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ARTICLE INFO ABSTRACT

Keywords: Accurately estimating a Health Index (HI) from condition monitoring data (CM) is essential for reliable and
Prognostics interpretable prognostics and health management (PHM) in complex systems. In most scenarios, complex
Heilt}:l mdle systems operate under varying operating conditions and can exhibit different fault modes, making unsupervised
Hybrid mode

inference of an HI from CM data a significant challenge. Hybrid models combining prior knowledge about
degradation with deep learning models have been proposed to overcome this challenge. However, previously
suggested hybrid models for HI estimation usually rely heavily on system-specific information, limiting their
transferability to other systems. In this work, we propose an unsupervised hybrid method for HI estimation
that integrates general knowledge about degradation into the convolutional autoencoder’s model architecture
and learning algorithm, enhancing its applicability across various systems. The effectiveness of the proposed
method is demonstrated in two case studies from different domains: turbofan engines and lithium batteries. The
results show that the proposed method outperforms other competitive alternatives, including residual-based
methods, in terms of HI quality and their utility for Remaining Useful Life (RUL) predictions. The case studies
also highlight the comparable performance of our proposed method with a supervised model trained with HI

Unsupervised learning
Convolutional autoencoder

labels.

1. Introduction

Understanding the health condition of complex systems is an impor-
tant step in prognostics and health management (PHM) [1,2]. A Health
Index (HI) represents the system’s health state over time or usage on
a scale from 1 (perfect health) to O (failure) and, therefore, provides a
clear and interpretable measure of degradation. HIs are also instrumen-
tal in predicting remaining useful life (RUL). For instance, HIs can be
integrated into prognostic models by matching HI patterns with known
failure times [3-6], or extrapolated until the failure threshold [7-9] for
RUL predictions.

Different data-driven approaches have been proposed for estimating
HI from condition monitoring (CM) data, but many of these approaches
rely extensively on labeled data. For instance, when dealing with
datasets containing HI labels, the utilization of supervised models is
prevalent [10]. Another common strategy is the residual technique,
where models are trained to recognize a system’s normal behavior
using health state labels, subsequently identifying the HI by analyz-
ing reconstruction errors [11-13]. However, for complex systems, the

challenge lies in obtaining representative labeled data, which can be
costly or unfeasible in industrial contexts. This limitation has motivated
a growing interest in unsupervised learning methods for HI estimation,
circumventing the need for labeled datasets.

To address the difficulty of dealing with unlabeled data, researchers
have proposed hybrid unsupervised models combining data-driven
models with prior knowledge about the system for HI estimation. For
instance, Biggio et al. [14] leverage a battery simulator for training
a transformer architecture with synthetic data of degraded system
dynamics, allowing their model to uncover degradation patterns from
real-world experiments. Alternatively, Guo et al. [15] combine a data-
driven HI with knowledge-based HI to model power transformer degra-
dation. Nonetheless, a characteristic of many current hybrid models
is their dependence on system-specific knowledge (e.g., detailed sim-
ulators of degraded system dynamics), limiting their applicability to
other systems exhibiting diverse degradation patterns. Moreover, as
pointed out in recent review work [16], most models rely on a single
strategy to integrate data and prior knowledge, potentially limiting
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Nomenclature

HI Health index

PHM Prognostics and health management

CM Condition monitoring

RUL Remaining useful life

SL Supervised learning

UL Unsupervised learning

RM Residual method

AE AutoEncoder

PCA Principal component analysis

CNN Convolutional neural network

MAE Mean absolute error

RMSE Root mean squared error

MAPE Mean absolute percentage error

Mon Monotonicity

Tren Trendability

Prog Prognosability

MutInf Mutual information score

CMAPSS Commercial modular aero-propulsion sys-
tem simulation

ANM Additive noise model

SCM Structural causal model

DAG Directed acyclic graph

Symbols in the equations

X Sensor readings

w Operating conditions

zZ Degradation (representation)

T Cycle number

u Unit of a fleet

m Observations

p Number of sensors

k Number of operating conditions

C Correlation constraint

NG Negative gradient constraint

F Functional constraint

their effectiveness. These gaps hinder the broader application of hybrid
models and emphasize the need for more general hybrid models that
accommodate a wide array of complex systems [17].

In this paper, we build upon our initial study [18], where we
showcased the feasibility of inferring HIs for turbofan engines with
a hybrid unsupervised method. In this current research, we expand
the methodology with the primary objective of demonstrating the
generalization of our method across various complex systems. To this
end, we address the following research question: How can knowledge
about degradation be incorporated into an unsupervised hybrid method for
HI estimation applicable to diverse complex systems?

To achieve the intended generalization, we propose to integrate
general domain knowledge about the HI problem into the method using
multiple hybridization strategies. Specifically, we postulate that there
are common fundamental degradation characteristics at a certain level
of abstraction that are informative and, hence, transferable across a
range of complex systems. For instance, degradation characteristics
of multiple complex systems exhibit a fast wear period, followed by
a period of almost steady decline, which is ultimately followed by
another period of faster wear towards the end of life. Additionally, we
hypothesize that an understanding of known causal relationships can
be leveraged for more accurate HI estimation
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In line with these hypotheses, we propose an unsupervised hybrid
method for HI estimation with two distinct design features: (1) a novel
network architecture of a convolutional AutoEncoder (AE) preserving
the causal relationships among sensor readings, operating conditions,
and degradation within complex systems, and (2) the incorporation of
soft constraints within the loss function derived from general knowl-
edge of the degradation process, guiding the AE to infer degradation
in its latent space. Fig. 1 provides an overview of our proposed HI
estimation methodology.

To demonstrate the intended generalization, our experimental anal-
ysis investigates two distinct case studies, turbofan engines and Li-ion
batteries. Our proposed method is thoroughly compared against two
alternative methodologies: a residual-based method and a supervised
model. This comparison encompasses scenarios both within and out
of distribution. For reproducibility and future research purposes, the
complete code reproducing this study is released in open-source at
https://github.com/KBaja/UnsupervisedHI.

The main contributions of this study are as follows:

1. We propose a novel hybrid unsupervised method for HI esti-
mation that relies on general knowledge about degradation and
combines multiple hybridization techniques. We demonstrate
that our model can accurately estimate the HI of various sys-
tems (turbofan engines and batteries) with distinct degradation
patterns.

2. We provide an extensive comparative analysis involving super-
vised, residual, and unsupervised methods for HI estimation, en-
abling a quantified assessment of their respective performances.
The outcomes highlight the superiority of our proposed unsu-
pervised method over the residual method, positioning it at par
with the supervised model.

3. We evaluate different forms of general knowledge options for
integration into our model to be used as constraints in the latent
space of an AE: monotonicity, negative gradient, and functional
HI.

The remainder of this paper is organized as follows: Section 2
presents background information about general degradation dynamics.
Section 3 presents the problem formulation and related work. Section 4
proposes the unsupervised hybrid model, while Section 5 presents
the case studies and the training set-up. In Section 6, the results are
presented, followed by a discussion in Section 7, and the conclusion in
Section 8.

2. General domain knowledge about degradation

While system-specific knowledge can be valuable for HI estimation,
it often limits the generalizability of the approach. This section explores
the concept of general knowledge about degradation, referring to
domain knowledge that applies broadly to complex systems exhibiting
degradation. In particular, we introduce two key examples of general
knowledge utilized in this paper: the causal structure of condition
monitoring data and degradation dynamics.

In the context of a complex system, the causal structure describes
the underlying network of cause-and-effect relationships that link the
various components together. Uncovering the causal structure is cru-
cial for understanding how a complex system functions, responds to
external influences and evolves over time. It involves identifying the
key components, their interactions, and the mechanisms through which
they influence each other, as well as the potential feedback loops and
non-linear dynamics that can emerge from these interactions.

Knowledge of the underlying cause-and-effect relationships within
a complex system can provide valuable insights into degradation pro-
cesses.! This knowledge, often regarded as general knowledge [19-21],

1 Under the hypothesis that signatures of faults are present in the condition
monitoring data.


https://github.com/KBaja/UnsupervisedHI

K. Bajarunas et al.

Reliability Engineering and System Safety 251 (2024) 110352

 ®
[ Turbofan Engine ]

G

Fleet of Complex Systems

[ Battery Usage ]

f ®

b)) K-

[@ Problem Structure ] [@ Degradation J

@

Modified Loss Function ]

| AE Loss

K + | Constraint ‘ /

[ Sensor Readings ] [ Operating Conditions ]
\_ Prior Knowledge Dataset
/@ [ AutoEncoder Architecture ]\ [ Health Index ]

0.8

0.6

T
0.4
02{ —— HI RUL
***** End of Life
0.0 Current Time
0 10 20 30 40 50 60 70
Cycle

Fig. 1. Overview of the unsupervised hybrid method for HI estimation that relies primarily on general knowledge about degradation.

is based on a general understanding of which variables (causes) directly
influence degradation and which variables (effects) are themselves af-
fected by degradation. For instance, in a battery system, increasing the
ambient temperature (cause) can accelerate the degradation of battery
capacity (effect). From another perspective, a decrease in capacity
(cause) can lead to faster constant current charging times (effect).

