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Abstract. The discontinuous Galerkin (DG) finite element
method is well suited for the modelling, with a relatively
small number of elements, of three-dimensional flows ex-
hibiting strong velocity or density gradients. Its performance
can be highly enhanced by having recourse to r-adaptivity.
Here, a vertical adaptive mesh method is developed for DG
finite elements. This method, originally designed for finite
difference schemes, is based on the vertical diffusion of the
mesh nodes, with the diffusivity controlled by the density
jumps at the mesh element interfaces.

The mesh vertical movement is determined by means of a
conservative arbitrary Lagrangian–Eulerian (ALE) formula-
tion. Though conservativity is naturally achieved, tracer con-
sistency is obtained by a suitable construction of the mesh
vertical velocity field, which is defined in such a way that it
is fully compatible with the tracer and continuity equations
at a discrete level.

The vertically adaptive mesh approach is implemented in
the three-dimensional version of the geophysical and en-
vironmental flow Second-generation Louvain-la-Neuve Ice-
ocean Model (SLIM 3D; www.climate.be/slim). Idealised
benchmarks, aimed at simulating the oscillations of a sharp
thermocline, are dealt with. Then, the relevance of the ver-

tical adaptivity technique is assessed by simulating thermo-
cline oscillations of Lake Tanganyika. The results are com-
pared to measured vertical profiles of temperature, showing
similar stratification and outcropping events.

1 Introduction

The vertical discretisation strategy of marine models has
evolved drastically during the last five decades. The first
models were using z coordinates (e.g. Bryan, 1969), dis-
cretising the ocean into fixed horizontal levels, resulting in a
stepwise representation of the ocean bottom. Later, other dis-
cretisations were developed, mainly inspired by the progress
in atmospheric modelling, for which coordinates based on
the pressure field were used (Sutcliffe, 1947; Eliassen, 1949;
Phillips, 1957). In oceanography, such developments led to ρ
or σ coordinates (Freeman et al., 1972; Owen, 1980; Bleck
and Boudra, 1986; Nihoul et al., 1986; Blumberg and Mel-
lor, 1987). For the ρ coordinates, the vertical coordinate is
based on the density field. This method is well suited for
tracer transport in the ocean interior, which occurs mainly
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along isopycnal surfaces (Griffies et al., 2000). The σ coor-
dinates place a constant number of levels evenly spaced in
the vertical column. This method enables a smooth represen-
tation of the bottom topography, which is particularly appro-
priate for coastal applications. The discretisation of the inter-
nal pressure gradient constitutes a major difficulty of the ver-
tical coordinate systems for which none of the iso-coordinate
surface is horizontal, such as the σ -coordinate system. Since
the iso-σ surfaces are generally not horizontal, it is difficult
to maintain a vertically stratified water body at rest in a do-
main with a steep bottom slope. This problem has been ex-
tensively studied and documented (e.g. Haney, 1991; Deleer-
snijder and Beckers, 1992; Stelling and Van Kester, 1994;
Mellor et al., 1994, 1998).

Later on, the general s-coordinate system was developed
(Gerdes, 1993a, b; Song and Haidvogel, 1994), which was
also inspired by generalised coordinates in atmospheric mod-
elling (Kasahara, 1974). The s coordinates are able to arbi-
trarily combine z, ρ and σ coordinates. With this technique,
a single grid is able to cope with z levels close to the ocean
surface, ρ levels in the interior and σ levels close to the bot-
tom. Those different methods have their own strengths and
weaknesses, which are discussed in detail in Griffies et al.
(2000) for large-scale applications. The modeller is free to
build an a priori optimal mesh, depending on the application.

The s coordinates reach their limits when the optimal ver-
tical distribution of the mesh nodes should vary in space and
time. This is why Burchard and Beckers (2004) proposed a
non-uniform grid system that adapts the resolution by mov-
ing the nodes during the simulation so as to minimise a suit-
ably defined error measure (Hanert et al., 2006, 2007). This
is referred to as an r-adaptive method; i.e. the mesh nodes
are moved without modifying the mesh topology. Hofmeister
et al. (2010) implemented this type of vertical movement of
the mesh in a three-dimensional model. This method reduces
the numerical mixing and the errors in the pressure gradient
computation, enabling realistic simulations of large inflows
in the Baltic sea (Hofmeister et al., 2011). The price of the
reduced numerical mixing is the computation of the mesh
velocity. Dealing with the mesh movement within the hydro-
dynamics equations has negligible extra cost. Indeed, free-
surface models do already move the mesh to take into ac-
count the surface motion (e.g. Shchepetkin and McWilliams,
2005).

This r-adaptive method only moves the nodes in the
vertical direction. In contrast, the models using 3-D hr-
adaptation (e.g. Piggott et al., 2005, 2008; Hill et al., 2012)
follow a completely different approach: apart from moving
in all directions, nodes can also be removed or added. Such
adaptation is achieved on tetrahedral meshes, which are un-
structured in the three dimensions. The advantages and limi-
tations of hr-adaptation are discussed in Piggott et al. (2005).

To the best of authors’ knowledge, the vertically adaptive
coordinate method has only been applied to structured grid
models. The objective of this work is to adapt the method

to an unstructured-mesh discontinuous Galerkin (DG) fi-
nite element model, namely the three-dimensional version of
the Second-generation Louvain-la-Neuve Ice-ocean Model
(SLIM 3D; www.climate.be/slim).

SLIM 3D is a baroclinic model for coastal flows that
solves the 3-D hydrostatic equations under the Boussinesq
approximation (Blaise et al., 2010; Comblen et al., 2010;
Kärnä et al., 2013). The model is based on the DG finite
element method. The latter is well suited for advection-
dominated problems (Bassi and Rebay, 1997; Cockburn
et al., 2000; Bernard et al., 2007) exhibiting strong gradients
of the solution. Furthermore, it has different advantages, such
as local and global conservativity, or the compactness of the
stencil, which enables an easy and efficient parallel imple-
mentation (Seny et al., 2013, 2014). The inter-element dis-
continuities of the solution constitute a good estimate of the
discretisation error (Ainsworth, 2004; Bernard et al., 2007).
Previous applications of SLIM 3D have focused on coastal
flows, estuaries and river plume dynamics, where a high res-
olution is required in the surface layer which is under the di-
rect influence of the wind stress. Accordingly, the mesh res-
olution is increased close to the surface (Delandmeter et al.,
2015).

In this work, the model is applied to Lake Tanganyika, es-
pecially its thermocline movement, for which the depth and
location where high resolution is desirable vary in time. Lake
Tanganyika is the largest of the east African Great Lakes in
terms of water volume and the second largest in terms of
surface (Ogutu-Ohwayo et al., 1997). It is shared by four
countries: Burundi, Democratic Republic of the Congo, Tan-
zania and Zambia (Fig. 1). Schematically, the waters of the
lake exhibit two layers separated by a thermocline (Coulter
and Spigel, 1991; Naithani and Deleersnijder, 2004). The dy-
namics of the lake thermocline differs between the dry wind
season and the wet season during which the wind stress is
significantly smaller.

