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Chapter1
Introduction

In three words I can sum up everything I’ve learned about life:
...it goes on.

Robert Frost

The field of Computer Vision is concerned with problems that involve in-
terfacing computers with their surrounding environment through cameras, thus
artificial vision systems can replace human perception in relatively simple, repet-
itive tasks. Machine Vision systems combine the capabilities of computer vision
(such as perception) with other methods and technologies to provide services
(actions) for industrial applications. Some examples are inspection of machine
parts, detection of abnormal events in surveillance videos, reconstruction of the
3D world for navigation, and object recognition for pick and place robots in ware-
houses [2, 3]. These systems used to be static and confined to industrial sites, and
often performing in real-time. Recent advances in technology, such as increase
in computational power, improvement in peripherals and decreasing form-factor,
allow the vision systems to be carried on moving platforms such as tablet PCs,
mobile phones, but also mobile robots in which case we talk about Robot Vision.
More general, it leads to the possibility of wearable visual computing that can
assist the carrier agent in executing various perception-action tasks. For instance,
(mobile) self-localization and mapping systems via vision sensors support robots
to locate their position in 3D environments, perform autonomous path planning
and obstacle detection while in motion. Face recognition and object recognition
systems (combined with self-localization) are utilized in service robots that are
employed to assist human users and perform simple tasks such as fetching objects.
Moreover, web interfacing abilities of such mobile computers make the necessary
sources of information (such as 3D maps, object databases or user databases)
available from remote locations and enables off-site processing of captured visual
data (i.e. cloud computing).

1



2 INTRODUCTION 1.1

These mobile robots can be exploited in many applications. One example is
a mobile robot assisting customers in a big shopping mall or visitors in a hos-
pital by guiding them inside the buildings, showing them the way, helping them
to find the necessary products and informing them about the content or proce-
dures. However, in such applications where robotic actuation (i.e. grasping) is
not necessary, the assistive services of a real, physical mobile robot can also be
provided (cheaper) by a wearable visual computing device that is carried by the
human user. Information and guidance can also be displayed virtually on the
mobile device’s display i.e. smart phone, tablet PC or head-up displays and a vir-
tual avatar can replace the robot. These wearable visual computing devices share
similar requirements for perception tasks with robots such as self-localization
and mapping, Human-Computer Interaction (HCI) and face, object and action
recognition. They provide similar capabilities but differ in some aspects since in
contrast with a robot the actuation and the motion is done by the human user
wearing the system.

Virtual and Augmented Reality technologies already have quite a history in
this field and many attempts have been made to use Virtual Reality (VR) and
Augmented Reality (AR) to create meaningful, immersive experiences incorpo-
rating humans and computers. It is appealing for many applications (such as in
entertainment and gaming) to improve and enrich the visual perception, cognition
and interaction by providing extra information and guidance that is not available
in the immediate surroundings.

The work in this thesis focuses on the computer vision aspects of designing a
wearable assistive AR system to allow interaction between users and their environ-
ment while providing tools, guidance and information to the on-site and off-site
users to perform their tasks independently from each other.

1.1 Augmented Reality and Mobile Computing
Augmented Reality (AR) is the synthesis of real world and virtual (computer gen-
erated) graphics. In contrast to Virtual Reality (VR) in which the user is engaged
in an entirely artificial world, in AR applications virtual imagery of objects is su-
perimposed over, rather than completely replacing the real world and displayed
to the user via wearable, hand-held or static displays.

Although the large potential of VR systems to alter the real world and immerse
the user in an environment that can be hard to simulate in real life, such systems
are not portable and are often limited to dedicated immersion rooms with screens
or projection systems. Moreover, the user is not allowed to move freely in large
scale environments due to the technological constraints such as displays fixed to
walls or mobile resource limitations.

However, besides remote media rendering, many immersive applications such
as augmented reality also require heavy interaction with the surrounding envi-
ronment. The maximum interaction with a scene can be achieved when the user
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Figure 1.1: Gartner’s Hype Cycle for Emerging Technologies for 2011 [162].

is mobile during operation. Such freedom demands a portable and easy to carry
wearable setup, a personal wearable imaging/computing device with intelligence
originating from the human user, while assistance is provided by the computing
device [123]. Resource hungry AR applications -due to computationally expen-
sive pose tracking and map building with natural features, HCI, high-resolution
3D rendering and video/audio analysis- are rapidly becoming available for mobile
users as the necessary hardware is getting smaller and better. The introduction
of small high-resolution cameras and wearable display hardware, wearable high
performance computers, advanced battery and network technologies, and also
the decrease in costs of off-the-shelf hardware for sensing and computing makes
wearable computing and AR ubiquitous and commercially appealing.

As confirmed by Gartner’s Hype Cycle for Emerging Technologies [162], ex-
pectations and complementary relation between mobile computing and AR are
booming (Fig.1.1). With the developing technologies such as gesture recognition,
machine-to-machine communication services and cloud computing, mainstream
adoption of AR technologies is going to happen in the next 5 to 10 years and
there is an enormous potential for novel immersive media technologies such as
mobile AR applications. With these advances comes the possibility of offering
desktop-quality (and beyond) immersive media experiences on state-of-the-art
wearable computing devices that employs inside-out or ego-centric approach to
sensing.

The commercial market already seems to be heading in this direction and a
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(a) (b) (c)

Figure 1.2: Recent examples of AR systems used in (a) maintenance [5], (b) medical
education [160] and (c) cultural heritage [27].

remarkable growth in the mobile devices drives the market towards the ultimate
goal, which is composed of only a mobile phone (with one or more cameras,
accelerometers, and GPS sensors) and a HMD (light-weight standard glasses size
a.k.a. goggles or eye-wear). Some companies such as Zeiss, Sony, Epson, Apple
and Google are working on such systems by creating new components or coupling
their hardware (i.e. iPhone) and softwares (i.e. Street View) with the available
technology.

AR systems have become commercially appealing, and applied to a number
of different areas, such as design [84], medical imaging [182], medicine [160], mil-
itary [60], education [90, 88], gaming [107, 199], assistance in maintenance and
operation [5, 48], cultural heritage [27], civil engineering [170].

If we focus on the recent examples, Alvarez et al. [5] presented a markerless
disassembly guidance system for maintenance and repair operations. Augmented
virtual instructions such as virtual arrows and the next part to disassemble are
generated automatically and displayed to the worker by superimposing them to
the user’s view. In [160] an Augmented Anesthesia Machine (AAM) which merges
a Virtual Anesthesia Machine (VAM) with a real one is introduced. The system
allows students to interact with a real machine while observing the results of
their actions such as invisible gas flows. A so called magical lens is used for
displaying virtual content on a hand-held display that tracks the real world via
markers. Although their system is not see-through, they display the 3D model
of the real machine combined with the virtual imagery so it appears to be a
see-through experience. Caarls et al. [27] presented a truly mobile (roaming)
AR system based on markers and inertia tracker data. An optical see-through
Head-Mounted-Display (HMD) is used to display art and design content applied
in museums.
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1.2 From Art to Crime Scene Investigation
The Delft University of Technology initiated AR research in 1999 with outdoor
head-mounted optical see-through AR, fusing data from a GPS, a natural feature
tracking camera, and an inertia tracker, using a desktop PC in a backpack [150,
151]. Soon a switch back was made to indoor AR based on markers and inertia
tracker data via Caarls’ system [26] in order to improve the accuracy of the head-
pose estimation by the vision system and to obtain measurements on the static and
dynamic accuracy of the estimates. Meanwhile, a collaboration was set up with
the AR Lab of the Royal Academy of Art in The Hague [105] to test the developed
systems with art and design content, applied in museums such as Kröller-Müller,
Escher, Boijmans van Beuningen and Van Gogh, as well as design manifestations
such as the Salone di Mobile in Milano [27, 98]. In demonstrations, data gloves
and RFID tags were utilized for interaction between the users, virtual content
and the environment.

Especially the experience at the Salone di Mobile where two users, each with
their own AR headset discussed the designs of the virtual furniture, lead to con-
tacts with Dutch companies such as DAF (trucks), Fokker Services (special air-
crafts) and Driessen Aerospace (crew-rests) to investigate the possibilities of using
AR in collaborative product design; i.e. at the interfaces between customer and
system architect, and system architect and implementation engineers. The idea
was to investigate whether it is feasible to change the centrally conducted multidis-
ciplinary design reviews of one director and a multidisciplinary team of engineers
in which during a whole day a script was plowed in which all design details are dis-
cussed by all in front of a huge CAD screen, into a scenario in which all engineers
wearing an AR headset roam around a 3D virtual object, hence autonomously and
in parallel groups discuss the details of the design and its possible faults; whereas
the role of the director is to collect the omissions and proposed improvements of
the total design. A theoretical framework for such cooperated designs was set up
by the University of Maastricht and the Industrial Design Faculty of the Delft
University of Technology [33]. The work came to a temporarily hold as it awaited
the availability of suitable AR headsets and its camera tracking mechanisms; i.e.
the outcome of this thesis.

Hence, we shifted our focus onto spatial analysis using multiple AR systems,
which is presented in this thesis. A close collaboration was set up with the Systems
Engineering Section (SES) of the Faculty of Technology, Policy and Management
(TPM) of the Delft University of Technology that was involved in a project on
Crime Scene Investigation (CSI); CSI the Haag [192]. This project is under the
guidance of the Netherlands Forensic Institute (NFI), an agency of the Ministry
of Justice. This project acted as a simpler use case to study collaborative AR and
our goal now became to design a system that supports collaboration between one
or more crime scene investigators (CSIs) on the spot (the crime scene) and one
or more remote experts at a distance. Note, however, that the designed platform
(software and hardware) can be utilized in many different applications, such as in
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collaborative design of complex systems involving multiple disciplines.
In close collaboration, the image processing and the AR tools are developed

by our group (Delft Bio-robotics Laboratory) and reported in this thesis, while
the project domain and expertise about collaboration is brought by TPM-SES,
who focused on the Computer-Supported Cooperative Work (CSCW) aspects,
such as the design of the GUI, remote collaboration, communication between
the collaborators, etc.. During the development process both parties were highly
involved in the discussions and most of the work is a result of a close interaction.

When a severe crime is committed, a team of specialists and multiple CSIs in-
vestigate the scene to collect evidential data and clues, while preserving the scene
as much as possible so that evidence is not accidentally destroyed. Meanwhile,
the crime scene is digitized by either photogrammetry [174] or laser scanning [85]
methods to document the structure of the scene while tagging observations man-
ually within constrained time limits. However, this process is currently costly
in time and requires expertise. There are wearable systems to support evidence
recovery using RFID tags available in literature [12, 41]. Collected (digital) data
is utilized for the communication between the teams, for archiving and also anal-
ysis of the incident such as line of sight determination, reconstruction of ballistic
trajectories, blood pattern analysis, reconstruction of crime scene, etc.

For crime scene investigation, an AR system would be suitable since the user
can perform many actions such as recording, tagging, labeling and measuring in
the context of the physical environment, while receiving assistance from other
co-located or remote colleagues and experts. Information about the crime scene
captured in its spatial context facilitates greater efficiency and maintains the
quality of the data [65]. Moreover, the evidence and reconstruction of the scene
can be presented in courtrooms in a digital format to help the judge and jury to
visualize the incident and improve their comprehension by establishing a common
ground [25, 173].

In an AR based set-up the investigators equipped with headsets and wear-
able computers annotate salient information in the scene by placing virtual tags.
Salient information can vary from the positions of bullet shells, possible bullet
paths and bullet holes, to the pose of the victims and the possible pose and paths
of the suspects. The virtual annotations can also be seen and modified by other
team members including remote experts. For instance, in a murder case the ad-
ditional personal information of the victim can be loaded into the view of on-site
CSIs by a remote expert after his/her face is seen by one of the cameras. The
interaction with the scene, such as the virtual tagging, is done with hand gestures,
since CSIs need to use their hands to perform their jobs. At the same time, the
vision sensors capture the images of the scene and in near real time the 3D scene
is reconstructed, hence indicating where the investigators have been. The whole
operation can be supervised by a superior who can decouple him/her self from
the on-site investigator’s view and wander around in the 3D scene built up so
far; possibly directing the investigators to investigate some spots closer. The 3D
scene as it was found at the time of the incident can be revisited (visualized) and
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its search can be played back weeks, months or years after the event for proper
authorities, such as attorneys, judges and juries.

In general, besides CSI, AR can provide a key to overcome contextual dif-
ferences and establish a common ground and a shared understanding among
users [155]. Here common ground refers to the mutual knowledge and beliefs
shared by the users [36]. In AR, virtual content and the reality can be merged in
the same context, leading to a common ground and therefore different knowledge
types and representations can be combined [160]. This results in a better com-
prehension of complex concepts while performing complex tasks. For instance,
increased product complexity requires teams (experts) with diverse backgrounds
in the design loop in which these teams need to share expertise and knowledge,
and communicate for high quality designs [33]. Or in many practical situations, as
in a field worker inspecting an underground infrastructure, or mechanics at ships
on high sea a small number of experts who are located in off-site locations give
assistance to multiple on-site workers. In both examples, the experts have techni-
cal expertise and comprehensive understanding about the field, but are dispersed
over the world and also expensive to educate. Therefore, instead of deploying
them to every location, an effective system that can allow the field workers to
share their environment with the remote expert while getting assistance is re-
quired [101]. Therefore, there is a growing demand for technologies to realize
remote collaboration on physical tasks by creating shared visual space [63].

Sharing the same visual space (physical and augmented) introduces a strong
mutual experience, while being able to alter each other’s perception of reality
allows enhanced communication. As presented in the seminal work of Billinghurst
et al. [17], AR interfaces provide a medium for users to work in both the real and
virtual world simultaneously, facilitating Computer-Supported Cooperative Work
(CSCW) in a seamless manner.

There are research examples in which audio and video images are sent to the
remote collaborator via a wearable active camera/laser system and the remote
expert can point real object via a laser [102]. Also, in one of the earliest works
on wearable collaborative systems, a field worker equipped with a HMD and a
camera, transfers images to a remote expert and receives commands back in his
HMD. The remote expert uses his finger to indicate regions [104]. However, while
demonstrating collaboration examples these systems don’t provide any augmented
virtual content.

In [17], Billinghurst et al. presented a collaborative system that uses a book
as the main interface object and hand held displays to provide virtual content.
Several readers can read and share the story together and can move between the
real and virtual world by utilizing hand held displays. Users can switch from
egocentric and exocentric views and interact with the characters in the story. A
more recent example with mobile AR platform is presented in [199]. In the in-
visible Train game of Wagner et al., virtual trains are augmented onto the real
train tracks by using hand-held PDAs with cameras and the player can interact
with the trains using a stylus based interface. The system allows multiple users to
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(a) (b) (c)

Figure 1.3: Collaborative AR examples from (a) [17], (b) [199] and (c) [185].

play together. Stafford et al. [185] proposed a God-like interaction metaphor to
facilitate collaboration via communication of situational and navigational infor-
mation between indoor users equipped with tabletop displays, and outdoor users
equipped with mobile AR systems. The outdoor user sees the indoor user’s hand
(or other object) appearing from the sky and pointing the location of interest to
describe situational information or navigational tasks.

1.3 Challenges
In his seminal works [9, 10], Azuma defined the properties of AR systems as:

• combines real and virtual objects in a real environment

• registered in the 3D surroundings

• interactive in real time

The first property requires the AR system to track the pose of the user’s head
for accurate virtual image overlay. When the system is not fast or accurate enough
to detect the motion of the user, then the perception of combined virtual and real
content cannot be preserved due to jitter or lagging.

Another challenge introduced by the second property is capturing the structure
of the 3D surroundings for accurate registration. If registration fails, then the
virtual content is not attached to the real scene and displayed in unrealistic way
such as inside the walls or floating in the air.

Last but not least, many immersive AR applications require heavy interaction
with the surrounding environment in real-time. Natural interaction techniques for
AR systems are hard to realize and are highly dependent on the scene conditions.

1.3.1 Challenges of mobile AR
As the AR user becomes mobile in order to execute certain tasks, the continuously
changing context of the mobile environment introduces new challenges such as
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performing robust operations in unknown environments. Tracking the camera
becomes more difficult when the systems enters an unknown space and solutions
such as placing landmarks (fiducials) to ease navigation becomes more difficult (if
not impossible) as the operation area becomes larger. In addition to that, with
changing environmental conditions such as lighting or the amount of texture, as
the user walks around, tracking and intuitive operation becomes more difficult.

The limited resources available on even high-end mobile devices (such as bat-
tery life, processing power) and real-time constraints currently avoid the utiliza-
tion of computationally expensive but robust solutions.

Another important challenge is the selection and combination of hardware in
order to provide a modular and non-intrusive design setup that includes wear-
ing comfort. Wearable computers involve concern since they are designed to be
carried on the user. They need to be minimal in the sense of weight and size,
and ergonomics is another important criterion, especially when the system is car-
ried by an on-site user for a long time. Proper wired or wireless connectivity of
both displays and tracker cameras to increase the freedom of the user is another
challenge that needs to be addressed.

1.3.2 Challenges introduced by CSI
The following current challenges have been identified during interviews with CSIs
from the USA, UK and the Netherlands [155]:

Time needed for reconstruction: During the investigation, data capture,
alignment, data clean-up, geometric modeling and analyses steps that are nec-
essary for crime scene reconstruction are done manually. The captured data via
scanners or cameras, are transferred to another group of experts and processed for
further investigation. Afterwards, the final output is analyzed. Performing these
steps separately with different investigators requires a lot of time and resources.

Expertise required to deploy dedicated software: The necessary software
for investigation is prone to require dedicated expertise. It is not always possible
for an investigator to utilize the various tools by him/her self and perform the
investigation; and therefore the data needs to be transferred between various ex-
perts, which consumes time as mentioned in the previous challenge.

Complexity: Situations vary significantly between different crime scenes and
this requires an adaptable system that can perform under various environmental
conditions.

Time freeze: Data capture is often conducted once after a scene has been con-
taminated or altered. However, for a better evaluation of the case it is important
to capture evidences and perform analysis before the scene is altered. Capturing
all the details during the first interaction with the scene and therefore performing
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multiple operations together in real time is another challenge which needs to be
addressed.

Physical interaction with the scene: Physical interaction with the crime
scene is necessary to perform analysis and tagging, but should be as minimum as
possible to reduce the scene contamination and therefore placement of markers
is not preferable. Also the CSIs use their hands to perform investigation and
therefore holding a device which occupies one of their hands restrains the freedom
for investigation. As a result, the interaction challenge in the previous section goes
one step further and the option of using auxiliary devices is eliminated [116].

1.4 Requirements
Our objective is to design an AR system that can be used for commercial appli-
cations such as art, design and serious gaming but also on the spot generation
of 3D annotated worlds for crime scene investigation. Our design focuses on the
selection and combination of necessary hardware and software that is required
for mobile AR experience. To achieve acceptance in a consumer market and
overcome the challenges mentioned in the previous section, the designed system
should meet the following requirements mainly derived from the CSI applications
and challenges:

Marker-less, extensible tracking for augmenting a real scene with virtual objects

Many applications and use scenarios such as art exhibits, spatial analysis for CSI,
museums, serious gaming may require mobility and the users may need to move
around while executing certain tasks. In order to provide assistance and context
to these users while they are in motion, the AR system needs to extend its tracking
region as the user moves around in an unknown environment. New parts of the
scene must be added to the tracking region and new landmarks need to be added
to localize the user in the scene. This enables the users to modify or create new
AR experiences at locations of interest. We aim for an extensible tracking in
medium sized environments such as offices and rooms of houses, and tested the
system by performing tracking in these environments starting from only a part of
the scene.

Also placing markers is not an option for a crime scene. The first investigator
that arrives on a crime scene has to keep the crime scene as untouched as possible.
Technology that involves preparing the scene is therefore unacceptable. Therefore
marker-less tracking and a dynamic solution equipped with advanced adaptation
algorithms are required.

The accuracy of the tracker must be within a small fraction of a degree in
orientation and a few millimeters (mm) in position [8]. Also the processing time
should be very low so that the user does not feel the delay between the time
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that the tracker takes the measurements and the time that the graphics engine
renders the augmented image in the display. The system should perform in real
time to maximize the experience of the user. Although the required accuracy
and processing time strongly depend on the user and the application, in our
requirements we set the combined latency to less than 50 milliseconds and the
accuracy should be minimal such that the user doesn’t feel any jitter as explained
in more detail in Chapter 4.

On-line and on-site scene structure capturing

Fast, accurate reconstruction of the scene geometry is required for correct virtual
image registration. Also, establishing a common ground between the remote and
co-located users to perform tasks such as tagging requires a medium as explained
in the previous sections. Such a 3D reconstruction can support the standard ways
such as photographs and drawings, and on-line operation can decrease the time
needed for reconstruction.

Reconstructed scenes are required to successfully represent the scenes and be
visually satisfying. Although the maps are not created for precise measurements,
a spatial resolution of a few centimeter is set as a requirement to evaluate our
system. Also the maps are required to be created on the fly as the user moves
and therefore the processing speed should be fast. Considering a slowly walking
user looking towards a medium sized room from a couple of meters, we set the
maximum computational time of creating a dense map from a stereo image pair
as 1 fps.

Hand gestures for user interface operation

Exploitation of the user’s hands as an interaction and pointing device instead of
other auxiliary equipment introduces more freedom to the user. Also from the
CSI point of view, the hands of the CSIs have to be free to physically interact with
the crime scene when needed, e.g. to secure evidence, open doors, climb, etc [116].
Additional hardware such as data gloves or physically touching an interface such
as a mobile device is not acceptable.

In order to provide a natural HCI, the user interface requires to operate in real
time and in parallel to the tracking so that the user can interact with the system
while the tracking is running in the background. As a requirement in accuracy,
the system needs to operate and detect the pose of the hands as accurate as the
pose of a hand sized tool that has a standard AR marker on it.

Robust and repeatable operation

Although, robust and repeatable operation is important almost for all applica-
tions including entertainment, it becomes more crucial when CSI is considered.
The system should perform under challenging field conditions with minimal re-
configuration and produce similar results for consistent data gathering.
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A lightweight and affordable head-mounted display (HMD) and a wearable computer

For commercial and mobile applications, the overall system should be relatively
cheap, light, small, ergonomic, made of adjustable wearable computer components
and mounted on a suitable location on the user to avoid interfering with the user’s
tasks. It became clear that the investigators whom arrive first on the crime scene
currently carry a digital camera. Weight and ease of use are important design
criteria. Experts would like those close to a pair of glasses. This is because hand-
held or wrist worn devices do not support hands free applications, or do not allow
correct positioning of virtual objects and relevant information in the 3D scene.

The following design considerations and requirements are important for an AR
system for CSI and we considered/addressed them in our design. But the evalua-
tion of these requirements are beyond the scope of this thesis and will be addressed
by TPM-SES.

Remote connection to and collaboration with experts

Experts (crime scene investigators) are a scarce resource and are not often avail-
able at location on request. Setting up a remote connection to guide a novice
worker (investigator) through the (crime) scene and to collaboratively analyze
the (crime) scene has the potential to improve the task (investigation) quality.
This leads to a requirement in which both one or more on-site CSIs as well one
or more off-site experts can build up and maintain the virtual world that is built
up during investigation from the unknown environment, and annotate it.

User friendliness

The attention of the user working on a relatively complex task while using the
system should be focused on the task rather then the system. Therefore the ex-
pertise required to deploy dedicated software should be minimal which requires
non-intrusive, intuitive and user-friendly systems. The system should be easy to
start up, and intuitive to control. Important tasks such as tracking, 3D recon-
struction and hand detection should be done automatically without distracting
the user’s attention.

1.5 Thesis Outline

This thesis describes the design of a complete marker-less mobile/wearable AR
system that includes creating the necessary software modules and combining them
with the necessary hardware. Moreover, the presented novel hand-based interac-
tion method for the user to manipulate the AR content without any auxiliary
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device is combined with on-line scene reconstruction. According to our knowl-
edge, this is one of the first examples of a complete 3D stereo AR system that
integrates 3D marker-less AR capabilities with dense reconstruction and human-
computer interaction (HCI) in a carefully engineered way, and applied to the CSI
domain. The contributions of this thesis are explained in the following chapters:

In Chapter 2, the overall system, hardware and software design is presented.
We discuss various options and come to a solution that satisfies the requirements
and overcomes the challenges. We further present the software components in
more detail and discuss how a remote user can decouple him/her self from the
on-site user’s view while assisting the crime scene investigation.

In Chapter 3, the mathematical background and notation of this thesis is
summarized. Readers who are already familiar with the principals of computer
vision can use this section to become familiar with the mathematical notation;
otherwise it can be skipped.

In Chapter 4, a system is described that is able to track the 3D pose of a moving
stereo-camera pair in a 3D world, while simultaneously building a sparse 3D map
of that world. We also review and make choices on various tracking methods that
results in our solution. We combine a smart feature selection algorithm with a
two stage tracker to create a robust pose estimation system.

In Chapter 5, a system is described that is able to simultaneously build a
dense 3D map of that world while the tracking is performed. We also review and
make choices on various reconstruction methods that results in our solution. The
estimated poses are utilized to create a 3D reconstruction of the crime scene in
real-time.

Chapter 6 presents a new HCI methodology for use with a HMD-based AR
system with stereo cameras. It exploits the user’s hands as an interaction device
instead of other auxiliary equipments. For this, we combined different cues such
as curvilinearity, depth and color to detect the user’s hands and their poses. This
system is combined with the AR system so the user can interact with the scene
and the system during investigation.

Finally, Chapter 7 concludes this thesis and gives future perspectives of the
work presented.
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Chapter2
System Architecture

All animals are equal
but some animals are more equal than others.

George Orwell, Animal Farm

In this chapter, we describe the design specifications and implementation de-
tails of our AR system, which enables multiple users to explore a scene and gen-
erate and store observations on the scene in close cooperation. Specifically, this
section will explain the selection of the necessary hardware, implementation de-
tails of the software for immersive AR, and communication between a remote user
and on-site users.

Our goal is to design a generic, robust and affordable system that can oper-
ate in different conditions with easily replaceable sensing, computing and display
devices. This leads to a modular architecture, both in software and hardware, in
which each function or sensor resides in its own module. A typical AR system
consists of a number of modules, including image sensing and processing hardware
(cameras and computer), display hardware (HMD), tracking and pose estimation
algorithms for head-pose estimation, registration algorithms for aligning the real
and virtual worlds, graphics rendering hardware as well as software for virtual
content rendering, communication between users and interaction methods. In the
case of AR for CSI, there are two parties involved in the process: the remote
experts and the on-site investigators. The remote experts provide assistance to
the on-site investigators from a distance while monitoring them. Note that they
are usually not mobile, but situated in front of desktop computers or displays. On
the other hand, the on-site investigators are highly mobile during the operation.
Therefore, the hardware and the software requirements of the on-site users and
the remote experts differ from each other. For instance, a wearable setup is not
necessary for remote experts. In order to exploit these differences, we separate
our design into two parts, the remote system and the wearable system, as illus-

15
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Figure 2.1: The system diagram with two main parts: fixed setup for the remote user
and the wearable part including carry-bag, HMD and cameras for the mobile user.

trated in Fig.2.1. Also, we consider only the case of one CSI and one remote
expert to simplify the design process. The mobile user wears a carry-bag, a HMD
and cameras, while the remote user uses a fixed setup. Since the remote users
are not mobile and only uses a fixed setup, their hardware requirements can be
satisfied with a standard computer equipped with a network module. Therefore,
in this thesis we only discuss the software architecture of the remote system in
the software section. Both systems communicate with each other over a wireless
network and transfer AR content, voice and 3D maps.

As outlined in Chapter 1, the wearable system needs to satisfy the require-
ments such as light weight and affordable hardware, real-time and robust opera-
tion, hands-free interaction and on-site scene reconstruction. In this section we
present the hardware and software modules providing a solution satisfying these
requirements.

2.1 Hardware

For our mobile wearable system we have selected the following components:
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.2: A selection of recent examples of head-mounted displays (HMDs) rang-
ing from video see-through to optical see-through, single to stereo displays. They are
used in various applications such as military, education, entertainment etc. (a) is pro-
duced by Zeiss [210] while (b) is from Kopin [99]. (c,d) and (e,f,g,h,i) are produced
by Cybermind [44] and Vuzix [198] respectively. Sony [183] recently developed (j) while
Lumus [117] produced (k,l).

2.1.1 Head Mounted Display

One of the most important components of a wearable system is the Head-Mounted
Display (HMDs, a.k.a. goggles or eye-wear). As discussed in the requirements
section, the mobile user needs his/her hands free for executing tasks and there-
fore hand-held displays are not considered in this work. Instead, we used a
head mounted display for visualization of augmented images. There are various
HMDs available in the market, ranging from simple video displays to monocular
or stereo see-through displays (shown in Fig.2.2). For immersive AR experiences,
see-through HMDs are preferred and they can be divided into two categories:
optical see-through and video see-through displays.