Beyond understanding the cause-and-effect relationships within a
system, general knowledge also extends to the concept of degradation
dynamics. In complex systems, degradation often unfolds gradually,
with failures evolving over time rather than occurring abruptly [22].
Most failure modes stem from an underlying degradation process,
where gradual deterioration eventually reveals weaknesses that can
lead to system failure [23]. Degradation in complex systems manifests
itself in various forms, ranging from observable changes in physical
components like crack growth to subtler alterations affecting system
dynamics and performance degradation, such as changes in battery
output voltage. Despite the diverse manifestations of degradation, con-
sistent patterns emerge across different systems and their degradation
dynamics.

Fig. 2 illustrates three common temporal evolutions of degradation:
linear, convex, and concave. While real-world systems may exhibit a
combination of these patterns, this figure showcases each in isolation
for clarity.. The horizontal line on the degradation scale represents
the failure threshold. Linear degradation involves a steady increase
in degradation over time, such as the wear of automobile tire treads,
which appears linear over a certain time. Convex degradation en-
tails an accelerating rate of degradation increase, as seen in crack
growth scenarios. Conversely, concave degradation entails an increase
in degradation over time at a diminishing rate, such as the growth of
chlorine-copper compounds in printed circuit boards [23].

At a certain level of abstraction, fundamental degradation charac-
teristics remain consistent across various system dynamics [24]. For
instance, degradation is typically monotonic or non-decreasing, as de-
picted in Fig. 2, which may be expressed mathematically through
positive first differences between observations or positive gradients
with respect to time. Even though some of these commonalities may
not universally apply to all real-world systems (e.g., the apparent
short-term capacity recovery of batteries during no-load periods), we
anticipate their persistence in the long-term degradation process.

Failure Level

Degradation Level

Linear

Convex

Time

Fig. 2. Possible shapes for univariate health degradation curves.
Source: Adapted from [23].

3. Problem formulation and related work

In this section, we formally introduce the problem of HI estimation
from CM data (Section 3.1). We also review related work and discuss
three established solution strategies: residual methods (Section 3.2), un-
supervised (Section 3.3), and supervised methods (Section 3.5). These
methods serve as a benchmark against which we evaluate the method-
ology proposed in this work. In Fig. 3, we provide an overview of
the model functional mappings and data requirements for various HI
estimation methods.

3.1. Problem formulation

We are given multi-variate time series of sensor readings

X, =[x}, xM] €Y
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Fig. 3. Overview of different HI estimation methods.

of a fleet of N units (u = 1,...,N), each with m observations. Each
observation xfl € R? is a vector of p raw measurements. We are also
given the corresponding scenario—descriptor operating conditions

W, =[w!,...,w" )

for each unit, where each w! € R¥. The goal is to estimate the state of
degradation Z of each unit at each point in time z!, € R*. The HI of each
unit at each point in time /! is then a normalized 1-D representation

of the state of degradation z/, such that

(2 ez} > (h eRIO<H <1} 3)
3.2. Residual method HI estimation

Safety critical systems undergo comprehensive health monitoring
and inspections, allowing the accurate labeling of subsets of CM data
as healthy. Alternatively, in certain conditions, as in the case of new
units, CM data can be labeled healthy, assuming minimal degrada-
tion during the initial operational cycles. Therefore, one of the most
common methods for HI estimation in the literature is the residual
method [25-33].

The residual method uses CM data which is labeled as healthy to
train a model f(s) emulating healthy system responses X. Once the
model is trained, an HI is estimated from the reconstruction residual
r of current CM data X, which is given by:

r=|1f()-X| €]

In the final step, the HI is found by reducing the dimensionality of r
and normalizing the resulting one-dimensional projection in the range
[0, 1]

reRF > heR 5)

The residual method typically works well under the hypothesis that
the training dataset is representative of a healthy system, meaning that
small reconstruction errors are typically indicative of healthy inputs,
while large reconstruction errors are typically indicative of faulty op-
erations that were not observed during training. For the residual model
to function effectively, it is essential to consider variations in operating
conditions. This ensures that the model can discern alterations in sensor
readings that are unrelated to degradation.

Two types of residual methods are often proposed depending on
the inputs of the model f(s). The residual method has been used
with an asymmetric AE to reconstruct the sensor readings based on
information about the operating conditions and the historical sensor
readings [12,34]. Another approach is the regression residual method
that maps the sensor readings based on the operating conditions [13,
34]. The difference between the two methods is visualized in Fig. 3.
Previous research indicates that the regression-based residual method
may be preferable in situations where data collection is limited, but
may not perform as well in cases where the sensor readings contain
outliers [35].
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3.3. Unsupervised HI estimation

In the general scenario of complex systems, the acquisition of
labeled data indicating whether or not a system is healthy or the
extent of degradation can often prove challenging. In such a scenario,
unsupervised learning methods become essential. AE models are a
popular unsupervised technique for HI estimation, aiming to learn a
representation of unlabeled CM data encompassing both healthy and
degraded conditions. For instance, de Beaulieu et al. [36] showed that,
in certain scenarios, AEs can reveal degradation patterns in their latent
space in a case study involving turbofan engines.

Another commonly employed technique is Principal Component
Analysis (PCA). Schwartz et al. [37] achieved successful HI estimation
for turbofan engines by leveraging the first principal components ex-
tracted from sensor reading data using Kernel PCA. Both PCA and its
various extensions have been shown to perform comparably to AEs in
certain scenarios.

While the mentioned methods showed success in specific cases
using subsets of the CMAPSS turbofan dataset with constant operating
parameters, as we reveal in Section 6.3 of our case study, their ef-
fectiveness diminishes in scenarios where operational conditions mask
degradation’s impact on sensor readings.

3.4. Unsupervised hybrid HI estimation

Hybrid methods integrating prior knowledge with unsupervised
models have emerged as a promising solution strategy for HI estima-
tion [16]. Following the taxonomy of hybrid models proposed in [38,
39], these methods can be classified based on where prior knowledge
is integrated into the machine learning pipeline and what type of
knowledge is integrated.

Regarding where prior knowledge is integrated, we refer to three
main hybridization strategies. Observational bias involves augmenting
the training data with synthetic data or derived features that reflect
underlying prior knowledge, serving as a weak mechanism to embed
knowledge into machine learning models. Inductive bias focuses on
crafting specialized model architectures that implicitly incorporate the
additional knowledge. Learning bias seeks to infuse prior knowledge
by modifying the model’s learning algorithm, ensuring that the model
simultaneously fits the observed data and approximately adheres to a
set of specified constraints.

Beyond hybridization strategies, the type of knowledge integrated
plays a pivotal role in the performance of hybrid methodologies. Two
primary sources of knowledge stand out: system-specific high-fidelity
knowledge, such as simulators, while another group leverages general
low-fidelity knowledge.

System-specific knowledge. The application of observational bias in com-
bination with system-specific knowledge for HI estimation is demon-
strated in the research conducted by Magadan et al. [40]. In their work,
a model was trained using features that were extracted by considering
interesting bearing frequencies, which were identified based on prior
knowledge about the system. Another instance of observational bias
is seen in the work of Biggio et al. [14]. The authors used a battery
simulator to train a model with multiple degradation parameters. The
resulting model was then capable of extracting health information from
actual data. An inductive bias strategy is proposed in the work of Guo
et al. [15]. The authors combine a data-driven HI with an HI based
on knowledge about the specific system. A similar methodology for
inductive bias can also be found in [41,42].

General knowledge. Despite these advancements, there are still chal-
lenges with methods that use system-specific prior knowledge. Namely,
specific knowledge may not apply to diverse systems with different
degradation patterns. Additionally, relying on specific knowledge such
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as predefined linear or nonlinear functions for degradation can bias the
estimation of unit-specific degradation patterns, limiting the model’s
ability to capture unique characteristics.

A few studies have leveraged general knowledge that is not specific
to a single system. This prior knowledge is typically based on the ex-
pectation of the HI in these complex systems. The most commonly used
piece of knowledge is the understanding that the estimated HI should
exhibit certain characteristics, such as being monotonic, correlating
with the operational cycle time, and having a consistent threshold for
failure across a fleet of units.

Researchers have used the knowledge about the expectation for the
HI in two ways. The first is by using it to guide the selection of data
features that mirror the HI’s desired characteristics, thereby introducing
an observational bias. This method is evident in the works in [43-
45]. The second method constructs the learning objective function of
the model tasked with HI estimation. This introduces a learning bias
into the model, steering the learning process towards solutions that
are consistent with our prior understanding of the HI. This method is
showcased in the research conducted in [2,46-52].

While the use of general knowledge can lead to the development
of a more universal model for HI estimation, it is not always clear
whether this general knowledge is adequate to enhance model perfor-
mance. This uncertainty arises from the limited informativeness of the
knowledge employed.

3.5. Supervised HI estimation

Supervised learning methods can be used for HI estimation when the
state of degradation of a system is directly observable. For instance, in
controlled laboratory experiments with battery usage, one indication
of degradation is declining performance, often reflected in phenomena
like capacity fade. Following analytical calculations of capacity fade,
it can function as a proxy for HI and be utilized to train supervised
models [10,53-55]. Similarly, in the field of fracture mechanics, where
observations of crack length serve as a degradation proxy [56,571,
and in the field of machining tool wear, where wear can be measured
directly [58].

