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 i 

Executive Summary 
Healthcare systems worldwide are under increasing strain due to rising demand, limited 

resources, and rising costs. Neonatal care faces particularly critical challenges, as 

newborns within the first 28 days of life are highly vulnerable and require intensive care to 

prevent long-term health complications. In the Netherlands, a severe shortage of 

operational bed capacity in neonatal care is compounded by significant staffing shortages. 

In the southwest region, 36% of hospitals have closed neonatal beds due to these staffing 

shortages. Increasing staffing levels is unlikely in the short term, given the overall shortage 

of healthcare personnel, the specialized qualifications required for neonatal care, and the 

high stress levels associated with the job. This situation underscores the urgent need for 

alternative strategies to prevent further deterioration in neonatal care. 

The neonatal care system in the Netherlands is structured into three escalating levels of 

specialization: neonatal medium care wards, high care wards, and Neonatal Intensive 

Care Units (NICUs), each addressing varying degrees of medical needs for newborns. 

This system is structured to deliver the right level of care based on the newborn's 

condition, but it brings challenges. Patients often need to be transferred between hospitals 

to get the appropriate care, and if no local beds are available, they may have to be 

transferred to outside the region. Given these complexities, modeling and simulation is a 

suitable method for analyzing this interactive and interdependent system. However, the 

existing literature on this topic is limited, not directly applicable to the Dutch context, and 

often overlooks the constraints posed by staffing limitations. Hence, the following research 

question arises: 

How can operational bed capacity shortages in neonatal care be reduced within staffing 

limitations? 

A discrete-event simulation model was developed to address the issue of perinatal bed 

capacity shortages in a regional hospital network. The model was grounded in an analysis 

of the region's perinatal birth registry data and is capable of simulating patient arrivals, 

hospital stays, and transfers across various ward levels and hospitals in the region. The 

model was utilized to evaluate capacity shortages from two key perspectives, each 

associated with distinct performance indicators. 

The first perspective, focused on hospital management, examined the number of beds 

required for patients within the region and the weekly occupancy rate at the ward level. 

This view provided critical insights into the impact of capacity shortages on individual 

hospitals and at the aggregate ward level. The second perspective, from a societal 
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viewpoint, assessed the capacity transfer rate, specifically the percentage of patients 

needing to be transferred to hospitals outside the region due to insufficient local capacity. 

Additionally, it analyzed the weekly capacity transfers, correlating the number of transfers 

per week with the weekly occupancy rates, and highlighting the implications for the patient 

population under varying occupancy conditions. 

The simulation model facilitated the exploration of various scenarios to answer "what-if" 

questions. The analysis revealed that under the current capacity constraints, both the 

NICU and high care wards experience average weekly occupancy rates exceeding 90%, 

resulting in a capacity transfer rate of over 20%. This means that, on average, one in five 

patients must be transferred to an out-of-region hospital. Furthermore, ongoing 

discussions about lowering the minimum gestational age for NICU admissions from 24 to 

23 weeks would exacerbate these capacity challenges, making it clear that such a policy 

change would be unsustainable given the current number of operational beds. 

The study identified and assessed several system levers for their potential to mitigate 

capacity shortages, based on findings from data analysis and literature. Among these 

levers: 

Reducing Length of Stay (LoS): This lever tested the impact of decreasing the LoS 

across patients at different ward levels. Interestingly, already 10% reduction in LoS for 

high-care patients significantly alleviated capacity pressures, reducing the number of 

required beds to align with current availability. 

Adjusting Admission Rates: The lever tested modifying admission rates to shift bed 

demand between different ward levels, aiming to optimize resource utilization. This 

adjustment introduces a trade-off between ward levels, as improvements in one come at 

the cost of another. 

Changing Patient Pathways: Patients with extended stays experience disproportionately 

long LoS and, therefore, contribute more to capacity shortages. To address this, the effect 

of shifting all post-ICU patients from high care to medium care after staying additional days 

in the NICU was tested. This change resulted in an almost 10-percentage-point decrease 

in capacity transfers for the high care level. 

Using the insights of the system levers and additional information gained through 

interviews and literature, currently relevant interventions were tested for their impact on 

capacity shortages. 
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Phototherapy at Home for Jaundice: While early discharge for jaundiced patients might 

improve the quality of care, it only reduced the region's bed requirements by 0.6%, with 

minimal impact on capacity transfer rates and occupancy rates across all wards. 

Switching from Intravenous to Oral Antibiotics for Early-Onset Sepsis: Clinical trials 

suggested that this intervention could reduce LoS. The simulation experiment showed that 

it led to a 2.3% reduction in the region's bed requirements and a 0.76%-point decrease in 

the high-care capacity transfer rate, thus, providing valuable impact on the capacity 

shortages. 

Lowering the NICU Gestational Age Threshold: Reducing the NICU threshold to 31 

weeks of gestation would bring the required NICU bed count in line with current capacity 

and lower the capacity transfer rate to just under 15%. However, this would drastically 

increase pressure on the high care wards, leading to nearly 99% occupancy and a 30% 

transfer rate. 

The analysis concluded that there is no single solution to the current capacity challenges. 

Trade-offs are inevitable, particularly between different ward levels. To address these 

challenges, a combined intervention strategy was tested. This strategy integrated 

phototherapy at home, oral antibiotics for early-onset sepsis, a NICU age threshold of 31 

weeks, and a shift of post-IC patients to medium care. The combined approach yielded 

promising results, reducing the NICU's weekly occupancy rate by 2 percentage points and 

lowering the high care capacity transfer rate by 0.9 percentage points. While this strategy 

increased the load on medium care, the ward level was able to accommodate the 

additional demand, maintaining a manageable weekly occupancy rate of around 75%. 

This study highlighted the ongoing challenges of operational bed capacity shortages and 

provided actionable insights for mitigating these issues within existing staffing limitations. 

Interventions aimed at redistributing patient loads across different ward levels emerged as 

particularly promising. Looking forward, the simulation model can serve as a valuable tool 

for assessing the capacity impact of various interventions, guiding decision-making 

towards sustainable solutions in this critical area. 
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1 Introduction 
Healthcare systems worldwide face pressure due to resource constraints and increasing 

demand and costs (OECD, 2023). Hence, there is an urgent need for innovative solutions 

across all parts of the system to ensure quality and accessibility. Among the most critical 

areas in healthcare is neonatal care, as neonates, infants up to 28 days, are some of the 

most vulnerable in our society and need high-quality care to minimize the increasing risk 

of long-term health complications (Patel, 2016; Valeri et al., 2015). In 2021, 2.3 million 

children worldwide died in the first month of their lives, constituting almost half of all 

under-five-year-old deaths (UNICEF, 2023). While most of these deaths happen in the 

global south, neonates are also disproportionally at risk in countries in the global north 

like the Netherlands. Moreover, Although the infant mortality rate is low in the Netherlands, 

it is relatively higher than in neighboring countries and has stagnated in recent years 

(College Perinatale Zorg, 2020). 

One of the main challenges for neonatal care in the Netherlands are operational bed 

capacity shortages driven by staffing shortages. For instance, 36% of hospitals in the 

southwest region of the Netherlands have been forced to close beds due to staffing 

limitations (Traumacentrum Zuidwest-Nederland, 2023). Given the ongoing capacity 

constraints, there is the risk of further deterioration in quality and availability of care as 

capacity strains have been linked with decreasing quality of care and outcomes (Eriksson 

et al., 2017). Moreover, the emotionally challenging nature of NICU nursing, such as the 

distress of caring for critically ill newborns and dealing with the grief of families during 

difficult outcomes, leads to further staff shortages (Braithwaite, 2008; Fiske, 2018). The 

situation is further exacerbated as given the current situation an increasing number of 

novice nurses leaving the profession early in their careers (Kox et al., 2020). Establishing 

a sustainable staffing level requires long-term planning and substantial investment and, 

hence, is not a realistic option to tackle the current capacity shortages. Thus, interventions 

outside of staffing that have a direct impact on the ongoing crisis need to be investigated. 

To do so, one first needs to understand how the neonatal care system works. 

1.1 Neonatal Care in the Netherlands 
Neonatal care is a subfield of healthcare delivery that has experienced growing attention 

and investment in the past decades. A neonate is an infant up to the age of 28 days, and 

neonatal care includes all services provided during this time. A neonate can be admitted 
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due to their gestational age, birth weight, or special need for medical assistance (NVOG, 

2007). 

Neonatal care organizations can differ across countries based on admission criteria and 

the level of specialized care provided at each respective level (British Association Of 

Perinatal Medicine, 2010; Committee on Fetus and Newborn, 2004). In 1975, a 

regionalized system including defining levels of specialization for hospitals was first 

introduced in the United States (Ryan, 1975). In the subsequent years and decades, the 

approach of specialization was adopted in a similar manner across high-income countries, 

although differences in the specifications for levels of neonatal care remain. 

In the Netherlands, neonatal care is categorized into three escalating levels of 

specialization and intensity: neonatal medium care wards, neonatal high care wards, and 

NICUs (Planningsbesluit Bijzondere Perinatologische Zorg, 2018). NICUs manage the 

most critical cases, often involving newborns who are extremely premature and require 

constant monitoring and assistance with vital functions like breathing and cardiovascular 

support. High care wards typically cater to infants who, although stable, still need 

significant medical attention, such as incubation or intravenous therapy due to fragile 

health. Medium care wards, in contrast, handle cases that are less severe; these infants 

may need help with feeding or medications post-birth but do not require intensive 

monitoring. The distribution of specialized neonatal care wards across different hospitals, 

each offering varying levels of care, necessitates patient transfers to ensure that newborns 

receive treatment appropriate to their specific medical needs. These transfers introduce 

additional stress and complexity to the patient's journey (Stark et al., 2023). 

Despite the structured approach, the neonatal care system in the Netherlands faces 

several challenges. As an outcome of capacity shortages, some mothers and neonates 

have to be transferred between hospitals and regions, raising the risk of long-term adverse 

effects on the newborn and emotional stress for their families (Gill, 2004). Additionally, 

neonatal staff planning is complicated "because NICU babies have dynamic medical and 

surgical needs from admission to discharge" (Feldman & Rohan, 2022). Given these 

circumstances, there is a knowledge gap in ways to reduce capacity shortages given the 

existing staffing resource constraints (Hussain et al., 2012). 

Current literature on interventions in neonatal care can be categorized into three main 

areas: technological, hospital management, and clinical interventions. Each of these 

categories includes various efforts aimed at enhancing patient outcomes and improving 

cost-effectiveness, as further detailed in chapter 3.1. However, there are still gaps in the 

literature regarding the inclusion of the impact on capacity shortages when evaluating 
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these interventions. This suggests a need for more comprehensive assessments that 

consider how interventions affect not only patient care but also the availability of critical 

resources within neonatal care systems. 

This study was focused on the neonatal care region in the southwest of the Netherlands, 

organized around the Erasmus MC University Hospital in Rotterdam. This network 

comprises ten hospitals, each offering different levels of care to comprehensively serve 

the region's needs. The structure includes one NICU, four high care wards, and four 

medium care wards, ensuring a full spectrum of neonatal services. In theory, each 

neonatal region is designed to be self-sustaining, with hospitals complementing each 

other's functions. However, practical scenarios often differ. Hospitals located near other 

regions sometimes admit patients from those areas if the ZIP code is closer to that 

hospital. Additionally, the region not only receives neonates from neighboring areas but 

also occasionally must send them to other regions or even neighboring countries like 

Belgium to the south. This interdependency indicates that the neonatal care system in one 

region is influenced by and connected with surrounding systems and requires 

sophisticated tools for analysis – like as modeling and simulation. 

1.2 Modeling and Simulation in Neonatal Care 
Modeling and Simulation describes the process of creating a representation of a real-world 

system and then conduct experiments using computational tools to find out about the 

system's behavior across various scenarios (Birta & Arbez, 2019). This approach is 

grounded in systems thinking, a methodology that emphasizes the interconnectedness 

and interdependencies within a system to gain insights into its overall behavior (Arnold & 

Wade, 2015). The primary goal of modeling and simulation is to simplify and abstract 

actual processes and entities to enhance understanding of a real-world system. 

On the one hand, simulations provide multiple advantages to decision-makers and 

research as they can replace a real-world experiment. It provides a cost-efficient way of 

trying out potential interventions as well as test scenarios that might be too difficult, 

irreversible, or morally unacceptable to simulate in the real world. For instance, in a 

healthcare context, simulating the effects of a sudden reduction in staff levels or a rapid 

increase in patient influx can be extremely challenging to implement without causing 

disruption or harm. Similarly, experimenting with withholding treatment from a control 

group to study outcomes would be ethically unacceptable. Moreover, the simulation team 

has full control over the system and can zoom in on specific subprocesses and input 

variables to identify the interactions and impact. Simulation models are often also used as 
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a communication tool through animations and the analysis of key performance indicators 

and the intuitiveness of the approach (Birta & Arbez, 2019; Robinson, 2014). 

On the other hand, modeling and simulation might not always be the most suitable choice 

given its potential disadvantages. The approach is computer resource and time consuming 

and requires accurate and representative data. Due to the own bias of the project team, 

the model will always represent a specific angle on a given problem. Thus, it is essential 

to fully understand the model scope, granularity and goal to evaluate if a model is fit-for-

purpose (Birta & Arbez, 2019). 

Given its advantages and disadvantages, modeling and simulation has been well 

established across diverse fields and is seeing rising popularity. Its applications span from 

supply chain management to military strategy and manufacturing, serving functions such 

as forecasting, policy evaluation, and risk assessment (Birta & Arbez, 2019). The broad 

adoption of modeling and simulation underscores its value in providing insights and 

highlights its potential benefits for enhancing healthcare systems. 

Considering these complexities of the neonatal care system, simulation modeling 

approaches provide a promising chance to gain new insights and evaluate interventions 

(Cassidy et al., 2019). Simulation techniques are suitable and needed as they can 

overcome the challenges of variability, uncertainty, and complexity in the described 

system (Lowery et al., 1994). The neonatal care system is a conglomerate of multiple 

hospitals and multiple departments inside a hospital, leading to challenges in 

communication and coordination. Moreover, the individual characteristics of each newborn 

are primed by uncertainty, highlighting the need for stochastic decision-making through 

simulation (Pomare et al., 2019). Modeling and simulation techniques have been well-

established in healthcare and have improved various fields (Savigny et al., 2017). 

Furthermore, simulation models serve not only as a direct tool for decision-making but 

also as a communication tool and enable more stakeholders to become an active part of 

the discussion and decision process and offer tools to answer what if questions that cannot 

easily be tested in practice (Curry et al., 2006; Robinson, 2014). Hence, it is evident that 

a systems approach through a simulation model suits the described practice problem. 

One of the most common simulation techniques in healthcare is discrete event simulation 

(DES). Healthcare simulation research using DES often has an objective related to 

scheduling and patient flow or sizing and planning of beds, rooms, and staffing using 

stochastic methods for the simulation (Jun et al., 1999; Mielczarek, 2016). DES is suitable 

as patients follow pathways through the neonatal care system, making it a suitable choice 

for the described system and problem. 
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Despite the critical need for modeling and simulation studies on neonatal care systems 

and their capacity issues, such studies are quite rare, as discussed in chapter 3.2. 

Previous research focused on modeling and optimizing individual parts of the neonatal 

care pathway (Fournier & Zaric, 2013). Moreover, studies tend to focus either on human 

or non-human resources in the system, but not both, and do not investigate interaction 

effects (Lebcir & Atun, 2021). Therefore, there is a shortcoming in addressing the system 

holistically (Komashie et al., 2021). 

1.3 Research Question 
Given the current stand in literature, I concluded on the following knowledge gap. There 

is a limited number of research in simulation modeling specifically for neonatal care 

systems, raising questions of applicability and generalizability of previous findings, 

especially as none of the work has been done in a Dutch setting. Moreover, existing 

simulation models are not used to test interventions for capacity impact and, thus, miss 

out on linking the model world with the real world. At the same time the medical community 

is missing out on performing capacity impact assessments for novel interventions in 

neonatal care which would provide another valuable perspective in medical decision-

making processes. As a result, this work investigated the following main research 

question: 

How can operational bed capacity shortages in neonatal care be reduced within staffing 

limitations? 

This thesis aimed to contribute by providing a modeling approach for neonatal care 

systems and further enhance the understanding of its dynamics and interactions. The 

thesis used state-of-the-art simulation modeling to answer the evident societal challenge 

present in the case study of the neonatal care network in the southwest of the Netherlands. 

1.4 Thesis Outline 
The overall mixed-method research approach is described in Chapter 3. Chapter 4 

provides the academic context of the study through two literature reviews that further 

highlight the knowledge gap and identify first ideas for system levers and interventions. 

Chapter 4 outlines the system conceptualization that guided the data analysis and model 

implementation. Chapter 5 elaborates on the performed data analysis of the available 

perinatal birth registry data, detailing the relevant mechanisms and how they can be 

modeled. Chapter 6 discusses the model implementation and the verification and 

validation steps taken to confirm the model's fitness for purpose. Chapter 7 presents the 
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experiments of scenarios, levers, and interventions, along with their results on capacity 

indicators. Chapter 8 offers a discussion of the study's results considering the theoretical 

background, provides practical insights for stakeholders, and addresses the limitations 

encountered during the research. Lastly, Chapter 9 concludes this thesis by summarizing 

the conclusions drawn from the research and providing an outlook for a possible future 

research agenda. 

1.5 EPA Relevance 
This thesis concludes my master's program in Engineering & Policy Analysis. Given the 

main objectives of the degree, the work combines quantitative aspects—data analysis of 

perinatal data in the region and a simulation model—with qualitative aspects, such as 

interviews with stakeholders and a review of the literature. Moreover, it contributes to the 

grand challenges of healthcare systems, as illustrated by UN Sustainable Development 

Goal 3 "Good Health and Well-being" (United Nations, 2015). By collaborating closely with 

the Erasmus MC and other stakeholders in the region, it supports bridging the gap 

between scientific and societal contributions.
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2 Research Design 
The overall research design utilized a mixed-method approach, combining quantitative 

and qualitative techniques aligned with the identified sub-questions. Initially, a literature 

review was performed to identify known interventions and system levers in neonatal care 

or simulation and modeling literature that could be promising in overcoming capacity 

shortages within staffing limitations. Afterwards, information was gathered to 

conceptualize the neonatal care system based on consultation with experts and a 

exploratory data analysis. Subsequently, available data from various hospitals in the 

dataset was analyzed in detail to parametrize the conceptual model and prepare its 

implementation. The implemented simulation model was used to perform experiments on 

different scenarios and test system levers for their impact on capacity shortages. 

Additionally, interviews with practitioners in the region, and the analyzed system levers 

were used to perform an impact assessment of relevant interventions for the region. 

Finally, all findings were discussed to provide an overarching answer to the main research 

question: 

How can operational bed capacity shortages in neonatal care be reduced within staffing 

limitations? 

The main question was answered by investigating three sub-questions, each focusing on 

a specific relevant aspect. These sub-questions also provide the general outline of the 

research, build upon each other, and represent a specific step in the modeling approach, 

as seen in Figure 1. 
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Figure 1 Overview of the research flow 

Sub-Question 1: What factors and constraints influence the operational bed capacity 

shortages in the neonatal care pathway within staffing limitations? 

As a first step, a system conceptualization was developed based on knowledge gained 

through literature and consultations with experts. This conceptualization is supported by 

an in-depth analysis of the perinatal birth registry dataset. The analysis was conducted 

using Python and statistical packages like Pandas and NumPy for data processing, and 

Seaborn and Matplotlib for visualization. Data cleaning procedures were carried out in the 

context of subquestion 1. The data was analyzed by categorizing it by hospitals and levels 

of care to explore the roles individual hospitals play in the network and identify potential 

bottleneck wards. Additionally, experts were consulted to provide context for the 

quantitative findings and to confirm assumptions and simplifications of the conceptual 

model. 

Sub-Question 2: Which levers in the neonatal care system have the biggest impact on 

reducing operational bed capacity shortages within staffing limitations? 

The goal of this step was to identify areas within the system that have room for 

improvement and determine the context in which interventions should be implemented. 

The selection of levers is based on the findings in literature and results from subquestion 

1. All levers need to be in the decision arena of the hospitals or region. This involved 

implementing the DES model based on the previous conceptualization using Salabim, an 

open-source Python package. Key functionalities and components were verified, and the 

simulation results were validated against real-life data and expert insights. Each lever was 
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simulated through numerous runs to obtain robust results that could inform policy 

formulation.  By running experiments and analyzing the resulting data with Python 

packages like Pandas, NumPy, and Seaborn, I identified the levers with the greatest 

impact on operational bed capacity in the region and potential trade-offs associated with 

them. 

Sub-Question 3: Which interventions in the neonatal care system can address the levers 

with the biggest impact on reducing operational bed capacity shortages within staffing 

limitations? 

Finally, the goal was to provide recommendations for the most impactful interventions 

based on the model and further assessments to address the main research question. The 

interventions tested were derived from conducted interviews and supported by additional 

literature. A step-wise approach was used for testing: first, the intervention was defined, 

and the affected mechanisms and/or parameters in the model were identified. Then, the 

intervention was tested using the model to evaluate its impact on operational bed capacity 

in the region. Additionally, literature and interviews were used to assess the current 

implementation level and potential barriers to further implementation across the hospitals 

in the region. Based on these approaches, I concluded with recommendations for 

impactful interventions to be implemented at scale to answer the main research question. 

These questions must be understood in the context of the research. An operational bed is 

defined as a physical bed combined with the appropriate personnel to make it functional, 

as physical limitations are currently not the primary driver of capacity shortages. All 

questions consider the staffing limitation, aiming to find solutions beyond merely 

increasing healthcare personnel, given the unlikelihood of a short-term staffing increase. 

Any proposed intervention must be feasible within the neonatal care system of a region, 

meaning it must be implementable by individual hospitals or a group of hospitals. Thus, it 

cannot involve restructuring of the neonatal care system on e.g. the national level. 

2.1 The modeling approach: Discrete-Event 
Simulation 

Despite a long history, the application of operations research and systems thinking within 

the healthcare sector has not kept pace with advancements in other fields. The healthcare 

system's inherent complexity demands robust modeling and simulation approaches to fully 

understand and address its multifaceted nature. However, there exists a significant 

implementation gap where theoretical models often fail to translate into practical 

applications. One of the critical challenges is the limited involvement of healthcare 
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managers in the modeling and simulation process, which hampers the effective integration 

of these tools into decision-making practices. 

Modeling and simulation has been firmly established across various healthcare domains, 

providing a valuable framework for analyzing systems characterized by high variability, 

interconnectedness, and complexity (Robinson, 2014). Healthcare systems, with their 

intricate interplay of components and wide array of stakeholders, are particularly well-

suited for modeling and simulation. These systems are defined by significant uncertainty 

and interactivity, making traditional linear approaches insufficient for comprehensive 

analysis and improvement. Therefore, embracing modeling and simulation techniques can 

enhance our understanding and management of healthcare systems, ultimately leading to 

more effective and efficient healthcare delivery. 

The role of modeling and simulation in healthcare has been well established in literature 

over the last centuries, especially in aspects such as resource allocation and staff planning 

(Katsaliaki & Mustafee, 2011). The most used modeling techniques include agent-based 

modeling (ABM), DES, and system dynamics (SD) (Mielczarek, 2016). All three 

approaches can be used for ‘what-if’ scenarios in order to investigate policy interventions 

and to understand the system and its behavior (Lane & Oliva, 1998). This feature becomes 

especially relevant when real-world experiments are impossible due to ethics, feasibility, 

or costs, as frequently encountered in healthcare (Stahl, 2008). 

The three approaches differ in their scope and functionality. ABMs are useful to model 

emerging behavior and outcomes based on the interaction of individual agents (e.g., 

patients and nurses). Due to the stochasticity of ABM models, they are well-suited to 

model a variety of human behavior (Currie et al., 2020). SD models are mostly applied to 

model flows of multiple groups by including non-linear relationships between components 

and feedback loops (Davahli et al., 2020). The goal is to follow the flow of patient groups 

between various states to identify underlying interactions. Modelers use DES to track 

individual entities and their interactions with the system over time. Because the model 

simulates events at discrete points in time, it typically runs more efficiently compared to 

an ABM approach. Over the past 50 years, DES has become a popular simulation 

approach for healthcare system questions (Jacobson et al., 2013). DES is suitable for 

modeling the state change of entities (e.g., patients) with stochastic activities and resource 

constraints (Forbus & Berleant, 2022). However, it can still track individual patients and 

their journey through the modelled system and provide the modeler with a high level of 

flexibility in incorporating diverse events and components in the model. 
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For the modeling implementation, I chose to use a DES model for several reasons. DES 

models have been widely used in similar operations research settings and have seen a 

significant increase in healthcare applications. DES is particularly suitable because it can 

simulate individual patients while providing an overview of the entire system’s 

performance. Compared to ABMs, DES is preferable in a neonatal care system where 

patients do not exhibit individual behaviors but follow defined pathways. Additionally, DES 

offers computational advantages, as only the time steps involving events need to be 

simulated, reducing the overall run time of a simulation. Further details on the technical 

implementation are provided in Chapter 5. 

2.2 The perinatal Birth Registry: Perined 
The main source for the simulation was the national perinatal registry dataset perined. The 

dataset brings together information from midwives, gynecologists, pediatricians, and 

NICUs across the Netherlands. The data is used by researchers and auditors to improve 

the quality of perinatal care (Perined, n.d.). The data access was gained through an 

approval process with Erasmus MC (Number: addendum to application 23.18). For this 

project, the dataset was filtered to include only the data points related to hospitals in the 

southwest of the Netherlands that utilize neonatal care. As a result, the dataset 

encompassed approximately 50,000 births from 2016 to 2022 across eleven hospitals. 

Most parts of the implemented model rely on insights based on the perined dataset. Thus, 

the usefulness of the model highly depends on initial data quality and impacts the 

replicability of the simulation study (Marsden & Pingry, 2018). To ensure high data quality, 

I identified issues based on common dimensions: syntactic, semantic, and pragmatic. The 

syntactic dimension refers to the structure and format, including accuracy and consistency 

of the data. Various empty values were found in different columns, which I filled with 

default values for categorical variables. The semantic dimension focuses on the meaning 

of data, including semantic accuracy and completeness. Since the data is collected 

manually, it is prone to input errors. Examples include mismatches between admission 

and release dates that do not align with the length of stay, and multiple records of the 

same admission. The pragmatic dimension considers the context in which information is 

used. Since the data was not collected specifically for building a simulation model of the 

system, there are inherent pragmatic limitations. For instance, the smallest time unit is a 

day, leading to inconsistencies in when patients are admitted or released. Moreover, only 

the two most relevant admission criteria were recorded, even though a patient could have 

more conditions. Additionally, the admission criteria are not clearly defined, leading to 

individual interpretation by healthcare personnel. As these pragmatic data quality issues 
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could not be addressed through data manipulation, they are addressed in modeling 

decisions and limitations. All other identified data quality issues were adjusted through 

python code and consultation with domain experts for validation of data manipulation as 

well as initial data quality issue identification. 

2.3 Expert interviews 
In addition to the quantitative analysis and literature reviews, I also conducted expert 

interviews. These interviews contributed to a deeper understanding of the system, 

confirmed assumptions made during the modeling process, and initiated the exploration 

of potential scenarios and interventions that could be simulated with the model. Table 1 

shows an overview of the interview partners. 

Table 1 Overview of interview partners 

Interview ID Profession of Interviewee Experience in 

neonatal care system 

in years 

Hospital Ward 

Level 

1 Neonatologist > 25 NICU 

2 Neonatologist > 25 NICU 

3 Neonatologist 5-10 High Care 

The research was approved by the TU Delft Human Research Ethics Committee, as seen 

in Appendix A. The interviews were conducted either in person or online via MS Teams. 