A few 3-D modelling studies were conducted on the lake.
Huttula (1997) used a 3-D barotropic model to simulate the
transport of sediment in subregions of the lake. Podsetchine
et al. (1999) used the same model to study the lake response
to different wind stress regimes. Their simulations were fo-
cused on the diurnal cycle of the water velocity. They did
not aim to model the seasonal variability of the current and
the thermocline dynamics, for which the 3-D model must be
baroclinic.

Verburg et al. (2008) studied the overturning circulation in
the lake. In contrast to the classical overturning circulation
in a two-layer lake under constant wind stress (Fig. 2, Mor-
timer, 1961), they proposed a reversed circulation with the
deepest water of the epilimnion following the wind and the
surface water flowing in the opposite direction. Verburg et al.
(2011) quantified the conditions for which they proposed a
counter-wind surface circulation, driven by the surface heat
flux of the lake. They used a 3-D model (Hodges et al., 2000)
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Figure 1. Lake Tanganyika bathymetry (Naithani et al., 2002): iso-
baths (left) and perspective view of bottom profile along the main
axis of the lake (right).

to assess their hypothesis by simulating the lake dynamics in
1996.

This paper presents the development of a vertically adap-
tive coordinate system for SLIM 3D and its validation on
simple benchmarks. The improved model is then applied to
Lake Tanganyika to investigate the adaptive coordinates’ ef-
ficiency in a realistic application. In Sect. 2, the vertical adap-
tive mesh approach is defined, and a new computation of the
mesh velocity is designed, which guarantees the tracer mass
conservation and the consistency, the latter being the prop-
erty of maintaining constant a constant tracer concentration
through the simulation. The formulation of the internal pres-
sure gradient is detailed. Finally, information about the input
data used for the Lake Tanganyika simulation is provided. In
Sect. 3, the method performance is evaluated on two bench-
marks: the internal seiche and the steady-state thermocline
position under a constant wind stress. A convergence anal-
ysis is performed. Then, the model is applied to the oscilla-
tions of the thermocline in Lake Tanganyika. The results are
discussed in Sect. 4 and conclusions are drawn in Sect. 5.

2 Methods

2.1 Governing equations

SLIM 3D solves the 3-D hydrostatic Boussinesq equations.
The main unknowns are the horizontal velocity u= (u,v),
the vertical velocity w, the pressure p, the salinity S and the
temperature T .

∂u

∂t
+∇h · (uu)+

∂ (wu)

∂z
=∇h ·

(
νh

(
∇hu+ (∇hu)

T
))

+
∂

∂z

(
ν
∂u

∂z

)
− f ez ∧u−

1
ρ0

∇hp, (1)

(a) z

NS Surface

Epilimnion
Thermocline

Hypolimnion

(b)

Wind

(c)

Wind

Figure 2. Schematic lake configuration with no wind stress (a) and
with the southeasterly wind during the dry season in line with the
classical circulation (b, Mortimer, 1961), such that the surface water
follows the wind, or according to the non-classical circulation (c,
Verburg et al., 2008) with reversed currents.

∇h ·u+
∂w

∂z
= 0, (2)

1
ρ0

∇hp= g∇hη+
g

ρ0
∇h

η∫
z

(ρ− ρ0)dζ, (3)

∂S

∂t
+∇h · (uS)+

∂ (wS)

∂z
=∇h · (κh∇hS)+

∂

∂z

(
κ
∂S

∂z

)
, (4)

∂T

∂t
+∇h · (uT )+

∂ (wT )

∂z
=∇h · (κh∇hT )+

∂

∂z

(
κ
∂T

∂z

)
. (5)

The different variables defined in this paper as well as the
symbols are listed in Tables 1 and 2.

The equation for the pressure p results from the hydro-
static hypothesis. The density ρ is given by the state equa-
tion ρ = ρ̂(S,T ) (Jackett et al., 2006), while ρ0 is the ref-
erence density, which is constant. For limnological appli-
cations, the salinity equation is not solved. The symbol ∇h
stands for the horizontal derivative operator, such that ∇h ·

u= ∂u/∂x+ ∂v/∂y. The material parameters are the Corio-
lis parameter f , the horizontal and vertical viscosities νh and
ν and the horizontal and vertical diffusivities for κh and κ .
Horizontal viscosity νh follows the Smagorinsky parameter-
isation (Smagorinsky, 1963). Vertical eddy viscosity ν and
diffusivity κ can be determined from the κ–ε turbulence clo-
sure model from GOTM (Burchard et al., 1999) coupled to
SLIM 3D (Kärnä et al., 2012). The boundary conditions are
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Table 1. Symbols and physical variables defined in this paper.

Governing equations

u Horizontal velocity vector (m s−1)
w Vertical velocity (m s−1)
η Sea surface elevation (m)
T Temperature (◦C)
S Salinity (‰)
p Hydrostatic pressure (N m−2)
ρ Water density (kg m−3)
ρ0 Reference water density (kg m−3)
ρ′ Water density deviation (kg m−3)
f Coriolis parameter (s−1)
g Gravitational acceleration (m s−2)
ν Vertical viscosity (m2 s−1)
νh Horizontal viscosity (m2 s−1)
κ Vertical diffusivity (m2 s−1)
κh Horizontal diffusivity (m2 s−1)

Coordinates and symbols

�t (Moving) domain
x, y Horizontal Eulerian coordinates
z Vertical Eulerian coordinate
ez Vertical unit vector (pointing upward)
∇h Horizontal derivative operator
∧ Vector product

Table 2. Mesh adaptation and finite element specific variables de-
fined in this paper.

Mesh adaptation

�̃ Fixed domain
x̃, ỹ, z̃, t̃ ALE coordinates
J Jacobian of the ALE mapping
wm Moving mesh velocity
w∗ Adaptive part of the moving mesh velocity
e Adaptive error function
fe Adaptive background error function
τ Relaxation parameter

Finite element framework

φi Shape functions, discontinuous piecewise bi-
or tri-linear〈

·

〉
Integral over the domain〈 〈

·

〉 〉
l Integral over the lateral interfaces〈 〈

·

〉 〉
h Integral over the horizontal interfaces

1t Time step
[ρ]i Vertical jump of field ρ at node i

impermeability at the bottom and the coast, bottom friction
and surface wind stress. Further details about the governing
equations are given in Kärnä et al. (2013).

2.2 Numerical modelling

SLIM 3D equations are discretised on a mesh composed of
prisms that are either extruded triangles or extruded quads.
The equations are approximated using discontinuous func-
tions, piecewise bi-linear for the triangle-based mesh and
piecewise tri-linear for the quad-based mesh. This approx-
imation is achieved using the discontinuous-Galerkin finite
element method (Kärnä et al., 2013).