However, for most complex systems, the degradation of a system is
complex, affecting multiple components, and is unobservable without
a detailed inspection. In these cases, supervised learning methods are
not applicable since no desired output labels exist.

3.6. Overview of related work

Our analysis of the related work, summarized in Table 1, reveals
prevailing trends in HI estimation. Labeled data approaches are notably
dominant, as seen in the widespread use of residual methods (RM) and
supervised learning (SL) techniques. Although these categories typically
do not involve hybrid approaches, there are notable exceptions. For ex-
ample, in [32], the authors employ a residual approach augmented with
physics-informed fault signatures for gearbox degradation discovery,
introducing an observational bias. Similarly, in the supervised learning
approach of [58], the authors integrate a physical model of tool cutting,
fitted from observed data, to augment observed tool wear data with
synthetic features generated by the model.

However, a specific focus on purely hybrid unsupervised methods
reveals a significant research gap: the scarcity of models that employ
multiple hybridization strategies. As discussed in [16], a combined
approach could significantly enhance the flexibility and robustness of
hybrid methods. Additionally, the table underscores a critical issue of
limited generalizability; only the work by Chen et al. [48] has demon-
strated their methodology across multiple case studies. This restriction
highlights concerns about the broad applicability of existing methods.
For wider utility, HI estimation methods need to be adaptable and
effective across various systems.
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Table 1

Overview of recent works on HI estimation. The column explanations are as follows:
Approach indicates HI estimation method (RM — residual method, UL — unsupervised
learning, SL — supervised learning), Hybrid Strategy shows which hybridization strategy
was used (O — observational bias, I — inductive bias, L — learning bias, X — none),
General Knowledge denotes whether general knowledge was used for a hybrid model
(v) or not (X), and Case study specifies the systems on which the method was tested.

Reference Approach Hybrid General Case study

strategy knowledge
[25] RM - - Turbofan (CMAPSS)
[26] RM I - Bearings
[27] RM - - Bearings
[28] RM - - Turbofan (CMAPSS)
[29] RM - - Turbofan (DASHIink)
[30] RM 1 - Turbofan (N-CMAPSS)
[31] RM - - Wind turbine
[32] RM (0] - Gearbox
[33] RM - - Gearbox
[12] RM - - Turbofan (N-CMAPSS)
[34] RM - - Turbofan (N-CMAPSS)
[13] RM - - Turbofan (N-CMAPSS)
[36] UL - - Turbofan (CMAPSS)
[37] UL - - Turbofan (CMAPSS)
[40] UL o - Bearings
[14] UL o - Battery
[15] UL 1 - Electric transformer
[41] UL 1 - Electric transformer
[42] UL I - Electric transformer
[43] UL ) v Bearings
[44] UL (6] v Bearings
[45] UL ) 4 Bearings
[2] UL L v Turbofan (CMAPSS)
[46] UL L v Turbofan (CMAPSS)
[47] UL L v Turbofan (CMAPSS)
[48] UL L v Battery + Bearings
[49] UL L v Turbofan (CMAPSS)
[50] UL L v Turbofan (CMAPSS)
[51] UL L v Turbofan (CMAPSS)
[52] UL L v Turbofan (CMAPSS)
[10] SL - - Battery
[54] SL - - Battery
[55] SL - - Battery
[56] SL - - Materials
[57] SL - - Materials
[58] SL O+L - Materials
Proposed UL I+L v Turbofan (N-CMAPSS)
method +Battery

4. Methodology

To address the challenge of HI estimation from CM data of various
complex systems, we propose a novel unsupervised hybrid method
based on general knowledge about degradation. To compensate for the
potential lack of information of such general knowledge, we propose
combining multiple hybridization strategies. Specifically, the method
incorporates two key aspects visualized in Fig. 4. We introduce an
inductive bias directly into the model architecture of the method. This
is achieved by utilizing an AutoEncoder whose structure is informed
by the causal structure between variables involved in HI estimation. In
addition, we apply a learning bias to modify the objective function used
to train the model, reflecting expected degradation dynamics in com-
plex systems. In the following section, we present more details about
the inductive bias in Section 4.1 and the learning bias in Section 4.2.

4.1. Inductive bias: Derived model architecture

In the context of PHM, it is widely accepted [19-21] that the perfor-
mance of systems, as expressed in the sensor readings (X), is typically
influenced by both operating conditions (W) and by degradation (Z).
In this study, we show this empirically by leveraging elements from
causal theory. Concretely, we use the additive noise model (ANM) [59]
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to establish the causal relationships between the variables of interest in
a directed acyclic graph (DAG) [60] (see Fig. 5). The empirical study
is presented in more detail in Appendix A.

The causal direction W — X can be justified by observing that
sensor readings (X) vary significantly under different operational con-
ditions (W). For example, a commercial aircraft will go through a series
of flight stages (e.g., taxiing, take-off, cruise, descend) that affect its
sensor recordings. This effect is usually easily observed or recognized.
The causal direction W — Z represents the influence that operational
conditions have on degradation. The stresses and conditions to which
a system is subject over its lifetime will have a long-term impact on
the system’s degradation. The third causal direction Z — X is a
central assumption in prognostics: sensor readings (X), which reflect
the performance of a system, are subject to changes due to degradation
(Z), even though this effect may not be as pronounced as the influence
of operating conditions (W). Formally, we can express the previous
causal graph as a structural causal model (SCM) with assignments given
as follows:

Operational conditions W := f(¢;) 6)
Degradation Z := f,(W,¢,) 7
Sensor readings X := f3(W, Z,¢3) (8)

where ¢|, ¢, 5 are jointly independent noise variables and f}, f,, f3 are
deterministic causal functions. It is important to recognize that these
assignments (operator :=) are unidirectional, with causal variables on
the right and dependent variables on the left.

The SCM implies that operational conditions (W) are an inde-
pendent process. Degradation (Z) is dependent and caused by the
operational conditions (W). The sensor readings (X) are caused by
both operational conditions (W) and degradation (Z). As described
previously, this structure can be derived empirically from observational
data using Algorithm 1 in Appendix A.

Understanding the causal relationships between the variables W,
Z, and X is crucial to our work because it enables the development
of a more appropriate unsupervised learning architecture [61]. Even
though it may appear intuitive from Assignment (7) to estimate the
degradation Z from the operational conditions W, this approach is
misleading. Formally, the principle of causal conditional independence
dictates that knowing the distribution of a cause (W) does not provide
additional insights into how W influences the effect (Z). In simpler
terms, even with extensive data about W, we cannot directly infer how
W affects Z because causality flows in one direction.

On the other hand, the scenario becomes more nuanced when
considering “anticausal” learning. This is, if the variable previously
considered as an effect (Z) becomes a cause for another variable
(X), then information about the latter (X) can be informative about
the former (Z). In essence, by studying the effect of Z on X, we
gain indirect insights into the nature of Z itself. Note, however, that
f3(W,Z) captures the combined influence of both Z and W on X.
Simply estimating Z from X would inherit the confounding effect of
W, making it difficult to isolate the true effect of Z on X.

To address this, we propose a specific model architecture for iso-
lating Z. This architecture leverages an AE with an encoder G, and
decoder F,. The encoder is trained to encode X to an estimated
representation of Z, denoted as Z.

Go(X)~> Z 9)

Which is the anticausal direction permitted by the SCM structure.
Thereafter, the decoder ¥ uses W and Z to reconstruct X.

FyW,2)—> X 10)

This is consistent with the expression presented in Assignment (8). The
proposed AE model is given by:

Fy(W.,Go(X)) = X an
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structure of the HI estimation problem. The encoder processes sensor readings (X) to estimate degradation (Z), while the decoder reconstructs (X) using operating conditions (W)
and estimated degradation (Z). The loss function incorporates an additional constraint derived from prior knowledge about degradation’s temporal evolution. Finally, the HI is

derived from degradation through subsequent post-processing steps.
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e Degradation

Fig. 5. Causal representation of variables in a degrading system. X denote the sensor
readings, W the operating conditions and Z the degradation. Observable variables are
depicted by solid lines, while dashed lines illustrate hidden variables.

It is trained with the following objective function

1 N
Lyag = ;lei_xil 12)

The decoder effectively captures changes in X attributed to variations
in W and Z. Because the encoder solely relies on X to derive Z,

the network is compelled to learn crucial information unrelated to W.

In the ablation study detailed in Section 6.3, we show that our pro-
posed architecture performs better than a model that inputs operating
conditions into both the encoder and decoder.

4.2. Learning bias: Embedding cycle information

Important degradation mechanisms in complex systems are typically
dominated by operation time. For instance, in turbofan engines, degra-
dation mechanisms such as friction, erosion, and fouling of rotating
components, are dominated by cycle operation. Similarly, degradation
mechanisms in batteries, such as solid—electrolyte interphase layer
growth, lithium plating, or particle fracture, are also dominated by
cycling [62]. Therefore, in this subsection, we present how general
knowledge about the temporal dependence of the degradation can be
embedded into the data-driven pipeline as a learning bias modifying
the loss function of the proposed AE with a soft constraint.