With the consent of the interviewees, the interviews were recorded and transcribed using 

MS Teams. The transcripts were then summarized, and the original recordings and full 

transcripts were deleted. All data was stored exclusively on TU Delft storage. The 

interviews were conducted in an open format to adapt to the individual background of each 

interviewee and allow room for new ideas (Myers, 2013). Based on the recordings and full 

transcripts, I identified key statements through open coding, which involved systematically 

breaking down the data into distinct segments, labeling each with descriptive codes, and 

grouping similar codes together to reveal underlying themes (Strauss & Corbin, 1998). 

Based on these results, I drafted a summary for each interview, which can be found in 

Appendix B. 

2.4 Reflection on use of AI tools 
During the process of this thesis, multiple software tools that use some forms of artificial 

intelligence were applied. In the writing process, the text was checked with Grammarly for 
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grammatical errors and to consider improvements in text flow, such as by converting 

passive to active sentences. Each suggestion by the software was individually evaluated 

and accepted or rejected to ensure that the meaning of the text and use of specific words 

did not get lost. 

The interviews were initially transcribed with the transcription feature of MS Teams. While 

this feature provided a good first draft for the transcript; each interview had to be relistened 

to multiple times to correct transcriptions faults. The software struggled especially with 

transcribing terms specific to neonatal care or medicine, like NICU or jaundice, as they 

were often transcribed to the names Nico and Jonas. Moreover, the software was not able 

to identify how interviewees stressed individual words providing additional meaning to the 

statements. 

For the coding of the model and data analysis, ChatGPT was used to discuss ideas for 

analysis or software architecture and provide initial ideas for the code implementation. For 

each code snippet, the software was asked to provide explanation on why decisions on 

parts of each algorithm were done. Moreover, the tool was used to check own code 

snippets for readability and potential improvements to ensure best practices. 

2.5 Limitations 
The proposed research design comes with some limitations in various aspects. The 

limitations can be categorized by data collection and analysis, modeling and simulation, 

and interpretation of results. 

The biggest limitation of this work is already based in the research question and its scope 

outside of staffing. As motivated the largest constraint to the current capacity shortages 

are staffing limitations, however, there is no clear path to a change in the near future. 

Hence, this work focused on identifying other means to tackle capacity shortages. In 

addition, the study relied on a data-driven approach, making it dependent on the quality 

and quantity of available data. To address this, a sophisticated data analysis and cleaning 

process was implemented and expert consultations to ensure a high model-reality fit. 

Moreover, conducting interviews introduced limitations, as both interviewer and 

interviewee may be biased by their backgrounds. To mitigate this, I conducted open-format 

interviews and analyzed the interview data within the context of the interviewee's 

background. Second, any model represents only a perspective of reality and cannot 

capture all interactions and complexities. The modeling process involved a trade-off 

between accuracy and understandability. While the chosen simulation technique, DES, 

offered various benefits, it also had shortcomings due to its stochastic nature, high data 



Research Design 

 14 

quantity requirements, and potentially long run times. Third, ensuring transparency and 

comprehension for non-modelers was essential to provide actionable policy 

recommendations for practitioners. Throughout the research process, maintaining a 

connection to the practical problem was crucial, as losing this connection is often a barrier 

to successfully implementing simulation techniques in healthcare(Lowery et al., 1994). By 

conducting interviews and maintaining frequent exchanges with a practitioner at Erasmus 

MC a shared understanding and collaborative decision-making in the modeling process 

were ensured.
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3 Literature Review 
This research is located at the intersection between a specific healthcare domain — 

neonatal care — and a methodological approach —modeling and simulation. To gain 

additional information on the neonatal care system and the status quo of literature on 

interventions and system levers tackling capacity shortages, two literature reviews were 

performed. First, the results of a literature review on current developments in neonatal 

care interventions are presented to identify interventions and levers that the medical 

community is focusing on. The second section of this chapter elaborates on insights 

gained from modeling and simulation literature for this study. A scoping literature on 

simulation modeling in neonatal care was performed to assess previous work in healthcare 

systems to identify system levers that have been used in similar healthcare contexts to 

address capacity shortages. 

3.1 Current Developments in Neonatal Care 
The previous sections have shown the current challenges for neonatal care systems in 

general and for the specific Dutch case. Therefore, it was of interest to scope the literature 

for current developments in neonatal care to identify possible interventions that could have 

an impact on factors relating to capacity shortages and further draw the medical 

perspective on the current situation. 

Given the setting of the case study in a neonatal region in the Netherlands, only 

interventions that are inside of the decision arena of a hospital or hospital network were 

considered. I identified technological developments, healthcare workforce, and hospital 

management as three core topics inside of the applicable decision arena. These topics 

have also been confirmed through consultation with experts at Erasmus MC and literature 

(Dickson et al., 2014; Kringos et al., 2010). As a result, the search string included the 

following terms: 

(technolog* OR digital* OR guideline OR protocol OR “nurse staffing” OR “staff 

scheduling”) AND (capacity OR cost OR bed* OR constrain* OR "resource utilization" OR 

“length of stay” OR admission*) AND ("neonatal care" OR "NICU" OR "neonatal intensive 

care unit") 

The search was performed on the relevant databases PubMed and Web of Science to 

cover a wider range of journals. Only articles in English were included and all articles must 
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have been published within the last ten years to ensure that the findings are still relevant 

to the current situation. The term ‘intervention’ was not used on purpose as it leads to an 

unmanageable number of papers losing the scoping characteristic of this review. 

Moreover, I filtered only for neonatal care interventions to ensure a high applicability to the 

simulation model and due to more prevalent medical conditions in neonates, such as 

jaundice. The paper selection was done using AS Review Lab to facilitate and accelerate 

the review process (Van De Schoot et al., 2021). 

The search resulted in a sufficient number of interventions and rather also fields of 

interventions that could be of interest to test for impact on capacity. Moreover, it provided 

a current stand on the medical perspective on neonatal care. The findings are divided into 

three major groups: technological, organizational, and clinical interventions. The following 

sections presents these groups and the aspects of the system that the interventions are 

trying to improve. 

1. Technological Interventions 

The field of technology in neonatal care has seen a strong rise in relevance and 

development in recent years with a focus on increasing the chance of survival or 

minimizing the length of stay (Taha et al., 2023). 

First, there is a rise in monitoring applications, including bedside, that give medical 

personnel more detailed insights into the medical indicators and enable them to adjust the 

care program to the individual patient. These monitors include for example pulse oximetry, 

respiratory function, and near infrared spectroscopy (Taha et al., 2023). These advances 

are accelerated by current developments in sensing technologies (Variane et al., 2022) 

and thermal imaging (Topalidou et al., 2019) 

Another relevant technological subtopic is the field of telemedicine. Following the promise 

of providing care at home or less specialized facilities, telemedicine provides opportunities 

to increase cost-effectiveness and potentially lower capacity burdens (Rasmussen et al., 

2020). This becomes especially relevant in a post-IC setting as first studies have shown 

that an effective use of e.g. video calls, can decrease the amount of additional hospital 

admissions (Robinson et al., 2016). Additionally, telemedicine application could reduce 

the need for transport to a NICU after birth and, thus, distribute the bed demand more 

equally across the different care levels (Sauers-Ford et al., 2019). Overall, these tools are 

also seen as a way of empowering parents in the care process (Guttmann et al., 2020; 

Minton et al., 2014; Ranu et al., 2021). Yet, literature also acknowledges the need for 

additional studies on the impact of telemedicine on clinical outcomes and cost-

effectiveness (Sauers-Ford et al., 2019; Tan & Lai, 2012). 
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In a similar manner, research has focused on finding interventions that can also be 

performed at home. One of the most prominent examples is phototherapy for jaundice, a 

common condition in neonates (Pettersson et al., 2021). In this case, parents administer 

the treatment at home, which leads to a reduction in the number of hospital beds needed. 

The first implementation trials of this intervention are currently underway in the 

Netherlands (Westenberg et al., 2022). 

2. Hospital Management Interventions 

On the level of hospital management, we see an increased exchange of best practices 

and guidelines to standardize care and ensure quality of care and patient safety. 

Guidelines are developed for specific medical conditions, like hypothermia (Frazer et al., 

2022; Liu et al., 2022; Manani et al., 2013; McCall et al., 2018; Wilson et al., 2018), 

neurocare monitoring (Bonifacio & Van Meurs, 2019; Variane et al., 2022) or on discharge 

policies (Quinn et al., 2017). 

These guidelines are also driven by an increased usage of available data to make data-

informed decisions and recommendations. One essential part of this movement is the 

development of prediction models. Models aim at predicting length of stay for patients 

(Singh et al., 2021) or try to determine if a specific level of care, e.g. NICU, is necessary 

to provide additional information for hospital planners (Shields et al., 2023; Singh et al., 

2021) 

An increase in data quantity and quality collected over hospitals and time periods also 

offers new opportunities in data-driven decision making. For instance, prediction models 

can be used to estimate ward level assignment or length of stay prior birth (Shields et al., 

2023). In addition, models can be used to prevent medication errors (Beltempo et al., 

2023; Yalçın et al., 2023), identify medical conditions, like sepsis (Gievers et al., 2018; 

Sullivan et al., 2023), and thus, potentially increase clinical outcomes (McAdams et al., 

2022). 

In addition, O’Callaghan et al. (2019) searched for current developments in neonatal room 

design and found that a ‘single family room’ is the recommend design for neonatal units. 

This room design showed the highest potential for reduced length of stay and increased 

infection control. Moreover, adapted room designs also contribute to a more patient focus 

care idea. One part of this could also be an increased inclusion of parents in family 

centered care (Segers et al., 2019). 
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3. Clinical Interventions 

As a third theme, I identified multiple clinical interventions that often combine aspects of a 

technological and organizational intervention. These interventions focus on reducing 

length of stay by enhancing clinical outcomes. Examples include switching from 

intravenous to oral antibiotics which also opens up opportunities to include parents at 

home in the provision of medicine (Keij et al., 2022). Another intervention that aims at 

transferring patients sooner to home is tube feeding at home(Jie Liu et al., 2015). Here, 

patients with problems with food intake are fed through a tube but due to the simple set-

up it is also possible for parents to take over and have the patient discharged at an earlier 

stage. In addition, current studies address the impact of thermoregulation (Dixon et al., 

2021; Donnellan et al., 2020) and medication errors (Nguyen et al., 2018) on clinical 

outcomes and LoS. 

The three groups of interventions show the variety of current developments in neonatal 

care interventions at a hospital’s scope. Interventions focus on system levers such as the 

necessity for admission at a level of care, moving care to the patient’s home, or lowering 

the LoS through tackling various underlying drivers. Across the different themes most 

interventions aim at improving clinical outcomes or be more cost-effective than traditional 

treatments. Yet, most literature has not assessed the impact of an intervention on capacity 

related aspects of a hospital. Thus, there is a gap to evaluate the impact of interventions 

on a hospital’s capacity, for instance via modeling and simulation of healthcare systems 

and respective interventions. 

3.2 Modeling and Simulation in Healthcare 
A scoping literature review was conducted to understand the current research state better 

and further narrow the knowledge gap. The goal was to understand neonatal care and the 

current challenges and open questions in healthcare system modeling in this field. As this 

research is based in healthcare, the focus was on the two most relevant databases in the 

field, PubMed and Web of Science. Search categories were neonatal care and healthcare 

modeling, simulation, and capacity. The search initially included many non-relevant 

publications, as the term simulation is also used for simulations in educational training for 

health care professionals and modeling is also used in modeling diseases and the 

pharmacodynamics of medicines. Hence, articles in these categories were excluded. The 

combination of all the search terms leads to the following search string: 
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("neonatal" OR "neonatal care" OR "neonatal care system" OR "newborn" OR "NICU" OR 

"neonatal ICU" OR "neonatal intensive care unit") AND ("model*ing" OR "simulation" OR 

"discrete-event simulation" OR "agent-based model" OR "system dynamics") AND 

("capacity" OR "schedul*" OR "resource management") NOT (“education” OR 

“pharmacodynamics”) 

Further constraints were that publications must be in English and published in peer-

reviewed journals. This led to 389 articles on PubMed and 170 on Web of Science. By 

scanning titles and abstracts with the ASReview Lab software, 12 relevant articles were 

identified for further analysis. Pure optimization studies and studies focused solely on 

staffing were excluded. 

Despite the wide applicability and use of modeling and simulation in various healthcare 

fields, there is scarce literature on modeling and simulation of neonatal care. The identified 

literature can be categorized by the used approach and the model's scope as shown Table 

2. 

Table 2 Overview of analyzed articles on modeling of neonatal care systems 

Paper Approach Scope 
(Lebcir & Atun, 2021) System Dynamics Length of stay and 

resource usage for one 

neonatal unit in the UK 

(Lebcir & Atun, 2020) System Dynamics Length of stay for one 

neonatal unit in the UK 

(Kokangul et al., 2017) Mathematical Modeling 

(Regression + nonlinear 

optimization) 

NICU nurse capacity for 

one hospital in the UK 

(Kanai & Takagi, 2021) Mathematical Modeling 

(Markov Chains) 

Patient pathway and length 

of stay for one hospital in 

Japan 

(Fournier & Zaric, 2013) Discrete-Event Simulation Amount of NICU beds and 

transfer probability for one 

province in Canada 

(DeRienzo et al., 2017) Discrete-Event Simulation NICU nurse staffing for one 

hospital in the US 

(Demir et al., 2014) System Dynamics Length of stay for one 

hospital with multiple 

neonatal wards in the UK 
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(Asaduzzaman & 

Chaussalet, 2008) 

Mathematical Modeling 

(Loss Network Model) 

Admission refusal 

probability for a neonatal 

care network in the UK 

(Seaton, Barker, Draper, et 

al., 2016) 

Mathematical Modelling 

(Cox multistate model) 

Length of stay in neonatal 

care network in the UK 

(Manktelow et al., 2010) Mathematical Modelling 

(Regression Analysis) 

Length of stay in 30 

neonatal units in one region 

of the UK 

(Adeyemi & Demir, 2020) Mathematical Modeling 

(Linear Modeling) 

Length of stay for one 

hospital with multiple 

neonatal wards in the UK 

(Perera & Calis, 2022) Mathematical Modelling 

(Regression Analysis) 

Length of stay for one 

hospital with multiple 

neonatal wards in the UK 

The methods used range from computational, like SD and DES, to mathematical, like 

queuing theory and regression analysis. Thus, previous research indicates the need for 

careful selection of the modeling technique based on the system characteristics, the goal 

of the modeler, and the available data. Moreover, Lebcir & Atun (2021) also touch on the 

aspect of using a model to facilitate communication with diverse stakeholders, hence, 

emphasizing the use and need of modeling and simulation beyond optimizing performance 

indicators. 

Most models in the current literature focus only on specific parts, like NICUs (DeRienzo et 

al., 2017; Fournier & Zaric, 2013; Kokangul et al., 2017), and ignore the surrounding 

system. Only limited work assesses the complete pathway (Adeyemi & Demir, 2020; 

Demir et al., 2014; Lebcir & Atun, 2021). Nevertheless, these papers are still limited by 

modeling only one hospital unit instead of a hospital network, hence omitting valuable 

dynamics and interactions in the interactions, e.g., transport between hospitals. The 

authors also acknowledge the knowledge gap for a network-wide modeling approach and 

call for further work on this aspect (Adeyemi & Demir, 2020; Demir et al., 2014; Lebcir & 

Atun, 2021).  

In addition, all identified literature looked at systems in the United Kingdom, Japan, and 

North America. However, as described in 2.2., the individual neonatal care systems are 

differently structured, and it needs to be assessed if the found results can be generalized 

and applied to the Dutch context. Furthermore, previous research aims to optimize 

individual parameters, like length of stay or transport probability. Yet, it is unclear if these 

factors alone are sufficient to explain the present capacity shortages.  
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The identified studies come with limitations regarding a focus on unidirectional patient flow 

so not accounting for the situation that a patient could be admitted to the same ward 

multiple times, hence, not capturing the full complexity of the neonatal care pathway. 

Moreover, length of stay is often sampled from theoretical distributions that do not account 

for patient subgroups or medical complexity. 

The identified literature describes various ways of modeling neonatal care pathways and 

systems. However, it does not aim to use these models to test the impact of potential 

interventions. This is also acknowledged by Adeyemi and Demir (2020) stating that “it 

would be interesting to know the effects of resource allocation and management policies, 

change to admission policies, integration of services, and restructuring of neonatal 

delivery structures on the performance of these systems”. Here, we see a prime example 

of the inherent gap between simulation and implementation science. On the one hand, 

simulation studies frequently fail to apply developed models to provide assessments of 

real-life interventions. On the other hand, medical literature on interventions predominantly 

focuses on clinical outcomes and does not leverage the potential to assess impacts on a 

larger scale, such as the capacity of a healthcare system. Consequently, there is a 

significant need for an integrated approach that combines simulation modeling with 

practical implementation to evaluate the broader effects of healthcare interventions. 

Hence, this thesis tackles this gap by assessing system levers and interventions through 

a modeling and simulation approach on their effect on operational bed capacity in the 

neonatal care system. 

The previous chapter has shown the current stand in literature concerning capacity 

modeling and simulation in neonatal care concluding that there has been only limited work 

in the field. While neonatal care systems have some distinct features, e.g. ward levels, 

kind of medical interventions, it also has similarities to other parts of the healthcare 

systems, like for instance, regionalization and bed management challenges. As a result, 

another scoping literature review was conducted to see what learnings can be drawn from 

modeling and simulation in other comparable healthcare systems. The goal of this search 

is to identify what system levers have been used in similar settings to later apply them in 

the simulation model and link them to neonatal care interventions or identify gaps in 

currently investigated interventions. 

The focus was put on ICU settings as it is the closest to the general constraints of neonatal 

care – being no scheduling, no queue, and specialization across hospitals in a region. 

Exclusion criteria were added to filter out articles discussing any aspect of a queuing 

theory or elective medical interventions as those findings are not applicable to a neonatal 

care setting due to its unplanned and critical nature. Thus, the used search string is: 
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("hospital" OR "critical care" OR "intensive care" OR "ICU" OR "intensive care unit") AND 

("model*ing" OR "simulation" OR "discrete-event simulation" OR "agent-based model" OR 

"system dynamics") AND ("capacity" OR "schedul*" OR "resource management") 

NOT("education” OR “pharmacodynamics” OR "pharmacology" OR "elective" OR 

"queue*" OR "staffing") 

The search is performed on the relevant databases PubMed and Web of Science to cover 

a wider range of journals. Only articles in English are included. I used AS Review Lab to 

facilitate and accelerate the review process (Van De Schoot et al., 2021). Initially, PubMed 

provided 2575 and Web of Science 2012 results. After scanning for the title and abstract, 

76 articles were further analyzed. By scanning the full text, I excluded additional articles 

that used some queue or scheduling mechanism in their model as this is not applicable to 

neonatal care. 

Simulation models have been used across various healthcare system settings. Given the 

advantages of simulation models to ask ‘what-if’ questions, modelers can test out adjusting 

mechanisms in the model and identify levers in the system. In the following I present the 

most relevant used levers in literature. Multiple studies try to shift demand between 

hospitals or care levels. For instance, by applying  early discharge strategies (Bai et al., 

2018; Mohamed et al., 2017; Qin et al., 2017) or transferring patients to other departments 

when at running low on available beds (Garnier et al., 2016). Given that the neonatal care 

system is also assembled through different levels of hospitals, levers that shift demand 

between hospitals could be applicable. Shahani et al. (2008) tested the impact of 

alterations in LoS and separation of long stay patients and found that especially patients 

with a long LoS have disproportionally effect on the capacity shortages. These insights be 

also applicable to the neonatal care setting, as the LoS for extreme premature patients 

can easily be multiple months. Other literature focuses rather on the supply side and 

investigated the impact of increasing the number of beds (Bai et al., 2020; Franck et al., 

2020; Gopakumar et al., 2009; Najibi et al., 2022; Shahani et al., 2008). While the literature 

finds this lever to be impactful, it is not feasible for the scope of this study given the 

described staffing limitations. 

The simulation literature typically addresses capacity shortages in healthcare by focusing 

on supply or demand solutions. While not all approaches may apply to neonatal care, 

further exploration of mechanisms that influence admission rates, adjust patient pathways, 

change LoS, and target high-impact patient groups is warranted. Additionally, the literature 

emphasizes the importance of modeling healthcare systems by focusing on arrival rates, 

LoS, and patient pathways within the context of resource constraints, such as operational 

bed capacity. 
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4 System Conceptualization 
In previous chapters, I have identified the overarching problem concerning capacity 

shortages in neonatal care and provided additional context for the case study in the south-

west of the Netherlands. As the first step of this simulation study, I will develop a 

conceptual model that provides a deeper problem understanding by combining literature 

and data analysis, helps to identify scenarios and possible interventions, and guides the 

following implementation. One of the first and most essential steps of a simulation study 

is the creation of a conceptual model. There used to be only limited literature on this aspect 

as conceptual models are often seen more as a creative task – an art – then a science; 

yet in recent years, more attention has been drawn to the importance of conceptualization 

(Robinson, 2014). As shown in the research design, the conceptual model follows the 

initial problem understanding and is an essential preparatory step to develop the model 

design and, eventually the computer model. 

4.1 Model description 
To establish a conceptual model, one must define the model objectives, followed by the 

model content, input, and output. These aspects are supported by the system boundaries, 

assumptions and simplifications to provide a complete picture (Robinson, 2015). The goal 

of the model is to simulate the neonatal operational bed occupancy of hospitals in the 

south-west region of the Netherlands to assess the impact of scenarios and possible 

interventions. Moreover, another goal is to use the model to identify capacity bottlenecks 

and leverage points to provide insights into what kind of interventions could be most 

effective on a system level and on the three ward levels – NICU, high care, medium care. 

The model content describes what to model and to what level of detail. To achieve this 

goal, the model needs to have an arrival process for patients born inside the region and 

for patients born outside the region. The model should also include hospitals with their 

ward level, region, and number of operational beds to account for the individual setting of 

the region. Each patient must be characterized by individual values (gestational age and 

birth weight), assigned admission criteria, a respective hospital ward level, and treatments 

used. Based on this information, the patient receives a LoS to reflect the medical 

complexity of individual patients and improve the accuracy of impact assessment of 

system levers and interventions tackling individual patient groups or treatments. There 

needs to be a process to admit patients to a hospital by considering the bed availability of 
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hospitals, the ward level, and the patient's home location. If no bed is available in the 

region, the patient should be transferred to an outside region hospital. Moreover, it should 

be possible to readmit inside region patients at a different ward level for additional care. 

There is no queue for admissions, and a patient must be either admitted or transferred at 

a respective timestep. 

The model consists of one region with respective hospitals. However, it is acknowledged 

that adjacent regions have transfers coming from and going to a general “outside” region. 

Moreover, the system is bounded by only including neonatal care. While obstetrics and 

pediatrics influence neonatal care, both parts of the care system are excluded due to the 

data availability. Multiple assumptions and simplifications support these boundaries. 

These requirements can be summarized in the conceptual visualization seen in Figure 2. 

 

Figure 2 System Boundaries 

Each box represents one ward level consisting of multiple hospitals. These hospitals are 

located inside the region. The arrows represent the potential pathways a patient can take 

over the period of their total admission. The system boundaries include the complete 

inside region and touch part of the outside region to incorporate transferring patients 

outside the region. 
To achieve the objectives of the model, several inputs are necessary. Firstly, we need to 

define the arrival rates for patients from both the internal and external regions. Hospitals 
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should be described in terms of their ward levels and the number of operational beds. 

Additionally, probabilities for extended stays and transitions between ward levels in the 

patient pathway must be specified. For an adequate calculation of the LoS, various 

distributions for relevant medical conditions and treatments must be defined. 

4.2 Model Outcomes 
To provide tangible answers to the model objectives four outcome measures were defined 

that can be grouped to two perspectives: 

Hospital Management Perspective: This perspective is supported by a weekly moving 

average occupancy rate per ward level and the required operational bed count for inside 

region patients. The number of required beds is defined as the number of beds necessary 

if, in theory, the region only needs to provide care to inside region patients and all patients 

arrive at the optimal time. This serves as a minimum value for the actual operational bed 

number. This perspective provides insights into the impact across ward levels for the 

region and the resulting challenges for the hospitals. 

Societal Perspective: This perspective examines the rate of capacity transfers at the 

ward level, as well as the average number of weekly transfers relative to different weekly 

occupancy rate groups. It highlights the effects of capacity shortages on patient 

populations and the broader societal costs associated with these shortages. Additionally, 

this analysis provides insights into the temporal dynamics of capacity shortages, clarifying 

that a region operating at full capacity does not necessarily trigger an immediate transfer. 

Instead, a transfer only occurs when a new patient arrives, and no available beds remain. 

By examining both perspectives, the analysis aims to provide a comprehensive 

understanding of the effects of different scenarios, levers, and interventions on the 

neonatal care system. This dual approach helps identify practical solutions that balance 

the needs of hospital management with the societal implications of capacity constraints. 

1. Required Beds 

The first performance indicator of the system is the number of operational beds required 

to care for all patients within the region. This indicator is calculated by dividing the sum of 

the LoS of all patients from the region by 365. This calculation provides a theoretical lower 

bound on the number of hospital beds needed to adequately serve the regional patient 

population. 
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2. Weekly Occupancy Rate 

The second indicator is the operational bed occupancy rate, which measures the ratio of 

used operational beds to available operational beds. This indicator helps in understanding 

how well the hospital balances sustaining spontaneous increases in admissions while 

maintaining financial stability. For ICU departments, including the NICU in the region, an 

optimal occupancy rate guideline is 80-85%. Hospitals need to balance sustaining 

spontaneous increases in admissions while also maintaining enough patients to ensure 

financial stability. This also aligns with typically used measures in literature for capacity in 

healthcare, e.g. as used in Harper et al. (2002). 

3. Capacity Transfer Rate 

The third indicator is the capacity transfer rate, which is the proportion of inside-region 

patients who must be transferred to outside-region hospitals due to a lack of available 

operational beds at the required ward level. This indicator is crucial as it highlights the 

strain on hospital resources and the potential negative impact on patient care due to 

transfers. 

4. Weekly Capacity Transfers 

The fourth indicator combines the concepts of capacity transfers with occupancy rates to 

provide a more holistic picture. Even though a ward might be at a 100% occupancy it does 

not automatically mean that there will be capacity transfers as it also requires incoming 

patients on this day. Thus, this indicator is calculated by summing the number of capacity 

transfers in the last seven days and linking it to the average occupancy rate of the last 

seven days for each day and ward level. The resulting information can be used to identify 

at what weekly occupancy rate the number of capacity transfers increases exponentially.  

4.3 Assumptions and Simplifications 
Assumptions are modeling decision made based on limited knowledge, while 

simplifications are decisions made with the goal of creating the simplest model that is fit 

for purpose (Robinson, 2015). The following assumptions and simplifications have been 

made: 

Assumptions: 

• The outside region has unlimited bed capacity and can always accept a patient, 

acknowledging that the healthcare system will always find a way to provide care 

even if this requires transport to another region or even country 
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• Hospitals of a same ward level can provide the same level of care, resulting in no 

difference in LoS for a hospital, as each hospital has neonatologist that are 

required to have regular training at the NICU and adhere to the same guidelines 

(Interview 2, Neonatologie Netwerk Nederland, n.d.) 

