information, see Appendix A21.

9.3.3 Imposed Deformation

Although the sources of imposed deformation taken into account in SCIA and the simple approach are same, the
imposed deformation applied to models in SCIA and the simple approach are different. For simplicity, hereby only
summarized the situation in the south part of widened deck KW03.01, see Table 13.

elastic modulus of concrete SCIA Simple Approach
Old Deck Ag 6.1E-05 m/m 4.6E-05 m/m
Connection Ae 4.6E-04 m/m 3.9E-04 m/m
New Deck Age 4.9E-04 m/m 4 4E-04 m/m

Table 13:Imposed Deformation in South.

The detailing information of imposed deformation is shown in Table 14 and Table 15. According to Table 14 and
Table 15, difference of imposed deformation between SCIA and the simple approach is mainly from creep. imposed
deformation caused by creep in SCIA is much larger than that in the simple approach. The reason is that the creep in
SCIA is calculated with a larger prestressing stress. The thickness of deck is denoted as h. According to the data file
of SCIA, when calculating creep, the prestressing stress at cross-section h = 550 mm is used. However, in the
simple approach, the prestressing stress at cross-section h = 700 mm is used. With similar prestressing force, a

smaller cross-section results in larger prestressing stress and, therefore, more creep.

Old Deck t =40515 days t =4015 days final
drying shrinkage ged(t) 2.07E-04 m/m 1.80E-04 m/m 2.70E-05 m/m
autogenous shrinkage Eeca(t) 5.12E-05 m/m 5.12E-05 m/m 0.00E+00 m/m
creep Ece(t) 4.62E-04 m/m 4.27E-04 m/m 3.50E-05 m/m
creep factor (¢ = 7 days) 1.93 1.79
Connection t = 36500 days ¢t =1 days final
drying shrinkage Eca(t) 2.06E-04 m/m 0.00E+00 m/m 2.06E-04 m/m
autogenous shrinkage Ecalt) 5.12E-05 m/m 0.00E+00 m/m 5.12E-05 m/m
thermal deformation gt 2.00E-04 m/m 2.00E-04 m/m
New Deck t = 36500 days t =28 days final
drying shrinkage €ca(t) 1.83E-04 m/m 1.10E-05 m/m 1.72E-04 m/m
autogenous shrinkage Eecalt) 7.16E-05 m/m 4.13E-05 m/m 3.03E-05 m/m
creep Ece(t) 4.16E-04 m/m 1.30E-04 m/m 2.86E-04 m/m
creep factor (¢o =7 days)|@(,t0) 1.63 0.51
Table 14:Imposed Deformation in South (SCIA).
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old deck t =40515 days t = 4044 days final
drying shrinkage ged(t) 1.99E-04 m/m 1.72E-04 m/m 2.65E-05 m/m
autogenous shrinkage Ecalt) 5.12E-05 m/m 5.12E-05 m/m 0.00E+00 m/m
creep Eece(t) 2.69E-04 m/m 2.49E-04 m/m 1.99E-05 m/m
creep factor (¢0 = 3 days) 2.26 2.09
creep factor (¢ = 7 days) [¢(t.t0) 1.93 1.79
creep factor (7o = 28 days) 1.49 1.37
connection t = 36472 days t = 1 days final
drying shrinkage €cd(t) 2.26E-04 m/m 0.00E+00 m/m 2.26E-04 m/m
autogenous shrinkage Eeca(t) 5.12E-05 m/m 0.00E+00 m/m 5.12E-05 m/m
thermal deformation () 1.12E-04 m/m 1.12E-04 m/m
new deck t = 36500 days t =29 days final
drying shrinkage €ca(t) 1.82E-04 m/m 8.87E-06 m/m 1.74E-04 m/m
autogenous shrinkage Ecalt) 7.16E-05 m/m 4.18E-05 m/m 2.98E-05 m/m
creep Ece(t) 3.41E-04 m/m 1.07E-04 m/m 2.34E-04 m/m
creep factor (2o = 7 days)|o(t,t0) 1.65 0.52

Table 15:Imposed Deformation in South (Simple Approach).

9.34 Contribution of Each Source

According to Section 9.3.1 to Section 9.3.3 different models and mechanics, different elastic modulus of concrete
and different imposed deformation used in SCIA and the simple approach, which are referred to as sources of
different stress resulting from imposed deformation and different prestress consumption calculated by SCIA and the
simple approach. For simplicity, the stress resulting from imposed deformation is referred to as resulting stress.

To investigate the contribution of each source, resulting stress are calculated in steps with different models,
mechanics, elastic modulus of concrete and imposed deformation, see Table 16. By comparing the results of Step 0
and Step 1, contribution of different models and mechanics is investigated. By comparing the results of Step 1 and
Step 2, contribution of different elastic modulus of concrete is investigated. By comparing the results of Step 2 and
Step 3, contribution of different imposed deformation is investigated.

Elastic Imposed
Models Mechanics | Modulus of P .
Deformation
Concrete
Step 0 SCIA SCIA SCIA SCIA
Simple Simple
1A 1A
Step 1 Approach Approach SC SC
Simple Simple Simple
SCIA
Step 2 Approach Approach Approach
Step 3 Simple Simple Simple Simple
cp Approach Approach Approach Approach

Table 16:Models, Mechanics, Elastic Modulus of Concrete and Imposed Deformation Used in Each Step.

The stress resulting from imposed deformation calculated in each step are shown in Table 17 to Table 19. According
to Table 17 to Table 19, from Step 0 to Step 3, the difference of models and mechanics contributes about 20% to the
difference of resulting stress, while the difference of elastic modulus of concrete contributes about 80%.

The resulting stress calculated in Step 1 is larger than that calculated in Step 0. It means using models and mechanics
from the simple approach increases resulting stress, which suits the expectation in Section 9.3.1. In addition, the
contribution of different imposed deformation shown in Step 3 is always small in connections. The reason is that,
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according to Section 9.3.3, difference of imposed deformation between SCIA and the simple approach is mainly
from creep, while there is no creep in connections.
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Figure 46:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in South.
Step O Step 1 Step 2 Step 3
Old Deck 1 MPa 0%| 1.4 MPa 42%]| 2.0 MPa 58%| 1.9 MPa| -16%
-2.7 MPa 0%)| -2.5 MPa| -22%| -3.6 MPa| 122%| -3.3 MPa| -33%
. 1 MPa 0%| 1.1 MPa 7%| 2.0 MPa 93%| 2.1 MPa 7%
Connection
0.9 MPa 0%| 1.0 MPa 8%| 1.9 MPa 92%| 1.9 MPa 5%
New Deck 3.2 MPa 0%| 3.5 MPa 23%]| 4.7 MPa 77%| 4.3 MPa| -28%
2.3 MPa 0%| 2.8 MPa 29%| 4.0 MPa 71%] 3.6 MPa| -22%

Table 17:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in South and Contribution to Difference in Each Step.

“Axis 1-2

"Axis 2-3

Position [m]

Stress Distribution

s
= = -Zreo
----- O1d Dieck - M2
Connection - M2
# == ® i New Deck - M2
F——
20 [
1 #
14
I
0l
-.. !
il |
15t g
r |
5
& I
o |
!‘ !
o I
10F el i
] |
¢
I &
I +
.
| &
I 5
e
5r 1 gF
o
1*
.“r
s 1
3
o i
5
Lat L
0
7 “ 2

Stress [Pa] 5 pf

Position [m]

.. _Stress Distribution
= = = -Zreo
----- O0d Dieck - M2
Connection (eracked) - M2
# 2= o New Deck - M2
oo
20 1 P
[
1
1,
o
o1
5
&
151 e 1
5
o.. :
" S
o |
# 1
[1] i [tics 2R
1 -
| o+
1 K
| 4
1 -
i 18
2T 12
18
J
.o'l
< |
U. L}
0 Lt
-5 0 5

Stress [Pa] . pf

Figure 47:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in North.
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Step O Step 1 Step 2 Step 3

Old Deck 1.5 MPa 0%| 1.4 MPa -7%| 2.7 MPa| 107%| 19 MPa| -68%
-2.3 MPa 0%)]| -2.9 MPa 23%| -4.7 MPa 77%| -3.4 MPa| -55%

Connection 1.1 MPa 0%| 09 MPa| -21%| 2.0 MPa| 121%| 2.0 MPa 2%
1 MPa 0%| 0.8 MPa| -21%| 1.8 MPa| 121%]| 1.9 MPa 9%

New Deck 2.4 MPa 0%| 3.1 MPa 51%| 3.8 MPa 49%| 2.7 MPa| -81%
-1 MPa 0%)| -1.7 MPa 92%| -1.7 MPa 8%| -1.2 MPa -67%

Table 18:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in North and Contribution to Difference in Each Step
(Axis 1-2).

Step O Step 1 Step 2 Step 3

Old Deck 1.5 MPa 0%| 1.4 MPa -7%| 2.7 MPa| 107%| 1.9 MPa| -68%

-2.6 MPa 0%| -2.9 MPa 12%| -4.7 MPa 88%| -3.4 MPa| -63%

. 1 MPa 0%| 0.9 MPa -8%]| 2.0 MPa| 108%]| 2.0 MPa 2%
Connection

0.9 MPa 0%| 0.8 MPa -7%| 1.8 MPa| 107%| 1.9 MPa 8%

New Deck 2.9 MPa 0%| 3.1 MPa 22%| 3.8 MPa 78%| 2.7 MPa | -129%

-1.6 MPa 0%| -1.7 MPa 50%)]| -1.7 MPa 50%)| -1.2 MPa | -400%

Table 19:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in North and Contribution to Difference in Each Step
(Axis 2-3).

It has to be mentioned that, although the creep in old decks is small in magnitude, the difference of creep in
proportion between SCIA and the simple approach is large. As a result, difference of imposed deformation in
proportion between SCIA and the simple approach is large, which results in large contribution to the difference of
resulting stress in old decks.

Besides, when it comes to new decks in north, see Table 18 and Table 19, the contribution of different models and
mechanics can be equal to or even larger than the contribution of different elastic modulus of concrete. The reason is
that, for other parts of widened deck KW03.01, the cross-section of simplified models used in the simple approach is
same as those at Axis 1-2 and Axis 2-3 in SCIA, but not for new deck in north. As a result, the contribution of
different models is large in new deck in north.

94 Discussion

94.1 General

According to Section 9.2, although there are large prestress consumption in both SCIA and simple approach, the
stress resulting from imposed deformation and prestress consumption in proportion calculated by SCIA are smaller
than those calculated by the simple approach. The sources of the differences and the contribution of each source are
investigated in Section 9.3. Basing on these investigation, hereby provided a discussion on improving the calculation
carried out by SCIA and reducing prestress consumption.

9.4.2 Improving the Calculation Carried out by SCIA

As shown in Section 9.3.2, when evaluating the elastic modulus of concrete, the creep factors ¢ (t, ty) evaluated in
SCIA are larger than those evaluated in the simple approach. In general, there are two things related to creep factor
@(t, ty). On one hand, since imposed deformation is a long-term load, creep factor is used to evaluate the elastic
modulus of concrete, see Expression 6 to Expression 10. On the other hand, since imposed deformation includes the
deformation due to creep, creep factor is used to calculate imposed deformation, see Table 14 and Table 15.

When evaluating the elastic modulus of concrete, factor t, represents the timing when the long-term load is applied.
As for widened deck KW03.01, factor ¢, is time t = t;; when connections get hard enough to produce imposed
deformation.

Wednesday, 04 March COMBINED ACTIONS 40
2020



% 3>
TU De Ift Egga})ning DHV

However, when calculating the imposed deformation, or to be specific the deformation due to creep, factor t,
represents the timing when the creep begins. As for widened deck KW03.01, factor t, should be the timing when
prestressing is applied.

According to Section 6.1, connections are made after new decks being prestressed. It means the imposed deformation
is applied to widened deck KW03.01 after prestressing. Therefore, the factor ¢, used to evaluate the creep factor

@(t, ty) for elastic modulus of concrete should be different from that used to evaluate the creep factor ¢(t, t,) for
imposed deformation. However, in SCIA, same factor ¢, is used to evaluate the creep factor ¢(t, t,) for elastic
modulus of concrete and imposed deformation.

As shown in Section 9.3.2, different elastic modulus of concrete contributes about 80% to the difference of stress
resulting from imposed deformation. Therefore, it is expected that evaluating elastic modulus of concrete with proper
factor t, and creep factor ¢ (¢, t;) as mentioned above would improve the calculation of SCIA and make the results
of SCIA more reliable.

In addition to factor t, and creep factor @(t, ty), in SCIA and the simple approach, expressions to evaluate the elastic
modulus of cracked concrete are different as well. As for SCIA, the elastic modulus of connections is constant and
evaluated as if the connections are fully cracked, see Expression 7. However, in the simple approach, the elastic
modulus of cracked concrete is evaluating as a function of imposed deformation, see Appendix A16.

According to Section 4.1, imposed deformation may result in not fully developed crack pattern. Therefore, it is
expected that using expressions shown in Appendix A16 to evaluate the elastic modulus of cracked concrete would
improve the calculation of SCIA and make the results of SCIA more reliable as well.

9.4.3 Reducing Prestress Consumption

Prestress consumption is the compressive stress in concrete which is consumed by the tensile stress resulting from
imposed deformation. According to Section 9.2, although the stress resulting from imposed deformation and
prestress consumption in proportion calculated by SCIA are smaller than those calculated by the simple approach,
there are large prestress consumption in both SCIA and simple approach. So, it is ensured that the prestress
consumption in widened deck KW03.01 would be large at time t,.

As shown in Appendix A20.3, neither increasing nor decreasing the prestressing force in new decks would help
reduce prestress consumption. It is more practical to reduce prestress consumption by making connection as late as
possible, see Appendix A15. However, as shown in Appendix A 15, suppose the tensile strength of concrete is
neglected, new decks are always cracked no matter when connections are made. Therefore, making connections later
can only help decrease prestress consumption but not avoid cracking.

To be specific, stress resulting from imposed deformation in south and north are calculated with three different
timing to make connection, At;;_;; = 28 days, Aty;_;;; = 60 days and At;;_;;; = 90 days. For simplicity, hereby
only shown the results of the calculation, see Figure 48 and Figure 49. The change of resulting stress due to later
timing to make connections are shown in the tables next to the figures, where positive means increasing while
negative means decreasing.
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At i = 28 days

At ;. = 60 days

At . = 90 days

0Old Deck 1.85 MPa 1.66 MPa 1.54 MPa
-3.24 MPa -2.92 MPa -2.7 MPa
Connection 1.98 MPa 1.98 MPa 1.98 MPa
1.89 MPa 1.88 MPa 1.86 MPa
4.23 MPa 3.78 MPa 3.47 MPa
New Deck
3.60 MPa 3.18 MPa 2.89 MPa
At . = 28 days At . = 60 days At 1. = 90 days
o o [
Old Deck 0.0 % -10.3 % -16.8 %
0.0 % -99 % -16.7 %
C . 0.0 % 0.0 % 0.0 %
onnection
0.0 % -0.5 % -1.6 %
o o [
New Deck 0.0 % -10.6 % -18.0 %
0.0 % -11.7 % -19.7 %

At .r = 28 days

At . = 60 days

At ir.r = 90 days

Ol Deck 1.86 MPa 1.61 MPa 1.47 MPa
336 MPa 2.98 MPa 2.74 MPa
Comection 1.98 MPa 1.97 MPa 1.97 MPa
1.85 MPa 1.87 MPa 1.88 MPa
2.63 MPa 2.43 MPa 2.29 MPa
New Deck
123 MPa _1.18 MPa 113 MPa
At - = 28 days At y- = 60 days At - = 90 days
0.0 % 134 % 210 %
0Old Deck
e 0.0 % 113 % 185 %
Comection 0.0 % 05 % 05 %
0.0 % 1% 1.6 %
0.0 % 7.6 % 129 %
New Deck
cwee 0.0 % 41 % 8.1 %
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10 Conclusions

There is a project called 'Approach Ring South, Groningen', where the viaduct of main roadway N7 over the Laan
Corpus den Hoorn in Groningen was widened (Herepoort, 2019). The viaduct deck is called KW03.01. For
simplicity, the existing decks of KW03.01 being widened are referred to as old decks, while the newly casted decks
to widened existing decks are referred to as new decks.

After new decks being prestressed, old decks and new decks are connected. Since the concrete in new decks is
younger than that in old decks, it is expected that the deformation of new decks would be larger and restrained by the
old decks. As a result, imposed deformation is produced, see Section 4.2. Due to the tensile stress resulting from
imposed deformation, the compressive stress in concrete resulting from prestressing is consumed. For the
convenience of reading, the consumed compressive stress in concrete is referred to as prestress consumption.

A software called SCIA is used to calculate the prestress consumption in new decks. According to SCIA, the
maximum prestress consumption in new decks are 40% and 41% respectively in south and north. To check whether
the prestress consumption in widened deck KW03.01 is reliable or not, a simple approach is introduced.

To take into account the cracking at connections between old decks and new decks, three-layer models representing
old decks, new decks and connections are used in the simple approach. The realistic dimensions of widened deck
KW03.01 are variable, see Section 4.2. For simplicity, in the simple approach, the dimensions of models are
simplified to the mean values of realistic dimensions. It is proved that a simplification of using mean thickness and
width has almost no impact on the magnitude of imposed deformation, see Chapter 7.

The mechanics used in the simple approach is a mechanics of composited cross-section with Bernoulli’s rule. At the
beginning of investigation, the impact of shear deformation is not taken into account. For simplicity, it is referred to
as Mechanics 1. The disadvantage of Mechanics 1 is that stress resulting from imposed deformation calculated by
Mechanics 1 is not reliable when the mid-layer (connection) of model is ‘soft’, see Section 8.2 and Section 8.3.
Therefore, to check whether the mid-layer (connection) of model is ‘soft’ or not, an improved mechanics taking
shear deformation into account is introduced. For simplicity, it is referred to as Mechanics 2.

According to the stress resulting from imposed deformation calculated by Mechanics 1 and Mechanics 2, it is proved
that Mechanics 2 is preferred when the mid-layer (connection) is ‘soft’. As for widened deck KW03.01, the mid-
layer (connection) would be taken as ‘soft” when the normal stiffness of mid-layer (connection) decreasing to 40%
or less due to cracking.

However, as for widened deck KW03.01, the normal stiffness of connection in south and north decrease to 96% and
99% due to cracking respectively, which are much larger than 40%, see Appendix A19.3. Therefore, as for widened
deck KW03.01, Mechanics 1 and Mechanics 2 give same results and both of them can be used in the simple
approach. In the end, Mechanics 2 is chosen.

According to the simple approach, the maximum prestress consumption in new decks are 51% and 40% respectively
in south and north. Compared with the results of SCIA, 40% and 41%, it is proved that prestress consumption about
40% or more at time t,, in new decks are reliable. However, it does not mean there is no problem in calculation
carried out by SCIA. The problem is that the input of SCIA is not evaluated properly, see Section 9.3. When
evaluating elastic modulus of concrete, the factor t, of creep factor ¢ (¢, t,) was taken as the starting date of old
decks and new decks being build, while it should be the date when connections being made. When evaluating creep,
to simplify the evaluation, stress in concrete at cross-section h = 550 mm was used, while it should be that at cross-
section h = 700 mm.

In addition, as shown in Appendix A20.3, neither increasing nor decreasing the prestressing force in new decks
would help reduce prestress consumption. It is more practical to reduce prestress consumption by making connection
as late as possible, see Appendix A15. However, as shown in Appendix A 15, suppose the tensile strength of concrete
is neglected, new decks are always cracked no matter when connections are made. Therefore, making connections
later can only help decrease prestress consumption but not avoid cracking.
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11 Recommendations

11.1 General

The difference in the calculations carried out by SCIA and the simple approach are investigated, where the simple
approach is carried out to check the prestress consumption calculated by SCIA. According to Section 9.3 the
calculation carried out by SCIA has to be improved. Some recommendations to improve the calculation carried out
by SCIA has been shown in Section 9.4.2. For the convenience of reading, hereby provides recommendations to
improve the calculation carried out by SCIA again, together with recommendations on checking the results of SCIA.

11.2 About Models

As shown in Chapter 7, when a deck with variable dimensions is subjected to combined actions, it is proper to use
simplified models with mean dimensions to calculate the stress resulting from combined actions. With simplified
models, mechanics of composited cross-section can be easily used such as those introduced in Appendix A12 and
Appendix A13.

11.3  About Factor t, and Creep Factor ¢(t,t,) to Evaluate Elastic Modulus of
Concrete and Imposed Deformation

As shown in Section 9.4.2, the factor ¢, used to evaluate the creep factor (¢, t,) for elastic modulus of concrete
should be different from that used to evaluate the creep factor ¢ (¢, t,) for imposed deformation.

When evaluating the elastic modulus of concrete, factor t, represents the timing when the long-term load is applied.
As for widened deck KW03.01, factor ¢, is time t = t;; when connections get hard enough to produce imposed
deformation.

However, when calculating the imposed deformation, or to be specific the deformation due to creep, factor t,
represents the timing when the creep begins. As for widened deck KW03.01, factor t, should be the timing when
prestressing is applied.

11.4  About Expressions to Evaluate Elastic Modulus of Cracked Concrete

According to Section 4.1, imposed deformation may result in not fully developed crack pattern. Therefore, it is
expected that using expressions shown in Appendix A16 to evaluate the elastic modulus of cracked concrete would
improve the calculation and make the results of calculation more reliable.

11.5  About Mechanics Used during Calculation

As for widened deck KW03.01, since it is almost impossible for the stiffness of connections to decrease to 40% or
less, to calculate the stress resulting from imposed deformation and the compressive stress in concrete consumed by
the stress, it is more effective to use Mechanics 1 to check the results of SCIA, see Appendix A12. However, for
other projects, Since it is unknown whether there is large shear deformation or not before carrying out a calculation,
it is suggested to use Mechanics 2 for a more reliable solution, see Appendix A14.

11.6  About Reducing Prestress Consumption

In addition, as shown in Appendix A20.3, neither increasing nor decreasing the prestressing force in new decks
would help reduce prestress consumption. It is more practical to reduce prestress consumption by making connection
as late as possible, see Appendix A15. However, as shown in Appendix A 15, suppose the tensile strength of concrete
is neglected, new decks are always cracked no matter when connections are made. Therefore, making connections
later can only help decrease prestress consumption but not avoid cracking.
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Al Examples of Imposed Deformation Resulting in Tensile Stress

According to Section 4.1, hereby summarized three examples which shows that imposed deformation can results in
tensile stress. Figure 50 (Breugel, 2013, p. 115) and Figure 52 (Breugel, 2013, p. 119) are about imposed strain while
Figure 51 (Breugel, 2013, p. 116) is about imposed curvature. It is also shown in following examples that in addition
to imposed deformation only, a member or structure might be subjected to imposed deformation and mechanical
loads at same time.

Figure 50 (Breugel, 2013, p. 115) shows a rectangular reservoir containing a cooled liquid. The horizontal liquid load
results in tensile stresses in the walls. For part of the reservoir is in the soil and the response to the cooling is more
rapid for the wall than for the slab, the walls will be shortened relatively to the slab. However, the wall is connected
to the slab, making the shortening of the walls restrained and causing additional tensile stresses in the wall.
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Figure 50:Rectangular Reservoir Containing a Cooled Liquid.

Figure 51 (Breugel, 2013, p. 116) shows a cylindrical reservoir containing a heated liquid. The heated water makes
inner surface of the wall swelling relatively to the outer surface. If the deformation is free, the wall will be bent. To
make the deformation constitutive, an imposed curvature is introduced to the wall. And due to the liquid load, there
is a the hoop force inside the wall, which gives an additional tensile stress in circumferential direction.

b a aT|+
Figure 51:Cylindrical Reservoir Containing a Heated Liquid.

Figure 52 (Breugel, 2013, p. 119) shows a beam subjected to distributed load and cooling. For the ends of the beam
are fixed, the shortening of the beam is fully restrained, causing a tensile stress in the longitudinal direction. And due
to the distributed load, a moment is introduced to the cross-section of the beam.
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Figure 52:Beam Subjected to Distributed Load and Cooling.

Wednesday, 04 March
2020

COMBINED ACTIONS

47



d Weopa
oya
TU D e Ift Ha\s/koning DHV
A2 Data of Calculation Carried out by SCIA

A2.1 General

During the structure design of the widened deck KW03.01, FEM software called SCIA is used to calculate the stress
resulting from imposed deformation and the compressive stress in concrete resulting from prestressing. The tensile
stress resulting from imposed deformation consumes the compressive stress in concrete which results from
prestressing. For simplicity, the compressive stress in concrete being consumed is referred to as prestress
consumption.

The calculation carried out by SCIA is linear elastic. The inputs of the calculation, for example the magnitude of
imposed deformation and material properties are constant, which are calculated by engineers instead of SCIA basing
on the time history of constructions. During the calculation carried out by SCIA, 4-nodes Mindlin element are used
where the mash size is 250 mm.

A2.2 Stress Resulting from Imposed Deformation at Time ¢ = 40515 days

Stress resulting from imposed deformation calculated by SCIA is shown in Figure 53. As shown in Figure 53, realistic
models are used in SCIA. As shown in Chapter 7, the thickness of the simplified models is h = 700 mm, which is
equal to those in realistic models at mid-span. Therefore, to make the stress calculated by SCIA and simple approach
comparable, stress at mid-span is summarized, see Table 20.

Axis 1 Aixs 1-2 Axis 2 Axis 2-3 Axis 3

A .14

. == 2l6 =
— ! "2,55 11 —=
24 _— 1= 26 = 29 = !
1.1 23 i1 | 25 10 | 26
I -0,1
| | R
: 0,9 =
e =R de. B
i = LIS 1o EFi=] i
i
=2 o
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32—t | =27 1321 79 =27 32— =2,7

Figure 53:Stress Resulting from Imposed Deformation Calculated by SCIA.
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South North (Axis 1-2) North (Axis 2-3)
0Old Deck 1.2 MPa 1.5 MPa 1.5 MPa
-2.7 MPa -2.3 MPa -2.6 MPa
Connection 1.0 MPa 1.1 MPa 1.0 MPa
0.9 MPa 1.0 MPa 0.9 MPa
New Deck 3.2 MPa 2.4 MPa 2.9 MPa
2.3 MPa -1.0 MPa -1.6 MPa

Table 20:Stress Resulting from Imposed Deformation Calculated by SCIA.

A23

Stress Resulting from Prestressing at Time ¢ = 40515 days

The compressive stress in concrete resulting from prestressing calculated by SCIA is shown in Table 21 to Table 23.
As shown in Figure 53, mid-span is referred to as Axis 1-2 and Axis 2-3.

Bestaand dek t=w t=0
hoh ka- Cc = Gc =
dikte bels A Fow FowlA Fomo Fomo/A
[mm] [mm] [mm?] [kN] [N/mm?] [kN] [N/mm?]
as 3 550 400 220000 1897 8,62 2233 10,15
veld as 2-3 700 400 280000 1897 6,78 2233 7,98
as 2 850 400 340000 1897 5,58 2233 6,57
veld as 1-2 700 400 280000 1897 6,78 2233 7,98
as1 550 400 220000 1897 8,62 2233 10,15
Table 21:Stress Resulting from Prestressing in Old Decks.
Uitbreiding zuid t=o t=0
hoh ka- Cc = Oc =
dikte bels A Fow FowlA Fomo Fpmo/A
[mm] [mm] [mm?] [kN] [N/mm?] [kN] [N/mm?]
as3 550 583 320833,3 3297 10,28 3693 11,51
veld as 2-3 700 583 408333,3 3297 8,07 3693 9,04
as 2 850 583 495833,3 3297 6,65 3693 7,45
veld as 1-2 700 583 408333,3 3297 8,07 3693 9,04
as 1 550 583 320833,3 3297 10,28 3693 11,51
Table 22:Stress Resulting from Prestressing in South New Deck.
Uitbreiding noord t=e t=0
hoh ka- Oc = Ge =
dikte bels A Fow FowlA Fomo FpmolA
[mm)] [mm] [mm?) [kN] [N/mm?] [kN] [N/mm?]
as 3 550 565 310750 3297 10,61 3693 11,88
veld as 2-3 700 642 449400 3297 7,34 3693 8,22
as 2 850 719 611150 3297 5,39 3693 6,04
veld as 1-2 700 796 557200 3297 5,92 3693 6,63
as1 550 873 480150 3297 6,87 3693 7,69

Table 23:Stress Resulting from Prestressing in North New Deck.
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A2.4 Prestress Consumption in Proportion

The ratio of stress resulting from imposed deformation and compressive stress resulting from prestressing is referred

to as prestress consumption in proportion. Basing on the data of stress resulting from imposed deformation calculated
at mid-span, see Table 20, and the data of compressive stress resulting from prestressing at mid-span, see Table 21 to
Table 23, the prestress consumption in proprortion is calculated, see Table 24.