In Kärnä et al. (2013), the mesh uniformly moves in
the vertical direction to follow the free surface movement
(Campin et al., 2004). In the present study, an additional ver-
tical mesh velocity is developed to obtain the desired mesh
vertical resolution. In order to satisfy the crucial properties
of both mass conservation and consistency, the moving mesh
velocity is computed differently from Kärnä et al. (2013) and
is based on the discrete formulation of the continuity and
tracer equations. Indeed, the moving mesh velocity used in
previous versions of SLIM 3D was suffering from small er-
rors for the tracer consistency preservation: a constant con-
centration did not remain constant while transported. Those
errors were getting worse with the new vertical adaptive
method. The computation of the internal pressure horizontal
gradient is also described.

2.2.1 Moving mesh and ALE formulation

The model discretises Eqs. (1) to (5) using the arbitrary
Lagrangian–Eulerian (ALE) formulation (Formaggia and
Nobile, 2004). Those equations are originally formulated in
a moving domain �t , since the free surface moves vertically.
Consequently, Eqs. (1) to (5) cannot be discretised directly,
since a mesh does not move continuously but discretely in
time. Considering a fixed domain �̃ for which the free sur-
face is constant through time, the equations could be discre-
tised in such a domain, but they are defined in �t , not in �̃.
However, there exists an invertible mapping A from �̃ to �t
(similar to Deleersnijder and Ruddick, 1992) that enables us
to write the governing equations in �̃:

A : �̃−→�t , A
(̃
x, ỹ, z̃, t̃

)
=
(
x,y,z, t

)
, (6)

x = x̃

y = ỹ

z= z(̃x, ỹ, z̃, t̃ )

t = t̃ .

The vertical moving mesh velocity wm, which denotes the
movement of the moving domain�t with respect to the fixed
domain �̃, in the ALE framework, reads

wm =
∂z

∂t̃
. (7)

MappingA enables us to formulate the equations from �t to
�̃, called the ALE formulation.
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2.2.2 A conservative and consistent moving mesh

The temperature T equation reads in the moving domain �t
using the Eulerian coordinates

∂T

∂t
+∇h · (uT )+

∂(wT )

∂z
=DT , (8)

where ∇h · (uT )=
∂(uT )
∂x
+
∂(vT )
∂y

and DT represents the dif-
fusive terms of the temperature equation (Eq. 5).

The Jacobian of the mapping (Eq. 6) is J = ∂z/∂z̃. Fol-
lowing the steps defined in Formaggia and Nobile (2004),
the temperature equation transforms to

1
J

∂(JT )

∂t̃
+∇h · (uT )+

∂ ((w−wm)T )

∂z
=DT , (9)

where the time derivative is calculated on the fixed mesh.
This conservative formulation preserves the total heat by
construction in a finite element scheme (Formaggia and No-
bile, 2004).

Equation (9) is then discretised using the finite element
formalism. The diffusive terms DT , detailed in Kärnä et al.
(2013), are zero as long as temperature is constant and hence
are ignored hereinafter. The DG approximation T̂ of T is the
interpolation of the discontinuous nodal values Ti using the
polynomial shape functions φi , bi-linear in the case of a mesh
composed of extruded triangles and tri-linear in the case of
extruded quads:

T̂ =
∑
i

φiTi . (10)

The fields u, w and wm are discretised similarly. For clarity,
the hat sign is removed from the notation hereinafter. The
weak DG formulation of Eq. (9) reads

d
dt

〈
JT φj

〉
−

〈
JT u ·∇hφj

〉
+

〈 〈
JT ∗(u∗ ·nh)φj

〉 〉
l+
〈 〈
JT ∗(u∗ ·nh)φj

〉 〉
h

−

〈
JT (w−wm)

∂φj

∂z

〉
+

〈 〈
JT ∗(wd

−wd
m)nz φj

〉 〉
h = 0, ∀j. (11)〈

·

〉
,
〈 〈
·

〉 〉
l and

〈 〈
·

〉 〉
h are the integral over the domain, the

lateral and the horizontal interfaces, respectively. All those
integrals are computed over the fixed domain �̃. At the in-
terfaces, the velocity u∗ is evaluated with an approximated
Riemann solver (Kärnä et al., 2013), wd and wd

m are the val-
ues of w corresponding to the lower element, and T ∗ is the
temperature taken from the upstream element. nh and nz re-
fer to the horizontal and vertical components of the normal
vector to the interfaces.

In Kärnä et al. (2013), the discrete moving mesh velocity
wm is obtained by interpolating Eq. (7) at nodes. However,

this approach breaks the consistency. In this work, the mesh
velocity is constructed from the position of the new mesh in
a way that ensures tracer consistency at a discrete level. The
consistency of the method relies on the compatibility of the
tracer equation (Eq. 9) with the continuity equation:

∇h ·u+
∂w

∂z
= 0, (12)

whose weak formulation reads

−

〈
w
∂φj

∂z

〉
+

〈 〈
wdφj nz

〉 〉
h =

〈
u ·∇h φj

〉
−

〈 〈
u∗ ·nh φj

〉 〉
l−
〈 〈
u∗ ·nh φj

〉 〉
h, ∀j. (13)

Inserting Eq. (13) into Eq. (11) and assuming that T is con-
stant, one obtains the following equality which, if satisfied
for wm, guarantees the consistency:

d
dt

〈
Jφj

〉
=−

〈
Jwm

∂φj

∂z

〉
+

〈 〈
Jwd

mnz φj

〉 〉
h, ∀j. (14)

To solve Eq. (14), the equation is here integrated in time us-
ing an explicit Euler time scheme (other time schemes follow
a similar development):〈
φj

〉n+1
−

〈
φj

〉n
1t

=−

〈
wm

∂φj

∂z

〉n
+

〈 〈
wd

mnz φj

〉 〉
n
h, ∀j. (15)

It is noteworthy that the Jacobian J which appeared in
Eq. (14) is not present in Eq. (15). This is because while the
integrals were computed on the fixed domain �̃ in Eq. (14),
they are computed on the moving domain in Eq. (15). The
mesh on which the integral is computed is referred to by us-
ing the superscripts n or n+ 1.

Starting from the bottom boundary condition wm|z=−h =

0, Eq. (15) can be integrated element by element from bottom
to top to obtain the moving mesh velocity. Note that, in the
interface integrals, the normal nz is pointing outward.

Using this method, the temperature equation reduces by
construction to the continuity equation if the temperature is
constant, and therefore the consistency property holds valid.
Salinity and tracer equations follow exactly the same scheme.

2.2.3 Internal pressure gradient

In finite difference models using terrain-following meshes,
the computation of the horizontal gradient of the inter-
nal pressure gradient is complex. Considerable efforts were
made to reduce the errors in this computation and to limit the
spurious pressure gradient (e.g. Thiem and Berntsen, 2006;
Berntsen and Oey, 2010; Berntsen et al., 2015). For the case
of vertically adaptive meshes, Gräwe et al. (2015) showed
that the internal pressure gradient problem is reduced be-
cause of the horizontal smoothing of the mesh.