• Additional stays are always first tried in the closest appropriate hospital to the home 

location to minimize additional stress and efforts for parents 

• The dataset is representative for future patient populations and minimum and 

maximum values of variables will not change significantly in the next years (e.g. 

birth weight) (Interview 1,2) 

Simplifications: 

• A patient stays a minimum of one day in a hospital as this the smallest time unit in 

the perined dataset 

• Outside region patients are assigned to a random hospital of appropriate ward 

level 

• Outside region patients cannot have an additional stay inside the region and will 

be transferred to outside region, if necessary, because their region of origin is 

responsible to provide care for that patient 

• Hospitals have only beds of their respective ward level and do not hold different 

bed types 

• The model does not allow for overbeds, hence, if all beds are occupied any 

additional patient cannot be admitted to the respective hospital 

• Patients can only be readmitted immediately after their first stay; hence, no 

additional stay possible if patient was dismissed to home at any point 

• The number of operational beds does not fluctuate over the simulation period of 

one year as it was confirmed in personal conversation with a hospital planner that 

they plan the number of beds each year 

4.4 Conceptual Model 
For each patient, core characteristics such as birth weight, gestational age, subregion, 

and admission criteria are sampled to determine the appropriate ward level. Once the 

ward level is identified, patients are assessed for treatments and estimated LoS. For inside 

region patients, the system checks if an operational bed is available at the closest hospital 

with the appropriate ward level. If no bed is available, the adjacent regions of the patient’s 

home location are checked. If there are still no available beds, the patient is transferred to 

an outside region hospital. Patients generated from outside regions are admitted to any 
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hospital with available capacity. After the stay of an inside region patient, the system 

evaluates if an additional stay is necessary, which would trigger the admission process 

again. 

 

Figure 3 Conceptual Model of patient flow in the neonatal care system 

A multi-step process decides the appropriate ward level for a patient. Suppose it is the 

first admission of the patient. In that case, the model checks the gestational age, birth 

weight, and congenital abnormalities to see if the patient matches the NICU criteria. If not, 

it is decided based on the empirical probabilities if the patient is admitted to a high-care or 

medium-care ward. If the patient requires an additional stay in the system, the following 

ward level depends on the previous ward level. Previous NICU patients requiring an 

additional stay are admitted to either high or medium care; all other combinations are 

decided through empirical probabilities. 
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After determining the appropriate ward level, the model checks for available operational 

beds. As highlighted in the data analysis, the objective is to place patients as close as 

possible to their home location. Therefore, the algorithm first identifies hospitals with the 

required ward level that are nearest to the patient’s subregion, acknowledging that not 

every subregion offers every ward level. For example, Zeeland lacks a high-care ward, 

and the only subregion with a NICU is Rotterdam Noordoever. If the closest hospital does 

not have an available operational bed, the model then checks the adjacent subregions in 

succession until it either finds an available bed or decides that the patient must be 

transferred to an outside region hospital. This ensures an efficient allocation of resources 

while prioritizing patient proximity to their home location. 
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5 Data Analysis 
I identified various mechanisms and factors necessary to build a suitable simulation model 

for the neonatal care system in the system conceptualization. Most of these aspects need 

to be quantized to be implemented and to adjust the general understanding of the 

conceptualization to the individual setting of the southwest of the Netherlands region. This 

chapter will analyze the available dataset perined to provide insights into the factors and 

constraints of the neonatal care system and explain how individual parts of the model can 

be implemented and parametrized. 

5.1 Model Mechanisms 
The following chapter describes the functionality that the model offers to serve the model 

objectives. Based on the available datasets, decisions were made on how to model real-

world procedures. Overall, three main processes need to be understood and modeled. 

First, the admission process for patients was analyzed. Second, the LoS for patients 

across wards for different medical conditions was modeled. Third, the patient care 

pathways of a neonate across different hospitals and ward levels were investigated. 

5.1.1 Patient Arrival Times 
Between 2016 and 2021, around 49,000 patients experienced over 54,000 neonatal 

admissions in the region. Given that the smallest time unit in the data is one day, the inter-

arrival time between patients has limited value for the model. To ensure a comprehensive 

analysis, the focus was on the number of arrivals per day, aiming to identify a theoretical 

distribution to describe the patterns. These arrivals include neonates with a home location 

inside the region and those from outside the region admitted to hospitals within the region. 

This approach provides a robust understanding of the system's capacity to handle 

neonatal admissions. 

Across the years, 46090 patients with a home location inside the region needed neonatal 

care. To smoothen outliers and find emerging patterns, I calculated the weekly moving 

average over the years seen in Figure 4. The weekly moving average is particularly useful 

in hospital arrival rates to capture consistent patterns and variations, which might be left 

out by daily or monthly data. 
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Figure 4 Weekly moving average of admissions per day across all hospitals 

We see a consistently decreasing average of daily admissions over the years, indicating 

lower patient numbers. However, after discussions with practitioners and analysis at the 

hospital level, it was concluded that this trend is not due to an actual decrease in 

admissions but rather a decrease in reported admissions to perined, as described in 2.2. 

As a result, only the time range until 01-10-2017 (marked by the red vertical line) is 

representative and can be used to accurate identify the daily arrival rate as justified in the 

following two sections. 

5.1.1.1 Justification for selected time range 
The Erasmus MC (EMC) was the sole hospital mandated to submit all admission data 

across the entire time range. As the only NICU hospital in the area, the EMC handled all 

NICU admissions. Analysis showed that the mean daily NICU admissions (either at EMC 

or outside the region but with a home location inside the region) did not statistically differ 

across the years. Consequently, it was concluded that the data from 2016 to October 15, 

2017, was representative and could be used to adequately model current patient arrivals. 

As there we no major demographic changes in the previous years, it is assumed that the 
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selected time range was justified for use in modeling other wards and the entire patient 

population within the region. 

 

Figure 5 Comparison of average daily NICU patients between 2016, 2020, and 2021 

Figure 5 shows that there were only minor differences in the average daily admission rates 

for the NICU between the first and the two last years. Moreover, minimum and maximum 

values are in the same range as seen in Table 3. 

Table 3 Statistical overview of average daily NICU admissions for first and last two years of the dataset 

Year Mean 

2016 2.06 

2020 2.04 

2021 1.95 

Thus, it was assumed that the 2016 arrival rate is still representative of the current years. 

To confirm this assumption, a Kruskal-Wallis test was performed. The Kruskal-Wallis test 

is a non-parametric statistical test used to determine if there are significant differences 

between the medians of three or more independent groups. If the test indicates significant 

differences, it suggests that at least one group median is different from the others, but it 

does not specify which groups are different. The following hypotheses were used: 

H0: The daily NICU admissions in the region have the same distribution between the years. 

H1: The daily NICU admissions in the region have not the same distribution between the 

years. 
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The Kruskal-Wallis test resulted in a p-value of 0.67, leading to the conclusion that the null 

hypothesis cannot be rejected at a 5% confidence level. Hence, there is not enough 

evidence to reject the notion of the same mean of daily arrivals for NICU patients over the 

years. Based on this finding, it is justified to follow the same assumption for the full patient 

population and identify one distribution that describes the overall arrival process. 

5.1.1.2 Theoretical Distribution of daily patient arrivals 
As a second step, the goal was to find a theoretical distribution that could capture the daily 

arrivals for the region. To achieve this, the daily arrivals were visualized in a histogram, as 

shown in in Figure 6. Based on visual inspection, a bounded normal distribution appeared 

to be a good fit. This assumption was further confirmed using a QQ-plot and the 

Kolmogorov-Smirnov test. 

 
Figure 6 Relative frequency for daily patient 
arrival numbers for the region 

 
Figure 7 QQ-plot comparing normal distribution 
against the observed distribution of daily patient 
arrivals 

In the QQ-Plot in Figure 7, we see a good fit of the observed daily arrivals against the 

bounded normal distribution with small deviations in the left tail. 

To confirm the results of the visual inspection, a Kolmogorov-Smirnov (KS) test was 

performed to determine if there is enough statistical evidence against the assumption of a 

normally distributed arrival rate. The KS test compares the empirical distribution of the 

data with the cumulative distribution function of the reference distribution, in this case, the 

bounded normal distribution. The test used the following hypotheses: 

H0: The distribution of daily patient arrivals in the region follows a normal distribution. 

H1: The distribution of daily patient arrivals in the region does not follow a normal 

distribution. 

With a p-value of 0.15, the null hypothesis cannot be rejected at a 5% confidence level, 

indicating there is not enough statistical evidence to reject the notion that the data follow 

a normal distribution. Therefore, a bounded normal distribution with a mean of 29.5 and a 



Data Analysis - Model Mechanisms - Patient Arrival Times 

 

 

34 

standard deviation of 7.5 will be assumed in the model. Since integer values are required, 

the sampled numbers will be rounded to the nearest integer. Additionally, the sampling 

will be bounded by a minimum of 10 and a maximum of 53 arrivals per day – the observed 

extreme values in the dataset. 

5.1.1.3 Seasonality Checks for daily patient arrivals in the region 
As a third step, the goal was to determine if there is seasonality in the arrivals. Hospital 

arrivals can exhibit various forms of seasonality, such as an increase in admissions during 

the winter flu season. Therefore, the investigation focused on whether there is seasonality 

in neonatal admissions in the region. 

First, I analyzed seasonality based on the four seasons – winter, spring, summer, autumn. 

As seen in Figure 8, there are visually only small deviations between the respective 

seasons. For visualization, a letter-value plot – an advancement of a normal boxplot – is 

used as it is especially suitable for larger datasets (Hofmann et al., 2017). Each box in a 

letter-value plot represents a progressively smaller portion of the data, providing a more 

granular view of the data distribution. For instance, the inner-most box contains the middle 

50% of the data. 

 

Figure 8 Comparison of average daily admissions across the yearly seasons 

Each season hovers around the yearly mean and has similar extreme values. Summer 

tends to be a bit higher, prompting an investigation to determine if these differences are 

statistically significant. To confirm this assumption, a Kruskal-Wallis test was performed 

with the following hypotheses: 
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H0: The median number of admissions is the same for all four seasons. 

H1: At least one season has a median number of admissions that is significantly different 

from the others. 

With a p-value of 0.13, the null hypothesis cannot be rejected at a 5% confidence level. 

Hence, there is not enough evidence to suggest significant seasonality in the daily arrivals 

for the neonatal care system. The lack of significant seasonality based on the seasons 

was also supported in a personal conversation with a hospital planner. However, it would 

be advisable to further confirm this by using a larger dataset or comparing it to other 

regions. 

Additionally, I investigated if there is a monthly temporal seasonality. As seen in Figure 9, 

there is a slight increase in the summer months of July and August, while the lowest mean 

occurs in February. However, since all months fall within similar ranges, I conducted a test 

to determine if any of the differences are statistically significant. 

 

Figure 9 Average daily admissions by month 

Thus, a Kruskal-Wallis test was performed on the twelve months with the following 

hypotheses:  

H0: The mean of daily admissions is the same for all twelve months. 

H1: At least one month has a mean of daily admissions that is significantly different from 

the others. 

With a p-value of 0.70, the null hypothesis cannot be rejected, indicating there is not 

enough statistical evidence to assume different means of daily admissions across the 

twelve months. 
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5.1.1.4 Conclusion for Patient Arrival Rate 
This section showed that the arrival process is best described through the daily admissions 

across hospitals. The 2016 daily arrivals are statistically not different for the NICU 

compared to 2020 and 2021; hence, it can be assumed that they are still representative 

for today. The daily arrivals across the region can be described through a bounded normal 

distribution. No statistical evidence for temporal seasonality was found in the data; thus, 

the model will use a constant patient arrival process based on the identified distribution. 

5.1.2 Length of Stay 
Having analyzed the arrival rates, the second essential part of the system is the service 

time, represented by the LoS of patients in neonatal care. The LoS can depend on various 

factors given the complexity, individuality, and uncertainty of each patient. However, given 

the goal and scope of the model, multiple assumptions and hypotheses were necessary 

to determine what impacts the LoS. This is further facilitated by the fact that the time unit 

of the available data, and therefore the model, is a day, which increases the likelihood of 

aggregating factors that only differ in smaller time steps. Thus, the underlying processes 

were described with a regression analysis, providing a high level of interpretability while 

keeping the modeling parameterized. 

The perined dataset provides a wide range of admission criteria and treatment variables 

that can be used to abstract the medical condition of the patient. Moreover, literature 

shows a clear link between gestational age and LoS, as well as other factors such as birth 

weight and sex (Seaton, Barker, Jenkins, et al., 2016). The three ward levels offer different 

types of care to various patient groups, resulting in different LoS patterns and influential 

factors, as seen in Figure 10. From here on, gestational age in the text will be used in the 

format weeks + days, such as 38+5, indicating 38 weeks and 5 days of gestation. 
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Figure 10 Length of stay per ward level across gestational age 

We see that the LoS drastically increases with decreasing gestational age in a nonlinear 

fashion for all three ward levels. NICU patients have the longest average LoS while 

medium ward level patients the lowest. Moreover, across all wards the patterns change 

between 31+0 and 32+0 weeks of gestational age, the cut-off for mandatory NICU 

admission. Hence, I decided to split the dataset into the three ward levels and identify the 

influential factors beyond gestational age for each ward. 

Table 4 Statistical comparison of LoS for each ward level 

Ward Count Mean Standard 

Deviation 

Min 50% Max 

NICU 4243 12.50 20.00 1 5 175 

High 

Care 

21981 5.68 10.59 1 2 162 

Medium 

Care 

21129 3.2 5.1 1 2 68 

Table 4 shows the wide range of LoS, from patients admitted for only one day to those 

staying for almost half a year due to their conditions. The selected dataset also includes 

patients who did not survive. For extreme preterm births around 25+0 weeks of gestation, 

the mortality rate increases to more than 50%. Consequently, there is a wide variance in 

LoS for this age group at the NICU. 

The goal was to express the LoS for each ward through regression equations, as 

regression models are a common choice and provide advantages in terms of 
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interpretability and adaptability. However, to ensure the model is not overfitted to the 

available dataset and thus only provides limited knowledge beyond it, precautions were 

necessary. Additionally, strong multicollinearity was found across various impactful 

factors, as seen in Figure 11. With multicollinearity, the estimated coefficients can become 

sensitive to small changes in the data leading to an increase in variance and, hence, 

unreliable predictions. 

  

Figure 11 Correlation Matrix for selected factors that impact LoS 

As a result, Ridge regression models were applied. Ridge regression aims to minimize the 

sum of squared residuals while adding a penalty proportional to the square of the 

magnitude of the coefficients. This approach helps in reducing the coefficients, controlling 

the complexity of the model without eliminating the variables entirely, thus preserving all 

variables in the model. The general formulation can be seen in Equation 1. 

Equation 1 Ridge Regression for Length of Stay 
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By controlling for multicollinearity among the predictors, Ridge regression ensures that the 

model remains stable and interpretable, enhancing its predictive performance on new, 

unseen data. This way, the Ridge regression model not only captures the underlying 

patterns in the data more effectively but also provides robust predictions for new datasets 

(McDonald, 2009). The following present the developed regression models and 

conclusions for each ward level. 

5.1.2.1 Length of Stay for NICU 
The Perined dataset provides information on circa 4250 NICU admissions with a mean 

stay of 12.50 days.  

 
Figure 12 LoS for NICU patients across gestational age in weeks 

As expected, the LoS drastically increases for extreme premature neonates below 

approximately 32+0 weeks of gestation. With decreasing gestational age, there is also an 

increase in LoS variance. Two factors likely contribute to this phenomenon. First, the 

number of observations decreases with decreasing gestational age, leading to more 

influence from individual admissions. Second, uncertainty and medical complexity, 

including higher mortality rates, increase for extremely premature newborns, resulting in 

various treatment options and different LoS. As a result, NICU LoS will be modeled 

separately for those below and including 32+0 weeks and those above 32+0 weeks of 

gestation. 

As a first step, factors beyond gestational age that influence LoS for NICU neonates were 

identified. The correlation between various factors and LoS was analyzed for the two 
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subgroups (below and including 32+0 weeks and above 32+0 weeks). These insights were 

then used to develop respective Ridge regression models. 

5.1.2.1.1 Length of Stay for NICU below and including 32+0 weeks of gestation 

For the extreme premature group, several factors show strong correlations with LoS, 

including O2 support, CPAP, anemia treatment, birth weight, and conventional or HFO 

ventilation. Additionally, thrombocytopenia treatment and phototherapy have a weak 

correlation with LoS and will also be included in the regression analysis. 

 

Figure 13 Correlation Matrix for LoS at NICU below and including 32+0 gestational age weeks 

Interestingly, all admission criteria show no significant correlation with LoS. This highlights 

an inherent structural weakness in the dataset, which requires selecting the two most 

important indicators for each patient. This selection process does not capture the full 

complexity of medical conditions, leading to a lack of correlation across these indicators. 

This finding underscores the challenges in modeling and predicting LoS for extremely 

premature neonates, as the medical conditions and treatment protocols can be highly 

variable and multifaceted. 

When applying Ridge regression on the dataset with the correlated variables, we obtained 

the following results: 

Variable Coefficient 
Intercept 5.20 

Gestational age -0.0023 
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Birth weight -0.0010 

Phototherapy 0.43 

Anemia treatment 1.55 

CPAP days 0.75 

O2 days 0.39 

HFO days 0.63 

Thrombocytopenia treatment 0.03 

Antibiotics treatment -1.13 

Adjusted R2 0.43 

The strongest factors, beyond gestational age and birth weight, in the regression are 

anemia treatment and days of respiratory treatments, like CPAP and HFO. Moreover, the 

use of antibiotics has a relatively strong negative effect on LoS. Overall, the model 

explains a decent 0.43 of the variance in the data. It struggles to capture the full variance 

of LoS for the highly complex patient group of extremely premature NICU patients. 

However, when comparing the actual and predicted values for the entire group, it is evident 

that the model can adequately represent the population, as seen in Table 5. 

Table 5 Statistical comparison between actual and predicted LoS for NICU patients below and 
including 32+0 weeks gestational age 

 Actual Predicted 

Mean 22.72 24.74 

Standard Deviation 26.47 25.47 

Min 1 5 

50% 12 13 

Max 175 171 

Most importantly, the regression stays in the bound of the observed data and, hence, 

offers the chance to adequate sample the stay duration for NICU patients in the selected 

age group. 

5.1.2.1.2 Length of Stay for NICU above 32+0 weeks of gestation 

Most of the patients admitted to the NICU with more than 32+0 weeks of gestational age 

had a previous stay at another ward level and are admitted for medical conditions that 

require the expertise of a NICU hospital. Thus, the impact of gestational age on LoS 

decreased compared to the below 32+0 weeks group. The strongest correlation can still 

be found for days of O2 support, CPAP, conventional/HFO ventilation. Additionally, 

treatment for anemia shows a weak positive correlation.  
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Figure 14 Correlation Matrix for LoS at NICU above 32+0 weeks gestational age 

Again, the admission indicators are not correlated with LoS. This leads to the same 

selection of regression variables as for the other NICU age group. Based on the correlated 

factors, another Ridge regression was performed, leading to the results shown in Table 6. 

Table 6 Ridge regressions results for NICU patients above 32+0 weeks of gestation 

Variable Coefficient 

Intercept 21.60 

Gestational Age -0.06 

Birth Weight -0.0013 

Anemia Treatment 3.45 

CPAP days 0.51 

O2 days 0.66 

HFO days 0.10 

Adjusted R2 0.84 

The results of the Ridge regression for NICU patients with more than 32+0 weeks of 

gestational age reveal several key insights. The model shows an adjusted R² value of 

0.84, indicating that 84% of the variance in LoS is explained by the included variables, 

demonstrating a strong fit to the data. Gestational age and birth weight both have slight 
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negative correlations with LoS, suggesting that higher gestational age and birth weight are 

associated with marginally shorter hospital stays. 

Table 7 Comparison between actual and predicted LoS for NICU patients beyond 32+0 weeks of 
gestation 

 Actual LoS Predicted LoS 

Mean 5.12 4.74 

Standard Deviation 6.76 4.60 

Min 1 1 

50% 3 4 

Max 100 107 

Overall, the model provides a reasonable approximation of the LoS, capturing the central 

tendency and the range of the data. While there is a slight underestimation of the mean 

and variability, the model does not have major outliers and adequately represents the 

population. This suggests that the Ridge regression model is effective in predicting LoS 

for NICU patients with more than 32+0 weeks of gestational age, although there is room 

for improvement in capturing the full variance of the data. 

5.1.2.1.3 Comparison to actual LoS for NICU patients 

When applying the developed regression equations to the existing Perined dataset, the 

approximation is close to the actual values for most gestational ages. 

 

Figure 15 Comparison between actual and predicted LoS for NICU patients 
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Especially for low gestational age, both the actual and predicted LoS show increased 

variance displaying the medical complexity and variety of patients. By only using the 

available information from perined, it is not possible to fully capture all influential factors to 

the fullest. Yet, when looking at statistical description for all patients the regression models 

can provide useful estimations for the LoS of NICU patients. 

Table 8 Comparison LoS in days between observed and predicted values for NICU patients 

 Actual LoS Predicted LoS 

Mean 12.50 12.29 

Standard Deviation 20.01 18.76 

Min 1 1 

50% 5 6 

Max 175 171 

Despite the inherent limitations of using only the available information from the Perined 

dataset, the models demonstrate their utility by providing close approximations of actual 

LoS across a range of gestational ages. The slight differences between actual and 

predicted means, as well as standard deviations, indicate that while the model may not 

capture every nuance, it is robust enough to offer valuable estimations. Hence, the model 

is not only suitable to be used in the simulation model but also provides valuable insights 

for practitioners in hospital planning. 

5.1.2.2 Length of Stay for High Care Ward 
As the next step, the LoS for high care patients was analyzed. The Perined dataset 

provides information on 21,981 high care admissions with a mean stay of 5.6 days. Similar 

to NICU patients, the LoS drastically increases for extremely premature neonates below 

approximately 32+0 weeks of gestational age. 

However, an interesting trend was observed where the LoS seems to decrease again for 

extreme premature patients born before approximately 28+0 weeks of gestation. One 

potential explanation for this could be that these patients, initially born at a high care 

hospital, require the specialized services of a NICU and are therefore transferred as soon 

as possible. This rapid transfer could lead to shorter recorded stays at the high care level 

for these extreme preterm infants.  
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Figure 16 LoS over gestational age for high care patients 

Based on this analysis, the dataset was split by gestational age into three groups: below 

and including 28+0 weeks, between 28+0 and including 37+0 weeks, and above 37+0 

weeks of gestational age. As a first step, factors beyond gestational age that influence 

LoS for high care neonates were identified. Correlations between various factors and LoS 

were analyzed for the respective subgroups. Based on these results, a regression formula 

was developed to express LoS through the available factors. The goal was to use as few 

factors as possible to avoid overfitting and multicollinearity while maintaining 

interpretability. By following this approach, the models aimed to provide accurate 

predictions of LoS for high care neonates across different gestational age groups, while 

being easy to understand and apply in clinical settings. 

5.1.2.2.1 Length of Stay for High Care below and including 28+0 weeks of 
gestation 

Patients with a gestational age below and including 28+0 weeks at a high care hospital 

show a wide range of factors and, thus, not many have a clear correlation with LoS as 

seen in Figure 17. Weak correlation can still be seen with CPAP days, O2 support days, 

anemia treatment, phototherapy, and antibiotics treatment. Compared to other age groups 

wand ward levels, gestational age has a lower correlation with LoS. 
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Figure 17 Correlation on LoS for high care patients below and including 28+0 weeks gestational age 

Based on the factors with a noticeable correlation, I developed a ridge regression model 

yielding the following coefficients seen in Table 9. 

Table 9 Ridge Regression Outcome LoS High Care below and including 28+0 weeks of gestational age 

Variable Coefficient 

Intercept -62.93 

Gestational age 0.54 

Phototherapy 19.28 

Anemia 3.30 

CPAP days 0.40 

O2 days 0.47 

Antibiotics -22.80 

Adjusted R2 0.37 

The model explains 37% of the variance when tested against the dataset. The strongest 

coefficients can be found for the use of phototherapy and antibiotics, highlighting the 

importance of these treatment options. When aggregating the LoS on population level, we 

see that the function can achieve similar results, as seen in Table 10. 
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Table 10 Statistical comparison between actual and predicted LoS for high care patients below 28+0 
weeks gestational age 

 Actual LoS Predicted LoS 

Mean 40.40 40.53 

Standard Deviation 21.59 13.07 

Min 1 6 

50% 43 40 

Max 117 86 

The difference in maximum values suggests that the model struggles to account for 

extreme values, likely due to Ridge regression's robustness against outliers. Additionally, 

the model cannot fully capture short-time admissions followed by a transfer to a NICU, 

indicating potential areas for further refinement. 

5.1.2.2.2 Length of Stay for High Care between 28+0 and 37+0-weeks of 
gestation 

The group between 28+0 and 37+0 weeks of gestational age in high care is a mix of 

previous NICU patients and patients born at the high care. Thus, there are large deviations 

in their respective LoS and influential factors. We see a strong correlation of gestational 

age. In addition, birth weight, CPAP, post IC and premature birth admission indicator, 

phototherapy treatment, oxygen support days, and anemia treatment are correlated.  

 

Figure 18 Correlation on LoS for high care patients between 28+0 and 37+0 weeks gestational age 
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For the regression model, the premature birth admission indicator was excluded as its 

effect is better capture through gestational age and it did not significantly improve the 

model results. Using these factors the Ridge regression yield the following coefficients see 

in Table 11. 

Table 11 regression results for high care patients between 28+0 and 37+0 weeks of gestation 

Variable Coefficient 

Intercept 158.35 

Gestational age -0.5631 

Birth Weight -0.0036 

Phototherapy 2.99 

Anemia 2.13 

CPAP days 0.49 

O2 days 0.39 

Post IC 2.19 

Adjusted R2 0.63 

The model explains 63% of the variance when tested against the dataset with strongest 

positive coefficients being phototherapy, anemia treatment, and post-IC indicator. When 

aggregating the LoS on population level, we see that the function can achieve similar 

results as seen in Table 12. 

Table 12 Statistical comparison between actual and predicted LoS for high care patients between 32+0 
and 37+0 weeks gestational age 

 Actual LoS Predicted LoS 

Mean 14.98 15.01 

Standard Deviation 15.15 12.76 

Min 1 1 

50% 8 11 

Max 142 84 

The difference in maximum values suggests that the model struggles to account for 

extreme values, likely due to Ridge regression's robustness against outliers. Thus, further 

refinements could be made by including additional factors that influence a post-IC 

admission or have a separate regression for this group of patients. 

5.1.2.2.3 Length of Stay for High Care above 37+0 weeks of gestation 

For High Care above 37+0 weeks gestational age, we see a strong negative correlation 

with gestational age and birth weight. Moreover, the admission indicator post-IC, anemia 
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treatment, phototherapy, and use of oxygen support and CPAP, and the others indicator, 

show correlation and become potentially relevant factors in predicting LoS. In addition, 

treatment for sepsis become relevant for this age group as the risk for sepsis increases 

for higher gestational age groups. The admission indicator for gestational age is also 

correlated but again excluded as its effect is already better included through the 

gestational age in days. 

 

Figure 19 Correlation on LoS for high care patients above 37+0 weeks gestational age 

The selection of correlated factors shows the diversity in medical conditions and 

treatments for this patient group. While CPAP days stay strongly correlated, the correlation 

for oxygen support treatment decreased in comparison to other age groups. Using these 

factors the Ridge regression yield the following coefficients seen in Table 13. 
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Table 13 Ridge regression coefficients for high care patients above 37+0 weeks gestational age 

Variable Coefficient 

Intercept 7.94 

Gestational age -0.0157 

Birth Weight -0.0004 

Phototherapy treatment 1.52 

Anemia treatment 2.54 

Sepsis treatment 2.25 

CPAP days 0.93 

Oxygen support days 0.86 

Others admission indicator -0.14 

Post IC admission indicator 4.73 

Adjusted R2 0.15 

The model only captures 15% of the variance in the data, further, underlying the 

challenges to predict LoS for this age group. The strongest positive effect is seen for 

anemia and sepsis treatment and post-IC admission indicator. 