South North (Axis 1-2) North (Axis 2-3)
Old Deck 15 % 22 % 22 %
-40 % -34 % -38 %
o o, o
New Deck 40 % 41 % 40 %
29 % -17 % -22 %

Table 24:Prestress Consumption Calculated basing on the Results from SCIA.

A2.5 Out-of-plane Moment

In addition to in-plane loads such as imposed deformation and prestressing introduced in Appendix A2.2 and
Appendix A2.3, there are also out-of-plane loads carried by widened deck KW03.01. The out-of-plane loads, for
example self-weight and traffic loads, result in out-of-plane moments. Hereby summarized the situation in new
decks, including out-of-plane moments M ¢ 194 and M ¢ 1 and the maximum tensile stress 046 10, and g6 10
resulting from the moments, at mid-span (7X, 11X, 8X) and mid-support (4X, 5X, 6X), see Figure 54 and Table 25.
dhts 575 625 G675 725  TVh 825 775 725 675  B25 575
dek
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Figure 54:0verview of Cross-sections in New Decks.
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M a6.10a 0 d4,6.10a M 46100 O 4,6.10b
6X -2036 kKN-m/m 24.8 MPa -1995 kN-m/m 24.3 MPa
8X 1161 kN-m/m 14.2 MPa 1283 kN-m/m 15.6 MPa
4X -2158 kKN-m/m 26.3 MPa -2076 kKN-m/m 25.3 MPa
5X -1453 kKN'm/m 17.7 MPa -1391 kKN'm/m 17.0 MPa
7X 1123 kKN-m/m 13.7 MPa 1196 kKN-m/m 14.6 MPa
11X 810 kKN-m/m 9.9 MPa 882 kN-m/m 10.8 MPa

Table 25:0ut-of-plane Moment and Normal Stress in New Decks.

A2.6  Input Data

A2.6.1 Material Properties

Hereby summarized the elastic modulus of concrete which are applied to the realistic models in SCIA. The

evaluation of the elastic modulus of concrete is copied from the data files of structure design of widened deck
KW03.01 (Herepoort, 2019).

4.4.1. Elasticiteitsmodulus bestaande dek
De elasticiteitsmodulus van zowel het bestaande dek als de vitbreidingen wordt bepaald op tijdstip t===.

Langsrichting bestaand dek C35/45:
et = Ecm / (1 + X - @) = 34077 N/mm? / (1+ (0,8 - 1,93)) = 13355 N/mm?
Hierbij is X = verouderingsfactor. Volgens methode Trost is deze 0,8 bij wijziging van het statische systeem.

4.6.  Stijfheid stortstrook

Voor de stortstrook geldt dat de E-modulus in dwarsrichting minimaal gelijk moet zijn als het bestaande dek.
Voor de langsrichting wordt dezelfde E-modulus gehanteerd (isotroop).

Er=(3,10 + 670 - 2,99 - 10%) - 10° = 5105 N/mm? 2 5000 N/mm?

4.5.1. Elasticiteitsmodulus nieuwe dek
De elasticiteitsmodulus van zowel het bestaande dek als de uitbreidingen wordt bepaald op tijdstip t==-.

Langsrichting uitbeiding dek C45/55:
Eeet = Ecn / (1+ X - @) = 36283 N/mm? / (1+ (0,8 - 1,62)) = 15803 N/mm?
Hierbij is ¥ = verouderingsfactor. Volgens methode Trost is deze 0,8 bij wijziging van het statische systeem.

Dwarsrichting uitbreiding dek:

In lijn met de bestaande dekken wordt uitgegaan van onderwapening @20-150. Uit tabel NB-1 van NEN-EN
1992-1-1+C2:2011/NB:2011 volgt de fictieve Elasticiteitsmodulus:

Er, = (3,10 + 670 - p) - 10° 2 5000 N/mm?

Wapeningsverhouding p = 2094 mm? / (1000 - 700) mm? = 2,99 - 10-%, waarbij 700 mm de gemiddelde dikte
van het dek is.

Er=(3,10+670-2,99 - 10%) - 10° = 5105 N/mm? = 5000 N/mm?
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Hereby summarized the imposed deformation which are applied to the realistic models in SCIA. The data of imposed
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Imposed Deformation

deformation is copied from the data files of structure design of widened deck KW03.01 (Herepoort, 2019).

Resultaten krimp en kruip ten behoeve van BG9:

Bestaand dek

t=w 40515 dagen t=11 Jaar 4015 dagen
Kruip Kruip
o (Ltg) 1,03 - do (t.to) 1,79 -
o 8,56 N/mm? Oc 8,56 N/mm?
& (tt) 4,62E-04 & (L) 4,27E-04
Krimp Krimp
eed (1) 2,07E-04 £ed (1) 1,80E-04
Aey () 5,12E-05 Aegy () 5,12E-05
Krimp+Kruip 7,20E-04 Krimp+Kruip 6,58E-04
AT,(1) 72°C AT(1) 66 °C
In Scia:  AT(t) - AT,(t) -8,1°C
Uitbrelding dek zuild
t== 36500 dagen t = 28 dagen
Kruip Kruip
o (Lto) 1,63 - o (L) 0,51 -
g 9,71 N/mm? T, 9.71 N/mm?
e (tty) 4,16E-04 e (L) 1,30E-04
Krimp Krimp
£ed (1) 1,83E-04 £ea (1) 1,10E-05
At (1) 7,16E-05 At () 4,13E-05
Krimp+Kruip ~ 6,71E-04 Krimp+Kruip 1,83E-04
AT, (t) 67 °C AT, (1) 18 °C
In Scia:  AT(t) - AT,(t) -48,9 °C |:|
Stortstrook InScla: AT, (t)- AT, (t) -43.8 °C N_¢
t== 36500 dagen
Kruip
do (ttg) 1,92 -
o 0 N/mm?
e (ttg) 0,00E+00
Krimp Hydratatiekrimp
£ea (f) 2,06E-04 ATy, 20 °Cc
tea () 5,12E-05 cree  2,00E-03
Krimp+Kruip 2 5TE-04
AT 26 °C InScia:  AT,(l) + ATy, 457 °C =
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A3 Calculation of Thermal Deformation

The hardening process of concrete is the result of a chemical-physical reaction of cement and water. This is an
exothermic reaction, which is a reaction during which heat is liberated (Breugel, 2013, p. 136). Due to this liberated
heat, the temperature of the concrete rises and the concrete expands. After the exothermic reaction, the temperature
of the concrete drops and the concrete shrinks. Suppose that the concrete in hardening process is connected to
another existing concrete during the hardening, imposed deformation would occur due to the temperature decrement
and the restrain from the connection. The strain increment A&y or-ma caused by a temperature decrement AT is as
follow:

Aeipormar = ¢ AT - (L, ty) = 1.12 x 1074 (11)
where:
a. is the thermal expansion coefficient of concrete
=10 x 107¢/°C
Y(t, ty) s the relaxation factor for hardening concrete
=0.2

In principle, the thermal expansion coefficient of concrete is a function the thermal expansion coefficient of the
components. For example, the thermal expansion coefficient of water is about five times larger than that of concrete.
So, in the early stage of hardening, due to the presence of water, the thermal expansion coefficient of concrete is
dominated by water (Breugel, 2013, p. 150). However, in the early stage of hardening, the stiffness of concrete is low
but the relaxation of concrete is high (Breugel, 2013, p. 165). Therefore, the resulting stresses of thermal expansion
in the early stage of hardening can be neglected. For a practical purpose, it is justified to adopt a constant thermal
expansion coefficient to the concrete which represents the situation in the late stage of hardening (Breugel, 2013, p.
150).

As shown in Section 6.2, the concrete in old decks and connections is C35 while that in new decks is C45. Substitute
the data from Table 26 into Expression 17 to calculate the magnitude of elastic modulus of concrete C35 and C45
from time t = 0.2 days to time ¢ = 28 days. The results are shown in Figure 55 and Figure 56. Setting the elastic
modulus of concrete E,, (t) corresponding to time t = 28 days as 100%, the elastic modulus of concrete C35 and
C45 are expressed into proportion, see Figure 57 and Figure 58.

As shown in Figure 57 and Figure 58, the elastic modulus at time t = 1 day takes about 70% of that at time t =
28 days. So, it is assumed that At;;_;, = 1 day which means it takes one day for the concrete in connections to get
stiff enough to produce imposed deformation.

Development of Elastic Modulus of C35

- o Development of Elastic Modulus of C45

b
=
T
(7
Lh
T

Elastic Modulus [GPa]
R
Elastic Modulus [GPa]
=

]
Lh
T

[
(=]

15 . . . . . 15 . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time [days] Time [days]

Figure 55:Development of Elastic Modulus of Concrete C35. Figure 56:Development of Elastic Modulus of Concrete C45.
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Figure 57:Development of Elastic Modulus of Concrete C35 in
Proportion.

Figure 58:Development of Elastic Modulus of Concrete C45 in
Proportion.

For lack of information, the temperature change during hardening in this case study is estimated according to the
temperature development in a hardening concrete floor, see Figure 59 and Figure 60 (Breugel, 2013, p. 148). The
thickness of the floor is 1 m. The top surface of the floor is exposed to the air while the bottom surface of the deck is
based on another existing floor. In Figure 59 and Figure 60, it is shown that the maximum temperature during
hardening occurs at time t = 1 day and the maximum temperature in the floor at time t = 1 day is 68°C.

During the construction of widened deck KW03.01, the deck was basing on formwork, of which the environment
conditions were similar to those of the floor mentioned above. So, the maximum temperature in the widened deck
KWO03.01 during hardening is estimated to be 68°C as well. Suppose that the annual mean temperature on site is
10°C, the temperature decrement AT would be 58°C.

temperature (°C) 0 floor thicknes (m) top side

70 ]
if"__:\ (Wit K) \ ‘\~ < = ¥\~ \‘QW"W? Ks):
60 * \\\ P - 1? 0.8 ‘\ N N A .15
g ) "\ A N \\ N e
f'/ \.\‘\.\ wimi 2B AN \\ \ \ \ S\ \2\.5
50 |f N 06— \, W 0 SR
.':" N "\\ O\ \ "\] J|'
30/-| v S 0.2 L Y B A
topside / T — _ ¥ | r / o
// : e T . S 7 days 3 days 1 day
20 ¥ | | | | ] 0 i | | 1 1
0 24 48 72 96 120 144 168 20 30 40 50 60 70

time (hours) temperature (°C)

Figure 59:Temperature Development versus Time. Figure 60:Temperature Development versus Height.

Relaxation has a considerable impact on the stress development in a hardening concrete. It means the resulting stress
of temperature decrement AT in hardening concrete is much smaller than that in a hardened concrete. During the
hardening, a relatively small elastic modulus in the new concrete results in a small stiffness. When the new concrete
is connected to an existing one, the resulting stress in the existing concrete is relatively small as well. Therefore, in
this case study, a mathematic trick is applied, which introduces a relaxation factor ¥ (t, t,) to calculate resulting
strain A&;permar> Se€ Expression 11.
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Expression 12 gives quite good results for the stresses in hardening concrete (Breguel, 1980). The relaxation factor
calculated by Expression 12 is shown in Figure 61. Since it is assumed that the concrete get hard enough at time t =
1 day (24 hours), the relaxation factor Y (t, t,) is estimated to be 0.2.

ap(t)

_ _ ) 165, —d.cp_p yn. Xn(t)
Dt ty) = o | Gntaoy 1) #13s0wen’ 1o~ ot (12)
0 relaxation factor \ (t,7)
———
[ | ‘-\ \ relaxation curves calculated
| IH \ N with formula (7.29)
| \ \
0.8
T~ 48h
T 34h
degree of hydrationch (t)
TT——24h
———19h
120 160 200
time (hours)
Figure 61:Relaxation Factor in Hardening Concrete.
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A4 Expressions to Evaluate the Material Properties of Concrete at Time ¢
days

The characteristic strength of concrete f, (t) at time t is evaluated as follow:
For 3 < t < 28 days

fer(®) = fem(t) — 8 [MPa] (13)
For t > 28 days
fer (@) = fex (14)
The compressive strength of concrete f,,,(t) at time t is evaluated as follow:
Jem (@) = Bec(®) * fom (15)
where:
fem is the compressive strength of concrete at 28 days, see Table 26

Bec(t) s the coefficient related to time
= exp{s[1 - (28/6)*°]}
s is the coefficient related to cement
= 0.20 for cement of strength Classes CEM 42.5 R, CEM 52.5 N and CEM 52.5 R (Class R)
= 0.25 for cement of strength Classes CEM 32.5 R, CEM 42.5 N (Class N)
= (.38 for cement of strength Classes CEM 32.5 N (Class S)

The tensile strength of concrete f.,,, (t) at time t is evaluated as follow:

feem (@) = (Bec (O * ferm (16)
where:
fetm is the tensile strength of concrete at 28 days, see Table 26
a =1fort < 28 days

= 2/3 for t = 28 days

Suppose a short-term load is applied, the elastic modulus of concrete E_,,,(t) at time t is evaluated as
follow:

03
0 = (29) i, (7
me
where:
Ecm is the elastic modulus of concrete at 28 days, see Table 26
Sterkteklassen voor beton Vergelijking/Verklaring
fs (MPa) 12 | 16 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 70 | 80 | €0

facne (MPa) | 15 20 25 30 a7 45 50 55 60 67 75 85 85 | 105

fan (MPa) 20 24 28 33 38 43 48 53 58 63 68 78 88 98 | fon = Fu+B(MPa)
fam (MPa) 16 |19 |22 |26 |29 |32)35)38) 41 )42 | 44 ) 46 | 48 | 50 | fy=0,3045>" <C5080
for=2,12-In( 14 (/1 0))
> C50/60
fax aos (MPa)| 1,1 13 1.5 18 20 2,2 25 27 29 3,0 31 32 3.4 35 | fescaos = 0,7xfam
5 % fractiel
faxoes (MPa) | 2,0 25 2,9 33 38 4,2 46 49 53 55 57 6,0 6,3 6.6 | faxoss = 1,3fam
95 % fractiel
Eem(GPa) 27 | 29 | 30 | 31 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 41 | 42 | 44 | Eem= 22[{fs)10]**
{fam in MPa)
Table 26:Strength and Deformation Characteristics for Concrete.
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When a long-term variable load is applied to a concrete member, due to the creep or relaxation appears in
the process, the concrete member performs as if its elastic modulus is decreased. For simplicity, a
fictitious elastic modulus E_,,(t) is used to evaluate the internal forces of concrete when it is subjected to a
long-term variable load (Scholten, 1989).

Ecm
Een®) =1708" ot to) (18)
where:
@(t, ty) is the creep coefficient
= @0 * Bc(t, to)
Po is the notional creep coefficient
= Qru " B(fem) - B (&)
Oru is the coefficient related to the effect of relative humidity on the notional creep coefficient
=1+ 1()’;’%/20 (fom < 35 Mpa)
[1 + 1()?;\;20 1] @y (fem > 35 Mpa)
B(fom) is the coefficient related to the effect of concrete strength on the notional creep coefficient
=16.8/\/fom
B(ty) is the coefficient related to the effect of concrete age at loading on the notional creep coefficient
1
0.1+£§7
B.(t, ty) is the coefficient related to the development of creep after loading
= [(t = t0)/(By +t — )]
Bu is the coefficient related to relative humidity and notional size
= 1.5[1 + (0.012RH)*®]hy + 250 < 1500 (f.,, < 35 Mpa)
= 1.5[1 + (0.012RH)*®]hy + 250 - a5 < 1500 - a3 (f.,, > 35 Mpa)
a, is the coefficient related to the influence of the concrete strength
-(2)”
me
a, is the coefficient related to the influence of the concrete strength
-(2)”
me
as is the coefficient related to the influence of the concrete strength
-(2)"
me
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AS Expressions to Calculate Cross-sectional Calculation at Time ¢ days

AS.1 General

Cross-sectional calculation consists of the evaluation of cross-sectional properties and the stress resulting from the
loads applied to the cross-section. the Suppose there is a rectangular concrete deck with n prestressing tendons, see
Figure 62, the expressions shown in this chapter would be used during cross-sectional calculation.

out-of-plane N.A.

N

in-planeN.A.I e )

rs o

b

Figure 62:Cross-section.

AS.2 Cross-sectional Properties of Concrete Deck

cross-section area

A.=b-h (19)
where:
b is the width of cross-section
h is the height of cross-section
out-of-plane moment of inertia
b-hd
Ic,out—of—plane = 12 (20)
in-plane moment of inertia
h-b3
Ic,in—plane = 12 (21)
normal stiffness
EA(t) = Ecm(t) ' Ac (22)

where:
E.n(t) is the elastic modulus of concrete at time ¢

out-of-plane bending stiffness

El(t)out—of—plane = cm(t) ' Ic,out—of—plane (23)

in-plane bending stiffness

El(t)in—plane = Ecm(t) ' Ic,in—plane (24)

AS.3 Cross-sectional Properties of Prestressing Cables

cross-section area of cables

Ap=n-A, (25)
where:
n is the total number of prestressing cables
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A, is the area of cross-section per cable

prestressing ratio

14
Py = —> (26)
14 AC
elastic modulus ratio at time ¢
E
P
e = 27)
¢ Ean(®)
where:
Ep is the elastic modulus of prestressing cables
normal stiffness per cable
EA=E,-A, (28)
normal stiffness of cables
EA=E,- A, (29)

A5.4  Stress Resulting from Loads

There are four possible loads which could be applied to the cross-section shown in Figure 62, the normal force N, the
bending moment out-of-plane Myy¢—f—piane» the bending moment in-plane M;,_,1qne and the shear force V.
Suppose the cross-section is subjected to the bending moment out-of-plane Myt o —piane, the cross-section would
rotate around the in-plane N.A.. Suppose the cross-section is subjected to the bending moment in-plane My, _piane>
the cross-section would rotate around the out-of-plane N.A..

normal stresses at top or bottom edge of the deck

N _ Mowi—of-piane " Z

Orp = — (30)
/ Ac Ic,out—of—plane
where:
N is the normal force from certain action
Moyt-of-piane 18 the out-of-plane moment from certain action
z is the z-coordinate of top or bottom edge of cross-section
normal stresses at right or left edge of the deck
N M in—-plane " Y
O =47——F———— 31)
K Ac Ic,in—plane
where:
N is the normal force from certain action
Mipn_piane is the in-plane moment from certain action
y is the y-coordinate of right or left edge of cross-section
shear stresses
v 32
T=—
i (32)
where:
%4 is the shear force from certain action
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A6 Expressions to Calculate the Remaining Prestressing Force in Model
with Uniform Cross-section Mean Dimensions at Time ¢ days

Expressions from Eurocode NEN-EN 1992-1-1+C2 are used to calculate the strain of creep and shrinkage and the
relaxation loss. Suppose that the prestressing force is applied step by step and the cables are prestressed from both
sides, the loss of the prestressing force applied at step ¢ would be expressed as follow:

Initial prestressing force

APmax,{ = Pmo,{ (33)
where:

Prog is the initial prestressing force per cable after immediate loss
1
T 1+aepp

AP, max,{

APrax; s the total prestressing force per cable

¢ is the sequence number of certain prestressing step

elastic loss per cable

J Aoy (ty)
APel,mean = ApE [ PP 34
cm (tp
where:
i —n
J ~ on
n is the total number of prestressing cables
Ao, (ty) is the increment of stress in concrete when a new prestressing cable is applied
=n- Pmo,{/Ac
friction loss per cable
AP, (x) = APpgy |1 — e 7O +K2)] (35)
where:
u is the coefficient of friction
=0.19
k is the coefficient of wobble effect
= 0.01 rad/m
0 is the angular rotation
R; is the radius of curve i of the tendons
x is the distance from certain point to the ends
shrinkage loss of cables
APgpy = ApEpscs (36)
where:
Ecs is the total shrinkage of concrete
= £cq (t) + o (1)
g.q(t)  isthe drying shrinkage
= [ﬁds(t' ts) - Bds(tp' ts) ] tky €cd,0
Bas(t, ts) is the coefficient related to drying shrinkage
=(t- ts)/<t —ty +0.04 [h03>
ﬁds(tp, ts)is the coefficient related to drying shrinkage
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Z(%—QVGP—Q+0MJ;§

ts is the end of curing

ho is the notional size
=2A./u

u is the perimeter of cross-section

kn is the coefficient depending on the notional size h, according to Table 27

Eca0 is the basic drying shrinkage
= 0.85[(220 + 110 - ags1) - exp(—@asz * fom/ femo)] - 107° - By

femo = 10 MPa

Ags1 is the coefficient related to cement
= 3 for cement Class S
= 4 for cement Class N
= 6 for cement Class R

Aysr is the coefficient related to cement
= 0.13 for cement Class S
= 0.12 for cement Class N
= 0.11 for cement Class R

Bru = 1.55[1 — (RH/RH,)*]

RH, =100 %

£cqa() is the strain of autogenous shrinkage
= [ﬁas ® - Bas(ts)] * €cq ()

&q(@) = 2.5(fx —10) - 107°

Bas(t)  =1—exp(—0.2t%5)

ho 100 200 300 >500

kn 1 0.85 0.75 0.7

Table 27:Values of k,.

mean creep loss per cable

where:

ecc,m (t)

AR, = A;;Epscc,m(t)

is the mean strain of creep

= (Ecc,ends (t) + gcc,mid—support(t))/z

Eccenas (t)1s the strain of creep at the ends

= (Pmo/EA(t,) — AP,(0)/EA(t,) — APy mean(ty)/EA) - @(t, to)

Eccmide—support (£)is the strain of creep at the ends

tp

= (Pmo/EA(t,) — AR, (D/EA(ty) — APeymean(t,)/ER) - 0(t, to)
is the timing when prestressing is applied

creep loss per cable at certain point

where:
ECC,X (t)

AP, = ApEp‘gcc,x ®)

is the strain of creep at certain point

= (PmO/EA(tp) - APu(x)/EA(tp) - APel,mean(tp)/EA) ) Qo(t; to)
is the distance from certain point to the ends
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ty is the timing when prestressing is applied

JEA(t,) + AP

ef.mean

[EA - AP, (x)/ EA(t},)

X
T 1 PofEA(t) + AP, JEA - AP (DIEA(t,)

IEA - AP (0) EA(t,) ‘ —

A pis 2

P/ EA(t) + AP

el mean

|
l !
Figure 63:Distribution of Elastic Deformation.
relaxation loss per cable
AP. = Ap * Ady, 39)
where:
0.75(1—p)
Agy, = [0.39,0100086'7” (%) ] -107° - g,,; for Class 1
At 0.75(1—-p) _
[0 66p1000¢° M () ] -1075 - g,,; for Class 2
At \075(1-w) _
[1 98p1000€®* (1000) ] -107° - g,y; for Class 3

At is the hours after prestressing

= 24(t — t,) < 500000
01000 the relaxation loss in % at 1000 hours after tensing and at a mean temperature of 20°C

= 8% for Class 1

= 2.5% for Class 2

= 4% for Class 3

or taken from the certificate
u = Upi/ fpk
Opi = Zi Pmo,(/Ap
total loss per cable

AP;¢o—t = APopmean + AP, + AP, + AP + AP /n (40)

With the prestressing loss obtained, the total remaining prestress force at time t days is the summation of remaining
prestress force of each step as follow:

P(t) = Z N (APpaxs — APreo—t) 41)
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A7 The Impact of Prestressing Steps

A7.1 General

The old decks are prestressed in three prestressing steps (Herepoort, 2007, p. 25), or in short the steps, while the new
decks are prestressed all in 1 step (Herepoort, 2019). The increment of step i is denoted as AP, ;. The data of
prestressing is shown in Figure 64 and Figure 65.

AP

max, 3

Ponax [KN]

2524 - — = = =Py — - - - - - - -~
1514 |

505 I

ﬁP.inu.t. i

Figure 64:Prestressing Steps of Old Decks.

Pmax [kN]
3956

A.PHHJ.'\'

7 28 ¢ [days)
Figure 65:Prestressing Steps of New Decks.

When prestressing is applied in steps, to make sure that the magnitude of prestressing force being applied suits the
requirement at the end of each step, the prestress loss between the steps has to be compensated. It means, suppose
prestressing steps are taken into account, prestress loss between the steps has to be calculated to determine the
magnitude of prestressing force in each step.

When it comes to the widened deck KW03.01, the prestressing force in old decks was applied in three steps at time

t = 3 days, t = 7 days and t = 28 days. For simplicity, impact of prestressing steps is investigated to see whether it
is proper to calculate imposed deformation and remaining prestressing force as if the prestressing force is applied all
in one step at time t = 7 days. Suppose the imposed deformation and remaining prestressing force in three steps are
same as those of applying prestressing force all in one step, the impact of prestressing steps would be taken as small.
Otherwise, the impact of prestressing steps would be taken as large.

A7.2 Results

The models used during investigation are Simplified Model 1 and Simplified Model 2, see Section 7.3.1 and Section
7.4.1. The input data is shown in Chapter 5. The material properties applied to the expressions are calculated by the
input data and the expressions in Appendix A4 and Appendix AS5. The imposed deformation and prestress loss in old
decks are calculated by the expressions in Appendix A6.

For the convenience of reading, hereby only summarized the prestress loss calculated during investigation in
percentage, see Figure 66 to Figure 69. The data of the calculation is summarized in Appendix A8.
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Figure 66:Prestress Loss Calculated by Three Steps at Time t = 4015 days (11 years).

Figure 67:Prestress Loss Calculated by Time t = 40515 days (111 years).

Figure 68:Prestress Loss Calculated by All in One Step at Time t = 4015 days (11 years).

Figure 69:Prestress Loss Calculated by All in One Step at Time t = 40515 days (111 years).
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A7.3 Discussion

A7.3.1 Imposed Deformation

As shown in Section 6.1, connections were built at about At = 11 years after old decks being built. As a result, to
investigate the impact of prestressing steps on the imposed deformation in old decks, the imposed deformation is
taken as the increment of shrinkage and creep from time t = 4015 days (11 years) to time t =

40515 days (111 years) approximately.

According to Figure 66 to Figure 69, the increment of shrinkage and creep from time t = 4015 days (11 years) to
time t = 40515 days (111 years) is small. The detailing data of the increment is as follow:

three steps
Aggp, = €nra1r — Esnrar = 2.50 X 107* — 2.23 x 10™* = 2.65 x 107°
Ager = €crp11 — Ecrpr = 269X 1074 =249 x 107 =1.99 X 107>
all in one step
A&gpy = Egnri11 — Eshrar = 2.56 X 1074 = 2.29 X 107* = 2.65 x 1075

A& = Ecrann — Ecra1 = 274X 107 — 2,54 X 107 = 2.03 x 1075

where:
Eshrt is the shrinkage in old decks at time t
Ecrt is the creep in old decks at time t

As for three steps, the coefficient ¢, used to calculate creep factor ¢ (t, to) and the coefficient t,, used to calculate
shrinkage factor ,Bts(tp, ts) are different from those for all in one step. So, the creep &, and the shrinkage &sp,. ¢
calculated by three steps and all in one step are different.

However, the imposed deformation is the increment of shrinkage and creep. The difference of increment Ae,,. and
Aggp,, calculated by three steps and all in one step are 2% and 0% respectively. Therefore, the impact of prestressing
steps on imposed deformation is small.