The pressure gradient formulation in SLIM 3D is differ-
ent from the finite difference schemes; the equations are in

www.geosci-model-dev.net/11/1161/2018/ Geosci. Model Dev., 11, 1161–1179, 2018
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z coordinates and not in σ or s coordinates. The fact that
the levels are not horizontal is handled by the finite element
formulation. However, having a steep slope also induces dif-
ficulties. The weak formulation of the horizontal gradient of
a field f reads〈
∇hf ·φj

〉
=−

〈
f ∇h ·φj

〉
+

〈 〈
fφj ·nh

〉 〉
h

+

〈 〈
fφj ·nh

〉 〉
l, ∀j. (16)

Since first-order shape functions are used in the finite ele-
ment formulation, only first-order polynomials are interpo-
lated exactly at the integration points in order to compute the
integrals of the right-hand side of Eq. (16).

In the previous version of SLIM 3D (Kärnä et al., 2013),
the internal pressure gradient was obtained by first integrat-
ing the density deviation ρ′ = ρ−ρ0, with ρ and ρ0 the water
density and the water reference density, and then computing
its horizontal gradient:

1
ρ0

∇hp =
g

ρ0
∇h

η∫
z

ρ′dζ

︸ ︷︷ ︸
r

. (17)

Even for a vertically linear ρ′, r is a quadratic function that
cannot be represented exactly. Those integration errors gen-
erate errors in the gradient ∇hp.

The new approach consists in computing the horizontal
derivative before the vertical integration

1
ρ0

∇hp =
g

ρ0

η∫
z

∇hρ
′dζ +

g

ρ0
ρ′|η∇hη. (18)

Using Eq. (18), the computation of the gradient of a linearly
stratified sea does not involve a quadratic field, and the com-
puted internal pressure gradient is zero, up to the machine
accuracy.

2.2.4 Vertical adaptive mesh velocity

To obtain accurate results at a reasonable computational cost,
the mesh vertical resolution should be high in areas with
strong stratification or shear, and low elsewhere. In this study,
the refinement is achieved as a function of the stratification
only. The shear is thus ignored, but it could be taken into ac-
count similarly to what is developed hereinafter for the strat-
ification. The mesh velocity reads

wm =
h+ z

h+ η

∂η

∂t
+w∗. (19)

The first term of the right-hand side is the mesh velocity due
to the free surface movement, while the second term is the
mesh adaptive velocity.

The mesh resolution variation results from a diffusion pro-
cess of the Eulerian vertical coordinate z(̃x, ỹ, z̃, t̃ ), leading
to the vertical displacement of the mesh nodes. In contrast to
Burchard and Beckers (2004) and Hofmeister et al. (2010),
the diffusion process is not defined in the continuous domain
but directly on the discrete mesh. The mesh is made up of
vertically extruded triangles or quads to form columns of
prisms. As a consequence, the mesh also consists of verti-
cal columns of nodes, which are the vertices of the prisms.
Those nodes are connected by vertical segments. For each
column composed of n vertical segments, the nodes are la-
belled with an index i varying between 0 at the bottom and
n at the top. Segment i+ 1/2 joins nodes i and i+ 1. The
objective of the mesh adaptation is to distribute the nodes of
a column such that

hi+1/2 ei+1/2 = hj+1/2 ej+1/2, ∀i,j = 0 . . . n− 1, (20)

where hi+1/2 = (zi+1− zi) is the segment height and ei+1/2
is a relevant measure of the segment error. The mesh is in
equilibrium when the product of the segment height and the
segment error is constant over a vertical column. A finite dif-
ference diffusion equation is implemented:
w∗i = κz i+1/2 (zi+1− zi)− κz i−1/2 (zi − zi−1) ,

∀i = 1 . . . n− 1,
w∗0 = w∗n = 0.

(21)

The mesh “diffusivity” κz (which has the physical unit s−1)
is then defined by

κz i+1/2 =
e2
i+1/2+ fe i+1/2

τ
. (22)

The dependency in e2 ensures that, at a given level, if the up-
per segment error is larger than the lower segment error, the
diffusion process will tend to reduce the upper segment size,
and vice versa. The background diffusivity fe τ

−1 allows for
manual control of the mesh resolution independently of the
discretisation error. The time τ is a relaxation parameter con-
trolling the speed of the adaptation process.

The main difference between the original approach and
the implementation in SLIM 3D is the definition of the error
density e2. In Hofmeister et al. (2010), a function of shear
and stratification is used. In DG finite element methods, the
discretisation error converges at the same rate as the inter-
element discontinuities (jumps) of the solution (Ainsworth,
2004; Bernard et al., 2007). The error density is then defined
as a function of the vertical jumps:

e2
i+1/2 =

[ρ]2i + [ρ]
2
i+1

(1ρ)2
, (23)

where [ρ]i refers to the maximum jump between all the up-
per DG values adjacent to continuous node i (blue nodes in
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Figure 3. Simple mesh composed of four prisms, formed by the
extrusion of two triangles. Examples of horizontal and vertical in-
terfaces are highlighted. The discontinuous nodes are illustrated in
blue (upper nodes) and red (lower nodes). The indices on the left
correspond to the indexing of the vertical columns.

Fig. 3) and lower DG values adjacent to this same node (red
nodes in Fig. 3).

This diffusion algorithm is valid for meshes with both σ
and z levels. On a mesh with σ levels, the number of levels
is constant over the entire mesh and the bathymetry is con-
tinuous (Fig. 4a). On a mesh with z levels, the bathymetry is
discontinuous (Fig. 4b) and the number of levels is not con-
stant over the domain, although it is constant in time, since
adaptation only moves the nodes vertically, without remov-
ing them or adding new ones.

The discrete mesh is updated by interpolating the function
defined in Eq. (19) at the element vertices. Then, the z coor-
dinates of the vertices are smoothed in the horizontal direc-
tion, except on the mesh lateral boundaries. This smoothing
is achieved with a simple two-step algorithm (Fig. 5). First,
for each element of the mesh, the z coordinates of the upper
and lower nodes are set to the mean value of those upper and
lower nodes, respectively. The z field is now discontinuous.
Second, z is projected onto a continuous field, such that the
mean value of every vertex is preserved. This simple algo-
rithm smooths the z coordinates in the horizontal direction.
Eventually, z is corrected such that all the elements have a
thickness between appropriate minimal and maximal values.
This correction is achieved by a double loop over each seg-
ment column. First, looping from bottom to top, the top node
of each segment is moved if necessary. Second, looping from
top to bottom, the bottom node of each segment is moved.