As a next step, the model was applied to the empirical dataset to gain a comparison on a 

population level as seen in Table 14. 

Table 14 Statistical Comparison between actual and predicted LoS of high care patients above 37+0 
weeks gestational age 

 Actual LoS Predicted LoS 

Mean 2.55 2.55 

Standard Deviation 3.62 1.40 

Min 1 1 

50% 2 2 

Max 137 52 

The comparison shows that the model captures the overall average well but struggles to 

include extremely high values. These results indicate that there are additional complexities 

in the LoS, especially for the long post-IC admissions, that cannot be fully expressed with 

the available variables in the dataset and the chosen regression approach. 

5.1.2.2.4 Comparison predicted to actual LoS for High Care Ward 

Bringing all three regression models together, we see that the model can capture the core 

characteristics of LoS in High Care as seen in Figure 20. The predicted values follow the 

observed pattern and tend to be in the same range for each gestational age. 
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Figure 20 Comparison between actual and predicted LoS for high care patients 

Comparing core statistics, we see again the pattern that predictions tend to be more 

conservative than the empirical data. This highlights the medical complexity of patients 

and the impact of random nature and other factors outside of the dataset. 

Table 15 Statistical Comparison between actual and predicted LoS for High Care 

 Actual LoS Predicted LoS 

Mean 5.66 5.66 

Standard Deviation 10.53 8.83 

Min 1 1 

50% 2 2 

Max 142 86 

This concludes the analysis of LoS for high care ward patients. Regression models were 

developed for three different age groups, identifying relevant patient characteristics and 

treatments. These regressions were used in the subsequent model implementation to 

adequately simulate LoS for this patient population. 

5.1.2.3 Length of Stay for Medium Care Ward 
The perined dataset provides information on 21129 medium care admissions with a mean 

stay of 3.21 days. As expected, the LoS drastically increases for premature neonates 

below circa 37 weeks of gestational age. In addition, we see high variance below the 32+0 

weeks of gestation.  
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Figure 21 LoS across gestational age for medium care patients 

 This high variance is since these patients are either born at the medium care level but are 

directly transferred to the NICU because of their prematurity, or they are former NICU 

patients having a post-IC admission, leading to long LoS. Based on these observations, 

the dataset was split into three subgroups: 1) below 31+0 weeks, 2) 31+0 to 38+0 weeks, 

and 3) above 38+0 weeks gestational age. The following sections,   

5.1.2.3.1 Length of Stay for Medium Care below and including 31+0 weeks of 
gestation 

For this group of medium care patients, the most correlated factors, besides gestational 

age, were asphyxia indicator, post IC and others admission criteria, and phototherapy, 

CPAP, and O2 support treatment, as seen in Figure 22.  
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Figure 22 Correlation on LoS for medium care below and including 31+0 weeks gestational age 

Moreover, the correlation matrix shows that various admission criteria or treatments are 

not present in this group demonstrating the lower level of care and less severe medical 

conditions. Using the correlated factors the Ridge regression model yields the following 

coefficients as seen in Table 16. 

Table 16 Ridge regression results for medium care patients below 31+0 weeks gestational age 

Variable Coefficient 

Intercept -34.05 

Gestational age 0.1613 

Phototherapy treatment 13.93 

O2 days 0.08 

CPAP days 0.53 

Stay number 12.03 

‘others’ admission criteria -1.22 

Post IC admission criteria 11.11 

Adjusted R2 0.43 

The model can explain 43% of the observed variance. The use of phototherapy or a post-

IC stay can extend the expected LoS by more than 10 days. Using this regression model 

and applying it on the selected patient group I get the following statistical description as 

seen in Table 17. 
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Table 17 Statistical comparison between actual and predicted LoS for Medium Care patients below 
31+0 weeks gestational age 

 Actual LoS Predicted LoS 

Mean 18.97 18.97 

Standard Deviation 18.72 12.24 

Min 1 1 

50% 14 13 

Max 62 65 

The regression model provides an adequate level of accuracy over the patient population 

by having a similar mean and extreme values. The standard deviation is lower than in the 

actual data indicating less variance in predictions. Thus, it is reasonable to apply it for this 

patient group in the simulation model implementation. 

5.1.2.3.2 Length of Stay for Medium Care above 31+0 below 38+0 weeks of 
gestation 

For Medium care patients between 31+0- and 38+0-weeks gestational age, the most 

correlated factors with LoS are gestational age, birth weight, and the indicator for 

prematurity. Weak correlation can be seen with use of phototherapy treatment, c-section, 

and oxygen support days.  

 

Figure 23 Correlation on Los for medium care patients above 31+0 and below 38+0 weeks gestational 
age 
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Using these factors the Ridge regression yield the following coefficients seen in Table 18. 

The model explains almost half of the variance. 

Table 18 Ridge regression coefficients for medium care patients above 31+0 below 38+0 weeks 
gestational age 

Variable Coefficient 

Intercept 120.12 

Gestational age -0.4312 

Birth Weight -0.0017 

Phototherapy 2.12 

C-Section 1.57 

O2 days 0.85 

Adjusted R2 0.49 

Applying the presented regression model on the patient group in perined we see that a 

statistical description between actual and predicted LoS is close enough to be used in a 

simulation model, as seen in Table 19.  

Table 19 Statistical comparison between actual and predicted LoS for medium care above 31+0 below 
38+0 weeks gestational age 

 Actual LoS Predicted LoS 

Mean 6.50 6.54 

Standard Deviation 7.87 5.43 

Min 1 1 

50% 3 5 

Max 66 45 

The prediction tends to be more conservative due to the inherent character of ridge 

regression models to be robust against outliers leading to more weight to values around 

the mean. Still, the overall average is similar enough to the observed data and the range 

of predicted values inside of the actual range. 

5.1.2.3.3 Length of Stay for Medium Care above 38+0 weeks of gestation 

For medium care patients above 38+0 weeks of gestational age the correlated factors are 

clinical sepsis, cesarean section, phototherapy, days of O2 support, and days of CPAP, 

as seen in Figure 24. 
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Figure 24 Correlation on LoS for medium care above 38+0 weeks gestational age 

Gestational age and birth weight are not correlated with LoS for this group and overall all 

correlations are weak which highlights the diversity in conditions for this patient group. 

Using the selected correlated factors the Ridge regression yield the following coefficients 

see in Table 20. 

Table 20 Ridge regression coefficients for medium care patients above 38+0 weeks gestational age 

Variable Coefficient 

Intercept 1.60 

Phototherapy Treatment 2.64 

C-Section 0.90 

CPAP days 0.36 

O2 days 0.91 

Clinical Early-onset sepsis Treatment 2.95 

Adjusted R2 0.12 

The model only explains 12% of the variance which resonates with the previous findings 

of only weakly correlated variables in the dataset. Applying the presented regression 

model on the patient group in perined we see that a statistical description between actual 

and predicted LoS is close enough to be used in a simulation model, as seen in Table 21.  



Data Analysis - Model Mechanisms - Length of Stay 

 

 

57 

Table 21 Statistical comparison between actual and predicted LoS for medium care patients above 
38+0 weeks gestational age 

 Actual LoS Predicted LoS 

Mean 2.00 2.00 

Standard Deviation 2.27 0.77 

Min 1 1 

50% 1 2 

Max 68 17 

Due to the characteristics of Ridge regression models to penalize major outliers, the 

predicted values remain below the actual values and there are most likely additional 

factors necessary to explain the LoS more accurately. 

5.1.2.3.4 Comparison predicted to actual LoS for Medium Care Ward 

When applying the regression models on their respective patient groups, we can compare 

the overall performance of the estimation method for all medium care ward patients as 

seen in Figure 25. 

  

Figure 25 Comparison between actual and predicted LoS for medium care patients across 
gestational age 

We see that the regression model captures the overall LoS pattern across the different 

gestational age groups well. Smaller deviations are visible at points between two 

regressions, e.g. at 38+0 weeks. Comparing the statistical description between actual and 

predicted LoS, as seen in Table 22, it is evident that the model predicts a quite accurate 
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mean, min, and max for the dataset. The standard deviation is smaller which is likely linked 

to the characteristic of ridge regressions to limit the impact of outliers. 

Table 22 Statistical comparison between actual and predicted LoS for Medium Care Patients 

 Actual LoS Predicted LoS 

Mean 3.20 3.23 

Standard Deviation 5.09 3.68 

Min 1 1 

50% 2 2 

Max 68 62 

The three presented ridge regression models explain the LoS patterns for medium care 

patients well enough and furthermore, provide valuable insights into the driving factors for 

LoS for each gestational age group. 

5.1.2.4 Conclusion Length of Stay for Medium Care Ward 
In this section, I analyzed LoS for neonates across ward levels and gestational age groups. 

I used ridge regression models based on the perined dataset with correlated variables. 

For the implementation in the model, I additionally incorporated specific checks to refine 

the predictions: if the rounded predicted LoS was zero, I adjusted it to one day– the 

minimum LoS. Additionally, if the predicted LoS was less than the days of CPAP, oxygen 

support, or HFO therapy, I set it to the minimum duration among these treatments. 

Moreover, NICU patients born below 32+0 gestational age are required to stay at least 

until they are 32 weeks old. These adjustments ensure a proper fit to guidelines and help 

explain a larger part of the observed variance. 

The regression approach proved most accurate for NICU patients. I suspect this 

phenomenon partly due to the standardized admission criteria that help homogenize 

patient profiles. Overall, the regression models were sufficiently precise for representing 

a broader population as seen in the comparison of mean, min, and max values between 

actual and predicted LoS of the dataset. 

Across all ward levels, I see the highest LoS values for premature and extreme premature 

neonates. Moreover, any kind of respiratory support – CPAP, oxygen, HFO/conventional 

ventilation– is strongly linked with an increased LoS. As LoS directly impacts the 

occupancy rate through a potential increased bed turnover, a possible lever could be the 

changing the use of these treatments or more in general see the impact of LoS changes 

for premature patients. 
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To properly implement the regression models, the used variables need to be incorporated 

in the modeling. Thus, the following sections will introduce them in more detail and provide 

insights on how to integrate them in the eventual implementation. 

5.1.3 Neonatal Care Pathways 
Patient pathways in healthcare are determined by various factors and faces a high level 

of complexity and uncertainty (Han et al., 2019). Yet, it is still possible to abstract key 

pathways on a ward level that a patient can take based on the available data and 

consultation with practitioners. To do so, I categorized hospitals by their ward level and 

analyzed single stay admissions and afterwards multiple stay admissions. For patients 

with multiple admissions, I divided into two groups– inside and outside region patients. 

The region receives two types of patients: patients with a home zip code in the region, and 

patients with a home zip code outside the region. Due to the regionalization across the 

country, each region should be in the position to provide care for all inside region patients. 

Outside region patients are a sign for capacity shortages in other regions and add 

additional stress on the region. Patients are assigned to a ward based on their admission 

criteria and the capacity of the respective ward. As patients can have multiple admissions, 

it is possible for them to be transferred to another hospital with another respective ward 

level. These transfers can happen between inside region hospitals or to an outside region 

hospital. As we only have data for one specific region and neonatal care is governed on a 

regional level, the system will be bounded by the regional borders. Hence, all outside 

hospitals are aggregated to one group. By analyzing the perined dataset, I identified the 

most common pathways of neonates in the care system. 

5.1.3.1 Admissions by ward level 
Across both patient groups, most patients fortunately are only admitted into one hospital 

and can be released afterwards as seen in Table 23. While the NICU has the longest LoS, 

only 4% require such care. 

  



Data Analysis - Model Mechanisms - Neonatal Care Pathways 

 

 

60 

Table 23 Overview of patients with single stay 

Path Proportion of total 

pathways [%] 

Average total LoS 

in days 

Most common 

admission criteria 

NICU  4.00 13.65 Gestational age, 

Others, Birth 

weight 

High Care 53.00 3.90 Others, Birth 

weight, maternal 

medication 

Medium Care 39.00 3.10 Others, maternal 

medication, 

gestational age 

The highest level of neonatal care is provided at the NICU. The easiest and most 

straightforward source are guidelines that state under which conditions a patient must be 

admitted to which ward level. However, in the Netherlands such guidelines only exist for 

NICU admissions. Here, all newborn under 32+0 weeks of gestational age, 1250 gr birth 

weight, or congenital defect must be admitted to a NICU (NVOG, 2007). Most patients at 

a high care ward are moderate to late preterm neonates, need specialized care without 

NICU indications, or are a post NICU admission. All other patients normally only require a 

medium care ward. 

5.1.3.2 Patient pathways with multiple admissions 
However, five percent of patients require a transport to a different ward level due to their 

medical conditions. These pathways can mostly be described by the following groups 

displayed in Table 24. 

Table 24 Comparison of most common paths with more than one stay 

Pathway Proportion of total 

pathways [%] 

Average total LoS in days 

NICU-High 2.0 55.40 

NICU-Medium 0.4 25.91 

Medium-NICU 0.4 9.46 

High - NICU – High 0.3 26.84 

It can be seen that an additional stay easily leads to a higher LoS by multiple factors. The 

analysis of these pathways reveals that transitions involving the NICU typically result in 

longer LoS, emphasizing the critical and intensive nature of NICU care. Especially, the 
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typical post-IC path (NICU-High) leads to a long LoS as these patients are born at the 

NICU due to extremely low birth weight or being below 32+0 weeks of gestation, 

necessitating a long initial NICU stay. Following this, they also require an extended high 

care stay on average until their term day at 40+0 weeks of gestation. Thus, this pathway 

is particularly interesting for potential interventions aimed at either lowering the LoS or 

redistributing the pressure from the NICU or high care. Such interventions could help 

ensure that these patients receive the necessary length of stay without overburdening any 

single ward level, ultimately improving the efficiency and capacity management within the 

neonatal care system. 

Additionally, there are patient pathways that include hospitals outside the region. This 

goes in a bidirectional manner, as inside region patients might be transferred to an outside 

region hospital and at the same time outside region patients might be transferred to an 

inside region hospital. Patients that moved between regions were mostly linked to the 

following combinations in Table 25. 

Table 25 Overview of most common pathways including other regions 

Pathway Proportion of total 

pathways [%] 

Average total LoS in days 

NICU (outside region) – 

High care (inside region) 

0.27 48.74 

NICU (inside) – High care 

(outside) 

0.18 68.79 

Based on the transfers to outside region hospitals, it is evident that capacity shortages are 

most likely to occur at the NICU and high care hospitals. Additionally, both pathways (High 

- NICU - High and NICU - High) have a long total LoS, further emphasizing their impact 

on the number of available operational beds. 

5.1.3.3 Hospital Assignment Process 
The ward level is decided by gestational age, birth weight, and any relevant medical 

condition. However, this does not automatically decide which hospital the patient will be 

admitted to. The primary goal is to always provide care within the region for patients with 

a home location inside the region. The secondary goal is to provide care as close as 

possible to their home location. 

To achieve these goals, the six subregions were analyzed to understand the distribution 

of neonatal home locations, the hospitals within each subregion, and the adjacent 

subregions. By understanding the percentage of neonatal home locations in each 
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subregion, the hospitals available, and the connections between subregions, the 

implemented model can provide a more accurate picture of the occupancies across 

hospitals and identify bottlenecks between hospitals. 

Table 26 Overview of subregions 

Subregion Share of inside 

region patients 

[%] 

Hospitals Adjacent 

Subregion 

Rotterdam 

Noordoever 

31.00 Erasmus MC, Franciscus 

Gasthuis & Vlietland, 

IJsselland Ziekenhuis 

Noord-Brabant 

West, 

Rotterdam 

Zuidoever, Zuid-

Holland Zuid 

Noord-Brabant 

West 

28.00 Bravis, Amphia Rotterdam 

Noordoever, 

Zuid-Holland 

Zuid, Zeeland 

Zuid-Holland Zuid 26.00 Albert Schweitzer 

Ziekenhuis 

Rotterdam 

Noordoever, 

Rotterdam 

Zuidoever, Zuid-

Holland 

Eilanden, 

Noord-Brabant 

West 

Rotterdam 

Zuidoever 

8.00 Maasstad Ziekenhuis, 

Ikazia Ziekenhuis 

Rotterdam 

Noordoever, 

Zuid-Holland 

Zuid 

Zuid-Holland 

Eilanden 

5.00 Van Weel-Bethesda 

Ziekenhuis 

Zuid-Holland 

Zuid, Zeeland 

Zeeland 2.00 Admiraal De Ruyter 

Ziekenhuis, ZorgSaam 

Zeeuws-Vlanderen 

Noord-Brabant 

West, Zuid-

Holland 

Eilanden 

The subregions within the neonatal care system represent drastically different numbers of 

neonates. For example, nearly one-third of all admissions are linked to the Rotterdam 
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Noordoever subregion, while only 2% of patients are based in Zeeland. Consequently, 

hospitals in subregions with a relatively high percentage of local patients face more 

potential admissions and a higher risk of capacity shortages. 

The process for choosing the most suitable hospital for a patient can be summarized in 

several steps. First, it is determined if there is an available operational bed at the 

appropriate ward level within the patient's subregion. If not, the adjacent subregions are 

checked sequentially until all subregions have been considered. If no suitable bed is found 

within the region, the patient would then be transferred to a hospital outside the region. 

The closest hospital does not always have to be within the patient's subregion; for 

instance, there is only one NICU in the entire region. If a patient cannot be admitted to 

their closest hospital with the appropriate ward level, they must be transferred, adding 

additional stress for both the neonate and the parents. 

5.1.3.4 Patient pathways across subregions 
The goal of the region is to provide care as close as possible to the home location of 

patients to minimize travel time and additional stress for families. However, due to the 

uneven distribution of patients across the region, occupancy rates between hospitals can 

vary significantly. As a result, some patients are not admitted to the hospital closest to 

their home. In 2016, this occurred for 8.7% of high care patients and 7.8% of medium care 

patients. While these patients are not transferred to hospitals outside the region, their 

admissions still deviate from the optimal care pathway. Hence, the implemented model 

includes the subregions of patients and determines the closest hospital in relation to the 

patient’s home location. 

5.1.3.5 Conclusion Neonatal Care Pathways 
Overall, the neonatal care pathways can take multiple forms, with patients experiencing 

multiple stays at different ward levels, and sometimes even needing to be admitted to the 

same ward level multiple times. This complexity adds to the challenges of managing the 

neonatal care system. The pathways have a significant impact on the LoS of a patient, 

particularly because a stay in a NICU ward generally increases the LoS. Additionally, a 

stay in a high care ward following a NICU stay tends to result in a longer LoS to ensure 

full recovery after intensive care. 

Moreover, as pathways are influenced by the home location of the patient, hospitals 

handle varying amounts of patients, leading to an uneven distribution and the potential for 

transfers between subregions. This uneven distribution and the necessity for patient 

transfers further complicate the management of the system. 
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Two mechanisms were identified that could be used as tested system levers: care 

pathways, particularly after a NICU stay, and the hospital selection process. These 

mechanisms are crucial for optimizing patient flow and improving overall system efficiency. 

By focusing on these areas, the model can help in formulating strategies to better manage 

patient admissions, distribute the patient load more evenly, and potentially reduce the 

overall LoS across the system. 

5.2 Model Inputs 
The previous chapter introduced the main functionalities of the system and how they can 

be conceptualized. These functionalities are dependent on appropriate input factors that 

determine how individual functions will play out. Thus, this chapter presents the necessary 

input variables for an accurate conceptualization and later modeling process. 

5.2.1 Gestational Age 
Given the impact of gestational age on the ward assignment and the LoS of a patient, 

there is the need to treat its distribution as a model input factor and find an adequate way 

to represent it in the model. 

 

Figure 26 Distribution of gestational age 

Figure 26 shows the gestational age distribution across all patients. Most patients have a 

gestational age around the mean of 38.5 weeks with an observed minimum of 23.85 weeks 

and maximum of 43.43 weeks. However, there is a noticeable heavy left tail extending 
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down to 24 weeks. Since these patients are linked to NICU admissions, they represent a 

crucial subgroup for the model and must be accurately accounted for. Therefore, a 

Gaussian mixture model was applied, which is a weighted sum of n Gaussian distributions. 

To keep the parametrization of the theoretical distribution as simple as possible and avoid 

overfitting, the goal was to use as few components as possible. Thus, the performance of 

the model was tested with various components using the Bayesian Information Criterion 

(BIC) as an evaluator. The BIC is a criterion for model selection among a finite set of 

models; it balances model fit and complexity by penalizing the number of parameters in 

the model (Neath & Cavanaugh, 2012). 

 

Figure 27 BIC for different number of components for the GMM on gestational age 

Based on the results of the BIC evaluation in Figure 25, the model was limited to two 

components. The analysis showed that adding more components resulted in diminishing 

returns in model performance. Although using five components was another option, the 

performance improvement with two components was deemed sufficient for the purpose of 

the simulation model. 

The resulting distribution, as seen in Figure 28, approximates the empirical distribution 

with an average error of three days, which meets the required accuracy level for the 

simulation model. Moreover, by limiting the number of components in the mixture model, 

the approach remains transparent and generalizable, allowing the model to be used for 

other datasets or regions. 
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Figure 28 Comparison between modeled and observed gestational age distribution 

The model is a combination of one component with a mean of 39+2 weeks and a weight 

of about 86%, and another component with a mean of 33+6 weeks and a weight of 14%. 

This effectively illustrates the significant mass of the distribution located in the left tail, 

capturing the crucial subgroup of extremely premature patients. 

Additionally, the approximation is bounded at 24 weeks for the lower bound, as per 

government guidelines, and 44 weeks for the upper bound, the highest value observed in 

the dataset. Therefore, the gestational age of each patient in the simulation model is 

sampled from this described Gaussian Mixture Model. 

5.2.2 Birth Weight 
Across multiple LoS regression models, we saw that birth weight can have a relevant 

impact on the LoS. Moreover, various interventions are only applicable for patients above 

certain weight thresholds. Hence, it is necessary to include the factor in the modeling 

process. 
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Figure 29 Birth weight distribution for neonatal care patients 

The birth weight distribution follows a bell shape with a long, and heavy left tail and a 

relatively short and light right tail, as seen in Figure 29. The tails of the neonatal birth 

weight distribution distinguish it from the standard birth weight distribution. Lower birth 

weights are associated with increased medical complexities, which in turn heighten the 

likelihood of neonatal admissions. The left tail of this distribution is particularly critical, as 

it predominantly represents patients who require admission to the NICU. 

Analyzing the statical measures in Table 27, we see that most patients are expected to 

weight around the mean of 3152g, while at the same time birth weight can also be in the 

range between 450g and 5500g marking a wide range of possible birth weights.  

Table 27 Statistical description of birth weight in the dataset 

 Mean Std min 50% max 

Birth Weight 

(in grams) 

3152 784 450 3260 5500 

As discussed in previous chapters, birth weight influences LoS and serves as a criterion 

for NICU admissions. While sampling directly from the birth weight distribution would yield 

adequate results at an aggregated level, it may produce implausible samples for individual 

patients. For instance, it is highly unlikely that an extremely premature neonate would be 

born with the average birth weight. 
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To address this, I investigated factors that can be used to express birth weight and found 

a direct relationship between gestational age and birth weight. This relationship can be 

linearized by taking the natural logarithm of birth weight, as shown on the right in Figure 

31. This approach ensures that the birth weights of individual patients are more realistic, 

especially for extremely premature neonates, thereby improving the accuracy and 

reliability of the simulation model. 

 
Figure 30 Observed birth weights by gestational 
age in weeks 

 
Figure 31 natural logarithm of observed birth 
weights by gestational age in weeks 

A logarithmic OLS regression was used to express birth weight through gestational age. 

Additional suspected factors like sex had no impact on the regression results and were 

thus excluded, simplifying the regression for easier implementation. The regression results 

can be seen in Table 28. 

Table 28 Logarithmic OLS regression results of birth weight and gestational age 

 Coefficient Standard error P-value Conf min Conf max 

Intercept 4.538 0.009 0.000 4.521 4.556 

Gestational 

Age 

0.013 3.4 e-05 0.000 0.013 0.013 

Adj. R2 0.73     

F-statistic 1.5e05     

The regression results show a sufficient level of accuracy with an R² of 0.73. Additionally, 

both the coefficient and the intercept have small confidence intervals and standard errors, 

confirming the robustness of the regression model. Moreover, the high F-statistic speaks 

in favor of a statistically significant model. 

In the model implementation, an additional standard distributed error term with a mean of 

zero and a standard deviation of 200 was added. This adjustment covers a wider range of 

values for the same gestational age, ensuring that the minimum and maximum values for 

each age are properly captured. A potential further development could be to scale the 
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added random term by gestational age as we see an increasing range for higher 

gestational age. However, the current implementation is acceptable for the overall purpose 

of the simulation model. 

5.2.3 Treatments 
The LoS does not only depend on factors at birth, like gestational age and birth weight, 

but also what kind of treatment a patient received during their admissions in the neonatal 

care system. Thus, the following sections will introduce the most relevant treatments and 

explain how they were incorporated in the modeling process. 

5.2.3.1 Days of continuous positive airway pressure (CPAP) 
In a neonatal setting, CPAP therapy is often used to support premature infants or 

newborns with respiratory distress syndrome or other breathing difficulties. A CPAP 

machine delivers a continuous stream of air into the infant’s lungs through small prongs 

placed in the nostrils or a mask over the nose. This steady airflow helps keep the 

newborn’s airways open, preventing collapse and making breathing easier. 

The use of CPAP in neonates can be crucial for reducing the work of breathing, improving 

oxygenation, and stabilizing the infant's respiratory status. It is often employed as a less 

invasive alternative to mechanical ventilation, reducing the risk of lung injury and other 

complications. 

 

Figure 32 Distribution of CPAP days across gestational age in weeks per ward level 
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The analysis focuses on NICU and high-care admissions, particularly noting that the days 

on CPAP increase significantly with decreasing gestational age. CPAP usage can extend 

up to 100 days in the NICU and up to 85 days in high care. Therefore, I decided to analyze 

data based on ward level and differentiate by gestational age groups. The theoretical 

distributions were not able to properly capture the patterns observed in the data. Hence, I 

developed a piecewise distribution method for both NICU and high care wards: 

1. Define probabilities for the initial values for different age groups 

2. Use an inverse function to capture the decreasing probability, scaled by gestational 

age. This ensures that all values are possible, while making extreme values 

significantly less likely, particularly for higher gestational ages. 

For NICU patients, I categorized them into three age groups after visually inspecting the 

distribution over gestational age: below 28+4 weeks, between 28+4 and 32+0 weeks, and 

older than 32+0 weeks. For high-care patients, I identified two groups after inspecting the 

distribution over the duration of stay: 32+0 weeks or less, representing most post-IC 

patients, and more than 32+0 weeks. For medium care patients, there was no observed 

need to account for different gestational ages. Thus, I defined probabilities for 0 and 1 

days of treatment, with the remaining range following an inverse function for the 

decreasing probability. 

5.2.3.2 Days of mechanical ventilation 
In a neonatal setting mechanical ventilation, such as HFO ventilation or conventional 

ventilation, is an advanced respiratory support techniques used for newborns, especially 

premature infants or those with severe respiratory conditions like respiratory distress 

syndrome. 