We show three potential methods to incorporate the influence of
operational cycles on degradation in the architecture: (1) trendability,
(2) negative gradient, and (3) HI function derived from reliability
theory. Each method consists of a different soft constraint that is
imposed on the latent space of the AE architecture. Notably, these
hybridization techniques are referred to as inductive bias because the
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Fig. 6. Typical flight conditions and HI for units in the N-CMAPSS dataset.

soft constraints guide the latent space, enabling it to unveil degradation
without overly restricting the AE’s functionality. The soft constraints
are implemented as an additional term in the objective function of the
model with the parameter A used to control the significance of the
constraint and mitigate the risk of overfitting.

Trendability. The first method involves imposing a restriction based
on the Spearman correlation between ¢t and Z. The motivation for
imposing a correlation between operation cycles and degradation lies
in the necessity to establish a relationship between the increasing age
of the equipment and the decreasing HI. The constraint is defined as
follows:

Y -0Z-2Z)
o=
VI - 32, - 7P

Our proposed method is trained with the following objective function:

L

(13)

L= Ly +ALc a4

Monotonicity. The second method is similar to the first one, but in-
stead, we aim to constrain the gradient of Z with respect to ¢ to
be negative, that is 22 < 0. The constraint is motivated by the
understanding that the rate of Z change concerning  must be negative
to derive a monotonically decreasing HI. Compared to the previously
mentioned correlation constraint, the negative gradient constraint is
more flexible because it does not implicitly impose a linear constraint.
We define the negative gradient constraint as:

Lyg =maX{0,%} (15)

Our proposed method is trained with the following objective function:

L=Lyap+iLlyg (16)

HI function derived from reliability theory. The third method can be used
if one knows a function of the expected health index for a given cycle,
i.e. h = g(#). The function g(#) might be known from prior knowledge or
could be derived from the history of HI. We propose a method to derive
g(1) from the history of HIs inspired by reliability theory. For more
information see Appendix B. Compared to the two previous constraints,
the functional constraint is the most restrictive and system-specific,
since it is individual to the specific system being investigated. We define
a function g(r) given by:

g(t) = C — ((tlog(1 — P17 4)P a7

where the parameters A, B, C, § are estimated from data. The constraint
is then given by:

1
— 2 l8t) = 7|

Our proposed method is trained with the following objective function:

Lp= (18)

L=Lyp+ALp 19

5. Case studies

The proposed method is demonstrated and evaluated in two case
studies featuring distinct complex systems. These case studies vary in
multiple aspects, including the obvious difference between an electro-
chemical process and a thermo-kinetic process. but also the rate of
degradation with respect to operational cycles and the manifestation
of the impact of degradation. By examining these diverse scenarios,
we aim to illustrate the robustness and applicability of our proposed
method across multiple complex systems.

Section 5.1 presents the airplane turbofan engine case study, and
Section 5.2 introduces the lithium battery case study. In Section 5.3,
we describe the preprocessing of the datasets. Section 5.4 describes
how the HI is extracted for the considered methods. The implemented
network architectures are briefly presented in Section 5.5. Finally, we
discuss how to evaluate HI estimation methods in Section 5.6.

5.1. Dataset: Aircraft turbofan engines

The new Commercial Modular Aero-Propulsion System Simulation
(N-CMAPSS) dataset [63] provides full run-to-failure degradation tra-
jectories of turbofan engines. From the eight available data subsets
within the N-CMAPSS dataset, we consider the set DS003, which is
characterized by a failure mode that affects the low-pressure turbine
efficiency and flows in combination with the high-pressure turbine
efficiency. Each unit within the fleet contains 14 observable sensor
measurements, denoted as X, which are recorded from an initial health
condition until engine failure (run-to-failure data). In addition to the
sensor measurements, the corresponding operating conditions W are
available. The operating conditions include altitude, Mach number,
throttle-resolved angle, and total temperature at the fan inlet. The units
are divided into three flight classes depending on whether the unit
is operating short-length flights, medium-length flights, or long-length
flights. Fig. 6(a) displays the typical altitude conditions for randomly
selected flight cycles and units.
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Fig. 7. Example of random discharge curves available for model training, and reference discharge curves used to calculate capacity values and establishing ground truth HI.

The N-CMAPSS dataset models degradation at the component level
through initial, normal, and abnormal degradation stages. As a result
of degradation, a HI is computed in the form of a non-linear map-
ping of multiple operational margins taken at reference conditions.
The resulting HI was used to declare system failure when its value
reached 0. The dataset also incorporates between-flight maintenance by
permitting improvements in engine health parameters within allowable
limits. This ground truth HI (i.e., hgr) is available for DS03, and will
be used for evaluation purposes only. Fig. 6(b) illustrates the ground
truth Health Index (HI) for the fleet of units.

5.2. Dataset: Li-ion batteries

The randomized battery usage dataset from the NASA Ames Prog-
nostics Center of Excellence repository [64] was considered to further
evaluate the proposed methodology. The dataset encompasses data
from individual 18650 LCO cells, each subjected to cycles of charging
and discharging under randomized protocols.

The most common physical aging mechanisms observed in batteries
are graphite exfoliation, loss of electrolyte, solid-electrolyte interface
layer formation, continuous thickening, lithium plating, etc. [65]. Con-
sequently, the battery aging process gives rise to two primary changes
to the battery electrodynamics, which impact its performance: capacity
fade and increase in internal resistance. In this particular case study, we
will focus on capacity fade as the selected HI for the batteries under
examination.

To simulate real-world battery usage scenarios, we only consider
the randomized battery discharge cycle data. For each battery in the
dataset, voltage and temperature measurements (X) were recorded
during different operational conditions (W), defined by the applied
current during the discharge process. Random discharge cycles are
illustrated in Fig. 7(a).

To estimate the ground truth HI, we analytically calculate capacity
values from reference discharge cycles with constant current. The cur-
rent capacity Q of the battery is calculated as Q = ﬁ f W (1) dt. Tllus-
trated in Fig. 7(b) are the constant current reference discharge cycles,
and in Fig. 7(c) the calculated capacity values for each corresponding
cycle.

In battery-related contexts, it is more common to use the notation
of State of Health (SOH) instead of the HI. The SOH is defined as the
ratio between the present capacity and the nominal capacity (SOH =
0/0,ominat)- In this paper, a failure of a battery will be defined once
SOH is less than 60%. Since HI and SOH have similar meanings, the
terms will be used interchangeably in this paper.

5.3. Pre-processing

In all our experiments, we initially performed min-max normaliza-
tion on both X and W to scale their values within the range [0,1]. To
improve computational efficiency, we also reduced the data sampling
frequency. Specifically, for the turbofan dataset, we decreased the
frequency from 1 Hz to 0.1 Hz and from 1 Hz to 0.5 Hz for the battery
dataset.

Following these pre-processing steps, the next stage involved seg-
menting the data into fixed-length windows of size .S. In the context of
optimizing both the residual and supervised methods, we conducted a
grid search to identify the optimal window size for each. Consequently,
for the residual method and the supervised model, we employed a
sliding window with a length of § = 50 for the turbofan dataset and
S = 200 for the battery dataset. In contrast, our proposed method
involved windowing the data based on individual operational cycles.
Since operational cycles can vary in duration, we employed padding
with zeros at the end of each cycle to equalize their lengths. The
window size was determined by selecting the minimum integer that
aligned with the length of the longest cycle. For the turbofan dataset
S = 2030, and the battery dataset .S = 2160.

Windowing whole operational cycles is the preferred methodology
since it makes post-processing of the HI straightforward. For the resid-
ual method and supervised model windowing whole cycles was not
possible since it created unwanted artifacts due to the zero-padding. It
is also worth noting that our proposed method also works with shorter
window sizes, but as previously mentioned due to the nature of easier
HI construction, we have opted to window whole cycles. This will be
discussed in more detail in Section 5.4.

5.4. Constructing the HI

In the context of our research, the extraction of HIs depends on
the chosen methodology and the specific case study at hand. In the
supervised model, the HI is directly estimated from the model’s output.
In contrast, the residual method requires a multi-step process. We first
compute the residual error for each prediction window. Next, we flatten
each window and employ the Principal Component dimensionality re-
duction technique, effectively transforming the residual vector, denoted
as r € R, into a R. Since the supervised and the residual methods use
short window sizes, which also have overlapping observations, we also
average the resulting HI per cycle.

Meanwhile, our proposed method offers a more streamlined HI
extraction process. Degradation is extracted directly from the output
of the encoder, i.e., the latent layer corresponding to Z in Fig. 4. Since
whole operational cycles are used as input, there is no need to smooth
the resulting HI.
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Table 2
Hyperparameters of investigated methods.
Dataset Model Window size ~ Epochs  Batch size  Learning rate
CMPAPSS Supervised 50 20 512 le—4
Residual 50 20 512 le—4
Proposal 2030 20 20 le—4
Battery Supervised 200 20 1024 le—4
Residual 200 20 1024 le—4
Proposal 2160 20 128 le—4

For the turbofan dataset, we normalize the resulting HI to be within
[0, 1]. For the battery dataset, we normalize the resulting HI to be within
[0%, 100%]. As mentioned earlier, the resulting HI for the battery dataset
corresponds to SOH, a more frequently used metric for expressing the
health of the battery in literature.