In optical see-through HMDs, semi-transparent mirrors or prisms placed in
front of the user’s eyes are used to display the virtual objects. Since the real-world
is still visible through the mirrors the real and the virtual worlds are optically
combined. With a video see-through HMD, the real-world is captured via cameras



18 SYSTEM ARCHITECTURE 2.1

mounted in front of the device, and video-in-video merged images are presented
on the displays.

Several challenges have accompanied the AR with see through HMDs. In video
see-through displays, there is an inevitable lag since the captured images through
cameras are processed before they are displayed in the headset. Although recent
cameras and displays can provide higher frame/refresh rates, this effect may still
cause nausea and headaches. In addition to that, the cameras should be mounted
on the headset carefully to align the displays and the cameras so that the user
will experience the AR like he/she is observing this through his/her own eyes.
Unlike video see-through displays, the real world is perceived without any lag
with optical see-through displays. However, the real world appears darker and the
virtual content is displayed semi-transparent. Also the HMDs are usually bigger
and more expensive relative to their video see-through counterparts, mainly due
to the optics. Finally, both display systems have a narrower field of view of
(∼32 degrees) compared to human eyes (∼110 degrees single eye), but this is the
state-of-the-art of currently available augmented reality hardware in the consumer
market.

Several AR systems with optical see-through displays have been designed in
the Delft University of Technology since 1999, and since 2006 in close collaboration
with the Royal Academy of Art in The Hague, as shown in Fig.2.3. In our latest
design we have chosen video see-through HMDs since they are more affordable
and smaller then their optical see-through counterparts. We believe that for the
consumer market, optical see-through HMDs are still not mature enough, and for
the CSI application they are too expensive to provide them to every investigator.

In our initial design, we have used iWear VR920 (Vuzix, USA) glasses (Fig.2.2
(f)) with 640x480 (920,000 pixels) LCD displays, 32-degree field of view and
weighting approximately 91 grams. After this initial mock-up, we used Cinemizer
OLED (Carl Zeiss AG, Germany) glasses (Fig.2.2 (a)). It has two high-resolution
displays that can display 720p images and also has approximately a 32-degree
field of view. The weight of the Cinemizer is 115 grams. Although, the Cinemizer
glasses are slightly heavier than the Vuzix glasses, we preferred the Cinemizer
glasses since it has better displays with higher resolution. Also, a new setup is
going to be designed with HMZ-T1 (Sony, Japan) glasses (Fig.2.2 (j)).

The glasses are controlled by a control box delivered with it. The control box
is connected to a computer via a VGA, DVId, HDMI, Display Port and a USB
port and contains rechargeable batteries. The glasses can be powered directly
through a USB connection or through the batteries in the control box.

2.1.2 Cameras
Another critical component of the AR system is its cameras. In order to capture
stereo images for the two displays of the HMD and create metric maps we decided
to use two cameras and create a stereo rig. The utilization of calibrated cameras
also eases the initialization and the depth estimation for scene reconstruction
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(a) (b)

(c) (d)

Figure 2.3: AR systems with optical see-through HMDs of Cybermind used in the Delft
University of Technology in chronological order. The system shown in (d) is designed by
ARlab student Niels Mulder.
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(a) (b) (c)

Figure 2.4: Web-cameras: (a) Logitech Pro-9000 (b) Microsoft LifeCam HD-5000 (c)
Logitech C905 cameras.

steps. The first decision was between the use of USB or Firewire (IEEE-1394)
cameras. Two Firewire cameras can operate on the same bus and can supply a
fixed frame rate without any change during the operation. Unfortunately, most
of the commercial laptops have a single powered Firewire port (if not none) as
the one chosen in our design. Also, these cameras consume too much power to
run them on batteries. On the other hand, USB cameras can operate with the
necessary power from the USB port. However, each camera needs a separate
USB bus to transmit images, and in most of the portable computers multiple
USB ports are connected to the same bus or two buses. Therefore, the selection
of the laptop with sufficient USB buses becomes an important issue when more
than one camera is used. Also, the USB cameras have thinner and more flexible
cables, are smaller in size in comparison with the Firewire cameras, and more
affordable.

Another advantage of the web-cameras is they have well developed drivers for
Linux and the latest web-cameras capture high quality, high resolution images
with low noise, due to their good lenses (e.g. Zeiss).

In our initial design, two Pro-9000 (Logitech, USA) webcams are mounted
above the Vuzix glasses as shown in Fig.2.5 (top). In the final design two LifeCam
HD-5000 720p (Microsoft, USA) webcams are stripped and mounted in front of
the Cinemizer providing a full stereoscopic 720p resolution pipeline. The attached
stereo rig is 65 grams and the cameras can output color images with 720p resolu-
tion at 30 frames per second (fps). They are mounted approximately 6.5 cm from
each other (shown in Fig.2.5 (middle)) as with human eyes, and are calibrated
off-line. Synchronization of the cameras for the acquisition of the stereo images
is achieved in software. Currently, Marty, a new setup by combining HMZ-T1
(Sony, Japan) glasses with two C905 (Logitech, USA) webcams (shown in Fig.2.5
(bottom)) was designed by Niels Mulder on commission of the ARLab.
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Figure 2.5: HMDs: top to bottom: initial design with iWear VR920 glasses combined
with Pro-9000 cameras, Cinemizer OLED glasses with LifeCam HD-5000 cameras and
Marty, a video see-through AR headset based on a Sony HMZ-T1 combined with Logitech
C905 cameras, was designed by Niels Mulder.
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2.1.3 Laptop
Head pose estimation, graphics rendering, scene reconstruction, human-computer
interaction and networking are computationally highly intensive and require a
high-end CPU-GPU combination. In order to achieve high frame rates and ex-
ecute all tasks in parallel, we have designed multi-threaded software, utilizing
multiple cores. This is summarized in the following section and explained in
detail in Chapters 4 and 5. We preferred CUDA-enabled GPUs manufactured
by Nvidia because of their superior graphics performance and support for Linux
drivers.

We opted for an available laptop solution with high-end CPU and GPU,
since the system is going to be carried by the user during operation. At the
time of selection (in 2010) the Dell Latitude E6520 was one of the best choices:

Figure 2.6: Dell Latitude E6520

• 2.7 GHz QuadCore i7 processor
(Intel Corporation, USA).

• NVIDIA NVSTM 4200M (DDR3
512MB) graphics card.

• Wireless LAN and network con-
nector (RJ-45) for communica-
tion.

• 4 GB RAM,

• VGA+DVI connectors.

• 4 USB 2.0 ports.

• 2.5kg weight.

Although this laptop is big and the 15.4 inch display is redundant during field
operation, we stick to this laptop (with the bigger display) instead of a smaller
one to be able to debug and run the AR software on the same platform. All
the algorithms are developed in C++ under the Linux operating system (Ubuntu
10.10).

2.1.4 Backpack
To fit all equipment we used a carry-bag with metal frame from a backpack baby
carrier designed in [26]. A metal cabinet is attached at the bottom of the frame
to hold the laptop and the laptop is fixed with Velcro strips.
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2.2 Software
The basic software architecture with its modules is depicted in Fig.2.7. The mobile
AR system consists of 5 main components: pose tracking, sparse reconstruction,
dense reconstruction, HCI (hand tracking and gesture recognition), and rendering
engine modules.

Each module is designed to satisfy a requirement given in the previous chapter,
and has its own thread and runs in parallel with the other threads. The multi-
threaded design minimizes the dependency between the modules and avoids global
failures due to a failure in one of the modules. For instance, the user can still
use the HCI and restart the system when the tracking is lost or continue tracking
when the HCI is not working due to undetected hands. However, the modules are
not completely independent, i.e. the dense reconstruction will fail if the tracking
module fails. Modules communicate through a shared memory structure as shown
in Fig.2.7. The shared memory improves the modularity and isolates the modules
from each other.

In the following sections, we give an overview of the functions of each module
and elaborate on the communication between the modules. A more detailed
information about each module is given in the following chapters.

2.2.1 Pose Tracking and Sparse Reconstruction
The pose tracking and the sparse reconstruction modules together handle the head
pose estimation. The pose tracking module calculates the camera pose for each
frame by using the map points (3D natural features) created and maintained by
the sparse reconstruction module. When the user moves around, the sparse recon-
struction module expands the map by adding new map points using the camera
pose and stereo key-frames provided by the pose tracking module. Both mod-
ules share the camera pose, stereo key-frames and map points through a shared
memory. The detailed explanation about the working principals of algorithms
and the structure of the shared information are given in Chapter 4. From these
two modules, the camera pose is sent to the rendering engine in order to render
virtual content and reflect the changes in the user’s viewpoint.

2.2.2 Dense Reconstruction
The dense reconstruction module creates the dense 3D representation of the scene.
It receives the key-frames and camera poses created by the pose tracking module
and creates dense point clouds. As the user observes unseen parts of the scene,
the existing dense map is extended by adding new map points. If the user is
operating in the previously mapped part of the scene, then the existing map is
updated with the new observations. The created map is used to support the
standard ways of evidence capturing such as photographs and drawings, and to
establish a common ground between the remote and the on-site user. A more
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detailed information about this module is given in Chapter 5. The aim of the
dense reconstruction module is not to generate highly accurate maps of the crime
scene but to provide contextual information which can help the remote experts
to navigate around the scene and the on-site users to place virtual tags.

2.2.3 Human-Computer Interaction
The Human-Computer Interaction interface is composed of two modules: hand
tracking and gesture recognition. The hand tracking module exploits the depth,
curvilinearity and color information to detect the user’s hands and tracks them
between the consecutive stereo frames. In each frame the 3D position and the
surface normal of the hands are extracted. The details of the hand tracking
module are given in Chapter 5. The gesture recognition module is developed by
Poelman et al. [155] within the CSI project to demonstrate the capabilities of the
hand tracking module and to provide simple tools for investigators. The details
of this module is explained below for the sake of completeness although it is not
one of the main points of this thesis.

The user interface (gesture recognition) allows users to select and use tools,
and supports some basic widgets, like menus slider bars, text labels and icons. It
translates the 3D information from the hand tracker into click and drag events
which triggers the widgets and controls the CSI tools. The events are quite
similar to mouse events from WIMP interfaces, except that they also contain 3D
information. On the one hand, CSIs need to move their hands freely without
triggering unintended events. On the other hand, gestures have to be intuitive
and easy to make. The system distinguishes three types of gestures: Left hand
thumb-up, left hand thumb-down, and right hand thumb-down. The orientation
of the hand, and the 3D position are used to both draw the interface elements
and the gesture recognition. This module is basically designed to demonstrate the
capabilities of the hand tracker module and therefore based on simple gestures.
A menu surrounding the hand appears when the left hand thumb-up is detected.
The menu sticks to the hand and is locked in space until the posture changes
and the thumb points downwards options can be selected. The right hand, as a
pointing device, is used to select objects in the virtual scene. Effectively, recasting
is used to determine with which scene point to interact. Fig.2.8 shows the gestures
distinguished with the defining hand postures. A click is done by moving the left or
right recognized segmented hand forward quickly, and moving it backward again.
The direction of movements of the segmented hand is continuously monitored to
recognize this gesture. When the pointer moves only in a forward direction, the
path over which it is moving is tracked. As soon as it has moved forward, and
backward more than halfway along the same path, this is registered as a click at
the furthest point of the path. If anywhere in this sequence the segmented hand
deviates more than a pre-defined angle from the path, the event is not recognized
as a click. In this way both small and big gestures are recognized, as long as the
direction of the movement is right.
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Figure 2.8: The gestures distinguished with the defining hand postures.

The user interface and the virtual scene are general-purpose parts of the me-
diated reality system. They can be used for CSI, but also for any other mediated
reality application. The Tool Set, however, needs to be tailored for the application
domain. The current mediated reality system supports following tasks for CSIs
(identified as requirements scene mapping in the previous chapter): recording
the scene, placing tags, loading 3D models, bullet trajectories and placing re-
stricted area ribbons. Fig.6.1 shows the corresponding menu attached to a user’s
hand. The above tools are based on generic functions to store real-world data
(video streams, measurements, photos), import data from other sources (photos,
databases, the internet) and change the virtual scene (placing tags). By offer-
ing the above tools, we enable the communication between a novice on a crime
scene and the guiding from the remote expert. Thereby, we further address our
requirement on the remote collaboration with experts.

2.2.4 Rendering Engine
The rendering engine establishes the connection between the cameras, displays
and other modules. Captured images are transferred to each module via the ren-
dering engine and also displayed on the screens. The virtual scene, the dense map
of the scene as well as the virtual artifacts that CSIs have placed, are rendered in
overlay with the real crime scene using the camera pose information coming from
the pose estimation module and the dense map created by the dense reconstruc-
tion module. Moreover, the Graphical User Interface (GUI) and the CSI tools
are drawn on the screen using the detected gestures by the HCI module. For this
work we used the OGRE [91] render engine.

Finally, the OGRE render engine organizes the connectivity between users at
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different locations. Thereby, it supports our requirement on a remote connection
to and collaboration with experts. All image streams, camera pose estimations,
dense maps and interactions with the scene are uploaded to the server by us-
ing the server-client architecture. With the same architecture the HMD wearer
and remote clients receive their information from the server. The identity of
the users and their access rights, known to the system, determine the user’s ac-
cess privileges. Further optimization of the engine, to meet the requirements on
collaboration, include a 3D graphical user interface (opposed to the default 2D
interface), a stereoscopic pipeline to render virtual content on top of stereo image
streams, and network options that enable remote spatially oriented collaboration.
Both the remote expert and HMD wearer can add and remove virtual objects [155]
from the scene. Their interface, however, is different: the mediated reality system
wearer has a stereoscopic first person view and the remote expert has a free 3D
navigable view on the scene. Interaction between two users is synchronous and
turn-based: one user must complete his/her actions before the other can perform
new actions.

2.2.5 Remote System
The remote expert needs to monitor the on-site user and his/her view, and has
the possibility to also place virtual objects. Therefore the software architecture
used in the remote system is a simplified and stripped version of the mobile
system. The pose estimation, sparse reconstruction, dense reconstruction and
HCI modules are omitted. Only the simplified rendering engine is kept in the
remote system. Moreover, the mode of interaction with the engine differs: the
HMD wearer uses his/her hand to navigate the graphical user interface and the
remote expert uses a mouse and a keyboard.

As explained in the previous section, the rendering engine establishes the
communication in the remote system. The transferred information such as camera
images, 3D maps and virtual content are rendered to the displays of the remote
expert. In addition to displaying the information, the system also provides the
remote experts with tools to augment the map. The virtual content created by
the remote expert is placed on the 3D maps and shared with the on-site wearable
system, so that both sides can work on the same map.

In our system, the remote expert can observe the scene relative to the on-site
user from two different viewpoints: egocentric and exocentric. In the egocentric
mode, the remote expert sees the scene through the cameras mounted on the
HMD of an on-site user and therefore moves with that person in the scene. In
teleoperation applications such as performing an analysis on the scene together
with the on-site user, an egocentric viewpoint offers a better spatial representation
and improves the performance [71]. However, a better overview of the scene can be
comprehended if the remote expert can see the scene with a bird-eye view. In order
to provide such a view, we use the 3D dense reconstruction of the scene created
during the motion of the on-site user. The remote expert can decouple him/her self
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from the on-site user and use an exocentric (virtual) viewpoint. Moreover, he/she
can travel in the virtual map and observe the scene from different viewpoints
for better spatial analysis. Also, the system can benefit from merging 3D maps
of multiple CSIs to make one global map which is a design requirement when
multiple on-site investigators exist in the same scene. However, we didn’t address
this in our design and left it as a future work.

Although the remote system is a part of our system and in our design consid-
erations, the evaluation of it is not in the scope of this thesis and will be addressed
by TPM-SES in the CSCW domain.



Chapter3
Mathematical Framework

Tell me and I’ll forget;
Show me and I’ll remember;

Involve me and I’ll understand.
Chinese Proverb

In this chapter the mathematical background of this thesis is summarized.
The main purpose of this section is to introduce the mathematical notation, and
hence for readers who are familiar with the principals of computer vision it can
be skipped. For readers who are less familiar with the subject, this section gives
a brief introduction to the concepts and the algorithms that are used for visual
odometry and 3D reconstruction in this thesis. More detailed information can be
found in [118, 79, 191, 131].

3.1 Euclidean Transformation, Image Formation and Camera
Models

In order to study 3D vision and reconstruction, it is important to understand the
Euclidean transformation (rigid body motion) and perspective projection. The
3D motion of a moving camera (or an object) can be modeled as an Euclidean
transformation while the image formation process can be described by a perspec-
tive projection.

3.1.1 Euclidean Transformation

In order to represent a camera motion (rigid body motion) in a 3D space, a map or
a transformation should preserve distances between points and their orientations.

29
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These transformations are called special Euclidean transformations (denoted by
SE(3)) and can be defined as [118]:

A map g : R → R is a special Euclidean transformation (rigid-body motion)
if the norm (and therefore the inner product) and the cross product of any two
vectors are preserved.

The rigid body motion or the special Euclidean transformation between two
coordinate frames O1 and O2 (frame O2 relative to O1), gO1O2

, has two compo-
nents: a translational part T which is the vector between the origins of the two
coordinate frames and a rotational part R which is the orientation of O2 relative
to O1. The rotational part can be represented by the 3x3 matrix

R = [r1, r2, r3] ∈ R3x3 (3.1)

The rotation matrix is a special orthogonal matrix in R3x3 and the space of
all such matrices (a special orthogonal group or rotation group) can be denoted
by [118]

SO(3) =
{
R ∈ R3x3 |RTR = I, det(R) = +1

}
(3.2)

Exponential coordinates are preferred to parameterize the rotational trans-
formations instead of other representations such as the matrix representation,
quaternions or Euler angles since it is minimal, more intuitive and easy to un-
derstand. A rotation around the axis w = [w1, w2, w3]T ∈ R3 by an angle of r
radians can be denoted by R = e[w]xr which can also be written by absorbing r
into w by setting ‖w‖ = r so that

R = e[w]x = exp([w]x) (3.3)

where [w]x ∈ R3x3 is a skew-symmetric matrix

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 and exp

is the exponential map that defines the mapping from the space of all skew-
symmetric 3x3 matrices so(3) to SO3

exp : so(3)→ SO(3); [w]x → e[w]x (3.4)

R can be calculated from a given w by using Rodrigues’ formula

e[w]x = I +
[w]x
‖w‖

sin(‖w‖) +
[w]2x
‖w‖2

(1− cos(‖w‖)) (3.5)

and for a given R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 the corresponding w is

‖w‖ = cos−1
(
trace(R)− 1

2

)
,
w

‖w‖
=

1

2sin(‖w‖)

 r32 − r23
r13 − r31
r21 − r12


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Figure 3.1: Special Euclidean transformation, rotation Rwc and translation Twc, be-
tween two coordinate frames W and C.

The general special Euclidean transformation (both rotation and translation)
between two coordinate frames W and C is shown in Fig.3.1. The coordinates of
a 3D point p in the reference frame W , Xw, and in the reference frame C, XC ,
are related with the SE(3) transformation

Xw = RwcXc + Twc (3.6)

where Rwc ∈ SO(3) and can be represented as gwc = (Rwc, Twc) or simply g =
(R, T ). The subscript WC can be read as ’from frame C to frame W ’. The set
of all special Euclidean transformations is defined as [118]

SE(3) = {g = (R, T ) |R ∈ SO(3), T ∈ R3} (3.7)

The coordinate transformation for SE(3) is not linear (u = Av) but affine
(u = Av+b). However it can be converted to linear and the matrix representation
for SE(3) can be obtained by using homogeneous coordinates [79]. Homogeneous
coordinates of a 3D point X = [X,Y, Z]T are denoted as:

X̃ =

[
X
1

]
=


X
Y
Z
1

 ∈ R4 (3.8)
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then the affine equation (3.6) can be rewritten in a linear form with homogeneous
coordinates

X̃w =

[
Rwc Twc

0 1

]
X̃C (3.9)

The homogeneous representation of g ∈ SE(3) can be written as

SE(3) =

{
g̃ =

[
R T
0 1

]
|R ∈ SO(3), T ∈ R3

}
(3.10)

and the motion of a continuously moving rigid body (at time t) can be shown as

g(t) =

[
R(t) T (t)

0 1

]
∈ R4x4 (3.11)

Similar to the rotational motion SO(3), the special Euclidean transformation
can also be represented in exponential coordinates such that [118]

g(t) = eξ̂t (3.12)

where ξ̂ =

[
[w]x v

0 0

]
| [w]x ∈ so(3), v ∈ R3.

A 4x4 matrix ξ̂ ∈ R4x4 is called a twist (exponential coordinates for SE(3))
and the set of all twists is denoted by se(3). The twist coordinates ξ of the twist

ξ̂ are defined as ξ =

[
v
w

]
∈ R6, where v is the linear velocity and w is the

angular velocity. The relation between the exponential representation and the
matrix representation is

eξ̂ =

[
e[w]x (I−e[w]x )e[w]xv+wwT v

‖w‖
0 1

]
if w 6= 0 (3.13)

The ξ̂ can be written by using the group generator matrices Gi and the twist
coordinates ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]T (= [v1, v2, v3, w1, w2, w3]) as

ξ̂ =

6∑
i=1

ξiGi (3.14)

where the generator matrices are

G1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , G2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , G3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

G4 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , G5 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , G6 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


(3.15)
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Figure 3.2: The relation between the position of a 3D point p in a moving camera
frame.

A small (infinitesimal) motion of the camera (η) can be represented by a
M ∈ SE(3)

M = exp(η̂) = exp

(
6∑
i=1

ηiGi

)
(3.16)

For small motions M can be approximated as

M =

 0 −w3 w2 v1
w3 0 −w1 v2
−w2 w1 0 v3

 (3.17)

and the partial derivatives of the motion matrix with respect to the motion pa-
rameters for small camera motion (η = 0) are

∂M

∂ηi
= Gi (3.18)

These simple derivations will be used in the following chapters to calculate the
projection Jacobians for pose estimation and bundle adjustment.

Consecutive SE3s

The relation between the position of a 3D point p in a moving camera frame is
shown in Fig.3.2. If the 3D position of p relative to the world frame is Xw, then
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its coordinate relative to the camera at time t ∈ R is

X(t) = R(t)Xw + T (t) = g(t)X̃w (3.19)

The relative motion between the time instants ti and tj , g(ti, tj) ∈ SE(3) can
be denoted as gij and it relates the two coordinates

Xi = gijX̃j = RijXj + Tij (3.20)

The position of p relative to the camera at time instant t3 is

X3 = g32X2 = g32g21X1 (3.21)

= g31X1

Therefore the composition rule gik = gijgjk can be used to find the position
of the camera by applying the consecutive motions between the time instants.
Moreover, the rule of inverse can be used to reverse the motion

g−121 = g12 (3.22)

3.1.2 Image Formation and camera model
The simplest approximation of the thin lens camera is a pinhole camera model.
In the (frontal) pinhole camera model a 3D point X = [X,Y, Z]T and its image
x = [u, v]T on the image plane are related by perspective projection [131]. From
the similar triangles shown in Fig.3.3

u = f
X

Z
, v = f

Y

Z
(3.23)

where f , the focal length, is the distance between the camera center C and and
the principal point p. The Z axis is called the principal axis and its intersection
with the image plane is the principal point. The image plane can also be defined
as the z = f plane.

In an ideal perspective camera the projection of a point X = [X,Y, Z]T relative
to the camera coordinate frame onto the image plane can be written as

x =

[
u
v

]
=
f

Z

[
X
Y

]
(3.24)

which can be denoted in homogeneous coordinates as

Zx̃ = Z

 u
v
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0

 X̃ (3.25)
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Figure 3.3: Image formation.

The equation above can be decomposed into two matrices f 0 0 0
0 f 0 0
0 0 1 0

 =

 f 0 0
0 f 0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

 =

 f 0 0
0 f 0
0 0 1

 [I|0]

(3.26)
The coordinates of the perspective projection x of the 3D point X are given

with respect to the principal point p. So the coordinates in the image coordinate
frame (in which the origin is the top left corner of the image) can be written as[

u′

v′

]
=

[
fX/Z + px
fY/Z + py

]
(3.27)

where (px, py) are the coordinates of the principal point p in the image coordinate
frame. Therefore the Eq.(3.26) becomes

Zx̃ =

 f 0 px
0 f py
0 0 1

 [I|0]X̃ (3.28)

Until now the image coordinates are measured in the units of the camera
centered reference frame. The conversion between metric coordinates and pixel
coordinates is obtained by multiplying the x and y coordinates with mx and my

which are the number of pixels per unit distance in image coordinates in the x
and y directions. So[

x
y

]
=

[
mxu

′

myv
′

]
=

[
mx(fX/Z + px)
my(fY/Z + py)

]
(3.29)

λx̃ =

 fx s x0
0 fy y0
0 0 1

 [I|0]X̃ (3.30)
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where fx = fmx, fy = fmy, x0 = mxpx and y0 = mypy, the scalar s is the skew
parameter (which is zero for most standard cameras) and λ is the (projective)
depth of the point X̃. This matrix is called the intrinsic calibration matrix and
is represented as an upper triangular matrix K

K =

 fx s x0
0 fy y0
0 0 1

 (3.31)

In general, points in space are expressed in the world coordinate frame. There-
fore, the coordinates of the point need to be converted into the camera coordinate
frame. If the special Euclidean transformation from world to the camera coordi-
nate frame is gcw = g(R, T ) then the coordinates of the point Xw relative to the

camera coordinate frame is X̃c =

[
R T
0 1

]
X̃w, where R and T are called the

extrinsic parameters.

The final projection from the world coordinate frame to the image plane is
given as

λx̃ =

 fx s x0
0 fy y0
0 0 1

 [I|0]

[
R T
0 1

]
X̃ = KπgX̃ (3.32)

The 3x4 matrix P = Kπg is called the projection matrix of the camera and
defines the behavior of the camera. So the effect of the camera is characterized
by two stages: the 3D world coordinates to the z = 1 plane (the normalized co-
ordinates) and the normalized coordinates to the image coordinates. Also, it is
possible to calculate intrinsic and extrinsic parameters back from P by decom-
posing it via QR-decomposition [79].

3.1.3 Lens Distortion

The perspective projection only models the linear part of the image formation
process, since the 3D point, image point and the camera center are collinear.
However the real cameras suffer from non-linear distortions. The most important
of these distortions are called radial and tangential distortions. Radial distortion
is an alteration in magnification from a center to any point in the image, measured
in a radial direction from the center of distortion. This distortion effect takes place
in the lens and therefore the distortion should be placed between the intrinsic and
extrinsic parameters.

The ideal (distortion-free) normalized image coordinates (z = 1 plane coordi-
nates) (x′, y′) of x = R[X,Y, Z, 1]T + T = [x, y, z]T are calculated as

x′ = x/z, y′ = y/z (3.33)
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Then the distorted (measured) normalized image coordinates [24, 203, 213]
are

xd =

[
xd
yd

]
=

[
x′(1 + k1r

2 + k2r
4 + k3r

6)
y′(1 + k1r

2 + k2r
4 + k3r

6)

]
(3.34)

where r2 = x′2 + y′2 (assuming that the center of radial distortion is the same as
the principal point), and k1, k2, k3 are the radial distortion coefficients (the first
three lower order terms of the model).

Moreover there exists a tangential distortion [206, 80] which is resulting from
the lens not being exactly parallel to the imaging plane. The tangential distortion
is minimally characterized by two additional parameters, p1 and p2, such that the
final correction including the radial distortion is

xd =

[
xd
yd

]
=

[
x′(1 + k1r

2 + k2r
4 + k3r

6) + 2p1y
′ + p2(r2 + 2x′2)

y′(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y′2) + 2p2x

′

]
(3.35)

Then the final projection onto the image plane is

λx̃ =

 fx s x0
0 fy y0
0 0 1

 x̃d (3.36)

The inverse of the polynomial distortion function in Equation.3.35 is difficult
to calculate, but it can be obtained by an iterative way as explained in [213].

3.1.4 Camera Calibration
The process of determining the intrinsic and the extrinsic parameters of a camera
is known as camera calibration. Extrinsic calibration is also known as pose estima-
tion. Calibration objects are used to establish easy and accurate correspondences
between 3D scene points and their 2D image projections.

The existing camera calibration methods can be classified in three main cat-
egories, direct nonlinear minimization (DNM), closed-form solution (CFS) and
hybrid (two step) methods [206]. In direct nonlinear minimization, the camera
parameters are searched by using an iterative algorithm with the objective of
minimizing a cost function (residual errors). A closed-form solution directly com-
putes the camera parameters with a non-iterative algorithm based on a closed
form solution. Both methods have their own drawbacks; DNM needs good initial
estimates of parameters to converge to a global minimum, while CFS is sensi-
tive to noise and cannot incorporate non-linear distortions. The hybrid methods
[213, 194, 80] initially estimate the intrinsic parameters assuming that the non-
linear distortion parameters are zero by using CFS and afterwards utilizes these
estimated parameters as initial estimates for DNM.