HFO ventilation is a type of mechanical ventilation that delivers very rapid breaths at small 

volumes, typically hundreds of breaths per minute. This method helps to maintain 

continuous lung inflation and improves gas exchange while minimizing lung injury. HFO is 

particularly beneficial for neonates with severe lung disease, as it uses lower pressures 

and smaller volume changes compared to conventional ventilation (Hibberd et al., 2023). 

Conventional ventilation in neonates involves using a ventilator to provide a set number of 

breaths per minute with a controlled volume or pressure of air. Conventional ventilation is 

commonly used for neonates with moderate to severe respiratory distress who need more 

support than what CPAP can provide (Tobias, 2010).  
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Figure 33 Distribution of mechanical ventilation days by gestational age in weeks 

Based on Figure 33, it is evident that an increasing usage with lower gestational age, 

especially below 200 days. As the variable is only used in the LoS regression models for 

NICU patients, I only analyzed the usage in this patient group. I decided to split the group 

by gestational age below and above 27+1 weeks. I defined probabilities for the values 0 

to 7 and used an inverse function to capture the decreasing probability, scaled by 

gestational age. This ensures that all values are possible, while making extreme values 

significantly less likely, particularly for higher gestational ages. 

5.2.3.3 Days of Oxygen Support 
Days of oxygen support refers to the duration during which an infant receives 

supplemental oxygen (>21% room oxygen), provided through methods such as 

conventional ventilation, HFO, CPAP, or high/low flow cannulas (Goldsmith & Kattwinkel, 

2012). This metric is crucial in diagnosing long-term pulmonary problems in preterm 

infants, particularly those born before 32+0 weeks of gestation. Prolonged oxygen support 

is an indicator of bronchopulmonary dysplasia, a chronic lung disease prevalent in very 

preterm infants (Thébaud et al., 2019). 

In Figure 34, we see that the use of supplementary oxygen support is distributed differently 

across the wards. In addition, especially for NICU, we see a strong increase with 

decreasing gestational age. 
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Figure 34 Distribution of oxygen support days by gestational age in weeks 

Based on a visual inspection, I decided to have different sampling per ward level. As I did 

not manage to find a theoretical distribution, I again grouped the observations into different 

age groups, defined probabilities for the most common values, and the used an inverse 

function scaled by gestational age for the remaining value range ensuring that the full 

observed range is included for each group, while also accounting for increasing usage 

with decreasing gestational age within one age group. 

For NICU patients, I divided the groups into those below and above 32+0 weeks of 

gestation. For those below 32+0 weeks, I defined percentages for 0-10 days, while for 

those above, I set percentages for 0-5 days. For high care patients, there is a noticeable 

increase in additional oxygen use below 32+0 weeks. Consequently, I split the groups into 

below and above this age, defining percentages for 0-5 days for each group. For medium 

care patients, visual inspection indicated no need to differentiate by gestational age, so I 

defined probabilities for 0 and 1 days and used an inverse function for the remaining 

values. 

5.2.3.4 Phototherapy Treatment 
Phototherapy is a widely used treatment in neonatal care, primarily for managing neonatal 

jaundice. Jaundice, characterized by yellowing of the skin and eyes, is present to some 

level in up to 80% of neonates. The underlying reason are high levels of bilirubin in the 

blood. Bilirubin is a byproduct of red blood cell breakdown, and in newborns, especially 

preterm infants, the liver may not be mature enough to process it efficiently. Phototherapy 

helps reduce bilirubin levels and prevent the potential complications of hyperbilirubinemia, 
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primarily potential brain damage. The likelihood for a treatment per ward can be seen in 

Table 29. 

Table 29 Probabilities for phototherapy treatment per ward level 

Ward Treatment Probability 

NICU 0.42 

High Care 0.09 

Medium Care 0.03 

 

5.2.3.5 Antibiotics Treatment within the first 72 hours after birth 
One of the most used treatments in neonatal care. Variable includes treatment in the first 

72 hours after birth. Based on the available data, I assigned probabilities for each ward 

level as seen in Table 30. 

Table 30 Antibiotics treatment probabilities per ward level 

Ward Treatment Probability 

NICU 0.38 

High Care 0.40 

Medium Care 0.2 

 

5.2.3.6 Clinical Early-Onset Sepsis Treatment 
The continuation of antibiotic treatment for clinical early-onset sepsis (EOS) is covered 

through the variable. EOS in neonates is a severe condition that occurs within the first 72 

hours of life, often resulting from bacterial infections acquired during birth. Newborns are 

particularly vulnerable due to their underdeveloped immune systems. Common symptoms 

include respiratory distress, temperature instability, and lethargy. Most patients are treated 

with antibiotics (Simonsen et al., 2014). 

Table 31 EOS treatment probabilities per ward level 

Ward Probability 

NICU 0.09 

High Care 0.06 

Medium Care 0.03 
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To incorporate the treatment into the model, I defined a probability for each ward level 

based on the observed values in the dataset as seen in Table 31. We see that the 

probability of treatment increases with increasing level of care. 

5.2.3.7 Anemia Treatment 
Neonatal anemia is a common condition where a newborn has a lower-than-normal red 

blood cell count or hemoglobin levels, affecting the oxygen supply to tissues. It can result 

from prematurity, blood loss, or hemolysis. Symptoms include pallor, rapid heartbeat, and 

poor feeding. Treatment often involves red blood cell transfusions, especially for moderate 

to severe cases, to quickly restore healthy blood levels (Aher et al., 2008; Nassin et al., 

2015). 

Table 32 Probability Overview for Anemia Treatment 

Ward Probability 

NICU =< 32+0 weeks 0.24 

NICU > 32+0 weeks 0.13 

High Care 0.007 

After analyzing the data, I decided to assign different probabilities for the relevant wards 

– NICU and high care and split NICU again in two gestational age groups based on the 

32+0 weeks NICU cut-off. This way I maintain a simple implementation, while still 

accounting for the different probabilities across gestational age. 

5.2.3.8 Thrombocytopenia Treatment 
Thrombocytopenia is a medical condition characterized by a low platelet count. Platelets 

are essential for blood clotting, and their deficiency can lead to increased risk of bleeding 

and bruising.  The condition is present in 1-5% of all births and 22-35% of all NICU patients 

(Roberts, 2003). Treatment can be performed through transfusion, which is also the 

recorded treatment in the perined dataset. As this treatment was only performed in NICU 

hospitals in significant numbers, I decided to model the treatment by assigning NICU 

patients a four percent probability of treatment based on the observed probability in the 

dataset. 

5.2.4 Admission Criteria 
The available dataset perined provides 15 admission criteria for each admission. Hospital 

personnel can decide at the point of admission on up to two admission criteria that are the 

most suitable for the respective case. However, there are no explicit definitions or 

requirements for the criteria leaving room for interpretation to the healthcare professionals 
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responsible for registration. As a result, I decided to use percental distributions as inputs 

based on the empirical data as seen in Table 33. 

Table 33 Overview of admission criteria and their probabilities between 2016 and 2017 

Criteria Proportion 

[%] 

Proportion 

NICU [%] 

Proportion High 

Care [%] 

Proportion 

Medium Care 

[%] 

Others 29.00 40.00 30.50 21.50 

Premature 15.50 42.50 12.00 11.00 

Birth Weight 14.50 24.50 17.50 11.00 

Maternal 

Medication 

14.00 2.00 18.00 13.00 

Infection 7.00 5.50 9.50 4.00 

Jaundice 3.00 5.00 3.50 0.80 

Feeding 0.02 0.60 2.00 0.60 

Congenital 

Abnormalities 

0.01 0.03 0.00 0.00 

Post IC 0.01 0.00 0.03 0.00 

Asphyxia 0.00 0.00 0.00 0.00 

Cardiovascular 0.00 0.00 0.00 0.00 

Hypoglycemia 0.00 0.00 0.00 0.00 

Low Blood 

Glucose 

0.00 0.00 0.00 0.00 

Psycho-social 

symptoms 

0.00 0.00 0.00 0.00 

Seizures 0.00 0.00 0.00 0.00 

Withdrawal 

symptoms 

0.00 0.00 0.00 0.00 

The results show that nearly one-third of admissions fall under the "Others" category, 

indicating that the current criteria do not fully capture the variability of patients. Most 

premature and low birth weight patients are admitted to a NICU, while those admitted due 

to maternal medication are more frequently placed in high or medium care hospitals. 

Moreover, in the selected time period between 2016 and 2017 not all indicators were 

present.  

Based on these results, I decided that for the modeling process, to sample from the overall 

probabilities of admission indicators for each patient. The sampling is bounded by some 
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guidelines, such as that gestational age indicator is only allowed for births below 37+0 

weeks and birth weight indicator below 2000g birth weight. Each patient can have up to 

two indicators for each admission as this was also the limit for the data entry form of the 

perinatal birth registry. 

5.2.5 Hospitals in the region 
As a last input factor, one must decide on the number of hospitals and the respective ward 

level. This results in the following distribution see in Table 34 across the respective ward 

levels for the south-west region of the Netherlands. 

Table 34 Number of hospitals per ward in the region 

Level Number of hospitals Number of currently 

operational beds 

NICU 1 23 

High care 4 62 

Medium care 6 71 

Adjusting the number of hospitals of a ward can massively impact the dynamics of the 

system as it highlights the underlying dependencies. By conceptualizing the system with 

the number of hospitals per ward, the system becomes more generalizable, and the 

eventual model implementation can easily be applied to other regions or further extended. 

The operational bed capacity of a hospital is defined through the interaction of demand of 

incoming patients and supply of operational beds. The number of operational beds in the 

region was acquired through a previous survey and is shown in Table 35. The estimated 

number of operational beds in 2016 was calculated by taking the maximum number of 

patients admitted at each hospital and deducting two to account for potential overbeds. 
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Table 35 Overview of hospitals in the region with physical and operational bed count 

Hospital Ward Level Estimated 

number of 

operational 

beds (2016) 

Number of 

physical beds 

(2023) 

Number of 

currently 

operational beds 

(2023) 

Hospital 1 NICU 29 32 23 

Hospital 2 High Care 20 20 17 

Hospital 3 High Care 24 22 15 

Hospital 4 High Care 28 21 18 

Hospital 5 High Care 22 15 12 

Hospital 6 Medium Care 13 13 13 

Hospital 7 Medium Care 14 14 14 

Hospital 8 Medium Care 13 13 13 

Hospital 9 Medium Care 5 5 5 

Hospital 10 Medium Care 19 8 8 

Hospital 11 Medium Care 24 13 13 

After consultation with a hospital planner in the field, it was confirmed that there are only 

minor fluctuations in the number of operational beds over a twelve-month period. Hospital 

management adjusts staff planning or the hiring process to minimize the risk of short-term 

bed closures. Therefore, also due to the absence of additional data sources on this aspect 

for the region, the bed count is assumed to be stable over the simulation period of one 

year. The initial and the currently operational number of beds serve as the foundation for 

the experiments, as laid out in out in chapter 7. The estimated bed count for 2016 is used 

for the validation of the model in chapter 6.4.
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6 Model Implementation 
As the next step of this simulation study, I implemented the discrete-event simulation 

model based on the results of the system conceptualization and data analysis. This 

chapter will first introduce the applied tools and model design with inputs and outputs and 

afterwards present the validation and verification of all components. 

6.1 Salabim: Discrete Event Simulation for Python 
There are various packages that provide functionalities to facilitate the implementation of 

a DES model in the open-source programming language Python. For this study, I decided 

on using the package salabim because of its wide range of relevant functions including 

holding components and concepts like monitors. In addition, I used statistical package 

NumPy for data preparation and in the data analysis pandas for data management and 

matplotlib and seaborn for visualization. The model was run using Python version 3.12.2 

and Salabim version 24.0.2. The runs were parallelized with Python’s multiprocessing 

functionality to dramatically decrease total run time and use the advantages of modern 

multi-core processors. Additional details can be found in the associated GitHub repository 

found at https://github.com/alex-dietz/Discrete-Event-Simulation-for-Neonatal-Care-

System. 

6.2 Model Design 
Based on the previous conceptualization and the functioning of the chosen package 

salabim, I developed the model design seen in Figure 35, which guided the subsequent 

implementation. Salabim uses an object-oriented programming approach and provides 

predefined classes for simulation components and resources. In the model, the design 

was organized into classes for PatientArrival, Hospital, and Patient, which were created 

as subclasses of Salabim’s component class. These classes were distributed across 

multiple files to ensure high maintainability and decoupling. In the model, the Hospital 

class includes a resource beds that represent the available capacity. The outside region 

hospital is modeled through a Hospital object with unlimited amount of the bed resource 

ensuring that it can always accommodate for an additional patient. Additionally, by 

establishing distinct classes for each model element, the model can be easily extended to 

incorporate additional or modified hospitals, patients, and arrival processes. This modular 

approach enhances the flexibility and scalability of the model, allowing it to adapt to 

different scenarios and requirements. 

https://github.com/alex-dietz/Discrete-Event-Simulation-for-Neonatal-Care-System
https://github.com/alex-dietz/Discrete-Event-Simulation-for-Neonatal-Care-System
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Figure 35 Model design of neonatal care system simulation model implementation  

Once the simulation is started, the model is initialized based on the configured settings in 

run_config.py as it creates the necessary hospital and patient generator objects 

depending on the selected scenarios. The simulation begins with a patient generator that 

samples the number of daily arrivals as an integer from the specified distributions. For 

each patient, core characteristics such as birth weight, gestational age, subregion, and 

admission criteria are sampled to determine the appropriate ward level. 
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At each time step, the model loops through all patients who are currently active (i.e., not 

on hold) and processes their next step. If a patient needs to be admitted to a hospital and 

an operational bed is available, the Patient object claims a bed resource from the 

respective hospital and occupies it for the determined LoS. Once the patient's LoS has 

elapsed, the object releases the bed resource, and the system evaluates whether the 

patient requires an additional stay. If further care is needed, the model checks for bed 

availability at the requested ward level. If no bed is available, the patient is transferred to 

an outside region hospital. After each time step, the model checks whether the designated 

run time has been reached to determine if the simulation should end. 

6.2.1 Model Inputs 
Based on the model design and conceptualization, multiple inputs must be defined for a 

model run. These inputs are categorized into run inputs and model inputs. The run input 

parameters are presented in Table 48. 

In addition to the general run inputs, the simulation model requires various input variables 

to operate effectively. These variables are essential for generating hospitals with the 

appropriate capacity, defining the patient arrival process, and establishing distributions for 

patient characteristics, pathways, and treatments. An overview of these variables can be 

seen in Table 36. 
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Table 36 Simulation model input variables 

Input Variable Description Format 

Hospitals List of hospitals with ward 

level and operative bed 

count 

Dictionary with hospital 

name, subregion, and 

operational bed count 

Patient arrival Rates Number of region patients Mean standard deviation, 

upper and lower bound for 

bounded normal 

distribution 

Subregion distribution Which subregion patient is 

coming from 

Dictionary with share of 

patients per subregion 

   

Gestational age Distribution of patient birth 

age 

Weights, means, and 

covariances of GMM for 

each component 

Birth Weight Regression coefficients to 

determine birth weight 

based on gestational age 

Number for coefficient and 

intercept 

Length of Stay Regression coefficients per 

ward level and per age 

subgroup 

Dictionaries with variables 

and coefficients 

Admission Criteria Probabilities for each of the 

15 admission criteria 

Dictionary with probabilities 

O2 support days Days of treatment, Divided 

by ward and age groups 

Dictionary with probabilities 

per day 

CPAP Treatment Days of treatment, Divided 

by ward and age groups 

Dictionary with probabilities 

per day 

HFO/Conventional 

ventilation treatment 

Days of treatment, Divided 

by ward and age groups 

Dictionary with probabilities 

per day 

C-Section Boolean value Probability 

Anemia treatment Divided by ward and age 

groups 

Probabilities 

Antibiotics treatment Divided by wards Probabilities 

Phototherapy treatment Divided by wards Probabilities 

Sepsis treatment Divided by wards Probabilities 
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All input variables are based on the results presented in the previous chapter on the 

system’s conceptualization and data analysis. To ensure transferability to other settings, 

such as different regions, all variables are defined in a separate file. This modular 

approach allows for easy adaptation and reuse of the model in various contexts. 

6.2.2 Model Outputs 
Running the simulation model leads to the output files mentioned in Table 37 as they are 

saved for each simulation in the output folder to facilitate the proceeding analysis. 

Table 37 Output files for each simulation 

Output variable Description Format 

Patient admissions Table of all patient 

admissions and their 

characteristics similar to 

perined format 

CSV file including all runs 

Occupancy rate Daily occupancy rate of 

hospitals and ward levels 

on each time step 

CSV file including all runs 

For output analysis and visualization, I created additional Jupyter notebooks that can be 

run after each simulation. These notebooks provide flexibility to adjust the analysis to 

individual needs. There are specialized notebooks for validation, analyzing a single 

simulation, and comparing simulations for tested levers and interventions. This approach 

ensures that the model is easily extendable for testing additional levers or interventions 

and allows for direct analysis of their impacts. These notebooks allow to analyze the 

simulation model outputs described in Table 38. 
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Table 38 Simulation model outputs 

Output variable Description Format 

Required Beds Minimum number of beds per ward level 

required to provide care to all inside region 

patients 

Calculated by summing the LoS of all inside 

region patients divided by 365 for each 

ward level 

Number per ward level 

Weekly 

Occupancy Rate 

Weekly moving average occupancy rate of 

each ward levels on each time step 

Percentage per ward 

level 

Capacity 

Transfer Rate 

Percentage of inside region patients per 

ward level that needed transfer to outside 

region hospital 

Percentage per ward 

level 

Weekly Capacity 

Transfers 

Number of weekly capacity transfers for 

each occupancy rate (grouped by nearest 

2.5%) per ward level 

Number per 

occupancy rate and 

ward level 

The four performance indicators provide a quantitative picture from the hospital and 

societal perspective and allow to compare any kind of changes in the system. 

6.2.3 Number of Runs 
The simulation model includes multiple stochastic elements, resulting in different 

outcomes for each run with a different random seed. Therefore, it is necessary to run the 

model with various seeds to approximate the most likely values. The appropriate number 

of runs was determined by analyzing the average occupancy rate per ward level and the 

average capacity transfer rate per ward level over multiple runs, as shown in Table 39. 
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Table 39 Comparison of average occupancy rate and average capacity transfer rate per ward level 
across different numbers of runs using estimated 2016 bed number and 365 days run time 

Ward Level Number of Runs Average Occupancy 

Rate [%] 

Average Capacity 

Transfer Rate [%] 

NICU 10 87.36 11.18 

 25 87.41 10.85 

 50 87.33 11.05 

 100 87.22 11.04 

 250 87.42 11.13 

High Care 10 83.09 0.80 

 25 82.94 0.76 

 50 82.95 0.76 

 100 82.73 0.75 

 250 82.99 0.81 

Medium Care 10 34.06 0.00 

 25 33.84 0.00 

 50 33.66 0.00 

 100 33.71 0.00 

 250 33.62 0.00 

By comparing the average occupancy and capacity transfer rates per ward level, I decided 

that 25 runs are sufficient to capture the randomness of the model and provide reliable 

results as the changes for occupancy and capacity transfer rate were not indicating a trend 

nor big enough to have an impact on the model’s purpose. 

6.2.4 Warm-up time for Simulation Model 
A warm-up time is defined as the period required for the system to reach a stable state. 

Appropriate output data is collected only after reaching this state. Since the simulation 

starts with no occupied operational beds, a warm-up time is essential to avoid skewed 

relative data, such as the occupancy rate. 

To determine an adequate warm-up time, the model was run for 200 days over 25 runs as 

seen in Figure 36. By visually inspecting the occupancy rate per ward level, a saturation 

level was identified, indicating when the system reached stability. This approach ensures 

that subsequent data collected for analysis accurately reflects the system's performance 

in a stable state, providing reliable insights into occupancy rates and capacity transfer 

rates. 
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Figure 36 Occupancy rate across wards per time step 

This level is reached for each ward at a different time step. Hence, I set the warm-up time 

at 70 days as on this point also the high care ward starts to stabilize around its average. 

6.3 Model Verification 
The model verification process is used to confirm that the implemented model accurately 

follows the results of the conceptualization and adheres to its defined boundaries and 

assumptions. This step ensures that the model behaves as intended and that its output is 

consistent with expectations of the real world. 

6.3.1 Model Component Verification 
At first, the implemented model components were verified. Each component was tested to 

ensure it exhibited the expected behavior. This step involved checking the functionality of 

individual parts of the model to confirm that they operated correctly and aligned with the 

conceptual design. 

6.3.1.1 Patient Generator 
The patient generator component is designed to create patient objects in the simulation 

and assign them appropriate characteristics. After generating patients, the generator 

should pause until the next time step. To verify this, I ensured that the arrivals follow the 

expected distribution, including checking for minimum and maximum values. This step 
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confirms that the patient generation process accurately reflects the real-world arrival 

patterns and operates within the defined parameters. 

 

Figure 37 Daily Arrivals at hospitals in the region 

The arrivals follow a bounded normal distribution with mean 28 and standard deviation of 

7, the minimum bound is 7 and there is no day with more than 44 new patients. In addition, 

I verified that patients are properly generated for all ward levels as seen in Figure 38, 

Figure 39, and Figure 40. 

 
Figure 38 Daily Arrivals for 
NICU 

 
Figure 39 Daily Arrivals for 
High Care 

 

 
Figure 40 Daily Arrivals for 
Medium Care 

 

We see that the wards follow different arrival rates, and each ward has minimum and 

maximum values in feasible ranges. Moreover, as expected, the NICU is the only ward 

level that also has days with zero admissions. 

6.3.1.2 Patient 
The generated patient objects need to be assigned their characteristics, admission criteria, 

and ward level. 
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Figure 41 Example NICU 
patient 

 
Figure 42 Example High Care 
Patient 

 

 
Figure 43 Example Medium 
Care Patient 

 

Figures 32, 33, and 34 show an exemplary patient for each ward level. We see the patient 

core data, which hospital they were admitted, the start and end date and any kind of 

treatments as well as the admission criteria. 

6.3.1.3 Hospital Generator 
In the beginning of the simulation, all hospitals with their respective ward level and 

operational bed number are generated. 

  

Figure 44 Generated Hospitals with capacity 

In Figure 44, we see that different hospitals are created, and that each hospital has a 

name, ward level, and bed capacity. The beds are modelled as resources of a hospital. 

Thus, patients should be able to claim a quantity of the bed resource. However, a patient 

should not be able to claim more than one quantity. 
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Figure 45 Trace of patient requesting and claiming beds 

Figure 45 shows the trace for the first timestep of a simulation. We see that patients only 

request and claim one bed at a time. This indicates that the hospital component is 

functioning correctly, as it processes patient bed requests in a controlled and sequential 

manner. These examples confirm that the hospital component behaves as expected, 

ensuring proper bed allocation and patient management within the simulation. 

6.3.2 Model Function Verification 
As a second verification step, I verified the individual functions in the model. I first checked 

that patient are admitted to different wards based on their conditions. Secondly, I checked 

that patients have different LoS depending on their ward level and lastly, I confirmed that 

patients can have multiple stays across hospitals. 

6.3.2.1 Ward Level Admissions 
Each patient is admitted to a ward level depending on their conditions. I verify that all 

patients that fulfill the NICU criteria are admitted to a NICU for their first stay. The ward 

level for other patients is decided by probabilities.  

Table 40 Verification of gestational age and birth weight per ward level 

Ward Level Min 

Gestational 

Age 

Max 

Gestational 

Age 

Min Birth 

Weight 

Max Birth 

Weight 

NICU 24+0 42+6 400 5145 

High Care 32+1 42+6 1266 5329 

Medium Care 32+1 42+6 1256 5266 

As seen in Figure 48, patients under 32 weeks of gestational age or under 1250g birth 

weight have their first stay in a NICU. It is also possible to have older NICU patients as 

the admission criteria congenital abnormalities also requires NICU care. 
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6.3.2.2 Length of Stay 
Each patient is assigned a different ward level based on their medical conditions and 

treatments. The next step involved verifying that patients in different ward levels have 

different LoS and that patients within a single ward level group exhibit variability in their 

characteristics.

 

Figure 46 Comparison of simulated LoS distribution across different ward levels 

Based on Figure 46, it is evident that the mean and variance of LoS differ between the 

ward levels. Additionally, each ward level covers a wide range of potential LoS, indicating 

significant variance among patients within the same ward level group. In addition, NICU 

and high care patients have patients with a LoS of more than 100 days, hence, also 

covering the relevant extreme cases of patients. 

6.3.2.3 Patient Pathways 
The model allows patients to have multiple stays, thus, capturing an additional layer of 

complexity in the neonatal care system. Patients can be admitted at any hospital of a 

different ward level compared to their previous stay given set probabilities. 
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Table 41 Overview of patient pathway for simulation 

Patient Pathway Proportion [%] 

High Care 52.43 

Medium Care 39.16 

NICU 4.79 

NICU-High 1.50 

High-NICU 0.74 

Medium-NICU 0.55 

NICU-Medium 0.32 

High-NICU-High 0.23 

We see the most common paths align with the common paths identified in 5.1.3. 

Consequently, the model can simulate this mechanism. 

6.4 Model Validation 
The model validation aims to confirm that the modeled processes are as close as possible 

to observations in the real world. This will be done in a three-step approach by first 

comparing the simulated data against the available perined dataset in historical data 

validation, second, by testing two extreme conditions to identify logic flaws, and third, by 

gaining a face validation from experts in the field to validate the applicability and 

interpretability of results. 

6.4.1 Historical Data Validation 
The first validation step is performed by comparing the simulation results with observed 

values in the neonatal care system of the south-west of the Netherlands region. All 

historical comparisons are performed for the 01.01.2016 to 15.10.2017 timeframe for the 

highlighted data quality issues as presented in chapter 5. 

Arrival Process 

The patient generator component of the model should adequately be able to create patient 

components that follow the same distribution as in the historical data. In addition, the daily 

arrivals need to be accurate for each ward level to properly simulate patient flows. As a 

first validation step, I visually inspect the daily arrival distribution for each ward level in 

Figure 47.  
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Figure 47 Letter-value plots comparing observed and simulated daily admissions per ward level 

Analyzing each ward level, we only see minor differences in the distributions and extreme 

values are well captured. 

As a second validation step, statistical testing was applied to demonstrate that the samples 

originate from the same distribution. A Kolmogorov-Smirnov test was performed for each 

ward level to validate that observed and simulated arrivals could come from the same 

distribution for each ward level. The hypotheses are as follows: 

H0: The observed and simulated daily admissions come from the same distribution. 

H1: The observed and simulated daily admissions come from different distributions. 

As seen in Table 42, the actual and simulated daily arrivals are similar, and the p-values 

indicate that the null hypothesis cannot be rejected. The samples are not statistically 

significantly different at the 5% level. 

Table 42 Comparison actual and simulated average daily arrivals per ward level 

Ward Level Average Daily 

Arrivals (Perined 

2016-2017) 

Average Daily 

Arrivals (Simulation 

over 25 runs) 

KS-Test P-Value 

NICU 1.66 1.62 0.79 

High Care 15.32 15.30 0.99 

Medium Care 11.13 11.05 0.55 

Thus, these results indicate that the simulation model can properly simulate the daily 

arrivals for each ward level. 

Length of Stay 

While the arrival process defines how many patients enter the system, the LoS calculation 

determines how long they stay per admission and is, thus, another crucial part of the 
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model. The regression functions were validated by comparing the statistical descriptions 

and plotting the LoS distribution across gestational ages for each ward level. 

For the NICU, the simulated LoS is adequate for each gestational age group and 

accurately captures the overall trend of increasing LoS for decreasing gestational age 

below 32 weeks, as seen in Figure 48. This validation ensures that the model effectively 

represents the relationship between gestational age and LoS, particularly for the critical 

group of extremely premature neonates. 