5.5. Network architectures

In this section, the network architectures of the considered HI
estimation methods are described.

Residual method — AE. The asymmetric-AE residual model is
shown in Fig. 3(a). The model is trained to reconstruct X when W and
X are used as input. The architecture of the asymmetric-AE residual
model used here comprises four identical 1-D CNN layers with 64 filters
of size 11 and with ReLU activation functions.

Residual method — Regression. The regression type residual
model implemented in this study is shown in Fig. 3(b). We train a
model to predict X given W as input. The model contains four identical
1-D CNN layers with 64 filters of size 11 and with ReLU activation
functions.

Proposed method — Unsupervised Hybrid AE. The structure of
the proposed model is shown in Fig. 4. The model is composed of two
parts: an encoder and a decoder. Both of these parts are built using 1D-
convolution layers. Specifically, the encoder takes as input X and passes
it through three 1-D convolution layers with a number of filters equal
to [128,64,16]. Afterward, the output of the encoder is flattened and
passed through a fully connected layer with one neuron. The output
of the fully connected layer is Z. The decoder concatenates Z and W
as input and passes it through three 1-D CNN layers with a number
of filters equal to [16,64,128]. The last layer of the decoder is a fully
connected layer with a number of neurons equal to the dimensionality
of X. The loss function of the model is modified based on the chosen
general knowledge. We do not perform any fine-tuning of the constraint
parameter 4 and set it to 1.

Supervised model. We train a supervised model for HI estimation
inspired by the architecture of [55]. The model uses as input X and
W to predict the HI in a supervised manner. The model contains four
identical 1-D convolution layers with the number of filters set to 64
and a kernel width of 11. Each convolution layer is followed by batch
normalization and a max pool layer of size 2. The output of the final
convolution layer is flattened and then passed through a dense layer
with the output size of 1, corresponding to the HI.

The optimization of the network’s weights is carried out with mini-
batch stochastic gradient descent (SGD) and with the Adam algorithm.
The training hyper-parameters for each model are given in Table 2.

5.6. Evaluation

Based on the state-of-the-art HI evaluation methodology [66], we
compare and analyze the performance of the proposed method for HI
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estimation based on two evaluation aspects: quality of the HI and im-
pact on prognostic performance when the HI is used for RUL prediction
task. For each of the two aspects, we consider evaluation metrics that
are defined in the following sections. An overview of the evaluation
methodology is given in Fig. 8.

5.6.1. HI criteria

There are several desirable properties that an HI should exhibit
to represent the degradation of a system accurately. Although initial
health conditions and operational modes can cause some variability in
the estimated HIs, it is still desirable for them to demonstrate consistent
behavior.

In this work, we employ the following criteria for HI evaluation:

Monotonicity (Mon) measures the tendency for the HI to consis-
tently increase or decrease [67,68].

Trendability (Tren) is used to evaluate the degree to which the
HIs of a fleet of systems have a similar shape and underlying form
[67,68].

Prognosability (Prog) is used to evaluate consistent HI behavior
towards the end of life of units [67,68].

Mutual Information (MutlInf) score quantifies the information
obtained about RUL by observing HI [66].

For more information about each of the HI criteria see Appendix C.

5.6.2. Prognostic performance

A key objective of HI estimation is to enhance the performance
of prognostic models. To validate the effectiveness of the proposed
HI estimation techniques, a baseline prognostic model is needed. The
sensor signals, operating conditions, and cycles are used as inputs to
predict RUL. The model is given by:

G(X,W,t)=RUL (20)

To test whether the estimated HIs increase prognostic performance, HIs
are used to augment the input space.

G(X,W,t,hy=RUL 21

The chosen RUL model for both case studies is based on a 1D-
CNN architecture, as outlined in the work by Chao et al. [69]. The
parameters of the model are kept fixed for all experiments.

In particular, for the turbofan dataset, the CNN architecture includes
five layers. Three initial convolutional layers utilize filters of size 10.
The first two convolutions have ten channels, and the last convolution
has only one channel. Zero padding is applied to maintain the feature
map throughout the network. The resulting 2D feature map is flattened,
leading to a 50-way fully connected layer followed by a linear out-
put neuron. ReLu serves as the activation function for the network.
The window length matches that of the residual and supervised HI
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Table 3

Overview of the results section.

Experiment

Turbofan

Battery

In distribution
Out of distribution

Section 6.1.1
Section 6.2.1

Section 6.1.2
Section 6.2.2

Table 4

In-distribution training set-up for N-CMAPSS dataset.

Flight class

Training units

Testing units

Short U1, U5, U9 Ul12, Ul4

Medium U2, U3, U4, U7 U15

Long U6, U8 U10, U11, U13
Table 5

In-distribution training set-up for NASA battery dataset.”

Load profile Training batteries Testing batteries

Uniform RW4, RW5 RW6
Uniform RW1, RW7 RWS
Skewed high RW17, RW19 RW20
Skewed low RW13, RW14, RW15 RW16

a Certain subsets of batteries were omitted from consideration: one due to a complex
charging process, two because experiments were conducted at 40 °C external tempera-
ture while the rest were at room temperature, and three (RW2, RW3, and RW18) due
to corrupted temperature readings.

estimation models (s = 50). Similarly, the battery dataset adopts a
comparable CNN architecture to the turbofan dataset. The distinction
lies in all three convolution layers having ten channels, and the last
fully-connected layer has a size of 200 (matching the window length).

Prognostic assessments are commonly based on metrics such as
mean absolute error (MAE), root mean squared error (RMSE), and mean
absolute percentage error (MAPE). Furthermore, we compute ‘% Aver-
age Improvement’ which denotes the performance improvement over
the baseline model upon inclusion of HI, with the same consideration
being given to MAE, RMSE, and MAPE.

6. Results

In this section, we analyze the performance of the proposed model
on two case studies: the turbofan dataset and the battery dataset. We
evaluate a situation where the training and test datasets are of the same
distribution in Section 6.1. Furthermore, we investigate HI estimation
performance in the context of out-of-distribution testing in Section 6.2.
The resulting structure of this section is shown in Table 3.

6.1. In-distribution testing

The initial set of experiments will focus on the in-distribution
case, where the term “in-distribution” refers to training and testing
data originating from similar data distribution. The N-CMAPSS dataset
encompasses engines classified into three distinct flight classes. The
operational conditions of engines are influenced by their assigned
flight class, subsequently impacting degradation patterns. To create a
balanced dataset for training and testing we use the data split given in
Table 4.

Similarly, for the battery dataset, batteries undergo discharging with
randomized loads selected from a given uniform distribution. These
batteries are categorized into three load classes based on the selected
load distribution: uniform, skewed high, and skewed low. The load
class significantly influences the operational conditions of the batteries,
consequently affecting degradation patterns. We utilize four subsets for
training and testing our proposed method. Table 5 provides a summary
of the data subsets, along with the division into training and test sets.
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Table 6

Results of the HI criteria for the turbofan dataset. Mean and standard deviation values
over 5 runs are provided. h* — health index of AE residual method, h® — health
index of regression residual method, hf — health index of the proposed method using
correlation constraint, h:’a — health index of the proposed method using negative
gradient constraint, h,f — health index of the proposed method using functional
constraint, 4, — health index of supervised model, h,, — ground truth health index.

HI Mon MutInf MAPE

Tren Prog

Residual method

he 0.18(0.04) 0.79(0.08) 0.85(0.05) 0.50(0.06) 24.4(4.3)
hf 0.33(0.03) 0.91(0.03) 0.98(0.01) 0.62(0.02) 10.901.5)
Proposed method

h;’ 0.33(0.02) 0.98(0.00) 0.93(0.01) 0.81(0.01) 8.8(0.7)

hﬁ’G 0.36(0.05) 0.98(0.00) 0.95(0.01) 0.81(0.01) 8.5(1.6)
h: 0.28(0.01) 0.97(0.01) 0.85(0.03) 0.66(0.02) 9.5(1.0)

Supervised

h 0.40(0.03) 0.99(0.00) 0.94(0.01) 0.79(0.01) 8.21.4)

Ground truth

h 0.50 0.99 1.0 0.84 -

8t

6.1.1. In-distribution testing — Turbofan

The HI metrics obtained from the six evaluated models are shown
in Table 6. We also report the mean absolute percentage error (MAPE)
between the estimated HI and the ground truth HI.

Comparing residual-based methods, both trained with CM data from
the initial 20 flight cycles of each training unit, we observe that
the regression-based residual method (hf) outperforms the AE-based
method (h?) in all the metrics.

Analyzing the proposed method, we find that the correlation con-
straint (hg) and the negative gradient constraint (h;v G) demonstrate
comparable performance across various HI metrics. In contrast, the
function-based constraint Ul; ) exhibits relatively poorer performance
in terms of mutual information and MAPE.

It is worth noticing that the proposed methods consistently outper-
form the residual methods across all metrics, except for prognosability.
This trend is further supported by the MAPE score, indicating that the
proposed methods yield HIs more closely aligned with the ground truth
compared to the residual methods. Furthermore, when considering
a supervised model (4,) for HI estimation as an alternative to our
proposed unsupervised method, we observe only marginal performance
enhancements.