A7.3.2 Remaining Prestressing Force

The widened deck is subjected to not only imposed deformation but also remaining prestressing force at time t =
40515 days (111 years). As shown in Appendix A7.1, when prestressing force is applied in steps, compensation
has to be made to the prestress loss between steps. Therefore, the initial prestressing force applied by three steps is
larger than that applied by all in one step. The initial prestressing forces are as follow:

three steps

P,.0 = 2648 kN/cable
all in one step

P, o = 2524 kN/cable

According to Figure 66 to Figure 69, the remaining per cable at time t = 40515 days (111 years) calculated by
three steps and all in one step are as follow:

three steps
P = 79% - Py = 2092 kN/cable

all in one step
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P = 78% - Py = 1969 kN/cable

The difference of remaining prestressing force B, calculated by three steps and all in one step is 6%. Therefore, the
impact of prestressing steps on remaining prestressing force is small.

A7.4 Conclusion

The impact of prestressing steps on imposed deformation and remaining prestressing force is small. Therefore, it is
proper to calculate imposed deformation and remaining prestressing force as if the prestressing force is applied all in
one step at time t = 7 days instead of three steps at time t = 3 days, t = 7 days and t = 28 days.
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A8 Dimensions and Material Properties of Models Required to Calculate
Prestress Loss

A8.1 Simplified Model 1

The sketch of Simplified Model 1 has been shown in Section 7.3.1. The input data is shown in Chapter 5. The
material properties applied to the expressions are calculated by the input data and the expressions in Appendix A4
and Appendix A5. The prestress loss are calculated by the expressions in Appendix A6.

Dimensions of Simplified Model 1 are shown in Table 28 to Table 30.

height of cross-section h 0.70 m
width of cross-section b 1041 m
length of structure L 4240 m

Table 28:Dimensions of Old Deck in Simplified Model 1.

height of cross-section h 0.70

m
width of cross-section b 1.60 m
length of structure L 4240 m

Table 29:Dimensions of New Deck in Simplified Model 1.
height of cross-section h 0.70 m
width of cross-section b 0.50 m
length of structure L 4240 m

Table 30:Dimensions of Connection in Simplified Model 1.

Material properties of prestressing cables in old deck and new deck are shown in Table 31 and Table 32.

elastic modulus E, 1.95E+11 Pa
area of prestressing cable A, 1.80E-03 m’
number of prestressing cable n 25
area of prestressing cables Ap 4.50E-02 m’
ratio of prestress Pp 6.12E-03
eccentricity e, 0.00 m

Table 31:Material Properties of Prestressing Cables in Old Deck.

elastic modulus E, 1.95E+11 Pa
area of prestressing cable A, 2.85E-03 m’
number of prestressing cable n 3
area of prestressing cables Ap 8.55E-03 m’
ratio of prestress Py 7.63E-03
eccentricity e, 0.00 m

Table 32:Material Properties of Prestressing Cables in New Deck.

Since the prestress in old decks is applied in three steps at time t = 3 days, t = 7 days and t = 28 days respectively
(Herepoort, 2007, p. 25), material properties of concrete in old deck at time t = 3 days, t = 7 days and t = 28 days
are required, see Table 33, Table 34 and Table 35.
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characteristic strength f ck 3.50E+07 Pa
compression strength fem 4.30E+07 Pa
elastic modulus En 3.40E+10 Pa
characteristic strength \f ek (1) 3.50E+07 Pa
mean compression strength fem (1) 5.48E+07 Pa
where:
factor related to time|f cc(2) 1.28E+00
elastic modulus Ean() 291E+10 Pa
Table 33:Material Properties of Concrete in Old Deck at Time t = 3 days.
characteristic strength f ek 3.50E+07 Pa
compression strength f em 4.30E+07 Pa
elastic modulus Ecn 3.40E+10 Pa
characteristic strength f ek (2) 3.35E+07 Pa
mean compression strength [fem (2) 3.35E+07 Pa
where:
factor related to time|f3 cc (2) 7.79E-01
elastic modulus Eo®) 3.15E+10 Pa
Table 34:Material Properties of Concrete in Old Deck at Time t = 7 days.
characteristic strength f ek 3.50E+07 Pa
compression strength \fem 4.30E+07 Pa
elastic modulus Ecn 3.40E+10 Pa
characteristic strength f ek (2) 3.50E+07 Pa
mean compression strength [fem (2) 4.30E+07 Pa
where:
factor related to time|f cc (2) 1.00E+00
elastic modulus Eon@) 3.20E+06 Pa

Table 35:Material Properties of Concrete in Old Deck at Time t = 28 days.

Since the prestress in new deck is applied all in one step at time t = 7 days, material properties of concrete in new
deck at time t = 7 days is required, see Table 36.

characteristic strength f ek 4.50E+07 Pa
compression strength \fem 5.30E+07 Pa
elastic modulus Ecn 3.60E+10 Pa
characteristic strength f ek (1) 4.50E+07 Pa
mean compression strength fem (1) 5.37E+07 Pa
where:
factor related to time (£ cc (2) 1.01E+00

elastic modulus Eon(®) 3.61E+10 Pa

Table 36:Material Properties of Concrete in New Deck at Time t = 7 days.
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AS8.2 Realistic Model 1

The sketch of Realistic Model 1 has been shown in Section 7.3.1. The input data is shown in Chapter 5. The material
properties applied to the expressions are calculated by the input data and the expressions in Appendix A4 and
Appendix AS. The prestress loss are calculated by the expressions in Appendix A6.

Dimensions of Realistic Model 1 are shown in Table 37 to Table 39.

height of cross-section h(x) 0.000014x +0.55 m
width of cross-section b 10.41 m
length of structure L 4240 m

*x is the distance from certain point to the ends of the deck in [mm], see Figure 70.

Table 37:Dimensions of Old Deck in Realistic Model 1.

height of cross-section h(x) 0.000014x +0.55 m
width of cross-section b 1.60 m
length of structure L 42.40 m

*x is the distance from certain point to the ends of the deck in [mm], see Figure 70.

Table 38:Dimensions of New Deck in Realistic Model 1.

height of cross-section h(x) 0.000014x +0.55 m
width of cross-section b 0.50 m
length of structure L 42.40 m

*x is the distance firom certain point to the ends of the deck in [mm], see Figure 70.
Table 39:Dimensions of Connection in Realistic Model 1.
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Figure 70:Side View of Half Realistic Model 1.

Material properties of prestressing cables in old deck and new deck are shown in Table 40 and Table 41.

elastic modulus E, 1.95E+11 Pa
area of prestressing cable A, 1.80E-03 m’
number of prestressing cable n 25
area of prestressing cables Ap 4.50E-02 m’
ratio of prestress Pp -
eccentricity e, 0.00 m
*The ratio of prestress is not shown because it is a function of x.
Table 40:Material Properties of Prestressing Cables in Old Deck.

elastic modulus E, 1.95E+11 Pa
area of prestressing cable A, 2.85E-03 m’
number of prestressing cable n 3
area of prestressing cables Ap 8.55E-03 m’
ratio of prestress Pp -
eccentricity e, 0.00 m
*The ratio of prestress is not shown because it is a function of x.

Table 41:Material Properties of Prestressing Cables in New Deck.
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Since the prestress in old decks is applied in three steps at time t = 3 days, t = 7 days and t = 28 days respectively
(Herepoort, 2007, p. 25), material properties of concrete in old deck at time t = 3 days, t = 7 days and t = 28 days
are required, see Table 42, Table 43 and Table 44.

characteristic strength f ek 3.50E+07 Pa
compression strength fem 4.30E+07 Pa
elastic modulus Ecm 3.40E+10 Pa
characteristic strength f ek (1) 3.50E+07 Pa
mean compression strength fem (1) 5.48E+07 Pa
where:
factor related to time | cc(2) 1.28E+00
elastic modulus En) 2.91E+10 Pa
Table 42:Material Properties of Concrete in Old Deck at Time t = 3 days.
characteristic strength \f ek 3.50E+07 Pa
compression strength \fem 4.30E+07 Pa
elastic modulus Ecn 3.40E+10 Pa
characteristic strength ek (2) 3.35E+07 Pa
mean compression strength fem (1) 3.35E+07 Pa
where:
factor related to time|f - (%) 7.79E-01
elastic modulus Ecn(?) 3.15E+10 Pa
Table 43:Material Properties of Concrete in Old Deck at Time t = 7 days.
characteristic strength f ek 3.50E+07 Pa
compression strength \f em 4.30E+07 Pa
elastic modulus Ecn 3.40E+10 Pa
characteristic strength \f ek (2) 3.50E+07 Pa
mean compression strength [fem (2) 4.30E+07 Pa
where:
factor related to time|f3 cc (2) 1.00E+00
elastic modulus Eon@®) 3.20E+06 Pa

Table 44:Material Properties of Concrete in Old Deck at Time t = 28 days.

Since the prestress in new deck is applied all in one step at time t = 7 days, material properties of concrete in new
deck at time t = 7 days is required, see Table 45.

characteristic strength \f ek 4 .50E+07 Pa
compression strength \fem 5.30E+07 Pa
elastic modulus Eon 3.60E+10 Pa
characteristic strength ek () 4.50E+07 Pa
mean compression strength fem (1) 5.37E+07 Pa
where:
factor related to time |/ c (2) 1.01E+00

elastic modulus Ecn(t) 3.61E+10 Pa

Table 45:Material Properties of Concrete in New Deck at Time t = 7 days.
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A8.3 Simplified Model 2

The sketch of Simplified Model 2 has been shown in Section 7.4.1. The input data is shown in Chapter 5. The
material properties applied to the expressions are calculated by the input data and the expressions in Appendix A4
and Appendix A5. The prestress loss are calculated by the expressions in Appendix A6.

Dimensions of Simplified Model 2 are shown in Table 46 to Table 48.

height of cross-section h 0.70 m
width of cross-section b 1041 m
length of structure L 4240 m

Table 46:Dimensions of Old Deck in Simplified Model 2.

height of cross-section h 0.70 m
width of cross-section b 9.85 m
length of structure L 4240 m
Table 47:Dimensions of New Deck in Simplified Model 2.

height of cross-section h 0.70 m
width of cross-section b 0.50 m
length of structure L 42.40 m

Table 48:Dimensions of Connection in Simplified Model 2.

Material properties of prestressing cables in old deck and new deck are shown in Table 49 and Table 50.

elastic modulus E, 1.95E+11 Pa
area of prestressing cable A, 1.80E-03 m’
number of prestressing cable n 25
area of prestressing cables Ap 4.50E-02 m’
ratio of area Pp 6.12E-03
eccentricity e, 0.00 m

Table 49:Material Properties of Prestressing Cables in Old Deck.

elastic modulus E, 1.95E+11 Pa
area of prestressing cable A, 2.85E-03 m’
number of prestressing cable n 14
area of prestressing cables Ap 3.99E-02 m’
ratio of area P 5.79E-03
eccentricity e, 0.00 m

Table 50:Material Properties of Prestressing Cables in New Deck.

Since the prestress in old decks is applied in three steps at time t = 3 days, t = 7 days and t = 28 days respectively
(Herepoort, 2007, p. 25), material properties of concrete in old deck at time t = 3 days, t = 7 days and t = 28 days
are required, see Table 51, Table 52 and Table 53.
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characteristic strength f ck 3.50E+07 Pa
compression strength fem 4.30E+07 Pa
elastic modulus En 3.40E+10 Pa
characteristic strength f ek (1) 3.50E+07 Pa
mean compression strength fem (1) 5.48E+07 Pa
where:

factor related to time|f cc(2) 1.28E+00
elastic modulus Ean() 291E+10 Pa
Table 51:Material Properties of Concrete in Old Deck at Time t = 3 days.
characteristic strength f ek 3.50E+07 Pa
compression strength f em 4.30E+07 Pa
elastic modulus Ecn 3.40E+10 Pa
characteristic strength f ek (2) 3.35E+07 Pa
mean compression strength [fem (2) 3.35E+07 Pa
where:

factor related to time|f3 cc (2) 7.79E-01
elastic modulus Eo®) 3.15E+10 Pa
Table 52:Material Properties of Concrete in Old Deck at Time t = 7 days.
characteristic strength f ek 3.50E+07 Pa
compression strength \fem 4.30E+07 Pa
elastic modulus Ecn 3.40E+10 Pa
characteristic strength f ek (2) 3.50E+07 Pa
mean compression strength [fem (2) 4.30E+07 Pa
where:

factor related to time|f cc (2) 1.00E+00
elastic modulus Eon@) 3.20E+06 Pa

Table 53:Material Properties of Concrete in Old Deck at Time t = 28 days.

Since the prestress in new deck is applied all in one step at time t = 7 days, material properties of concrete in new
deck at time t = 7 days is required, see Table 54.

characteristic strength f ek 4.50E+07 Pa
compression strength \fem 5.30E+07 Pa
elastic modulus Ecn 3.60E+10 Pa
characteristic strength f ek (1) 4.50E+07 Pa
mean compression strength fem (1) 5.37E+07 Pa
where:
factor related to time (£ cc (2) 1.01E+00

elastic modulus Eon(®) 3.61E+10 Pa

Table 54:Material Properties of Concrete in New Deck at Time t = 7 days.
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A8.4 Realistic Model 2

The sketch of Realistic Model 2 has been shown in Section 7.4.1. The input data is shown in Chapter 5. The material
properties applied to the expressions are calculated by the input data and the expressions in Appendix A4 and
Appendix AS. The prestress loss are calculated by the expressions in Appendix A6.

Dimensions of Simplified Model 2 are shown in Table 55 to Table 57.

height of cross-section h 0.70 m
width of cross-section b 1041 m
length of structure L 4240 m
Table 55:Dimensions of Old Deck in Simplified Model 2.

height of cross-section h 0.70 m
width of cross-section b -0.000092x +11.8 m
width of cross-section b 0.000092x +7.9 m
length of structure L 4240 m

*x is the distance from certain point to the ends of the deck in [mm), see Figure 71 and Figure 72.

Table 56:Dimensions of New Deck in Simplified Model 2.

height of cross-section h 0.70 m
width of cross-section b 0.50 m
length of structure L 4240 m

Table 57:Dimensions of Connection in Simplified Model 2.
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Figure 71:Sketch of Top View of Half Deck 1. Figure 72:Sketch of Top View of Half Deck 2.
Material properties of prestressing cables in old deck and new deck are shown in Table 58 and Table 59.
elastic modulus E, 1.95E+11 Pa
area of prestressing cable A, 1.80E-03 m’
number of prestressing cable n 25
area of prestressing cables Ap 4.50E-02 m’
ratio of area Pp -
eccentricity ep 0.00 m

*The ratio of prestress is not shown because it is a function of x.

Table 58:Material Properties of Prestressing Cables in Old Deck.
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elastic modulus E, 1.95E+11 Pa
area of prestressing cable A, 2.85E-03 m’
number of prestressing cable n 14
area of prestressing cables Ap 3.99E-02 m’
ratio of area Py -
eccentricity e, 0.00 m

*The ratio of prestress is not shown because it is a function of x.
Table 59:Material Properties of Prestressing Cables in New Deck.
Since the prestress in old decks is applied in three steps at time t = 3 days, t = 7 days and t = 28 days respectively

(Herepoort, 2007, p. 25), material properties of concrete in old deck at time t = 3 days, t = 7 days and t = 28 days
are required, see Table 60, Table 61 and Table 62.

characteristic strength \f ek 3.50E+07 Pa
compression strength f em 4.30E+07 Pa
elastic modulus Ecm 3.40E+10 Pa
characteristic strength \f ek (2) 3.50E+07 Pa
mean compression strength fem (1) 5.48E+07 Pa
where:
factor related to time | cc(2) 1.28E+00
elastic modulus Eun®) 2.91E+10 Pa
Table 60:Material Properties of Concrete in Old Deck at Time t = 3 days.
characteristic strength \f ek 3.50E+07 Pa
compression strength \fem 4.30E+07 Pa
elastic modulus Ecm 3.40E+10 Pa
characteristic strength ek (2) 3.35E+07 Pa
mean compression strength fem (1) 3.35E+07 Pa
where:
factor related to time|f . () 7.79E-01
elastic modulus Econ(t) 3.15E+10 Pa
Table 61:Material Properties of Concrete in Old Deck at Time t = 7 days.
characteristic strength \f ek 3.50E+07 Pa
compression strength \fem 4.30E+07 Pa
elastic modulus Eon 3.40E+10 Pa
characteristic strength \f ek (1) 3.50E+07 Pa
mean compression strength fem (2) 4.30E+07 Pa
where:
factor related to time|f - (%) 1.00E+00
elastic modulus Ecn(?) 3.20E+06 Pa

Table 62:Material Properties of Concrete in Old Deck at Time t = 28 days.

Since the prestress in new deck is applied all in one step at time t = 7 days, material properties of concrete in new
deck at time t = 7 days is required, see Table 63.
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characteristic strength f ek 4.50E+07 Pa
compression strength \f em 5.30E+07 Pa
elastic modulus Ecn 3.60E+10 Pa
characteristic strength f ek (1) 4.50E+07 Pa
mean compression strength fem (1) 5.37E+07 Pa
where:
factor related to time (£ cc (2) 1.01E+00

elastic modulus Eon(®) 3.61E+10 Pa

Table 63:Material Properties of Concrete in New Deck at Time t = 7 days.
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A9 Calculation of Prestress Loss (Old Deck)

A9.1 General

As shown in Appendix A7, to investigate whether it is proper or not to calculate imposed deformation and remaining
prestressing force as if the prestressing force is applied all in one step at time t = 7 days instead of three steps at
time t = 3 days, t = 7 days and t = 28 days, imposed deformation and prestress loss in old decks are calculated in
Appendix A7 by both three steps and all in one step. Hereby summarized the data of the calculation carried out in
Appendix A7.

The difference between three steps and all in one step is that, for three steps, prestress loss between the steps has to
be compensated. Therefore the increment of prestressing force applied to old decks in each step has to be calculated,
see Appendix A10.

A9.2 All in One Step (Old Deck)

Hereby summarized the remaining prestressing force and prestress loss calculated by all in one step, see Table 64
and Table 65. The detailing data of the calculation is shown in Appendix A9.2.1 and Appendix A9.2.2. Since
prestressing force is applied all in one step, the prestress loss in Table 64 and Table 65 is same as those shown in
Appendix A9.2.1 and Appendix A9.2.2 respectively.

initial prestressing force per cable P oo 2.52E+06 N
mean clastic loss per cable AP cimean 4.63E+04 N
firction loss per cable AP, (x) 1.96E+05 N
shrinkage loss of per cable AP snr (1) 8.05E+04 N
creep loss of per cable AP o (1) 8.91E+04 N
relaxation loss per cable AP (1) 9.24E+04 N
final prestressing force per cable P o 2.02E+06 N

Table 64:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time t = 11 years.

initial prestressing force per cable P o 2.52E+06 N
mean elastic loss per cable AP e mean 4.63E+04 N
firction loss per cable AP, (x) 1.96E+05 N
shrinkage loss of per cable AP g (1) 8.05E+04 N
creep loss of per cable AP (1) 8.91E+04 N
relaxation loss per cable AP (1) 9.24E+04 N
final prestressing force per cable P 2.02E+06 N
final prestressing force of cables P 4.93E+07 N
stress resulting from prestresing G poo 6.76E+06 Pa

Table 65:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step attime t = 111 years.
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A9.2.1 Calculation Related to Py,_, (t, = 11 years + 29 days)
P, 7, represents the prestressing force applied all in one step from time ¢ = 7 days to t = 11 years + 29 days.

initial prestressing force

original increment per cable AP yax,1 2.52E+06 N
where:
initial prestressing force per cable|P ., 2.52E+06 N

Table 66:Immediate Loss of Step 1 from Time t = 7 days to Time t = 11 years + 29 days.

elastic loss

mean elastic loss per cable AP et mean () 4.63E+04 N
where:
factor related to number of tendon|;/ 0.48
initial prestressing force per cable|P ., 2.52E+06 N
variation of prestress |46 ¢ mean 8.66E+06 N/m’

Table 67:Elastic Loss of Step 1 from Time t = 7 days to Time t = 11 years + 29 days.

friction loss

firction loss per cable AP, (x) 1.96E+05 N
where:
factor of friction|u 0.19
angular rotation |6 0.21 rad
wobble effect|k 0.01 rad/m

Table 68:Friction Loss of Step 1 from Time t = 7 days to Time t = 11 years + 29 days.
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shrinkage loss

shrinkage loss of cables AP g1 (1) 2.01E+06 N
shrinkage loss of per cable AP gr (1) 8.05E+04 N
where:
shrinkage | € ¢s 2.29E-04 m/m
final drying shrinkage |€ cq (1) 1.78E-04 m/m
initial drying shrinkage & cq.0 3.00E-04 m/m
factor related to cement Aot 4.00
O ds2 0.12
factor|femo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor |f r 0.90
factor related to notional size |k 0.70
factor|f s (4ts) 0.86
factor|f s (tp.ts) 0.01
time at the end of curing|# 1.00 days
final autogenous shrinkage | cq (2) 5.12E-05 m/m
initial autogenous shrinkage | ¢4 (0) 6.25E-05 m/m
factor £ us () 1.00
factor|fas (ts) 0.18

Table 69:Shrinkage Loss of Step 1 from Time t = 3 days to Time t = 11 years + 29 days.

creep loss
creep loss of per cable AP (1) 8.91E+04 N
where:
creep strain at ends | € ccmean (1) 2.54E-04 m/m

Table 70:Creep Loss of Step 1 from Time t = 7 days to Time t = 11 years + 29 days.

relaxation loss

relaxation loss per cable AP (1) 9.24E+04 N
where:
variation of prestress |40 5.13E+07 Pa
initial prestress per cable|o pi 1.40E+09 Pa
factor |u 0.75
relaxation loss at 1000 hrs|p 7000 250 %

Table 71:Relaxation Loss of Step 1 from Time t = 7 days to Time t = 11 years + 29 days.
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A9.2.2  Calculation Related to Py 7_; (t,, = 111 years)
P, 7., represents the prestressing force applied in all in one step from time ¢ = 7 days to t = 111 years.

initial prestressing force

original increment per cable AP yax,1 2.52E+06 N
where:
initial prestressing force per cable|P ., 2.52E+06 N

Table 72:Immediate Loss of Step 1 from Time t = 7 days to Time t = 111 years.

elastic loss

mean elastic loss per cable AP et mean () 4.63E+04 N
where:
factor related to number of tendon|;/ 0.48
initial prestressing force per cable|P ., 2.52E+06 N
variation of prestress |46 ¢ mean 8.66E+06 N/m’

Table 73:Elastic Loss of Step 1 from Time t = 7 days to Time t = 111 years.

friction loss

firction loss per cable AP, (x) 1.96E+05 N
where:
factor of friction|u 0.19
angular rotation |6 0.21 rad
wobble effect|k 0.01 rad/m

Table 74:Friction Loss of Step 1 from Time t = 7 days to Time t = 111 years.
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shrinkage loss

shrinkage loss of cables AP g1 (1) 2.25E+06 N
shrinkage loss of per cable AP gr (1) 8.98E+04 N
where:
shrinkage | € ¢s 2.56E-04 m/m
final drying shrinkage |€ cq (1) 2.05E-04 m/m
initial drying shrinkage & cq.0 3.00E-04 m/m
factor related to cement st 4.00
A ds2 0.12
factor|femo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor |f r 0.90
factor related to notional size |k 0.70
factor|f s (4ts) 0.98
factor|f s (tp.ts) 0.01
time at the end of curing|# 1.00 days
final autogenous shrinkage | cq (2) 5.12E-05 m/m
initial autogenous shrinkage | ¢4 (0) 6.25E-05 m/m
factor £ us () 1.00
factor|fas (ts) 0.18
Table 75:Shrinkage Loss of Step 1 from Time t = 3 days to Time t = 111 years.
creep loss
creep loss of per cable AP (1) 9.63E+04 N
where:

creep strain at ends | € ccmean (1) 2.75E-04 m/m

Table 76:Creep Loss of Step 1 from Time t = 7 days to Time t = 111 years.

relaxation loss

relaxation loss per cable AP (1) 1.25E+05 N
where:
variation of prestress |40 6.95E+07 Pa
initial prestress per cable|o pi 1.40E+09 Pa
factor |u 0.75
relaxation loss at 1000 hrs|p 7000 250 %

Table 77:Relaxation Loss of Step 1 from Time t = 7 days to Time t = 111 years.
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A9.3 Three Steps (Old Deck)

Hereby summarized the remaining prestressing force and prestress loss calculated by three steps, see Table 78 and
Table 79. The detailing data of the calculation is shown in Appendix A9.3.1 to Appendix A9.3.6.