 

Figure 48 Comparison between actual and simulated LoS for NICU care patients 

A comparison between the simulated and observed LoS values resulted in a R2 of .94 

confirming an overall good fit. Differences between actual and simulated LoS can be seen 

especially for extreme premature patients below 27+0 weeks gestational age. This can be 

explained as the mortality rate increases drastically for decreasing age leading to potential 

LoS of just a couple of days. The regression model has been trained including these data 

points and, thus, on average leads to appropriate values. The model currently does not 

include a mechanism for mortality but rather those patients stay for their initial LoS and do 

not have an additional stay based on the pathway probabilities. 

For the high care ward level, we see that the simulated LoS is adequate for each 

gestational age group and captures well the overall trend of increasing LoS for decreasing 

gestational age below 37+0 weeks but also the downward shift below 30+0 weeks, as 

seen in Figure 49. 
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Figure 49 Comparison between actual and simulated LoS for high care patients 

A comparison between the simulated and observed LoS values resulted in a R2 of .94 

confirming an overall good fit. However, it is still visible that there are more factors at play 

than the selected variables in the regression model and the actual data includes a bigger 

variance for each gestational age. 

For medium care, we see that the simulated data follows a similar pattern as the historical 

data as visualized in Figure 50. The simulated data does not have such enormous 

fluctuations as the historical data for below 32+0 weeks gestational age, however, the 

regression does on average still capture the LoS properly for this group. 

 

Figure 50 Comparison between actual and simulated LoS for medium care patients 

A comparison between the simulated and observed LoS values resulted in a R2 of .93 

confirming an overall good fit. Biggest difference can be observed for patients with 

gestational age greater than 37+0 weeks. The regression underestimates the LoS as 
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already observed in the data analysis chapter. For this group the dataset did not provide 

enough correlated factors and, thus, the regression struggled more to explain the variance 

across patients. 

Using the visual inspection, I validated that the LoS follows the expected patterns across 

different gestational ages for the respective wards. As a next validation step, I compare 

the average LoS for each ward as displayed in Table 43. 

Table 43 Comparison between average observed LoS and simulated LoS per ward level in days 

Ward Level Average observed LoS 

[days] 

Average LoS (Simulation 

with base scenario over 25 

runs) (min-max) [days] 

NICU 12.50 12.61 (11.90-13.68) 

High Care 5.68 4.72 (4.53-4.90) 

Medium Care 3.2 3.21 (3.03-3.41) 

The comparison shows that the average LoS across simulation runs is adequately close 

to the observed values in the perined dataset. High and medium care are slightly 

underestimated as already mentioned in the visual inspection. This is explained due to the 

increase variability of patients on these ward levels decreasing the potential for regression 

models to capture all underlying factors. Overall, the two steps – visual and statistical 

inspection – showed that the model can simulate LoS for each ward level and, thus, the 

total patient population in the neonatal care system. 

Patient Pathways 

As the model aims at capturing the complexity of the neonatal care pathway, it is 

necessary to confirm the number of patients with more than one admission and the ward 

combinations for the patient journey. To validate the results of the model, I ran the 

simulation for 25 runs with the assumed operational bed counts from 2016 to compare it 

to the accurate timeframe between 01.01.2016 and 15.10.2017 in the perined dataset as 

seen in Table 44. 
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Table 44 Comparison of patient pathways between historical and simulated data 

Patient Pathway Perined 2016-2017 [%] Simulation with 2016 bed 

counts over 25 runs [%] 

NICU 4.37 4.79 

High Care 53.29 52.43 

Medium Care 38.94 39.16 

NICU-High 1.99 1.50 

Medium-NICU 0.41 0.55 

High-NICU-High 0.3 0.23 

High-NICU 0.26 0.74 

NICU-Medium 0.18 0.32 

The model captures the patient pathways accurately with only small differences for 

individual pathways that should not have major impact on the model outcomes. Thus, the 

results indicate that the model mechanism is valid. 

Required Beds 

The first output variable is the number of required beds for inside region patients per ward 

level, indicating the theoretical minimum of required operational beds in the region. The 

numbers are obtained by summing the LoS for all inside region patients per ward level 

and dividing by 365 days as seen in Table 45. 

Table 45 Comparison Required Beds between historical and simulated data per ward level 

Ward Required Beds (Perined 

2016-2017) 

Average Required Beds 

(with 2016 bed count over 

25 runs) (min-max) 

NICU 23.62 26.63 (24.39-29.25) 

High Care 68.42 74.32 (70.66-79.26) 

Medium Care 35.80 33.35 (31.09-35.38) 

The observed and simulated numbers for the required beds for inside region patients are 

similar, yet the simulation model tends to overestimate the numbers for NICU and high 

care wards. This can be explained by small deviations in average LoS and arrival rates for 

these ward levels. 

Occupancy Rates 

A second output variable is the occupancy per hospital that can be aggregated to the 

occupancy rates per ward level. Unfortunately, there are no records for the occupancy 
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rate across hospitals or ward levels for the region. Thus, I tried to approximate it by 

calculating it based on the admissions and the Los of patients in the reliable timeframe of 

2016 to fall 2017 as seen in Table 46. 

Table 46 Comparison Occupancy Rates between historical and simulated data per ward level 

Ward Average Estimated 

Occupancy Rate (Perined 

2016-2017) [%] 

Average Simulated 

Occupancy Rate (with 2016 

bed count over 25 runs) 

(min-max) [%] 

NICU 78.61 87.07 (83.00-89.45) 

High Care 81.07 82.59 (79.69-86.65) 

Medium Care 31.80 34.82 (32.15-36.97) 

Differences can be explained by lower NICU LoS in that time (11.9 compared to 12.5 

average over all years), while the LoS regression models were developed over full time 

period. Personal communication with experts confirmed that NICU LoS is increasing over 

the last years. To ensure that the model is accurate as possible for today I decided to not 

adjust the LoS calculation for a 2016 validation. 

Capacity Transfers Rate 

One of the main indicators of the system’s performance is the number of capacity 

transfers, which refers to the number of patients transferred to an outside region hospital 

due to capacity shortages. Unfortunately, there are no records of a capacity transfer rate 

across hospitals or ward levels for the region. Thus, this rate was approximated by 

calculating the number of capacity transfers divided by the total admissions of inside 

region patients in the reference timeframe of 2016. The comparison was done using 

estimated bed counts from 2016. The results are shown in Table 47. 

Table 47 Comparison Capacity Transfer Rate between historical and simulated data per ward level 

Ward Capacity Transfer Rate 

(Perined 2016-2017) [%] 

Average Capacity Transfer 

Rate (Simulation with 2016 

scenario over 25 runs) 

(min-max) [%] 

NICU 13.33 11.22 (6.43-15.67) 

High Care 0.44 0.72 (0.14-1.54) 

Medium Care 0.00 0.00 (0.00-0.00) 
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We see that the model closely matches the actual observed values. The discrepancies 

can be attributed to uncertainty about the exact operational bed count in 2016. 

Additionally, the simulation model does not account for overbeds, which refers to the 

common practice of accommodating one or two extra patients for a short period when all 

regular beds are occupied. 

Weekly Capacity Transfers 

The weekly capacity transfers cannot easily be validated because unfortunately there is 

no data available that would allow the matching of occupancy rates with the time of 

capacity transfers. However, as all other model outcomes were validated and as the 

indicator is a combination of previous information, it can be assumed to also be accurate. 

6.4.2 Extreme Conditions Validation 
Testing a model under extreme conditions is useful for identifying potential faults in the 

logic for unexpected values and border cases. Thus, I first tested the impact of setting the 

operational bed capacity of all hospitals to zero. As expected, each patient had to be 

transferred to outside-the-region hospitals. Secondly, I tested the workings when no 

patient was arriving in the system. As expected, all outputs remained empty, and no beds 

were occupied. 

6.4.3 Face Validation 
Face validation is performed by talking to experts in the real-world system through the 

model and having them analyze and question simulated data. This validation was 

performed with an expert from the Erasmus MC hospital who validated the generated 

patient characteristics and treatments, compared simulated arrival rates and LoS with 

currently observed data. Hence, they ensured that the model aligns with the expectations.
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7 Experiments 
The established model was used to perform experiments on scenarios, system levers, and 

interventions. The following sections will introduce the individual experiments, explain how 

they were implemented, and present the respective results. 

7.1 Scenario Experiments 
The implemented simulation model offers valuable insights into potential future scenarios 

beyond the hospital or region's direct control. By testing four different scenarios, the model 

demonstrates its capability to evaluate the impact of these varying futures on the neonatal 

care system, providing essential information for effective planning and decision-making. 

1. Base Scenario: No Capacity Shortage 

As a first scenario, the model was run with the currently highest number of physically 

available beds for each hospital. Thus, this scenario provides a picture of the current best 

case and analyzes if this setting is enough to sufficiently provide the required care. 

2. Current Situation: Capacity Shortage 

With the ongoing staffing crises, hospitals are forced to close beds and, thus, lower the 

number of operational beds. Hence, this scenario experiment used the number of 

operational beds based on a survey across hospital in 2023. It is assumed that these 

numbers most closely reflect the current situation. This change in operational beds is 

assumed as a scenario as the bed closures are driven by a general shortage in healthcare 

personnel that is beyond the control of individual hospitals. 

3. Outside Region Demand Increase 

While the data and interview partners (Interview 1,2) showed that there have been no 

significant demographic developments in the past decade and that there are unlikely any 

changes in the following years, one factor can influence the number of patients in the 

region – outside region patients – as already suspected by one interview partner (Interview 

2). Through the regionalization of neonatal care, every region should, in theory, be self-

sustainable and be able to provide care to all patients living in the region. However, this is 

not the case due to capacity shortages and patients who are being transferred between 

regions. In the available dataset, outside region patients accounted for circa 5% of all 
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admitted patients translating to circa 1.5 patients per day on average. Thus, I simulated 

an increasing capacity shortage in the neighboring regions by increasing the number of 

outside region patients by 20% leading to a total increase in arriving patients. This, 

scenario reflects the interdependencies between regions and highlights that capacity 

shortages are not a phenomenon of just one region but rather a national challenge. 

4. Change in Government Guideline for minimum Age to 23 weeks (NICU@23) 

Over the last decades, medical care improvements have affected NICU patients and 

continuously provided a higher probability of survival for lower gestational ages. The 

current guideline in the Netherlands is a minimum age of 24 weeks; however, there are 

ongoing discussions about decreasing this value to 23 weeks. A major driver for this 

development is guidelines in neighboring countries, like Belgium and Germany, that 

already provide care for under 24-week-old neonates. This change would add highly 

medically complex patients to the NICU population and potentially add further challenges 

to existing capacity shortages to the NICU and beyond and patients have an exceptional 

long LoS and often require additional stays at lower care levels after the initial NICU stay. 

7.1.1 Implementation of Scenario Experiments 
Each scenario can individually be selected or unselected using the run input parameters, 

seen in Table 48, in the run_config.py file. All scenario experiments were performed by 

running the model with the determined run time of 365 days, 70 days of warm-up over 25 

runs to ensure minimal randomness between runs. 

If the base hospital scenario is active the model initiates the hospital objects with the 

number of currently available physical beds, as described in Section 5.2.5. These numbers 

were collected from a survey by an Erasmus MC study in 2023 and represent the most 

accurate numbers still today. For the second hospital scenario addressing capacity 

shortages, the number of operational beds was changed to the number of available 

operational beds in 2023, according to the survey. The third scenario addresses another 

uncertainty: the arrival of outside region patients. Hence, by using an additional patient 

generator further outside region patients were created that would eventually increase the 

number of outside region patients by 20%. The generator assumes a Poisson arrival 

process with an inter arrival time of 3.5 days.  For the NICU@23 scenario, I implemented 

another patient generator with an inter arrival time of 27 days meaning that on average 

every 27 days a patient with a gestational age of 23 weeks would arrive in the region. The 

inter arrival time is based on a current impact estimation for the region by Erasmus MC. 

The demand and NICU@23 scenario are run with the capacity shortage hospital scenario 

to account for the status quo. 
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Table 48 Overview of necessary run input parameters for scenario experiments 

Run Input 

variable 

Description No 

Capacity 

Shortages 

Capacity 

Shortages 

Outside 

Demand 

Increase 

NICU@23  

Number of 

Runs 

How many times 

should the 

simulation be 

repeated 

25 25 25 25 

Days per 

Run 

How many days 

should be run and 

recorded after the 

warm-up time 

365 365 365 365 

Warm-Up 

Time 

How many days 

should be run before 

starting to record 

outputs 

70 70 70 70 

Hospital 

Scenario 

Decides on the 

number of beds in 

each hospital (-1: 

2023 physical bed 

count, 1: 2023 

operational bed 

count) 

-1 1 1 1 

Demand 

Scenario 

Decides if there is an 

increase in outside 

region patients 

0 0 1 0 

NICU@23 

weeks 

Decides if newborns 

at 23 weeks of 

gestation are 

admitted 

0 0 0 1 

As each scenario is individually implemented, it is possible to also create new scenarios 

by combining the previous scenarios, e.g., to investigate the effect of the NICU@23 policy 

under no capacity shortages. 
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7.1.2 Results of Scenario Experiments 
The results of the scenario experiments can be analyzed using the two introduced 

perspectives – hospital and society– to assess their impact on capacity shortages. We 

receive the results for the first three indicators shown in Table 49 ensuring easy 

comparability of the outcomes. 

Table 49 Comparison of outcomes between scenarios 

Indicator Ward Level No Capacity 

Shortages 

Capacity 

Shortages 

Outside 

Demand 

Increase 

NICU@23 

Required 
Beds 

NICU 26.81 26.97 27.16 29.34 

 High Care 75.48 75.12 75.27 76.28 

 Medium 
Care 

33.68 33.57 33.81 33.64 

Weekly 
Occupancy 
Rate [%] 

NICU 82.58 91.80 91.84 93.63 

 High Care 93.22 97.25 97.31 97.35 

 Medium 
Care 

55.62 65.84 66.93 65.98 

Capacity 
Transfers 
Rate [%] 

NICU 5.14 21.56 21.72 26.89 

 High Care 7.13 20.46 20.28 21.12 

 Medium 
Care 

0.00 0.05 0.05 0.03 

The analysis of required beds reveals that, in scenarios without capacity shortages, there 

would be sufficient beds available to meet demand. However, the current situation is 

deemed unsustainable, particularly in scenarios involving capacity shortages. The 

NICU@23 scenario, where neonatal intensive care is provided at full capacity, may still 

face challenges in accommodating all patients, especially when accounting for varying 

arrival times and the influx of patients from outside the region as this indicator only 

accounts for inside region patients at optimal theoretical scheduling. 
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The weekly occupancy rates exhibit distinct patterns across the different ward levels. The 

highest occupancy is consistently observed in high care wards, followed closely by NICU 

wards. Notably, in the absence of capacity shortages, the NICU occupancy rate falls within 

the optimal range of 80-85%, indicating efficient utilization. In contrast, the high care wards 

consistently exceed this range, suggesting a strain on resources. Medium care wards, on 

the other hand, exhibit lower occupancy rates, raising concerns about potential 

inefficiencies due to an excess of available beds. However, it is worth noting that these 

beds could be repurposed or shared with pediatric care, thereby optimizing their utilization. 

The capacity transfer rate shows significant increases in scenarios with capacity 

shortages. For medium care wards, capacity transfers remain minimal, even in scenarios 

involving increased demand. However, in NICU and high care wards, capacity shortages 

lead to a dramatic rise in transfer rates, increasing by a factor of four and three, 

respectively. The NICU@23 scenario exacerbates this trend, with an additional 5% 

increase in NICU transfers, reflecting the extended duration of bed occupancy by these 

patients. 

  
 

 
Figure 51 Weekly transfers per weekly occupancy rate for each ward level for different scenarios 

In Figure 51, the weekly transfers are displayed for the different scenarios. All scenarios 

increase the number of weekly transfers across weekly occupancy rates and ward levels. 

For the NICU, especially the NICU@23 scenario stands out for occupancy rates above 

90% leading to more than 8 weekly transfers at full capacity. For high care we can see a 

similar pattern in which the NICU@23 scenario tends to have a bigger impact in the most 
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critical occupancy rate ranges compared to the other scenarios. These results further 

indicate the tremendous impact the scenario would have on the already existing capacity 

shortages. 

7.2 System Lever Experiments 
As we have seen across the scenarios, the neonatal care system in the south-west of the 

Netherlands is facing massive challenges linked to operational bed capacity shortages. 

These challenges are evident in a hospital and, more importantly, on a system-wide 

aggregation level. In the system conceptualization and literature, we have seen multiple 

categories of levers that can be assessed as they address different mechanisms in the 

model. Hence, I tested the impact of changing selected system levers on the overall 

performance, as seen in Table 50.  

Table 50 Overview on tested system levers 

System Lever Description Model Mechanism 

Change in LoS What if the LoS decreases Length of Stay 

Change in 
Admission Rate 

What if less patients require 
NICU care, 

What if less patients require high 

care 

Patient Ward Assignment 

Change in Pathways What if more NICU patients 
have a post IC stay at a medium 
care hospital instead of high 
care 

Patient Pathway 

The following paragraphs introduce each lever and its justification: 

1. Change in LoS 
The data analysis has shown the variability in LoS for patients often also leading to stays 

of multiple months, especially at already challenged high care and NICU wards. Thus, this 

system lever investigates the effect magnitude of decreasing LoS for each ward level. 

While it is expected that a decrease in LoS will have a direct positive effect on all 

performance indicators, it is unclear if this effect is similar for all ward levels. 

2. Change in Ward Arrival Rates 
Previous analysis has shown that the NICU and high care wards have the most urgent 

capacity shortages and contribute most to capacity transfers. Thus, I tested the impact of 
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decreasing demand for these ward levels. This lever could inspire interventions of early 

discharge policies or prediction models that assess the actual required care prior birth. 

3. Change in Patient Pathways 
Around five percent of all patients require more than one stay. In the data analysis section 

of this chapter, the most typical pathways were presented. As most capacity shortages 

occur at the NICU and high care ward levels, changing pathways to decrease the burden 

on these hospitals can be considered by transferring patients earlier to a medium-care 

hospital or home. The effect of transferring NICU patients who require a post-IC stay to a 

medium care hospital instead of a high care hospital was tested. 

The next section describes the implementation of the system lever experiments followed 

by the analysis of the results. The levers will be assessed by their impact on the 

performance indicators for each of the relevant – the hospital management and the 

societal – perspective. 

7.2.1 Implementation of System Lever Experiments 
The following sections describes the necessary run input parameters and any changes in 

the model logic for each system lever experiment. Each system lever can individually be 

selected or unselected using the run input parameters, seen in Table 51, in the 

run_config.py file. All system lever experiments were performed by running the model with 

the determined run time of 365 days, 70 days of warm-up over 25 runs. 

Table 51 Overview of run input parameters for system lever experiments 

Experiment Factor Change 

in LoS 

Change in 

Admission Rate 

NICU 

Change in 

Admission Rate 

High Care 

Change in 
Pathways 

Number of Runs 25 25 25 25 

Days per Run 365 365 365 365 

Warm-Up Time 70 70 70 70 

Hospital Scenario 1 1 1 1 

LoS Lever 1 0 0 0 

LoS Lever Change [-10, -20, 

-30, -40] 

0 0 0 

Pathway Lever 0 0 0 1 

Pathway Lever 

Additional LoS 

0 0 0 [4,6,8,10,12] 
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High Care 

Assignment Lever 

0 0 1 0 

High Care 

Assignment Lever 

High Care 

Percentage 

0 0 [-5, -10, -15, -20] 0 

Assignment Lever 

NICU 

0 1 0 0 

Assignment Lever 

NICU Percentage 

0 [-5, -10,  

-15, -20] 

0 0 

The following paragraphs describe specific changes in the model functionality for each 

system lever: 

1. System Lever: Length of Stay 

As a first system lever, the impact of changes in LoS was investigated. Initially, it was 

assumed that a stepwise percentage decrease in LoS would affect the average occupancy 

rate and capacity transfer rate. The first test involved examining the effects of a general 

decrease in LoS across all patients to assess the overall impact on the system’s 

performance. The simulation was run 25 times under a capacity shortage scenario over 

365 days, with LoS reductions of 10%, 20%, 30%, and 40%, and the outcomes were 

compared to the initial baseline results. 

2. System Lever: Arrival Rates 

As a second system lever, a decrease in arrival rates was tested by gradually reducing 

the number of arrivals for both the NICU and high care, with reductions ranging from 5% 

to 20%. For the NICU, this was implemented by not assigning the NICU ward level to an 

increasing percentage of patients in the age group above 28+0 weeks of gestation. Below 

this gestational age, the medical complexities are considered too high to permit 

alternatives to NICU care. For high care, the implementation involved gradually 

decreasing the percentage of high care assignments within the overall assignment 

process, which is based on empirical probabilities. Patients were then reassigned to the 

next lower ward level—high care for those initially assigned to NICU and medium care for 

those initially assigned to high care. 

3. System Lever: Patient Pathway 

The model includes a function that determines whether a patient requires an additional 

admission and at what ward level, based on empirical probabilities. This function was 
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modified to redirect all NICU patients, who would typically require an additional stay at 

high care, to medium care instead. However, since the medium care hospital cannot 

provide the same level of medical support, these patients must first stay additional days 

at the NICU before being transferred. This adjustment involves holding the patient object 

for the specified additional number of days after their initial stay before beginning the 

additional admission. The impact was tested for different lengths of the additional stay at 

the NICU, ranging from 4 to 12 days, in two-day increments. 

7.2.2 System Lever Results: Length of Stay 
For the hospital management perspective, I analyzed the change in average required bed 

count for inside region patients and average weekly occupancy rate, as seen in Figure 52 

and Figure 53, respectively. The reference values for the required bed graph are the 

number of operational beds in the selected scenario. 

 
Figure 52 Number of required beds for inside 

region patients across LoS change 

 
Figure 53 Average weekly occupancy rate per 

ward level across LoS change 

As expected, decreasing LoS has a positive effect on all ward levels. Already a 10% 

reduction LoS significantly impacts the required number of beds across different ward 

levels. For high care, this reduction brings the required beds directly under the current 

number of operational beds. In the NICU, the reduction decreases the required beds to 

exactly match the number of currently available operational beds. Notably, NICU exhibits 

a constant linear decrease in bed requirements, whereas high care and medium care 

experience a more pronounced drop in required beds with the initial 10% reduction in LoS. 

This disparity can be attributed to the shorter average LoS in high care (4.8 days) and 

medium care (3.2 days) compared to NICU, which has an average LoS of 12.5 days. As 

a result, a 20% reduction in LoS has a diminishing relative effect because more patients 

fall within a calculated LoS of between 0 and 1 day, which the model rounds up to 1 day. 

Consequently, the LoS distribution for high care and medium care shifts toward a single 

day, reducing the impact of further LoS decreases. 
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Regarding occupancy rates, a 10% reduction in LoS lowers the weekly occupancy rates 

for both NICU and high care below 90%. This decrease continues similarly across both 

care levels, eventually bringing occupancy rates down to below 70% with a 40% reduction 

in LoS. In contrast, medium care experiences a more significant decrease in occupancy 

rates with the initial 10% LoS reduction, followed by smaller declines with further 

reductions. This suggests that, beyond a certain point, reducing LoS in medium care leads 

to occupancy levels where it becomes inefficient to maintain operational beds. 

For the societal perspective, I first analyzed the changes in capacity transfer rate as seen 

in Figure 54 and afterwards investigated the effects on the weekly capacity transfers per 

ward level seen in Figure 55. 

 

Figure 54 Average capacity transfer rate for LoS lever 

The 10% LoS decrease leads to a more than 10% decrease in capacity transfer rate for 

the high care ward, while the NICU capacity transfer rate decreases with a more constant 

linear slope. This suggests that capacity transfers at the high care level frequently occur 

shortly before the release of a previous patient. Thus, even a 10% reduction in the patient's 

LoS would often free up a bed. These findings recommend investigating an early 

discharge policy. 

As a second step, the average weekly transfers were calculated for each ward level as 

seen in Figure 55. The results show that each LoS reduction leads to a decrease in the 
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number of weekly transfers across all occupancy rates. However, the magnitude of this 

effect varies across different ward levels. 

  
 

 
Figure 55 Average weekly transfers per average weekly occupancy rate for each ward level for 

LoS Lever 

For the NICU, even a 40% decrease in LoS still results in approximately 7 weekly transfers 

at a 100% weekly occupancy rate. In contrast, for high care, each step of LoS reduction 

amplifies the effect, leading to an absolute difference of more than 10 weekly transfers 

between the initial rate and the 40% decrease. This translates to over 520 patients per 

year who would no longer need to be transferred outside the region. The medium care 

level initially experiences a very limited number of transfers, and a mere 10% LoS 

decrease eliminates the need for capacity transfers altogether. 

Overall, this section demonstrates the substantial impact of LoS on the system’s 

performance indicators from both hospital management and societal perspectives. While 

it is not surprising to see a positive effect on all indicators when decreasing the LoS, the 

experiment has shown that already a 10% decrease could bring substantial benefits 

across the indicators highlighting the need for interventions that decrease the LoS. 
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7.2.3 System Lever Results: Patient Ward Assignment 
As a second system lever experiment, the effect of changing the admission rate for NICU 

and high care ward was tested. The following sections present the results of the lever 

experiments. First, the results for the NICU admission lever and afterwards the results for 

the high care admission lever are presented. 

7.2.3.1 Decrease in NICU admissions 
From a hospital’s management perspective, the relevant indicators – required beds and 

weekly occupancy rate – can be seen in Figure 56 and Figure 57, respectively. 

 
Figure 56 Required operational beds for 

decrease in NICU admissions 

 
Figure 57 Average weekly occupancy rate for 

decrease in NICU admissions 

 

For the NICU, we observe a consistent decrease in the number of required beds, 

approaching the current operational capacity at a 15% reduction in ward assignment. 

Concurrently, the number of required beds for high care increases by approximately three 

beds but stabilizes between the 10% and 15% reduction levels. This pattern is likely due 

to variations in how the LoS is calculated for each ward level, as stays in high care tend 

to be shorter than those in the NICU. Additionally, the shift of NICU patients to high care 

results in fewer post-IC high care stays, which further explains the modest increase in high 

care indicators. 

As seen in Figure 57, the average weekly occupancy rate decreases for the NICU to below 

90% for the highest lever change of -15%. These results stress what impact individual 

patients at the NICU have due to their long LoS. At the same time, the weekly occupancy 

rate for high care only increases slightly, mostly due to the reason that at the already 

extremely high level, additional patients are more likely to be transferred to an outside 

region hospital. 

For the societal perspective, first the capacity transfer rate per ward level as seen in Figure 

58 was analyzed. 
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Figure 58 Average capacity transfer rate per NICU admission decrease per ward level 

Reducing the NICU assignment rate results, as anticipated, in a linear decrease in NICU 

capacity transfers and a corresponding increase in high care transfer rates. Notably, the 

increase in high care transfers is significantly more pronounced when the assignment rate 

is reduced by 5% to 10%, compared to reductions of 0% to 5% or 10% to 15%. This 

suggests the presence of tipping points, where surpassing a certain threshold leads to a 

sharper increase in transfer rates. Overall, this lever creates a trade-off between NICU 

and high care capacity transfers, as a decrease in one directly leads to an increase in the 

other. 