The camera calibration method proposed in [213] only requires the camera
to capture at least 3 images (if both extrinsic and intrinsic parameters are to be
estimated) of a planar pattern from different orientations instead of a complex



38 MATHEMATICAL FRAMEWORK 3.2

Figure 3.4: Epipolar geometry.

3D calibration object with known dimensions. Camera motion or pattern motion
need not to be known. Because of this flexibility, and also the superior real-
data performance compared to some other methods [190], we have utilized this
calibration method in this thesis. Initially the five intrinsic and all extrinsic
parameters are estimated by using the closed-form solution created by using the
homographic relations between the calibration pattern and its projection on the
image plane. Afterwards, the nonlinear distortion parameters are estimated by
solving the linear least-squares. Finally, all estimated parameters are refined by
using non-linear minimization (as explained in Section 3.3.2).

In his seminal work [194], Tsai proposed that only radial distortion and only
one term needs to be considered for industrial applications. According to Sun and
Cooperstock [190], including the two de-centering distortion components generally
guarantees a high calibration accuracy for a camera with unknown lens distortions.
Therefore, we only considered k1 and k2 in our calibration.

3.2 Geometry of Two Views: Epipolar Geometry

A 3D point X and two camera optical centers C1 and C2 form a triangle as shown
in Fig.3.4. This geometry is usually exploited to simplify the search for corre-
sponding points in stereo matching with given rotation and translation matrices,
R and T . In the case that R and T are not known, it can be used to solve for the
camera poses given enough (correspondence) points.
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Given two images of the 3D point X from two different vantage points with
the image coordinates x1 and x2: if the calibration matrix K is known, then the
normalized coordinates of two image points are

ẋ1 = K−1x1 and ẋ2 = K−1x2. (3.37)

The normalized coordinates can be related with 3D coordinates as

λ1ẋ1 = X1 and λ2ẋ2 = X2 (3.38)

where X1 and X2 are the 3D coordinates of the point X relative to the two
camera frames. Two camera frames are related with the Euclidean rigid body
motion X2 = RX1 + T . This relation can be written as

λ2ẋ2 = Rλ1ẋ1 + T (3.39)

By multiplying both sides with [T ]x we obtain

λ2[T ]xẋ2 = [T ]xRλ1ẋ1 (3.40)

Premultiplying this equation with ẋT2 leads to ẋT2 λ2[T ]xẋ2 = ẋT2 [T ]xRλ1ẋ1.
Since ẋ2 and [T ]xẋ2 are perpendicular

ẋT2 [T ]xRẋ1 = 0 (3.41)

The matrix
E = [T ]xR (3.42)

is called the essential matrix and encapsulates the relative pose between the cam-
eras, and the constraint

ẋT2 Eẋ1 = 0 (3.43)

is called the epipolar constraint.
The plane determined by the camera centers and the point X is called the

epipolar plane. The projection of camera centers to the other camera’s image
plane are called the epipoles. The intersection of the epipolar plane with the
image planes are called epipolar lines. In each image, both the image points and
the epipoles lie on the epipolar lines such that

`Ti ei = 0, `Ti xi = 0, i = 1, 2 (3.44)

The projection of all 3D points on the ray passing from C1 and X onto the
second image frame lie on the epipolar line l2. Therefore, in the case that only x1
is known, the possible image location of the corresponding point x2 is constrained
to the epipolar line l2. The benefit is the search for the point corresponding to x1
in calibrated stereo setup, epipolar search, need not cover the entire image, but
can be restricted to the epipolar line l2.
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3.2.1 Triangulation
Triangulation is the problem of finding the position of a point in space given its
position in two images taken with cameras with known calibration and pose [78].
We utilize calibrated cameras in our system and therefore we can use the normal
coordinates of the image points, x′ = K−1x. Assuming that the first camera
frame as the reference then

λ1x
′
1 = [I|0]X and λ2x

′
2 = [R|T ]X (3.45)

If we cross product the right side of the equations with the left sides to elimi-
nate the λ then

[x′1]x[I|0]X = 0 and [x′2]x[R|T ]X = 0 (3.46)

Four linear equations are obtained from two views in the coordinates of x,
which may be written as

AX =


−1 0 x1 0
0 −1 y1 0

x2r31 − r11 x2r32 − r12 x2r33 − r13 x2t3 − t1
y2r31 − r21 y2r32 − r22 y2r33 − r23 y2t3 − t2

X = 0 (3.47)

The solution x can be found by using Singular Value Decomposition (SVD)
(subject to the condition ‖x‖ = 1) and this method is called linear triangulation.

Moreover, since we use rectified images, the rotation between two cameras is
R = I and the translation is T = [b, 0, 0]T where b is the baseline, and the y
coordinates of the same 3D point in two images should be the same y = y1 = y2.
Therefore, Eq 3.47 becomes −1 0 x1 0

0 −1 y 0
−1 0 x2 −b

X = 0 (3.48)

which makes the calculation of X trivial.

3.3 Least-squares minimization methods
The least-squares minimization methods are used in many parts of computer
vision. Thus we give a short description of the concepts. For instance, the linear
least squares is used in homography estimation, fundamental matrix calculation
and image alignment. The non-linear least squares is used for pose estimation,
bundle adjustment, etc., while the combination of the two methods is used in
different applications such as camera calibration.

A more general optimization problem is simply to minimize the cost (objective)
function g(p) over all the values of unknown parameter p and therefore find p∗,
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a global minimizer for g(p), such that

p∗ = arg min
p

g(p) (3.49)

In the least-squares minimization, the cost function is the squared distance
objective function

g(p) =
1

2

∑
i

(εi(p))2 (3.50)

which can be denoted in the matrix form as

g(p) =
1

2
‖ε(p)‖2 =

1

2
ε(p)T ε(p) (3.51)

where ε(p) = [ε1, ε2, ..., εn]T .
In computer vision, it is very common that εi(p) is defined as the difference

between the measurement bi and the prediction f(ai,p) and referred to as residual

εi(p) = f(ai,p)− bi (3.52)

Then the cost function becomes

g(p) =
1

2

∑
i

(f(ai,p)− bi)2 (3.53)

If f(ai,p) is linear in the unknown parameter p then it is a linear least-squares
minimization problem. Otherwise it is a non-linear least-squares problem.

3.3.1 Linear least-squares
The cost function (3.53) can be written in the linear least-squares form (if f(ai,p)
is linear) as

gLLS(p) =
∑
i

|aip− bi|2 = ‖Ap− b‖2 (3.54)

where A = [a1, a2, ..., an]T and b = [b1, b2, ..., bn]T .
This minimization can be used if a solution for linear equations Ap = b where

A is a mxn matrix, does not exist, since it is still important to find a vector p that
is closest to a solution to the system. In order to do that gLLS(p) is minimized
and such p∗ is known as the least squares solution to the overdetermined system.

The p∗ corresponding to the minimum value for gLLS(p) can be found by
solving the associated normal equations

(ATA)p∗ = ATb (3.55)

which can be obtained by setting the derivative of gLLS(p) equal to zero

∂gLLS(p)

∂p
= 0 (3.56)
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The final p∗ is

p∗ = (ATA)−1ATb = A+b (3.57)

if ATA is invertible. A+ is called the pseudo-inverse of A. Also p∗ can be
computed numerically by using the Singular Value Decomposition (SVD) [79].

In the case of homogeneous equations such as Ap = 0, the homogeneous
squared error is

gHLS(p) =
∑
i

|aip|2 = ‖Ap‖2 (3.58)

If p is a solution, so is kp for any scalar k. A reasonable constraint would
be ‖p‖ = 1. Then the solution is the last column of V (corresponding to the
smallest singular value) where A = UDVT is the SVD of A (which is the same
as the eigenvector of ATA corresponding to the smallest eigenvector).

3.3.2 Non-linear least-squares

When the cost function given in Eq.(3.53) is not linear in the unknown parameter
p, it is minimized iteratively by relinearizing it around the current estimate of

p using the gradient derivative (Jacobian) Jp = ∂f(p)
∂p evaluated at the current

estimate and computing an incremental improvement 4p. First start with an
initial estimate p0 which is close to minimum and then refine the estimate under
the assumption that the function f(p) is locally linear around p0

f(p0 +4p) = f(p0) + J04p (3.59)

where the Jacobian J is evaluated at the current estimate.

We seek a point p1 = p0 +4p, which minimizes 1
2

∑
i(f(ai,p1) − bi)2 that

can be approximated by

1

2

∑
i

(f(ai,p0) + J04p− bi)2 (3.60)

This cost function can be written as

1

2

∑
i

(J04p + εi(p0))2 (3.61)

and requires to minimize ‖J04p+εi(p0)‖ over4p, which is a linear least-squares
problem and the vector 4p can be obtained by solving the normal equations
(3.55). The iterations continue until convergence is obtained.

The objective function can also be approximated around p0 by using Taylor
series

g(p0 +4) = g(p0) + gp(p0)4+
1

2
4T gpp(p0)4+ . . . (3.62)
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where gradient gp = ∂g(P )
∂P and Hessian gpp =

∂gp(P )
∂P are evaluated at p0. To

minimize g(p0 +4) with respect to ∆, we need to differentiate with respect to
4 and set to 0;

gp + gpp4 = 0 =⇒ gpp4 = −gp (3.63)

If g(p) is a least-squares cost function as given in Eq.(3.51), then various
update equations can be used such as

1. Newton update equation
gpp4 = −gp

where gp = εTp ε and gpp = εTp εp + εTppε evaluated at p0

2. Gauss-Newton update equation

εTp εp4 = −εTp ε

under the assumption that g(p) (εp) is linear around the solution p0, and
the Hessian is approximated as gpp = εTp εp = JTJ since εTppε = 0, and
εp = J .

3. Gradient descent
λ4 = −gp

The negative gradient vector defined the direction of most rapid decrease
of the cost function. So this is moving in that direction iteratively and
λ defines the length of the step. It is similar to Newton but instead the
Hessian is approximated by the scalar matrix λI.

Then the update 4 can be found by using one of the update equations and the
updates are repeated until the objective function is minimized.

Levenberg-Marquardt (LM) iteration

The LM algorithm varies parameter updates between Gauss-Newton updates and
gradient descent updates by adjusting λ

(JTJ + λI)4 = −JT ε (3.64)

a small λ results in a Gauss-Newton update, which will cause rapid convergence in
the neighborhood of the solution, while a large λ is a gradient descent step, which
will guarantee a decrease in the cost function when the convergence is difficult.

In order to avoid ’error valley’ problem, Marquardt proposes the update (aug-
mented normal equations)

(JTJ + λdiag(JTJ))4 = −JT ε (3.65)

Since the Hessian H is proportional to the curvature of g, the above equation
implies a large step in the direction with low curvature and a small step in the
direction with high curvature.
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3.3.3 Robust least-squares (M-Estimation)

Regular least-squares methods are minimizing the residuals of all the measure-
ments and they are optimal and reliable when the noise in the measurements is
Gaussian. However, the Gaussian assumption is violated when there are outliers
in the measurements and the least-squares result is skewed in order to approxi-
mate a Gaussian with the data. Therefore a robust version of it is necessary in
the presence of outliers among the measurements. An M-Estimator in which a
robust penalty function ρ(r) is applied to the residuals, can be used for such a
case. The cost function is defined as

gRLS(p) =
∑
i

ρ (εi(p)/σi) (3.66)

where ρ(r) is a continuous, symmetric and monotonically increasing function with
a minimum value at r = 0, and σi is the scale of the residual error εi.

The rationale for using a robust penalty function (such as Tukey, Cauchy etc.)
is to decrease the effect of the measurements with gross errors in the estimation
process [76]. In the least-squares method, the residuals for any measurement
can be arbitrarily large. However, in robust loss functions, small error values
correspond to Gaussian noise and are included in the minimization process while
the influence of large errors are either bounded or totally eliminated.

The minimization of the cost function can be done by taking the derivative
and equating it to zero

∑
i

ψ

(
εi(p)

σi

)
∂εi(p)

∂p

1

σi
= 0 (3.67)

where ψ(r) is the derivative of ρ(r) and is called the influence function. If the
weight function w(r) = ψ(r)/r is introduced to solve the equation above, then

∑
i

w

(
εi(p)

σi

)
εi(p)

∂εi(p)

∂p

1

σ2
i

= 0 (3.68)

This minimization can be done by an iteratively reweighted least squares al-
gorithm which is used to minimize cost functions in the form of

∑
i w(r)r2. At

each iteration the weights wi = w(εi(p)/σi) are calculated by using the previous
iterations estimate of p, pt, and the estimate ∆pt is calculated with the weights
fixed by solving the normal equations (explained in Sec.2.3.1)

JTCJ4pt = −JTCb (3.69)

4pt = −(JTCJ)−1JTCb (3.70)

pt+1 = pt +4pt (3.71)
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where C is a diagonal matrix, diag(w1, w2, ..., wn), corresponding to the indepen-
dent weights and J is the Jacobian, both evaluated at the local point p. The
iterations continue until p converges to a final value.

Various robust penalty functions and corresponding weight functions are given
in Table 3.1 and illustrated in Fig.3.5 together with the least-squares cost function.
For instance, Tukey’s robust cost function rejects the outliers that satisfy

|r| =
∣∣∣∣εi(p)

σi

∣∣∣∣ > a (3.72)

where 95% asymptotic efficiency can be obtained by tuning a = 4.6851 as shown
in Fig.3.5. Therefore, residuals |εi(p)| > 4.6851σi are suppressed as outliers.

Incorporating σi solves the scaling problem that is introduced when the con-
stant a is used as a threshold for outlier detection. A proper selection of scale
will improve outlier detection and therefore the estimate of the scale should be
robust and not affected by outliers. Since the σi are not available beforehand, a
robust standard deviation estimate of the errors can be used as the scale [212]

σ̃ = 1.4826

(
1 +

5

n− d

)
median

i
|εi(p)| (3.73)

where n is the size of the data set and d is the dimension of the parameter vector
p. The constant 1.4826 is equal to the median of the absolute values of random
numbers sampled from the Gaussian normal distribution N(0, 1).

3.4 Random Sample Consensus (RANSAC)
The RANSAC methods is used for fitting a model to experimental data which
can tolerate more than 50% outliers in the data [59]. As explained in the previ-
ous sections, classical techniques for parameter fitting such as the least-squares
method are minimizing the errors for all measurements (including the outliers)
and therefore the estimation fails to represent the correct model in the presence
of outliers. In the robust least-squares method, outliers are detected by using

Table 3.1: Robust loss functions and corresponding weight functions.

ρ(r) w(r)
Least-squares r2/2 1

Tukey

{
a2

6 [1− (1− ( ra )2)3], |r| ≤ a
a2

6 , |r| > a

{
[1− ( ra )2]2, |r| ≤ a

0, |r| > a

Cauchy b2

2 log(1 + ( rb )2) 1
1+( rb )

2

Huber

{
1
2r

2, |r| ≤ c
1
2c(2|r| − c), |r| > c

{
1, |r| ≤ c
c
|r| , |r| > c
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(a) Robust loss functions

(b) Robust weight functions

Figure 3.5: Robust loss functions and corresponding weight functions, parameters are
tuned to a=4.6851, b=2.3849, c=1.345 to obtain 95% asymptotic efficiency.
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Table 3.2: RANSAC: finding pose using random sample consensus.

Select
n: smallest number of points required to fit the model
k : the number of iterations required
d : the number of supporting samples required to assert a model fits well
t : the threshold used to identify the samples that fit well to the model

Until k iterations have occurred
Select n points from the data uniformly and randomly
Calculate the model parameters (fit the model) by using that n points
For each data point outside of the n points set

Evaluate the reprojection error between the point measurement
and its backprojection with the estimated model. If the error is
less than t, then the point fits well to the model

end
If there are d or more points that fit well with the estimated model then
there is a good fit. Recalculate the model parameters using all these
points

end
Use the best fit from this collection, using the total reprojection error of the
final fitting as a criterion

the median of all the samples’ residuals and these outliers are weighted less as
their residuals greater then a value determined by the median. The RANSAC
is another approach to detect outliers and select the inliers that are used for
model fitting. Although it is computationally more expensive due to its iterative
select-fit-evaluate nature, it is very robust against the outliers.

In Table.3.2 we explain the method by describing the application of RANSAC
on pose estimation which can be generalized to any model fitting problem by
changing the desired model type [79]. For instance the pose model can be replaced
by the plane model and instead of the reprojection errors to evaluate the quality,
the distance between the 3D points and the plane can be used as an error criterion
to evaluate the samples and the model. Then the same algorithm can be used
for fitting planes to 3D points. The pose can be calculated by using and n-point
method [79] from 3D point and 2D feature matches which is explained in more
detail in Section 4.3.5.

3.5 3D Reconstruction
3D reconstruction is the process of recovering the geometric structure of a scene
from one or more of its images. More formally, recovering the 3D world coor-
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dinates [X,Y, Z]T of a point P given the pixel coordinates pi of its projections
onto the images. 3D reconstruction from a single image is an under-determined
problem. However, if two images of the point P captured by cameras with known
internal and external parameters are given, then the position of the point P can
be recovered by triangulation as explained in Section 3.2.1.

If the non-linear distortions are corrected then the perspective projection equa-
tions can be written

λ1p1 = K1R
T
1 (P − C1) , λ2p2 = K2R

T
2 (P − C2) (3.74)

When all intrinsic and extrinsic parameters K1,K2, R1, R2, C1 and C2 are
available (via stereo camera calibration), the 3D world coordinate of the point P
can be estimated which results in full reconstruction.

The relation between the two image coordinates of the 3D point in a single
stereo image pair captured by a stereo rig is:

λ1p1 = K1P
′ and λ2p2 = K2R

T
2 R1P

′ +K2R
T
2 (C1 − C2) (3.75)

where P ′ = RT1 (P − C1).
The pose of the first camera in the world coordinate frame (R1, C1) cannot

be recovered from a single stereo image pair but the intrinsic parameters and the
relative pose of the second camera with respect to the first camera are known.
Therefore, the scene can be reconstructed by the image pair only up to a Euclidean
transformation P ′ = RT1 (P−C1) with respect to the world and is called Euclidean
reconstruction. When the (metric) distance between the cameras is also not known
(only K1, K2, RT2 R1 and the direction of the translation between two cameras,
RT2 (C1 − C2) up to a scale are known) then the scene is reconstructed up to an
Euclidean and 3D similarity transformation. This reconstruction is referred as
the metric (similarity) reconstruction. If the internal camera parameters are also
not known (only the relative pose information without the precise inter-camera
distance is known) then this is called affine reconstruction. Finally, if we have
no knowledge about the camera and the scene, we can only find the fundamental
matrix with image correspondences and 3D reconstruction can be done up to a
projective transformation. This is called the projective reconstruction.

The projective transformations preserve only collinearity and coplanarity. The
affine transformation preserves parallelism additional to the collinearity while the
metric transformations preserve the angles but not metric size. In our case the
pose information supplied by the tracking module can be used to recover the
absolute information about the cameras’ extrinsic parameters in the real world
and P can be recovered from P ′.

3.5.1 Bundle Adjustment
Errors on the estimated parameters such as the combined 3D feature coordinates,
camera poses, and calibrations propagate in time and accumulate in each new
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Figure 3.6: The goal of bundle adjustment is to minimize the distance between the re-
projected 3D points and the extracted 2D features that they are reconstructed from. The
larger points represent the 3D points in space and the smaller points are their reprojec-
tions onto the each camera frame.

camera pose. In order to solve this problem, the global reprojection error of all
3D points in the images in which they are visible is minimized. This optimization
problem is solved by using Bundle adjustment [193] which is the refinement of a
3D reconstruction to produce jointly optimal 3D structure and viewing param-
eter estimates. Therefore it enables accurate map creation and extension while
correcting errors that can occur due to drift.

The goal of bundle adjustment is to minimize the distance between the repro-
jected 3D points and the extracted 2D features that they are reconstructed from,
as illustrated in Fig.3.6. The global reprojection error, εG, is defined as

εG =
∑
i

∑
j

D(xji, PjXi)
2 (3.76)

where Xi is the ith 3D point, PjXi is its projection onto the camera Cj with the
projection matrix Pj and xji is the measurement of the point Xi in the camera
frame Cj .

This problem is formulated as a non-linear least-squares problem as explained
in Section 3.3.2 and can be optimized by using Levenberg-Marquardt algorithm
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(Section 3.3.2). In every iteration, new estimates are found for camera poses, cali-
bration parameters and 3D feature coordinates that minimizes the error function.
Also each 3D point is not visible in all the images and therefore the Jacobian ma-
trices are sparse. This sparsity decreases the computational load of the algorithm.
The implementation and utilization details of the bundle adjustment algorithm
are discussed in more detail in Section 4.3.6.



Chapter4
Visual Odometry

Everything must be made as simple as possible, but no simpler.
Albert Einstein

4.1 Introduction
The key goal of AR is combining real-world objects and representations of virtual
objects such that the combination is practically indistinguishable to the user. If
such a blending can be achieved, then a dynamic real-scene can be augmented
with additional information that can aid in many tasks. This requires a proper
alignment of the real and virtual objects with respect to each other or the per-
ception that the two coexist in the same 3D space cannot be preserved.

Tuceryan et al. [195] defines a number of factors for the success of a realistic
AR experience, which includes camera (viewpoint) tracking, the modeling of the
real-world geometry and graphics rendering. Tracking the camera (head-pose
of the user) is necessary to reflect the changes in the user’s viewpoint in the
rendered graphics. Extracting the real-world geometry is crucial for registering
virtual entities with the real scene. Graphics rendering hardware/software and
display hardware (such as HMDs and game engines) are important to create
virtual content for augmenting the real world.

In order to provide a realistic AR experience and preserve the spatial con-
sistency between the real and the virtual world, the relative pose between the
camera/display and the objects needs to be estimated with high precision. This
is usually accomplished by tracking the (mostly static) landmarks (or real objects)
available in the scene and using this information to update the pose of the camera.
However, this is very difficult to accomplish due to the precision required. Even
a small misalignment can be detected by the human visual system due to the
resolution of the fovea and the sensitivity of the visual system to differences [9].

51
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Moreover, the resolution of the displays are usually lower than the human eye and
therefore errors of just a few pixels are noticeable.

Also, the failure in the tracking1 and registration processes, and the lag may
result in higher sickness symptomatology such as nausea, oculomotor disturbances
and disorientation [186] which results in some aftereffects such as decrease in eye-
hand coordination, and postural stability.

Almost two decades ago, Azuma [8] defined 3 main requirements of a tracker
for AR as:

1. The accuracy of the tracker must be within a small fraction of a degree in
orientation and a few millimeters (mm) in position

2. The combined latency (delay) between the time that the tracker takes the
measurements and the time that the graphics engine renders the augmented
image in the display must be very low

3. The tracker must work at long ranges (in contrast to its VR counterpart)
such that the extended-range trackers must support walking users

Following these requirements, we aimed for a combined latency less than 50
milliseconds (> 20 fps) and defined our working range as room-size environments.
In order to satisfy these requirements, we focus on vision-based trackers since
they are non-invasive, accurate and relatively low-cost. However, they suffer from
various challenges such as lighting conditions, occlusions, lack of texture, clut-
tered backgrounds and repetitive patterns. For instance, partial or full occlusion
may prevent the feature to be detected, or due to lighting conditions, specular
reflections or fast motion of the camera, a motion blur may result in failure of the
feature detection. Also observing the same scene from a different point of view
might lead to a confusion of the tracker since the features look very different.

In this chapter, a system is described that is able to track the 3D pose of a
moving stereo-camera pair in a 3D world, while simultaneously building a sparse
3D map of that world. The sparse map is utilized as landmarks while performing
the tracking. The system presented satisfies the requirements and overcomes the
challenges mentioned.

4.2 Related Work
Pose tracking techniques can be separated into 3 main parts, as illustrated in
Fig. 4.1: sensor-based, vision-based and hybrid tracking techniques [215].

Sensor-based methods utilize sensors such as magnetic, acoustic, mechanical,
inertial, optical, etc. or their combinations, to track the user’s pose and each

1In AR and VR contexts, vision based tracking refers to pose estimation or visual odometry.
However, in computer vision, tracking is mostly used for data association such as matching
between features, models or images. In this chapter tracking refers to the first context until
otherwise stated.
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Figure 4.1: Overview of pose tracking techniques.

method has its own advantages and limitations [163]. For instance accelerometers
don’t need any reference while the error in position measurements increases due
to integration. Magnetic sensors are sensitive against the presence of metals in
the environment and inertial trackers accumulate the error due to drift with time.
In [136], a scalable, indoor system was presented that used a combination of
ultrasonic sensors (Time-of-Flight sensing) and fixed receivers, with an inertial
tracker on the HMD. In [137], Newman et al. extended their previous concept
by introducing a Ubiquitous Tracking method, in which the measurements from
widespread and diverse sensors are automatically fused. Azuma and Bishop [11]
proposed a system in which four optical sensors aimed at an array of infrared LEDs
mounted in ceiling panels combined with inertial sensors. A similar active LED
system was used in guiding construction workers and as a ’touring guide’ in [57].
A 6 degrees-of-freedom magnetic tracker system is used to track the camera pose
in [195]. However, the sensor based systems have no feedback on the accuracy of
the pose estimates or the matching between the real and virtual world. Moreover
they lack any error correction mechanism, and therefore analogous to an open
loop system whose output is perceived to have an error. However, vision based
AR systems are closed loop systems since they can provide feedback to the system
by using features in the real environment and their projections in 2D images and
correct mis-registration errors by altering the pose estimate dynamically [13].

Vision-based tracking techniques employ optical cameras and computer vision
algorithms, and therefore they are non-invasive, accurate and relatively low-cost.
They can be divided into two main classes: model-based and feature-based algo-
rithms [157].

Model based tracking methods use a (3D) model of the tracked object and
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usually provides a more robust solution. In the basic concept of the model-based
tracking, the pose information is updated in each video frame first by using a
dynamic model via a prediction filter and then by measurements in the video
frame. After projecting the model edges of the object to the image plane by using
the latest camera pose, edge search is performed near the projected edges and
in the direction perpendicular to the rendered edges. Then, the error between
the projected edges and the actual edge locations is minimized by using (non-
linear) least-squares methods (explained in Section 3.3). The estimated pose
corresponding to the minimum error is used in the next frame. Many systems
share these basic principles.

For instance, in [52, 207, 124] tracking is done by seeking the alignment of
object’s 3D Model (CAD model) edges and the area of high image gradient via a
robust estimator and an iterative re-weighted least-squares (Section 3.3.3). Com-
port et al. [39] used CAD models and parametric representations of geometric
shapes for tracking. However, relying only on edge information might fail in
highly textured environments or objects, and lead to erroneous pose estimation.
Reitmayr et al. [161] proposed a hybrid outdoor system in which an edge-based
tracker was combined with a textured 3D model. In [158, 157], edge detection and
texture analysis are combined to increase the robustness of the tracker. Vacchetti
et al [196] introduce another robust estimator to handle multiple hypotheses (im-
age corners and model edges) in the pose estimation which minimizes the errors
in different measurement types together. For every frame, corner features (Har-
ris) are extracted and matched with interest points in the latest offline-reference
frames in which the 3D locations of the interest points are known beforehand.
Then the camera pose is estimated by using the matching between the 2D im-
age features and the 3D world points. They use the initial pose estimate, model
edges and interest points from the previous frame and the current frame to refine
the pose estimate and also the absolute 3D position of the tracked features in
the world coordinate frame by using their robust estimator. Bleser et al.[20, 18]
presented a hybrid tracker that exploits the object CAD model for initial pose
estimation and tracks the model as long as it is in the field of view. Also 3D
locations of new features (corners) are added as landmarks and tracked by Ex-
tended Kalman Filtering (EKF) as explained in the SLAM based trackers later.
Model-based tracking methods need off-line data such as 3D models of the tracked
objects or the environments, and are therefore difficult to maintain in an unknown
environment and it restricts the camera motion.

Feature-based tracking algorithms use interest points, i.e. corners, present
in the scene that are different than their neighbors and can be detected easily,
and therefore don’t require any model. Feature-based tracking algorithms fall
into two parts: fiducial-based feature tracking and natural feature tracking. The
former approach utilizes known-markers while the latter one focuses on tracking
2D features such as corners, edges, or texture.