As for Table 78, mean elastic loss, friction loss and creep loss are the summation of those shown in Appendix A9.3.1
to Appendix A9.3.3 while shrinkage loss and relaxation loss are only from Appendix A9.3.3. Similarly, when it
comes to Table 79, mean elastic loss, friction loss and creep loss are the summation of those shown in Appendix
A9.3.4 to Appendix A9.3.6 while shrinkage loss and relaxation loss are only from Appendix A9.3.6.

initial prestressing force per cable P o 2.65E+06 N
mean elastic loss per cable AP e mean 4.78E+04 N
firction loss per cable AP, (x) 2.06E+05 N
shrinkage loss of per cable AP (1) 7.83E+04 N
creep loss of per cable AP o (1) 8.72E+04 N
relaxation loss per cable AP (1) 9.23E+04 N
final prestressing force per cable P 2.14E+06 N
Table 78:Prestress Loss and Remaining Prestressing Force Calculated by Three Steps at time t = 11 years.
initial prestressing force per cable P o 2.65E+06 N
mean elastic loss per cable AP cimean 4.78E+04 N
firction loss per cable AP, (x) 2.06E+05 N
shrinkage loss of per cable AP () 8.76E+04 N
creep loss of per cable AP o (1) 9.42E+04 N
relaxation loss per cable AP (t) 1.25E+05 N
final prestressing force per cable P 2.09E+06 N
final prestressing force of cables P o 5.22E+07 N
stress resulting from prestresing G poo 7.16E+06 Pa

Table 79:Prestress Loss and Remaining Prestressing Force Calculated by Three Steps at time t = 111 years.
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A9.3.1 Calculation Related to Py3_; (t, = 11 years + 29 days)

P, 5, represents the prestressing force applied in the first of three steps, or in short Step 1, from ¢t = 3 days to t =
11 years.

initial prestressing force

original increment per cable AP ymax,1 5.05E+05 N
where:
initial prestressing force per cable|P ., 5.05E+05 N

Table 80:Immediate Loss of Step 1 from Time t = 3 days to Time t = 11 years + 29 days.

elastic loss

mean elastic loss per cable AP et mean () 1.00E+04 N
where:
factor related to number of tendon|;/ 0.48
initial prestressing force per cable|P ., 5.05E+05 N
variation of prestress |46 ¢; mean 1.73E+06 N/m’

Table 81:Elastic Loss of Step 1 from Time t = 3 days to Time t = 11 years + 29 days.

friction loss

firction loss per cable AP, (x) 3.93E+04 N
where:
factor of friction|u 0.19
angular rotation |6 0.21 rad
wobble effect|k 0.01 rad/m

Table 82:Friction Loss of Step 1 from Time t = 3 days to Time t = 11 years + 29days.
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shrinkage loss

shrinkage loss of cables AP g (1) 2.02E+06 N
shrinkage loss of per cable AP spr () 8.10E+04 N
where:
shrinkage | € ¢s 2.31E-04 m/m
final drying shrinkage |& ¢4 () 1.80E-04 m/m
initial drying shrinkage & cq.0 3.00E-04 m/m
factor related to cement Aot 4.00
O ds2 0.12
factor|femo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor |f r 0.90
factor related to notional size |k 0.70
factor|f s (t,ts) 0.86
factor|f s (tp.ts) 0.00
time at the end of curing|# 1.00 days
final autogenous shrinkage |€ ca (2) 5.12E-05 m/m
initial autogenous shrinkage | € cq (0) 6.25E-05 m/m
factor ([ us (2) 1.00
factor|f as (ts) 0.18

Table 83:Shrinkage Loss of Step 1 from Time t = 3 days to Time t = 11 years + 29days.

creep loss
creep loss of per cable AP (1) 2.26E+04 N
where:
creep strain at ends | € ccmean (1) 6.44E-05 m/m

Table 84:Creep Loss of Step 1 from Time t = 3 days to Time t = 11 years + 29 days.

relaxation loss

relaxation loss per cable AP, (1) 6.06E+02 N
where:
variation of prestress |40 3.36E+05 Pa
initial prestress per cable|o pi 2.81E+08 Pa
factor|u 0.15
relaxation loss at 1000 hrs|p 7000 250 %

Table 85:Relaxation Loss of Step 1 from Time t = 3 days to Time t = 11 years + 29 days.
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A9.3.2 Calculation Related to P,;_, (t,, = 11 years + 29 days)

P, 7, represents the prestressing force applied in the second of three steps, or in short Step 2, from time ¢ = 7 days
tot = 11 years.

initial prestressing force

original increment per cable AP a2 1.05E+06 N
where:
initial prestressing force per cable|P ., 1.05E+06 N

Table 86:Immediate Loss of Step 2 from Time t = 7 days to Time t = 11 years + 29 days.

elastic loss

mean elastic loss per cable AP o1, mean (1) 1.92E+04 N
where:
factor related to number of tendon|/ 0.48
initial prestressing force per cable|P .o 1.05E+06 N
variation of prestress |46 ¢ mean 3.60E+06 N/m’

Table 87:Elastic Loss of Step 2 from Time t = 7 days to Time t = 11 years + 29 days.

friction loss

firction loss per cable AP, (x) 8.15E+04 N
where:
factor of friction|u 0.19
angular rotation| 8 0.21 rad
wobble effect|k 0.01 rad/m

Table 88:Friction Loss of Step 2 from Time t = 7 days to Time t = 11 years + 29 days.
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shrinkage loss of cables AP g1 (1) 2.01E+06 N
shrinkage loss of per cable AP gr (1) 8.05E+04 N
where:
shrinkage | € ¢s 2.29E-04 m/m
final drying shrinkage |€ cq (1) 1.78E-04 m/m
initial drying shrinkage & cq.0 3.00E-04 m/m
factor related to cement Aot 4.00
O ds2 0.12
factor|femo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor |f r 0.90
factor related to notional size |k 0.70
factor|f s (4ts) 0.86
factor|f s (tp.ts) 0.01
time at the end of curing|# 1.00 days
final autogenous shrinkage | cq (2) 5.12E-05 m/m
initial autogenous shrinkage | ¢4 (0) 6.25E-05 m/m
factor £ us () 1.00
factor|fas (ts) 0.18

Table 89:Shrinkage Loss of Step 2 from Time t = 7 days to Time t = 11 years + 29 days.

creep loss
creep loss of per cable AP o (1) 3.70E+04 N
where:
creep strain at ends | € ccmean () 1.06E-04 m/m

Table 90:Creep Loss of Step 2 from Time t = 7 days to Time t = 11 years + 29 days.

relaxation loss

relaxation loss per cable AP (1) 1.00E+04 N
where:
variation of prestress |40 - 5.57E+06 Pa
initial prestress per cable|o pi 8.41E+08 Pa
factor|u 0.45
relaxation loss at 1000 hrs|p ;000 2.50 %

Table 91:Relaxation Loss of Step 2 from Time t = 7 days to Time t = 11 years + 29 days.
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A9.3.3 Calculation Related to P3,5_; (t, = 11 years + 29 days)

P 58t represents the prestressing force applied in the third of three steps, or in short Step 3, from time ¢ = 28 days

tot = 11 years.

initial prestressing force

original increment per cable AP yav3 1.09E+06 N
where:
initial prestressing force per cable|P ., 1.09E+06 N

Table 92:Immediate Loss of Step 3 from Time t = 28 days to Time t = 11 years + 29 days.

elastic loss

mean elastic loss per cable AP o1, mean (1) 1.88E+04 N
where:
factor related to number of tendon|/ 0.48
initial prestressing force per cable|P .o 1.11E+06 N
variation of prestress |46 ¢ mean 3.75E+06 N/m’

Table 93:Elastic Loss of Step 3 from Time t = 28 days to Time t = 11 years + 29 days.

friction loss

firction loss per cable AP, (x) 8.51E+04 N
where:
factor of friction|u 0.19
angular rotation| 8 0.21 rad
wobble effect|k 0.01 rad/m

Table 94:Friction Loss of Step 3 from Time t = 28 days to Time t = 11 years + 29 days.
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shrinkage loss

shrinkage loss of cables AP g (1) 1.96E+06 N
shrinkage loss of per cable AP spr () 7.83E+04 N
where:
shrinkage [ & s 2.23E-04 m/m
final drying shrinkage |€ cq (1) 1.72E-04 m/m
initial drying shrinkage & cq.0 3.00E-04 m/m
factor related to cement Aot 4.00
A ds2 0.12
factor|femo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor |f r 0.90
factor related to notional size |k 0.70
factor|f s (4ts) 0.86
factor|f s (tp.ts) 0.04
time at the end of curing|# 1.00 days
final autogenous shrinkage | cq (2) 5.12E-05 m/m
initial autogenous shrinkage | ¢4 (0) 6.25E-05 m/m
factor £ us () 1.00
factor|fas (ts) 0.18
Table 95:Shrinkage Loss of Step 3 from Time t = 28 days to Time t = 11 years + 29 days.
creep loss
creep loss of per cable AP (1) 2.79E+04 N
where:

creep strain at ends | € ccmean (1) 7.94E-05 m/m

Table 96:Creep Loss of Step 3 from Time t = 28 days to Time t = 11 years + 29 days.

relaxation loss

relaxation loss per cable AP (1) 9.23E+04 N
where:
variation of prestress |40 - 5.13E+07 Pa
initial prestress per cable|o pi 1.40E+09 Pa
factor|u 0.75
relaxation loss at 1000 hrs|p ;000 2.50 %

Table 97:Relaxation Loss of Step 3 from Time t = 28 days to Time t = 11 years + 29 days.
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A9.3.4  Calculation Related to P;3_; (t, = 111 years)

P, 5, represents the prestressing force applied in the first of three steps, or in short Step 1, from time ¢ = 3 days to
t = 111 years.

immediate loss

original increment per cable AP v, 1 5.05E+05 N
where:
initial prestressing force per cable|P ., 5.05E+05 N

Table 98:Immediate Loss of Step 1 from Time t = 3 days to Time t = t,, days.

elastic loss

mean elastic loss per cable AP o1, mean (1) 1.00E+04 N
where:
factor related to number of tendon|/ 0.48
initial prestressing force per cable|P .o 5.05E+05 N
variation of prestress |46 ¢ mean 1.73E+06 N/m’

Table 99:Elastic Loss of Step 1 from Time t = 3 days to Time t = t,, days.

friction loss

firction loss per cable AP, (x) 3.93E+04 N
where:
factor of friction|u 0.19
angular rotation |6 0.21 rad
wobble effect|k 0.01 rad/m
Table 100:Friction Loss of Step 1 from Time t = 3 days to Time t = t,, days.
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shrinkage loss

shrinkage loss of cables AP (1) 2.26E+06 N
shrinkage loss of per cable AP i (1) 9.03E+04 N
where:
shrinkage [ & ¢ 2.57E-04 m/m
final drying shrinkage |€ ¢ (2) 2.06E-04 m/m
initial drying shrinkage (€ cq0 3.00E-04 m/m
factor related to cement At 4.00
O ds2 0.12
factor|f emo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor | r 0.90
factor related to notional size |k 5 0.70
factor|f s (t,15) 0.98
factor|f i (tp.ts) 0.00
time at the end of curing|7 1.00 days
final autogenous shrinkage |& cq (2) 5.12E-05 m/m
initial autogenous shrinkage | & ¢, (o0) 6.25E-05 m/m
factor ([ as (1) 1.00
factor|f as (s) 0.18

Table 101:Shrinkage Loss of Step 1 from Time t

= 3daystoTimet = t, days.

creep loss
creep loss of per cable AP (1) 2.44E+04 N
where:
creep strain|é& ¢ () 6.95E-05 m/m
Table 102:Creep Loss of Step 1 from Time t = 3 days to Time t = t,, days.
relaxation loss
relaxation loss per cable AP (1) 1.72E+03 N
where:
variation of prestress|4o p, 9.56E+05 Pa
initial prestress per cable|o pi 2.81E+08 Pa
factor|u 0.15
relaxation loss at 1000 hrs|p ;000 2.50 %

Table 103:Relaxation Loss of Step 1 from Time t = 3 days to Time t = t,, days.
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A9.3.5 Calculation Related to P,;_; (t, = 111 years)

P, 7, represents the prestressing force applied in the second of three steps, or in short Step 2, from time ¢ = 7 days
tot = 111 years.

immediate loss

original increment per cable AP a2 1.05E+06 N
where:
initial prestressing force per cable|P ., 1.05E+06 N

Table 104:Immediate Loss of Step 2 from Time t = 7 days to Time t = t,, days.

elastic loss

mean elastic loss per cable AP o1, mean (1) 1.92E+04 N
where:
factor related to number of tendon|/ 0.48
initial prestressing force per cable|P .o 1.05E+06 N
variation of prestress |46 ¢ mean 3.60E+06 N/m’

Table 105:Elastic Loss of Step 2 from Time t = 7 days to Time t = t,, days.

friction loss

firction loss per cable AP, (x) 8.15E+04 N
where:
factor of friction|u 0.19
angular rotation |6 0.21 rad
wobble effect|k 0.01 rad/m
Table 106:Friction Loss of Step 2 from Time t = 7 days to Time t = t,, days.
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shrinkage loss

shrinkage loss of cables AP (1) 2.25E+06 N
shrinkage loss of per cable AP i (1) 8.98E+04 N
where:
shrinkage [ & ¢ 2.56E-04 m/m
final drying shrinkage |€ ¢ (2) 2.05E-04 m/m
initial drying shrinkage (€ cq0 3.00E-04 m/m
factor related to cement At 4.00
O ds2 0.12
factor|f emo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor | r 0.90
factor related to notional size |k 5 0.70
factor|f s (t,15) 0.98
factor|f i (tp.ts) 0.01
time at the end of curing|7 1.00 days
final autogenous shrinkage |& cq (2) 5.12E-05 m/m
initial autogenous shrinkage | & ¢, (o0) 6.25E-05 m/m
factor ([ as (1) 1.00
factor|f as (s) 0.18

Table 107:Shrinkage Loss of Step 2 from Time t = 7 days to Time t = t,, days.

creep loss
creep loss of per cable AP (1) 4.00E+04 N
where:
creep strain|é& ¢ () 1.14E-04 m/m
Table 108:Creep Loss of Step 2 from Time t = 7 days to Time t = t,, days.
relaxation loss
relaxation loss per cable AP (1) 1.97E+04 N
where:
variation of prestress 4o 1.09E+07 Pa
initial prestress per cable|o pi 8.41E+08 Pa
factor|u 045
relaxation loss at 1000 hrs|p 7000 2.50 %

Table 109:Relaxation Loss of Step 2 from Time t = 7 days to Time t = t,, days.
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A9.3.6  Calculation Related to P3,5_; (t, = 111 years)

P 58t represents the prestressing force applied in the third of three steps, or in short Step 3, from time ¢ = 28 days
tot = 111 years.

immediate loss

original increment per cable AP a3 1.09E+06 N
where:
initial prestressing force per cable|pP 1.09E+06 N

Table 110: Immediate Loss of Step 3 from Time t = 28 days to Time t = t,, days.

elastic loss

mean elastic loss per cable AP el mean (1) 1.86E+04 N
where:
factor related to number of tendon|/ 0.48
initial prestressing force per cable|P ., 1.09E+06 N
variation of prestress |46 o/ mean 3.75E+06 N/m’

Table 111:Elastic Loss of Step 3 from Time t = 28 days to Time t = t,, days.

friction loss

firction loss per cable AP 4, (x) 8.51E+04 N
where:
factor of friction|u 0.19
angular rotation|6 0.21 rad
wobble effect|k 0.01 rad/m
Table 112:Friction Loss of Step 3 from Time t = 28 days to Time t = t,, days.
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shrinkage loss

shrinkage loss of cables AP s (1) 2.19E+06 N
shrinkage loss of per cable AP s (1) 8.76E+04 N
where:
shrinkage | & ¢s 2.50E-04 m/m
final drying shrinkage|€ cq(?) 1.99E-04 m/m
initial drying shrinkage|& cq,0 3.00E-04 m/m
factor related to cement dst 4.00
O ds2 0.12
factor |f cmo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor|f rer 0.90
factor related to notional size |k 5 0.70
factor|f i (t,ts) 0.98
factor|B s (tp,ts) 0.04
time at the end of curing|z, 1.00 days
final autogenous shrinkage |& cq (2) 5.12E-05 m/m
initial autogenous shrinkage | & cq (o0) 6.25E-05 m/m
factor|f as () 1.00
factor|f as (ts) 0.18
Table 113:Shrinkage Loss of Step 3 from Time t = 28 days to Time t = t,, days.
creep loss
creep loss of per cable AP (1) 2.98E+04 N
where:
creep strain|& cc (1) 8.49E-05 m/m
Table 114:Creep Loss of Step 3 from Time t = 28 days to Time t = t,, days.
relaxation loss
relaxation loss per cable AP (1) 1.25E+05 N
where:
variation of prestress |40 6.95E+07 Pa
initial prestress per cable|o pi 1.40E+09 Pa
factor|u 0.75
relaxation loss at 1000 hrs|p 7000 2.50 %

Table 115:Relaxation Loss of Step 3 from Time t = 28 days to Time t = t,, days.
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Al10 Calculation of Increment of Prestressing Force Applied in Each Step
(Old Deck)

A10.1 Calculation of AP, 3_; (Old Deck)

AP, 5_; represents the prestress loss of Step 1 which appears between Step 1 and Step 2 from time t = 3 daysto t =
7 days. As shown in Appendix A7.1, prestressing force in old deck at the end of Step 1 is P; = 505 kN. Therefore,
the original increment of prestressing force in Step 1 is as follow:

AP,y 1 = 505 KN

Then AP, 5_; is as follow:
APy3_7 = APy pmean + AP, + AP, + AP, + APy, /n = 40 KN (42)

initial prestressing force

original increment per cable AP a1 5.05E+05 N
where:
initial prestressing force per cable|P ., 5.05E+05 N

Table 116:Immediate Loss of Step 1 from Time t = 3 days to Time t = 7 days.

elastic loss

mean elastic loss per cable AP et mean (1) 1.00E+04 N
where:
factor related to number of tendon|;/ 0.48
initial prestressing force per cable|P ., 5.05E+05 N
variation of prestress (46 ¢/ mean 1.73E+06 N/m’

Table 117:Elastic Loss of Step 1 from Time t = 3 days to Time t = 7 days.

friction loss

firction loss per cable AP, (0) 2.01E+04 N
where:
factor of friction|u 0.19
angular rotation |8 0.21 rad
wobble effect|k 0.01 rad/m
Table 118:Friction Loss of Step 1 from Time t = 3 days to Time t = 7 days.
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shrinkage loss

shrinkage loss of cables AP g (1) 1.37E+05 N
shrinkage loss of per cable AP g (2) 547E+03 N
where:
shrinkage | & s 1.56E-05 m/m
final drying shrinkage |& ¢4 () 1.23E-06 m/m
initial drying shrinkage & cq.0 3.00E-04 m/m
factor related to cement Aot 4.00
O ds2 0.12
factor|femo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor |f r 0.90
factor related to notional size |k 0.70
factor|f s (t,ts) 0.01
factor|f s (tp.ts) 0.00
time at the end of curing|# 1.00 days
final autogenous shrinkage |€ ca (2) 1.44E-05 m/m
initial autogenous shrinkage | € cq (0) 6.25E-05 m/m
factor ([ us (2) 041
factor|f as (ts) 0.18
Table 119:Shrinkage Loss of Step 1 from Time ¢t = 3 days to Time t = 7 days.
creep loss
creep loss of per cable AP (1) 4.29E+03 N
where:
creep strain at ends | € ccmean (2) 1.22E-05 m/m
Table 120:Creep Loss of Step 1 from Time t = 3 days to Time t = 7 days.
relaxation loss
relaxation loss per cable AP (1) 7.39E+00 N
where:
variation of prestress |40 4.11E+03 Pa
initial prestress per cable|o pi 2.81E+08 Pa
factor|u 0.15
relaxation loss at 1000 hrs|p 7000 250 %

Table 121:Relaxation Loss of Step 1 from Time t = 3 days to Time t = 7 days.
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A10.2 Calculation of AP, 3_,g (Old Deck)

AP, 5_,g represents the prestress loss of Step 1 which appears between Step 1 and Step 3 from time t = 3 days to
t = 28 days. As shown in Appendix A7.1, prestressing force in old deck at the end of Step 1 is P; = 505 kN.
Therefore, the original increment of prestressing force in Step 1 is as follow:

AP,4x1 = 505 KN
Then AP, 5_,g is as follow:

AP1'3_28 = APel,mean + APH + APCT' + ARr + APShr/n = 51 kN (43)

initial prestressing force

original increment per cable AP a1 5.05E+05 N
where:
initial prestressing force per cable|P ., 5.05E+05 N

Table 122:Immediate Loss of Step 1 from Time t = 3 days to Time t = 28 days.

elastic loss

mean elastic loss per cable AP o1, mean (1) 1.00E+04 N
where:
factor related to number of tendon|;/ 0.48
initial prestressing force per cable|P ., 5.05E+05 N
variation of prestress |40 ¢ mean 1.73E+06 N/m’

Table 123:Elastic Loss of Step 1 from Time t = 3 days to Time t = 28 days.

friction loss

firction loss per cable AP, (0) 2.01E+04 N
where:
factor of friction|u 0.19
angular rotation|6 0.21 rad
wobble effect|k 0.01 rad/m
Table 124:Friction Loss of Step 1 from Time t = 3 days to Time t = 28 days.
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shrinkage loss

shrinkage loss of cables AP g (1) 3.24E+05 N
shrinkage loss of per cable AP g (2) 1.30E+04 N
where:
shrinkage | & s 3.70E-05 m/m
final drying shrinkage |€ cq (1) 7.49E-06 m/m
initial drying shrinkage & cq.0 3.00E-04 m/m
factor related to cement Aot 4.00
O ds2 0.12
factor|femo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor |f r 0.90
factor related to notional size |k 0.70
factor|f s (4ts) 0.04
factor|f s (tp.ts) 0.00
time at the end of curing|# 1.00 days
final autogenous shrinkage | cq (2) 2.95E-05 m/m
initial autogenous shrinkage | ¢4 (0) 6.25E-05 m/m
factor £ us () 0.65
factor|fas (ts) 0.18
Table 125:Shrinkage Loss of Step 1 from Time t = 3 days to Time t = 28 days.
creep loss
creep loss of per cable AP (1) 7.40E+03 N
where:
creep strain at ends | € ccend (2) 2.11E-05 m/m
Table 126:Creep Loss of Step 1 from Time t = 3 days to Time t = 7 days.
relaxation loss
relaxation loss per cable AP (1) 2.37E+01 N
where:
variation of prestress |40 1.32E+04 Pa
initial prestress per cable|o pi 2.81E+08 Pa
factor|u 0.15
relaxation loss at 1000 hrs|p 7000 250 %

Table 127:Relaxation Loss of Step 1 from Time t = 3 days to Time t = 7 days.
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A10.3 Calculation of AP, ;_,g (Old Deck)

AP, ;_,g represents the prestress loss of Step 2 which appears between Step 2 and Step 3 from time ¢t = 7 days to
t = 28 days. As shown in Appendix A7.1, prestressing force in old deck at the end of Step 2 is P, = 1514 kN.

Therefore, the original increment of prestressing force in Step 2 is as follow:

APmaxyZ = Pz - P1 + AP1'3_7 = 1049 kN

Then AP, ;_,g is as follow:

AP2‘7_28 = APel,‘mean + APH + APCT' + APr + APS/n = 86 kN

initial prestressing force

original increment per cable AP a2 1.05E+06 N
where:
initial prestressing force per cable|P ., 1.05E+06 N

Table 128:Immediate Loss of Step 2 from Time t = 7 days to Time t = 28 days.

elastic loss

mean elastic loss per cable AP o1, mean (1) 1.92E+04 N
where:
factor related to number of tendon|;/ 0.48
initial prestressing force per cable|P ., 1.05E+06 N
variation of prestress |40 ¢ mean 3.60E+06 N/m’

Table 129:Elastic Loss of Step 2 from Time t = 7 days to Time t = 28 days.

friction loss

firction loss per cable AP, (0) 4.18E+04 N
where:
factor of friction|u 0.19
angular rotation|6 0.21 rad
wobble effect|k 0.01 rad/m

Table 130:Friction Loss of Step 2 from Time t = 7 days to Time t = 28 days.
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shrinkage loss

shrinkage loss of cables AP g (1) 3.14E+05 N
shrinkage loss of per cable AP gr (1) 1.25E+04 N
where:
shrinkage | & s 3.57E-05 m/m
final drying shrinkage |€ cq (1) 6.25E-06 m/m
initial drying shrinkage & cq.0 3.00E-04 m/m
factor related to cement Aot 4.00
O ds2 0.12
factor|femo 1.00E+07 Pa
factor|RH ¢ 100.00 %
factor |f r 0.90
factor related to notional size |k 0.70
factor|f s (4ts) 0.04
factor|f s (tp.ts) 0.01
time at the end of curing|# 1.00 days
final autogenous shrinkage | cq (2) 2.95E-05 m/m
initial autogenous shrinkage | ¢4 (0) 6.25E-05 m/m
factor £ us () 0.65
factor|fas (ts) 0.18
Table 131:Shrinkage Loss of Step 2 from Time t = 7 days to Time t = 28 days.
creep loss
creep loss of per cable AP o (1) 1.15E+04 N
where:
creep strain at ends | € ccend (2) 3.28E-05 m/m
Table 132:Creep Loss of Step 2 from Time t = 7 days to Time t = 28 days.
relaxation loss
relaxation loss per cable AP (1) 1.15E+03 N
where:
variation of prestress |40 6.42E+05 Pa
initial prestress per cable|o pi 8.41E+08 Pa
factor|u 0.45
relaxation loss at 1000 hrs|p 7000 250 %

Table 133:Relaxation Loss of Step 2 from Time t = 7 days to Time t = 28 days.
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A10.4 Increment of Prestressing Force Applied in Each Step

As shown in Appendix A7.1, prestressing force in old deck at the end of Step 1 is P; = 505 kN. Therefore, the
original increment of prestressing force in Step 1 is as follow:

APyqyq = 505 kN

As shown in Appendix A7.1, prestressing force in old deck at the end of Step 2 is P, = 1514 kN. Prestress loss
between Step 1 and Step 2 has to be compensated. The compensation is as follow:

AP1’3_7 = 40 kN
Therefore, the original increment of prestressing force in Step 2 is as follow:
APpay2 = P, — Py + APy 5;_; = 1049 kN

As shown in Appendix A7.1, prestressing force in old deck at the end of Step 3 is P; = 2524 kN. Prestress loss
between Step 2 and Step 3 has to be compensated. The compensation is as follow:

(AP1,3—28 - APr,1,3—28) - (AP1,3—7 - APr,1,3—7) + (AP2,7—28 - APshr,2,7—28) =84 kN
Therefore, the original increment of prestressing force in Step 3 is as follow:

APpax3 =P3 — P, + (AP1,3—28 - APr,1,3—28) - (AP1,3—7 - APr,1,3—7) + (AP2,7—28 - APshr,2,7—28) = 1094 kN
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Al11.1 General

As shown in Appendix A7, the prestressing force is applied all in one step at time t = 7 days. Imposed deformation

Royal
HaskoningDHV

and prestress loss in new decks are calculated by all in one step.

The models used during investigation are Simplified Model 1 and Simplified Model 2, see Section 7.3.1 and Section
7.4.1. The input data is shown in Chapter 5. The material properties applied to the expressions are calculated by the
input data and the expressions in Appendix A4 and Appendix AS. The imposed deformation and prestress loss in old

Calculation of Prestress Loss (New Deck)

decks are calculated by the expressions in Appendix A6. Hereby summarized the data of the calculation.

Al11.2 Allin One Step (New Deck - South)

Hereby summarized the remaining prestressing force and prestress loss calculated by all in one step, see Table 134
and Table 135. The detailing data of the calculation is shown in Appendix A11.2.1 and Appendix A11.2.2. Since
prestressing force is applied all in one step, the prestress loss in Table 134 and Table 135 are same as those shown in

Appendix A11.2.1 and Appendix A11.2.2 respectively.

initial prestressing force per cable P 3.96E+06 N
mean clastic loss per cable AP eimean 5.88E+04 N
firction loss per cable AP, (x) 2.70E+05 N
shrinkage loss of per cable AP g (1) 3.38E+03 N
creep loss of per cable AP o (1) 5.97E+04 N
relaxation loss per cable AP (1) 5.14E+04 N
final prestressing force per cable P o 3.51E+06 N

Table 134:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time t =

11 years + 29 days.

initial prestressing force per cable P 3.96E+06 N
mean elastic loss per cable AP eimean 5.88E+04 N
firction loss per cable AP, (x) 2.70E+05 N
shrinkage loss of per cable AP g (1) 1.41E+05 N
creep loss of per cable AP (1) 1.90E+05 N
relaxation loss per cable AP (2) 1.90E+05 N
final prestressing force per cable P o 3.11E+06 N
final prestressing force of cables P 9.32E+06 N
stress resulting from prestresing G poo 8.32E+06 Pa

Table 135:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time t = 111 years.
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Al11.2.1 Calculation Related to Py,_, (t, = 11 years + 29 days)

P, 7, represents the prestressing force applied all in one step from time ¢ = 7 days to t = 11 years + 29 days.

immediate loss

original increment per cable AP jax 3.96E+06 N
where:
initial prestressing force per cable|P ., 3.96E+06 N

Table 136:Immediate Loss from Time t = 7 days to Time t = t,, days.

elastic loss

mean elastic loss per cable AP et mean () 5.88E+04 N
where:
factor related to number of tendon|;/ 0.33
initial prestressing force per cable|P ., 3.96E+06 N
variation of prestress |46 ¢ mean 1.06E+07 N/m’

Table 137:Elastic Loss from Time t = 7 days to Time t = t, days.

friction loss

firction loss per cable AP 4 (x) 2.70E+05 N
where:
factor of friction|u 0.19
angular rotation |8 0.16 rad
wobble effect|k 0.01 rad/m

Table 138:Friction Loss from Time t = 7 days to Time t = t,, days.
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shrinkage loss

shrinkage loss of cables AP gur (1) 8.45E+04 N
shrinkage loss of per cable AP g (1) 3.38E+03 N
where:
shrinkage [ & s 5.07E-05 m/m
final drying shrinkage |& ¢4 (?) 8.87E-06 m/m
initial drying shrinkage & cq.0 2.66E-04 m/m
factor related to cement At 4.00
Q ds2 0.12
factor|fcmo 1.00E+07 Pa
factor|RH o 100.00 %
factor|f re 0.90
factor related to notional size |k 0.70
factor|f s (t,ts) 0.06
factor S s (tp,ts) 0.01
time at the end of curing|z 1.00 days
final autogenous shrinkage (& cq (%) 4.18E-05 m/m
initial autogenous shrinkage |& ¢4 (0) 8.75E-05 m/m
factor (£ us (2) 0.66
factor (S as(ts) 0.18
Table 139:Shrinkage Loss from Time t = 7 days to Time t = t,, days.
creep loss
creep loss of per cable AP o (V) 5.97E+04 N
where:
creep strain|& cc (2) 1.07E-04 m/m
Table 140:Creep Loss from Time t = 7 days to Time t = t,, days.
relaxation loss
relaxation loss per cable AP . (¥) 5.14E+04 N
where:
variation of prestress |40 1.80E+07 Pa
initial prestress per cable|o pi 1.39E+09 Pa
factor|u 0.75
relaxation loss at 1000 hrs|p 7000 2.50 %

Table 141:Relaxation Loss from Time t = 7 days to Time t = t,, days.
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A11.2.2 Calculation Related to Py 7_; (t,, = 111 years)

P, 7., represents the prestressing force applied all in one step from time ¢ = 7 days to t = 111 years.

immediate loss

original increment per cable AP jax 3.96E+06 N
where:

initial prestressing force per cable|P ., 3.96E+06 N
Table 142:Immediate Loss from Time t = 7 days to Time t = t,, days.