The results of weekly transfers per ward level, as illustrated in Figure 59, indicate that the 

increase in high care admissions is especially noticeable at high occupancy rates of above 

95%. This effect is most pronounced in the -15% setting, shown in red, where it leads to 

a difference of approximately three additional weekly transfers. 
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Figure 59 Average weekly transfers per average weekly occupancy rate for each ward level 

The weekly transfers to the NICU follow an expected pattern corresponding to the different 

levels of the system lever. Additionally, the lever causes an increase in weekly transfers 

for medium care, which is particularly noticeable when the occupancy rate is between 80% 

and 90%. 

The results of the system lever experiment highlight the trade-offs involved when shifting 

patients between ward levels, as there is no option that provides benefits to all. In this 

example, the NICU experienced a decrease across all measures, resulting in additional 

efforts for medium and high care ward levels. This is particularly problematic at the high 

care ward level as this ward level already faces the strongest capacity shortages. 

7.2.3.2 Decrease in High Care Admissions 
As a second step, the experiment was repeated for a change in high care admission rates. 

In Figures 60 and 61, we see the effect of the lever on required bed number and weekly 

occupancy rate. As expected, shifting demand from high care to medium care increases 

the occupancy rate for the medium care ward. 

 
Figure 60 Required beds per ward level for high 
care admission lever 

 
Figure 61 average weekly occupancy rate per 
ward level for high care admission lever 

The lever does not seem to have a noticeable effect on the NICU, neither for required 

beds nor occupancy rate. This can be explained as medium care patients have the same 
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probability to have an additional stay at the NICU as high care patients, thus, it does not 

matter whether a patient have their first stay at a high or medium care ward. 

For the societal perspective, the capacity transfer rate and number of weekly transfers 

was analyzed as seen in Figure 62 and Figure 63, respectively. The linear decrease in the 

capacity transfer rate in high care is not matched with a similar increase in medium care 

capacity transfer rate This suggests that medium care ward can effectively manage the 

additional patient load. For instance, a 5% decrease in high care admissions results in a 

nearly 4-percentage point reduction in the capacity transfer rate for high care, without 

placing significant strain on medium care. 

 

Figure 62 Average capacity transfer rate per ward level for high care admission lever 

This analysis reveals the unbalanced distribution of patients across wards, suggesting 

that, where medically appropriate, it may be beneficial to explore interventions that 

redistribute patients between ward levels. 

As expected, there are no significant differences in weekly transfers for the NICU. 

However, weekly transfers for high care consistently decrease, while those for medium 

care increase. At the highest level of a 15% reduction in admissions, the medium care 

ward experiences several days with a weekly moving average occupancy rate of 100%, 

resulting in more than 17 weekly transfers of medium care patients. 
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Figure 63 Average weekly transfers per rounded weekly occupancy rate and ward level for high 

care admission lever 

The analysis of this lever supports the importance of the high care ward level to find 

solutions to existing capacity shortages within staffing limitations. While in practice it might 

not always be feasible to shift admit patients rather in medium care than in high care due 

to medical complexity and required treatments, the lever still indicates the possible effects 

and, thus, it should be considered if there are patient groups (e.g. above a certain 

gestational age) to be shifted to the medium care ward. 

7.2.4 System Lever Results: Patient Pathway 
The following section presents the outcomes of the system lever experiment, analyzing 

the output data from the two introduced perspectives. Since all NICU patients requiring an 

additional stay are transferred to the medium care ward instead of high care, this lever is 

expected to significantly impact the indicators for the high care ward level. Additionally, it 

may place an extra burden on the NICU, due to the extended LoS, and on medium care, 

due to the increased number of patients. 
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Figure 64 Required beds per ward level for 
pathway lever with different LoS at NICU 

 
Figure 65 average weekly occupancy rate per 
ward level for pathway lever with different LoS 

at NICU 

From a hospital’s perspective, the drastic decrease, from 75 to circa 63 beds, in required 

beds for high care demonstrates the significant impact of the addressed patient group on 

the high care ward level, as shown in Figure 64. These patients tend to have a 

disproportionately high LoS, directly leading to higher bed requirements. However, the 

results also show that this lever alone would not be enough to move the number of 

required beds below the number of available beds. We see a linear increase for the NICU 

from initially circa 27 to eventually 32 due to the additional days a patient would stay at 

the NICU before the transfer. The medium ward level can easily handle the additional 

number of required beds. 

For the weekly occupancy rate, we see similar patterns of clear drop in high care 

occupancy with a simultaneous increase in medium care and NICU occupancy. Medium 

care sees an increase of around 10%-points, while the NICU rate increases linearly, with 

an initial increase of 2%-points an additional stay of 4 days. We also see that this lever 

could at most get the high care ward to around 94% occupancy rate, hence, the high care 

ward remains under pressure of capacity shortages. 

From a societal perspective, the changes in the average capacity transfer rate, see in 

Figure 66, highlight that for the NICU again a linear increase up to more than 35% capacity 

transfer rate at most. At the same time, the rate for high care drops close to 10%, with only 

minor increases for medium care. 
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Figure 66 Average capacity transfer rate per ward level for pathway lever 

Looking at the average weekly transfers in Figure 67, only minor differences are observed 

for the NICU level. However, at full capacity, high care experiences a 25% decrease in 

weekly transfers. This improvement comes at the cost of a significant increase in transfers 

for medium care, especially with low additional stays at the NICU, as this reduces the 

arrival rate to medium care. 
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Figure 67 Weekly transfers per weekly occupancy rate per ward level for high pathway lever 

This lever highlights the trade-off between reducing pressure on high care hospitals and 

increasing pressure on medium care and, to some extent, NICU wards. While the lever 

clearly demonstrated how significant this group of patients is for capacity shortages in high 

care, the impact on other wards needs careful consideration. It would be beneficial to 

combine this lever with other approaches, such as adjusting the number of NICU 

admissions by initially shifting some patients to high care to balance the effects of the 

respective levers. 
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7.3 Intervention Experiments 
The background section of this work has provided an overview of current innovative 

developments in neonatal care interventions. Given the ongoing and increasing 

operational bed capacity shortages driven by staffing limitations, there is an urgent need 

for change. By modifying mechanisms in the model, key system levers that can impact the 

system’s key performance indicators have been identified: required bed count, weekly 

occupancy rate, capacity transfer rate, and average weekly transfer. 

While the obvious recommendation would be to implement interventions addressing all 

these impactful levers, such interventions might not yet exist. Therefore, the following 

chapter will introduce in detail three currently relevant interventions that are promising for 

clinical outcomes but have an unclear impact on operational bed capacity. Two 

interventions affect the LoS lever of the model and one the distribution across wards. 

These interventions are based on literature review results and interviews with field experts 

and are currently in the implementation or trial phase in the region. In addition, the impact 

of a combined intervention using the previous intervention, and the patient pathway lever 

was tested. 

Table 52 Overview of tested interventions and corresponding system lever 

Intervention System Lever 

Phototherapy at home for jaundice Decrease LoS 

Changing from intravenous to oral antibiotics for EOS Decrease LoS 

Changing NICU gestational age threshold  NICU admission rate 

Combined Intervention Strategy Decrease LoS,  

NICU admission rate, 

 Pathway Lever 

1. Phototherapy at home for jaundice 
Jaundice is a common medical condition for newborns in which the skin and whites of the 

eyes turn yellow. Between 60 and 80% of neonates have some form of jaundice. The 

underlying reason is linked to low development of the liver and resulting high bilirubin count 

– a yellowish pigment – in the blood. The most common treatment is phototherapy. 

Currently, it is provided in hospitals, but research has shown that it can also be safely 

applied at home. Thus, current trials in high-income countries test the potential of releasing 

patients without any other condition than jaundice. 
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2. Changing from intravenous to oral antibiotics for EOS 

Antibiotics is a commonly used treatment for various conditions. The transition from 

intravenous to oral antibiotics for early-onset sepsis in neonates represents a significant 

intervention aimed at optimizing antibiotic use and improving patient outcomes. This 

approach not only reduces hospital stay and healthcare costs but also aligns with current 

guidelines advocating for oral switch therapy. The intervention is based on the results of 

the RAIN study that tested for clinical outcomes across multiple hospitals in the 

Netherlands (Keij et al., 2022). The study showed a decrease in average LoS from 7 days 

to 3.5 days when using oral treatment. 

3. Changing NICU gestational age threshold 
The NICU is the only ward level with direct guidelines specifying when a patient requires 

that level of care. In the Netherlands, any patient below 32+0 weeks of gestation must be 

admitted to a NICU. However, there have been discussions in the region about lowering 

that threshold to 31 or even 30 weeks (Interview 1). In the previous chapter on system 

levers, the ward assignment mechanism and the potential impact of decreasing the 

number of NICU admissions were described. This intervention directly addresses that 

mechanism. While the 32-week guideline is currently a national standard, the region has 

the authority to establish its own guidelines, as other regions currently oppose such a 

change (Interview 1). By exploring the potential benefits and trade-offs of lowering the 

threshold, the region can make informed decisions about optimizing NICU capacity and 

improving overall neonatal care. 

4. Combined Intervention Strategy 
Interventions that address the interactions between ward levels lead to trade-offs between 

patient groups and hospitals. Since there is no silver bullet, the region should combine 

interventions to harness their positive effects while countering respective downsides. 

Thus, a last experiment was performed by combining the previous interventions to see 

aggregated effects. In addition, the previously identified pathway lever was added, hence, 

all post-IC patients were transferred to the medium care level instead of the high care 

level. 
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7.3.1 Implementation of Intervention Experiments 
The following section describes the implementation of the intervention experiments with 

any changes in the model and the required variables in run_config.py, as seen in Table 

53, for each experiment. 

Table 53 Overview of run input parameters for intervention experiments 

Experiment 

Factor 

Phototherapy at 

home for 

jaundice 

5. Changing from 

intravenous to 

oral antibiotics 

for EOS 

Changing 

NICU 

gestational 

age threshold 

6. Combined 

Intervention 

Strategy 

Number of Runs 25 25 25 25 

Days per Run 365 365 365 365 

Warm-Up Time 70 70 70 70 

Hospital 

Scenario 

1 1 1 1 

Pathway Lever 0 0 0 1 

Pathway Lever 

LoS Change 

0 0 0 0 

Phototherapy 

Intervention 

1 0 0 1 

Sepsis 

Intervention 

0 1 0 1 

NICU Threshold 

Intervention 

0 0 1 1 

NICU Threshold 

Intervention 

Change 

0 0 [-1, -2] -1 

Pathway Lever 0 0 0 1 

Pathway Lever 

Additional LoS 

0 0 0 4 

All other variables in run_config.py that are not mentioned in the table above are set to 

zero. The following paragraphs describe in detail any changes in the model due to the 

individual interventions. 
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1. Phototherapy at home for jaundice 

For the phototherapy intervention, it involved filtering patients born at or after 35+0 weeks 

of gestational age who were admitted solely for jaundice, without any other conditions 

requiring hospital care. Since each patient had to be at least one day old, the LoS was set 

to a minimum of one day, and no additional hospital stays were permitted afterward. This 

intervention specifically targeted a subgroup of patients, modifying their treatment 

pathways by reducing the likelihood of additional hospital stays. In this initial 

implementation, the maximum potential impact was assessed by including all patients who 

met these criteria and preventing any readmissions. 

2.  Changing from intravenous to oral antibiotics for EOS 

For the EOS intervention, patients were identified by filtering for those born at or after 35+0 

weeks gestational age and only having the jaundice admission criteria, with no other 

conditions requiring hospital care. As each patient must be at least one day alive, the LoS 

was set to one day, and no additional stays were allowed afterward. This intervention 

works on the LoS mechanism for a specific patient subgroup and changes the pathways 

by lowering the chances for additional stays. In this first implementation, the maximum 

potential impact was assessed. Therefore, all patients meeting the previously mentioned 

criteria were included, and no readmissions were allowed. 

3. Changing NICU gestational age threshold 

For the NICU threshold intervention, the age threshold for NICU admission was lowered 

from 32 weeks to 31 weeks and then to 30 weeks in the model. Consequently, patients 

born at 31 or 30 weeks gestational age were no longer required to be admitted to the NICU 

unless they met other NICU criteria, such as a birth weight below 1250g or the presence 

of congenital abnormalities. These patients were instead distributed across high-care 

hospitals. The intervention was tested in the capacity shortage scenario, first with the 

threshold lowered to 31 weeks and then to 30 weeks. 

4. Combined Intervention Strategy 

Finally, the combined intervention strategy was implemented by combining the 

adjustments for phototherapy, sepsis treatment, and NICU threshold changes. This 

comprehensive intervention involved accepting only patients below 31 weeks of gestation 

into the NICU while adding the pathway lever, described in detail in 7.2.4, moving post-IC 

patients to medium care instead of high care. 
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7.3.2 Intervention Results: Phototherapy at home for 
jaundice 

The results for each intervention are again analyzed by the introduced indicators. The 

results for phototherapy at home can be seen in Table 54. 

Table 54 System performance indicators for phototherapy at home intervention per ward level 

Indicator Ward Level Without Intervention With Intervention 

Required Bed 

Count 

 135.65 134.80 

 NICU 26.97 26.59 

 High Care 75.12 75.19 

 Medium Care 33.57 33.03 

Weekly Occupancy 

Rate 

   

 NICU 91.80 91.33 

 High Care 97.25 97.22 

 Medium Care 65.84 64.92 

Capacity Transfer 

Rate 

   

 NICU 21.56 21.12 

 High Care 20.46 20.13 

 Medium Care 0.05 0.01 

The intervention implemented across all hospitals in the region has resulted in only a 

marginal decrease in the total required bed count, from 135.65 beds to 134.80 beds, 

representing a minimal reduction of 0.63%. This slight change indicates that the 

intervention did not substantially alleviate the overall demand for beds. Notably, the NICU 

and high care units saw even smaller reductions in bed count, with NICU beds decreasing 

from 26.97 to 26.59 and high care beds slightly increasing from 75.12 to 75.19, 

respectively. These results suggest that the intervention did not significantly impact the 

bed demand in these critical care areas. 

The effects of the intervention on the weekly occupancy rate across different ward levels 

are also minimal. The NICU's occupancy rate decreased slightly from 91.80% to 91.33%, 

while high care saw an even smaller reduction from 97.25% to 97.22%. The most notable 

change occurred in the medium care unit, where the occupancy rate decreased by nearly 

one percentage point, from 65.84% to 64.92%. Although the reduction in medium care 

occupancy is more pronounced, the overall effect on the weekly occupancy rates in the 
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NICU and high care units remains negligible, indicating that the intervention had limited 

success in easing the occupancy pressure in these wards. 

The intervention's impact on the capacity transfer rate shows some modest improvements, 

particularly in the high care ward level. Here, the transfer rate decreased from 20.46% to 

20.13%, translating to approximately 22 fewer capacity transfers per year. The NICU also 

experienced a small reduction in transfer rates, from 21.56% to 21.12%. However, the 

medium care ward saw an almost negligible change, with the transfer rate dropping from 

0.05% to 0.01%. Despite these changes, the overall effect of the intervention on reducing 

capacity transfers is limited, indicating that the intervention was insufficient to address the 

broader issue of capacity shortages across the region effectively. 

  

 
Figure 68 Weekly transfers per weekly occupancy rate per ward level for phototherapy at home 

The weekly transfers, presented in Figure 68, reveal that the curves for NICU and High 

Care exhibit similar patterns both with and without the intervention. Notably, for the NICU, 

the intervention tends to result in a lower curve for occupancy rates below 92.5%, while at 

full capacity, the values converge to similar levels. This suggests that the intervention has 

a limited impact on reducing transfers under high occupancy conditions. However, in the 

medium care level, the intervention appears more effective, successfully keeping the 

weekly occupancy rate below 90%. This outcome reduces the likelihood of capacity 

transfers, indicating a stronger impact of the intervention in managing capacity at this level. 

The intervention is currently in multiple trial phases and there are ongoing discussions in 

the region and beyond on a potential implementation strategy (Interview 2). While the 

simulation model suggests that the intervention does not have a major impact on the 
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existing capacity shortages, it can still lead to an increase in the quality of care for 

individual patients and increase the child-parent relationship. Thus, despite not having a 

large impact on capacity, it can be worth to further test the implementation from a quality 

improvement perspective. One of the biggest remaining questions for the implementation 

is the financing as hospitals and insurance companies are in discussing about 

reimbursement rates as the patient does not occupy any bed or use hospital resources 

(Interview 2). In addition, it is important to acknowledge that current trials report up to 2% 

of readmissions. Additionally, 3% of the parents speak neither Dutch nor English and are 

also excluded from this intervention, as it is assumed they would not understand the 

instructions. The effectiveness of this intervention is also constrained by the limitations in 

the quality of the initial dataset. Specifically, jaundice was frequently not among the two 

most prominent indicators, which suggests that there may be more patients affected than 

currently accounted for in the simulation model. This potential underestimation could lead 

to inaccuracies in assessing the intervention’s true impact. Additionally, there is room for 

improvement by considering a further reduction in the age restriction from 35 weeks of 

gestation to possibly 34 weeks. Such an adjustment could increase the number of patients 

addressed by the intervention, potentially enhancing its overall effectiveness. 

7.3.3 Intervention Results: Changing to oral antibiotics for 
EOS 

The following section describes the experiment results for changing from intravenous to 

oral antibiotics for EOS. The outcomes for average required beds, weekly occupancy rate, 

and capacity transfer rate can be seen in Table 55. 
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Table 55 System performance indicators for oral antibiotics at home intervention per ward level 

Indicator Ward Level Without Intervention With Intervention 

Average Required 

Bed 

 135.65 132.47 

 NICU 26.97 26.63 

 High Care 75.12 74.36 

 Medium Care 33.57 31.48 

Average Weekly 

Occupancy Rate 

   

 NICU 91.80 91.13 

 High Care 97.25 97.10 

 Medium Care 65.84 61.63 

Average Capacity 

Transfer Rate 

   

 NICU 21.56 21.12 

 High Care 20.46 19.70 

 Medium Care 0.05 0.01 

The intervention implemented across the hospitals led to a reduction in the average 

required bed count, decreasing from 135.65 to 132.47 beds, reflecting a moderate 

improvement with an approximate 2.34% reduction. Specifically, the NICU saw a slight 

reduction in the average required beds from 26.97 to 26.63, while high care beds 

decreased from 75.12 to 74.36. The most significant reduction occurred in medium care, 

where the average required bed count dropped from 33.57 to 31.48. These changes 

suggest that the intervention had a more pronounced effect on medium care, though the 

overall impact on bed demand across all ward levels was modest. 

The average weekly occupancy rate also showed some improvements due to the 

intervention, although these were relatively small. In the NICU, the occupancy rate slightly 

decreased from 91.80% to 91.13%, and in high care, it dropped marginally from 97.25% 

to 97.10%. The most notable reduction occurred in medium care, where the occupancy 

rate decreased from 65.84% to 61.63%, a more significant decline compared to the other 

wards. This indicates that the intervention was more effective in reducing occupancy 

pressures in medium care, although the impact on NICU and high care was less 

substantial. 

The intervention's effect on the average capacity transfer rate demonstrated some 

improvement, particularly in high care. The transfer rate in the NICU decreased slightly 
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from 21.56% to 21.12%, while high care experienced a more noticeable reduction from 

20.46% to 19.70%. Medium care, with an already low transfer rate, saw a reduction from 

0.05% to 0.01%. These results suggest that the intervention contributed to a decrease in 

the frequency of capacity transfers, especially in high care, though the overall effect 

remains modest across all ward levels. 

  

 
Figure 69 Weekly transfers per weekly occupancy rate per ward level for changing from 

intravenous to oral antibiotics for EOS 

The weekly transfers, presented in Figure 71, reveal that the curves for NICU and High 

Care exhibit similar patterns both with and without the intervention. Notably, in high care, 

the intervention results in a higher curve for occupancy rates below 96%, but at full 

capacity, it leads to a lower curve. This shift is particularly significant given that high care 

has an average occupancy rate of 97%, meaning the intervention brings improvements in 

the most critical range. In the medium care level, the intervention appears more effective, 

successfully maintaining the weekly occupancy rate below 90%. This outcome reduces 

the likelihood of capacity transfers, indicating a stronger impact of the intervention in 

managing capacity at this level. 

The intervention demonstrated a promising impact on capacity indicators and can be 

implemented easily without incurring additional costs, as most hospitals in the region 

participated in the initial study and implementations are already underway at various 

locations (Interview 3). The results of the simulation model support these efforts as they 

not only have the potential to enhance medical outcomes and improve the quality of care 

but also contribute to alleviating existing capacity shortages. 
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7.3.4 Intervention Results: Changing the NICU Gestational 
Age Threshold 

The third intervention experiment assess the impact of changing the NICU gestational age 

threshold from 32 weeks to 31 or 30 weeks. For the impact on hospitals, I analyzed the 

number of required beds for inside region patients and the average weekly occupancy 

rate, each per ward level, as seen below. Decreasing the threshold by one week to 31 

weeks would achieve that the current operational bed count would be sufficient to 

accommodate for all inside region patients.  

 
Figure 70 Required beds per ward level for 
different gestational age NICU thresholds 
changes 

 
Figure 71 Average weekly occupancy rate per 
ward level for different gestational age NICU 
threshold changes 

From the hospital's perspective, this intervention would have a significant impact on the 

NICU, potentially alleviating a substantial portion of the current shortages. However, it is 

crucial to assess the extent to which high care hospitals can accommodate the additional 

patient load, as the model indicates an increase in the required beds for high care that far 

exceeds the currently available capacity. Given that medium care remains well below its 

required bed count, there could be an opportunity for improvement if fewer patients in 

other age groups were admitted to high care and instead received treatment at a medium 

care facility, provided it is medically appropriate. 

The weekly occupancy rate for high care rises to 98.75% for the 31-week threshold and 

surpasses 99% for the 30-week threshold. In contrast, the NICU occupancy rate 

experiences a sharp decline, dropping below 90% for the 31-week threshold. Additionally, 

the occupancy rate for medium care also decreases, as fewer NICU patients result in 

fewer subsequent transfers to medium care following their initial NICU stay. This shift 

suggests that while the intervention effectively reduces the burden on NICU, it 

simultaneously places increased pressure on high care. 

For the societal impact, I first examined the capacity transfer rate per ward level, as seen 

level as seen in Figure 72. As expected, the intervention led to a significant decrease in 
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the average capacity transfer rate for the NICU, dropping from approximately 26% to 

below 10% at the 30-week threshold. However, this reduction is accompanied by an 

increase in the capacity transfer rate for high care, which rises by up to approximately 38% 

at its peak. This highlights an inherent trade-off between reducing NICU capacity transfers 

and managing the consequent increase in transfers within high care. 

 

Figure 72 Comparison of average capacity transfer rate for decrease in NICU age threshold per ward 
level 

Capacity transfers create additional stress for both the patient and their parents, and are 

therefore particularly important to avoid for highly vulnerable patients, such as those in the 

NICU. Given this context, one could argue that the average high care patient may not 

experience as significant an impact from a transfer as the average NICU patient. 

Consequently, the trade-off between reducing NICU transfers at the expense of increasing 

high care transfers could be justified, especially when the overall goal is to provide the 

best possible care for the patients with the greatest need. This approach prioritizes 

minimizing disruptions for the most vulnerable patients, aligning with the principle of 

delivering care where it is most critical. 

In addition, I analyzed the impact on the number of weekly transfers per ward level as 

seen in Figure 73. As anticipated, the average weekly transfer rate for the NICU 

decreases, while it increases for high care. Particularly under the 30-week setting, the high 

care ward’s weekly occupancy rate would fluctuate between 95% and 100%, underscoring 

the significant strain placed on this ward level. This fluctuation highlights the substantial 
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pressure the high care unit would face, reflecting the trade-offs involved in managing 

occupancy across different ward levels. 

  

 
Figure 73 Weekly transfer per ward level and weekly occupancy rate for different NICU threshold 

changes 

This analysis helps quantify the trade-off between NICU and non-NICU transfers. Notably, 

at full capacity, there is only a minor difference in weekly transfers at the NICU between 

the 31-week and 30-week settings. Therefore, even at the 30-week setting, the 

intervention would result in more than two fewer NICU capacity transfers per week. 

However, this reduction comes at the cost of eight additional high care capacity transfers. 

This trade-off highlights the balance between reducing NICU strain and potentially 

increasing the burden on high care. 

7.3.5 Intervention Results:  Combined Intervention 
Strategy 

As the last experiments, the previous insights from levers and interventions were used to 

conceptualize a combined intervention strategy. The following section provides the results 

for the performed experiment as seen in Table 56. 
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Table 56 Overview of indicators for combined intervention strategy experiment results 

Indicator Ward Level Without Intervention With Intervention 

Average Required 

Bed Count 

 135.65 134.03 

 NICU 26.97 24.37 

 High Care 75.12 73.31 

 Medium Care 33.57 36.35 

Average Weekly 

Occupancy Rate 

   

 NICU 91.80 89.71 

 High Care 97.25 97.10 

 Medium Care 65.84 73.74 

Average Capacity 

Transfer Rate 

   

 NICU 21.56 17.92 

 High Care 20.46 19.54 

 Medium Care 0.05 0.16 

The intervention resulted in a reduction in the overall average required bed count, 

decreasing from 135.65 to 134.03 beds. This decrease is most pronounced in the NICU, 

where the average required bed count dropped from 26.97 to 24.37, indicating a significant 

decrease in demand for this critical ward. High care also saw a reduction in required beds, 

from 75.12 to 73.31. In contrast, the medium care ward experienced an increase in the 

required bed count, rising from 33.57 to 36.35. This suggests that while the intervention 

effectively reduced pressure on the NICU, it shifted some of the demand toward medium 

care. 

The average weekly occupancy rate showed varied outcomes following the intervention. 

In the NICU, the occupancy rate decreased from 91.80% to 89.71%, demonstrating the 

intervention’s impact on reducing occupancy pressure in this ward. High care, however, 

saw only a slight change, with the occupancy rate decreasing marginally from 97.25% to 

97.10%. Meanwhile, the medium care ward experienced a notable increase in occupancy, 

from 65.84% to 73.74%. This increase suggests that while the intervention reduced 

overcrowding in the NICU, it led to higher occupancy in medium care. 

The intervention's impact on the average capacity transfer rate differed across ward levels. 

The NICU saw a significant reduction in the transfer rate, dropping from 21.56% to 

17.92%, indicating the intervention's success in reducing capacity transfers in this critical 
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ward. High care also experienced a decrease in the transfer rate, from 20.46% to 19.54%, 

showing some relief in patient transfers. However, the medium care ward saw an increase 

in the transfer rate, rising from 0.05% to 0.16%. This increase suggests that while the 

intervention helped reduce transfers in the NICU and high care, it also led to a slight rise 

in transfers within medium care. 

  

 
Figure 74 Weekly transfer per ward level and weekly occupancy rate for combined intervention 

strategy 

The weekly transfers, displayed in Figure 74, further support the previous findings, 

showing a clear reduction in numbers for NICU and high care across all occupancy rates. 

Although there is a noticeable increase in medium care weekly transfers for occupancy 

rates above 90%, this is less concerning because the average occupancy rate for medium 

care remains around 74%. As a result, the weekly average for medium care is unlikely to 

frequently exceed 90%. 

Overall, the experiment highlighted the potential of combining interventions, as it allows 

for leveraging individual strengths and compensating for shortcomings to achieve a better 

overall outcome. However, the findings also underscore the inherent trade-offs between 

ward levels even with combined interventions. This intervention strategy prioritized 

reducing capacity shortages at the most medically critical levels of care, focusing on NICU 

and high care, which consequently increased the burden on medium care. Nonetheless, 

considering that the medium care ward is currently well below its capacity limits, 

redistributing efforts in this manner appears to be a reasonable approach. 
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8 Discussion 
In the previous chapters, the neonatal care system was conceptualized, a suitable 

computer simulation model was implemented, and various scenarios, system levers, and 

interventions were tested in the context of operational bed capacity shortages. The 

following chapter discusses the findings and provides academic and societal implications. 