Fiducials (i.e. landmarks or markers) are exploited to introduce a set of easy
to extract correspondences between 3D features and image features. In general
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Figure 4.2: Different markers are utilized in the development of AR applications. Some
samples of circular markers (a) and (b) are used in [37] and [35] while rectangular ones
(c) and (d) are exploited in [89] and [27]

fiducials are easy to detect and the image locations of the markers can be detected
with a higher precision relative to natural features. Moreover, 3D positions of the
corresponding 2D marker features can be measured with very high accuracy (for
instance by hand).

The topic of 3D pose estimation from fiducials has been extensively researched
in the past and various marker types are used as shown in Fig.4.2. Circular
markers and their centers are used in various research related to AR [35, 133, 197,
144]. For instance in [35], Cho et al. utilized colored circular fiducials in different
sizes for a scalable system. The pose is found by using the RANSAC method [59]
as explained in Section 3.2. The pose is estimated using three randomly selected
correspondences between 3D features and image features, and evaluated by using
the reprojection errors. This procedure is repeated until a good estimate with less
then the minimum reprojection error is found or maximum number of iterations
is reached.

Planar rectangular markers are also exploited in many research efforts [89, 187,
211, 27]. With these markers and a single camera, the pose of that camera can
be determined up to a scale factor. The marker detection is based on the search
of contours of (possibly skewed) rectangular objects in the camera, followed by
the detection of a valid pattern (ID) in its contour’s interior. The four corner
points of a marker are used to calculate the rotations of the marker with respect
to the camera. In order to obtain a higher accuracy of the positions of the corners
than the size of a single pixel, i.e. sub-pixel accuracy, the corners of the skewed
rectangle are omitted, whereupon high accuracy line fits –using a Gaussian line
model on the gray-value pixels that form the lines– are done on the four line-
pieces making up the rectangle. Geometric intersections are used to determine
the corner positions at high accuracy, making it possible to calculate the pose
of the marker with respect to the camera up to a scale factor. If the size of
the marker is linked to its ID, the 3D camera pose can be accurately tracked in
real-time.

As an another approach, [37] presented a fiducial detector based on machine
learning which has significant performance improvements. They train a classifier
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with sample fiducial images under varying conditions and label the input image
pixels as either fiducial or not.

Negative points are that the markers must be put precisely in place in the
scene beforehand, and that for markers far away the corners (or centers) are too
close together to make an accurate pose calculation possible. In this case, setting
up an exact grid of markers may overcome this, but setting up such an exact grid
is very cumbersome and, moreover, not possible in many unknown environments.
Also, it is vulnerable to occlusions of the markers [98].

Due to new algorithms and faster computers, real-time natural feature tracking
becomes feasible for pose estimation. In contrast to the model-based and marker-
based methods, landmarks are acquired during the operation of the system and
therefore the system can perform extendible tracking. This eliminates the de-
pendency on prior information about the environment and extends the range of
operation. These methods can also be classified as Structure-from-Motion (SfM)
approaches, which start from scratch and build the scene structure and landmarks
while estimating the camera pose.

Initial methods utilize natural features to support marker based tracking or
require a marker based tracking for calibration, prior to the natural feature based
tracking. One of the first examples of natural feature tracking for robust AR is
presented in [146]. Park et al. used fiducials to initialize their system and find
the pose of the camera. Afterwards, they detect natural features, register them
relative to the fiducials and utilize them to find the pose when the fiducials are
not visible. However, they were not able to achieve real time operation.

In [68], Genc et al. proposed a two stage tracking method for AR that combines
markers, natural features and Bundle adjustment [193] (see also Section 3.5.1).
During the first stage, the training stage, the pose of the camera is estimated by
using fiducials while the 2D natural features are tracked and their 3D positions
are estimated by using triangulation (Section 3.2.1). During this stage, bundle
adjustment is used to refine the 3D positions of the points. When the system is
trained and the number of 3D points are enough, the system switches to the second
tracking stage in which only the learned features are used for camera tracking.
The features are tracked by using an optical flow tracker (see Section 4.3.4) and the
pose is computed using the algorithm by Tsai [194]. The map is only modified
during the training stage and not extended in the tracking stage. In [189],
Subbarao et al. improved the system in [68] by introducing the Heteroscedastic
Errors-In-Variables Regression (HEIV) estimator [126] instead of Tsai’s method
to calculate the camera pose and the structure which claimed to be robust against
noise and nonlinearity of the system. However, the computational load is very
high and the system cannot perform in real-time.

Simon et al. [179] presented a marker-less camera tracking system for planar
environments. A plane is specified manually when the system starts up. After-
wards, the interest points on the specified plane are matched between the current
and the next frame, and from the set of correspondences a planar homography [79]
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is calculated. The planar homography is a projective mapping that maps copla-
nar points xi on the plane π1 to coplanar points x

′

i onto the plane π2. Therefore
it is applicable to rigid and planar surfaces. The homographic mapping can be
represented by 3x3 matrix H, which can be derived by using the mapping between
the points xi and x

′

i. The matrix H contains 9 entries, but it can be defined only
up to a scale. Thus, the total number of degrees of freedom in a 2D projective
transformation is 8. Therefore, minimum 4 points are necessary to compute the
H matrix, since a 2D point has two degrees of freedom corresponding to its x and
y components. By decomposing the homography matrix into the position and the
rotation of the camera, the pose is calculated. The selected plane imposes a nat-
ural coordinate frame for the alignment of the virtual and real content. However,
the planarity assumption is difficult to satisfy in many environments.

Skrypnyk and Lowe [180] proposed a two stage system for markerless AR. In
the first offline-stage SIFT features [113] are extracted from the reference images
and multi-view correspondences are calculated. Then these correspondences are
used to create a metric model of the world and perform self-calibration. In the
second stage, features are extracted from the captured images and matched with
a world model by using a Best-Bin-First search algorithm [113]. The Best Bin
First search finds the nearest neighbor (or a very close neighbor) of the query
point in the world model. Afterwards, the pose of the camera is calculated by
using correspondences. However, due to the high computational load of SIFT
features, the system can only perform at 4 fps. Park et al. [147] split the object
detection and tracking stages by using key-frames. Key-frames are selected from
the captured images when there is a significant motion in the camera pose (see
Section 4.3 for more detail). Object recognition is performed on the key-frames
with pre-learned features and the detected object pose is estimated by feature
matching and robust pose estimation (see Section 3.3.3 and 4.3.5) frame-by-frame.

In [139] the motion of a stereo-rig is estimated by using a traditional feature
tracker such that normalized correlation over an 11x11 window is used to evaluate
the potential matches. The relative pose of the new frame is estimated by using
a 5-Point algorithm and preemptive RANSAC (see Section 3.2) followed by an
iterative refinement. No scene priors such as planarity or motion priors such as the
velocity of the camera are used. Also, they did not use any global optimization
method such as batch techniques (see Section 3.5.1) to refine/correct the pose
estimates.

In [67], Geiger et al. presented a work similar to our system, which can track
the camera pose while creating a dense 3D reconstruction, but mainly designed
for vehicles. They assumed that the 3D landmarks are visible for a couple of
frames and therefore they match 2D key-points between current left-right and
previous left-right stereo pairs. If the feature is successfully matched between 4
images then it is used for pose estimation by minimizing the backprojection error
in the stereo view. Then they combine stereo-disparity maps by using the pose
estimates. However, they don’t utilize any batch processing (bundle adjustment)
to refine the estimates in order to be real-time.
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Standard Structure-from-Motion algorithms suffer from drift and therefore are
usually followed by a global optimization scheme (bundle adjustment) explained
in Section 3.5.1 or reformulated using a Kalman filter [205] as explained below.

Simultaneous localization and mapping (SLAM) and its adaptations such as
EKF-SLAM [47] and FastSLAM [55] are the most popular incremental mapping
methods (mostly used in robotics and autonomous vehicles). The current cam-
era pose and the position of every landmark (clearly visible natural feature) are
updated with every incoming image. The uncertainties in the measurement and
the predictions are stored in a Kalman filter. Davison et al. [46] presented a tra-
ditional single camera SLAM framework for a wearable robot (a camera on an
extended pan-tilt-zoom unit) with active vision. The robot (a moving lens-camera
system with three rotational degrees of freedom) mounted on the user’s shoulder is
located continuously so that the user can get assistance from a remote expert who
can manipulate the camera-robot. In [30, 31] a system in which (planar) object
recognition and SLAM are combined for wearable camera systems is presented.
They perform object recognition at regular intervals by observing the scene and
matching the detected SIFT features with a previously created object database
with known metric dimensions. When an object is detected its pose is estimated
by decomposing the homography transformation between the image features and
the stored model. Then the detected object’s 3D positions are embedded into
a mono-SLAM map as 3D point measurements. However, these methods suffer
from a high computational load due to the data association, and no more than
a few dozen points can be tracked and mapped in real-time. Monocular setups
suffer from the lack of metric distance and their maps are created up to scale
(if a calibration marker is not used). Se and Lowe [175] used a stereo setup and
SIFT [113] features as natural features to track the pose of a mobile robot. They
assume a 2D planar motion of their platform assuming it operates on planar sur-
faces such as floors. However, their assumption is not valid for AR setups because
the human user frequently violates the 2D planar motion assumption with his/her
head by moving it up and down while investigating the scene, and their algorithm
is computationally expensive. Efforts to handle large-scale maps and improve the
robustness of SLAM have been made [159, 34, 109]. Pupilli et al.[159] employ
a particle filter instead of EKF, and [34] replaces correlation-based search with
multi-resolution descriptors in a Kalman filter framework for robustness against
rapid camera motion and outliers. Lee and Song [109] detect salient regions in
the environment and exploit them as landmarks in SLAM. They combine dif-
ferent cues for saliency and register the detected regions into a map for scene
exploration.

However, they are still either confined to small-resolution images for real-time
operation or not fast enough for head-pose estimation.

Bundle adjustment based methods and their variants become popular as the
speed of the processing hardware increases. Compared to EKF, bundle adjust-
ment has a complexity that is linear in the number of landmarks and cubic in the
number of poses [193] while EKF has quadratic complexity.
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In [166], Royer et al. compute the 3D reconstruction of the environment off-line
from a learning sequence. They select key-frames from a reference sequence and
calculate the pose of each key-frame and create a 3D environment from matched
2D features between the key-frames. They run bundle adjustment once for each
new 3 key-frames since the training step is done off-line. When the map is ready,
they start real-time localization by matching the image features to the closest key-
frame features and estimating the pose by using 2D features and corresponding
3D points in the map.

Klein and Murray [93] proposed a parallel tracking and mapping (PTAM)
system in which they split the pose estimation and mapping processes by using
a key-frame structure. They also utilized a local and a global bundle adjuster to
correct the positions of landmarks. Their system shows impressive performance
in small spaces such as on office desks and forms the basis for the visual tracking
system described in this thesis. Guan et al. [73] proposed a similar system to
PTAM in which they utilize ferns for keyframe recognition and relocalization
when the system is lost. Ferns are non-hierarchical structures used to classify
image patches [143]. Each fern consists of a small set of binary tests and returns
the probability that a patch belongs to a class created during a training stage. All
possible appearances of the image patches surrounding a keypoint in a keyframe
are assigned to the same class during a training stage. The random ferns are
used to assign a new keypoint to the most likely class and therefore perform
keyframe recognition. In [32] the object recognition framework presented in [31]
is combined with PTAM. Object recognition is performed on key-frames by using
SIFT features.

In [132] similar incremental reconstruction concepts with the shape-from-
motion paradigm such as calculating the pose, reconstructing new landmarks with
the new pose and repeating the pose estimation and the reconstruction steps, are
exploited to track the pose. They match the Harris features between two consec-
utive frames by using a normalized correlation score evaluated over the patches
around the features and estimate the pose from the matches. However, instead
of running the bundle adjuster in parallel to the tracking, they only run a local
bundle adjuster on the last N key-frames when a new key-frame is added to the
system. They aim to reduce the computational load of batch processing by us-
ing a local bundle adjuster which refines the last added frames instead of all the
frames.

Recently there are new research efforts published for drift-free tracking with
constant-time batch processing (bundle adjustment). Mei et al. [127, 128] pre-
sented a constant time SLAM system (RSLAM) using a stereo setup for a large-
scale mapping. They represent the 3D map and the robot position by using a
graph structure in which the camera poses are the nodes of the graph and these
nodes are connected to the other spatially close ones (camera poses) by edges.
Therefore each camera pose is represented by relative transformations (edges) to
its neighbors (connected nodes) and this representation is called Continuous Rel-
ative Representations (CRR). The current pose of the camera is used to define
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the active nodes of the graph. Active regions which contain the current camera
pose and spatially close N other poses (nodes), define the landmarks used for
pose estimation and behaves like a local environment around the robot. They
calculate optimal structure and pose locally by using a bundle adjuster only in
the active region (with fixed amount of nodes and edges) in constant time which
is called relative bundle adjustment (RBA). Therefore a global minimization step
that doesn’t scale with the size of the map is avoided. In order to detect pre-
viously seen scenes by matching the current view with the previously seen ones,
they exploited the work in [43] and use this information to correct the current pose
and the map of new discovered areas. When a previously seen scene is detected,
the current pose of the camera and its connected nodes are updated with the
measurements from the old scene node and RBA is performed on the new active
region including the old node. This reduces the errors originated from drift or
pose estimation. Although the presented work performs better relative to PTAM
in outdoor datasets, PTAM shows similar or better results for indoor and desktop
environments in which the map size is small and a global bundle adjustment can
be performed in near real-time.

As different features than corners, edge features are exploited for pose esti-
mation. [181, 54] used straight lines and edges for EKF SLAM. In [94], Klein et
al. used edgelets and combine them with corner-based tracking to improve the
resilience against rapid camera motion. Their approach is similar to the model-
based methods, but in this case they create edgelets during the operation and
extend their edge-map in a similar way to the corner-based methods. The main
working principle (and drawback) is very similar to model-based trackers in which
the edge features are searched on high gradient regions.

Current research efforts are shifting towards mobile phone applications because
of their market penetration. [200] presented the first natural feature based pose
tracking at real-time on mobile phones. There are also new systems that employ
simplified versions of the previously explained methods [95] and include the vari-
ous sensors available on mobile phones [103]. A good survey of their applications
can be found in [141]. However, they still suffer from the shortcomings of mobile
processors and are not suitable for wide-area extensible tracking.

In practice, even the best vision-based tracking methods fail due to fast mo-
tion blur, occlusions, lack of texture, etc. In order to cope with that, various
sensor data (inertial sensors, gyroscopes, etc.) was combined with image data.
These sensors predict the camera position and then this is refined using vision
techniques similar to the ones previously described. In [19, 86, 92], various combi-
nations of sensors with vision (mostly in an EKF framework) are given. Recently,
depth cameras (RGB-D cameras) such as XBox 360 Microsoft Kinect are becom-
ing popular and are exploited for pose estimation [111, 134, 148]. However, the
depth cameras are highly undesirable for our system due to their size and we
believe a pure vision-based approach without additional sensors is more generic
and hence desirable.
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All these approaches have different objectives than we have for our system. This
effects the choice of algorithms. Vision based tracking is preferred over sensor-
based methods since it is a closed loop system which can provide feedback on
the estimate and an error correction mechanism with relatively low-cost hard-
ware while performing in real-time. Model-based visual tracking is not suitable
for our application since off-line data such as 3D models of the tracked objects
or the environment itself is necessary when the system starts up. Although they
can be extensible in time, dependence on models during operation makes it dif-
ficult to maintain in unknown environments and it restricts the camera motion.
On the other hand, marker based visual tracking methods require setting up an
exact grid of markers in the environment, but setting up such an exact grid is
very cumbersome and, moreover, not possible in many unknown environments.
Also, it is vulnerable to occlusions of the markers. Finally, most of the natural
feature based systems are not scalable; they are either confined to small indoor
workspaces, difficult to extend and sensitive to lighting conditions, or designed
for large outdoor scenes which don’t need high precision and real-time operation.
Monocular setups such as PTAM suffer from a difficult initialization step, a pure
rotational motion which provides no triangulation baseline, unobservability and
lack of correctly scaled (metric) camera motion estimation. Also the points needs
to be tracked over a couple frames before it contributes to the pose estimation pro-
cess, which delays its effect. Furthermore, they mostly reconstruct a sparse map
which is not suitable for meshing in dense reconstruction and occlusion handling.

4.3 System Overview

Our real-time visual odometry pipeline consists of 5 stages as illustrated in Fig.4.3:
image pre-processing, 2D feature detection and selection, temporal inter-frame
feature matching, pose estimation and sparse map making including bundle ad-
justment. The benefit of such a modular system is that, in order to cope with new
tasks or hardware setups, one can modify and update every part of the system
largely independently of the other parts.

When visual tracking is considered, small inter-frame motion is desirable
for narrowing down the search space. However, spatially and temporally close
frames carry redundant 3D information and increase the computational load of the
(sparse and dense) reconstruction process for creating map points. Especially, the
cost of global bundle adjustment grows O(n3) with the number of frames. There-
fore, we use separate threads for tracking, sparse reconstruction and dense stereo
reconstruction and perform them in parallel. We separate the threads by using a
key-frame based approach, as used by Klein and Murray [93], in which the tracker
performs feature detection, temporal matching and robust pose estimation, and
creates the key-frames from the input images. A new key-frame is created when
the camera moves far from the previous positions into an unobserved part of the
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Figure 4.3: Process flow with independent threads: camera tracking and sparse map-
ping.

scene and therefore the created new key-frame is spatially far from the existing
key-frames. Afterwards, the new key-frame is sent to the sparse and dense recon-
struction threads by inserting it into their key-frame buffers. Then, the sparse
reconstruction thread refines the pose estimates and adds new map points from
the key-frame if necessary, and the dense reconstruction module generates a dense
3D point cloud and registers them with the existing map (see Chapter 5). Also,
the sparse reconstruction module shares the map points with the tracker and
those points are matched between the frames for robust pose estimation. The
key-frame approach also avoids map pollution with the same frames when the
camera is stationary and allows new key-frames when the camera is in motion.

The multi-threaded nature of the overall system is illustrated in Fig.4.4 in
which the camera tracking module includes image pre-processing, 2D feature de-
tection, feature matching, pose estimation stages. Four separate threads (in-
cluding the dense 3D reconstruction process in Chapter 5 and the hand tracking
process in Chapter 6) are running in parallel and share information via key-frames
and map points. Dark and light shaded background regions represent the time
steps and equal to 1/30 seconds since the cameras run at 30 fps.

Stereo images are captured via a stereo rig which is pre-calibrated as explained
in Section 3.1.4 and the rectification parameters that puts the cameras into copla-
nar and row aligned position with the same focal length and principal points are
calculated. Synchronization of the cameras for the acquisition of the stereo im-
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Figure 4.4: Multi-threaded system architecture. Image pre-processing, 2D feature ex-
traction and feature matching stages are included in the camera tracking thread. Human-
computer interaction, sparse mapping and dense reconstruction modules run in parallel
to camera tracking in separate threads.

ages is achieved in software by applying a multi-threaded design, in which each
camera has its own thread for image acquisition.

4.3.1 Image pre-processing
The image pre-processing step is depicted in Fig.4.5. Initially the RGB input
image pair is converted into 8bpp gray-scale images. Then the intensities of the left
and the right images are corrected to obtain the same mean and variance values
by adjusting the right image with respect to the left image (reference image).
This intensity correction step improves the stereo matching performance [171].
We update the intensity value of each pixel in the right image as

Irij =
σl

σr
(Irij − µr) + µl

where µl and µr are the image intensity means and σl and σr are the standard
deviations of the left and right images respectively.
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Figure 4.5: Image preprocessing flow.

Figure 4.6: Image preprocessing stage: input color images are converted into gray-scale
images and the lens distortion is removed. Afterwards they are rectified and a scale-space
pyramid of four images including the original size image is created.

Afterwards, the radial and the tangential lens distortions are removed from the
corrected input images by using the distortion model explained in Section 3.1.3.
Then, the left and the right images are rectified so that they are row-aligned and
the virtual rectified cameras are coplanar and have the same focal length and
principal point. Therefore all tracking and mapping algorithms are performed on
the undistorted and rectified images. This step makes the epipolar lines collinear
and parallel to the x-axis of the images which relaxes the stereo correspondence
problem by reducing it to a 1D (line) search problem.

The need for a multi-scale representation arises when dealing with images of
real world scenes [112]. Since the scales of the measurements (features) are not
known a priori and the features need to be extracted from images automatically,
the images are analyzed at multiple scales. Moreover, the detected features at
coarse scales in the multi-scale representation are strong features since they are
preserved after sub-sampling and smoothing steps [112] and therefore resilient
against image blur. Hence, a scale-space pyramid of four images is created by sub-
sampling and smoothing the original image as shown in Fig.4.6. Combination of
features detected in different scales provide resilience against fast camera motion
and image blur.

4.3.2 2D feature detection
Feature detection is used as the initial step of tracking since the matching is
performed between the initial models of the map points and the 2D features. Lo-
cal features such as corners have been proved to be suitable for matching and
recognition since they are robust to illumination changes, occlusions and back-



4.3 SYSTEM OVERVIEW 65

ground clutter. A large number of local feature detectors, such as SIFT [113]
and SURF [16] exist in literature and were tested in order evaluate their perfor-
mance. However, their computational load increases the time complexity of the
tracker and decreases the robustness against fast camera motions. Moreover, in
contrast to matching algorithms for wide-baseline images (such as reconstruction
from unordered images), the camera motion between two consecutive frames is
smooth and relatively small, and therefore features with high repeatability and
low computational load are preferred instead of the ones with strong descrip-
tors. Therefore, for performance reasons, ultimately the AGAST (Adaptive and
Generic Accelerated Segment Test) corner detector [120] has been used to detect
salient points in the scene. AGAST detector utilizes the same corner criterion
as FAST (Features from Accelerated Segment Test) [164], but provides a perfor-
mance increase for arbitrary environments.

In the FAST detector, the intensity values of the pixels on a discretized circle
of 16 pixels surrounding the center pixel are compared to the nucleus (segment
test) as shown in Fig.4.7. If there are at least 9 connected pixels (for FAST-9) that
are all darker or all brighter than the center pixel by a certain threshold, then the
center pixel is regarded as a corner. To perform these comparisons very fast, the
FAST detector finds the best decision tree using a machine learning method on the
training images captured in the application environments (and implemented as a
long if-else statements). Also, a more recent version FAST-ER [165] is presented in
literature. The main difference in the new version is that the thickness of the circle
is increased to 3 instead of 1. The repeatability is slightly increased with respect
to FAST at the cost of a higher computational time. However, both method are
highly optimized for a specific training environment and has to be trained again
for different scenes to provide the best performance [120]. In order to decrease the
dependency on training images, the AGAST detector dynamically adapts to the
environment during the operation. Two trees, one optimized for structured and
another one for homogeneous regions, are built and the detector switches between
two decision trees dynamically according to the detection performance.

Its speed outperforms many feature detectors (∼20 times faster than Harris
detector and ∼13% speed-up regarding FAST-9) while providing the same re-
peatability as FAST. Moreover it has high levels of repeatability under various
transformations and different environments. Although it is sensitive to high noise
compared to features such as SIFT (DoG), its high levels of repeatability and
speed makes it a good selection for our purpose.

The feature detection step is depicted in Fig.4.8. In order to obtain resilience
against fast camera motion and image blur, the AGAST corners are detected for
every image in the pyramid. The feature detection process is performed twice
both on the left and the right images of the stereo image pair. Typical features
extracted from the various scenes are shown in Figure 4.9. Features extracted
from different scales are shown with different colors, the level 0 features in the
image pyramid (largest image) are shown in red while the level 1, 2 and 3 are
shown in yellow, green and blue respectively. Non-maximum suppression is not
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Figure 4.7: 12 point segment test corner detection in an image patch as used by Rosten
and Drummond [164]. The pixels on a discretized circle of 16 pixels surrounding the
center pixel are compared to the nucleus p.

Figure 4.8: Feature detection flow.

performed on the detected features in order to keep the search space large so that
a more precise matching can be done.

A minimum amount of features for every scale of the new image is obtained
by using a variable detection threshold. Depending on the number of features
detected, this threshold is decreased or increased until a fixed number of features
are found. Variable thresholding guarantees a minimum number of features and
increases the robustness against illumination changes and low contrast as shown
in Fig.4.10.

4.3.3 Feature selection and new map-point initialization
When the system is first started or a relatively new part of the scene is explored,
new map points are added to either create a new map or extend an already
existing map. Feature selection and new map-point initialization step is depicted
in Fig.4.11. Map points represent the 3D points corresponding to the 2D AGAST
features. In order to perform robust and accurate pose estimation we expect to
have an approximately similar number of map points uniformly distributed in an
image.

Map points are created by using extracted AGAST features in the key-frames
that are selected by the pose estimation stage when there is a significant camera
motion. Before the depth estimation, a non-maximum suppression is performed on
the left-image as explained in [164] in order to select the strongest feature amongst
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Figure 4.9: Extracted AGAST features in multiple scales from the left and the right
images, level 0 features are shown in red while the level 1, 2 and 3 are shown in yellow,
green and blue respectively.
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Figure 4.10: The number of detected features for left and right images in a 800 frames
sequence. The features count is stable and close to a certain number when adaptive
thresholding is used.

Figure 4.11: Feature selection and new map-point initialization.
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the multiple features that are detected adjacent to one another. For each detected
corner, a score function based on the sum of the absolute differences between the
center pixel and the pixels on the discretized circle of 16 pixels around the center
pixel is calculated. Then the corners which have an adjacent corner with higher
score function are removed resulting in strong candidates for map points. This
simple suppression method can be performed very fast and is therefore suitable
for eliminating weak features before using a computationally more expensive but
robust scoring method such as the Shi-Tomasi corner score [178]. The results of
non-maximum suppression is illustrated in Fig.4.15 (a) and (b).

Since the segment test doesn’t compute a corner response function, we utilize
the Shi-Tomasi corner score on the selected features (features that passed the
non-maximum suppression) to obtain a more global and robust score than the
score function explained above. The Shi-Tomasi corner score can be calculated
by using the Harris matrix [77]:

H =

[ ∑
W I2x

∑
W IxIy∑

W IyIx
∑
W I2y

]
(4.1)

where Ix and Iy are the partial derivatives of the image I and W is the window
around the corner feature. Then the Shi-Tomasi score is defined as

C = min(λ1, λ2) (4.2)

where λ1 and λ2 are the eigenvalues of H.
The Shi-Tomasi corner score for each candidate is calculated and the candi-

dates with scores smaller than some threshold are rejected. Then the candidates
are sorted according to their corner score from the highest to the lowest.

A uniform distribution of features is achieved by using a bucketing technique
similar to [214] as illustrated in Fig.4.12. The minimum and maximum coordinates
of the left-image features are calculated and the region between these points are
evenly divided into NxN buckets. Then starting from the strongest feature, each
new feature is assigned to a bucket according to its 2D coordinates. When the
number of assigned features exceeds the allowed number of features (T ) for a
bucket, the rest of the features falling into this bucket are neglected. Therefore,
only the strongest first T features are used to create new map points from each
bucket. Until a global threshold for a maximum number of features for all the
new map points is reached, this procedure is repeated.

If there is already a map, first, existing 3D map points are projected back into
the left image and assigned to the buckets. Then the new detected features are
distributed into the bins as explained before, but this time with already existing
initial features in the buckets. Therefore, if there is a feature-rich region with
already existing map points, less (or no) new map points will be added from this
region while other regions with less strong-features will be represented with more
map points. To obtain a spatially uniform distribution inside the buckets, features
that are close to the existing map point projections are discarded. This avoids
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Figure 4.12: Illustration of bucketing. The region defined by the border points is divided
into buckets.

adding new map points corresponding to the same (or very close) corners. A
typical map is given in Fig.4.13. For instance, if the camera aperture is adjusted
for outside light and the inside scene is comparatively dark, then low-contrast
images are captured and the map points are created around the better illuminated
parts of the image. However, bucketing and adaptive feature thresholding detects
more features and distributes them more evenly in the image.

When the left-image features are filtered by using their corner scores and buck-
eting, the remaining corners are searched along the corresponding epipolar-lines
first on the spatially closest key-frame to the current key-frame. Since the baseline
between the two key-frames is larger (by default) than the baseline between the
stereo-cameras, the depth estimation is more accurate if the matches are estab-
lished correctly. Therefore, better map points can be obtained in the intersecting
ROI between the two key-frames. If the matching fails then a second search is
performed on the right-image.