2.3 Thermocline oscillations of Lake Tanganyika
model set-up

2.3.1 Summary of Lake Tanganyika dynamics

Lake Tanganyika is very long (∼ 650 km in length), narrow
(∼ 50 km wide on average) and deep, with an average depth
of 570 m and a maximum depth of 1470 m (Fig. 1), making it
the second deepest lake in the world. The two layers compos-

x

z

(a) Adapted σ-level mesh (b) Adapted z-level mesh

Figure 4. Comparison between an adapted σ -level mesh (a) and an
adapted z-level mesh (b). The nodes marked with a red dot are fixed
during the mesh vertical diffusion process, which is independent of
the movement necessary to accommodate to the motion of the free
surface (Eq. 19).
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Figure 5. Illustration of the horizontal smoothing algorithm on a
2-D x-z mesh. First, for each element, the upper and lower nodal
values of the vertical coordinate z are set to their mean value; then,
z is projected onto a continuous field. The numbers refer to the depth
of the mesh levels.

ing the lake are called the epilimnion and the hypolimnion.
The epilimnion, which is the shallow upper layer, is rela-
tively warm (24–28 ◦C; Coulter and Spigel, 1991; Naithani
et al., 2003) and has a typical depth of about 50 m. Be-
low the thermocline, the deep hypolimnion is composed of
cooler water (∼ 23.5 ◦C). Forced by the surface wind stress,
the thermocline oscillates. There are two main seasons in the
region. During the dry season, approximately from April or
May to September, strong southeasterly wind blows along
the main axis of the lake (Docquier et al., 2016). The wind
pushes the epilimnion water towards the north, causing up-
welling at the southern tip and downwelling at the northern
tip (Fig. 2), and resulting in a thermocline tilted towards the
north. The wind oscillations are characterised by a period of
3 to 4 weeks (Naithani et al., 2002), which is of the same or-
der of magnitude as the period of the first free mode of oscil-
lation of the thermocline (Naithani et al., 2003), giving rise to
quasi-resonance. Thus, during the abovementioned season,
the thermocline oscillations are essentially a direct response
to the wind forcing, i.e. large-amplitude, forced oscillations
(Gourgue et al., 2011). The thermocline is deep and sharp at
the northern tip but becomes diffuse at the southern tip (Coul-
ter and Spigel, 1991). During strong wind events, the oscil-
lations are so large that the thermocline outcrops. Besides
the hydrodynamical effect, the mixed layer also deepens dur-
ing the dry season. This mixing is due to evaporative-driven
cooling (Thiery et al., 2014a, b). On the other hand, during
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Figure 6. Along-lake component of the daily-averaged wind stress measured in Mpulungu, at the southern tip of the lake. Positive values
indicate northwestward blowing wind (Huttula et al., 1999).

the wet season (from October to March), the wind stress is
significantly smaller, leading to thermocline oscillations that
may be viewed as progressively decaying internal seiches.

2.3.2 Wind forcing

Two wind data sets are available: a time series of measure-
ments at one location and a modelled spatial wind map.

Wind speed and direction were measured every hour from
April 1993 to August 1994 (Huttula et al., 1999) in Mpu-
lungu, at the southern tip of the lake (8◦45′ S, 31◦6′ E). These
wind speed observations were used for earlier studies using
a 2-D reduced gravity model (Naithani et al., 2003, 2007;
Naithani and Deleersnijder, 2004; Gourgue et al., 2007,
2011). Figure 6 shows the daily-averaged wind stress along
the main axis of the lake.

On the other hand, non-uniform wind data were obtained
from the COSMO-CLM2 model, which couples the non-
hydrostatic regional climate model COSMO-CLM version
4.8 to the Community Land Model version 3.5 (CLM3.5) and
the Freshwater Lake model (FLake; Davin and Seneviratne,
2012). The COSMO-CLM2 model was recently applied in its
tropical configuration (Akkermans et al., 2014; Panitz et al.,
2014) to assess the two-way interactions between the African
Great Lakes and the surrounding climate (Thiery et al., 2015,
2016; Docquier et al., 2016), as well as evaluate natural haz-
ards in the region (Jacobs et al., 2016a, b). The climate simu-
lations were conducted at a horizontal resolution of 0.0625◦

(∼ 7 km) for the period 1996–2008 and provide near-surface
wind fields at a temporal resolution of 3 h.

Figure 7 shows the component of the surface wind stress
along the main axis of the lake at three locations. While
the wind is mostly blowing northwestward during the dry
season (April–September), it is much weaker and does not
have a dominant direction during the wet season. The wind
is weaker in the northern part of the lake (Docquier et al.,
2016).

2.3.3 Model set-up

Two configurations of the model are run. In the first config-
uration, aimed to analyse the effect of adaptive coordinates,
no vertical diffusivity is applied to the temperature field, such
that the modelled thermocline should remain sharp. The ver-
tical viscosity is determined from the κ–ε turbulence closure
model implemented in GOTM (Burchard et al., 1999) and
coupled to SLIM 3D (Kärnä et al., 2012). Moreover, the ho-
mogeneous wind stress from Mpulungu measurement is ap-
plied at the entire lake surface and no surface heat flux is
applied.

In the second set-up, the vertical diffusivity and viscosity
are taken into account. They are determined from the κ–ε
turbulence closure model. The spatial wind from COSMO-
CLM2 is applied. The surface heat flux is parameterised by
adding a relaxation term, in the upper layer of the lake. The
relaxation term is defined as

frelax =
max(zr+ z,0)

zrτr
(Tref− T ), (24)

with Tref the reference temperature, zr the depth of the re-
laxation zone and τr the relaxation time parameter. This sim-
ple parameterisation (similar to Kamenkovich and Sarachik,
2004) has the advantage of only requiring the surface tem-
perature as input data (Barnier et al., 1995). Other param-
eterisations, which require more data to compute the heat
flux, can lead to spurious results in the case of discrepan-
cies between the dynamics of the lake model and the model
providing those input data. They are more sensitive to the
level of uncertainty of the data than the simple parameteri-
sation used in this study. The surface reference temperature
comes from the same data set as the wind data, i.e. from the
COSMO-CLM2 model. Furthermore, the depth of the relax-
ation zone is set to zr = 12 m, which corresponds to a typical
value for the photic depth (Descy et al., 2006), which is used
as a proxy for the water column influenced by solar radia-
tion and other heat fluxes. The relaxation time is equal to
τr = 10 days, which was obtained after calibration. Figure 8
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Figure 7. Along-lake component of the daily-averaged wind stress, at the northern, central and southern parts of the lake, between April
2002 and 2004, as modelled by the regional climate model COSMO-CLM2 (Thiery et al., 2015).
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Figure 8. Time series of the surface temperature at Kigoma (red curve) and Mpulungu (green curve), as modelled by COSMO-CLM2 (Thiery
et al., 2015).

illustrates the evolution of this temperature at two locations:
Kigoma, in the northern basin, and Mpulungu, at the south-
ern tip of the lake. It is observed that at both locations the
surface temperature drops during the dry season.

2.3.4 Lake temperature vertical profile

Within the framework of the CLIMLAKE project (Descy
et al., 2006), the water temperature was measured at Kigoma
and Mpulungu (see location in Fig. 8) between 2002 and
2004, at vertical intervals of 20 m between 0 and 100 m
depth. This vertical profile temporal series is used for model
validation. It is noteworthy that the surface temperature at
Kigoma and Mpulungu from the CLIMLAKE in situ mea-
surements exhibits significant discrepancies with the data

from the COSMO-CLM2 data set, which are used as input
data for the model simulations.