Afterwards, the results are put into context with the identified limitations of this study. 

8.1 Interpretation of Findings 
A large portion of this study relied on the data analysis of the perinatal birth registry, which 

played a crucial role in driving model decisions and implementation. While modelers often 

attempt to express arrival rates through inter-arrival rates, this approach was not feasible 

for the neonatal care system due to the time unit being measured in days, with multiple 

patients arriving each day. Therefore, I employed an alternative approach to determine an 

overall distribution, specifically using a bounded normal distribution, leading to an easy 

implement and understandable arrival process. Additionally, the data did not provide 

sufficient evidence for seasonality, which contrasts with the commonly assumed 

seasonality of births, where more births occur in summer than in winter (Lam & Miron, 

1991). One possible explanation for this discrepancy is that, while only a small percentage 

of newborns require neonatal care, this percentage might fluctuate across seasons, 

resulting in a steady demand throughout the year. However, further data is needed to 

validate this hypothesis. Moreover, the p-value of the conducted test was relatively low, 

suggesting that the selected time period could have been an outlier, further emphasizing 

the need for additional data to draw more definitive conclusions. 

The analysis of LoS for each ward level emphasized the vast differences between medical 

conditions and their complexities across patients. Some patients require only a one-day 

stay, while others may remain in care for nearly half a year. Additionally, the analysis 

revealed an exponential increase in LoS as gestational age decreases, underscoring the 

critical nature of specialized ward levels tailored to different patient groups. These findings 

also illustrate the varying turnover rates across ward levels. In the NICU, most beds are 

occupied for several months, whereas high and medium care wards experience more 

frequent patient turnover. 
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Interestingly, the modeling of LoS based on medical and patient variables proved most 

effective for the NICU. Despite the medical complexity of NICU patients, they tend to share 

common admission criteria—such as being born before 32 weeks of gestation, weighing 

less than 1250 grams at birth, or having congenital abnormalities. This consistency in 

criteria might explain the success of the LoS model for NICU patients. Given this success, 

it may be worth considering whether additional guidelines could be defined for high and 

medium care to achieve further specialization within these ward levels, potentially 

improving patient outcomes and resource allocation by having more predictable stay 

durations. 

In addition, the Dutch neonatal care network is characterized by bidirectional patient 

pathways between the ward levels. The data analysis showed that while only 4-5% of 

neonatal patients required a second stay, this has a tremendous impact on LoS, with the 

average increasing to over 50 days for patients admitted to a high care hospital after a 

NICU stay. Consequently, this group of patients tends to occupy beds disproportionately 

long and significantly contributes to capacity shortages. These results suggest the 

importance of differentiating between patient groups and recognizing the patient pathway 

more explicitly in discussions on capacity shortages. Understanding these pathways could 

lead to more targeted strategies for managing capacity and improving overall care. 

When analyzing the dataset for the performance indicators, the results revealed that even 

during the 2016 to 2017 period, the region had to transfer patients from NICU and high 

care wards due to capacity shortages. This indicates that either the number of physical 

beds or the number of operational beds, constrained by staffing levels, was insufficient for 

the region's needs. While specific data on the ratio of physical to operational beds at that 

time is unavailable, making it difficult to fully address the issue, these findings suggest that 

capacity shortages in neonatal care are not a recent phenomenon. However, a 

comparison of bed numbers between 2016 and 2023 shows a consistent decrease across 

all wards, highlighting increasing pressure and challenge. The analysis also demonstrated 

that the NICU and high care wards bear the greatest burden. At the regional level, it is 

rare for a medium care patient to be transferred outside the region, underscoring the 

critical nature of NICU and high care wards. Since NICU and high care patients are among 

the most vulnerable, they are at greater risk of adverse outcomes from transfers, making 

these capacity issues particularly concerning. 

The implemented simulation model was used to explore various "what-if" scenarios, 

system levers, and interventions, providing insights into the effects of different strategies 

on the neonatal care system. The scenarios underscored the severity of the current 

capacity shortages, revealing that approximately 21.5% of NICU patients and 20.5% of 



Discussion - Interpretation of Findings 

 133 

high care patients are being transferred to hospitals outside the region. Additionally, the 

average weekly occupancy rates indicate that these ward levels consistently operate 

above the recommended occupancy levels of 80 to 85% (Planningsbesluit Bijzondere 

Perinatologische Zorg, 2018). While hospitals require a minimum number of patients to 

operate efficiently, consistently running at such high occupancy levels is unsustainable 

and leaves the system vulnerable to potential shocks. 

Given that both NICU and high care wards are operating well above the recommended 

guidelines, the utility of relying solely on a single occupancy rate goal is questionable. It is 

essential to consider occupancy rates in context, such as by combining them with metrics 

like weekly capacity transfers, to gain a more comprehensive understanding of the 

system's resilience and capacity challenges. Furthermore, capacity transfers create 

fluctuations in occupancy rates, making them unstable and posing additional challenges 

for hospitals. I also suspect that the drop in occupancy after a peak is likely to be larger 

for the NICU due to the relatively high LoS of its patients. When a patient with a long LoS 

is transferred, it frees up a bed for an extended period, leading to a more significant drop 

in occupancy. These fluctuations are problematic because they hinder hospitals' efforts to 

maintain stable occupancy levels, which are crucial for both planning and financial stability. 

The goal should be to smooth out these fluctuations. Capacity transfers increase 

variability, as irregular arrivals disrupt the balance between patient admissions and 

discharges, leading to greater unpredictability in bed availability. 

When testing system levers—changing LoS, admission rates, and patient pathways—it 

was shown that all three can significantly impact the system’s performance indicators and 

help reduce capacity shortages. The most substantial effect was observed by decreasing 

LoS across all patients, with a more pronounced impact in high and medium care 

compared to the NICU. However, reducing LoS on a large scale may be challenging due 

to the inherent differences in patients' medical conditions and the various factors 

influencing their length of stay, resulting in varying admission durations. Adjusting 

admission rates for a ward or modifying patient pathways are strategies designed to shift 

bed demand between wards, aiming to optimize resource utilization. However, when using 

these levers, it’s crucial to consider the trade-offs between hospitals and among different 

patient groups. Given the varying medical complexities across ward levels, the focus 

should be on minimizing the risk of transfers for NICU patients. In the worst-case scenario, 

transferring an extremely premature neonate could pose significant risks and lead to 

potential negative outcomes, making it imperative to prioritize stability for these highly 

vulnerable patients. 
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As a final set of experiments the model was used to test currently discussed interventions. 

The two clinical interventions – phototherapy at home and oral antibiotics for EOS – aimed 

at decreasing the LoS for specific patient groups. While the absolute percentage changes 

for capacity transfer rates – 0.44%-points for NICU and 0.33%-points for high care, might 

appear small and for phototherapy at home are also below initial expectations from 

experts, the change still represents 22 less high care patient transfers to per year to 

outside the region. Given the unpredictability of arrivals, the number of patients could also 

include post-IC patients that would have the biggest negative effects from a transfer at the 

high care level. Thus, the results show the phenomenon that interventions aimed at one 

group can indirectly also aid other patient groups which increases their overall value. The 

results for oral antibiotics for EOS seem to be more promising and the intervention is also 

further in the implementation stage. 

The adjustment in NICU thresholds has demonstrated encouraging results in improving 

the performance of the NICU ward but has also been associated with negative impacts on 

high care services. This highlights a secondary phenomenon where interventions may 

create a trade-off between the interests of different patient groups. The individual effects 

on high care indicators are significant; for example, the capacity transfer rate increases to 

30% when set at 31 weeks. In contrast, the same threshold adjustment can reduce the 

capacity transfer rate for the NICU to below 15%, marking a decrease of more than 10 

percentage points. Consequently, this intervention could be justified, as NICU patients 

generally require more critical medical attention than the average high care patient. Given 

the significantly increased mortality rate of up to 50% for extremely premature NICU 

patients, it is essential to prioritize ensuring the availability of NICU beds first (Glass et al., 

2015). Therefore, the priority should be to minimize the risk of capacity transfers in the 

NICU. However, this intervention should not be implemented in isolation; it must be 

accompanied by additional measures to alleviate the burden on the high care ward for 

other patient groups. 

The last intervention – combining previous interventions with the pathway lever of shifting 

post-IC patients to medium care instead of high care, showed promising results as the 

individual elements can partially overcome respective disadvantages of other elements. 

Overall, this combined intervention strategy achieved strong results on NICU and high 

care indicators as it would reduce the capacity transfers rate by 3.5%-point and 1%-point, 

respectively. This comes at a cost of an 0.1%-point increase in the medium care capacity 

transfers. However, it can be assumed that medium care patients are medically more 

stable and, hence, are more in the position to accomplish such a transfer. The results 

highlight the importance of assessing interventions rather in an intervention package than 



Discussion - Academic Implications 

 135 

individually. Assessments should not ignore the interaction effects between individual 

interventions as combined they can lead to more desired outcomes. In addition, the 

combined intervention strategy emphasizes the importance of evaluating interventions 

beyond clinical interventions focused on medical outcomes and encourages to include 

dynamics between hospitals and ward levels in intervention design. 

8.2 Academic Implications 
The study contributed to academic literature by filling the earlier described knowledge gap 

in the fields of modeling and simulation in healthcare. 

This study contributed to the small field of simulation studies of neonatal care systems 

and, to the best of my knowledge, was the first to be conducted in a Dutch setting 

accounting for different ward levels and bidirectional transfers in a regional setting. The 

Dutch neonatal care system provides unique characteristics in definition of care levels and 

the patient journey across hospitals in a region, by accounting for all these settings the 

developed model can serve as comparison tool for the impact of different system designs. 

Moreover, the developed simulation model considers the regional setting, multiple hospital 

with different care levels, and complexities of medical conditions and bidirectional patient 

transfers, thus, also further extending on previous limitations (Adeyemi & Demir, 2020; 

Demir et al., 2014; Lebcir & Atun, 2021). While these model features increased the model 

complexity, they also provide opportunities for different levers than typically tested ones 

like an increase in operational beds. It answered the call in the field for using simulation 

models to perform impact assessments, going beyond mere simulation model building to 

link it back to real-life interventions and test their impact (Adeyemi & Demir, 2020). The 

results show how the strengths of modeling and simulation – such as easily answering 

what if questions – provide value to the healthcare domain.  

New performance indicators were introduced in the context of capacity shortages, 

considering the temporal aspect of transfers, thus extending the work of Harper and 

Shahani (2002). By grouping indicators into two perspectives – hospital management and 

societal – we can highlight the complexity and dimension of capacity shortages. Moreover, 

the linking the number of weekly transfers to the respective weekly occupancy rate, it was 

possible to identify how scenarios, system levers, and interventions perform at a given 

occupancy rate. This combination of indicators provides valuable insights as the indicators 

are normally only assessed individually. 

In the healthcare literature, this study performed impact assessments for currently 

discussed interventions in neonatal care. This provided an additional perspective when 
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evaluating interventions and highlighted the importance of including the impact on the 

system’s capacity in future studies, helping to assess the scalability of interventions 

(Zamboni et al., 2019). Additionally, the data analysis provided insights into the influential 

factors of LoS for neonates across different ward levels (Seaton, Barker, Jenkins, et al., 

2016). Lastly, the study demonstrated the potential for ridge regression models to capture 

multicollinearity and the medical complexity of patients to estimate LoS. In particular, the 

more accurate LoS sampling offers more potential ways of interaction and higher usability 

across various levers or interventions. Still, the model is easily adjustable and can be used 

to extend other simulation models or be applied to other regions, offering additional value 

to interdisciplinary studies. 

Based on these findings, the works contributes to bigger questions that go beyond the 

initial scope of this study as the following discusses the value and goals of different 

performance indicators and their meaning for health system performance assessments. 

In the process of determining relevant model outcomes, it became evident that there are 

various stakeholders interested in the discussion of capacity shortages in the neonatal 

care system. In my observation, the current literature on capacity shortages focuses on 

analyzing occupancy rates and numbers of beds (Jones, 2011). However, this study 

suggests that using the number of beds and occupancy rates as individual performance 

indicators for health systems has limited value. 

While bed numbers are straightforward to visualize and communicate to various 

stakeholders, they fall short in capturing the uncertainties associated with patient arrivals 

and LoS. In this study, one indicator focused on the number of beds required for patients 

within the region, emphasizing the minimum number of operational beds needed. It is 

important to note that this figure is not intended as a recommendation but rather illustrates 

the potential gap between the minimum bed requirement and the current situation, given 

capacity constraints. However, this indicator alone offers limited insights, as it lacks 

temporal information and, therefore, cannot account for the uncertainties related to patient 

arrival times and LoS. 

Moreover, the results demonstrate that an occupancy rate alone offers only limited insights 

into the actual capacity and dynamics of a ward. While occupancy rates are easy to 

compare across wards and hospitals and can be communicated as general guidelines, 

the same occupancy rate can reflect different situations in practice. For instance, a 95% 

occupancy rate in the NICU, as shown in the case study, would mean that 22 out of 23 

beds are occupied. This leaves only one bed available, meaning that admitting just one 

more patient would push the NICU to full capacity, increasing the risk of capacity transfers 
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for subsequent patients. In contrast, at the high care level, with 62 operational beds, a 

95% occupancy rate translates to about 59 beds being occupied. This means that the 

ward could still accommodate three additional patients before reaching full capacity, 

compared to only one additional patient at the NICU, despite both wards initially having 

the same occupancy rate. This example highlights that occupancy rates must be 

interpreted in context, as they do not uniformly convey the same level of strain or risk 

across different ward levels. 

Based on these realizations, the work was extended by indicators that address the impact 

on society through the capacity transfer rate and the weekly capacity transfers. These 

indicators provide additional value through translating bed numbers and occupancy rates 

into real world impact on patients. 

These indicators can contribute to the wider field of health system performance 

assessments. In the quest of guiding healthcare organizations and policymakers toward 

enhanced health system performance, the concept of the Triple Aim was initially 

developed by Berwick et al. (2008). This framework aimed to improve the patient care 

experience, enhance population health, and reduce per capita healthcare costs. 

Recognizing the critical importance of workforce well-being, the Triple Aim was later 

expanded into the Quadruple Aim, which adds a fourth goal: improving the work life of 

healthcare personnel (Bodenheimer & Sinsky, 2014). While the proposed framework 

provides valuable guidance it is often difficult to quantify and compare interventions across 

these dimensions as each field of healthcare can lead to different indicators for the 

dimensions (Seow & Sibley, 2014). 

The introduced indicators could provide additional insights ensuring a further 

implementation of the framework in neonatal care. The cost dimension is addressed by 

the number of required beds and weekly occupancy rates, which hospitals use to guide 

financial planning. The dimension of population health is considered through a societal 

lens, using the capacity transfer rate and weekly capacity transfers as indicators. The 

objective should be to minimize these transfers due to their potential negative impact on 

patient outcomes and, consequently, on population health. Additionally, occupancy rates 

offer insights into the quality of care dimension, as higher rates can lead to increased 

stress levels, a higher risk of errors, and potentially reduced time per patient. The final 

dimension, workforce well-being, is addressed by multiple indicators. An increasing 

number of beds necessitates either additional staff or a higher staff-to-patient ratio, while 

occupancy rates serve as a proxy for the workload, which can lead to heightened 

emotional stress. The capacity transfer rate also highlights the additional work required to 

manage transfers between hospitals and reflects the emotional burden associated with 
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transferring patients due to capacity shortages. Thus, the indicators used in this model 

could contribute to further operationalizing the Quadruple Aim, leading to a more 

sophisticated approach to assessing health system performance in neonatal care. 

8.3 Societal Implications 
This work was characterized by a strong link to an ongoing practice problem with high 

societal relevance and close collaboration with practitioners in the field. Thus, it 

contributed to practice in multiple ways. 

Firstly, this work highlights the inherent value of collecting admission data across 

hospitals. By doing so, the increased number of data points can be used to identify 

underlying factors and patterns, such as for LoS, providing a means to learn across 

hospitals rather than acting in isolation. An analysis of the existing data over the past years 

identified key constraints and factors in the region. The pathways patients take were 

mapped, revealing the uneven occupancy rates across hospitals. The data and scenario 

analysis underscored the magnitude of the ongoing capacity shortages, serving as a clear 

call to action for stakeholders in the field and external stakeholders, such as the national 

government. The challenges are not only faced by individual hospitals but are visible at a 

system level, necessitating a collaborative approach across stakeholders. 

The designed and implemented simulation model is open-source and can easily be 

extended or adjusted for use in different regions or similar settings in high-income 

countries. In this context, the model provides various ways to test possible interventions 

that could influence any of the underlying mechanisms in the model. Moreover, the 

simulation model can be used beyond the scientific community by hospital planning and 

management teams as a communication tool to drive evidence-based decision-making in 

the healthcare sector. 

Additionally, this work identified system levers and their working mechanisms that have 

the potential to impact the existing operational bed capacity shortages in the region. These 

levers should inspire researchers and practitioners to identify or develop appropriate 

interventions. In this context, the results reveal trade-offs between patient groups, and the 

model aids in quantifying these trade-offs during the decision-making process. For 

example, it helps determine the acceptable increase in capacity transfer rate for high care 

in exchange for a specific decrease in the capacity transfer rate for the NICU. Additionally, 

we observed that interventions targeting one particular patient group can have unintended 

effects—either positive or negative—on other patient groups due to the interaction effects 

within the model. 
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Furthermore, the simulation model was used to test relevant interventions that are 

currently implemented or under discussion, with the promise of impacting capacity 

shortages. The results show that phototherapy at home is not effective as previously 

thought, while changing antibiotics treatment and lowering the age threshold for NICU 

ward level could significantly improve the current situation. However, it is also evident that 

there is no silver bullet intervention; each intervention comes with its drawbacks and trade-

offs. Therefore, the region is advised to combine interventions and approaches and 

assess their collective impact to address the current capacity shortages effectively. 

Overall, the scenario experiment results underscore that the current situation of limited 

operational bed capacity poses significant risks to the most vulnerable patients, as the 

number of NICU and high care beds is insufficient to accommodate all patients. Currently, 

both NICU and high care are experiencing capacity transfer rates above 20%, meaning 

that, on average, every fifth patient would need to be transferred outside the region. Given 

the unpredictability of incoming patients, there is a risk that an extremely premature infant, 

under 27 weeks of gestation, might need to be transferred, which could lead to severe 

long-term negative outcomes. Further lowering the minimum NICU age to 23 weeks of 

gestation would likely exacerbate the current crisis, and based on the capacity 

assessment, such a policy cannot be recommended at this time. 

Therefore, a recommendation is to reconsider the 32-week guideline for NICU admissions, 

potentially lowering it, while simultaneously implementing other interventions to increase 

the number of available beds in high care to accommodate the additional incoming 

patients. One option would be test out moving some of post-IC patients to the medium 

care level instead of high care. Furthermore, clinical interventions such as oral antibiotics 

for EOS should be continued in implementation. However, it is unlikely that the current 

challenges can be overcome with just clinical interventions, and it is necessary to work on 

interventions using the patient pathways. This balanced approach would help manage 

capacity more effectively across different ward levels.  

8.4 Limitations 
This work comes with multiple limitations that are inherent in the research design or have 

become evident over time. 

Firstly, the model is inherently stochastic, and each run can produce slightly different 

results. Therefore, each part of this research was conducted across multiple runs to 

provide a range of outcome values. 
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Most of the model implementation and assumptions are based on the perinatal birth 

registry data for the region. While the dataset includes around 50,000 admissions over six 

years, there were challenges due to incomplete time periods as not all hospitals reported 

their admissions consistently over the entire period. Additionally, it was not possible to 

validate the model with data from another region, leading to the risk of overfitting to the 

specific region’s settings. 

Furthermore, the model assumed that the number of operational beds remains constant 

over the simulation period of one year. This assumption, confirmed in a private 

conversation with a hospital planner, allowed for clear comparisons across scenarios and 

runs. However, it might not fully reflect reality. 

Another assumption of this work is that a patient with the same characteristics and 

treatments would have the same LoS regardless of the specific hospital at the ward level 

where they are admitted. However, analysis and consultations showed that individual 

hospital protocols and factors outside the model's scope, such as the socio-demographic 

composition of the patient population, can lead to different outcomes. 

All tested levers and interventions were assessed solely on the introduced performance 

indicators linked to capacity shortages. While feasibility challenges and the potential for 

interventions were acknowledged, the model does not account for other factors. 

Healthcare systems do not operate in isolation and have significant societal and economic 

impacts. Potential side effects, costs of interventions, and impacts on quality of care are 

not considered but should be kept in mind when interpreting the results and making 

decisions. 

These limitations should be considered when using the model and interpreting its results. 
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9 Conclusion 
Linking back to the main research question of “How can operational bed capacity 

shortages in neonatal care be reduced within staffing limitations” and its sub-questions, 

multiple conclusions can be found. Based on these results multiple avenues of future 

research are opened. This chapter will provide concluding remarks as well as provide an 

outlook into where research should go from here. 

9.1 Answers to Research Questions 
At first, I provide detailed conclusions for each sub-question. The sub-questions followed 

the research flow and addressed all stages from conceptualization, implementation, to 

simulation experiments and their interpretation. 

Sub-Question 1: What factors and constraints influence the operational bed capacity 

shortages in the neonatal care pathway within staffing limitations? 

The first sub-question aimed to identify the factors and constraints influencing operational 

bed capacity shortages in the neonatal care pathway within the limitations of staffing. This 

question was addressed using a mix of qualitative and quantitative methods. A 

conceptualization of the neonatal care system in the region was provided, encompassing 

different ward levels and the concept of regionalization. 

The data analysis revealed that daily arrivals in the region could be estimated using a 

normal distribution and that the LoS of patients could be expressed through ridge 

regression models. These regression models highlighted that the driving factors for LoS 

vary by ward level and age group, with common factors often including gestational age, 

birth weight, and respiratory treatments like CPAP and oxygen support days. Further 

modeling demonstrated how these factors can be distributed across different ward levels 

and age groups, offering insights into approximations for simulation models. Additionally, 

the analysis revealed the added complexity of patients being transferred between ward 

levels, who typically experience a longer total LoS, leading to further capacity constraints. 

Based on these findings, a capacity transfer rate was defined as a performance measure. 

This rate accounts for the number of inside region patients that need to be transferred to 

an outside region hospital – a clear sign of capacity shortages. 
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Sub-Question 2: Which levers in the neonatal care system have the biggest impact on 

reducing operational bed capacity shortages within staffing limitations? 

The second sub-question focused on identifying levers in the neonatal care system that 

have the biggest impact on operational bed capacity shortages within staffing limitations. 

This part of the research was answered through using insights from the data analysis and 

literature to propose levers in the system that could be addressed. These levers have then 

been tested using the simulation model. The levers used the following model mechanism 

– LoS, ward admission rate, and patient pathway. Changing the LoS for all patients 

showed the biggest effect especially for patients with relatively lower LoS, hence, mostly 

at high and medium care wards. Adjusting admission rates leads to demand shifting and 

trade-offs between ward levels and patient groups. However, it still showed the potential 

to decrease the burden at the NICU by admitting less patients at that level. As part of the 

neonatal care system’s complexity originates from the patient’s pathway, I developed an 

additional lever that would assess the impact of changing pathways for specific patient 

groups. Shifting post-IC patients to the medium care instead of high care at the cost of 

some additional days at the NICU can become valuable depending on the amount of 

additional days at the NICU. Thus, I showed with these levers that impact on capacity 

shortages is not only found in medical aspects that would potentially impact the LoS but 

can also be found in the interactions and coordination between parts of the system. 

Sub-Question 3: Which interventions in the neonatal care system can address the levers 

with the biggest impact on reducing operational bed capacity shortages within staffing 

limitations? 

To answer the third subquestion, I used insights gained from the system levers, literature, 

and interviews with experts in the field to identify currently relevant intervention and test 

them for their impact on capacity shortages. For interventions that focus on decreasing 

the LoS, I have found that phototherapy at home has only a minor influence on the capacity 

shortages and thus, cannot serve as potential solution. However, changing the way of 

providing treatment for antibiotics from intravenous to oral can have a noticeable impact 

on the region and is also easy to implement without additional cost. In addition, I tested 

changing the NICU age threshold from 32 weeks to 31 or 30 weeks and, thus, admitting 

those patients to other ward levels. This intervention had a large impact on all indicators 

for the NICU yet bringing the high care ward close to full capacity. Thus, a combination of 

interventions that can tackle each other’s trade-offs would be the most suitable option to 

overcome the current capacity shortages within staffing limitations. Such a combined 

intervention strategy was tested – using the previous interventions together with the 



Conclusion - Future Research 

 143 

patient pathway lever – leading to promising results for NICU and high care ward level 

indicators in a trade-off for acceptable burden for the medium care ward level. 

9.2 Future Research 
The results of this thesis have been developed over a time range of half a year. In this 

process, multiple limitations and additional ideas have been identified. Thus, there are 

various pathways for future research following the limitations and results of this study. 

Based on the limitations of this study, at first, it would be beneficial to validate and expand 

the model with other regions in the Netherlands or even beyond. This should be done on 

a general model level but also for submodels such as the regression models. Doing so, 

insights could be generalized and be applied to a large variety of settings. Moreover, the 

reproducibility of the results depends on access to perined data which must be obtained 

through a partnering hospital or research institution. 

The perined dataset provided a great starting resource for building the simulation model. 

However, a detailed analysis of the data and discussions with practitioners revealed 

inherent weaknesses related to the data collection process and the willingness of hospitals 

to contribute to a high-quality database. The digitalization of healthcare in recent years 

has increased the quality of electronic health records. These advancements can become 

valuable in validating and extending the healthcare system simulation model without 

additional efforts from hospitals and healthcare personnel. Therefore, future research 

should take advantage of easier access to high-quality data in building additional 

simulation models or confirming the existing one. 

The inherent links between neonatal departments, pediatrics, and obstetrics by multiple 

stakeholders suggests the inclusion of these aspects in a future model. This would allow 

for a more comprehensive investigation of the healthcare system supporting the days 

before and after birth. Future research should aim to integrate related medical fields into 

the model to provide a more holistic understanding of neonatal care and its 

interdependencies within the healthcare system. 

In addition, the results of this work open additional points for future research. 

First, additional studies should investigate the feasibility and costs of the proposed 

intervention strategy. Evidence should be collected in similar contexts to gain more 

experience on potential benefits and disadvantages. Based on this, the next questions 

would be how to implement the interventions further, in which order, at which hospitals, at 

what point, and how to communicate these changes effectively. 
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In the current movement towards a One Health approach, scholars should invest more 

into factors outside the neonatal care system that influence admissions and stay duration. 

One prime example is the effects of climate change. With increasing extreme weather 

conditions, the risks for preterm and low birth weight increase (Basu et al., 2018). It is 

unknown what the effect would be on the already challenged neonatal care system in the 

context of capacity shortages. The simulation model of this study is open-source and can 

easily serve as a basis for these assessments. Individual functions, such as gestational 

age and birth weight prediction, can be easily adjusted to fit the setting of a climate change 

scenario. 

Moreover, future research should extend this work by including socio-demographic 

aspects in decision-making and modelling. Even in high-income countries, like the 

Netherlands, we still see vast socio-economic differences between parts of cities and 

regions, potentially leading to different outcomes during pregnancy and in the first days of 

life. These insights could also inform the field of urban science to account more for 

healthcare-related factors in city planning. Thus, there is a call for more interdisciplinary 

work that incorporates the modelling approach of one system, like this work, with other 

systems and contexts to provide more holistic answers to the challenges of our time. 
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