We perform epipolar search using an error tolerance of 5-pixels for the key-
frame and 1-pixel in the y-coordinates for the right-image. In order simplify
epipolar search, we use the mean and standard deviation of depth of the map
points visible in the image. The 3D coordinates of the two points, start and end
points, are calculated as (µ− σ)n̂ and (µ+ σ)n̂ where µ and σ are the mean and
standard deviation of depth of the visible map points, and n̂ is the unit vector
with the direction from camera center Ol to the candidate’s, Ci, normalized image
coordinates (illustrated in Fig.4.14). Then their projections to the closest key-
frame or the right-image are used as the search limits in the matching step. The µ
and σ values are updated in each frame using the visible map-points and therefore
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(a) (b)

(c) (d)

Figure 4.13: Detected features and map points on a low-contrast image. (a) AGAST
features detected with a fixed threshold and (b) adaptive threshold, (c) added map points
without any selection and (d) with a selection (adaptive thresholding and bucketing).
With the selection, map points are more uniformly distributed in the image.
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Figure 4.14: Bounded epipolar search. The search range in the closest key-frame or
the right image is decided by using the mean and standard deviation of depth of the map
points visible in the image.

the new features corresponding to the map points further from the average depth
are usually discarded.

Initially, the search is done on AGAST features in the closest key-frame or
the right-image. Features that are far from 5-pixel or 1-pixel (depending on the
source of the second image) to the epipolar line are discarded and the search is
performed on the rest. An 8x8 patch around the searched feature is made and
compared with the other patches calculated around the selected AGAST features
in the second-image by using ZMSSD (Zero Mean Sum of Squared Distances)
between the patches. If the smallest ZMSSD is greater than some threshold, then
matching fails. If the second matching also fails for the right-image, a third dense
search is performed on all the pixels along the epipolar line in the right-image.
This step enables the matching of features that are not found by the AGAST
feature detector on the right-image.

When the match is found, its position is refined by using the inverse com-
positional approach method explained in [14]. The refinement gives sub-pixel
precision and also serves as a double check since the patches that move more than
a pixel are discarded. The sub-pixel accuracy improves the depth estimation es-
pecially for the high pyramid scales in which the integer pixels are not sufficient
to represent the feature position.

Finally, the 3D coordinate of the map point is calculated from matched pair
by using linear triangulation as explained in Section 3.2.1. The 3D map points
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and corresponding visible 2D projections are shown in Fig.4.16. Also, when a
map point is created its source images and the image coordinates are saved in
order to search for the map point in the following frames.

A new map point is also searched in the previous key-frames to associate it
with the previous images. This step is not crucial for the performance of the
system, however obtaining more measurements of the new map point improves
the quality of the map since bundle adjustment can be performed on all the
measurements of the new point. Since the 3D coordinates of the map points and
the pose of the key-frames are known, this search can be done by projecting the
3D map points into the key-frames and searching around the 2D projections. A
similar search method is also used and explained in Section 4.3.4.

The overall method can be summarized as:

1. Perform non-maximum suppression on the detected AGAST features of the
left image

2. Calculate the Shi-Tomasi score on the remaining features

3. Sort the features according to their scores and remove features with scores
smaller than some threshold

4. Assign the features starting from the strongest one into buckets until either
all buckets are full, maximum number of features are added or all features
are assigned

5. Calculate the mean and standard deviation of depth of the visible map
points, µ and σ

6. Perform epipolar search for the features in the buckets in the closest key-
frame

(a) Detect the spatially closest key-frame and calculate the epipolar line

(b) Select all features that are 5-pixel close to the epipolar line bounded
by (µ− σ)n̂ and (µ+ σ)n̂

(c) Calculate the ZMSSD for each pair

(d) Select the best match with the smallest ZMSSD

7. If the match is not found or good enough, repeat the previous step by using
the right key-frame of the stereo pair

(a) Select all features that are 1-pixel close to the y-coordinate of the
original feature and bounded by (µ− σ)n̂ and (µ+ σ)n̂

(b) Calculate the ZMSSD for each pair

(c) Select the best match with the smallest ZMSSD



74 VISUAL ODOMETRY 4.3

(a) (b) (c)

Figure 4.15: (a) AGAST features and (b) features after non-maximum suppression,
(c) added map points with a selection (adaptive thresholding and bucketing).

(a) (b)

Figure 4.16: (a) Visible map points, (c) 3D map points in the map.

(d) If the match is not good enough repeat the previous 2 steps for all the
pixels on the bounded epipolar line

8. If the match is found, refine its position to sub-pixel accuracy

9. Triangulate the point and calculate its 3D position

10. Add the new point to the map

4.3.4 Temporal Inter-frame feature matching
Temporal feature matching is performed by associating 2D image patches around
the projections of a 3D map point between consecutive frames. Although this
process can suffer from drift, using consecutive frames and the patches created
in the previous and the current frame is highly robust against lighting changes
and easier to perform due to small camera motions between the two frames. A
solution to this problem is to introduce key-frames and perform matching between
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Figure 4.17: Two stage tracking. First stage utilizes the previous frame to be robust
against fast motion while the second stage uses the closest key-frame to eliminate drift.

the patches created in one of the key-frames and the current frame. Since a key-
frame and corresponding features in it are registered beforehand, it serves as
an absolute reference (although there could be errors in the key-frame pose).
Moreover the pose of the key-frames are refined by using bundle adjustment as
explained in Section 4.3.6. A straight forward method to select a reference key-
frame for a map-point is to use the source key-frame in which the point is detected
the first time and created. Then the surrounding patch in the source key-frame
can be used for matching in other frames for a drift-free estimate. However, this
is more difficult than the matching between consecutive frames due to a (larger)
viewpoint difference and a possible variation in the lighting conditions. Therefore,
the patch should be modified for better matching, otherwise the initial patch fails
to represent the point and the matching fails.

Selecting the closest key-frame to the last estimated location, instead of the
source key-frame of the map point, can improve the performance since the view-
point and the lighting differences are smaller. A better viewpoint invariance can
be gained by warping the image patch in the key-frame to the current frame by
using the last estimated location of the camera. This process creates a viewpoint
corrected patch that can be used for matching via conventional methods. How-
ever, it is still less accurate due to the wider baseline compared to the consecutive
frames. Also as explained in [62], by matching against the key-frames no temporal
(and therefore spatial) consistency is enforced on the pose estimates which might
lead to jitter.

Creating new map points in similar positions to the existing ones which are
lost due to the viewpoint changes is another option to continue tracking. However,
adding several map points corresponding to the same 3D point in the scene adds
redundant information to the map and increases the computational load of later
map refining steps (bundle adjustment).

For robust and drift-free tracking, we propose a two-stage approach that han-
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dles the large motions while not suffering much from drift as depicted in Fig.4.17.
Initial frame-to-frame matching results are refined by using a second key-frame
to current frame matching. This two stage tracking step is depicted in Fig.4.18.

First, the detected map points in the previous frame are projected into the
current frame and used as an initial estimate for matching. Then a sparse pyra-
midal optical flow algorithm [21] is used to refine the initial estimates by using
an 11x11 window around the previous image and the current image projections.

The goal of the optical flow algorithm is to find the 2D displacement (or
the image velocity) of the feature point p between the two images, which is the
vector d = [dx, dy]T also known as the optical flow at p. The gray-scale values
of a point at [x, y]T in the previous image and the current image are given as
Ip(x, y) and Ic(x, y) respectively. Then the optical flow d at point p = [ux, uy]T

in the previous image can be calculated by finding the point in the current image,
v = u + d = [ux + dx, uy + dy], such that Ip(u) and Ic(v) are similar. This can
be done by minimizing the residual function

ε(d) = ε(dx, dy) =

ux+wx∑
x=ux−wx

uy+wy∑
y=uy−wy

(Ic(x, y)− Ip(x+ dx, y + dy))2 (4.3)

where w defines a wxxwy neighborhood of the point p. In our experiments we set
the wx = 5 and wy = 5.

A standard iterative Lucas-Kanade method [115] can be utilized for this min-
imization. Applying Taylor series expansion around u + d to Ip(u + d) = Ip(ux+
dx, uy + dy) and neglecting the higher order terms we obtain

ε(d) =

ux+wx∑
x=ux−wx

uy+wy∑
y=uy−wy

((Ic(x, y)−Ip(x+dx, y+dy))+∇Ip(x+dx, y+dy)T∆d)2

(4.4)

where ∇Ip(x+ dx, y+ dy) =
[
∂Ip
∂x ,

∂Ip
∂y

]T
is the image gradient at (x+ dx, y+ dy).

If we write the above equation as

ε(d) =
∑
W

(Iti +∇Ip(xi + d)T∆d)2 (4.5)

where Iti = Ic(xi)− Ip(xi + d), then this least-squares problem can be minimized
by solving the associated normal equations

A∆d = b (4.6)

where A =
∑
W ∇Ip(xi + d)∇Ip(xi + d)T and b =

∑
W Iti∇Ip(xi + d) and

updating d = d + ∆d iteratively.
The pyramidal optical flow algorithm [21] performs the standard optical flow

algorithm in multiple scales and therefore is able to handle large pixel motions
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Figure 4.18: Two stage tracking flow.
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Figure 4.19: The first stage of the temporal inter-frame feature matching. The selected
map points (shown in the left images) for two datasets are tracked in the left and the right
images (the middle and the right images) using the previous images and the projections of
the map points. Also the outliers that are violating the epipolar constraint are removed.
The trajectories of the tracked map points in both left and right images are shown in red
in the middle and the right images respectively.

(larger than the integration window sizes wx and wy). Initially the optical flow
is calculated in the highest pyramid level and the estimated flow is propagated
to the lower scale as an initial guess for the pixel displacement. This is repeated
until the lowest level (the original image) is reached. Also for the highest level we
use the back-projections of the map points as the initial guess for the flow.

The clear advantage of using the pyramidal implementation is that the large
pixel displacement can be calculated while keeping the size of the integration
window relatively small. Moreover, the image pyramid calculated for feature
extraction is directly used for tracking. This is repeated for both the left and the
right images. If the found positions of the same map point in both images satisfy
the epipolar constraint,

abs((xl + ul)[0, 1]T − (xr + ur)[0, 1]T ) < eth (4.7)

then the matching is successful and the point is labeled as an inlier. The tracking
examples with the selected inliers are illustrated in Fig.4.19. Finally, the pose of
the camera is estimated using the inliers via robust estimation as explained in
Section 4.3.5.

As the second stage, the pose obtained from the first stage and the closest
key-frame to it are used to eliminate the drift. The map points that are visible
in the closest key-frame are projected into the current image by using the new
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estimate of the pose. Then the 2D AGAST features in the close proximity of the
projections are evaluated to find the best match (in the sense of photo-consistency)
with the corresponding point’s model. We only consider the 2D AGAST features
that are closer than 10 pixels to the projections as the candidates for matching.
This time in contrast to the optical flow tracker, we perform matching over the
corner features.

As a descriptor we use affine warped patches around the projections. In the
affine model, each pixel in the patch W (x) undergoes the same transformation
such that

h(x) = Ax+ d

where A ∈ R2x2, d ∈ R2 and ∀x ∈W (x′).

The parameters of the affine model are calculated by using the projections p
and p′ from the closest key-frame and the current image [93]. One-pixel right
(us) and one-pixel down (vs) at the source level l (original level that the feature
is detected) of the projection is first projected to level 0, and denoted by

pOR = p+ 2l[1, 0]T and pOD = p+ 2l[0, 1]T

respectively as illustrated in Fig.4.20. Then these two points are back-projected
onto the plane passing through the map point P with the surface normal

P−Ckf
‖P−Ckf‖

rotated relative to the key-frame, and denoted by POR and POD.

Finally, these two points are projected onto the current image plane and the
difference between the one-pixel right and one-pixel down points are calculated
as uc = p′OR − p′ and vc = p′OD − p′. Then the affine matrix (from key-frame to
the current image) A and d are [93]

A =

[
∂uc
∂us

∂uc
∂vs

∂vc
∂us

∂vc
∂vs

]
and d = p′ − p

where the matrix A is the same for both stereo images.

In order to preserve scale invariance, projections are done from the detected pyra-
mid level Sn. Although searching a map point in the same pyramid level that
was detected in the closest key-frame, seems a reasonable approach, large camera
motions will change the scale of the feature and the affine matrix, which results
in sampling errors. To cope with that, we select the search pyramid level l as
explained in [20, 93] such that

det(A)

22l
(4.8)

is closest to unity. det(A) corresponds to the area of the source pixel (in square
pixels) in the level 0 image. Therefore, selecting the level that makes the Eq.4.8
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Figure 4.20: Affine transformation between two frames corresponding to a map point
is calculated by reprojecting one right and one down pixels in the source coordinate frame
to the current frame.

closest to unity results in the patch that most closely matches the scale of the
original patch.

Then the image patch in the key-frame is warped by using A/2l and compared
with the patches around the image features in the current image and the feature
with the minimum ZMSSD is selected as the match. The earlier explained second
stage is also repeated for the right image and false matches are eliminated using
the epipolar constraint. The results of the second stage tracking are illustrated
in Fig.4.21. The locations of the map points tracked by the first stage are shown
in red while their corrected locations with the second stage tracker are shown in
blue. The displacements between the results of the two stages are shown in green.

As a final clean up, a Delaunay triangulation [177] is utilized to detect spo-
radic outliers. The triangulation is performed on the found image coordinates of
the map points after the second stage of the tracking. When the triangulation
is performed, each feature is expected to have minimum 2 neighbors with similar
displacement. The displacement is calculated as the distance between the pro-
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Figure 4.21: The second stage of the temporal inter-frame feature matching. The
locations of the map points tracked by the first stage are shown in red while their corrected
locations with the second stage tracker are shown in blue. The displacements between the
results of the two stages are shown in green.

Figure 4.22: The Delaunay filtering examples in two images. The outliers with less
than 2 neighbors with similar flow are shown in red.

jected image coordinate and the converged tracking patch. If this condition is
not satisfied then the point is discarded as an outlier. The Delaunay filtering is
illustrated in Fig.4.22. In our experiments two neighbors have similar flow if the
difference between their displacements is less then 5 pixels. The outliers with less
than 2 neighbors with similar flow are shown in red. When all matches are ready,
a final pose estimation is done.

In order to be resilient against fast camera motion and image blur, when
performing in real time, we track a maximum number of N = 1000 features in
each frame. The features are selected starting from the highest pyramid level
down to the lowest pyramid level.
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4.3.5 Pose Estimation
The pose of the camera needs to be estimated in each incoming video frame and
the pose estimation is performed after the first and the second tracking stages
separately. The parameterization of the pose has an impact on the behavior of
the estimation process and its stability. As explained in [193], the most suitable
parameterizations for the pose are more uniform and well-behaved (locally close
to linear) near the current state estimate and the pose should be parameterized
using a local incremental pose update ∆g to the existing pose g, where ∆g can be
any well-behaved special Euclidean transformation. Therefore, in each frame the
new pose of the camera is updated by multiplying the current pose of the camera
with a small motion matrix.

Given the camera pose gt = g(R, T ) ∈ SE(3), the new pose is calculated by
using the camera pose update, a small motion matrix, Ut ∈ SE(3) as

gt+1 = Utgt

In order to avoid numerical problems such as singularities (e.g gimbal lock)
we used an exponential twist to parameterize U . The motion U is also a mem-
ber of the Lie Group SE(3) and can be minimally parameterized with the twist

coordinates ξ = [v, w]
T ∈ R6 by using the exponential map under exponential

coordinates such that
U = exp(ξ̂) (4.9)

where v is the linear velocity and w is the angular velocity. With this represen-
tation, the partial derivatives of the motion matrix with respect to the motion
parameters can easily be calculated for a small (infinitesimal) camera motion (see
Section 2.1.1 for more detail).

This motion matrix between the consecutive frames can be estimated by using
the projections of the 3D map points and their corresponding 2D image coordi-
nates found by the 3D-2D feature matching explained in the previous section. This
method is also known as PnP (Perspective-n-Point), recovering the pose from n
3D-2D correspondences. It is based on the minimization of the reprojection error
in the images.

In our system we minimize the reprojection error in both images of the stereo
pair. The pose of the left and the right cameras can be denoted as

glcw = g(R, T ) and grcw = g(R, T − [b, 0, 0]T )

which are special Euclidean transformations from the world to the left and right
camera coordinate frames respectively and b is the baseline between the stereo
cameras.

Then, the projection of a map point X̃w = [X,Y, Z, 1]T in the world coordinate
frame to the camera image planes can be given

xl = π(glcwX̃w) and xr = π(grcwX̃w)
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where π() represents the projection from camera frame to the image coordinates
as

[
u
v

]
= π

 X
Y
Z

 =

[
f 0 cu
0 f cv

] X/Z
Y/Z

1

 (4.10)

assuming zero skew and square pixels (explained in more detail in Section 2.1.2).
The effect of lens distortion is not included in the projection formulation since we
are using rectified images with corrected lens distortion, and projections for both
cameras are identical due to the same reason.

Finally, the reprojection error in both views can be defined as

ε(ξ) =
∑
i

‖εil(ξ)‖2 + ‖εir(ξ)‖2 (4.11)

= ‖x̂il − xil‖2 + ‖x̂ir − xir‖2 (4.12)

=
∑
i

‖x̂il − π(exp(ξ̂)glcwX̃
i
w)‖2 +

‖x̂ir − π(exp(ξ̂)grcwX̃
i
w)‖2

where x̂il and x̂ir are the detected feature locations of the 3D map point Xi
w in

the current left and right images respectively.
In the simplest case this cost function can be minimized iteratively by using

the Gauss-Newton method and finding the pose update ∆ξ by solving the normal
equations

JTJ∆ξ = JT ε

where the Jacobian Ji for the errors εil(ξ) and εir(ξ) corresponding to the map
point Xi

w is calculated as

Ji = f


1/Zl 0 −Xl/Z

2
l −XlYl/Z

2
l 1 +X2

l /Z
2
l −Yl/Zl

0 1/Zl −Yl/Z2
l −1− Y 2

l /Z
2
l XlYl/Z

2
l Xl/Zl

1/Zr 0 −Xr/Z
2
r −XrYr/Z

2
r 1 +XrXl/Z

2
r −Yr/Zr

0 1/Zr −Yr/Z2
r −1− Y 2

r /Z
2
r XlYr/Z

2
r Xl/Zr


(4.13)

where Xi
l = [Xl, Yl, Zl]

T = glcwX̃w and Xi
r = [Xr, Yr, Zr]

T = grcwX̃w are evaluated
at the last calculated pose and therefore Xi

r = Xi
l + [b, 0, 0]T , Y ir = Y il , Zir = Zil

and the parameter updates are given as

∆ξ = [v1, v2, v3, w1, w2, w3]T

However, as explained in the Section 3.3.3, outliers due to incorrect matches
violate the Gaussian noise assumption and cause incorrect pose estimates. In
order to reduce the sensitivity to the outliers we have utilized a robust estimator
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(M-estimator) [83] in our least-squares minimization scheme. The M-estimate of
ξ is

ξ̃ = arg min
ξ

∑
i

ρ(εil(ξ)/sl) + ρ(εir(ξ)/sr)

where ρ(r) is a robust loss function. We have selected Tukey’s bi-weight function
since it is one of the most aggressive robust loss functions against the outliers.
Tukey’s function completely rejects outliers by giving them zero weight and there-
fore detected outliers have no effect on the camera motion estimation. We selected
the minimum of both median of the errors for more aggressive rejection in the
calculation of a robust standard deviation estimate of the errors

σ = min
(

median
i

εil(ξ),median
i

εir(ξ)
)

As explained in Section 3.3.3, minimizing this function is equivalent to mini-
mizing the iteratively re-weighted least squares problem∑

i

wil‖εil‖2 + wir‖εir‖2

where wil,r are calculated at the current estimate of ξ. In our system we do 10
(Gauss-Newton) iterations during minimization.

Quantization errors in the pixel positions at higher scales dominate the re-
projection errors and therefore the estimates. In order to cope with that, each
measurement is normalized with its scale such that the new error is

ε̂i =
εi

22s

where s is the level in the image pyramid.
One of the problems with the M-estimators is its dependence on the accurate

initial estimates and sensitivity to a large number of outliers (maximum approx-
imately % 20) [100]. First a decaying velocity model [93] is used to predict the
possible new pose of the camera. The decaying velocity of the camera is found
by using the previous velocity ξp and the current motion of the camera U . The
current motion of the camera between the previous and current frames U is given
in equation (4.9). Then the twist coordinates corresponding to this motion can
be calculated as

ξcm = ln(U) = ln(gt+1g
−1
t )

Then the velocity, ξc of the camera for the next frame is

ξc = α(ξp/β + ξcm/β)

We use α = 0.9 and β = 2 and since we multiply average velocity by the constant
α, the motion of the camera decays to zero quickly. This model imposes a certain
smoothness on the motion and thus is fragile against rapid head motions.
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Table 4.1: Pose estimation algorithm.

(i) Estimate the camera velocity by using a decaying velocity model and
the previous motion of the camera.

(ii) Compute the initial pose by using a velocity estimate and the previous
pose.

(iii) Refine the initial pose estimate by using the combination of RANSAC
and EPnP algorithms, and select the inliers.

(iv) Estimate the final pose by minimizing the reprojection errors of inliers
in both views by using a robust estimator.

On top of that, a RANSAC scheme (see Section 3.2) is used to obtain an accu-
rate initial estimate before performing a robust estimation. During the RANSAC
iterations we use a non-iterative PnP algorithm, the EPnP algorithm [110], whose
computational complexity grows linearly with the number of points used for es-
timation. Its main idea is based on representing the coordinates of the n 3D
points as a weighted sum of four virtual control points and estimating the coordi-
nates of these control points in the camera referential which can be done in O(n)
time. This method is an effective choice because it is very fast for small numbers
of points and therefore can easily be executed in the RANSAC iterations. The
overall method can be summarized as:

1. Randomly select N = 7 samples from the 3D-2D matches.

2. Estimate the pose by using the EPnP algorithm.

3. Determine the number of inliers that are within a distance threshold T of
the pose and calculate the reprojection error using the new estimate.

4. Repeat the step 1, 2 and 3 until the number of inliers is greater than a
certain threshold or maximum number of attempts has been made.

5. Select the best estimate that gives the largest consensus-set (inliers), and
reestimate the pose with the inliers.

When the inliers are selected, the robust estimation can be done safely. The
overall method is summarized in Table.4.1 and estimated poses are illustrated in
Fig.4.23.
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Figure 4.23: The pose estimation examples. On the left side the scene is shown.
On the right side the map points and the estimated camera poses for each input frame
are illustrated. X, Y and Z axis of the camera are represented in red, green and blue
respectively.
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Relocalization

When the tracking fails, a relocalization is done by extracting the features in
the current image and matching them against the points in the map. A non-
maximum suppression is performed on the current frame features in order to limit
the number of features to a given maximal number by selecting the strongest ones.
Then the image patches around the features (without any prior affine-warp) are
compared and the key-frame with the maximum number of matches is selected as
the closest key-frame. This matching stage is very similar to the second stage of
the tracking except no warping is done in relocalization. Then the initial pose is
estimated by using RANSAC and refined by using a non-linear robust estimation
as explained in this section. When the pose is found, the temporal inter-frame
feature matching continues to track the map points.

4.3.6 Sparse Mapping
The sparse map encapsulates the key-frames and the measured 3D map points
relative to a global coordinate frame. Overall sparse mapping is depicted in
Fig.4.24. We have designed a two stage method to define the world coordinate
frame. When the first map points are created as explained in Section 4.3.3, a
predefined marker is searched in the key-frames. If the marker is detected, then
the world coordinate frame is aligned with the marker such that the origin will
be on the marker and the z-axis will be the surface normal of it. Since we use the
marker only for the coordinate frame alignment, we didn’t consider the presence
of multiple markers and if there are more than one markers exist in the scene,
our systems picks the one that is detected first. If no marker is detected, then
the major plane in the scene is detected as the world coordinate frame. First the
inliers for the major plane are detected using RANSAC: many plane hypotheses
calculated via randomly selected 3 points are evaluated by the remaining points,
and the points voted for the best plane are selected as inliers. Then given a set
of m points in 3D belonging to the plane, a direct solution for the surface normal
n can be found by solving

k∑
i=0

(pi − p̄)T (pi − p̄)

 nx
ny
nz

 = λ

 nx
ny
nz


An = λn

where p̄ is the mean of all inliers which is also used as the origin of the world
coordinate frame. The minimum solution corresponding to the surface normal is
given by the eigenvector of A corresponding to its minimum eigenvalue. Finally,
all the map points are rotated and translated from initial key-frame coordinates
to the world coordinate frame.

In the absence of 3D map points with pre-known coordinates, as in extensible
tracking, error-buildup (drift) in the map is inevitable, which results in tracking
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Figure 4.24: Sparse mapping flow.

failure. This accumulation of errors can be corrected by using bundle adjustment.
Bundle adjustment improves the accuracy of the map points and key-frame poses,
and performing it sequentially for each new key-frame can prevent tracking failures
since the future estimates will be improved [56].

Bundle adjustment is based on the minimization of the error function

{ξ̃2, ξ̃3, ..., ξ̃i, M̃1, M̃2, ..., M̃ j} = arg min
ξ,M

∑
i

∑
j

ρ(εij)

with respect to all the 3D map points M j , and all the key-frame poses ξi ∈ SE(3)
except the reference (initial) frame. Since we use a calibrated setup, intrinsic
camera parameters don’t need to be adjusted. ρ(r) is the same robust loss function
as explained in Section 4.3.5 and εij is the reprojection error of map point M j in
the key-frame ξi defined as

εij = ‖xij − π(exp(ξi)gicw
˜
M j
w)‖2

where xij is the found position of the jth map point in the ith key-frame. This
error function can be minimized using the Levenberg-Marquardt algorithm (Sec-
tion 3.3.2). We used the bundle adjustment implementation in [93] which fol-
lows [79].

This bundle adjuster exploits the sparsity which arises because each map point is
usually not visible in every key-frame. Therefore the reprojection errors of these
points do not exist in the key-frames where they are not visible and thus the
time performance of the adjuster is improved. As we have mentioned before, the
bundle adjustment has a complexity that is linear in the number of landmarks
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and cubic in the number of poses O(N3
c ). When the map scale is small and the

number of key-frames is relatively smaller than the number of map points, the
complexity O(N3

c ) is dominated by O(NpN
2
c ) until Nc approaches Np.

Bundle adjustment of as many key-frames as possible in backwards direction,
starting from the latest key-frame is the most desirable, but also computationally
very expensive. In order to decrease the computational load, we use a local bundle
adjustment when a new key-frame is added and a global one when the camera is
relatively still.

For local adjustment, we perform n iterations of bundle adjustment over the
N key-frames when a new key-frame It is added. N key-frames are selected as the
last key-frame added and the spatially closest N − 1 frames to it as illustrated in
Fig.4.25. The rest of the key-frames are locked down and not adjusted. Thus, only
the key-frame poses ξ = {ξ1t , .., ξNt , } and the map point set M t which contains all
the map-points that are visible in the selected key-frames are refined. The cost
function is the sum of reprojection errors of points M i in the N key-frames ξj∑

ξi∈{ξ1
t ,..,ξ

N
t }

∑
Mj∈Mt

ρ(εij)

The complexity of the local bundle adjustment is O(NpNc). In order to limit
the computational time we perform bundle adjustment only on the key-frames
coming from the left camera and update the measurements on the right camera
by using the refined pose of the left camera and the known baseline between the
cameras.

4.4 Results
In our experiments we utilized 640x480 images and our system was tested on the
hardware explained in Chapter 2: a laptop with a 2.7 GHz Core i7 processor
(Intel Corporation, USA) and a Linux operating system.

Various test scenarios in indoor scenes which demonstrate typical investiga-
tion procedures such as exploring the room with changing illumination conditions,
coming closer to salient regions etc., were recorded and tested by using the algo-
rithms described in the previous sections. The main objective of our experiments
is to measure the computational time of the designed modules and compare the
performance of our overall visual odometry algorithm with a marker based pose
estimation algorithm.

4.4.1 Computational Time
In order to measure the computational times of the designed modules and different
stages of the tracker, we have tested our algorithms on two different data sets.

In the first dataset, the user explores a relatively large room by walking around
the room. The illumination conditions vary inside the room due to the brighter
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Figure 4.25: The keyframes are represented by ξi and the map points are shown with
Mi. As the camera moves, new map points are created. When a new key-frame ξt is
added, the N−1 closest key-frames (N = 3 in this figure) and the visible map-points from
these N keyframes (shown with the gray area) are adjusted using local bundle adjustment.
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outside and large windows. 39 key-frames are created during operation and used
to create new map points. In the second dataset, the user moves along a long
corridor and comes back while exploring the scene by coming closer and further
to the furniture around the corridor and the walls surrounding it. 102 key-frames
are created during operation and were used to create new map points, since the
corridor is spatially larger relative to the first dataset.

In Fig.4.26 and Fig.4.27, the computational times of all modules are given for
the test datasets. Fig.4.26 (a) and Fig.4.27 (a) give the computational times of
the image preprocessing, feature extraction and Delaunay elimination modules.
Fig.4.26 (b) and Fig.4.27 (b) show the number of map points created during the
operation. In Fig.4.26 (c) and Fig.4.27 (c), the stage 1 and stage 2 tracking
and pose estimation times are given. Finally, Fig.4.26 (d) and Fig.4.27 (d) give
the computational time of the complete visual odometry module and tracking
modules.