In addition to the quantitative evaluation of the HI metric, Fig. 9
depicts the estimated HI for test unit 10 in the considered methods.
This unit is randomly selected for visualization purposes. The proposed
method utilizing the negative gradient constraint (i.e., hV¢) results in
an HI showing a closer match to the ground truth HI (hg,) than the
other methods considered.

The prognostic prediction performance obtained when the prognos-
tics model trained with the HI estimated with six evaluated methods
is shown in Table 7. The results show improved prognostics when
integrating ground truth HI into the training data set. On average, the
model shows a 32% improvement compared to the baseline model,
which underlines the importance of HI as a valuable source for the
prediction of RUL. Subsequently, the second most effective option is
the supervised model, resulting in a 29% performance enhancement.
The proposed method yields comparable results, with the proposed
negative gradient constraint showing a notable improvement of 28%.
It is worth noting that the inclusion of HI estimated by the residual
method presents the least favorable scenario, yielding an improvement
of 24%.

6.1.2. In-distribution testing — Batteries

The HI metrics obtained from the six evaluated models are shown
in Table 8. Comparing residual-based methods, both trained with CM
data from the initial 100 random walk cycles of each training unit,
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Fig. 9. Estimated HI of test unit 10 for the turbofan dataset. Residual methods (a) and (b). Proposed methods (c), (d), and (e). Supervised model (f).

we observe that the AE-based method outperforms the regression-based
residual method in all the metrics.

Among the proposed methods, both the correlation constraint and
the functional constraint exhibit superior performance, showcasing
equivalent results. Conversely, the negative gradient constraint displays
comparatively inferior performance across the HI criteria.

Compared to residual methods, the proposed methods incorporating
correlation and functional constraints exhibit superior performance.
Additionally, when comparing the proposed methods to the supervised
model, an overall equivalency in performance is observed, albeit with

12

notable distinctions. While the supervised model shows significantly
improved results in terms of MAPE, the other criteria demonstrate a
nearly identical performance.

Fig. 10 depicts the estimated HI for test battery 20 in the considered
methods. This battery is randomly selected for visualization purposes.
The HI estimated by the supervised model seems to be a closer match
to the ground truth HI than HIs estimated by the other methods. The
proposed methods employing the correlation or functional constraint

are the next best choice.
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Fig. 10. Estimated HI of test unit 20 for the battery dataset. Residual methods (a) and (b). Proposed methods (c), (d), and (e). Supervised model (f).

The prognostic prediction performance obtained when the prognos-
tics model trained with the HI estimated with six evaluated methods
is shown in Table 9. The results show improved prognostics when
integrating ground truth HI into the training data set. On average, the
model shows a 54% improvement compared to the baseline model.
Subsequently, the second most effective option is the supervised model,
resulting in a 26% performance enhancement. The results of the pro-
posed method yield comparable results, with the proposed functional
constraint showing a notable improvement of 25%. The other two
constraints, namely correlation and negative gradient, lead to 20% and
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11%, respectively. Using the residual method leads to 14% improve-

ment.

6.2. Out-of-distribution testing

The accuracy and reliability of prognostic prediction techniques
hinge on the quality and representativeness of available time-to-failure
data. As a result, these techniques may exhibit reduced performance
when applied to data from new units operating under conditions
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Table 7
Results of the prognostic prediction task for the turbofan dataset. Mean and standard
deviation values over 5 runs are provided. G — neural network, X — sensor readings,

Reliability Engineering and System Safety 251 (2024) 110352

Table 10
Out-of-distribution training set-up for N-CMAPSS dataset.

Flight class Training units Testing units

W -operating conditions, 1 — cycles, h® — health index of regression residual method, Short U1, U5, U9, U12, Ul4 -
h$ — health index of the proposed method using correlation constraint, )¢ — health Medium - U2, U3, U4, U7, U15
index of the proposed method using negative gradient constraint, i) — health index Long - ue, U8, U10, Ull, U13
of the proposed method using functional constraint, 7, — health index of supervised
model, h,, — ground truth health index.
Table 11
0,
Model MAE RMSE MAPE ,/0 Average Out-of-distribution training set-up for NASA battery dataset.
improvement
Load profile Training batteries Testing batteries
Baseline model
Uniform RW1, RW4-RW8 -
G(X,W.,1) 6.0(0.4) 7.4(0.3) 30.5(4.8) - Skewed high _ RW17, RW19, RW20
Residual method Skewed low - RW13-RW16
G(X,W,1,ht) 4.900.2) 6.7(0.1) 16.1(1.2) 24%
Proposed method Table 12
G(X,W,t,hC) 4.70.1) 6.900.2) 15.000.4) 26% Results of the HI criteria for the turbofan dataset under out-of-distribution scenario.
»
G(X,W,t, hﬁ’c) 4.9(0.1) 6.5(0.1) 14.4(0.6) 28% HI Mon Tren Prog MutInf MAPE
F
G(X, W ,1,h}) 4.800.1) 6.6(0.2) 15.000.4) 27% Residual method
Supervised nt 0.12(0.03) 0.68(0.05) 0.86(0.03) 0.45(0.07) 25.1(3.6)
G(X, W ,t,hy) 4.6(0.0) 6.40.1) 15.6(0.7) 29% Proposed method
Ground truth hS 0.10(0.03) 0.75(0.12) 0.74(0.13) 0.57(0.10) 34.2(5.9)
G(X,W,t, hg,) 4.6(0.0) 6.3(0.1) 13.1¢0.3) 32% hPF 0.16(0.03) 0.91(0.06) 0.89(0.05) 0.68(0.06) 16.6(3.5)
Supervised
Table 8 hy 0.11(0.04) 0.80(0.05) 0.88(0.04) 0.55(0.06) 22.8(4.4)
Results of the HI criteria for the battery dataset. Ground truth
HI Mon Tren Prog MutInf MAPE hy, 0.53 0.99 1.0 0.84 _
Residual method
he, 0.66(0.07) 0.96(0.02) 0.78(0.01) 0.53(0.04 9.11.0)
R, 0.50(0.07) 0.64(0.02) 0.66(0.01) 0.34(0.01) 11.000.2)
class data and conduct tests on medium to long-flight classes. The
Proposed method . O R K R K
specific training and testing units are detailed in Table 10.
h[f 0.86(0.04) 0.99(0.00) 0.83(0.02) 0.63(0.00) 7.3(0.6) X . .
QNG 0.39(0.08) 0.84(0.09) 0.830.11) 0.43(0.07) 9.6(1.0) For the battery dataset, we create an OOD scenario by considering
hr 0.73(0.04) 0.98(0.00) 0.82(0.01) 0.62(0.00) 7.0(0.5) different load profiles. We train models using uniform load data and
Supervised conduct tests using low-skew and high-skew data. For more information
h, 0.94(0.08) 0.98(0.08) 0.88(0.08) 0.62(0.02) 3.10.2) on the training/testing units see Table 11.
Ground truth
h 0.97 1.00 0.97 0.65 - .
8 6.2.1. OOD testing — Turbofan
Table 12 illustrates the HI metrics in the out-of-distribution sce-
Tablle 9 . 4 « for the b J nario. The proposed method, incorporating the functional constraint,
Results of the prognostic prediction task for the battery dataset. . .
prog P y surpasses the residual-based method across all metrics. However, the
Model MAE RMSE MAPE % Average £ th lati int d ield i d f
improvement use of the correlation constraint does not yield improved performance
- compared to the residual method.
Baseline
G WD) 16505 20607) 25616 ~ Moreov.er, when evaluating a supervised model for HI.estlmatlor.l,
Residual method only marginal perfc?rmance enhancements are observed in co-rnparl-
son to both the residual method and the proposed method with the
G(X,W,t,hl) 144an) 180014 21519 14% . R . . X
correlation constraint. The supervised model demonstrates inferior per-
Proposed method :
formance across all metrics when compared to the proposed method
GX.W.t.h) 134 166() 202a3 20% utilizing the functional constraint
G(X, W1, h,’j' G) 150(5) 185(5) 222(16) 11% 8 )
G(X, W ,1,hF) 126(10) 161a3) 18014 25% For the prognostics prediction task in the out-of-distribution sce-
Supervised nario, we decided to cap the maximum RUL value to 60 cycles to
GX. Wt h) 1346) 167 153as) 26% prevent large prediction errors for healthy units. The results are given
Ground truth in Table 13.
GO W.ihy) %) 1130 670 54% The results show the improvement in prognostics when integrating

distinct from those in the training set [70], leading to an Out-of-
Distribution (OOD) scenario. To assess the capabilities of the pro-
posed method under such OOD scenarios, we intentionally designed
challenging scenarios for each dataset.