3 Results

Before applying SLIM 3D to Lake Tanganyika, the model
is evaluated on simpler test cases. First, the internal seiche
benchmark of Hofmeister et al. (2010) is used to assess the
model ability to preserve a sharp interface. Second, a con-
vergence analysis is performed on this benchmark. Third,
the accuracy of the steady-state thermocline position under
constant wind stress forcing is evaluated. Then, preliminary
simulations of the Lake Tanganyika hydrodynamics are un-
dertaken. For those runs, no vertical diffusivity is applied to
the temperature field, and the wind stress measured at Mpu-
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lungu is forced uniformly at the lake surface. Adaptive and
fixed meshes are compared on this set-up for both a 2-D x-z
and a 3-D model. Eventually, the complete model for Lake
Tanganyika is run.

3.1 Internal seiche

The first test to evaluate the adaptive coordinate system is
the internal seiche modelling of Hofmeister et al. (2010).
This two-layer benchmark bears similarities with the dynam-
ics of the thermocline of Lake Tanganyika. It is fully defined
in Hofmeister et al. (2010). The objective is to simulate the
oscillations of the interface in a long (64 km long) and shal-
low (20 m deep) channel. In contrast to Lake Tanganyika,
the density is here a function of salinity, not of temperature.
Also, since the original test case is defined using a two-layer
model, there is no vertical mixing. The goal is therefore to
diffuse the interface as little as possible.

For this application, the error measure used to diffuse ver-
tically the mesh is a function of the vertical jumps in the den-
sity field, with a small background error fe = 10−5. The time
constant is set to τ = 100 s, and the minimum and maximum
heights of an element are set to 0.1 and 1.5 m, respectively.

Figure 9 compares the salinity vertical profile after half an
oscillation for a fixed mesh (a) and the adaptive mesh (b),
both with 20 levels. For both runs, the initial mesh is set such
that it captures perfectly the interface initial position. While
the fixed mesh induces large numerical mixing in one case,
the mesh adapts and follows perfectly the interface due to the
vertical adaptivity in the other case.

3.2 Convergence analysis

To evaluate the model accuracy, a convergence analysis is
performed for the internal seiche. The evolution of the in-
terface depth at the right boundary of the domain is com-
pared for different simulations using a number of fixed levels,
varying between 10 and 320, which induces a level thickness
varying between 2 m and 6.25 cm, using the same time step
for all the simulations (1t = 60 s). Two simulations are also
performed using adaptive meshes, with 6 and 20 levels, re-
spectively. In the simulations using a coarse-resolution fixed
mesh, the interface is diffused (Fig. 9a), and the seiche os-
cillates too slowly compared to the 320-level run. While the
first oscillation is rather well captured by all the simulations,
the coarse-resolution simulations miss the correct dynamics
during the next oscillations. After two oscillations, the sim-
ulation with 20 fixed levels fails to reproduce the dynamics
(Fig. 10). In contrast, the simulation with 20 adaptive levels
is as accurate as the simulation with 320 fixed levels. The
minimal number of adaptive levels for an acceptable simu-
lation is six. With this number, two thin levels stick to the
upper part of the interface and two others to the lower part,
while the two last levels cover the remaining part of the do-
main (one on the top and one on the bottom). The six-level

(c)

(a) Fixed mesh

(b) Adaptive mesh

5

10

Salinity [g kg  ]

20 m

64 km

-1

Figure 9. Comparison between the internal seiche modelling with
(a) fixed and (b) adaptive meshes. The black lines show the differ-
ent mesh levels. While the first one induces important numerical
mixing at the interface, the interface remains sharp in the second
one. (c) Zoom of the area delimited by the green rectangle in (b),
showing two levels with the highest vertical permitted resolution on
both sides of the interface.

simulation with the adaptive method thereby produces results
as good as the simulation with 80 fixed levels. Considering
that the CPU time of the simulations is proportional to the
number of levels (Fig. 11) and that the computational over-
head of adaptive levels is negligible, the adaptive method is
about 16 times faster for a similar accuracy.

3.3 Steady-state thermocline position under constant
wind stress

To assess the model, the equilibrium position of the thermo-
cline under a constant wind stress is evaluated in a 2-D x-z
domain. The position of the thermocline is approximated us-
ing the analytical solution of a 1-D two-layer model, which
simulates the epilimnion and hypolimnion vertically aver-
aged velocity and the thermocline depth (Cushman-Roisin
and Beckers, 2011). At the steady-state equilibrium, the pres-
sure gradient due to the slope of the thermocline depth ht is
balanced by the wind stress:

εght
∂ht

∂x
=
τx

ρ
, (25)

where ε = (ρ− ρ0)/ρ0 is the relative density difference be-
tween the upper and the lower layers, with ρ and ρ0 being
the epilimnion and hypolimnion densities, respectively. g is
the gravitational acceleration and τx the wind stress. The so-
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Figure 10. Convergence analysis for the internal seiche modelling. The graph shows the third oscillation of the seiche, at which moment the
results are beginning to diverge from the high-resolution solution.
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Figure 11. CPU time of the simulations for a different number of
levels (using a log–log scale). CPU times are normalised by the 10
fixed levels of simulation time. As expected, CPU time is propor-
tional to the number of levels. Moreover, the computational over-
head of adaptive levels is negligible. For the same computational
cost, the adaptive method is then much more accurate (Fig. 10).

lution of Eq. (25) reads

ht =

√
A+

2τx
ρεg

x, (26)

where constant A is such that the total epilimnion volume is
conserved:

L∫
0

√
A+

2τx
ρεg

x dx = ht0L. (27)

ht0 is the initial epilimnion height (when the thermocline is
horizontal) and L is the length of the lake.
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Figure 12. Comparison between the analytical steady-state thermo-
cline profile using the 1-D two-layer approximation and the 2-D x-z
simulation, under a constant wind stress. The dashed line represents
the thermocline position without wind stress.

The thermocline depth is simulated for a wind stress of
0.02 N m−2, for which there is no outcropping. The simu-
lation starts with the thermocline located at ht0 = 50 m and
the model runs until a steady-state is arrived at, resulting in
an average difference of 0.5 % and a maximum difference of
2.5 % between the 2-D x-z simulation and the 1-D analytical
solution (Fig. 12). The maximum difference occurs close to
the southern tip of the lake, where the thermocline is slightly
diffused close to the model boundary.

3.4 Lake Tanganyika simulation without vertical
diffusion

Lake Tanganyika hydrodynamics is simulated using the first
model configuration. The model ability to preserve a sharp
thermocline is assessed for simulations with and without the
vertically adaptive mesh. First, the lake dynamics is simu-
lated with a simple 2-D x-z mesh, representing the south–
north thermocline position (Fig. 13). Then, it is simulated
using a full 3-D mesh, and the thermocline position along
the main axis is extracted from the results (Fig. 14). For both
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2-D x-z and 3-D simulations, a sharp thermocline is main-
tained using an adaptive mesh, while a fixed mesh results
in the blurring of the thermocline. Again, this confirms that
SLIM 3D with vertically adaptive mesh is able to simulate
the thermocline dynamics much more accurately than with-
out adaptation.