Image preprocessing and feature extraction take approximately 10 and 5 mil-
liseconds respectively in the first dataset, and 7 and 4 ms in the second data set.
The fluctuation in the computational times (especially in the first dataset) result
from the illumination variance and texture difference between the views of the two
cameras. These two steps only depend on the image size and the texture/lighting
in the scene since we repeat the feature detection if enough features cannot be
found. However, we repeat the feature extraction maximum two times to be
able to continue real-time tracking. The Delaunay elimination time is negligible
compared to the other modules. The Delaunay triangulation has a running time
O(nlogn) regardless of the distribution of the points. Since we limit the number
of tracked features to 1000 and use binning, the time complexity of this step is
independent of input data.

The total number of the map points is similar to each other in both datasets
and approximately 3000. One of the reasons that the number of map points in
the first dataset is larger than the second dataset, although it is shorter, is that
the amount of texture in the first dataset is higher than in the second one.

Between the tracking and pose estimation modules, the first tracking stage
takes the most time since it is handling the initial stage of tracking and attempts
to track all the visible features. The other tracking stage works on the already
found features by the first stage tracking and refines their 2D image positions.
The stage one tracking takes approximately 5-10 milliseconds depending on the
amount of visible features. The pose estimation stages take approximately 2-
3 ms and are computationally very cheap compared to the stage one tracking.
The pose estimation using EPnP algorithm can be done in O(n) and we fix the
Gauss-Newton iterations in non-linear robust pose estimation stage to 10. The
total visual odometry takes approximately 20 ms and its time complexity is not
effected by the number of key-frames or map points, since the maximum number
of tracked map points, the maximum/minimum number of features and iterations
in optimization are set to fixed values. Moreover, we use binning and do not add
new map points around the already occupied locations, which helps to keep the
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(a)

(b)

(c)

(d)

Figure 4.26: Computational times of the designed modules and different stages of the
tracker tested on the first dataset. (a) the computational times of image preprocessing,
feature extraction and Delaunay elimination modules, (b) the number of map points cre-
ated during the operation, (c) stage 1 and stage 2 tracking and pose estimation times and
finally (d) the computational time of the complete visual odometry module and tracking
modules.
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(d)

Figure 4.27: Computational times of the designed modules and different stages of the
tracker tested on the second dataset. (a) the computational times of image preprocessing,
feature extraction and Delaunay elimination modules, (b) the number of map points cre-
ated during the operation, (c) stage 1 and stage 2 tracking and pose estimation times and
finally (d) the computational time of the complete visual odometry module and tracking
modules.
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map size in manageable levels.

The computational performance of the sparse mapping module is given in
Fig.4.28 for two datasets. In both figures the computation times of the local and
global bundle adjustment are given against the number of map points. The sparse
bundle adjustment can be done in O(npnc) where nc is the number of key-frames
and np is the number of visible map points in these key-frames. It is not affected
by the number of key-frames since it is performed on the closest N = 3 key-frames.
Also, since we are limiting the number of map points via binning the effect of the
number of map points is very limited on computational time.

The time complexity of the global bundle adjustment is O(npn
2
c) therefore

its computational time increases as the number of map points and key-frames
increases since it is performed on all the map points visible in all the key-frames.
Very short global bundle adjustment in the figures happen due to the fact that
when a new key-frame is added to the sparse mapping module, all the bundle
adjustment steps currently running on the map are canceled and new map points
are initiated.

When we change the threshold for the maximum number of new map points for
each bin (the default value is 10) for new map point selection, the total number
of map points increase. Although this increases the computation time of the
bundle adjustment modules, its effect on the tracking is negligible since the system
performs already more than 30 fps.

Finally, in Fig.4.29 we demonstrated the relocalization module’s performance.
When the tracker is lost, the relocalization algorithm is executed to find the pose
of the camera (shown in red).

4.4.2 Pose Estimation Accuracy

In order to compare our pose estimation’s accuracy with a marker-based method,
we have placed a marker into the scene as shown in Fig.4.30 and used AR
Toolkit [89] to detect the pose of the camera with respect to the marker. We
used a square marker of 30x30 cm which gives us an maximum effective tracking
range between 1.6−1.8m according to [89]. In the marker-based system, the world
coordinate frame is placed onto the marker. Therefore, when we first initialize
our system, we detect the marker and align our world coordinate frame with the
marker-based world coordinate system.

In order to compare the pose estimation results, we detect the position, Cm,
and the orientation, Rm, of the camera with the marker-based method.. After-
wards we calculate the position, Cn, and the orientation, Rn, of the camera with
our natural feature based method. In order to compare the results of the two
methods, we use the difference between the positions and the angle between the
two principal axis (Z axis) of the pose estimates as an error measure.

εR = arccos(Rmz ·Rnz ) and εC = |Cm − Cn| (4.14)
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(a)

(b)

Figure 4.28: The computation times of local and global bundle adjustment in the sparse
mapping module for two datasets.

Figure 4.29: The relocalization module. When the tracker is lost, the relocalization
module tries to find the pose. When the pose is found, the tracker keeps working from
the re-found position.
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Figure 4.30: A marker is placed into the scene for the comparison with a marker-based
method.

We have tested our algorithm on 5 different datasets. The characteristics of
the test sequences are given in Table.4.2. In the first dataset, the user is asked to
move parallel to the marker’s surface from approximately 1.5m while looking in
the direction of the marker’s surface normal (Z axis). This gives us a translational
motion in the X − Y plane of the marker. In the second dataset, the user moves
in the direction of the marker’s Z axis from 40cm to 2.5m while looking in same
direction. This results in a translational motion along the Z axis of the marker.
In the third dataset, the user rotates his head around the X, Y and Z axis
while looking at the marker from 2m which results in mostly rotational motion.
In the fourth dataset, the marker is placed on the floor and the user follows a
circular trajectory around the marker while looking towards the marker. In the
last dataset, the user makes a random motion and walks around the room. In all
datasets, the user always keeps the marker in the view.

In Fig.4.31 - Fig.4.35 the trajectories and the errors, εR and εC , for each frame
are given. We also present the average errors and the sizes of the created maps
for each dataset in Table.4.3.

Our algorithm performs better than the marker-based algorithm when the
camera is relatively further away (−1.5m) then the marker. As the distance
between the camera and the marker increases, the pose estimates of the marker-
based algorithm become inaccurate and the virtual object jitters as shown in
Fig.4.32. Moreover, a similar performance decrease is observed as the angle be-
tween the camera’s principal axis and the marker’s surface normal increases. As
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Table 4.2: Properties of the test video sequences.

seq. id type of motion # of frames

1 translation parallel to the marker 1802
2 translation in the marker’s normal direction 1705
3 rotation around the head 1471
4 circular around the marker (rot. + trans.) 1151
5 random (rot. + trans.) 1976

Table 4.3: Results of the test video sequences.

seq. average average # of # of
id rot. error (◦) trans. error (m) map points keyframes

1 4.1536 0.0434 684 6
2 3.5554 0.0511 630 6
3 8.1931 0.0541 249 2
4 5.6345 0.0831 2291 35
5 14.715 0.0747 1473 21

shown in Fig.4.32, the error increases as the angle increases and the error gets
closer to zero as the angle decreases. These drawbacks result in the large average
errors as shown in Table.4.3.

However, our algorithm is not affected by the increasing or decreasing distance
between the camera and the marker, since new features are added as the camera
moves and the bundle adjuster imposes a smooth trajectory by using the previous
pose estimates. Therefore, an accurate virtual object placement and almost no-
jitter are observed in the test datasets. When the camera is close to the marker,
the performances of the marker-based method is similar to our method. However,
the orientation estimates of the camera are more consistent and smooth with our
method.

The presence of the marker during the experiments to test our method intro-
duces the corners of the marker as natural features. However, the marker also
hides other natural features behind it and therefore the marker corners don’t make
any favor to our system. Moreover, as the camera comes closer to the marker,
the camera’s view is mostly occupied by the marker and less natural features are
available since the marker is composed of texture-less black and white regions.
Although this introduces a clear drawback, our system still performs better than
the marker-based algorithm.
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(a)

(b)

(c)

Figure 4.31: Results of the first dataset. (a) the 3D trajectory of the camera in the world
coordinate frame placed on the marker. The red line represents the natural-feature based
pose estimation while the blue one represents the marker-based methods pose estimates,
(b) the error between the position of the camera pose estimates, (c) the error between
the Z axis of the estimated camera orientations.
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(a)

(b)

(c)

Figure 4.32: Results of the second dataset. (a) the 3D trajectory of the camera in
the world coordinate frame placed on the marker. The red line represents the natural-
feature based pose estimation while the blue one represents the marker-based methods
pose estimates, (b) the error between the position of the camera pose estimates. Purple
line shows the distance between the camera and the marker, (c) the error between the Z
axis of the estimated camera orientations.
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(a)

(b)

(c)

Figure 4.33: Results of the third dataset. (a) the 3D trajectory of the camera in
the world coordinate frame placed on the marker. The red line represents the natural-
feature based pose estimation while the blue one represents the marker-based methods
pose estimates, (b) the error between the position of the camera pose estimates, (c) the
error between the Z axis of the estimated camera orientations.
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(a)

(b)

(c)

Figure 4.34: Results of the fourth dataset. (a) the 3D trajectory of the camera in
the world coordinate frame placed on the marker. The red line represents the natural-
feature based pose estimation while the blue one represents the marker-based methods
pose estimates, (b) the error between the position of the camera pose estimates, (c) the
error between the Z axis of the estimated camera orientations.
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(a)

(b)

(c)

Figure 4.35: Results of the fifth dataset. (a) the 3D trajectory of the camera in the world
coordinate frame placed on the marker. The red line represents the natural-feature based
pose estimation while the blue one represents the marker-based methods pose estimates,
(b) the error between the position of the camera pose estimates. The purple line shows
the distance between the camera and the marker, (c) the error between the Z axis of the
estimated camera orientations.
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4.5 Conclusion
In this chapter we proposed a marker-less visual odometry algorithm for fast and
accurate camera pose estimation by using natural features available in the scene.
We created a two stage real-time tracking method to minimize the drift while
being robust against fast camera motions. The visual odometry algorithm is able
to track the pose of the camera at approximately 45-50 fps. The sparse 3D map
of the scene is also created and extended during the operation of the user, so
that the motion of the user is not confined to small spaces. Compared to the
marker-based methods our algorithm is not sensitive to the distance between the
camera and the marker (or initial map points), robust against different viewing
angles, and leads to more accurate and consistent pose estimation results. Ex-
perimental results showed that the pose of the camera is determined accurately
in indoor environments such as rooms. Accurate and the real-time operation of
our system enables marker-less, extensible tracking for augmenting a real scene
with virtual objects. This robustness makes it suitable for head-mounted display
based augmented reality applications.
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Chapter5
Real-time Dense 3D Reconstruction

”Men have forgotten this truth,” said the fox.
”But you must not forget it.

You become responsible, forever, for what you have tamed.”
Antoine de Saint Exupry, The Little Prince

5.1 Introduction
Modeling the real-world geometry is another important part of Augmented Re-
ality (AR). If the geometry of the scene can be captured, virtual entities can be
registered correctly while performing tracking. This provides a spatial consistency
between the real and the virtual world which leads to a realistic AR experience
for the user.

From the collaborative AR point of view, a 3D reconstruction of the scene
can help to introduce a common ground between the collaborators. Sharing the
reconstructed space and being able to alter it by adding virtual content allows
enhanced communication (as explained in Chapter 1). In collaborative CSI ap-
plications, a remote investigator that is collaborating with the on-site user can be
supported with the reconstructed real-world geometry by enabling them to move
freely in the created world independently from the user on-site (as explained in
Chapter 2). Moreover, the real 3D scene helps to introduce a common ground
between the investigators so that the discussions about the crime scene can be
done over the created map instead of or in addition to the standard ways such
as photographs and drawings. In addition to aiding the discussions between the
teams, if the maps are created with calibrated cameras and therefore the metric
information is available, initial measurements such as the distance between two
locations or the dimensions of the objects can be extracted from the map.

Although there are off-line solutions for dense reconstruction via laser scanners
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or multiple-view stereo algorithms, real-time and robust operation is still not
achieved completely.

In this chapter, a system is described that is able to build a dense 3D map of
that world. The system presented satisfies the requirements and overcomes the
challenges mentioned.

5.2 Related Work
Our pose estimation method explained in Chapter 4 calculates the 3D location
and orientation of a camera at each frame and it builds up a sparse 3D map of
landmarks that is used for tracking. Sparsity is necessary in order to cope with
the computational constraints. Dense 3D map reconstruction is a process that
can be performed in parallel to pose estimation. Consequently, another software
module is necessary that is able to create dense 3D maps and merge them with
each other.

Geometry extraction from a single image via learning has have been investi-
gated in various researches [74, 169]. An image is segmented into superpixels, and
a 3D configuration of each pixel is estimated by using local appearance (texture)
and global constraints (planarity). Although the results are impressive, they as-
sume that the scene is made up from a number of planes and hence reconstructs
the -mostly outdoor- scenes with a couple of planes, which usually represent the
ground, walls of the buildings, and background. Therefore the maps are not accu-
rate enough for 3D dense scene reconstruction, especially for indoor environments.

3D reconstruction from uncalibrated images is also demonstrated in various
works [156, 176, 75] by using structure-from-motion (SfM) algorithms combined
with multiple-view stereo (MVS). Their extensions for urban scene reconstruc-
tion [1, 64, 129] are also available in literature. The reconstruction of a city is
also demonstrated with similar methods in [61]. These algorithms are not moti-
vated by real-time operations, require an immense computational power and take
easily a couple of hours to obtain an accurate semi-dense reconstruction. More-
over, they require the visibility of map points in many different frames which is
not always available in our system. Comparatively faster extensions utilize other
sensors such as GPS or laser scanners, or use various assumptions, such as the
planarity of the scene or the visibility of points depending on the context. How-
ever, these assumptions are not always valid in our application where auxiliary
sensors such as laser scanners are not desired due to time constraints and GPS
is not applicable since we use the system mostly in indoor environments. More-
over, crime scenes can have non-planar regions such as bodies, which violates the
planarity assumptions.

Recently, real-time solutions for multi-view reconstruction are also presented.
Newcombe and Davison [135] showed that it is possible to reconstruct very de-
tailed and dense representations of a highly textured desktop-scale environments
by combining PTAM with multi-view approaches. In [188], a very similar sys-
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tem is presented with near real-time dense map creation. However, their method
is confined to small workspace areas. Also their primary goal is to create very
detailed 3D maps which is not always necessary for our application.

Also recently, reconstruction via RGB-D cameras are investigated by many
researchers [111, 134, 148]. Dense 3D maps obtained from the depth cameras
are combined by using the pose information estimated via the aforementioned
methods. In [154, 81] the Microsoft Kinect RGB-D sensor is used for modeling
indoor environments. However, these systems are targeted for large-scale build-
ing mapping, work on recorded videos and do not perform any real-time tracking
to provide real-time performance needed for augmented reality. Vision based
hand-held active scanners for creating dense 3D scans of objects are also stud-
ied. In [204], a high quality scan is created with a fixed Time-of-Flight (ToF)
camera and by moving the object in front of it, in [42] the hand-held ToF cam-
era is moved around the object. However, these systems are motivated by small
scale reconstruction with high quality scans. In general, although RGB-D camera
based systems perform well on texture-less surfaces and independent from indoor
lighting conditions, they are constrained by the limitations of the sensors such
as sensitivity to day-light and maximum depth limitations, and introduce extra
weight and power consumption. Therefore they are not considered in our design.

All these approaches have different objectives and therefore they are not suit-
able for our application. Utilization of single camera image or scene priors to
create a map do not provide correct metric maps that are required for our appli-
cation. Computationally intensive off-line solutions for dense reconstruction are
also not applicable for our on-site fast scene reconstruction application. Other
approaches that are using online reconstruction algorithms with cameras or other
sensors are either confined to small desktop environments or needs extra hardware
which is not suitable in our application.

5.3 System Overview
Various reconstruction types are briefly discussed in Section 3.5. We focus on full
reconstruction in which the collinearity, parallelism, angles and metric transforma-
tions are preserved. As explained in Chapter 2 the aim of the dense reconstruction
module is not to generate highly accurate maps of the crime scene but to provide
contextual information which can help the remote experts to navigate around the
scene and the on-site users to place virtual tags while performing initial measure-
ments. Our overall dense reconstruction method is depicted in Fig.5.1.

When a new key-frame pair is added to the sparse map, the sparse map maker
pushes the pair after refining its pose into a key-frame buffer. Presence of key-
frames in this buffer triggers the dense reconstruction thread. For each stereo
pair, a disparity map is calculated by utilizing stereo matching and a continuous
stream of disparity maps is generated when the camera moves around the scene.
The colored point clouds obtained from the disparity maps are aligned using their
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Figure 5.1: Dense reconstruction flow.

estimated relative poses to merge them into a final dense reconstruction of the
environment. The coordinate frame derived from the previous section is selected
as the main coordinate frame and all points coming from further stereo image
pairs are projected to that main coordinate frame.

5.3.1 Disparity Map Calculation
The term disparity is used to describe the difference between the image coordi-
nates of the projection of a 3D point in the left and the right images of a stereo
pair. Since our cameras are placed horizontally and calibrated (therefore the im-
ages are rectified), calculated disparity values are always in the horizontal axis
(x-axis in image coordinates). The disparity value di for pixel pi(x, y) is given
with respect to a reference image (usually the left image) and the relation between
the projections of pi into the left and the right images, (xl, yl) and (xr, yr)

xl = xr − d, and yl = yr

Then, the 3D coordinates of a point can be calculated by using the disparity
values and triangulation as explained in Chapter 3. Therefore, the goal of a dense
stereo matching algorithm is to calculate the disparity values for each pixel in
the key-frame (stereo) pair such that the produced disparity values (image) best
describes the 3D geometry in the scene. Two broad classes of stereo matching
algorithms are local window-based algorithms and global algorithms [171].

In local window-based algorithms, the disparity of a point is calculated by us-
ing only the intensity values of its neighbors within a finite window and assuming
that the disparity values within the support window are smooth. For instance,
in traditional sum-of-squared-differences (SSD) based block-matching (BM) algo-
rithm [171] the squared difference (SD) of intensity values at a given disparity
value is used as the matching cost. The matching costs are aggregated by sum-
ming the SDs within a support window assuming that all the pixels in the window
have a constant disparity. Then, the aggregated costs for different disparities are
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calculated and the disparity associated with the minimal aggregated value (min-
imum cost) is selected as the final disparity at each pixel. Since the costs are
computed using only the pixels in a support window, local algorithms strongly
dependent on the window size. Although they are computationally cheap, small
window sizes leads to a low matching ratio on poorly-textured surfaces, while
bigger window sizes can eliminate the edges by smoothing them out.

Algorithms based on global correspondences [58, 22] attack the aforementioned
problems with local correspondences by introducing smoothness constraints on the
disparities and solving an optimization problem by minimizing an energy (global
cost) function that combines a sum of a data fitting term and a smoothness term.
As explained in [171], the goal is to find the disparity value that minimize a global
energy function

ε(d) = εdata(d) + λεsmooth(d).

where the data term εdata(d) measures how well the assigned disparities values (the
disparity function) minimize an global aggregated matching cost, similar to the
minimal aggregated value in local algorithms but for all pixels. The smoothness
term εsmooth(d) enforces a disparity smoothness assumption between the neighbor
pixels. A more detailed information about energy functions types and optimiza-
tion methods for disparity calculation can be found in [171]. In general, global
methods suffer from a high computational complexity since a global optimization
scheme is necessary and cannot be performed in real-time.

For stereo matching we utilized 3 different algorithms: a traditional block-
matching (BM) algorithm [171], modified Semi Global Matching (SGBM) algo-
rithm [82] and Efficient LArge-scale Stereo (ELAS) algorithm [66]. For the BM
and SGBM algorithms, we used the implementations in OpenCV [142] and the
implementation provided in [66] is used for ELAS algorithm. We present the
overall reconstruction results in the next section.

The BM algorithm is an example of local window-based algorithms and uses
only the intensity values within a finite window without any global constraints.

In the original SGM [82], the pixel matching cost is calculated hierarchically by
mutual information and aggregated in multiple directions. An approximation of a
global energy function (2D smoothness term) by combining many 1D constraints
is minimized by path-wise optimizations from all directions (along 16 orienta-
tions) through the image. The winner which corresponds to the minimum cost is
selected as the match. Since the method uses an approximation of a global energy
function, it is relatively faster than algorithms based on global correspondences
and more accurate than the local ones. In the modified version of SGM, SGBM,
the pixel matching costs are calculated over small blocks instead of individual
pixels. Also the number of passes for path-wise optimizations from all directions
is limited to five rather than a traditional eight passes. Moreover, in the OpenCV
implementation there are filtering and post processing steps for improving and
refining the final disparity maps.

Lately, the ELAS algorithm [66] is introduced, which shows impressive results
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Figure 5.2: Examples of the left key-frames and calculated disparity maps from the
corresponding key-frame pairs. From top to bottom, left key-frames, disparity maps
created with block-matching, SGBM and ELAS algorithms respectively.

in real-time. It uses small aggregation windows for dense matching by reducing
ambiguities on the correspondences. First, support points which are a set of
robustly matched correspondences are calculated. Then, a prior over the disparity
space is built by forming a triangulation on the support points. Because the built
prior is piecewise linear, the algorithm performs well in the presence of poorly-
textured and slanted surfaces. This advantage of ELAS makes it a good candidate
for our application.

In Fig.5.2, the examples of the created disparity maps are given. In the first
row, four left key-frames selected from the same dataset are given. In the following
rows, the results of the block-matching, SGBM and ELAS algorithms are given
respectively. We selected a search window size of 11x11 and fix the disparity
search range between 0 and 48 pixels.
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5.3.2 Disparity Map Registration
When the disparity map is calculated and the 3D points are created by linear tri-
angulation, the next step is to register new map points with the existing ones. A
straight-forward way of merging point clouds is to register new points directly into
the existing map. However, this would increase the size of the map to unmanage-
able amounts mostly with redundant points, while not improving the quality of
the map. Moreover, utilization of the multi-view approaches are computationally
too expensive as discussed in the related work section.

Instead, we reproject the existing map points into the current key-frame and
compare it with the calculated disparity map. The projection of an existing map
point M̃i = [X,Y, Z, 1]T in the world coordinate frame to the current left key-
frame Kj can be given

xl = π(gKjcw M̃i)

where π() represents the projection from camera frame to the image coordinates

and g
Kj
cw is the pose of the camera when the key-frame Kj is captured. If the

projection is inside the image (the map point is visible) and there is a valid
disparity value at the projected location xl of the existing map point Mi, then
the 3D coordinate of the map point is updated by using a weighted average.
The weights are obtained by counting the number of updates for each point. For
instance, if a map point is observed N times before, then the new average position
when a new measurement comes is

M t
i =

NM t−1
i +M t

i

N + 1

where M t
i is the 3D coordinates of the map point at time t. The only exception

to this updating is when the new point is not spatially close to an existing point.
In this case, a new map point is initiated. This approach adds new map points if
there are no existing points in the scene, or updates the existing ones as illustrated
in Fig.5.3. Moreover, averaging reduces the measurement noise.

Finally, when a map point is updated, we calculate the standard deviation of
the 3D coordinates of the map point calculated in different key-frames in order to
evaluate the consistency of its estimated 3D position. If the standard deviation
of the 3D coordinates is larger than 5cm we label the point as a ’bad point’ and
remove it from the map.

An example of a dense map is shown in Fig.5.4. Map points created from the
same key-frame pair are given the same color and the overall map is created from
4 key-frames (pairs) shown in Fig.5.2

5.3.3 Disparity Map Refinement
After disparity map generation we use an algorithm of Sarkis et al. [167] called
the tritree meshing algorithm [167] in order to enhance the map and also create a
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Figure 5.3: Dense 3D reconstruction. Existing reconstructed parts of the scene from
key-frame at t − 1 are illustrated in red. The green color represents the updated points
with the new key-frame while the blue color shows the new map points reconstructed from
the key-frame at t

Figure 5.4: Dense 3D reconstruction from 4 image pairs. Different colored map points
are originally created from different key-frame pairs and updated by the measurements
available in the other key-frames.
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Figure 5.5: Examples of tritree meshing. Input images are given on the left side and
the corresponding disparity maps are presented in the middle. Calculated tritree meshes
are shown on the left side images. As can be seen in the pictures, the edges are preserved
by representing them with more triangles while relatively smooth regions have bigger
triangles.

sparse mesh out of the map points. Later on this mesh is used for fast visualization
of the map. This algorithm was originally developed for image (disparity map)
compression.

Initially the disparity image is divided into two triangles. The vertex j of the
triangle i is defined as vij = (x, y, d) where (x, y) are the image coordinates of the
vertex and d is the disparity value at point (x, y) in the corresponding disparity
map. For each triangle, the plane P i = (c,n) passing through its three vertices
is calculated where c is the mean of vertices and n is the normal of the plane

c =
1

3

2∑
j=0

vij and n = vi0 × vi1

Then the pixels inside the triangle are projected onto the plane and the dis-
tance between the original points and their projections are calculated. The dis-
parity value, dp, of the projected point pi onto the plane can be calculated solving
the plane equation (pi − c) · n = 0 and it is given as

dp =
−(xnx + yny − c · n)

nz

where (x, y) is the image coordinates of the point pi. If the original disparity
value of the point pi is given as do, then the distance between the original point
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and its projection, εi, is
εi = |dp − do|

A point is labeled as an outlier if the distance εi > td and the ratio of the
outliers to the total number of points inside the triangle is used as a cost function.
If the cost is greater than some threshold, this implies that the variation inside the
triangle is high and then the triangle is separated into two. In our experiments we
set td = 1 and split the triangle if the outlier ratio is greater than 0.1. Uncertain
disparity values are excluded during the computation of the cost. Also, in order
to avoid very small and very large triangles we use minimum and maximum area
thresholds for triangles. A triangle is not separated into two if its area is smaller
than 100 pixels or definitely separated into two if its area is larger than 8000 pixels.
This division continues until there is no triangle with a high disparity variation
is found. The final structure is called a tritree [167] and triangles inside the tree
represent homogeneous regions. The recursive subdivision is called meshing.

The proposed method segments the disparity maps into homogeneous regions
while preserving the edges since the edge regions are represented by smaller tri-
angles. We also obtain a planar approximation of the scene which can be used to
extract shapes. Finally, the disparity values are updated by their projections onto
the triangles to eliminate noise and uncertain disparities. Instead of replacing the
disparity values with the projected ones, we use the average of the two values to
create a more visually acceptable map. Also, the missing parts of the disparity
map is filled with the values obtained from the triangles if there are valid triangles
on those regions.

Some examples of the tritree meshing are given in Fig.5.5. From left to right,
the input images, the corresponding disparity maps and calculated tritree meshes
are shown. As can be seen in the pictures, the edges are preserved by representing
them with more triangles while relatively smooth regions have bigger triangles.

5.3.4 Post-processing
When new key-frames are not available, some post-processing can be done on the
dense map. For instance we have demonstrated that a saliency detection method
explained in [4] and a color based saliency detection method [125] can be used to
label the map points as salient or not. Moreover, the existing dense map can be
improved by using filtering sporadic outliers by calculating the local statistics of
each map point and removing it if it is an outliers. Since this step is not crucial
for the system’s performance we do not explain it in detail and leave it as a future
work.

5.4 Results
In our experiments we utilized 640x480 images provided by the tracker module
explained in the previous chapter and our system was tested on the hardware
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explained in Chapter 2: a laptop with a 2.7 GHz Core i7 processor (Intel Corpo-
ration, USA) and a Linux operating system.

5.4.1 Computational Time
In order to measure the computational times of the different stages of the dense
reconstruction, we have tested our algorithms on a dataset that is composed of
16 key-frames.

In Fig.5.6, the computational times of all modules for different stereo match-
ing algorithms are given for the test dataset. In (a), the total number of map
points created during the operation from the stereo key-frames are given. The
computational time of the complete dense reconstruction is given in (b). In (c),
(d) and (e) the disparity map calculation, disparity map registration and tritree
meshing times are given respectively.

When the BM algorithm is used, overall reconstruction of a single frame takes
approximately 170 milliseconds (≈ 6 fps), while with SGBM it takes approxi-
mately 307 milliseconds (≈ 3 fps) and with ELAS it takes approximately 483
milliseconds (≈ 2 fps). When the registration of map points is considered, the
BM performs the fastest since the number of created map points is less than
the other two methods. The tritree meshing takes more time when the ELAS is
used due to the highly irregular (non-homogeneous) disparity maps created by
the algorithm.