For the turbofan dataset, we create an OOD scenario by considering
different flight classes. In particular, we train models with short-flight
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ground truth HI into the training data set. On average the model shows
47% improvement when incorporating the ground truth HI compared
to the baseline model. The second most effective option was integrating
the HI estimated by the supervised model. However, the inclusion of
HI estimated by the proposed method, utilizing a functional constraint,
showed a similar performance boost (41% compared to 37%). Com-
paratively, the inclusion of HI estimated by the residual method and
the proposed method employing the correlation constraint result in
marginal improvements of 5% and 9%, respectively.
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Table 13 Table 15
Results of the prognostics prediction task for the turbofan dataset under Results of the prognostics prediction task for the battery dataset under out-of-
out-of-distribution scenario. distribution scenario.
Model MAE RMSE MAPE % Average Model MAE RMSE MAPE % Average
improvement improvement
Baseline model Baseline model
G(X,W.,1) 11.20.9) 13.901.4) 56.1(14.4) - GX,W,1) 52(8) 85(18) 142@37) -
Residual method Residual method
G(X,W,t, hf) 11.2a.1) 14.40.2) 44.9(10.3) 5% G(X, W, t,hy) 52(5) 68(6) 89(12) 19%
Proposed method Proposed method
G(X,W,t, hg) 10.4(0.9) 12.8(1.1) 50.012.7) 9% G(X,W,t, hg) 46(3) 71(3) 83(6) 23%
G(X, W1, h,f) 6.8(0.6) 9.1(1.0) 35.8(7.1) 37% G(X,W,t, hf) 41(6) 64(9) 77(6) 31%
Supervised Supervised
G(X, W ,t,hy) 7.0(1.0) 9.11.49) 27.4(5.0) 41% G(X,W,t,hy) 43(5) 69(5) 744 28%
Ground truth Ground truth
G(X, W1, hy) 6.2(0.6) 8.5(0.6) 23.3(3.49) 47% G(X, W1, hy) 21 36(4) 26(7) 66%
Table 14 Table 16
Results of the HI criteria for the battery dataset under out-of-distribution scenario. Results of the HI criteria for the turbofan dataset ablation study.
HI Mon Tren Prog MutInf MAPE Mon Tren Prog MutInf MAPE
Residual method Proposed method
he 0.7 6(0.06) 0.97(0.00) 0.85(0.04) 0.58(0.05) 9.5(0.5) 0.36(0.05) 0.98(0.00) 0.95(0.01) 0.81(0.01) 8.5(1.6)
Proposed method With inductive bias and without learning bias
h;’ 0.41(0.11) 0.87(0.10) 0.71(0.04) 0.45(0.13) 9.000.9) 0.11(0.02) 0.77(0.06) 0.93(0.03) 0.41(0.08) 26.4(6.5)
h: 0:61007) UEAOGY, 0-790.02) 0i6Tin2) 8:00:3) Without inductive bias and with learning bias
Supervised 0.31(0.03) 0.98(0.00) 0.95(0.02) 0.69(0.01) 10.7(2.4)
hy 0.710.04) 0.93(0.04) 0.77(0.13) 0.58(0.04) 6.401.3) Without inductive bias and learning bias
Ground truth 0.05(0.01) 0.01(0.01) 0.03(0.03) 0.03(0.01) 89.6(6.0)
h, 0.98 0.99 0.97 0.68 -

8t

6.2.2. OOD testing — Batteries

Table 14 presents the HI metrics for the out-of-distribution scenario
concerning the battery dataset. In comparison to the residual method,
the proposed method using the functional constraint exhibits superior
performance in trendability, mutual information, and MAPE. However,
the proposed method using the correlation constraint performs worse
than the residual method across all metrics except MAPE.

The HI metrics show a minimal performance gap between the
supervised model and the proposed method utilizing the functional
constraint. The proposed method with the functional constraint out-
performs the supervised model in terms of trendability and mutual
information, but scores lower in terms of monotonicity and MAPE.

For the prognostics prediction task in the out-of-distribution sce-
nario, we decided to cap the maximum RUL value to 300 cycles to
prevent large prediction errors. The results are given in Table 15.

Introducing the ground truth HI significantly enhances RUL pre-
diction, achieving an average improvement of 66%. The next best
approach involves integrating an HI estimated through the proposed
method using the function constraint, resulting in a notable perfor-
mance increase of 31%. Incorporating an HI estimated by the su-
pervised model closely follows, showcasing an improvement of 28%.
Conversely, integrating an HI estimated by the proposed method using
the correlation constraint or the residual method yields more modest
improvements, increasing performance by 23% and 19%, respectively.

6.3. Ablation study: Impact of hybridization techniques

This section expands on the prior analysis by conducting an ablation
study to show the advantages of incorporating multiple hybridization
strategies in the proposed method. Specifically, the proposed method
incorporates two hybridization strategies: inductive bias and learning
bias. To assess the independent impact of each hybridization strategy
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on accurate HI estimation, we systematically eliminate each bias from
the model.

Initially, we examine the effect of removing the learning bias by
setting the parameter A, which controls the importance of the additional
constraint, to 0. Subsequently, we investigate the effect of eliminating
the inductive bias while preserving the learning bias by employing a
convolutional AE where W and X serve as input to reconstruct X. The
architecture mirrors that of the proposed method, with the distinction
that the operating conditions are input to the encoder and the decoder
(i.e., see UL method in Fig. 3). Lastly, we eliminate both learning bias
and inductive bias, essentially creating a fully data-driven unsupervised
model. This is achieved by employing the same architecture as in
the second case but omitting the additional constraint term from the
objective function.

The experiments focus on the in-distribution case of the turbofan
dataset; the resulting HI metrics are shown in Table 16. In the initial
scenario of eliminating the learning bias, a substantial decline in HI
metrics is evident compared to the proposed method. In the subse-
quent case of removing the inductive bias, we present the outcomes
of incorporating the correlation constraint. The results indicate a less
pronounced decrease in HI metrics compared to the proposed method,
with the most significant impact observed in Mutual Information and
MAPE. Finally, we demonstrate that integrating no prior knowledge
into the model results in the worst estimation of the HI. Fig. 11 visually
represents the estimated Hls for each ablation experiment.

7. Discussion

This research aimed at achieving a reliable hybrid method for esti-
mating the HI of diverse complex systems. In pursuit of this objective,
we proposed a hybrid unsupervised method for HI estimation based
on general knowledge. To compensate for the low informative nature
of the prior knowledge, we opted to combine multiple hybridization
strategies.
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Fig. 11. Estimated HI of test unit 10 for the turbofan dataset. Proposed method (a) Proposed method. (b) Proposed method without learning bias. (¢) Proposed method without

inductive bias. (d) Data-driven model.

To validate the generality of our proposed method, we conducted
evaluations on two distinct case studies, each characterized by different
degradation dynamics and their respective manifestations in observable
sensor readings. The main findings are summarized as follows:

The proposed method outperformed the industry standard resid-
ual method in both case studies. Furthermore, the performance of
the proposed method was on par with that of a supervised model.
This suggests that incorporating general knowledge contributes
significantly to the method’s performance across diverse systems.
Among the tested soft constraints, the functional constraint
emerged as the most effective choice for both case studies. The
functional constraint uses the most system-specific knowledge
and compels the latent space of the model to adhere to specific
values.

The advantage of the correlation and negative gradient con-
straints varied depending on the case study. In the case of turbo-
fan engines characterized by highly non-linear degradation, the
negative gradient constraint proved more effective. Conversely,
for batteries exhibiting linear degradation and health recovery
aspects, the correlation constraint demonstrated better perfor-
mance.

Ablation analysis (Section 6.3) shows that both hybridization
strategies are effective for HI estimation, but the combination of
the two is advantageous.

The aforementioned findings show that our proposed method has
good generalization since it can accurately estimate the HI of various
systems. However, it is important to acknowledge that the proposed
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method does have certain limitations. We outline these limitations
below.

» The proposed method is tailored for systems characterized by
failure modes predominantly driven by cycle loading. In instances
where various factors drive the system’s failure mechanism, the
adaptability of the soft constraint employed in our method may
require further consideration.

The proposed method was only evaluated in case studies with
continuous degradation. Exploring the suitability of our proposed
method for systems exhibiting abrupt failures is a subject of future
investigation.

The evaluation of the proposed method involved case studies
with run-to-failure data. Although our method applies to censored
data, the interpreted meaning of the estimated HI differs. In in-
stances where no failures are observed (HI = 0), the estimated HI
is normalized with reference to the most degraded unit observed.

8. Conclusion

This work proposes an unsupervised hybrid method for HI estima-
tion leveraging general knowledge and two hybridization strategies.
The proposed method features two design features: (1) a novel network
architecture of a convolutional AE preserving the causal relationships
among sensor readings, operating conditions, and degradation within
complex systems, and (2) the incorporation of soft constraints within
the loss function derived from general knowledge of the degradation
process, guiding the AE to infer degradation in its latent space.

In an extensive analysis involving turbofan engines and batter-
ies, both in-distribution and out-of-distribution testing scenarios, we
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demonstrated that this hybrid method, grounded in generalized knowl-
edge, has wide applicability across diverse systems.

The effectiveness and generalization capabilities of the proposed
method were demonstrated in comparative analysis involving alterna-
tive HI estimation methods. The evaluation encompassed both HI met-
rics and the utility of the HI for RUL prognostics. The proposed method
consistently outperformed the industry standard residual method in
all experimental setups. Notably, the performance gap between our
approach and fully supervised models was minimal, particularly in
RUL prediction tasks. For instance, in the turbofan dataset, both our
method and the supervised model improved RUL predictions by approx-
imately 28%. Similarly, in the battery dataset, both methods yielded
approximately 25% improvement. The results emphasize the impor-
tance of integrating knowledge into neural networks, showcasing the
informative potential embedded in such knowledge.