elastic loss
mean elastic loss per cable AP et mean () 5.88E+04 N
where:

factor related to number of tendon|;j 0.33
initial prestressing force per cable|P ., 3.96E+06 N
variation of prestress |46 ¢ mean 1.06E+07 N/m”

Table 143:Elastic Loss from Time t = 7 days to Time t = t, days.

friction loss

firction loss per cable AP, (x) 2.70E+05 N
where:
factor of friction|u 0.19
angular rotation |8 0.16 rad
wobble effect|k 0.01 rad/m

Table 144:Friction Loss from Time t = 7 days to Time t = t,, days.
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shrinkage loss

shrinkage loss of cables AP g (1) 4.24E+05 N
shrinkage loss of per cable AP g (1) 1.41E+05 N
where:
shrinkage [ & s 2.54E-04 m/m
final drying shrinkage € ¢4 (2) 1.82E-04 m/m
initial drying shrinkage & cq.0 2.66E-04 m/m
factor related to cement At 4.00
Q ds2 0.12
factor|fcmo 1.00E+07 Pa
factor|RH o 100.00 %
factor|f re 0.90
factor related to notional size |k 0.70
factor|f s (tts) 0.99
factor|fss (tp.ts) 0.01
time at the end of curing|z 1.00 days
final autogenous shrinkage [& cq (2) 7.16E-05 m/m
initial autogenous shrinkage |& cq (00) 8.75E-05 m/m
factor £ us () 1.00
factor (S as (ts) 0.18
Table 145:Shrinkage Loss from Time t = 7 days to Time t = t,, days.
creep loss
creep loss of per cable AP o () 1.90E+05 N
where:
creep strain|& cc (2) 3.41E-04 m/m
Table 146:Creep Loss from Time t = 7 days to Time t = t,, days.
relaxation loss
relaxation loss per cable AP (1) 1.90E+05 N
where:
variation of prestress |40 6.65E+07 Pa
initial prestress per cable|o pi 1.39E+09 Pa
factor|u 0.75
relaxation loss at 1000 hrs|p 7000 2.50 %

Table 147:Relaxation Loss from Time t = 7 days to Time t = t,, days.
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A11.3 Allin One Step (New Deck - North)

Hereby summarized the remaining prestressing force and prestress loss calculated by all in one step, see Table 148
and Table 149. The detailing data of the calculation is shown in Appendix A11.2.1 and Appendix A11.2.2. Since
prestressing force is applied all in one step, the prestress loss in Table 148 and Table 149 are same as those shown in
Appendix A11.2.1 and Appendix A11.2.2 respectively.

initial prestressing force per cable Po 3.96E+06 N
mean clastic loss per cable AP ¢l mean 6.21E+04 N
firction loss per cable AP, (x) 2.70E+05 N
shrinkage loss of per cable AP g (1) 1.48E+04 N
creep loss of per cable AP o (1) 348E+04 N
relaxation loss per cable AP (1) 5.14E+04 N
final prestressing force per cable P o 3.52E+06 N

Table 148:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time t = 11 years + 29 days.

initial prestressing force per cable P 3.96E+06 N
mean elastic loss per cable AP el mean 6.21E+04 N
firction loss per cable AP, (x) 2.70E+05 N
shrinkage loss of per cable AP g (1) 1.41E+05 N
creep loss of per cable AP (1) 1.15E+05 N
relaxation loss per cable AP (2) 1.90E+05 N
final prestressing force per cable P 3.18E+06 N
final prestressing force of cables P 4.45E+07 N
stress resulting from prestresing O po 6.45E+06 Pa

Table 149:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time t = 111 years.
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A11.3.1 Calculation Related to Py,_, (t, = 11 years + 29 days)

P, 7, represents the prestressing force applied all in one step from time ¢ = 7 days to t = 11 years + 29 days.

immediate loss

original increment per cable AP jax 3.96E+06 N
where:
initial prestressing force per cable|P ., 3.96E+06 N

Table 150:Immediate Loss from Time t = 7 days to Time t = t,, days.

elastic loss

mean elastic loss per cable AP et mean () 6.21E+04 N
where:
factor related to number of tendon|;/ 0.46
initial prestressing force per cable|P ., 3.96E+06 N
variation of prestress (40 ¢/ mean 8.03E+06 N/m’

Table 151:Elastic Loss from Time t = 7 days to Time t = t, days.

friction loss

firction loss per cable AP 4 (x) 2.70E+05 N
where:
factor of friction|u 0.19
angular rotation |8 0.16 rad
wobble effect|k 0.01 rad/m

Table 152:Friction Loss from Time t = 7 days to Time t = t,, days.
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shrinkage loss

shrinkage loss of cables AP g1 (1) 3.71E+05 N
shrinkage loss of per cable AP g (1) 1.48E+04 N
where:
shrinkage [ & s 4.77E-05 m/m
final drying shrinkage € ¢4 (2) 5.83E-06 m/m
initial drying shrinkage & cq.0 2.66E-04 m/m
factor related to cement At 4.00
Q ds2 0.12
factor|fcmo 1.00E+07 Pa
factor|RH o 100.00 %
factor|f re 0.90
factor related to notional size |k 0.70
factor|f s (tts) 0.04
factor|fss (tp.ts) 0.01
time at the end of curing|z 1.00 days
final autogenous shrinkage [& cq (2) 4.18E-05 m/m
initial autogenous shrinkage |& cq (00) 8.75E-05 m/m
factor £ us () 0.66
factor (S as (ts) 0.18
Table 153:Shrinkage Loss from Time t = 7 days to Time t = t,, days.
creep loss
creep loss of per cable AP (1) 3.48E+04 N
where:
creep strain|& cc(2) 6.25E-05 m/m
Table 154:Creep Loss from Time t = 7 days to Time t = t,, days.
relaxation loss
relaxation loss per cable AP . (¥) 5.14E+04 N
where:
variation of prestress |40 1.80E+07 Pa
initial prestress per cable|o pi 1.39E+09 Pa
factor|u 0.75
relaxation loss at 1000 hrs|p 7000 2.50 %

Table 155:Relaxation Loss from Time t = 7 days to Time t = t,, days.
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A11.3.2 Calculation Related to Py 7_; (t,, = 111 years)

P, 7., represents the prestressing force applied all in one step from time ¢ = 7 days to t = 111 years.

immediate loss

original increment per cable AP jax 3.96E+06 N
where:

initial prestressing force per cable|P ., 3.96E+06 N
Table 156:Immediate Loss from Time t = 7 days to Time t = t,, days.

elastic loss
mean elastic loss per cable AP et mean () 6.21E+04 N
where:

factor related to number of tendon|;/ 0.46
initial prestressing force per cable|P ., 3.96E+06 N
variation of prestress (40 ¢/ mean 8.03E+06 N/m’

Table 157:Elastic Loss from Time t = 7 days to Time t = t, days.

friction loss

firction loss per cable AP, (x) 2.70E+05 N
where:
factor of friction|u 0.19
angular rotation |8 0.16 rad
wobble effect|k 0.01 rad/m

Table 158:Friction Loss from Time t = 7 days to Time t = t,, days.
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shrinkage loss

shrinkage loss of cables AP g1 (1) 1.97E+06 N
shrinkage loss of per cable AP g (1) 1.41E+05 N
where:
shrinkage [ & s 2.53E-04 m/m
final drying shrinkage € ¢4 (2) 1.81E-04 m/m
initial drying shrinkage & cq.0 2.66E-04 m/m
factor related to cement At 4.00
Q ds2 0.12
factor|fcmo 1.00E+07 Pa
factor|RH o 100.00 %
factor|f re 0.90
factor related to notional size |k 0.70
factor|f s (tts) 0.98
factor|fss (tp.ts) 0.01
time at the end of curing|z 1.00 days
final autogenous shrinkage [& cq (2) 7.16E-05 m/m
initial autogenous shrinkage |& cq (00) 8.75E-05 m/m
factor £ us () 1.00
factor (S as (ts) 0.18
Table 159:Shrinkage Loss from Time t = 7 days to Time t = t,, days.
creep loss
creep loss of per cable AP (1) 1.15E+05 N
where:

creep strain|& cc(2) 2.08E-04 m/m

Table 160:Creep Loss from Time t = 7 days to Time t = t,, days.

relaxation loss

relaxation loss per cable AP . (¥) 1.90E+05 N
where:
variation of prestress |40 6.65E+07 Pa
initial prestress per cable|o pi 1.39E+09 Pa
factor|u 0.75
relaxation loss at 1000 hrs|p 7000 2.50 %

Table 161:Relaxation Loss from Time t = 7 days to Time t = t,, days.
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Al2 Mechanics 1

Al12.1 General

In Mechanics 1, it is assumed that, when a composited cross-section is subjected to mechanical load and/or imposed
deformation, the in-plane curvatures of the composited cross-section is uniform. It means the composited cross-
section remains flat when it is deformed.

Equivalent loads of imposed deformation, normal force N and bending moment M, are applied to the cross-section of
composited cross-section to calculate the strain and stress resulting from imposed deformation. The disadvantage of
Mechanics 1 is that, with normal force N and bending moment M only, shear deformation is neglected.

Suppose there is a composited cross-section with three layers, see Figure 73, the expressions to calculate the
resulting strain and stress are shown in this chapter.

A
£y4,
o B @ boo—
G
E\A, &
Z . 2y
i 7)o i Kool P s B
composited
Y
s
Z3~— e e e IR
0

Figure 73:Composited Cross-section.
A12.2 Properties of Cross-section

normal stiffness of composited cross-section

n
(EA)composited = Z E;A; (45)
i=1

bending stiffness of composited cross-section

(El)composited = EA; 'ei2 (46)

[
I
-
+
e

where:
e is the eccentricity of gravity of certain layer
= Zj =~ Zcomposited
z; is the position of gravity of certain layer
ZcompositealS the position of gravity of composed cross-section

= Yie1 EiA; 'Zi/(EA)composited
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A12.3 Response under ‘Imposed Deformation’

Suppose that the Layer i is subjected to the imposed deformation Ae, to calculate the response of the composited
cross-section, a standard procedure would be used as follow:

1. Split the composited cross-section, making the Layer i free to deform. After that, an external normal force
N;* is applied to Layer i, see Figure 74.

N;* = Ae - (EA); (47)

2. After the external normal force N;" is applied, the layers are again connected to each other. Then,
another external force N** is applied to the composited cross-section at same position with same
magnitude but reverse sign.

N** — N-* (48)

L

By moving the external normal force N** to the neutral axis of the composited cross-section, a
compensating moment M** is obtained, see Figure 74.

M*™ =N*"-¢, (49)
_________ *"—Nf‘
Area Subjected to - N _._,—_ __________ .
Imposed Deformation I
] 0
__________ | N{__*
M

Figure 74:External Normal Force N,”, External Normal Force N** and Compensating Moment M™".

3. In the end, the equivalent loads of imposed deformation applied to the composited cross-section is a
superposition of external normal force N;*, external normal force N** and compensating moment M**. The
external normal force N;" is applied to the Layer i which is subjected to the imposed deformation Ae, while
the external normal force N** and compensating moment M** are applied to the whole cross-section, see

Figure 75.
_________ —li— j\—:
+ j\'ﬂ é. __________
Iw**
Figure 75:Superposition.
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4. Use the expressions introduced in A12.4 to calculate the resulting strain and stress in cross-section under

external normal force N;", external normal force N** and compensating moment M**

respectively. Then the response of composited cross-section under imposed deformation is a superposition

of the resulting strain and stress of the equivalent loads.

Al12.4 Response under ‘Mechanical Load’

strain at certain point under external normal force

Eni = €
where:
£ is the strain of composited cross-section
= N/(EA)composited
N is the external normal force applied to the composited cross-section

strain at certain point under external moment

Emi = K€
where:
K is the curvature for composited cross-section
= M/(El)composited
M is the external moment applied to the composited cross-section
e; is the eccentricity from certain point to the gravity of composited cross-section

stress at certain point under external normal force

oni = Eid; ey

where:
ENi is the strain due to normal force at certain point

stress at certain point under external moment

oM = EiA; - em;i

where:
Eni is the strain due to moment at certain point
&
f 1
On 1
Exy
OnN,2
J\ T M ( ----------
On3

Figure 76:Sketch of Strain and Stress.
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Al3 Mechanics 2

Al13.1 General

Mechanics 2 is basing on plate theory. According to Mechanics 2, deformation of plate is simplified into nodal
displacement which is the product of stiffness matrix and nodal forces. When a composited structure subjected to
imposed deformation is analyzed by Mechanics 2, the layers of the composited cross-section are spit which makes
the layers free to deform. Then deformation compatibility is restored so that the deformed layers are able to be
connected.

Since the stiffness matrix and nodal forces in the layers could be different, the in-plane curvature of each layer could
be different. It means the composited cross-section will not remain flat when it deforms due to imposed deformation.
The advantage of Mechanics 2 is that, with shear stiffness taken into account, the shear deformation is taken into
account.

Suppose there is a three-layer composited deck and the layers subject to different imposed deformation, see Figure
77, the expressions to calculate the resulting strain and stress are shown in this chapter.

-E: Ag; Layer 1

£ At Layer 2

-:.':"l_ Ae; Layer 3
a

% A
) ) /

L/2 L/2

Figure 77:Top and Side View of Composited Deck.

A13.2 Split Layers and Deformation Compatibility

As shown in Figure 78, the composited cross-section is split into three free layers. Suppose different imposed
deformation, Ag;, Ag, and A, are applied to the split layers, the deformed shapes of the layers would be different.
The differences between the deformed shapes, or in short the gaps, make the deformed layers unable to be re-
connected.

To re-connect the layers, the gaps have to be closed, or in other words the compatibility of deformation has to be
restored, see Figure 79. Since the magnitudes of imposed deformation are known, the deformation required to restore
compatibility can be calculated and, therefore, equilibrium about deformation is made. Then, by describing the
required deformation into nodal displacement which is the product of stiffness matrix and nodal forces, nodal forces
to restore compatibility can be calculated by solving the equilibrium. Finally, with nodal forces calculated, strain and
stress resulting from imposed deformation can be calculated.
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'gap' "restored compatibility'
11&] i zﬂh}
1163 é zjﬁg
Ag; Ag;

- l >
'gap' ‘restored compatibility'

Figure 78:'Gaps' due to Free Deformation. Figure 79:'Restored Compatibility'.

A13.3 General Elasticity Matrices

In an arbitrary plate, the in-plane stain &y, &,,, and y are presented into nodal displacement w,, and u,, while the in-
plane stresses n,, n,, and ny,, in a plate are presented into in-plane nodal forces F, and F, (Blaauwendraad, 2006,
pp. 13 - 25). With the relation between in-plane strain and stress, the general relation between nodal displacement
and forces is established, of which matrix form is referred to as general elasticity matrices, see Expression 54 and
Expression 55.

Normal stiffness:

F 0 = 0 0 O 0 07 |%a
v 0Oa 00 O —a 00O Uy1
Fio -5 0 B 0O 00 00 Uy
Fol _Em@ 100 0a 00 0 —af |te
Fa| ™ 2 00 00 B 0 =B 0f]|%hs
Fy3 0 —a 0 O 0 a 00 Uy
Fpa 0 0 00 —-B 0 B O Usesq
Fyy L0 0 0 —a 00 0 allty
or in short:
,,=—EC"2L(t)-En-u (54)
where:
E.n(t) isthe elastic modulus of concrete at time t
a =L/b
B =b/L
L is the length of a rectangular plate
b is the width of a rectangular plate
fn is the vector of nodal forces related to normal deformation
E, is the general elasticity matrix related to normal deformation
u is the vector of nodal displacement

*There are four corners, or in another word nodes, in a rectangular plate. F,; and F,; are the nodal forces in longitudinal and
transverse direction at the i-th node, while u,; and u,; are the nodal displacement in longitudinal and transverse direction at the i-th
node.
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Shear stiffness:

Fea r a1 a -1 —a 0 —a -17 |Una
Fyy 18 1 - -1 B -1 —B| [un
Fia a 1 a -1 —a 0 —a -1 Ux2
Fpl _ E |-1 - -1 B 1 - 1 B | |We
Fs| 8a1+v) |- -1 —a 1 a -1 a 1 Uy3
Py 1 g 1 - -1 8 -1 —p| |ws
Fpa a -1 —-a 1 a -1 a 1 Uy
Py 1 g -1 g1 5 1 p ]
or in short:
fv =8E(';-m—-£?)_ v U (55)
where:
v is the Poison’s ratio of concrete, which is taken as zero for simplicity
fv is the vector of nodal forces related to shear deformation
E, is the general elasticity matrix related to shear deformation

Then the general elasticity matrix E related to both normal and shear deformation is defined as the summation of
those related to normal deformation and shear deformation, see Expression 56.
Ecm(t) . Ecm(t) .

E = E E 56
R TG (56)

A13.4 Specific Elasticity Matrix

When it comes to the response of a specific composited deck subjected to imposed deformation, a specific elasticity
matrix E; is required which is derived basing on the general elasticity matrix E. Take half of the deck shown in
Figure 77 as an example. According to the supports shown in Figure 77, the split layers with in-plane supports of half
of the deck is determined as shown in Figure 80. Substitute the elastic modulus of concrete of Layer i into
Expression 56 and extract the elements from general elasticity matrix E which are related to unrestrained nodal
displacement according to the in-plane supports shown in Figure 80, the relation between nodal forces and
displacement in Layer i is derived, see Expression 57 and Expression 58.

F

y2i-Li Q2 Qz3 Qz4 Q7 Qg Uy,2i-1,
Fyai az, Q33 Q34 Q37 Q3g Ux,2i,i
Fyoii | =2 Qa3 Q44 Q47 Qg Uy 2i,i
a a a a a i+2i
Fyoita,i a72 a73 a74 a77 a78 Ux,2i+2,i
u . .
Fyaiva, g2 UOg3 (gs dg7 dgg y,2i+2,i
or in short:
fi=Eiu (57)
where:
Fepi is the nodal force in longitudinal direction at Node [ in Layer i
Fyui is the nodal force in transverse direction at Node ! in Layer i
Uy is the nodal displacement in longitudinal direction at Node [ in Layer i
Uy i is the nodal displacement in transverse direction at Node [ in Layer i
l is the serial number of nodes in Layer i, see Figure 80
fi is the vector of nodal forces in Layer i
u; is the vector of nodal displacement in Layer i
Qi is the element in the general elasticity matrix E of Layer i at the j-th row and k-th column
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Fy i1,
Fyaig
Fy i

Fyaito

Fy,2i+2,i

(58)

E; is the specific elasticity matrix of Layer i
Uy i by1;i bizi bizi biai bisy
U200 ba1i bazi bazi basi bas
Uy2ii | =|bz1i bszi bazi bzg; bssy
Z"'ZHZ'i b1 bazi bazi basai bas;
vaisail bgyy by bss bsai bss
or in short:
-1
u, =E;""f;
where:
bjk i is the element in the inverse matrix E; * of Layer i at the j-th row and k-th column
| @ @
Layer 1 EI: DI Ag; l
Q’V\G) (D F_\-4
1 oM p
Bl “ M xy
-F
Layer2 <& Ag, ¥
RG] [6) Fig
@ ® Fy
2 | -- F.\'ﬁ
Layer3 < Ag; -F
— V6
© ®

Figure 80:Sketch of Split Deck.

Suppose the internal forces between layers are represented by the nodal forces shown in Figure 80, the nodal
displacement in the layers would be derived as follow:

Layer 1
Uy, bis1 bisy bia1 bisy
Ux,2,1 ba41  basa F baa1  basa F
u _ b b x4,1 | _ b b x4
2,1 | = | D341 35,1 Frail™ 34,1 35,1 F,,
u V4, ,
u""“ bya1 basy 241 Dasi
vl bsy1  bssy bsa1  bssa
or in short:
uy =By f1 (59)
where:
B, is the columns extracted from inverse matrix E; ' of Layer 1 related to the nodal forces in
Layer 2
Uyso b1z bizz biaz bisy biz2 bizz biaz bisp
- brss byzy basg b Feaz| | b byay baay b RS
Uy 4,2 222 D232 Daa2 D352 F,4s 222 D232 Das2 D252 -F,,
V.4, v,
Uyg2 | = b32,2 b33,2 b34,2 b35,2 F 62 = b32,2 b33,2 b34,2 b35,2 F .
u X,6, X,
u"'ﬁ'z biz bazy basz basy Fye, bazs bazp basz basy F,q
v.6, v,
6.2 bs;z bssz bssz  bssg bsyz bsza bsaz bssp
or in short:
Wednesday, 04 March COMBINED ACTIONS 117

2020



% 3>
TU De Ift Eggagning DHV

u; =B f (60)
where:
B, is the columns extracted from inverse matrix E, ! of Layer 2 related to the nodal forces in
Layer 3
Uyss bizz b1z bis1  bisy
Ux6,3 b22,3 b23,3 F b24,1 b25,1 _
6,3 6
Uyes | = b32,3 b33,3 Fx = b34,1 b35,1 ) | _ .
Z"’ss byz3  bazz yos bysy  bas ye
83 bsy3  bs3z3 bs41 bssy
or in short:
uz; = B3 f3 (61)
where:
B3 is the columns extracted from inverse matrix E3 ™! of Layer 3 related to the nodal forces in

A13.5 Restore Compatibility

The split layers are free to deform subjected to imposed deformation. To make the layers able to be connected, the
compatibility of deformation has to be restored. As for the layers shown in Figure 80, the deformed shape of layers
subjected to imposed deformation and internal forces ought to be compatible.

Longitudinal Deformation Compatibility between Layer 1 and Layer 2
L
(Ae; — Agy) "5 T Uxan T Unan (62)
Transverse Deformation Compatibility between Layer 1 and Layer 2

Uya1 = Uygr — Uy3o (63)

Longitudinal Deformation Compatibility between Layer 2 and Layer 3

L
(Aez — Agy) ) = Uyxe,2 — Uxe6,3 (64)
Transverse Deformation Compatibility between Layer 2 and Layer 3

Uye2 = Uye3 — Uyss (65)

Substitute Expression 59 to 61 into Expression 62 to 65 to solve the internal forces F, 4, and F, ¢. Then substitute the
solved internal forces F, 4 and F, ¢ back into Expression 59 to 61 to solve the nodal displacement to restore
compatibility.

A13.6 In-plane Strain and Stress Resulting from Imposed Deformation

The in-plane strain and stress resulting from imposed deformation in longitudinal direction are calculated by the
solved nodal displacement to restore compatibility. The expressions used during the calculation are as follow:

Exx,2,1 Ux,2,1
Exx,4,1 Ux,4,1
Exxaz| L | Uxaz2
Exxe2 | 2 |Uxez
€xx,6,3 Ux6,3
€xx,8,3 Ux83
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or in short:

where:

Exx,Li

or in short:

where:

Oxx,Li

Ecm,i(t)

is the strain in longitudinal direction at Node [ in Layer i

Oxx,2,1
Oxx,4,1
0xx,4,2
0xx,6,2
Oxx,6,3
Oxx,8,3

Wednesday, 04 March
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L 1 1 1 1 1 1
B 2 Ecm,l(t) Ecm,l (t) Ecm,z (t) Ecm,z (t) Ecm,3 (t) Ecm,3 (t)

L T
axx_E'Ecm T Uy

is the stress in longitudinal direction at Node [ in Layer i
is the elastic modulus of concrete in Layer i at time t
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Ux,2,1
Ux,4,1
Uy,4,2
Uy,6,2
Uy,6,3
Ux,8,3

(66)

(67)
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Al4 Comparison of Mechanics 1 and Mechanics 2

Al4.1 General

To show the limitation of Mechanics 1 and the advantage of Mechanics 2, a series of calculations carried out to a
three-layer model. The dimensions of the three-layer model used in the calculations are same. However, the material
properties and imposed deformation applied to the models are different, or in short the conditions are different. Both
Mechanics 1 and Mechanics 2 are used during the calculations. Although the conditions are NOT the real case, the
calculations under different conditions are able to show the limitation of Mechanics 1 and the advantage of
Mechanics 2 in a more clear way, because the resulting strain and stress are easy to be predicted under the
conditions.

Since it is impossible to check the results calculated by Mechanics 2 under all the possible conditions, the extreme
conditions mentioned above are also used to prove that Mechanics 2 is applicable in this thesis. Suppose the strain
and stress resulting imposed deformation, or in short the resulting strain and stress, calculated by Mechanic 2 suits
the expectations under all the conditions, Mechanics 2 would be taken as applicable in this thesis. Otherwise, the
mechanics would be taken as inapplicable. Hereby summarized the conditions.

Conditions 1: Ag,,,, = Aggy = 0, Ecm,connection(t) ~0

Under Conditions 1, imposed deformation is assumed only applied to the connection, while the elastic modulus of
connection is assumed to be zero approximately.

The aim to give calculation under Conditions 1 is to check whether the mechanics are applicable or not when the
imposed deformation is applied to an extremely soft layer.

In expectation, since the connection is so soft, the imposed deformation would hardly result in any strain and stress
in the old and new decks.

Conditions 2: A"';'old = A“:connectian = 0, Ecm,connectian(t) ~0

Under Conditions 2, imposed deformation is assumed only applied to the new deck, while the elastic modulus of
connection is assumed to be zero approximately.

The aim to give calculation under Conditions 2 is to check whether the mechanics are applicable or not when the
connection is too soft to transfer the imposed deformation from one side to the other side.

In expectation, since the connection is too soft, the imposed deformation in the new deck would not be transferred to
the old one. So, the imposed deformation would hardly result in any strain and stress in the old deck.

Conditions 3: Agold = Aeconnection = 09 Ecm,cannection(t) = Ecm,old(t)

Under Conditions 3, imposed deformation is assumed only applied to the new deck, while the elastic modulus of old
deck and connection are assumed to be same.

The aim to give calculation under Conditions 3 is to check whether the mechanics are applicable or not when two
adjacent layers share same material properties.

In expectation, the connection and old deck would perform as a single layer.
Conditions 4: Agy1q = A&connection = 0, Ecm,connectian(t) = Ecm,ald(t) =1.2Pa~36.6 GPa

Under Conditions 4, imposed deformation is assumed only applied to the new deck, while the elastic modulus of old
deck and connection are assumed to be same. A series of elastic modulus are applied to old deck and connection.

As shown in Section 31, the limitation of Mechanics 1 is expected to be neglecting shear deformation. The aim to
give calculation under Conditions 4 is to check whether the difference of elastic modulus is the only reason of
Mechanics 1 and Mechanics 2 giving different results or not, or in other words is to check whether the difference of
elastic modulus is the only source of shear deformation or not.
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Suppose Mechanics 1 and Mechanics 2 give similar results, the difference of elastic modulus would not be the only
source of considerable shear deformation but also the number of layers. Otherwise, the difference of elastic modulus
is enough to be the source of shear deformation.

Al14.2 Conditions 1

Al14.2.1 Aim and Expectation

In Conditions 1, it is assumed that the imposed deformation is only applied to the connection while the elastic
modulus of connection is zero. The aim to give calculation under Conditions 1 is to check whether the mechanics are
applicable or not when the imposed deformation is applied to an extremely soft layer. It is expected that the resulting
strain would be non-zero and positive only in the connection, while the resulting stress would be zero in the whole
widened deck KW03.01, see Figure 81 and Figure 84.

A14.2.2 Input Data

As shown in Appendix A13, the expressions in Mechanics 2 contains elastic modulus in denominators. So, the elastic
modulus of connection during calculation is assumed to be 1 X 10~° GPa, which is close but not equal to zero. The
material properties and imposed deformation applied in Conditions 1 are shown in Table 162 and Table 163.

elastic modulus in Old Deck Eom @) 3.66E+01 GPa
elastic modulus in Connection Eon @) 1.00E-09 GPa
elastic modulus in New Deck Ecn() 3.87E+01 GPa

Table 162:Material Properties Applied under Conditions 1.

imposed deformation in Old Deck  |de 0 m/m
imposed deformation in Connection |Ade 3.89E-04 m/m
imposed deformation in New Deck |de 0 m/m

*The structure will be shortened if it is subjected to the imposed deformation in Table 163, suppose it is free to deform.

Table 163:Imposed Deformation Applied under Conditions 1.