3.5 Lake Tanganyika simulation

Lake Tanganyika dynamics is simulated from December
2000 to April 2004 with the second model configuration. The
model is run on parallel on a cluster on eight CPUs. The mesh
is built using a simple horizontal mesh of ∼ 1000 triangles
with a resolution of 10 km, extruded to form ∼ 13 000 trian-
gular prisms. The horizontal levels are initially located at 0,
2 and 5 m, then every 10 m down to 100 m. The next levels
are located at 150, 200, 300, 500, 700, 950, 1200, 1400 and
1500 m. The model time step is 10 min. The mesh adapta-
tion is driven by the vertical jump in the density field, with
τ = 1 h. The background error is set to fe = 10−5 at the sur-
face and is then defined such that if there is no vertical jump,
the mesh stays at its initial position. Indeed, with a constant
background error, the mesh would adapt to reach a situation
with the same depth for all the levels at each vertical column.
The first 16 months of the simulation are used as a spin-up
period, after which the results are analysed.

The temporal evolution of the vertical profile of the tem-
perature is analysed at Mpulungu (Fig. 15) and Kigoma
(Fig. 16). The model performs well to reproduce most of
the observed features of the lake. Outcropping events are ob-
served at Mpulungu in July and August of both 2002 and
2003 (Fig. 15b), such as observed in situ (Fig. 15c). How-
ever, the 2003 outcropping lasts much longer in the model
than in the data, due to the surface input forcing. The model
reproduces the evolution of the 26 ◦C isotherm during the
December 2002–April 2003 period but fails during the same
period of the following year.

At Kigoma, the modelled temperature matches the obser-
vations better than at Mpulungu. The 26 ◦C isotherm pro-
file follows the data profile, evolving from 10 to 60 m deep
during the December 2002–July 2003 period, then from 10
to 50 m from November 2003 to April 2004. This 26 ◦C
isotherm outcrops during the dry season strong wind period.
A similar observation can be done for the cooler tempera-
tures. The surface temperature is too high during almost the
entire year, probably due to the surface heat flux being biased
by the input data.

The thermocline profile along the main axis shows the dif-
ferent regimes of the lake dynamics during the year 2003.
At the end of the wet season (1 March, Fig. 17a), the lake
is strongly stratified and the thermocline is approximately
horizontal. Then, the dry season begins with strong south-
easterly winds (15 May), the surface water flows towards the
north (Fig. 18b) and the thermocline is tilted (Fig. 17b). At
the end of the dry season, there is a marked outcropping at

the southern part of the lake (Fig. 17c), the wind weakens and
the water circulation reverses (Fig. 18c). The mesh adapts to
follow the stratification. Unlike the previous benchmarks in
which there was one single large interface, the Tanganyika
stratification is not that sharp, but still the mesh resolution is
increased where the stratification is stronger or where there
is outcropping (Fig. 19).

Figure 20 shows the 26 ◦C isotherm distribution on
(a) 1 March and (b) 15 May, and the 25 ◦C isotherm on 3 Au-
gust (c). Figure 20a shows that the temperature is not homo-
geneous in the direction perpendicular to the main lake axis.
East–west temperature gradients may change sign during dif-
ferent periods of the year. This suggests that internal Kelvin
waves are travelling along the lake boundary. This tempera-
ture gradient switch can occur within a few days in the south-
ern basin of the lake. Moreover, during the dry season, large
outcroppings of water cooler than 26 ◦C (15 May) and 25 ◦C
(3 August) are observed in the southern basin.

4 Discussion

4.1 Internal seiche and convergence analysis

The internal seiche test case is the typical application for
which adaptive coordinates are necessary. The strong discon-
tinuity cannot be preserved using a fixed mesh, which in-
troduces large numerical mixing at the interface (Fig. 9a).
The adaptive method introduced in this paper results in a
smooth alignment of the levels in the vicinity of the inter-
face (Fig. 9b, c). The method reaches its goal for this bench-
mark, which is to have one level on each side of the interface
with the maximal resolution. It is noteworthy that the numer-
ical mixing at the interface affects the complete dynamics
of the lake oscillations. An unresolved interface leads to os-
cillations with too large a period (Fig. 10). The convergence
analysis quantifies the benefit of mesh adaptation, with a gain
of the order of 16 in the number of elements and in compu-
tation time for a similar error. The decrease of 1 order of
magnitude in the number of elements is similar to the result
obtained by Bernard et al. (2007) with a h-adaptive DG finite
element method.

One drawback of the method is that it is necessary to man-
ually set up the adaptation parameters. In the case of this
application, the objective is to maintain the discontinuity at
the interface, such that the error is a function of the vertical
jumps in the density field. The background error function is a
small function just big enough to avoid that small error in the
density field perturbing the mesh smoothness. Eventually, the
time relaxation τ must be small to obtain a fast adaptation.
However, if τ is too small compared to the simulation time
step, the smoothness of the moving mesh can be affected.
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Figure 13. Temperature profile using the uniform wind on 8 July 1993, with the 2-D x-z model, with a fixed mesh (a) and an adaptive
mesh (b, c) having an equal number of elements. Panel (c) also shows the levels position for the moving mesh simulation.
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Figure 14. Temperature profile using the uniform wind on 8 July 1993, with the 3-D model, with a fixed mesh (a) and an adaptive mesh (b)
having an equal number of elements. The temperature profile is given along the lake main axis.

4.2 Steady-state thermocline position

The thermocline slope under a weak constant wind stress test
case results in a thermocline slope similar to the analytical
solution under the 1-D two-layer approximation, with a small
deviation close to the southern boundary. This difference is
most likely due to the hydrostatic assumption of the model.
Indeed, in the overturning circulation, there is an increase of
the pressure close to the wall, but this increased pressure is
not captured by the model. As a consequence, the boundary
layer is not captured by the model and small errors appear in
the area irrespective of the horizontal resolution close to the
wall. This is not a problem for the 1-D model which does not
model the overturning circulation within the epilimnion.

For a small, constant wind stress, the analytical 1-D so-
lution and the 2-D x-z model simulation match very well
(Fig. 12). However, for stronger stresses, the epilimnion
height decreases such that the two-layer model hypothesis
no longer holds. In this situation, the 2-D x-z model simu-
lates an outcropping of the hypolimnion layer while the 1-D

model retains a thin epilimnion layer, as it cannot represent
outcropping by construction.