When the SGBM algorithm is used for reconstruction, approximately 3 key-
frames can be processed per second. The 3D reconstruction is performed when
a new key-frame is created by the tracker module. Since the new key-frames are
created as the user moves, the computational performance of 3 fps provides a
successful real-time reconstruction when the user is walking at a regular speed
and investigating the scene.

5.4.2 Map Quality
The 3D dense maps created with the 3 different stereo algorithms are given in
Fig.5.7 and Fig.5.8.

The block matching algorithm results in sparser and less accurate maps al-
though it is computationally faster. The ELAS and SGBM algorithms show sim-
ilar performance on the tested data sets, although the disparity maps and dense
3D maps created with ELAS are more irregular than the SGBM results, as shown
in Fig.5.9.

Initially, we used the BM algorithm to calculate the disparity images. However,
this method is very sensitive to noise and since only the pixels that are in the
close-neighborhood are used as the supporting region for matching, it fails in
relatively low-textured areas. Therefore in the final system we picked the SGBM
algorithm [82] over Efficient LArge-scale Stereo (ELAS) algorithm [66] since it
gives better maps and performs faster.
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(a) (b)

(c) (d)

(e)

Figure 5.6: Computational times of the designed dense reconstruction module for three
different stereo matching algorithms. (a) the total number of map points created dur-
ing the operation, (b) the computational time of the complete dense reconstruction, (c)
the disparity map calculation times, (d) the computational times of the disparity map
registration step and finally (e) tritree meshing times.
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Figure 5.7: Results of the dense mapping with 3 different stereo matching algorithms.
From top to bottom, (a) BM, (b) SGBM, (c) ELAS.
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Figure 5.8: Results of the dense mapping with 3 different stereo matching algorithms.
From top to bottom, (a) BM, (b) SGBM, (c) ELAS.
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(a) (b)

Figure 5.9: Map points corresponding to the poster on the wall. Points created by
ELAS (a) are highly irregular and ’bumpy’ compared to SGBM (b).

Table 5.1: Measured distances in centimeters between predetermined points on objects
in three different the maps of the same scene.

Obj. Orig. Map1 Map2 Map3 Total

1 179 181.35 ± 1.67 182.56 ± 1.59 178.89 ± 2.18 180.93 ± 2.26
2 41.5 41.32 ± 1.01 41.31 ± 3.08 40.36 ± 1.66 40.99 ± 1.88
3 58 59.94 ± 1.74 61.09 ± 0.53 55.76 ± 0.65 58.93 ± 2.61
4 72.5 73.36 ± 1.75 70.80 ± 1.31 68.89 ± 2.12 71.02 ± 2.47
5 32.5 31.64 ± 1.25 30.53 ± 1.16 30.14 ± 0.91 30.77 ± 1.18



120 REAL-TIME DENSE 3D RECONSTRUCTION 5.5

5.4.3 Metric Measurement
In order to evaluate the precision of the metric measurements obtained from the
reconstructed maps with the SGBM algorithm, we create 3 different maps of an
environment in which five objects with known dimensions are placed. Then for
each map, we manually tag the pre-measured points on the objects in 5 different
zoom levels and orientations, and measure the distances between them. The
average measurements and standard deviations for each map are given in Table.5.1
as well as the overall values.

The measurements show that the created maps are consistent in spatial domain
and a few centimeters spatial resolution (≈ 2 cm) can be obtained. These maps
are accurate enough to perform some initial measurements especially to support
visual perception. However, due to the errors in the disparity maps and missing
data in less-textured regions, very accurate measurements are not possible in the
maps. But this is not surprising, since our goal is to create visually satisfying
maps in real time instead of very accurate maps. Also we believe that higher
resolution images and combination of stereo estimation methods can improve the
performance.

5.5 Conclusion
In this chapter we introduced a dense 3D reconstruction method by using the
estimated camera poses and stereo key-frames. The disparity maps are calcu-
lated using stereo key-frames and 3D map points are created. Then created map
points are registered with the existing map points after they are refined with the
tritree meshing algorithm. In order to evaluate the quality and the computa-
tional times of the maps, we tested three stereo matching algorithms and created
various maps. The created maps are consistent in spatial domain and accurate
enough to perform some initial measurements. Also they are visually satisfying
and successfully represent the scenes. The overall reconstruction can be performed
in approximately 3 fps and a few centimeters spatial resolution is achieved. For
more accurate measurements, the quality of the maps needs to be improved which
can be done by using (slower) multi-view stereo algorithms and higher resolution
images.



Chapter6
Multi-cue Hand Detection and
Tracking for HCI

Bran thought about it. ”Can a man still be brave if he’s afraid?”
”That is the only time a man can be brave,” his father told him.

George R.R. Martin, A Game of Thrones

6.1 Introduction

The majority of previous Augmented Reality (AR) research focused on pose track-
ing and virtual object registration for precise information overlay. With recent
developments in wearable AR, the role of natural human computer interaction
is becoming more and more important. However, considerably less research has
been done on interacting with virtual objects in AR settings [106], especially for
wearable systems. When wearable systems are considered, the world around the
user can serve as a 3D interaction space in which Human-Computer-Interaction
(HCI) can be performed. Necessary information such as tools, menus etc. for
HCI can be visualized in this space. Moreover, auxiliary devices for interaction
and control such as keyboard, mouse, joystick are not desired since they intro-
duce extra complexity, weight and cost to wearable AR systems. The human
hand is a natural input device to communicate and interact with the immediate
surroundings. Therefore the utilization of the hands would be a natural choice
for an interaction device.

We designed a new HCI methodology to go with a Head-Mounted-Display
(HMD) based AR system with stereo cameras, which exploits the user’s hands
as an interaction device instead of other equipment. The pose of the hand is
utilized to render graphical components onto. The 3D trajectory of the user’s

121
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Figure 6.1: Graphical user interface examples

hands is converted to click and drag events which trigger widgets and control
tools similar to traditional interfaces with mouse interaction from Windows; a.k.a
Icons, Menus, Pointers (WIMP) interfaces [155]. This WIMP interface allows
users to select and use tools, and supports many familiar widgets, such as menus,
slider bars, text labels and icons (Fig.6.1). Our work broadens the freedom of
the user by eliminating extra hardware or markers for interaction. With our
system, the user can manipulate and control the AR system and interact with the
environment.

For precise menu overlay and use, the user’s hands need to be localized and
tracked with high precision. In order to achieve robust, accurate and real-time
operation we propose a hand detection and tracking method that probabilistically
combines visual cues such as color, depth, curvilinearity and intensity. This en-
ables robust and precise hand detection and tracking under challenging conditions.
The 3D trajectory and the 3D pose are extracted from the tracked hand.

In the following section, related work is presented. Then, the framework is
described, followed by a detailed description of the detection and tracking al-
gorithms. Afterwards, we present experimental results. In the final section we
conclude and discuss the future research.
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6.2 Related Work
A wide variety of auxiliary equipment is employed for vision based HCI including
color glove [202], LEDs [145], infrared transponders [130] and markers [153, 149].
However, utilization of additional devices decreases the mobility of the system
while increasing the hardware complexity. Some of these systems limit the perfor-
mance of the user since holding a device which occupies one of his hands restrains
the freedom for interaction. It is highly impractical or even impossible for some
users (such as surgeons) to utilize these devices during operations.

A more natural way of interaction, without any external hardware, is by using
ones bare hands, which has already been investigated in many research related to
AR and HCI. There have been many attempts to detect hands and gestures in
a 2D image plane from a single color camera and use them as a mouse replace-
ment. Most of these approaches use only the skin color information to segment
the hands [108, 7, 106]. Although skin color detection is efficient and easy to
implement, the robustness of such methods suffers from variances in lighting con-
ditions and backgrounds in which the hand is not the only skin colored object.
Another common approach to detect hands is background removal [172, 15], in
which the motion in an image is detected by subtracting the background and
hand detection is performed on foreground regions. Also the combination of skin
color and motion detection (via background subtraction) is used [40, 138, 216].
However, background subtraction is not an option for a moving wearable setup
since neither the foreground nor background are static. Detecting faces prior
to the hand segmentation [119] is another popular method to improve the skin
color model from detected faces and reduce the search space to the spatially close
regions to the face. These methods are mostly designed for teleconferencing ap-
plications in which the user is positioned in front of the camera and hence they
are not applicable to wearable systems where the cameras are not able to see the
user’s face.

Model based techniques are also used for hand segmentation and gesture recog-
nition with monocular setups [49, 97]. In [49] the 3D pose of the hand is found
from a single image by using texture and shading. However, the proposed method
assumes a static camera and a light source that is fixed relative to the camera. In
[97], flock tracking of hands is introduced. They combine KLT features [97] with
color for tracking hands. However, the proposed method has the same drawbacks
as other single camera methods when the background is of a similar color as the
hands. Although 2D methods are useful for segmenting hands in a single view and
can be extended to a stereo version, alone they are not able to provide robust 3D
position of the hands or fingers and therefore are not suitable for our application.
3D model based hand shape and pose detection is also employed in [50, 51, 114]
and they mostly rely on fitting articulated 3D hand models on 2D image features.
However, they are either confined to desktop environments/static backgrounds
and require a precise hand segmentation or are computationally too expensive for
real-time applications.
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Different sensors besides standard cameras that are used for hand segmenta-
tion and gesture recognition are Time-of-Flight (TOF) cameras [184, 69], thermal
cameras [6, 140] and structured light systems [121]. But additional sensors to
a standard stereo camera (which is also used for head-pose estimation in our
framework) are highly undesirable since they introduce extra weight, power con-
sumption and cost to the wearable setup.

Recognizing hand gestures by using stereo vision is studied in multiple research
efforts. The disparity cue provided by the stereo camera can help to solve the
problems of monocular methods such as background subtraction and occlusions.
However, most researchers utilize the depth information after 2D segmentation
to locate the 3D position of the hand [7], which still suffers from the drawbacks
of 2D setups such as cluttered backgrounds. Assumptions such as static back-
ground/camera (for background subtraction) and a fixed distance between the
camera and the user [209, 72], and the visibility of the user’s face in the im-
age [201, 45, 122] are also employed in different research efforts. However, these
assumptions are not valid in our case where the camera is moving and the face of
the user is not visible.

In [28, 152], other multi-cue hand detection and tracking methods are pre-
sented. However, both systems are monocular and don’t utilize the depth infor-
mation. In [152], Petersen and Stricker used a color tracker to estimate the main
orientation of the hand which makes their system sensitive to lighting changes
and similar colored backgrounds. In [28], the presented algorithm does not in-
volve tracking and uses only parallel lines and curvature to detect hands.
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6.3 System Overview
In order to realize the GUI and the tools explained in Section 2.2.3, the user’s
hands must be detected and tracked. In this section we focus on the hand de-
tection, tracking and pose estimation. The performance constraints and the re-
quirements are derived from the GUI and we developed a system as depicted in
Fig. 6.2.

The proposed method combines color, gradient, intensity and depth cues in
order to detect hand/finger regions while achieving robust, accurate and real-
time operation. The 6 DOF pose of the hand in the camera coordinate frame is
approximated by a plane and its surface normal, and the center of the segmented
hand is used to render a planar menu around it. Afterwards, the extracted regions
are tracked between the frames in order to compute their trajectories. Finally,
the trajectories and the pose are used to overlay necessary tools on the display
for interaction or recognize the ”click” gesture or perform drag. The proposed
method enables the HCI system to be used in dynamic environments with a
cluttered background and a moving camera, as the combination of multiple cues
eliminates the drawbacks of such environments. Moreover, the pose estimation
method is robust against outliers originating from erroneous disparity estimates.
The best plane is approximated by using the pixels (inliers) classified as hand and
have valid disparity values.

6.4 Hand Detection, Tracking and Pose Estimation
The local gradient magnitude and orientation are used to detect curvilinear struc-
tures on multiscale. These structures are strong candidates for the fingers of the
user’s hand. However, there are other structures that are similar to fingers which
exist in the background. These false detected regions are eliminated by integrat-
ing color and intensity cues. Moreover, the depth cue is involved in the detection
process to reduce the search space and decrease false detections. Afterwards, a
score representing the similarity to a hand is given to each pixel by combining all
the cues. A gradient directed parameter free probabilistic bottom-up aggregation
method by using these scores is performed to group hand-like pixels and very
small regions or outliers are eliminated.

6.4.1 Color cue

Prior to hand segmentation, a color model for skin-color is created. Many visual
cues such as color, motion, texture and shape can be used to represent and segment
human body parts. Among these features, color has an important role in detecting
human presence in an environment due to the distinctiveness of skin-color and
the fact that the major similarity between different skins lies in the chrominance
rather than intensity [70].
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Skin Color Model

Color is employed in detecting skin in an image, due to its robustness against
scale variation, affine transformations and occlusion. Color space selection is an
important issue for successful skin-color modeling [208] and various color spaces
have been used to detect skin pixels [216, 168]. We preferred the HSV color space,
and use hue (H) and saturation (S) values, as H and S are independent of the
brightness (V) which makes it more robust compared to the RGB color space.

Most methods that have been proposed to create a skin-color model can be sep-
arated into two categories: parametric and non-parametric methods [87]. Jones
and Rehg [87] compared histogram color models (non-parametric) with Gaussian
mixture models (parametric) and found histogram models to be superior in accu-
racy and computational cost. Therefore, we decided on the non-parametric color
model in our research and used a Parzen-window density estimation method [53]
to eliminate the drawbacks of histogram based methods such as bin location se-
lection and discontinuity.

A non-parametric color model can be created by Parzen-window method using
training samples (pixels). Given training skin pixels ci = (hi, si)

T with color
values (hi, si), the value of the estimated probability density function at the point
c = (h, s)T (the probability of measuring a color value c from a skin pixel class
ws), p(c|ws) is given as

p(c|ws) =
1

ns

ns∑
i=1

1

hs
ϕ

(
c− ci
hs

)
(6.1)

where ns is the number of training skin pixels, ϕ(u) is a window function and hs
is the smoothing parameter called the bandwidth. A bivariate Gaussian kernel
would be a proper window function choice to represent the contribution of a
training pixel to the density estimation since the contributions are equal to each
other and the contribution of each training pixel decreases as the distance to the
pixel increases. Therefore, ϕ(u) is selected as

ϕ(u) =
1

2π
e−

uT u
2 (6.2)

Then the overall contribution of the training pixels ci to the skin-color model
and the estimate of the probability of measuring a particular color value c from
a skin pixel is given as

p(c|ws) =
1

ns

ns∑
i=1

1

2πσs
e
− (c−ci)

T (c−ci)

2σs2 (6.3)

where σs is the kernel bandwidth. The suitable kernel bandwidth σs must be
carefully chosen since too small a bandwidth might result in too little a resolution
while too large a bandwidth might lead to an over-smoothed density estimate.



128 MULTI-CUE HAND DETECTION AND TRACKING FOR HCI 6.4

Figure 6.3: (a) skin color model, (b) non skin-color model and (c) the probability of
being a skin-color pixel based on (a) and (b).

We use the standard deviation of the color values, σhue and σsat of the training
skin pixels and select σs as

σs = min(σhue, σsat) (6.4)

The same procedure is repeated with non-skin training pixels to create a non-
skin model p(c|wns).

p(c|wns) =
1

nns

nns∑
i=1

1

2πσns
e
− (c−ci)

T (c−ci)

2σns2 (6.5)

Training images captured under different illumination conditions are manually
labeled as skin and non-skin pixels, and used in the training step. The final models
are given in Fig.6.3.

Skin Color Score

The probability of being a skin-color pixel (probability mass function) is used as
a score, Sc, for the final decision process. It is constructed by using the given skin
and non-skin densities as a Bayesian posterior

Sc = P (ws|c) =
p(c|ws)P (ws)

p(c|ws)P (ws) + p(c|wns)P (wns)
(6.6)

where P (ws) and P (wns) can be defined as the ratio of the total number of skin
and non-skin pixels in the training images

P (ws) =
ns

ns + nns
and P (wns) =

nns
ns + nns

(6.7)
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Color Model Update

The created hand models are robust against the illumination changes up to some
level. However, as the user moves and the lighting conditions change drastically,
the created models fail to represent the hands. We increase the robustness of the
system by employing a second group of models that are calculated by using the
pixels that are classified as skin in the most recent N frames. Then the final score
for the pixel c is defined as

αP (ws|c) + (1− α)PN (ws|c) (6.8)

This rule encapsulates the current dynamics of the environment as well as the
initial conditions. The parameter α can be adjusted according to the level of
expected variation. However, setting the value α = 0.8 and N = 5 gives relatively
good adaptation to illumination variation in our case.

6.4.2 Curvilinearity cue
A finger can be approximated as a curvilinear structure (a line with finite thick-
ness) in an image since it is surrounded by almost parallel edges and it has a
uniform color/intensity inside the finger. Moreover a line structure (a finger) can
be represented at different scales depending on the distance between the camera
and the hand. We use a bar-shaped profile to represent a 1D segment of a finger
region as shown in Fig.6.4. The center of the line represents the center of the fin-
ger. An ideal line centered at x=0 with width w and height h can be represented
as

fb(x) =

{
h |x| ≤ w/2
0 |x| > w/2

(6.9)

The lines with the profile given above can be detected by convolving the image
with the second derivative of the Gaussian smoothing kernel

g(x) =
1√
2πσ

e−
x2

2σ2 (6.10)

and locating the points where the convolution has a minimum [29]. In order to
have a clear minimum at x=0, the center of the line, the sigma should be σ ≥ w

2
√
3

[96]. Also, to keep the maximum effect of the filter inside the line (between -w/2
and w/2), σ should be less than w/2. Moreover, the convolution of the line profile
with the first derivative of the Gaussian kernel will be 0 at x = 0 for all σ > 0.

If we write the second order derivative as a discrete derivative of the first
derivative, then

g′′(x) ≈ k g
′(x+ w/2)− g′(x− w/2)

2
(6.11)

assuming that σ = w/2.
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Figure 6.4: Bar-shaped profile to represent a 1D segment of a finger.

(a) (b) (c)

Figure 6.5: Left to right: bar-shaped profile with w=1 and h=1, convolution with
Gaussian derivative (σ = 0.5), convolution of (b) with the difference of two Dirac-delta
functions.

If we omit the constant k/2 and write the above equation as the convolution
with the Dirac-delta function δ, then it becomes

g′′(x) ≈ g′(x) ∗ (δ(x+ w/2)− δ(x− w/2)) (6.12)

The convolution with the first derivative of Gaussian detects the right and left
edges (at x = w/2 and x = −w/2) of the bar-profile and the convolution with
δ(x+w/2)− δ(x−w/2) gives the minimum response at x=0 as shown in Fig.6.5.

A 2D line encapsulates the characteristics of a 1D bar-shaped profile in the
direction perpendicular to the line. Therefore, we can extend the 1D approach to
2D images by using the gradient direction.

In order to detect the center of the 2D line section, we calculate the local
orientation of the line and then apply the line-filter for a range of scales in this
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direction. The location with the minimum filter response is selected as the center
of the line. The local orientation can be found by calculating the direction of the
gradient vector at the edge pixels of the line. The direction of the gradient at
pixel x = (x, y)T is

θx = atan2

(
∂I

∂y
,
∂I

∂x

)
(6.13)

where ∂I
∂y and ∂I

∂x are the derivatives of the image I at pixel x.
In order to decrease the computational load and make the algorithm faster for

real-time operation, we approximate the first order derivative of Gaussian with
the Sobel operator and utilize it to calculate the gradient of the image. We used
the magnitude of the gradient vector instead of the first derivative of Gaussian
filter output. The magnitude of the gradient detects the left and right edges of a
line, but it lacks the direction information since it is always positive. Therefore,
we search for the pixels where the convolution with δ(x+w/2) + δ(x−w/2) gives
the maximum response instead of a minimum.

We enforce the orientation information by using the direction of the gradient.
We assume that the background is homogeneous and the finger is either a dark
line on a bright background or a bright line on a dark background. Then the
difference between the orientations of the edges (gradient vectors) around the line
pixel should be π in an ideal case. To enforce the orientation constraint onto the
final score we use an exponential function that has higher values as the difference
between two edge orientations Θl and Θr at the edge pixels l and r is close to π.
The orientation score So(l, r) is defined as

So(l, r) = e−
(|Θl−Θr|−π)2

σ2 (6.14)

where σ = π/18 in order to tolerate small variations in the orientation.
Moreover, the utilization of the gradient information (direction) and the ex-

plained line filter (with Dirac-delta functions) enables the system to focus on only
the pixels with strong gradient magnitudes and decreases the computational load
of the scale-space search. Instead of filtering the whole image, we only consider
the pixels with strong gradient magnitude and the filter explained above is ap-
plied around those pixels. If the magnitude of the gradient in the direction of the
normal of the gradient at pixel x is greater than a certain threshold, ψ(x) > θψ,
the line-filter response at pixel y = (x + rs) is calculated as

ω(x, r) = ψ ∗ (δ(x) + δ(x + 2rs)),−rm < r < rm (6.15)

where ψ is the gradient magnitude image and s is the gradient vector at x

s = ∇I(x) (6.16)

Therefore, the line-filter response for all the pixels that are ||rm|| far in the
direction of the gradient from the pixels with high gradient values is calculated.
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Considering the minimum and maximum distance of the hands, we set rm = 10
in our experiments. Then the r value corresponding to the maximum line-filter
response for pixel x, rs, is defined as

rs = arg max
r

(ω(x, r)So(x,x + 2rs)) (6.17)

The center of the line is found at (x + rss). Then the curvilinearity score at the
center of the line is defined as

wrs = ω(x, rs)So(x,x + 2rss) (6.18)

To eliminate the sensitivity to noise and enforce the smoothness we consider
the weight if the gradient of the center is smaller than the minimum gradient
magnitude of the edges and the final curvilinearity score is

Sl =

{
wrs if ψ(x + rss) < min(ψ(x), ψ(x + 2rss))
0 otherwise

(6.19)

6.4.3 Depth cue
In order to utilize the depth cue for hand segmentation, we employ a simple and
fast block matching stereo algorithm on the gray image pairs to extract disparity
maps. However, the disparity maps are not dense and contain many uncertain
disparities due to lack of texture in the scene and on the hand. Although accurate
and dense disparities can be obtained by computationally expensive procedures
such as belief propagation that require spatial smoothness priors [82], they are not
suitable for our real-time application. In order to eliminate uncertain disparities,
we perform a simple interpolation by assigning the closest valid disparity to the
uncertain disparity.

We score the pixel x with disparity d at time t+ 1 as

Sd = e

(d−µtd)
2

(β∗σtd)
2

(6.20)

where µt−1d and σt−1d are the mean and the standard deviation of the disparities
of the hand pixels segmented in the previous image at time t. β is used to adjust
the sensitivity of the score and set to 3 in our experiments.

When the hands are lost or previous depth values are not available, we use the
a priori values of 0.7 meters and 0.3 meters for the mean and standard deviation,
respectively. These values are originated from the simple assumption that the
user’s hands cannot be far from that distance anatomically.

6.4.4 Cue Integration and Bottom-up aggregation
The final score of each pixel x, Sf is calculated by multiplying individual scores
of x,

Sf = ScSlSd (6.21)
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Various scenarios in which the individual cues fail to represent the fingers while
the combined score detects correctly are given in Fig.6.6.

Finally, a gradient oriented bottom-up aggregation is performed to segment
pixels with similar scores into hand/finger regions and eliminate the outliers. Non-
maximum suppression is done to detect local maxima and then region growing is
performed in the orthogonal direction of the gradient, and the pixels that have
similar score with the seed pixels are aggregated into finger segments. By using
region growing, pixels that have relatively low probability of being hand or are
uncertain because of stereo matching failure are considered again. If they are
spatially close to the seed points and satisfy looser constraints, they are labeled as
hand. This is done by using hysteresis thresholding similar to [29]. All segments
are used for the following pose estimation step.

6.4.5 Hand Tracking
The trajectory of the hand is extracted by associating the pixel scores between
consecutive frames. Normalized final scores of the pixels can be interpreted as
the probability of being a hand/finger pixel and therefore the input image data
can be converted into a probability distribution fh.

fh(x) =
Sf (x)∑
y Sf (y)

(6.22)

Since this probability map comes for free with the proposed method, using
the mean-shift algorithm [38] to find the mode of the distribution would be a
natural choice. The mean-shift algorithm operates on the probability distribution
and detects the closest mode (local maximum) by climbing in the direction of the
distribution gradients. The mean-shift vector at pixel x, m(x) which points in
the same direction as the distribution gradient ∇fh(x) can be defined as

m(x) =

∑
i xifh(xi)∑
i fh(xi)

− x (6.23)

where xi are the pixels within the search window [38].
Starting from a guess for a local maximum, yk, the position of the local max-

imum can be found by climbing in the direction of m(y) iteratively. The local
maximum in the next iteration can be found as

yk+1 = yk +m(yk) (6.24)

The current position of the tracked hand can be used as the initial location of
the search window in the next image. Although the size of the search window can
be modified during operation, we have fixed the size to 40×40 since the operation
range of the hands can be estimated. The detected mode corresponds to the new
position of the hand. The overall method can be summarized as:
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Figure 6.6: (a) Input images (b) color cue (c) curvilinearity cue (d) depth cue (e)
combined scores. In the first data set where the color is almost not available, weak color
and depth scores are dominated by the curvilinearity cue. In the second set where the
depth and color information is not distinctive, the curvilinearity cue again detects the
fingers. In the third one, false lines in the background are eliminated by using the depth
and color information. In the fourth data set, a closed hand is tested. In the last two, a
weak color model is compensated by the depth and the curvilinearity information.
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1. Calculate the probability distribution from the input image by using the
normalized scores of the pixels

2. Choose the previous position of the hand as the initial position of the search
window

3. Calculate the mean-shift vector in the search window

4. Shift the search window to the new mean location

5. Repeat step 3 and 4 until the mean-shift vector is smaller than a certain
threshold

6. Set the detected mode as the new location of the hand

Moreover, a Kalman filter [205] is employed together with the tracker to cope
with situations where the hands are not visible, lost due to the image noise, motion
blur or occlusions. A constant velocity model is used and the filter is updated
with the measurements (detected 2D position of the hand) coming from the main
tracker. Given the position vector x = (x, y)T and velocity vector v = (vx, vy)T ,
the state equation is given by(

x
v

)(t)

=

(
I I
0 I

)(
x
v

)(t−1)

+ ε (6.25)

and the output equation is

x(t) = (I 0)

(
x
v

)(t)

+ ν (6.26)

since x is directly observable. Here, I denotes a 2x2 identity matrix, ε is the
process noise and ν represents the measurement noise, respectively.

When the main tracker fails, Kalman predictions are used as the 2D positions
of the hand for n frames. If the main tracker cannot track the hand for n frames,
then the hand is labeled as ”lost” and the maximum score in the image is searched
to reinitialize the tracker. If the maximum score is smaller than a certain threshold
or isolated from other high-scored pixels then the search is repeated in the next
frame. We perform the search in the top-left quarter of the image in order to
decrease false initializations. Therefore, a user can initiate the tracker by moving
his hand to that corner. Some frames illustrating the hand tracker are given in
Fig.6.7.

6.4.6 Hand Pose Estimation
The pose of the hands is important for interaction and realistic Graphical User
Interface (GUI) rendering. We believe that approximating the segmented hands
with planes is enough for many applications in which the hands are necessary as a
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Figure 6.7: Tracking results with non-stationary (head-mounted) camera under various
indoor/outdoor conditions such as changing illumination and hand pose, cluttered and
similar colored backgrounds.

Figure 6.8: Snapshots from each test sequence.

3D pointing device to select or place virtual content and switch between different
modes of operation.

We obtain the plane hypotheses for every hand region by using the RANSAC
method [59]. Grown regions in the track window (as explained in the previous
section) are used as the candidate regions to obtain the plane hypotheses and the
sampling-scoring steps are performed on these regions.

• Sampling. A plane model can be obtained from three points in the dispar-
ity map sampled at random. Instead of selecting random three points from
all the points inside the track window, we only consider the local maximums
for better accuracy since they are more consistent than the other pixels.

• Scoring. Each model generated by the selected 3 points is evaluated against
all the points inside the window. The quality of the plane is scored by the
inlier count (number of points within a threshold distance Qd to the plane).
After repeating these steps M times, the plane with the highest score is
selected and its normal is used as the z-axis of the coordinate frame located
on the hand.

The average of 3D coordinates of all the inliers is defined as the 3D position
of the hand and as the center of the coordinate frame located on the hand.
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Table 6.1: Properties of the test video sequences.

seq. fast hand outdoor complex changing # of
id motion scene backgr. handpose frames

1
√

-
√ √

800
2

√
-

√ √
2500

3
√ √

-
√

600
4 - - - - 1600
5

√ √ √ √
1300

6 -
√ √

- 1045
7

√ √ √ √
980

The image projections of the inliers are used to calculate the ellipse that fits
these 2D points best in a least-squares sense. The major axis of the ellipse fit on
the hand segments is used as the x-axis: the 3D coordinates of the pixels on the
2D major axis of the ellipse are used to find the 3D line. Afterwards, the y-axis
is defined as the cross product of the x and z axes.