A14.2.3 Results

The resulting strain and stress calculated by Mechanics 1 only are shown in Figure 82 and Figure 85 respectively,
while those calculated by both Mechanics 1 and Mechanics 2 are shown in Figure 83 and Figure 86 respectively.

Since the stiffness of connection is not zero exactly, non-zero stresses are obtained by both Mechanics 1 (M1) and
Mechanics 2 (M2). However, with a power of —10, the stresses are almost zero. So, both the stress distribution
calculated by both Mechanics 1 (M1) and Mechanics 2 (M2) suit the expectation.

In general, the shortening of the connection is restrained by the old deck and new deck. Since the stiffness of
connection is assumed close to zero but not zero, non-zero stresses are obtained. Therefore, the parts in old deck and
new deck, which are close to the connection, are in compression. However, with a power of —10, the stresses can be
taken as zero approximately.

According to Mechanics 1, under Conditions 1, the in-plane curvature of deformed deck is uniform. The zero-point
of stress appears in the old deck, see Figure 85, making the whole new deck in compression. However, according to
Mechanics 2, under Conditions 1, the in-plane curvature of deformed deck is variable. So, part of the old deck and
new deck are in tension, see Figure 83 and Figure 86.
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Figure 81:Material Properties, Imposed Deformation
and the Sketch of Expectation (Strain) under
Conditions 1.

Ez.‘m(t) =30.6 GPa
Ag=0

Eemft) = 1%107 GPa

As=3.89x107
Ecm(t) =38.7 GPa
Ae=0

Figure 84:Material Properties, Imposed Deformation
and the Sketch of Expectation (Stress) under
Conditions 1.

Al14.2.4 Conclusion
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Figure 82:Strain Distribution
Calculated by Mechanics 1 (M1)
under Conditions 1.
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Figure 85:Stress Distribution
Calculated by Mechanics 1 (M1)
under Conditions 1.
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Figure 83:Strain Distribution
Calculated by Mechanics 1 (M1) and
Mechanics 2 (M2) under Conditions 1.

Stress Distribution

14
= = ‘freo
== 0d Deck - M1
Connection - M1
sl wonniNew Deck - M1 | |
12 s} Deck - M2
= Conmection - M2
m— N Deck - M2
10F
g
= 8
=]
.2 i
; I
o 6T |
[=W) 1
1
1
1
4F I
]
|
]
Y T e
0 : .
-4 -2 0 2 4

Stress [MPa] 19710

Figure 86:Stress Distribution
Calculated by Mechanics 1 (M1) and
Mechanics 2 (M2) under Conditions 1.

Under Conditions 1, although the resulting stress calculated by Mechanics 1 and Mechanics 2 are not same, since
both the results calculated by Mechanics 1 and Mechanics 2 suit the expectation, both of them are applicable when
the imposed deformation is applied to an extremely soft layer.
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Al14.3 Conditions 2

Al14.3.1 Aim and Expectation

In Conditions 2, it is assumed that the imposed deformation is only applied to the new deck while the elastic modulus
of connection is set to be zero. The aim to give calculation under Conditions 2 is to check whether the mechanics are
applicable or not when the connection is too soft to transfer the imposed deformation from one side to the other side.
It is expected that the resulting strain would be non-zero and negative only in connection, while the resulting stress
would be close to zero in the whole widened deck KW03.01, see Figure 87 and Figure 90.

A14.3.2 Input Data

Similar to Mechanics 1, the elastic modulus of connection during calculation is set to be 1 X 10™° GPa, which is
close but not equal to zero. The material properties and imposed deformation applied in Conditions 2 are shown in
Table 162 and Table 163.

elastic modulus in Old Deck E.@) 3.66E+01 GPa
elastic modulus in Connection Eon(®) 1.00E-09 GPa
elastic modulus in New Deck Eon(®) 3.87E+01 GPa

Table 164:Material Properties Applied in Conditions 2.

imposed deformation in Old Deck  |4¢ 0 m/m
imposed deformation in Connection |4¢ 0 m/m
imposed deformation in New Deck |4e 4.34E-04 m/m

*The structure will be shortened if it is subjected to the imposed deformation in Table 165, suppose it is fiee to deform.

Table 165:Imposed Deformation Applied in Conditions 2.

12.1.1 Results

The resulting strain and stress calculated by Mechanics 1 only are shown in Figure 88 and Figure 91 respectively,
while those calculated by both Mechanics 1 and Mechanics 2 are shown in Figure 89 and Figure 92 respectively.

Under Conditions 2, results calculated by Mechanics 1 does not suit the expectation while those calculated by
Mechanics 2 do. The strain and stress distribution in the old deck and new deck calculated by Mechanics 1 are non-
zero which is different from the expectation.

In general, the shortening of the new deck should be restrained by the connection. However, the connection is too
soft to give a strong restrain to the new deck. So, the new deck is almost free to deform instead of being in tension.

According to Mechanics 1, under Conditions 2, the in-plane curvature of deformed deck is uniform. The zero-point
of strain and stress appears in the old deck, making the strain and stress in old deck and new deck non-zero, see
Figure 88 and Figure 91.

According to Mechanics 2, the in-plane curvature of deformed deck is variable. The strain calculated by Mechanics 2
is the deformation to restore compatibility. The connection is too soft and too easy to deform so that hardly any
deformation is required in new deck to restore deformation compatibility. Therefore, the strain distribution is almost
zero in new deck calculated by Mechanics 2, see Figure 89.
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Figure 87:Material Properties, Imposed Deformation  Figure 88:Strain Distribution Figure 89:Strain Distribution
and the Sketch of Expectation (Strain) under Calculated by Mechanics 1 (M1) Calculated by Mechanics 1 (M1) and
Conditions 2. under Conditions 2. Mechanics 2 (M2) under Conditions 2.
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Figure 90:Material Properties, Imposed Deformation  Figure 91:Stress Distribution Figure 92:Stress Distribution
and the Sketch of Expectation (Stress) under Calculated by Mechanics 1 (M1) Calculated by Mechanics 1 (M1) and
Conditions 2. under Conditions 2. Mechanics 2 (M2) under Conditions 2.

A14.3.3 Conclusion

Under Conditions 2, Mechanics 1 is not applicable because it makes the imposed deformation transferred from one
side to the other side when the connection not stiff enough produce imposed deformation. However, since the results
calculated by Mechanics 2 suits the expectation, Mechanics 2 is applicable when the connection is too soft to transfer
the imposed deformation from one side to the other side.
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Al14.4 Conditions 3

Al4.4.1 Aim and Expectation

A reliable mechanics should be able to predict the deformation of the two-layer model with a three-layer model, by
applying same material properties to two adjacent layers. So, in Conditions 3, it is assumed that the imposed
deformation is only applied to the new deck while the elastic modulus of old deck and connection are assumed to be
same.

The aim to give calculation under Conditions 3 is to check whether the mechanics are applicable or not when two
adjacent layers share same material properties. It is expected that the in-plane curvature in old deck and connection
would be uniform. Since the shortening of new deck is restrained by connection, the part of old deck and connection
close to new deck would be in compression, while the new deck would be in tension, see Figure 93 and Figure 96.

12.1.2 Input Data

The material properties and imposed deformation applied in Conditions 3 are shown in Table 166 and Table 167.

elastic modulus in Old Deck Eon(®) 3.66E+01 GPa
elastic modulus in Connection Ecn(t) 3.66E+01 GPa
elastic modulus in New Deck Econ(?) 3.87E+01 GPa

Table 166:Material Properties Applied in Conditions 3.

imposed deformation in Old Deck  |4¢ 0 m/m
imposed deformation in Connection |de 0 m/m
imposed deformation in New Deck |4¢ 4.34E-04 m/m

*The structure will be shortened if it is subjected to the imposed deformation in Table 167, suppose it is fiee to deform.

Table 167:Imposed Deformation Applied in Conditions 3.

12.1.3 Results

The resulting strain and stress calculated by Mechanics 1 only are shown in Figure 94 and Figure 97 respectively,
while those calculated by both Mechanics 1 and Mechanics 2 are shown in Figure 95 and Figure 98 respectively.

Both the results calculated by Mechanics 1 and Mechanics 2 suit the expectation. The old deck and the connection
perform as a single layer. Since the shortening of new deck is restrained by connection, the part of old deck and
connection close to new deck is in compression, while the new deck is in tension.

In general, the shortening of the new deck is restrained by the connection. Therefore, the part in new deck, which are
close to the connection, is in tension. According to both Mechanics 1 and Mechanics 2, the in-plane curvature in the
old deck and connection is uniform, see Figure 94 and Figure 97.
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Calculated by Mechanics 1 (M1)

under Conditions 3.
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Al14.4.2 Conclusion
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Calculated by Mechanics 1 (M1)
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Figure 95:Strain Distribution
Calculated by Mechanics 1 (M1) and
Mechanics 2 (M2) under Conditions 3.
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Figure 98:Stress Distribution
Calculated by Mechanics 1 (M1) and
Mechanics 2 (M2) under Conditions 3.

Since both the results calculated by Mechanics 1 and Mechanics 2 suit the expectation, both Mechanics 1 and
Mechanics 2 are applicable when two adjacent layers share same material properties. In other words, both Mechanics
1 and Mechanics 2 are able to predict the deformation of the two-layer model with a three-layer model, by applying
same material properties to two adjacent layers.
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Al14.5 Conditions 4

Al14.5.1 Aim and Expectation

In Conditions 4, it is assumed that the imposed deformation is only applied to the new deck while the elastic modulus
of old deck and connection are assumed to be same.

As shown in Section A14.3 and A14.4, the results calculated by Mechanics 1 suit the expectation under Conditions 3
but not under Conditions 2. As shown in Chapter 8.2, the limitation of Mechanics 1 is expected to be neglecting
shear deformation. So, the aim to give calculation under Conditions 4 is to study, to what extent, the shear
deformation is neglectable.

The calculations carried out under Conditions 3 and Conditions 4 are same except for the magnitude of elastic
modulus applied to new deck and connection. To show the impact of elastic modulus on the shear deformation, a
series of elastic modulus are applied to old deck and connection.

Suppose Mechanics 1 and Mechanics 2 give similar results, the difference of elastic modulus would not be the only
source of considerable shear deformation but also the number of layers. Otherwise, the difference of elastic modulus
is enough to be the source of shear deformation.

A14.5.2 Input Data

A series of elastic modulus are applied to old deck and connection. The material properties and imposed deformation
applied in Conditions 3 are shown in Table 168 and Table 169.

elastic modulus in Old Deck Eun) 1.20E-09~3.66E+01 GPa
elastic modulus in Connection E o (t) 1.20E-09~3.66E+01 GPa
elastic modulus in New Deck Ecm(t) 3.87E+01 GPa

Table 168:Material Properties Applied in Conditions 4.

imposed deformation in Old Deck  |A¢ 0 m/m
imposed deformation in Connection |4¢ 0 m/m
imposed deformation in New Deck |4¢ 4.34E-04 m/m

*The structure will be shortened if it is subjected to the imposed deformation in Table 168, suppose it is fiee to deform.

Table 169:Imposed Deformation Applied in Conditions 4.

A14.5.3 Results

A series of stress distribution corresponding to different elastic modulus of old deck and concrete in connection are
calculated. The calculation is carried out by both Mechanics 1 and Mechanics 2. The colour in the image represents
the mean strain resulting from the imposed deformation applied to old deck, connection and old deck.

Take the strain resulting from imposed deformation as an example. As shown in Section A14.4, one elastic modulus
applied to the old deck and connection is corresponding to one strain distribution calculated by Mechanics 1 and
Mechanics 2 respectively. Then a series of elastic modulus applied to the old deck and connection is corresponding
to is corresponding to a series of strain distribution calculated by Mechanics 1 and Mechanics 2 respectively.

By taking the position in cross-section, the elastic modulus of concrete and the strain resulting from imposed
deformation as x-, y- and z-axis respectively, the 3D images of the strain distribution calculated by Mechanics 1 and
Mechanics 2 are plotted respectively, see Figure 100 and Figure 102.

In other words, Figure 100 and Figure 102 are a series of Figure 94 and Figure 97 placed one by one according to the
elastic modulus applied to old deck and connection. To show the difference between Figure 100 and Figure 102, the
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y-view of the 3D image is plotted, see Figure 103 and Figure 104. In Figure 103 and Figure 104, the red line and
green represent the strain distribution in old deck and connection when the elastic modulus of concrete applied to old
deck and connection is 0.06 GPa and 1.2 Pa respectively.

Strain in Widened Deck KW03.01
2
1
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Figure 99:Material Properties and Imposed  Figure 100:Three-Dimensional Image of Strain Resulting from All Imposed Deformation
Deformation in the South Part (At;;_;; = in Conditions 4.
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Figure 101:Material Properties and Imposed Figure 102:Three-Dimensional Image of Strain Resulting from All Imposed Deformation
Deformation in the South Part (At;;_;;; = in Conditions 4.
28 days).

The both in-plane curvature in the old deck and the connection calculated by Mechanics 1 and Mechanics 2 are
uniform. It is proved again that both Mechanics 1 and Mechanics 2 are able to predict the deformation of the two-
layer model with a three-layer model, by applying same material properties to two adjacent layers.

However, when the elastic modulus of concrete applied to old deck and connection is smaller than 0.06 GPa, the
difference between resulting strain calculated by Mechanics 1 and Mechanics 2 becomes obvious, see the parts
between red line and green line in Figure 103 and Figure 104. It means, in two-layer model, the limitation of

Mechanics 1, neglecting the shear deformation, becomes obvious when the stiffness of a layer is much smaller than
that of the other.
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4 107Strain in Widened Deck KW03.01
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<
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x - Position in Cross-section [m]

Figure 103:Y-View of Figure 100.

42 107Strain in Widened Deck KW03.01
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g
E o} 0
£ 4
o _2 -
“ 2
N
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4
-6 : L 2 . : L 1
14 12 10 8 6 4 2 0 <10

X - Position in Cross-section [m]

Figure 104:Y-View of Figure 102.

A14.5.4 Conclusion

According to the results under Condition 1 to Condition 4, whether the shear deformation is neglectable or not
depends on various factors: the number of layers, the elastic modulus and the imposed deformation applied to the
layers. Suppose the shear deformation is not neglectable, Mechanics 2 is preferred to give more reliable results.
However, when a two-layer model is applied, the shear deformation is neglectable in most cases, because the elastic
modulus of concrete would not be in the situation as low as shown in Figure 103 and Figure 104.

Al14.6 Conclusion

According to Section A14.2, Section A14.3 and Section A14.4, the advantage of Mechanics 2 is that it takes shear
deformation into account. As a result, the results of Mechanics 1 and Mechanics 2 are close only if there is no impact
of shear deformation, otherwise the results of mechanics 2 is more reliable. Since it is unknown whether there is
large shear deformation or not before carrying out a calculation, it is suggested to use Mechanics 2 for a more
reliable solution.
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Al15  Impact of Timing to Make Connection on the Resulting Stress

Al15.1 General

It is expected that different timing to make connection would result in different in-plane strain and stress distribution
at time t = t,,. To investigate the impact of timing to make connection on the stress resulting from imposed
deformation, stress resulting from imposed deformation is calculated with a series of timing to make connection. For
simplicity, the impact of cracking is not taken into account. The mechanics used during the calculations are shown in
Appendix A12 and Appendix A13. Results of the calculations are investigated to see whether it is possible to find a
critical timing to make connection which is the earliest one resulting in no prestress consumption in old decks and
new decks at time t = t.

According to Appendix A12 and Appendix A13, stress resulting from imposed deformation is calculated basing on
split layers which are first free to deform. The deformation of the layers are calculated with time t =

te (to = 111 years). Then mechanical loads are applied to the deformed layers as internal load to restore the
deformation compatibility so that the layers can be reassembled.

Before the layers being reassembled, the compressive stress resulting from prestressing are calculated with time t =
te (te, = 111 years). To restore deformation compatibility, additional deformation is applied to the layers. The
compressive stress resulting from prestressing would be decreased due to the shortening of the layers while increased
due to the elongation of the layers. For simplicity, the impact of additional deformation due to imposed deformation,
or in other words the impact of imposed deformation, on the compressive stress is neglected. Therefore, the prestress
consumption in proportion is the ratio of the stress resulting from imposed deformation and prestressing, where
prestressing force is calculated as a constant with time t = t,, (t,, = 111 years).

A15.2 Time History of Construction

As shown in Section 6.1, connections in widened deck KW03.01 are made at time At;;_;;; = 28 days after new
decks being built. To investigate the impact of timing to make connection, instead of time At;;_;; = 28 days, a
series of new timing to make connection are applied from time At;;_;;; = 7 days to time Aty;_;;; = 50 years.

The models used during investigation are Simplified Model 1 and Simplified Model 2, see Section 7.3.1 and Section
7.4.1. The input data is shown in Chapter 5. The material properties applied to the expressions are calculated by the
input data and the expressions in Appendix A4 and Appendix AS. The imposed deformation and prestress loss in old
decks are calculated by the expressions in Appendix A6. For the convenience of reading, the imposed deformation in
old decks, new decks and connections are denoted as Ag,;q, Agpey, and A€ onnection- FOT the simplicity, here only
summarized the data of time history of construction, see Table 170 and Table 171.

time of old deck being built tr 0 years
time of new deck being built tu 11 years
time of connection being built after new deck being built |47 ;i1 7 ~ 18250 days
connected age of connection Aty 1 days

target time after new deck being built Aty 36500 days

Table 170:Basic Data of Time History of Construction.
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time of connection being stiff after new deck being built |A¢ ;v 8 ~ 18251 days
connected age of old deck At v 4023 ~ 22266 days
connected age of new deck At v 8 ~ 18251 days
target age of old deck Aty 40515 days
target age of connection At .y 36451 ~ 18250 days
target age of new deck At iy 36500 days

*The data in Table 170 is evaluated basing on the data in Table 171.
Table 171:0ther Data of Time History of Construction.
Prestress is taken into account, which is constant and uniformly distributed in old decks and new decks. The

calculation of compressive stress resulting from prestressing at time t = t,, has been introduced in Appendix A9.3,
Appendix A11.2 and Appendix A11.3. For simplicity, hereby only summarized the results of the calculation, see

Table 172.

South:

prestress in old deck O old,prestressing 7.16E+06 Pa
prestress in new deck O new,prestressin 8.32E+06 m/m
North:

prestress in old deck O old,prestressing 7.16E+06 m/m
prestress in new deck O new, prestressin 6.45E+06 m/m

Table 172:Compressive Stress Resulting from Prestressing at time ¢t = ¢, (t, = 111 years).

A15.3 Results (Making Connection at Time At;;_;;; = 7~18250 days)

With the new time history of construction shown in Appendix A15.2, the stress resulting from imposed deformation
are calculated as a function of At;;_;;;. Mechanics 2 is used during the calculation. The final resulting stress shown in
Figure 106 and Figure 108 is the summation of the resulting stress and the compressive stress resulting from
prestressing, while the prestress consumption in proportion is the ratio of them.

According to Figure 106 and Figure 108, in new decks, the maximum compressive stress appears when connections
are made at time At;;_;; = 4000 days. Suppose only in-plane loads are taken into account, the old decks and new
decks are always in compression while the connections are always in tension. Suppose out-of-plane loads are also
taken into account, as shown in Appendix A2.5, the maximum tensile stress resulting from out-of-plane loads in
cross-section at mid-span varies from o; = 9.9 MPa to 6; = 15.6 MPa, which is always larger than the maximum
compressive stress resulting from in-plane loads shown in Figure 106 and Figure 108. As a result, suppose the tensile
strength of concrete is neglected, new decks are always cracked no matter when connections are made.
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Figure 105:Sketch of Edges in the
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A15.4 Results (Making Connection at Time £ = 7~90 days)

Since either no prestress consumption or minimum prestress consumption is practical, see Appendix A15.4, the
investigation has to zoom in to a practical period. Therefore, the final resulting stress when connections are made

before 90 days are investigated, see Figure 110 and Figure 112.
As shown in Figure 110 and Figure 112, suppose the connection is made at 90 days or earlier, the timing to make

connection would have significant impact on the magnitude of final resulting stress. In terms of prestress
consumption, to saves prestress, connection should be made as late as possible.
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A15.5 Prestress Consumption without Cracking

As shown in Appendix A15.1, the prestress consumption in proportion is the ratio of the stress resulting from
imposed deformation and prestressing, where prestressing force is calculated as a constant with time t =
te (to = 111 years). The results of the calculation are shown in Figure 110 and Figure 112. When the stress

resulting from imposed deformation is tensile stress, the ratio would be positive. Otherwise, the ratio would be
negative.

In general, a later timing to make connection results in less prestress consumption. As shown in Figure 114 and
Figure 116, the maximum prestress consumption in proportion occurs when the connection is made at time At;;_;;; =
7 days. The values of the maximum prestress consumption in proportion are shown in Table 173. It is shown that
the maximum prestress consumption appears at the new deck in south when connections are made at time At;;_;; =
7 days, where 58.8% of compressive stress resulting from prestress is consumed due to imposed deformation.

souts 10M 29.5 %
New 58.8 %
old 30.0 %
North /0% 44.5 %

Table 173:Ratio between Maximum Tensile Stress and Prestress.
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A15.6 Examples

To be specific, hereby shown final resulting stress when connections are made at time Aty_y;; = 7 days, Aty_ip =

14 days and time Aty;_y;; = 28 days.
Example 1: south part (connection made at time t = 7 days)

Stress Distribution

12} ' A i
ot |
- _-.— = ‘ireo
Hiot Flentastan
Eonft) = 23.4 GPa = 5 = Soew Teck - M)
Ae = 4.66%10° = _: |
Ac,=17.16 MPa < 5 1
4 -_.-" i
Een(t) = 10.1 GPa H |
Az =3.90x10°" . e i
Eonft) = 15.7 GPa ' i
Ag = 5.30x107 gl o :
Acrp— 8.32 MPa -10 -5 0

Stress [Pa]  w10°

Figure 117:Material Properties and Imposed
Deformation in South (At;;_;;; = 7 days).
7 days).
Example 2: south part (connection made at time ¢t = 14 days)

Stress Distribution

Figure 118:Stress Calculated by
Mechanics 1 (M1) in South (At;;_;; = Mechanics 1 (M1) and Mechanics 2
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E{,?:;(QZIG.SGPa ':r----:--
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Ao = 832 MPa -10 -5 0

Stress [Pa]  w10°

Figure 120:Material Properties and Imposed
Deformation in South (At;;_;; = 14 days).
14 days).
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Figure 121:Stress Calculated by
Mechanics 1 (M1) in South (At;;_;;; = Mechanics 1 (M1) and Mechanics 2

Stress Distribution
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Figure 119:Stress Calculated by

(M2) in South (At;;_;;; = 7 days).
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Figure 122:Stress Calculated by

(M2) in South (At;;_;;; = 14 days).
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Example 3: south part (connection made at time ¢t = 28 days)

Stress Distribution
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Figure 123:Material Properties and Imposed
Deformation in South (At;;_;; = 28 days).

Figure 124:Stress Calculated by

28 days).

Example 4: north part (connection made at time £ = 7 days)

Er.'m({) =23.4GPa
Ag = 4.66x107
Ac,=7.16 MPa

En'm(f) =10.1 GPa

Ag = 3.90x107

Een(t) =159 GPa
Ae = 4.14x10%
Ac = 6.45 MPa

Figure 126:Material Properties and Imposed
Deformation in North (At;;_;; = 7 days).
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Figure 125:Stress Calculated by
Mechanics 1 (M1) in South (At;;_;;; = Mechanics 1 (M1) and Mechanics 2
(M2) in South (At;;_;;; = 28 days).
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Figure 128:Stress Calculated by
Mechanics 1 (M1) and Mechanics 2
(M2) in North (At;;_;; = 7 days).
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Example 5: north part (connection made at time t = 14 days)

Stress Distribution Stress Distribution
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Figure 129:Material Properties and Imposed Figure 130:Stress Calculated by Figure 131:Stress Calculated by
Deformation in North (At;;_;; = 14 days). Mechanics 1 (M1) in North (At;;_;; = Mechanics 1 (M1) and Mechanics 2
14 days). (M2) in North (At;;_;; = 14 days).
Example 6: north part (connection made at time ¢t = 28 days)
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Figure 132:Material Properties and Imposed Figure 133:Stress Calculated by Figure 134:Stress Calculated by
Deformation in North (At;;_;; = 28 days). Mechanics 1 (M1) in North (At;;_;; = Mechanics 1 (M1) and Mechanics 2
28 days). (M2) in North (At;;_;;; = 28 days).
*The final resulting stress calculated by Mechanics 1 (M1) and Mechanics 2 (M2) are almost same.
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A15.7 Discussion

In general, the final resulting stress in widened deck KW03.01 calculated by Mechanics 1 and Mechanics 2 are
almost same when cracking is not taken into account. The reason is that the stiffness of connections are not small
enough. The results calculated by Mechanics 1 and Mechanics 2 are different only when the stiffness of connection
is extremely small, see Appendix A19. However, such a small stiffness will not appear if cracking is not taken into
account.

When a long-term variable load is applied to a concrete member, due to the creep or relaxation appears in the
process, the concrete member performs as if its elastic modulus is decreased. For simplicity, a fictitious elastic
modulus E,,, (t) is used to evaluate the internal forces in concrete when it is subjected to a long-term variable load,
see Expression 18 (Scholten, 1989).

According to Expression 18, small elastic modulus are applied to the model. As a result, the tensile stress resulting
from imposed deformation is much smaller than the compressive stress from prestress, making old decks and new
decks always be in compression.

If connections are made at earlier timing, imposed deformation will be Ag,;y K Aeconnection K A€new- Aorg K

A& connection Decause the concrete in old decks is much older that in connections. The deformation of old deck mainly
appears before connections being made which is not restrained. Therefore, the imposed deformation in old decks is
much smaller than that in connections. A&;pnnection <K< A&new because new decks are prestressed but not connections.
Creep due to prestressing provides additional shortening to new decks, while there is no creep in connections.

If connections are made at later timing, imposed deformation will be A&,y K Aconnection < A€new OF A&y K
Agpew < Afconnection- The reason of Ag,; K Agy,,, has been mentioned above. There are two reasons of

A& connection getting close to even exceeding Ag,,,,, . First, creep of new decks mostly appears in earlier ages. Suppose
the connections are made at later timing, the shortening due to creep would mostly be free, resulting in hardly any
imposed deformation in new decks. Second, dimensions of new decks are larger than those of connections. So, the
shortening due to shrinkage in new deck is smaller than that in connections. For both reasons, a later timing to make
connection results in A& ppnection getting close to even exceeding Ag,,,,-

A15.8 Conclusion

Either no prestress consumption or minimum prestress consumption is practical because the minimum prestress
consumption appears when the connection is made at time At;;_;;; = 4000 days or later. Suppose only in-plane
loads are taken into account, the old decks and new decks are always in compression while the connections are
always in tension. Suppose out-of-plane loads are also taken into account, the maximum tensile stress resulting from
out-of-plane loads in cross-section at mid-span is always larger than the maximum compressive stress resulting from
in-plane loads. As a result, suppose the tensile strength of concrete is neglected, new decks are always cracked no
matter when connections are made.
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A16  Relation between Mean Normal Stiffness and Imposed deformation in
a Tensile Member

A16.1 Bond Stress — Slip Relationship

Bond stress — slip relationship is starting point from which the models used in the books are developed (Bruggeling,
1970, p. 53) (Veen C. v., 1990, p. 22). The bond stress — slip relationship is obtained by a pull-out test (Rehm, 1961,
p- 138), see Figure 135. With curve-fitting, the experiment data of bond stress — slip relationship is expressed into an
exponential curve (Noakowski, 1978, p. 153):

T, =a-6? (68)
where:
Tp is the bond stress from pull-out test
) is the slip from ‘Pull-out Test’
a is the bond strength
= 0.38 feem
b is the factor related to the shape of T, — § diagram
=0.18
:“b T
—HH ~
A h ~ experiment
0 s
*N

Figure 135:Bond Stress - Slip Curve Obtained by a Pull-out Test.

A16.2 Primary Cracks Only

A16.2.1 Stress Distribution

Transition length I, is the minimum distance at which cracks occur, or in other words transfer length (Veen C. v.,
1990, p. 25). Area inside the transition length on both sides of the cracks is called transition zone. Take half of the
transition zone in a tensile member as an independent member, see Figure 136. The force balance in the element is
derived basing on Figure 136, see Expression 69.