4.3 Lake Tanganyika modelling

While the aforementioned test cases are 2-D x-z applica-
tions, the Lake Tanganyika 3-D modelling is more difficult
due to the complex coastline, spatial wind patterns and Cori-
olis effect. Despite this challenge, SLIM 3D realistically rep-
resents thermocline oscillations with the adaptive mesh, al-
though a larger relaxation time parameter τ is necessary to
maintain a smooth mesh. In the preliminary simulations, the
model runs without vertical diffusivity. In this configuration,
a sharp thermocline is maintained under weak wind stress
conditions. For a stronger wind that generates outcropping,
the thermocline is slightly diffused near the southern tip of
the lake. Indeed, when outcropping occurs, the thermocline is
vertical at the border of the outcropping region, and its sharp-
ness depends on the horizontal resolution, which is fixed, in-
dependently of the vertical adaptation. During outcropping,
the vertical thermocline is thus diffused horizontally. After
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(a) Surface input data

(b) Model result

(c) Data Temperature [ ◦ C]

Depth [m]

Figure 15. Lake water temperature (◦C) at Mpulungu as predicted by the model (b) and from in situ observations (c, Descy et al., 2006).
Panel (a) shows the surface temperature used to force the temperature flux at the lake surface (Thiery et al., 2015).

(a) Surface input data

(b) Model result

(c) Data Temperature [ ◦ C]

Depth [m]

Figure 16. Lake water temperature (◦C) at Kigoma as predicted by the model (b) and from in situ observations (c, Descy et al., 2006).
Panel (a) shows the surface temperature used to force the temperature flux at the lake surface (Thiery et al., 2015).

the wind stress decreases, the thermocline comes back to its
original position, but the numerical mixing introduced dur-
ing the outcropping period cannot be cancelled. However, the
thermocline diffusion is much weaker with the adaptive mesh
than using a fixed mesh (Figs. 13 and 14).

For the actual Tanganyika runs, vertical diffusivity and vis-
cosity are taken into account. While data scarcity limits a
complete validation, the comparison between the model and
the available data indicates a good representation of the dy-
namics of Lake Tanganyika by SLIM 3D. The surface tem-
perature used in the relaxation boundary condition does not
match well with the vertical profiles available at Mpulungu
and Kigoma, so the modelled vertical profile is biased by
construction. However, a comparison can still be achieved
based on the modelled and observed patterns, such as stratifi-
cation and thermocline position. While the modelled stratifi-
cation is similar to the observed one, it is still slightly higher,
especially close to the surface where there is the mismatch

issue. This stronger stratification induces lower vertical eddy
diffusivity, which explains why further deep the stratification
is less affected by surface forcings and is closer to the obser-
vations.

The south–north lake transects of Fig. 17 are consistent
with the results shown in Fig. 8 from Verburg et al. (2011),
which modelled the 1996 lake dynamics. In May, which
corresponds to the beginning of the strong wind season,
the 26.5 ◦C isotherm outcrops at the middle of the lake in
both studies, while the 25.5 ◦C isotherm outcrops only at the
southern tip of the lake. The agreement between SLIM 3D
and Verburg et al. (2011) is also good at the end of this wind
season, which corresponds to beginning of August in 2003
and July in 1996.

The southward surface current going in the opposite direc-
tion of the wind, as it was suggested by Verburg et al. (2011),
is also observed in SLIM results, although this current is
most likely due to the weakening of the wind stress and
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Figure 17. South–north temperature transect on 1 March (a), 15 May (b) and 3 August (c) 2003. Only the 150 upper metres of the vertical
profile are displayed in the figure.
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Figure 18. South–north velocity transect on 1 March (a), 15 May (b) and 3 August (c) 2003. Only the 150 upper metres of the vertical profile
are displayed in the figure. A positive value indicates northward current.

0 > 20
Level thickness (m)

100 km
0 m

150 m

S N

(a) 01 March 2003

(b) 15 May 2003

(c) 03 August 2003

Figure 19. South–north level thickness distribution transect on 1 March (a), 15 May (b) and 3 August (c) 2003. Only the 150 upper metres
of the vertical profile are displayed in the figure. The colour map is cropped at 20 m.
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Figure 20. Isotherm depths in Lake Tanganyika on 1 March (26 ◦C), 15 May (26 ◦C) and 3 April (25 ◦C). It is important to note that range
of the colour bar is not the same through the different maps. Regions in gray represent areas where the bottom water is warmer than the limit
temperature. Green regions represent outcropping zones.

pressure gradient pushing the water mass back to its equilib-
rium position. This comparison with the results of Verburg
et al. (2011) for the year 1996 motivates to investigate fur-
ther the lake circulation, for a longer period using weather
forcings from the COSMO-CLM2 model (Davin and Senevi-
ratne, 2012). This will enable us to study the occurrence of
events during which there is a reversed overturning circula-
tion.

The presence of internal Kelvin waves in the lake, which
was first simulated by means of a 2-D reduced gravity model
(Naithani and Deleersnijder, 2004) and then demonstrated
using scaling arguments supported by laboratory and field
investigations (Antenucci, 2005), is also shown with the 3-D
modelling (Fig. 20). Those waves are more visible during the
wet season when the thermocline is almost horizontal.

5 Conclusions

A non-uniform vertically adaptive mesh is adjusted for the
DG finite element method and implemented into the geo-
physical and environmental flow model SLIM 3D. The adap-
tation routine is based on the diffusion of the vertical coordi-
nates, controlled by the vertical jump in the density field.

The adaptation efficiency was tested on simple bench-
marks consisting in preserving a sharp interface between two
layers of different densities. While the fixed mesh diffuses
the interface and produces global errors in the hydrodynam-

ics, the adaptive mesh is able to preserve the interface profile
by aligning thin levels along it. The DG formulation with the
mesh adaptation controlled by the vertical jumps preserves
the expected field discontinuity with minimal mixing. The
necessary manual configuration of the adaptation parameters
remains a limitation.

A new formulation for the computation of the mesh verti-
cal velocity, both conservative and consistent, was developed
for the adaptive mesh. It is noteworthy that this formulation
solves the tracer consistency problem with and without adap-
tation.

The adaptation was then evaluated by modelling the oscil-
lations of the Lake Tanganyika thermocline. First, a simula-
tion was run without vertical diffusivity and a uniform wind
stress, showing the good behaviour of the adaptive mesh.
Then, a full simulation of the lake dynamics was performed
and compared to time series of vertical temperature profile
in the south and the centre of the lake. Overall, the outcrop-
ping events and the stratification observed in the data are well
reproduced by the model. The remaining differences are par-
tially due to discrepancies between the data used to force the
surface heat flux and the validation data.

During the 2-year simulation, the along-axis velocity
shows similar patterns to the results from Verburg et al.
(2011). To understand better the interactions between the
wind velocity, the surface heat flux and the water dynamics,
additional simulations would be necessary. They could be
achieved using the full data set available from the COSMO-
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CLM2 model and the adaptive mesh model SLIM 3D. The
model has a strong potential for different applications about
the lake hydrodynamics, such as the impact of interannual
variability and climate change.

Code and data availability. The SLIM 3D v0.4 code is licensed
under GNU GPL v3. It is available through GitLab at https:
//git.immc.ucl.ac.be/slim/slim. It is archived at Zenodo with
https://doi.org/10.5281/zenodo.1002221. The COSMO-CLM2 cli-
mate data are also available. They can be obtained by contacting
Wim Thiery (wim.thiery@vub.be).
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