For future research, we plan to expand the application of our
method beyond turbofan engines and batteries to include other critical
systems, such as bearings. Furthermore, a key focus in future research
will be the exploration of optimal strategies for effectively leveraging
HI for RUL prognostics.
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Appendix A. Additive causal model

This section is focused on the domain of causal inference and
presents a common methodology for uncovering causal relationships
from observational data. We demonstrate the results of applying such
methodology for the turbofan case study.

To facilitate clarity, we begin by introducing causal notation. Ini-
tially, our attention is directed towards scenarios characterized by
causal models involving only two variables. We then follow with a brief
overview of the procedure for a multivariate case. In the context of
the bivariate scenario a structural causal model (SCM) consists of two
assignments:

(A1)
(A.2)

C = filey)

E = f,(C,e)
where ¢,¢, are jointly independent noise variables and f|, f, are
deterministic functions. In this model, we denote the random variables

C as the cause and E as the effect. Furthermore, we refer to the causal
graph C — E if C is a direct cause of E.
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Determining the causal direction, even in a bivariate scenario, is
challenging [71]. A recognized method for establishing causal direction
is the non-linear additive noise model (ANM), as introduced in [59]. In
general, if C is a direct cause of E, then it is intuitive to model the
relationship as:

E=f(C)+e Cle (A.3)

where f(-) is an arbitrary nonlinear function and e is the independent
noise variable. The assertion that C is independent of ¢ (C L ¢) relies on
several assumptions, including the absence of hidden common causes
between C and E and no feedback loops between the two (i.e., no
C < E interaction).

The non-linear ANM can be effectively applied to observational data
in practical settings. Given two random variables C and E, the ap-
proach involves estimating the conditional expectation E(E|C) through
regression analysis, followed by testing the independence of the resid-
uals E—-E(E|C) and C. Since the causal direction is typically unknown
beforehand, it is necessary to test both possible causal directions.

The extension to the multivariate case is discussed in detail in [59].
Briefly, for each potential causal structure, represented by a directed
acyclic graph (DAG) G;, the procedure involves conducting a nonlinear
regression for each variable against its parent variables. Subsequently,
we test whether the resulting residuals are mutually independent. If
any independence test is rejected, G; is rejected. However, depending
on the significance levels for rejecting and accepting independence, the
ANM may indicate causality in both directions, no direction, or only
one direction.

To address cases where these tests are inconclusive, [61] propose
an alternative method based on the variance score of residuals. This
method evaluates causality by assigning a higher score to models where
the variance of the residuals is smaller, indicating a better fit. Such
scores help in making definitive decisions about the causal direction.
The procedure is outlined in [61] and summarized in Algorithm 1.

Algorithm 1 General procedure to find the optimal causal structure
graph G,

opt*

Input: Observational data Dy = v} jN , variables

Vi

1: Construct all possible DAG G with d structural assignments V, =
fi(PA(V)),e;) j=1,...d, where PA(V,) are the parents of V;

2: For each graph structure G, regresses each variable V; on its parents
PAV;)

3: Obtain residuals R; = V; — f;(PA(V}))

4: Obtain a score log p(D|Gy) = Z?:l —log(var(R;))

5: Obtain most probable causal graph G,, = argmax, {log p(D|G,)}

For the turbofan case study, we utilize the methodology given in
Algorithm 1 specifically designed for the multivariate scenario. How-
ever, due to the large number of variables involved, including 14 sensor
readings denoted as X, 4 operating conditions denoted as W, and the
system health indicator Z, the exploration of all possible DAGs becomes
impractically large.

To address this challenge, we introduce simplifying assumptions.
Firstly, we assume mutual independence among the sensor readings
X (X; L X;,Vi # j) and mutual independence among the operating
conditions W. This allows us to focus on analyzing smaller subsets
of data, each containing a single sensor reading, a specific operating
condition, and the health parameter (denotes as D = {X Wi, Z}).
While this simplification may not fully align with reality, it facilitates
our goal of identifying causal relationships among X, W, and Z.
Secondly, since the degradation effect is typically minor in the early
cycles, we focus on data from later cycles (count greater than 45) where
the effect of degradation is more noticeable.

We use DecisionTreeRegressor from sklearn with default parameters
to perform regression. Since different combinations of chosen X; and
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Table A.17

All possible DAG with 3 variables. Each DAG is formatted as “variable < [cause]”,
where “variable” represents the effect variable and “cause” denotes the set of potential
causal factors or parents of the variable. The median and mean ranking over all choices
of X; and W; are reported.

DAG structure Median ranking Mean ranking

Z < [X] 0.0 0.75
Z « [W] 1.0 1.14
W < [Z] 2.0 2.05
W < [X] 3.0 3.45
X «[Z] 4.0 3.46
X < [W] 5.0 5.29
Z « [X,W] 6.0 5.54
W «[Z],Z < [X] 8.0 8.18
W «[Z,X] 8.0 8.86
W < [X],Z < [X] 10.0 10.45
W «[X].Z < [W] 10.0 11.02
X «[2),Z < W] 11.0 10.57
X < [Z,W] 11.0 12.04
W «[Z].X < [Z] 12.0 12.23
X «[W1],Z «[X] 13.0 13.70
X «[W],Z < [W] 14.0 14.14
W <« [X].X < [Z] 15.0 15.14
W« [Z,X « [W] 16.0 15.61
W« [X],Z « [X,W] 18.0 18.30
W «[Z.X],Z < [X] 19.0 19.70
X «[W],Z < [X,W] 20.0 19.71
W «[Z,X],X < [Z] 21.0 21.66
X < [Z,W].Z < [W] 22.0 21.11
W < [Z].X < [Z,W] 22.0 21.91

W; lead to different optimal causal graphs, we report the median and
mean ranking of all possible DAG structures given in Table A.17.

The two most frequently observed causal structures align with our
earlier reasoning, indicating that X is influenced by both W and Z, rep-
resented as X « [Z, W]. It is noteworthy that the illustration provided
in Fig. 5, detailed in Section 4.1, corresponds to X « [Z, W], Z « [W]
and is in the top two ranking. The difference between the two most
frequently found causal structures is the causal directions between W
and Z. The ambiguity of the causal relationship between W and Z was
anticipated in the C-MAPSS turbofan case study, given that the data
generation process modeled degradation Z as an independent process.

Appendix B. Reliability type function

We propose a method to determine the function g(r) representing the
expected Health Indicator (HI) of a system for a given cycle 7. Inspired
by reliability theory, we hypothesize that the failure time of many
complex systems (i.e., t for HI(r) = 0) follows a Weibull distribution
with parameters § and ». Additionally, we hypothesize that the time to
reach any intermediate HI threshold s is also Weibull distributed with
parameters f, and 7.’

Under this hypothesis, the shape parameter g, remains constant
across different s thresholds (i.e., f;, = f Vs.) Meanwhile, the scale pa-
rameter 5, changes as a function of HI threshold (i.e., n, = h(s,)) [72].
This is because 5, is also known as the characteristic life and cor-
responds to the cycles at which 63% of the units have reached the
threshold s. Since HI is decreasing as cycles increase, so does 7. In
this way, one can obtain the best-fit function HI = h(,).

A good choice for this function (see [73]) is
HI=A-(By)° (B.1)

The parameters A, B, and C are estimated from historical HI curves. Fur-
ther, connecting cycle time t with HI involves the Weibull distribution’s
Cumulative Distribution Function, expressed as:

P =1-exp(—(t/n)") (B.2)

2 The validity of this hypothesis has been proved analytically in [72].
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Rewriting (B.1) as 5, = %/(A — HI)/B and substituting into (B.2), leads

to

HI =C—((t*(og(1 = P) Py« A)B = g(t) (B.3)

And thus we can obtain the best-fit HI for a fleet of units as a
function of operational cycles. Note that adjusting P corresponds to
adjusting the confidence of the HI. In our experiments, we have used P
=0.5.

Appendix C. HI criteria

This section presents the four HI criteria used for the evaluation of
the proposed method.

» Monotonicity M of health index 4, of unit u with m observations
is expressed as

m—1
1 . . . .
M=—— . [nd(hi*" = hl) = Ind(h] — hI*)| (c1
j=1
x>0
Ind(x) =
0 x<0

Trendability T of health index A, of unit u with cycles ¢, is
expressed as

T = |corr(t,, h,)| (C.2)

where corr(.) is the Spearman correlation coefficient.

Prognosability P of all health indexes in a set E“ is given by,
o(he") )

w(lhg = hd))

P = exp(— ue Ed (C.3)
where the starting and ending HI values of unit u are denoted
as h and h*, respectively, while ¢ and u refer to the standard
deviation and mean operators.

Mutual Information score MI between &, and RU L,, for unit u can

be expressed as:

mr=1 Y11 —exp(=I(h,, RUL,))] (C.4)
mi3

where () is the mutual information measure.
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