6.5 Results
We utilized 320x240 images and a standard block-matching algorithm to calculate
the disparity images. Our system was tested on a laptop with a 2.7 GHz Core i7
processor (Intel Corporation, USA) and a Linux operating system. The system
can operate at 25-30 fps depending on the background clutter.

6.5.1 Tracking
Various test scenarios and indoor/outdoor scenes, which demonstrate static and
dynamic backgrounds and users, changing illumination conditions, presence of
skin colored objects in the surrounding, etc., were recorded and tested by using
the algorithm described in the previous section. The characteristics of the test
sequences are given in Table.6.1 and the snapshots of the test sequences are given
in Fig.6.8.

The main objective of our experiments is to compare the performance of our
combined cue method with the individual cues as they are used in other algo-
rithms. We compared the tracking with only color, only curvilinearity, color and
curvilinearity, and combination of color, curvilinearity and depth. We didn’t con-
sider the depth only option since it is not possible to segment the hands from
arms without further processing. We also compared our method with a standard
CAMShift algorithm [23] in which the backprojection image is used as a prob-
ability distribution instead of our cues, and the tracker window size is adapted
online. In all experiments, the same color model and camera calibration are used.



138 MULTI-CUE HAND DETECTION AND TRACKING FOR HCI 6.5

Figure 6.9: Total number of successfully tracked frames with non-stationary (head-
mounted) camera under various indoor/outdoor conditions such as changing illumination
and hand pose, cluttered and similar colored backgrounds. Results are normalized w.r.t
the best performing tracker.

We also exclude the Kalman filter in order to compare the tracker performances
independently from the filter predictions.

We define the tracking unsuccessful when the detected mode of the hand prob-
ability distribution (which represents the detected location of the hand) is not on
the hand. Also the tracker is lost, if the maximum score in the search window is
smaller than a certain size. When the tracker is lost, we re-initiate it by searching
for the maximum scored region in the image. In order to decide on the success of
the tracker, we visually inspected the videos and manually annotated the results.

In Fig.6.9, the total number of successfully tracked frames (normalized with
respect to the best performing method) for each test sequence is given. The nor-
malization is done by dividing the total number of successfully tracked frames of
each tracker by the best performing tracker’s total number of successfully tracked
frames. Also the number of successfully tracked frames until the tracking is lost
first time are given in Fig.6.10 (a). The overall performance of the trackers, the
total number of successful frames in all the sequences, are given in Fig.6.10 (b).
Again, the results are normalized with respect to the best performing method.

Our algorithm performs better than the standard CAMShift algorithm. When
the background is simple and does not include any skin colored objects (as in se-
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(a)

(b)

Figure 6.10: The total number of successfully tracked frames (a) until the first lost
frame, (b) in all the test sequences. Results are normalized w.r.t the best performing
tracker.
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Figure 6.11: Snapshots of the detected hand and the marker surface normals. The
detected hand locations are shown in yellow while the normals are illustrated in red.

quence 4) then the performances of all the trackers are good (except the CAMShift
tracker since the arm of the user is naked and the tracker grows over it). However,
when the background is complex and the lighting conditions are changing drasti-
cally, our cue combining algorithm significantly outperforms the others. Moreover,
the utilization of the depth information as a cue reduces the search space when
the tracker is lost. Therefore, reinitialization is more accurate and the overall per-
formance of the tracker is improved, especially in cluttered scenes. Exploitation of
the curvilinearity improved the performance of the tracker when the background
is uniform and skin-colored. Also it makes the tracker focus on the fingers and
copes with the situations in which the user’s bare arms are visible to the camera.
Only in test sequence 6, other trackers perform better than our tracker. This is
due to the existence of highly curvilinear structures (bricks) with similar distance
to the possible hand regions. Also the poor illumination conditions (overexposed
images) in the sequence decreases the effect of the color cue.

As shown in Fig.6.10 (a), the combined method tracks the hands for a longer
period without losing them and in general outperforms the other methods. There-
fore, it is better suited for Human-Computer interaction since it minimizes the
reinitializations.

6.5.2 Pose estimation

In order to evaluate the pose estimation results, we have mounted a marker onto
the hand as shown in Fig.6.11 and used AR Toolkit [89] to detect the position,
Cm, and the surface normal, θm, of the marker. Afterwards we calculate the
position, Ch, and the surface normal, θh, of the hand with the proposed method.
In order to compare the results of the two methods, we use the angle between the
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two normals and the difference between the positions as an error measure.

εθ = arccos(θm · θh) and εc = |Cm − Ch| (6.27)

We have tested our algorithm on 5 different data sets (10000 frames in total)
and compared it to the marker based method. In Fig.6.12 the average errors, εθ,
for different angles between the marker and the camera are given. The average
error is close to 5 degrees when the angle between the normal of the marker and
the camera principal axis is less than 63 degrees. Above 72 degrees the surface
normal of the marker cannot be found in the test sequence and therefore there
are no measurements for that range.

The angle between the marker normal and the camera, and between the hand
normal and the camera are given for two test sequences in Fig.6.13. Also the
distance of the hand and the marker to the camera in the direction of the principal
axis are given in Fig.6.14. When the marker or the hand is lost in test sequences,
the corresponding estimates are set to zero in the graphs. As shown in the figures,
the estimates are very close to each other when the marker and the hand are
detected. Also, the hand is detected successfully while the marker is lost in some
frames.

6.6 Conclusion
In this chapter we proposed a multi-cue stereo based hand detection and tracking
system which exploits depth, color and gradient information to track and estimate
the 3D pose of the hands. Experimental results showed that the locations and the
surface normal of the hands are determined accurately (approximately as good as
a marker or better). Compared to the other tested methods our algorithm is less
sensitive to the background color, robust against camera and background motion
and leads to more accurate segmentation results. This robustness makes it better
suited to operate in different environments than current algorithms, which make
it suitable for head-mounted display based augmented reality applications.
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Figure 6.12: Average error for different angles between the marker and the camera. In
the experiments the marker cannot be detected above 72 degrees and therefore there are
no measurements.
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Figure 6.13: The angle between the marker normal and the camera, and between the
hand normal and the camera for sequences 1 and 2.
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Figure 6.14: The distance of the hand and the marker to the camera in the direction
of the principal axis for sequences 1 and 2.



Chapter7
Conclusion

If you only read the books that everyone else is reading,
you can only think what everyone else is thinking.

Haruki Murakami, Norwegian Wood

This thesis has presented and demonstrated the application of computer vision
algorithms to create a marker-less mobile/wearable Augmented Reality (AR) sys-
tem that can provide assistive services to its users. The overall design of the
system includes creating the necessary software modules and combining them
with its hardware. The final design allows interaction between two parties and
their environment while providing tools, guidance and information to the on-site
and off-site users to perform their tasks independently from each other.

AR technologies already have quite a history in this field and many attempts
have been made to use AR to create meaningful, immersive experiences incorpo-
rating humans and computers. The Delft University of Technology initiated AR
research in 1999 with outdoor head-mounted optical see-through AR, fusing data
from a GPS, a natural feature tracking camera, and an inertia tracker, using a
desktop PC in a backpack [150, 151]. Soon a switch back was made to indoor
AR based on markers and inertia tracker data via Caarls’ system [26] in order
to improve the accuracy of the head-pose estimation by the vision system and to
obtain measurements on the static and dynamic accuracy of the estimates. In
this work, we shift our focus from art and design [27] onto spatial analysis using
multiple AR systems, more specifically we selected the Crime Scene Investigation
(CSI) as our application domain.

We introduced the challenges originated from mobile AR and CSI and derived
the requirements of a system that is necessary to overcome these challenges, such
as marker-less, extensible tracking for augmenting a real scene with virtual ob-
jects, on-line and on-site scene structure capturing, hand gestures for user interface
operation, remote connection to and collaboration with experts, a lightweight and
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affordable head-mounted display (HMD) and a wearable computer and real-time
and robust operation.

In order to design a modular, lightweight and affordable system for the on-
site user, in contrast with Caarls [27] who uses optical see-through display, we
selected a video see-through head-mounted display (HMD), a wearable computer
and two web-cameras as input sensors. The off-site users use standard computers
and displays since they are confined to desktop environments and don’t perform
scene exploration.

We used Cinemizer OLED (Carl Zeiss AG, Germany) glasses which has 720p
high-resolution displays with approximately a 32-degree field of view. We attached
a stereo rig that is composed of two cameras that can output color images with
720p resolution at 30 fps. Together with the glasses the system weighs 170 grams.
According to our discussions with the users, the resolution of the displays creates
a satisfying user experience and the total weight of the system does not disturb
the user during operation. So a comfortable, lightweight and affordable wearable
hardware requirement is satisfied with our system. The cables of the glasses and
cameras make it difficult to wear the system and the overall design can benefit a
lot from a wireless headset, however there is still no affordable wireless headset
available in the market.

Our software works in multiple threads to perform visual odometry, recon-
struction and HCI tasks in parallel. Each module is separated from the other
modules with the multi-threaded design which increases the performance and the
robustness of the system. This system enables virtual content augmentation of a
real scene by both the on-site and the remote user simultaneously. Two sides can
communicate over the network and manipulate their perception by altering the
scene. The system provides a remote connection for collaboration with experts.
Although the evaluation of the remote connection is out of the scope of this thesis,
we address this requirement in our design and a successful communication and
virtual content augmentation is observed during tests. According to our discus-
sions with the remote users, adding virtual content to on-site user’s view helps
the communication between the users.

In this thesis, we explain the mathematical background and briefly discuss
most of the computer vision algorithms used for readers that are not familiar
with the basic and advanced concepts.

One of the requirements is, a marker-less extensible camera tracking system,
necessary to preserve the spatial consistency between the real and the virtual
world, and to augment the scene with virtual objects. We aimed for a latency
less than 50 milliseconds and the accuracy should be minimal such that the user
doesn’t feel any jitter during a tracking in medium-sized environments. Therefore,
we present a visual odometry method that tracks the head-pose of the user in real
time by using natural features available in the scene. We created a two stage
real-time tracking method to minimize the drift while being robust against fast
camera motions.
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The visual odometry algorithm is able to track the pose of the camera at
approximately 45-50 fps which results in approximately 20 milliseconds latency
between the time that the tracker takes the measurements and the time that the
graphics engine renders the augmented image. Therefore, the processing time re-
quirement is satisfied. Also a sparse 3D map of the scene is created and extended
during the operation to not to limit the motion of the user to small spaces. Uti-
lization of bundle adjustment continuously refines the maps and reduces the errors
accumulated during operation. Since the global error is minimized continuously,
bigger and more accurate maps can be tracked for longer times. Also running the
bundle adjuster in a separate thread enables refinement without degrading the
performance of the tracker. Moreover, the adaptive feature detection algorithm
ensures a fixed amount of features in varying environment conditions and helps
the tracking for continuous and robust operation. In our experiments we com-
pared our system with a marker-based method and showed that our algorithm is
not sensitive to the distance between the camera and the marker (or initial map
points), robust against different viewing angles, and leads to more accurate and
consistent pose estimation results. Experimental results showed that the system
is able to track the camera pose in medium sized environments such as rooms
and corridors with varying environmental conditions. High accuracy and the fast
operation of our system enables marker-less, extensible tracking for augmenting
a real scene with virtual objects.

A dense 3D reconstruction of a crime scene is necessary to capture the initial
structure of the scene and give a medium to the on-site and off-site users to
perform measurements. As described in the requirements section in Chapter 1,
reconstructed scenes are required to successfully represent the scenes, be visually
satisfying and have a spatial resolution of a few centimeter. Also the maps should
be created in near real-time as the user moves around and we set the maximum
computational time of creating a dense map from a stereo image pair as 1 fps.

The proposed system utilizes the stereo images and the camera pose estimated
during the motion of the on-site user, and creates a metric, dense 3D map of the
scene in real time. This map is enhanced when the user sees the same part of the
scene and extended when the user explores new parts of the scene. In our exper-
iments, we tested three stereo matching algorithms and created various maps. In
general, the created maps are consistent in spatial domain, visually satisfying and
successfully represent the scenes. However, the quality of the maps decreases as
the texture in the scene decreases. Also a couple of stereo pairs with inaccurate
pose information can degrade the quality of the maps significantly. Therefore, the
maps can be improved using a global (slower) multi-view stereo algorithms and
higher resolution images. The overall reconstruction can be performed in approx-
imately 3 fps and a few centimeters spatial resolution is achieved which satisfies
our requirements. Moreover, since the created map is transmitted to remote ex-
perts, this on-line and on-site scene structure capturing establishes a common
ground between the remote and co-located users to perform various tasks.
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Human-Computer Interaction (HCI) is an important aspect of a mobile AR
setup. Exploitation of the user’s hands as an interaction device instead of other
auxiliary equipment frees the user’s hands for other tasks. Also, from the CSI
point of view, the hands of the user should be free for interaction with the scene.
e.g. securing evidences, when needed. Also, the user interface is required to
operate in real time and in parallel to the tracking so that the user can interact
with the system while the tracking is running in the background. Therefore, we
introduced a HCI method that uses multiple cues such as depth, curvilinearity
and color to detect and track the hands of the user.

The pose of the hand is calculated from the detected hand regions and used for
displaying menus and utilizing various tools such as tagging and system control
tools. The proposed system detects and tracks the hands successfully in real-time,
is less sensitive to the background color, robust against camera and background
motion and leads to more accurate segmentation results then the other tested
methods. In our experiments, we also compared our system with a marker-based
pose estimation method to evaluate the accuracy. The results showed that the
locations and the surface normal of the hands are determined accurately (approx-
imately as good as a marker or better). This robustness makes the HCI better
suited to operate in different environments than current algorithms, which makes
it suitable for head-mounted display based AR applications.

According to our knowledge, this is one of the first examples of a complete
3D stereo AR system that integrates 3D marker-less AR capabilities with dense
reconstruction, remote collaboration and HCI in a carefully engineered way that
can be applied to the CSI domain. The developed system was demonstrated in
various events as illustrated in the Appendix.

7.1 System Evaluation in CSI
Although the main focus of this thesis is the computer vision aspects of an as-
sistive AR system, we have used the domain of Crime Scene Investigation (CSI)
as the use case to study AR and remote collaboration. We summarize the eval-
uation results of the system from the CSI point of view which is also extensively
explained in [155]. Some interesting points mentioned are:

Within the experiment, the privacy of the HMD wearer turned out to be a major
concern. Literally, every move is recorded, if someone missed something it can
be retraced. One investigator remarked: ”I consider this somewhat privacy in-
truding, but based on our car GPS they already know where we are all the time,
which took some getting-used-to too”. Another one remarked: ”Some special-
ist teams already have mounted cameras specifically used for their protection”.
Compared to the above, our system not only records the investigation but also
allows someone else to look at what you do from a remote location. A lot of the
crime scene investigators that are the first to arrive on a crime scene handle the
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case from experience.

When they are asked to write a report about their on-going investigation they are
generally incomplete in their reporting (according to the observers). Quote when
they are asked to write about researching a certain trace they will tell you but
never write that down. They prefer not to be bothered with desk work and the
team has to trust their experience. Recording their activity can be either positive
or negative. When they do not have to write everything down, every move is
monitored. If the recording is perceived as a tool to monitor their work, it will
encounter resistance. According to the observers, only with new recruits it will
be possible to change the way of working. Furthermore, because our research is
aimed at the pre-assessment on location, we do not specifically focus on inves-
tigators such as judges and court options. According to the observers a judge
would appreciate the option to review the research of an investigator, the record
of an investigation. Again privacy is at stake here but according to the observers
it may improve the quality of the research in the end.

During our experiment it became clear that the presence of the expert is not expe-
rienced. In particular, when the expert creates or moves objects in the scene with-
out verbal indications, disconnection between both participants occurs. There is
a need to raise collaboration awareness to indicate the status of the other or where
he is looking at, etc. (for instance by displaying an eyes avatar representing the
gaze of the remote user) Our mediated reality system supports a whole new range
of interaction and indicates a need for new mechanisms to achieve virtual presence.

Within our experiment the experts also remark that some investigators still would
like to see the location with their own eyes. In our system the virtualized interac-
tion results in only one or two predominant human senses. Further experiments
are needed to explore how to support experts in their presence on the location
and to understand what they miss when they use our mediated reality system
with respect to be physically there?

One of the observers is also crime scene investigation trainer and liked to know if
it was possible to setup a scenario, not for real investigation but for pure training
purposes. He, e.g., asked: can you inflict virtual injury on a dummy or actor?
Looking at the capabilities of the movie industry it seems possible, however, that
it is currently still a manual procedure that uses pre-scanned objects, high dy-
namic range imagery and considerable render time. With the current system
virtual objects stand out from real objects.
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7.2 Future Research Directions

Although the work in this thesis presents a complete solution for a robust AR sys-
tem to assist (collaborating) users, there are many unsolved problems that needs
to be investigated in the future research. Some examples of these directions are:

Utilization of different sensors: After the introduction of depth cameras (RGB-D
cameras) such as XBox 360 Microsoft Kinect to the market for affordable prices,
depth sensors are becoming more and more popular. With the growing demand
of consumers, smaller and more accurate depth sensors are becoming available
with less power consumption and cheaper prices. In the near future, these sensors
can be mounted on the headset to support the visual tracking, 3D reconstruction
and human-computer interaction. Moreover, inertial sensors can also be rein-
troduced [27] to take the burden from the visual tracking especially during fast
camera motions.

Combining real-time visual odometry and reconstruction with other computer vi-
sion algorithms to extend the application field : The overall system can be en-
hanced and its assistive capabilities can be increased by incorporating other al-
gorithms such as face recognition, automating tagging etc.. The system can also
be combined with object recognition modules to locate and recognize objects and
guide the user towards them or inform the user about them. Such a combina-
tion can be used for educational purposes (for example in the museums to inform
people about paintings, sculptures, etc.) as well as for guiding purposes (guiding
people in unknown buildings). Such image processing combinations can extend
the usability of the system and improve the performance.

New cameras and glasses with better hardware: The immersive aspects of the
system can be improved by using better glasses with higher field-of-view, higher
resolution, smaller size and lighter weight. Also new camera generations supply
faster frame rates with higher image quality. Finally, the computers can be re-
placed by dedicated hardware that will provide a setup that is easier to carry.
One possibility to support walking more freely would be to port our algorithms
to a mobile platforms that can be worn on a belt.

New awareness forms: New methods of tele-presence becoming available with the
technologies like our system. Therefore, either traditional patterns for computer-
mediated interaction support awareness in mediated reality or rather new aware-
ness forms need to be designed. The communication support of our current system
needs further thought, especially the virtual presence of the expert in relation to
the layman, privacy and security.

Incorporation of different senses: Besides the visual system, sound and smell
can also be used for investigation and annotation of the scene. Smell can be
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used to detect various situations such as presence of gas or decomposing organic
substances in the scene. Also the sound around the investigated scene can be
localized and recorded. This extra information can be tagged in the maps, and
further investigation can be done by utilizing them.

More complex HCI methods: Recognizing more complex hand gestures would
enable more complicated interaction with the scene, upscaling the resolution with
faster algorithms are therefore high on the list.

Support for multiple on-site and off-site users (collaborators): Establishing a
common ground between multiple on-site and off-site users and enabling them
to communicate and collaborate over a global map is necessary to support bigger
teams of users (as in collaborative product design). In CSI domain, the first step
towards that goal would be merging multiple maps that are created when mul-
tiple users roam in the same or different scene (such as the rooms of a house).
Automatic merging of created maps can help multiple users to augment the same
map and communicate with each other over a global map during operation.
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AppendixA
Demonstration of the System

The developed system was demonstrated in various events, such as ’The Night
of the Nerds, Amsterdam’, ’The opening day of CSI labs, Den Haag’ and ’Pauw
& Witteman Show, Amsterdam’ as illustrated in the following sections and men-
tioned in various newspapers such as ’De Telegraaf’, ’De Pers’, ’Metro’ and mag-
azines such as the ’New Scientist’ and ’De Ingenieur’.

A.1 The night of the nerds

A.2 The opening of CSI Lab

A.3 Pauw and Witteman show

153



154 APPENDIX A

Figure A.1: The night of the nerds in Amsterdam.

Figure A.2: The opening of Crime Scene Investigation Lab in Den Haag.
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Figure A.3: Pauw and Witteman show on TV.
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Summary

Robust Augmented Reality

The field of Computer Vision is concerned with problems that involve interfacing
computers with their surrounding environment through cameras. Consequently
artificial vision systems can replace human perception in many tasks. Recent
advances in technology, such as increase in computational power, good quality
low cost CMOS cameras, improvement in peripherals and decreasing form-factor,
allow the vision systems to be carried on roaming platforms such as tablet PCs
and mobile phones. More generally, it leads to the possibility of wearable visual
computing that can assist its carrier such as humans or robots in executing various
perception-action tasks.

Augmented Reality (AR) technologies already have a history in the field of
computer vision and many attempts have been made to use AR to create meaning-
ful, immersive experiences incorporating humans and computers. It is appealing
for many applications such as in entertainment and gaming to improve and enrich
perception, cognition and interaction by providing extra information and guidance
that is not available in the immediate surroundings.

This thesis presents the application of computer vision algorithms to create a
marker-less, mobile and wearable AR system that can provide assistive services
to its users. The overall system design includes definition and implementation of
the necessary software modules as well as its combination with digital hardware.
In the wearable mobile set-up we discuss in this thesis, the user can perceive 3D
virtual moving objects augmenting the real world perceived at the same time.

The Delft University of Technology initiated their AR research in 1999 with
outdoor head-mounted optical see-through AR, fusing data from a GPS, a nat-
ural feature tracking camera, and an inertia tracker, using a desktop PC in a
backpack. Soon a switch back was made to indoor AR based on markers and
inertia tracker data in order to improve the real-time performance and static and
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dynamic accuracy of the head-pose estimation by the visual odometry system.
For applications we collaborated since 2006 with the Royal Academy of Art in
The Hague, which has implemented many projects in art and design with our
systems. In this thesis, our focus has shifted from art and design onto the design
and implementation of a system for multi-user collaboration and spatial analysis
using multiple AR systems; more specifically we selected Crime Scene Investiga-
tion (CSI) as our application domain. For this we collaborated with the Systems
Engineering Section (SES-TPM) of TU Delft and the National Forensic Institute
in The Hague. We also switched from optical see-through head-mounted displays
(HMD) to cheaper video see-through head mounted displays a.k.a eye wear.

In this thesis, we introduce the challenges of mobile AR and CSI, and derive
the system requirements that can meet these challenges. We further discuss how a
remote collaborator can work with on-site users by decoupling him/her self from
the on-site user’s view while assisting the investigation. Then we present the
real-time and on-line modules that satisfy these requirements:

• Robust, marker-less, extensible auto-motion tracking based on the tracking
of 3D key-points observed by a low cost stereo camera pair

• Coarse 3D map-building to be able to augment a real scene with virtual
objects, while roaming around in e.g. crime scenes

• On-line and on-site scene structure capturing by reconstructing a metric,
dense 3D map of the scene in real time, with the aim to let off-scene experts
guide the CSIs

• Human-Computer Interaction (HCI) software that exploits the user’s hand
motions. This acts as an interaction device for user interface operation
instead of other auxiliary equipment, such as keyboard and mouse. With
this HCI the user - e.g. a CSI - can place virtual objects in the scene, such
as tags indicating the position of found evidence

• Software for remote connection to and on-line collaboration with off-scene
experts, a lightweight and affordable HMD and a wearable computer

The realized head-mounted AR system allows interaction and collaboration
between two or more parties and their environment, while it provides tools, guid-
ance and information to on-site and off-site users to perform their tasks both
independently and in collaboration with each other. According to our knowledge,
this is one of the first examples of a complete 3D stereo AR system that integrates
3D marker-less AR capabilities with dense reconstruction, remote collaboration
and HCI in a carefully engineered way that can be applied in the CSI domain and
many other applications in which on-scene and off-scene experts work together.

Oytun Akman



Samenvatting

Robuuste Augmented Reality
Binnen de computer vision (computerwaarneming) wordt onderzocht hoe com-
puters kunnen reageren op hun omgeving door middel van camera’s. Hierdoor
kunnen ze in veel gevallen menselijk toezicht vervangen. Vanwege nieuwe on-
twikkelingen op het gebied van snellere computers, goede en goedkope camera’s,
betere randapparatuur en kleinere formaten kunnen dit soort systemen nu worden
gebruikt in mobiele en draagbare apparaten zoals tablet PCs en mobiele telefoons.
Draagbare, ziende systemen kunnen zo de drager – zowel mens als robot – helpen
in het uitvoeren van diverse taken.

Augmented Reality (AR; toegevoegde werkelijkheid) wordt al lang onderzocht
binnen de computer vision, en er is al vaak geprobeerd om via AR de gebruik-
servaring van computers te verbeteren. Veel toepassingen, zoals gaming, kunnen
baat hebben bij de rijkere perceptie, cognitie en interactie die mogelijk worden
door de toegevoeging van informatie en sturing die niet in de directe omgeving
beschikbaar zijn.

Dit proefschrift beschrijft de toepassing van computer vision algoritmen om
een mobiel en draagbaar AR systeem te maken dat de gebruiker kan ondersteunen
in dagelijkse omgevingen. Het werk omvat het ontwerp en de implementatie van
de benodigde softwarecomponenten en de combinatie met camera’s en displays.
Dragers van het systeem kunnen tegelijk 3D virtuele bewegende objecten en de
echte wereld waarnemen.

De TU Delft is in 1999 begonnen met onderzoek naar AR, met een deels
transparant scherm in een bril. Dat voor buitengebruik bedoelde systeem combi-
neerde GPS, een inertiasensor en een op natuurlijke kenmerken gebaseerde cam-
era, en werd gedragen als een rugzak. Al snel werd dat vervangen door een
binnenshuissysteem met vaste patronen om de snelheid en naukeurigheid van
de positiebepaling te verbeteren. Voor toepassingen werd samengewerkt met de
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Koninklijke Academie van Beeldende Kunsten in Den Haag, dat veel projecten
met dit systeem heeft verwezenlijkt. In dit proefschrift is de focus verschoven
van kunst naar de samenwerking tussen meerdere gebruikers, en wel op het ge-
bied van sporenonderzoek. Hiervoor hebben we samengewerkt met de Sectie Sys-
teemkunde van de Faculteit Techniek, Bestuur en Management van de TU Delft
en het Nederlands Forensisch Instituut in Den Haag. Ook maken we nu gebruik
van goedkopere videobrillen zonder transparante schermen, waarop de gebruiker
een actuele video van de omgeving ziet.

In dit proefschrift beschrijven we de uitdagingen voor mobiele AR en sporenon-
derzoek, en leiden de voorwaarden af waaraan een system voor deze toepassing
moet voldoen. Ook beschrijven we hoe onderzoekers op afstand en op lokatie via
AR samen kunnen werken, waarbij het standpunt van de coordinator op afstand
losgekoppeld kan worden van de onderzoekers ter plekke. Daarna presenteren we
onze software, die aan de gestelde eisen voldoet zonder daarbij het getoonde beeld
te vertragen:

• Robuuste, uitbreidbare hoofdpositiebepaling met een goedkope stereocam-
era door het volgen van 3D punten met natuurlijke kenmerken

• Het bouwen van een ruwe 3D kaart van de omgeving om virtuele objecten
te kunnen plaatsen terwijl de gebruiker rondloopt

• Het zonder vertraging modelleren van de omgeving door middel van een
fijne, metrische 3D kaart, zodat experts op afstand de onderzoekers kunnen
sturen.

• Mens-machine interactie (MMI) met handbewegingen, zodat de gebruikers
geen toetsenbord of muis hoeven te gebruiken. Hiermee kunnen virtuele
objecten worden geplaatst, zoals kaartjes bij gevonden bewijsmateriaal.

• Software om op afstand samen te kunnen werken met experts, een lichte en
betaalbare headset, en een draagbare computer.

Met het door ons gebouwde AR systeem kunnen meerdere personen werken
binnen een gedeelde, deels virtuele omgeving. Het biedt de informatie en sturing
die nodig zijn om mensen op lokatie en op afstand hun taken te laten uitvoeren en
samen te laten werken. Voorzover wij weten is dit een van de eerste voorbeelden
van een compleet 3D stereo AR systeem dat 3D AR met natuurlijke kenmerken
combineert met een dichte reconstructie, samenwerken op afstand en MMI, op een
manier dat het gebruikt kan worden in sporenonderzoek en vele andere toepassin-
gen waarin experts op verschillende lokaties samenwerken.

Oytun Akman
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