The tensile force in cross-section gy * Ag + 0. * A is balanced by the tensile force o, * As in rebar at crack. For
the force balance in rebar, the tensile force in rebar Ay - (as_cr - 050) is transferred to the concrete by bond within
transition zone. So, a distance of l;; beginning from the crack is necessary for the concrete stress increasing from

zero to a value equal to tensile strength o,,.. And, therefore, transition length [g; is the minimum distance at which
cracks occur (Veen C. v., 1990, p. 23).

Oscr*As = 059" Ag + 00" Ac (69)

where:
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Os.cr is the stress in rebar, or in short the steel stress, at crack
Oso is the stress in rebar, or in short the steel stress, at the ends of transition zone
Oco is the stress in concrete, or in short the concrete stress, at the ends of transition zone
= Ocr
Ocr is the cracking strength of concrete
= 0.6f.cm (A. S. G. Bruggling, W. A. de Bruijn, 1985)
Ag is the area of cross-section of rebar
A, is the area of cross-section of concrete
~ S
O 'A_\- + T A. = —- O'Ig_{-;-'Ax
=a S
) )

'st
Figure 136:Force Balance in Half Transition Zone.

Let the x-axis begins at a distance of l;; from crack and points to the crack, see Figure 137. Suppose the strain in
rebar and concrete at certain point is same when the concrete at this point is not cracked, the deformation
compatibility at point x = 0 m would be derived into Expression 70.

€s0 = €co (70)
where:

&0 is the strain in rebar, or in short the steel strain, at point x = 0 m

= 050/E;s
E; is the elastic modulus of rebar
£co is the strain in concrete, or in short the concrete strain, at point x = 0 m

= 0c0/Ec
E, is the elastic modulus of concrete

Solve Expression 69 and Expression 70 to derive the expressions of steel stresses o ., and g, in primary cracks, see
Expression 71 and Expression 72.

1
Os,cr = O¢r* (ae + —> (71)
Perr
where:
a, is the elastic modulus ratio
= E,/E,
Peff is the effective reinforcement ratio
= As/Ac,eff
Os0 = Qe * Ocr (72)

It is generally assumed that the Bond Stress-Slip Relationship is valid for each element dx and the bond strength a
and the factor b related to the shape of T, — § diagram are constants inside transition zone (Veen C. v., 1990, p. 24).
The distribution of steel stress, concrete stress and bond stress are shown in Figure 137 (Bruggeling, 1970, p. 35).
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oY Ly
*Og e Oc,cr aNd Ty, o Tepresent the steel stress, concrete stress and bond stress at cracks, while dy, 0.o and Ty, represent the steel stress, concrete
stress and bond stress at the ends of transition zone.

Figure 137:Sketch of Stress Distribution in Transition Zone (Primary Cracks Only).

A16.2.2 Shape Factors for Primary Cracks

Basing on Figure 137, shape factors are introduced to express the distribution of steel stress and concrete stress in
transition zone. The magnitude of the shape factors is dependent only on the factor b in the exponential curve of the
bond stress — slip relationship (Veen C. v., 1985, pp. 263 - 344) (Noakowski, 1978, p. 153). Therefore, the definition
and magnitudes of the shape factors when there are primary cracks only are as follow:

Shape factor of steel stress:

shadow area CDE folSt o;(x)-dx  1-b 73)
area CDAE (0ycr —0g) Ly 2

O =

Shape factor of concrete stress:

Ist

_ shadow area C'D'E’ _ i o (x) - dx _1+b

0. = = = (74)
¢ area C'D'A'E’ O Lst 2

Shape factor of bond stress

L@ dx  1-b

= (75)
Tb,CT ' lSt 1+ b

A16.2.3 Slip at Crack and Transition Length

Take the rebar in half of the transition zone as an independent element. As shown in Appendix A16.2.1, the tensile
force A - (Us,cr - aso) is transferred to the concrete by the bond within transition zone, see Figure 138. Basing on
Figure 138, the force balance in rebar derived, see Expression 76.

1
(Us,cr - Uso) 'ZT[Q)Z = Tpm * e 0 (76)
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where:
[0} is the diameter of rebar
Thm is the mean bond stress
= ST - Th,cr
O’_\'{)‘ A\'
(0-.1.(‘:' - Cr‘fl}' A"
.
%
- . -"U.A-"

Figure 138:Force Balance in Rebar within Half Transition Zone.

According to the pull-out test shown in Appendix A16.1, the extra elongation of the rebar and the shortening of the
concrete within transition zone, or in short the slip at crack, is denoted as §.,-. Substitute Expression 68 into
Expression 76 to derive the relation between transition length I, and slip &, at crack, see Expression 77. Therefore,
the slip at crack §,, is expressed into Expression 78.

Oser* @
e = 4(1 + a, -peff) “STp* Ther 7
where:
Thcr is the bond stress at crack when there are primary cracks only
=a- 6crb
Scr = (Esm = €cm) * st (78)
where:
Esm is the mean steel strain inside transition zone when there are primary cracks only
SN (Us,cr - Uso)/Es + 050 /E;
Eem is the mean concrete strain inside transition zone when there are primary cracks only
= S0, " 0./ Es

Solve Expression 77 and Expression 78 to calculate the transition length [, and the slip ., at crack. The results are
shown by Expression 79 and Expression 80.

1

s (Ltb @ 1 gt \P (79)
TN\ 2 4 aE; 1+a,pey
Ocr " Es
b = 2 (1_b)'as,cr (80)

A16.2.4 Mean Normal Stiffness inside Transition Zone

If a reinforced concrete member is cracked, the concrete will be broken but not the rebar. Since the crack width is
small compared with the length of transition, the mean strain of the cracked member inside transition zone can be
represented by the mean steel strain at same position, see Expression 81.

Os,cr — 050 | Os0 1
Esm = SO =t = E—(SO'S “Oger + S0, 0yp) (81)
N S N
where:
Esm is the mean steel strain when there are primary cracks only
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By substituting Expression 71 and Expression 72 into Expression 81 and replacing g, /Es with &g, the expression of
mean steel stress inside the transition zone when there are primary cracks only is derived, see Expression 82. It
means, when a new crack is about to occur, the mean steel strain inside the transition zone is X times larger than that
outside the transition zone.

As shown in Figure 139, when a new crack is about to occur, the tensile forces both inside and outside the transition
zone are equal to cracking force N,,. Therefore, in this case, the mean normal stiffness outside the transition zone is
X times larger than that inside the transition zone, see Expression 83.

Esm = X" & (82)
where:
X is a constant describing the increase of deformation
= [505-(1+ L )+Scrc]
Qe'Peff
Sa; is the shape factor of steel stress when there are primary cracks only, see Expression 73
So, is the shape factor of concrete stress when there are primary cracks only, see Expression 7494
(EA).r, = L2 (83)
X
where:

(EA).r1 isthe mean normal stiffness inside the transition zone when there are primary cracks only

(EA), is the mean normal stiffness outside the transition zone
=EsAs + Ecp(t) - Ac

(FA]O (EA)ry (E‘A]O
T T = T 1
1 [ N ! [
Ny i &5 i 5 Esm i Esp | — 7
# ¥ ¥ -
fﬂ,; 2y fu‘;

L

Figure 139:Force Balance in Cracked Tensile Member when a New Crack is about to Occur (Primary Cracks Only).

A16.2.5 Mean Normal Stiffness of Cracked Tensile Member (Primary Cracks Only)

Simplify the cracked tensile member into a series of springs, see Figure 140. The mean normal stiffness inside
(EA)¢r,1 and that outside the transition zone (EA), in Figure 140 are evaluated by Expression 82 and Expression 83.
Suppose that there are n primary cracks occurred, the elasticity of springs would be derived as follow:

_ (EA)er1 _ (EA)o

kera = = (84)
i lcr,l X lcr,l
where:
kera is the elasticity of spring which represents the part of tensile member inside the transition zone
lern is the length of spring with elasticity k., 1
=2n-ly
i = _EAo
. (85)
where:
ko is the elasticity of spring which represents the part of tensile member outside the transition zone
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L is the total length of the tensile member

Expression 86 shows the relation between the elasticity of combined springs and those of single springs. By
substituting Expression 84 and Expression 85 into Expression 86, the expression of elasticity of combined springs
k., is derived, see Expression 87.

1.1 + ! (86)
km kO kcr,l
where:
ki is the elasticity of spring which represents the whole tensile member
(EA)o

ki @87)

TX-D-2n-l +1L
Basing on the relation between the mean normal stiffness and the mean elasticity shown in Expression

88, the expression of mean normal stiffness of the whole tensile member is derived, also see Expression
88

EA
(EA)pm =k L = ED, (88)
0
where:
0 is a constant describing the decrease of mean normal stiffness
=[X-1)-2n-ly+L]/L
(EA)ery (EA)y
rd ! s ! £
~ crl 0 4

L

Figure 140:Spring Form of Tensile Member (Primary Cracks Only).
A16.3 Primary and Secondary Cracks

A16.3.1 Stress Distribution

When secondary cracks occur, the stress distribution inside the transition zone is different from that when there are
primary cracks only (Veen C. v., 1990, p. 27). The bold lines in Figure 141 and Figure 142 represent the distribution
of stresses when b = 0 and b = 1. As shown in Figure 141 and Figure 142, the distribution of steel strain when
secondary cracks occur is different from that when there are primary cracks only.

The shape factor of steel stress when secondary cracks occur is 1.5 times and 2 times of that when there are primary
cracks only respectively in Figure 141 and Figure 142 (Veen C. v., 1990, p. 28). Then the expressions of mean streel
strain in Figure 141 and Figure 142 are derived, see Expression 89 and Expression 90.

1
Em = [ 05 +1.5- (O'S‘Cr - Uso) 'SO'S] (89)
S
where:
Esm is the steel strain inside transition zone when secondary cracks occur
Sa; is the shape factor of steel stress when there are primary cracks only and b = 0
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Tb’ Thi

Figure 141:Sketch of Shape Factor in Transition Zone when b = 0 (Secondary and Primary Cracks).

1
Esm = E_ [ O+ 2 (Gs,cr - O-so) * Sog ] (90)
N
where:
Esm is the steel strain inside transition zone when secondary cracks occur
Sa; is the shape factor of steel stress when there are primary cracks only and b = 1
Tp Ty
b=1 b=1
s d Csh o
Ts.or Tsor Ts,cr
R 7
0 Olocr e Ter x
O-(.“ oc¥ ‘[‘ 5 i

Figure 142:Sketch of Shape Factor in Transition Zone when b = 1 (Secondary and Primary Cracks).

A16.3.2 Shape Factors for Primary and Secondary Cracks

Assumed that the relation between the factor b and the shape factor of steel stress is linear for 0 < b < 1,
Expression 89 and Expression 90 would be derived into Expression 91. Substitute Expression 73 into Expression 91,
Expression 92 is derived.

1 3+b

gsmz_[o_so'i_

E 2 ' (O_s,cr - 050) * S0 ] on
s
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. _1 (3+b)(1—b)_0 (1+b)2_0 ©92)
sm — Es 4 s,cr 4 S0

Compare Expression 92 with Expression 81, the shape factors of steel stress and concrete stress when secondary
cracks occur are as follow:

Shape factor of steel stress:

3+b)(1-b
4
Shape factor of concrete stress:
14 b)?
So, = % (94)

A16.3.3 Idealized Crack Pattern

An idealized crack pattern is introduced when it comes to the fully developed cracks (Veen C. v., 1990, p. 29)
(Bruggeling, 1970, p. 57), see Figure 143. In the idealized crack pattern, the crack distance varies from lg; to 21,
and the mean strain in transition zone &, 3 when fully developed cracks occur is derived as follow:

26sma + Emasz 1 [ (7+b)(1—b) 1+b)(5+Db)
Esm3 = == * Os,cr * Os0 (95)
3 E, 12 4
where:
Esma is the mean steel strain between primary cracks, see Expression 81

Esma+2 18 the mean steel strain between primary and secondary cracks when secondary cracks occur, see
Expression 92

Compare Expression 95 with Expression 81, the shape factors of steel stress and concrete stress between primary
cracks where secondary crack occurs, or in short between primary cracks, are as follow:

Shape factor of steel stress

(7+b)(1-b)
- 96
S, = (96)
Shape factor of concrete stress
1+b)(5+b
ECEDIED) -
4
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Figure 143:Sketch of Stress Distribution in Transition Zone (Idealize Crack Pattern).

To make sure that the idealized crack pattern is able to form when fully developed cracks occur, the distance between
primary cracks ought to be 3l;, while a secondary cracks ought to occur in between two primary cracks at a distance
of l;; from one of them, as shown in Figure 143. It means, in this thesis, the position of the cracks are predicted
basing on the ideal crack pattern shown in Figure 143. Basing on this prediction, the mean normal stiffness between
primary cracks is derived, see Appendix A16.3.4.

A16.3.4 Mean Normal Stiffness of Idealized Crack Pattern

When a reinforced concrete member is cracked, the concrete will be broken but not the rebar. Since the crack width
is small compared with the length of transition, the mean strain of the cracked member between primary cracks
where secondary crack occurs, or in short in idealized crack pattern, can be represented by the mean steel strain at
same position, see Expression 91 and/or Expression 92.

By substituting Expression 71 and Expression 72 into Expression 92 and replacing o4,/ E with &y, the expression of
mean steel stress between primary cracks is derived, see Expression 98. It means, when a new crack is about to
occur, the mean steel strain between primary cracks is ¥ times larger than that outside the transition zone.

As shown in Figure 144, when a new secondary crack is about to occur, the tensile forces both inside and outside the
transition zone are equal to cracking force N_,.. Therefore, in this case, the mean normal stiffness outside the
transition zone is ¥ times larger than that between primary cracks, see Expression 99.

&m =¥ &5 (98)
where:
v is a constant describing the increase of deformation
[Sas (1 + . Peff) + So. ]
Sa; is the shape factor of steel stress of idealized crack pattern, see Expression 96
So, is the shape factor of concrete stress of idealized crack pattern, see Expression 97
(EA)o
EA =— 99
EA)ers = —5 (99)
where:

(EA).r3 is the mean normal stiffness of idealized crack pattern
(EA), is the mean normal stiffness outside the transition zone
=E,-A;+E.- A,
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Figure 144:Force Balance in Cracked Tensile Member when a New Crack is about to Occur (Primary and Secondary Cracks).

A16.3.5 Mean Normal Stiffness of Cracked Tensile Member

The mean normal stiffness of cracked tensile member when secondary cracks occur is related to the final cracked
pattern. For simplification, this part is introduced in A16.5. Before that, the final crack pattern has to be determined,
see A16.4.

A16.4 Crack Pattern

A16.4.1 Formation Process of Crack Pattern

The mean normal stiffness of cracked tensile member when secondary cracks occur is related to the final cracked
pattern. To obtain the idealized crack pattern, a concept of formation process of crack pattern related to imposed
deformation Ae has to be introduced, see Figure 145. In general, there are for important timing during the formation
process of crack pattern, which divides the process into four stages:

Ag; the imposed deformation which results in tensile strain in tensile member

Agyy the imposed deformation when primary cracks occur, which is referred to as cracking strain &,

Agyyy the imposed deformation when secondary cracks occur, which is referred to as partially developed
cracking strain &4

Agyy the imposed deformation when fully developed cracks occur, which is referred to as fully developed

cracking strain &g¢
Stage 1:
Ag; < Ae < Agyy: the tensile member is in tension but not cracked, which results in a linear deformation
Stage 2:
Agpy < Ae < Agyyy: primary cracks occur due to imposed deformation and reach their maximum at Ae = Agyy;
Stage 3:
Agpp < Ae < Agyy: secondary cracks occur due to imposed deformation and reach their maximum at As = Ag;y,
Stage 4:

Agpy < Ae: all the cracks are developed into fully developed cracks

Ae, Agyy Ae gy Ae gy
A¢
Figure 145:Formation process of Crack Pattern.
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A16.4.2 Crack Pattern when Ag;; < Ae < Agyyp (Stage 2)

In Stage 2, primary cracks occur. As shown in Appendix A16.3.3, the position of primary cracks can be predicted
due to the idealized crack pattern. To make sure that the idealized crack pattern is able to form when fully developed
cracks occur, the distance between primary cracks ought to be 31;.

It means that, when primary cracks are not at their maximum, the primary cracks occur one by one at positions
randomly as the imposed deformation increases with certain distances which are the integral multiple of 3l;, see
Figure 146. When the maximum is obtained, all the primary cracks have a distance of 3, from the neighbour ones,
see Figure 147. Basing on Figure 147, the maximum number of primary crack n,,,, is calculated as follow:

L
Nmax = ROUNDDOWN ( 3 o) (100)
St

where:
L is the length of the tensile member

*ROUNDDOWN(x, 0) is a function calculating the maximum integer which is smaller than x.

When primary cracks occur, the tensile member is divided into several segments by the cracks. Independent from the
number of primary cracks, the summation of elongation in each segment ought to equal to the total elongation of the
tensile member. Therefore, suppose that the (n + 1) — th primary cracks is about to occur when a imposed
deformation Ae is applied to the tensile member, an equation of deformation would be made as follow:

Stotar = 6cra + 6o (101)
where:

Stotal is the total elongation of the tensile member
Sern is the total elongation of inside the transition zone

= &m 20" Iy
n is the number of primary cracks which have already occurred
Esm is the mean steel strain inside the transition zone

=X &
&s0 is the steel strain outside the transition zone, see Expression 72
8o is the total elongation outside the transition zone

= g5 (L—2n-lg)

Resulting from Expression 101, the relation between the number of primary cracks which have already occurred and
the magnitude of imposed deformation is as follow:
(Ae —€e5) - L

n=-———— 102
(X —1) &5 2l (102)

31, 6l 6l

Figure 146:Crack Pattern when Primary Cracks are not at Their Maximum.
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Figure 147:Crack Pattern when Primary Cracks are at Their Maximum.

*The shadowed parts in Figure 146 and Figure 147 represent the transition zone in the tensile member.

A16.4.3 Crack Pattern when Agj;; < Ae < Agyy (Stage 3)

In Stage 3, primary cracks have reach their maximum while secondary cracks occur. As shown in Appendix A16.3.3,
the position of secondary cracks can be predicted due to the idealized crack pattern. To make sure that the idealized
crack pattern is able to form when fully developed cracks occur, a secondary cracks ought to occur in between two
primary cracks at a distance of l;; from one of them, as shown in Figure 143.

It means that, before secondary cracks occur, the tensile member has been divided by primary cracks into segments
with a length of 3l;, see Figure 147. When the secondary cracks are not at their maximum, some of these segments
are divided by the secondary cracks into idealized crack pattern, see Figure 148. When the maximum is obtained, the
all the segments are divided into idealized crack pattern by the secondary cracks, see Figure 149. Basing on Figure
149, the maximum number of secondary crack m,,,, is calculated as follow:

L
ROUNDDOWN (— 0) -1, MOD(L,3l,) <1
3l
L (103)
ROUNDDOWN (T o), MOD(L,3ls) = 1

St

Mmax =

*MOD(x, y) is a function calculating the remainder of x/y.

When secondary cracks occur, some of the segments in Figure 147 change into idealized crack pattern. Independent
from the number of primary cracks, the summation of elongation in each segment and idealized crack pattern ought
to equal to the total elongation of the tensile member. Therefore, suppose that the (m + 1) — th secondary cracks is
about to occur when a imposed deformation A¢ is applied to the tensile member, an equation of deformation would
be made as follow:

Ototar = 6cr,3 + 6cr,1 + 8o (104)
where:
Scr3 is the total elongation of the idealized crack pattern
= Emz3 - 3m: Lot
m is the number of secondary cracks which have already occurred
Esm3 is the mean steel strain of idealized crack pattern
=W¥- g
Oer1 is the total elongation of remained segments
= &ma " 2(Mpax —m) -l
Nmax is the maximum number of primary cracks
Esma is the mean steel strain inside the transition zone
=X &g
&0 is the steel strain outside the transition zone, see Expression 72
6o is the total elongation outside the transition zone
=& (L—m-ly—2n-1ly)
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Resulting from Expression 104, the relation between the number of secondary cracks which have already occurred
and the magnitude of imposed deformation is as follow:
_ X —1)-2n-l5 &5 — (Mg —&5) " L
a QX -3%+1) g5 Ly

(105)

i,.\'f 2 E.\'l' 21 5t ! st 3 I.\'l' 3 5t I.\'f 2 z.\'!

3}.“’ 3151' 3‘]'5{ 3151' 3‘]'.1‘{

Figure 148:Crack Pattern when Secondary Cracks are not at Their Maximum.

z.\'l T 2E.TF Zf_ﬂ‘ !T_“- z.\'l 2E.ﬁ f.\':‘ 21.\':‘ z.\'l 2E.ﬁ

S S

3l 3l 3l 3lq 3l

Figure 149:Crack Pattern when Secondary Cracks are at Their Maximum.

A16.5 Mean Normal Stiffness of Cracked Tensile Member (Primary and
Secondary Cracks)

As shown in Appendix A16.4, the relations between the number of primary or secondary cracks and the magnitude
of imposed deformation are derived. Simplify the cracked tensile member into a series of springs, see Figure 150.
The mean normal stiffness of tensile member with idealized crack pattern (EA), 3, segments shown in Figure 147
(EA)(r,1 and that outside the transition zone (EA), in Figure 150 are evaluated by Expression 99, Expression 82 and

Expression 83 respectively. Suppose that there are m secondary cracks occurred, the elasticity of springs would be
derived as follow:

_ EA) s _ (EA)

kcr,3 B lers RE lcr,3 (106)
where:
kers is the elasticity of spring which represents the part of tensile member with idealized crack pattern
lers is the length of spring with elasticity k., 3
=3m-lg
(EA)cr,l (EA)O
kcr,l B lcr,l X lcr,l (107)
where:
kera is the elasticity of spring which represents the segments shown in Figure 147
lera is the length of spring with elasticity k., ;
=2n—m)-ly
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(EA)o

ky=——F7——77—
0 L- lcr,3 - lcr,l (108)
where:
ko is the elasticity of spring which represents the part of tensile member outside the transition zone
L is the total length of the tensile member

Expression 109 shows the relation between the elasticity of combined springs and those of single springs. By
substituting Expression 106, Expression 107 and Expression 108 into Expression 109, the expression of elasticity of
combined springs k,, is derived, see Expression 110.

1 1

1 1
—=—+ + 109
km kO kcr,l kcr,3 ( )
where:
k' is the elasticity of spring which represents the whole tensile member
EA
e (EA)o (110)

T L—(m+ 2npg) st + 2Ny — M) Xl +3m W I,

Basing on the relation between the mean normal stiffness and the mean elasticity shown in Expression 111, the
expression of mean normal stiffness of the whole tensile member is derived, also see Expression 111.

EA
(EA)p' = k' L = ( ,)" (111)
N
where:
Q' is a constant describing the decreasing of mean normal stiffness
=[L—(m+ 2npay) * lse + 2oy —m) - X - Ly +3m - ¥ - 1 ]/L
(Ed)ers (EAYer (Ed)o
- - o #
ij ﬂTJ m

L

Figure 150:Spring Form of Tensile Member (Primary and Secondary Cracks).

A16.6 Conclusion

According to Expression 102 and Expression 105, the number of cracks is a function of imposed deformation, while,
according to Expression 88 and Expression 111, the mean normal stiffness is a function of the number of cracks. The
expressions describing the relation between mean normal stiffness and imposed deformation are complex. For
simplicity, here only summarized the derivation of the expressions:

Primary cracks only:

By substituting Expression 102 into Expression 88, relation between mean normal stiffness and imposed deformation
is derived.

Secondary cracks occur:

By substituting Expression 105 into Expression 111, relation between mean normal stiffness and imposed
deformation is established.

In addition, to show the reliability of the relation derived here, an example is given in Appendix A17.
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Al7 Calculation of Mean Normal Stiffness

Al17.1 General

A calculation is carried out here to prove that the relation between mean normal stiffness and imposed deformation
derived in Appendix A16 is capable to describe the behavior of a cracked tensile member when imposed deformation
is applied. Suppose the diagram of equivalent normal force and imposed deformation calculated here suits the
schematised N — € diagram, see Figure 2, the relation between mean normal stiffness and imposed deformation
derived in Appendix A16 would be taken reliable.

A17.2 Input Data

A17.2.1 Dimensions

The dimensions of the model are summarized in Table 28. It is the model of a concrete tensile member which is
reinforced. Two rows of reinforcement 6025 in longitudinal direction is applied. The basic dimensions of
reinforcement are summarized in Table 175. Substitute the data from Table 175 into Expressions 118 to 122, the
dimensions of effective area is evaluated, see Table 176.

height of cross-section h 0.70 m
width of cross-section b 0.50 m
length of total L 42.40 m
area of cross-section A, 0.35 m’
Table 174:Dimensions of the Connection.
diameter of rebar Dy 25 mm
area of rebar As 491 mmz
spacing s 83 mm
cover c 55 mm
Table 175:Basic Dimensions of Reinforcement.
effective area of concrete per rebar A cef 28125 mm”
where:
width of effective area ( <s)|b . 83.33 mm
height of effective area (<h/2)|h . 337.50 mm
effective reinforcement ratio P eff 0.0175

Table 176:Dimensions of Effective Area.

A17.2.2 Material Properties and Imposed Deformation

To calculate the diagram of equivalent normal force and imposed deformation which shows the development process
of crack pattern, a series of imposed deformation A¢ is applied to the tensile member. The magnitude of imposed
deformation is as follow:

Ae=0.0%x10"*~5x107* (112)

The basic data of material properties and environmental conditions of are shown in Table 177. In this calculation, the
imposed deformation is applied to the tensile member at time t = 36500 days. The material properties at time t =
36500 days are shown in Table 35. Substitute time t = 36500 days into Expressions 13 to 17, the material
properties of concrete at time t = 36500 days are evaluated.
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Environment relative humidity RH 75 %
Cement (CEM I11/B) coefficient related to cement s 0.25
characteristic strength Sek 35 MPa
gravity Ve 25 kN/m’
compressive strength Sfem 43 MPa
Concrete (C35/45) Tensile strength Setm 3.2 MPa
elastic modulus Eom 34 GPa
poisson's ratio v 0.2
coefficient of thermal expansion Oc 0.00001 /°C
elastic modulus E; 210 GPa
. ratio of elastic modulus Ole 5.74
?;;I(l)go)rcement ~Top diam.eter of rebar Dy 25 mm
spacing s 100 mm
cover c 55 mm
elastic modulus E; 210 GPa
_ ratio of elastic modulus Ole 5.74
?ggr(l)go)rcement — Bottom [ reter of rebar D 25 mm
spacing s 100 mm
cover c 55 mm
Table 177:Basic Data of Material Properties and Environmental Conditions.
characteristic strength \f ek 3.50E+07 Pa
compression strength fem 4.30E+07 Pa
elastic modulus Ecm 3.40E+10 Pa
characteristic strength fek (1) 3.50E+07 Pa
mean compression strength fem (1) 5.48E+07 Pa
where:
factor related to time |f cc (2) 1.28
elastic modulus Ecn(t) 3.66E+10 Pa

Table 178:Material Properties of Concrete at Time t = 36500 days.

A17.3 Expressions of Equivalent Normal Force

According to Appendix A16.4.1, there are four stages during the formation process of crack pattern. The expressions
of equivalent normal force N are different in different stages.

Expression 100 and Expression 103 are the expressions of the maximum number of primary and secondary cracks
respectively. By substituting Expression 100 back to Expression 102 and solving the equation, the imposed
deformation Ae = &, is evaluated which results in the maximum primary cracks. Similarly, by substituting
Expression 103 back to Expression 105 and solving the equation, the imposed deformation Ae = &5, is evaluated
which results in the maximum secondary cracks.

Then substitute Ae = €4, and Ae = &, into the relations between mean normal stiffness and imposed deformation
which have been established, the mean normal stiffness (EA),q. and (EA) g4, are evaluated when the tensile member
is subjected to Ae = &4, and Ae = g4 respectively.
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Suppose a tensile member is subjected to a imposed deformation Ae, the expressions of equivalent normal force N
are as follow:

Agp < Ae < Agpp(&qp):
N = Ae - (EA), (113)
where:
Ae is the imposed deformation

(EA), is the mean normal stiffness of uncrack tensile member
=EsAs + Ecp(t) - Ac

Agpp(ge) < Ag < Agyy(Epac):
N = Ae - (EA),, (114)

where:
(EA),, isthe mean normal stiffness of tensile member with primary cracks only, see Expression 88

Agpr(Epac) < Ag < Agyy(&gqc):

N = Ae- (EA),,’ (115)
where:
(EA),," is the mean normal stiffness of tensile member with primary and secondary cracks, see Expression
111
Ay (gfqc) < Ae:
N = grqc - (EA) pqc + (Ae — grq.) - (EA) (116)
where:
Efac is the strain when secondary cracks are at their maximum

(EA)fqc is the mean normal stiffness of tensile member subjected to &4,

(EA), is the mean normal stiffness rebars
= Eg - A

The cracking strain €, at time t is evaluated as follow:

Ocr -4
Eor = cm(t) =0.53x10" (117)
where:
Ocr is the cracking strength of concrete
0.6 X ferm
fetm is the tensile strength of concrete at time t = 28 days

Al17.4 Results

Basing on the data shown in Appendix A17.2, substitute Expression 112 into relation between mean normal stiffness
and imposed deformation derived in Appendix A16, a series of equivalent normal forces N are calculated. Plot the
equivalent normal forces N and their corresponding imposed deformation, the N — A¢ diagram of the tensile member
is obtained, see Figure 151.

As shown in Figure 151, the dashed lines in purple, green and light blue represent the cracking strain &,., partially
developed strain &,4, and fully developed strain €54, respectively. The diagram is divided into four parts which are
corresponding to the formation process introduced in Appendix A16.4.1.
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It is shown that the variance of equivalent normal force during the development process of crack pattern is small. It
means the impact of cracking on the equivalent normal force is not significant from the view of whole tensile
member.

During calculation, the constants which describing the increasing of deformation X and ¥ are 5.09 and 5.90. It
means, suppose the primary cracks are at their maximum and no secondary cracks occurs, the deformation of the
transition zones 5.09 times larger than that when it is not cracked. And, suppose the tensile member is fully cracked
with an idealized crack pattern shown in Figure 143, the deformation of the transition zones 5.90 times larger than
that when it is not cracked.

However, the total length of the connection L is much longer than that of transition zones of a single crack 2l;. As
results, the increment of deformation due to a single crack gives hardly any difference to the deformation of whole
tensile member. And, therefore, the decrement of equivalent normal force is small. In the end, the N — Ae diagram is
approximately an horizontal line, when the tensile member is not fully cracked, see Figure 151.
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Figure 151:N — § Diagram of Connection in the South Part of Widened Deck KW03.01.

In addition, it is shown that, from Ae = &, to Ae = &4, the variance of equivalent normal force is getting smaller.
Details A, Details B and Details C are shown in Figure 152, Figure 153 and Figure 154.

As shown in Figure 152, Figure 153 and Figure 154, the equivalent normal force varies as the imposed deformation
increases. It reaches its maximum when a new crack is about to occur and drops to its minimum after a new crack
occurs. The diagram between a minimum and a maximum is linear, because it is assumed that the mean normal
stiffness of the tensile member is constant during this process.
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Figure 152:Details A.
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Figure 153:Details B.
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Figure 154:Details C.

A17.5 Conclusion

According to Figure 151, suppose a tensile member is much longer than the transition zone of single crack, the
impact of cracking on the equivalent normal force is neglectable. However, it is proved that the decrement of normal
stiffness is significant when a tensile member is cracked due to imposed deformation.

A copy of Figure 2 is shown in Figure 155. Compare Figure 151 with Figure 155, it is shown that the diagram of
equivalent normal force and imposed deformation calculated here suits the schematised N — € diagram. So, the
relation between mean normal stiffness and imposed deformation derived in Appendix A16 is reliable.
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Figure 155:Sketch of N — § Diagram in ‘Pink Book'.
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Al8 Expressions to Evaluate the Effective Area of Rebar

According to Eurocode, when the calculation about cracking is carried out, the effective area surrounding the
reinforcement has to be taken into account, see Figure 156. As shown in Figure 156, the cracks are concentrated in a
certain part of tensile member. The cross-section of this part is taken as effective area in this thesis. The expression
of the maximum width of effective area b q 18 as follow:

()
bosymax =5 (¢ + =) (118)
where:
c is the cover of rebar
@ is the diameter of rebar
I -V R _
<
4 h-x - Neutral axis
c [B] - Concrete tension surface

@ - Crack spacing predicted by
""" = Expression (7.14)
/'_(7 £ N/
—\T\T/ i (D] - Crack spacing predicted by
- X Expression (7.11)

' [E| - Actual crack width
S(c + ¢/2)

Figure 156:Effective Area in Tensile Member.

Basing on Expression 118, the effective area surrounding rebar in a tensile member is estimated, see Figure 157. The
shadowed part in Figure 157 represents the effective area. The expressions of width b,sf and height h,ff of effective

area are as follow:

)
befszIN[S(c+7s),S] (119)
where:
s is the spacing of rebar
B Bs\ h
— 40 =) Z 120
where:
h is the height of cross-section

With the width and height of effective area evaluated, the area of effective area and the effective reinforcement ratio
are evaluated as follow:

Acerr = bers * hegy (121)
As
Pseff =74 (122)
ceff
where:
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Figure 157:Sketch of Effective Area.
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A19  Impact of Cracking on Prestress Consumption in Proportion

A19.1 General

As shown in Appendix A15, independent from the timing to make connection, only connections are in tension.
Therefore, only connections are possible to be cracked. With the cracked zone estimated, calculations with the
impact of cracking is carried out.

The stress at which cracking occurs in concrete is referred to as the cracking strength of concrete o, or in short the
cracking strength. Suppose the tensile stress in connections resulting from combined actions exceeds the cracking
strength, the connections would be taken as the cracked area to investigate the impact of cracking.

The cracking strength is often assumed to be equal to the tensile strength of concrete f,,,, (t) at time t = 28 days
(Breugel, 2013, p. 72). The expression to evaluate f,., (t) at time t = 28 days is shown in Appendix A3, see
Expression 16. However, an important factor to the cracking strength is the duration of load which causes cracking.
Suppose a long-term load is applied, cracking strength would be smaller than that when a short-term load is applied
(A. S. G. Bruggling, W. A. de Bruijn, 1985). The expression to evaluate the cracking strength o, is as follow:

Ocr = 0.6 * frm(t) (123)

where:
feem(t) s the tensile strength of concrete at time t = 28 days when short-term load is applied

With cracking strength, suppose the deformation applied to connections is known, the mean normal stiffness of
cracked connections is available, see Appendix A16. As shown in Appendix A 16, a relation is established between
the mean normal stiffness of a cracked concrete tensile member and imposed deformation applied to it. According to
the relation established in Appendix A 16, the normal stiffness of the connections are re-evaluated when cracking is
taken into account. With the re-evaluated normal stiffness in connections, the in-plane strain and stress in widened
deck KW03.01 resulting from the imposed deformation are re-calculated.

The imposed deformation used to evaluate the mean normal stiffness of connections is taken as the mean strain
resulting from imposed deformation when cracking is not taken into account. The means strain resulting from
imposed deformation when cracking is not taken into account is substituted into the expressions in Appendix A16 as
imposed deformation to re-evaluate the normal stiffness in connections.

The stress resulting from imposed deformation, shown in Appendix A15.6, is calculated without the impact of
cracking. Hereby, to investigate the impact of cracking on the resulting strain and stress, re-calculation are carried
out to Example 3 and Example 6 with cracking taken into account, see Appendix A19.2.

A19.2 Re-calculated Examples

The stress resulting from imposed deformation and prestress consumption in proportion in widened deck KW03.01
are re-calculated. For each re-calculated example, four figures are plotted:

A sketch showing material properties and imposed deformation.

Stress resulting from imposed deformation calculated by Mechanics 1 and Mechanics 2 with cracking.
Stress resulting from imposed deformation calculated by Mechanics 2 with and without cracking.
Prestress consumption in proportion calculated by Mechanics 2 with and without cracking.

D=

For the same reason shown in Appendix A15.1, the impact of additional deformation due to imposed deformation, or
in other words the impact of imposed deformation, on the compressive stress is neglected. The compressive stress
resulting from prestressing at time t = t, in old decks and new decks is equal to those calculated in Appendix A15.
As aresult, to show the impact of cracking clear, hereby only shown the stress resulting from imposed deformation,
where the compressive stress resulting from prestressing is excluded.
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In general, due to imposed deformation, only connections are cracked. Therefore, the stiffness of connection
decreases. For simplicity, the decreased stiffness is represented into a fictitious elastic modulus of concrete which is
smaller than the original one, see Figure 158 and Figure 162.

As shown in Figure 159 and Figure 163, with cracking taken into account, stress resulting from imposed deformation
calculated by Mechanics 1 and Mechanics 2 are almost same. As shown in Figure 160, Figure 161, Figure 164 and
Figure 165, stress resulting from imposed deformation and prestress consumption in proportion calculated Mechanics
2 with and without cracking are almost same. It means, when connections are made at time At;;_;;; = 28 days,
although connections is cracked, the impact of cracking on stress resulting from imposed deformation is small.

Example 3: south part (connection made at time At;;_;;; = 28 days)

Stress Distribution i# Stress Distribution Prestress Consumption

e : adlaa
| - 12 |
1 1
1 1
1 1

10 F |- = Zreo 1 10F |- = Zreo 1 10 |
=== 0 Deck - M1 [+ = == O1d Deck - M2
Conncetbon - M1 Connection - M2
""" New Deck - M1

s O Deck - M2
B | Conncction jcracked) - M2| T
S— New Deck - M2

—(d Deck - M2 (cracking)
8F Connection - M2 (eracking)| ]
m— o Deck - M2 feracking)

[ [~ = #reo
=== O0d Deck - M2

New Deck - M2
e (31 Dk = M2 {crucking)
[ New Deck - M2 {cracking)

E{:m(f) =23.4GPa
Ae = 4.64x10°

6F

Position [m]
Position [m]
Position [m]

1
4t 4t 4t i
Een(t) = 9.7 GPa i
Ae =3.90x10° SN e 1 IR ot 1 ol Seer J 1
i N . N I . = 1o g B S
Eenft) = 17.9 GPa : / : ] | /
Ae =4.37x10° g : g : 0 :
-5 0 5 -5 0 5 -50 0 50
Stress [Pa] . pf Stress [Pa] . pf Prestress Consumption [%]
Figure 158:Material Figure 159:Stress Calculated by Figure 160:Stress Calculated by Figure 161:Prestress
Properties and Imposed Mechanics 1 (M1) and Mechanics Mechanics 2 (M2) with and Consumption Calculated by
Deformation in South 2 (M2) in South (Aty;_;;; = without Cracking in South Mechanics 2 (M2) with and
(Aty;—p; = 28 days). 28 days). (Aty;—p; = 28 days). without Cracking in South
(At = 28 days).
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Example 6: north part (connection made at time At;;_;;; = 28 days)

Stress Distribution , Prestress Consumption
T T T h ) T

Stress Distribution

20 .'"/7 . 20 :”7 E 20F
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Figure 162:Material Figure 163:Stress Calculated by Figure 164:Stress Calculated by Figure 165:Prestress
Properties and Imposed Mechanics 1 (M1) and Mechanics Mechanics 2 (M2) with and Consumption Calculated by
Deformation in North 2 (M2) in North (At = without Cracking in North Mechanics 2 (M2) with and
(Aty;_; = 28 days). 28 days). (Aty;_; = 28 days). without Cracking in North

Aty = 28 days).

A19.3 Additional Calculation

As shown in Appendix A19.2, the connections are cracked while the impact of cracking is small. To investigate the
possible impact of cracking, an additional calculation is carried out to Example 3. According to Appendix A16,
cracking decreases the stiffness connection. Same as the re-calculation in Appendix A19.2, the decreased stiffness is
represented into a fictitious elastic modulus of concrete which is smaller than the original one. The original elastic
modulus of concrete in connection is E.,,(t) = 10.1 GPa. So, during the additional calculation, the fictitious elastic
modulus of concrete in connection varies from E,,(t) = 1 Pa to E,,,(t) = 10.1 GPa, see Figure 166 and Figure
168.

In the additional calculation, stress resulting from imposed deformation in widened deck KW03.01 is a function of
elastic modulus E,, (t) in connection. The resulting stress is calculated by both Mechanics 1 and Mechanics 2.

The results of additional calculation is plotted into three dimensional figures, see Figure 167 and Figure 169. As
shown in Figure 167 and Figure 169, the three axis represent the position in cross-section, the elastic modulus of
concrete and the stress resulting from imposed deformation respectively. In addition to Figure 167 and Figure 169,
two dimensional figures are plotted as well, where the two axis represent the elastic modulus of concrete and the
stress resulting from imposed deformation respectively, see Figure 170 and Figure 171.

As shown in Figure 169 and Figure 171, before the elastic modulus of concrete in connections decrease to 40%, the
impact of cracking is small. As shown in Appendix A19.2, the elastic modulus of concrete in Example 3 decreases to
96.0% which is far from 40%. As a result, the impact of cracking on the stress resulting from imposed deformation
in Example 3 is small. Similarly, the elastic modulus of concrete in Example 6 decreases to 99.0% which is far from
40% as well. Therefore, the impact of cracking on the stress resulting from imposed deformation in Example 6 is
also small.
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As shown in Figure 167 and Figure 169, before the elastic modulus of concrete in connections decrease to 40%, the
stress calculated by Mechanics 1 and Mechanics 2 are almost same. However, as shown in Figure 169, when the
elastic modulus of concrete in connections decrease to 40% or less, the stress in widened deck KW03.01 calculated
by Mechanics 2 drop to zero, while those calculated by Mechanics 1 are non-zero in old decks and new decks.

It means, when the elastic modulus of concrete in connection is not extremely small, both Mechanics 1 and
Mechanics 2 are usable. The difference between Mechanics 1 and Mechanics 2 is significant only when the elastic
modulus of concrete in connection is extremely small. Also see Figure 170 and Figure 171.

Stress in Widened Deck KW03.01

(‘\]’_|

E('m(f) =234 GPa :‘ 0
Ae = 4.65%107 s

8 5

F15

Eon(t) =1 Pa~10.1 GPa oo

Ag = 3.89x10™ . ;
. Elastic Modulus of Connection [GPa]
Ecm(t) = 17.9 GPa Position in Cross-section [m]
Ag = 4.34x10°

Figure 166:Material Properties and Imposed Figure 167:Stress Distribution in Example 3 Calculated by Mechanics 1 (M1)
Deformation in the South Part (At;;_;;; = Corresponding to a Series of Elastic Modulus Applied to Connection.

28 days).

*The colour in the image represents the mean stress resulting from the imposed deformation applied to old deck, connection and old deck. This
three-dimensional image shows the impact of decreased elastic modulus on the stress calculated by Mechanics 1.

Stress in Widened Deck KW03.01

E('m(f) =23.4GPa
Ae = 4.65%107

Stresses [MPa]

Een(t) = 1 Pa~10.1 GPa

As = 3.89x10° 0 0 ;
. Elastic Modulus of Connection [GPa]
Ecm(t) = 17.9 GPa Position in Cross-section [m]
Ag = 4.34x10°

Figure 168:Material Properties and Imposed Figure 169:Stress Distribution in Example 3 Calculated by Mechanics 2 (M2)
Deformation in the South Part (At;;_;; = Corresponding to a Series of Elastic Modulus Applied to Connection.

28 days).

*The colour in the image represents the mean stress resulting from the imposed deformation applied to old deck, connection and old deck. This
three-dimensional image shows the impact of decreased elastic modulus on the stress calculated by Mechanics 2.
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Stress in Widened Deck KW03.01
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Figure 170:Front-view of Figure 167.

*The colour in the image represents the mean stress resulting from the imposed deformation in applied to old deck, connection and old deck. This
figure shows the impact of decreased elastic modulus on the stress calculated by Mechanics 1.

Stress in Widened Deck KW03.01
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Figure 171:Front-View of Figure 169.

*The colour in the image represents the mean stress resulting from the imposed deformation in applied to old deck, connection and old deck. This
figure shows the impact of decreased elastic modulus on the stress calculated by Mechanics 2.

The calculation carried out above is only about in-plane situation. However, as shown in Appendix A15.3, suppose
out-of-plane loads are also taken into account, as shown in Appendix A2.5, the maximum tensile stress resulting
from out-of-plane loads in cross-section at mid-span varies from g; = 9.9 MPa to ; = 15.6 MPa, which is always
larger than the maximum compressive stress resulting from in-plane loads. As a result, suppose the tensile strength of
concrete is neglected, new decks are always cracked no matter when connections are made.

Out-of-plane loads result in out-of-plane cracking. According to Appendix A16, cracking decreases the stiffness of
new deck. Same as the re-calculation in Appendix A19.2, the decreased stiffness is represented into a fictitious
elastic modulus of concrete which is smaller than the original one. The original elastic modulus of concrete in new
deck is E,, (t) = 17.9 GPa. So, during the additional calculation, the fictitious elastic modulus of concrete in
connection varies from E,,,(t) = 1 Pa to E,,,,(t) = 17.9 GPa, see Figure 172.
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Stress in Widene_d Deck KW03.01
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Figure 172:Material Properties and Imposed Figure 173:Stress Distribution in Example 3 Calculated by Mechanics 2 (M2)
Deformation in the South Part (At;;_;; = Corresponding to a Series of Elastic Modulus Applied to New Decks.

28 days).

*The colour in the image represents the mean stress resulting from the imposed deformation applied to old deck, connection and old deck. This
three-dimensional image shows the impact of decreased elastic modulus on the stress calculated by Mechanics 2.

Stress in Widened Deck KW03.01

4 : : : |
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Elastic Modulus of New Deck [GPa]
Figure 174:Front-view of Figure 173.

*The colour in the image represents the mean stress resulting from the imposed deformation in applied to old deck, connection and old deck. This
figure shows the impact of decreased elastic modulus on the stress calculated by Mechanics 2.

As shown in Appendix A2.5, tensile stress in concrete resulting from load case 6.10 a are 0419, = 24.8 MPa and
O4610q¢ = 14.2 MPa at 6X and 8X. For simplification, the maximum linear elastic deformation of concrete at Cross-
section 6X and Cross-section 8X are calculated respectively as follow:

maximum elastic deformation at Cross-section 6X

14.2 MPa B
€d,6.10a = m =7.93x10

maximum elastic deformation at Cross-section 8X

24.8 MPa _3
€d,6.10a = m =139x10
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Substitute the maximum linear elastic deformation & ¢ 10, as imposed deformation into the expressions shown in
Appendix A16 to calculate the minimum elastic modulus of concrete at Cross-section 6X and Cross-section 8X. The
results of calculation are as follow:

minimum elastic modulus at Cross-section 6X

Ecme10a(t) = 1.7 GPa
minimum elastic modulus at Cross-section 8X

Ecm,a610a(t) = 2.9 GPa

Suppose the compressive stress in cross-section has no impact on the magnitude of elastic modulus of concrete, the
elastic modulus of concrete in the whole cross-section are as follow:

7 7/
1
/' Enft) = 13.84 GPa
A

Eemft) = 1.65 GGPa Ewnft) = 2.88 GPa

Eenft) = 17.90 GPa Eenft) = 17.90 GPa

& Ec‘mﬂ) =14.15 (}PH

Figure 175:Mean Elastic Modulus of Concrete under Out-of-plane Loads.
mean elastic modulus at Cross-section 6X

Ecmasi0a(t) = 13.8 GPa
mean elastic modulus at Cross-section 8X
Ecmasi0a(t) = 14.2 GPa

According to Figure 174, due to the decrement of elastic modulus of concrete, stress resulting from imposed
deformation would decrease to 84%, where the absolute stress decrement is 0.7 MPa. Although the out-of-plane
loads may decrease the stress resulting from imposed deformation, the decrement cannot help avoid cracking.

A19.4 Conclusion

In general, in terms of widened deck KW03.01, the impact of cracking and the advantage of Mechanics 2 is
significant only when the elastic modulus of concrete in connections decrease to about 40% or less. However, the
elastic modulus of concrete decreases to 96% and 99% in south and north respectively, which are much larger than
40%. Therefore, the impact of cracking on the stress resulting from imposed deformation and the prestress
consumption in proportion is small.

In conclusion, both Mechanics 1 and Mechanics 2 without the impact of cracking is capable to calculate the stress
resulting from imposed deformation in widened deck KW03.01. In terms of prestress consumption, the timing to
make connection At;;_;;; is more critical than the impact of cracking.

Suppose out-of-plane loads are taken into account, it is expected that the stress resulting from imposed deformation
would be decreased to 84%. However, such a decrement cannot help avoid cracking.
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A20  Impact of Reduced Prestressing Force on Prestress Consumption

A20.1 General

As shown in Section 9.4, since the prestress loss in proportion is large due to imposed deformation and the
prestressing itself is one of the sources of imposed deformation, an investigation is carried out to see whether it is
possible to get similar remaining compressive stress in widened deck KW03.01 with reduced prestressing force.

A20.2 Results

The investigation is carried out to the widened deck KW03.01. During the investigation, a series of prestress are
applied to new deck. The magnitude of the prestress varies from 2000 kN/cable to 4000 kN/cable. For simplicity,
hereby only summarized the final stress and prestress consumption in proportion, where the impact of cracking is
taken into account, see Figure 176 to Figure 179.

Stress in Old Deck

L

Stresses [N-'mm:]
‘n
T

Prestressing Force per Cable [N] « 10
Stress in Connection

2.

T
g I T T
= Edge 3
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2 Edge 4
_j O s N g IS e —— o B e — | —
& ! 1.5 2 25 3 is 4

Prestressing Force per Cable [\l] < 10"
Stress in New Deck

Stresses [N mm:i
L

| 1.5 ‘] 25 3 is 4
Prestressing Force per Cable [\l] < 10

Figure 176:Final Resulting Stress in South Corresponding to Different Prestressing Forces per Cable.
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Figure 177:Prestress Consumption in South Corresponding to Different Prestressing Forces per Cable.
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Figure 178:Final Resulting Stress in North Corresponding to Different Prestressing Forces per Cable.
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Figure 179:Prestress Consumption in North Corresponding to Different Prestressing Forces per Cable.

As shown in Figure 176 to Figure 179, the impact of reduced prestressing force on final resulting stress and prestress
consumption is different in old deck, connection and new deck. Old decks are always in compression. The reduced
prestressing force decreases the maximum prestress consumption in old decks. In contrast, connections are always in
tension. The reduced prestressing force increases the tensile stress in connections. Due to the tensile stress,
connections are cracked. One on hand, cracking decreases the stiffness of connections, which would decrease the
stress resulting from imposed deformation. On the other hand, reduced prestressing forces increases the difference of
imposed deformation in connections and new decks, which would increase the stress resulting from imposed
deformation. According to Figure 176 to Figure 179, in terms of final resulting stress and prestress consumption, the
difference of imposed deformation in connections and new decks is more critical to the resulting stress than the
stiffness of connection.

The situation of new decks is more complex than those of old decks and connections. In most cases, when
prestressing force is not extremely small, new decks are in compression. Otherwise, parts of new decks are in
tension. As shown in Figure 176 to Figure 179, reduced prestressing force increases prestress consumption. Suppose
the prestressing force per cable applied to new deck is extremely, the maximum prestress consumption would exceed
100%.

In addition, as shown in Figure 176 to Figure 179, if the prestressing force applied to new decks is 4000 kN/cable or
more, the magnitude of prestressing force will have no impact on the maximum prestress consumption in new decks.
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A20.3 Conclusion

Reduced prestressing force increases the prestress consumption, or in other words decreases the remaining
compressive stress in concrete. Suppose prestressing force applied to new decks is extremely small, prestress
consumption would exceed 100%. As a result, to decrease prestress consumption, a larger prestress should be
applied.

As shown in Appendix A20.2, if the prestressing force applied to new decks is 4000 kN /cable or more, the
magnitude of prestressing force will have no impact on the maximum prestress consumption in new decks. As shown
in Appendix A7.1, prestressing force applied to new decks is 3956 kN/cable. Therefore, neither increasing or
decreasing the prestressing force in new decks would help reduce prestress consumption.
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A21  Expressions for Elastic Modulus of Concrete

A21.1 General

According to Section 9.3.2, different expressions are used to evaluate the elastic modulus of concrete in the
calculation carried out by SCIA and the simple approach. As for the calculation carried out by SCIA, Expression 124
is used, while, as for the simple approach, the expressions introduced in Appendix A16 are used.

According to Table 179, Expression 124 is mainly for the eccentrically reinforced rectangular section which is
subjected to bending without normal force (Normalisatie, 1995). However, the stress in connection resulting from
imposed deformation shows that the connections of widened deck KW03.01 are in tension, see Section 9.2. As a
result, it is required to discuss whether it is proper to evaluate the elastic modulus of cracked concrete with
Expression 124.

Er = 3100+ 6700-100-p (124)
Ey
N/mm?
f':k buiging en normaalkracht buiging zonder normaalkracht;
aimm2l: symmetrisch gewapende rechthoekige doorsnede excentrisch gewapende recht-
@ <05 05 <y <09 hoekige doorsnede
15 1300 + 4100 Wy + ( 9000 — 1300 wo) ap + 2900 ( 8700 + 5175 we(l - 2/3 ap) 2200 + 4900 @, < 2900
25 1600 + 4200 Wy + (14000 — 1600 woy) a, < 3600 (12900 + 5100 wo(l — 2/3 ag) 2500 + 5500 w, < 3600
35 1900 + 4300 W + (19000 — 1900 woq) ap £ 4300 (17100 + 5025 we(1 - 2/3 ap) 2800 + 6100 w, + 4300
45 2200 + 4400 Wy + (24000 — 2200 We) @, + 5000 (21300 + 4950 w1 — 2/3 ag) 3100 + 6700 w, < 5000
55 2500 + 4500 wor + (29000 — 2500 W) ap £ 5700 (25500 + 4875 w1 - 213 ap) 3400 + 7300 w, + 5700
65 2800 + 4600 Woq + (34000 — 2800 wey) an + 6400 (29700 + 4800 w1 - 213 ap) 3700 + 7900 w, + 6400
waarin: waarin:
_ _ A+ A Ny _ A,
an, = = T - —
T = = 100 AJot @A+ A)L @o = g, 100

Table 179:Fictitious Elastic Modulus Ef

A21.2 Discussion

The expressions shown in Table 179 are derived from a M — k relationship, see Figure 180, while the M — k
relationship is derived basing on a bi-linear concrete compressive stress — strain diagram was used. Therefore, as
shown in Table 179, only two situations are taken into account. One is eccentrically reinforced rectangular section
with bending and compressive normal force, while the other is eccentrically reinforced rectangular section with
bending only.

Since connections are not prestressed, suppose there are out-of-plane loads only taken into account, cross-sections of
connections are mainly subjected to bending. In this case, it is suggested to use Expression 124. However, when
there is in-plane loads only taken into account, the connections of widened deck KW03.01 are in tension, see Section
9.2. As aresult, neither the expressions with nor without normal force suit the in-plane situation.

As a result, the expressions introduced in Appendix A16 are recommended to evaluate the elastic modulus of cracked
concrete when there is in-plane load only. Suppose there are out-of-plane loads taken into account, it is
recommended to first calculate the possible linear elastic deformation in whole cross-section with out-of-plane loads.
Then use the expressions introduced in Appendix A16 to calculate the elastic modulus of concrete in whole cross-
section, and use the mean elastic modulus of concrete in whole cross-section to calculate the stress resulting from in-
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plane loads. Appendix A19.3 shows an example of evaluating mean elastic modulus of concrete in whole cross-
section.

My
0.8 My
s
M, /
/
M /
\arctg £ly
0 |
Kr Km xu

X —e

Figure 180:Determine of Bending Stiffness from M — k Diagram

A21.3 Conclusion

When in-plane loads are taken into account, instead of the expressions shown in Table 179, the expressions
introduced in Appendix A16 are recommended to evaluate the elastic modulus of cracked concrete.
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